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Abstract

Membrane transporters are responsible for moving a wide variety of molecules across bio-
logical membranes, making them integral to key biological pathways in all organisms. Identi-
fying all membrane transporters within a (meta-)proteome, along with their specific
substrates, provides important information for various research fields, including biotechnol-
ogy, pharmacology, and metabolomics. Protein datasets are frequently annotated with thou-
sands of molecular functions that form complex networks, often with partial or full
redundancy and hierarchical relationships. This complexity, along with the low sample count
for more specific functions, makes them unsuitable as classes for supervised learning meth-
ods, meaning that the creation of an optimal subset of annotations is required. However,
selection of this subset requires extensive manual effort, along with knowledge about the
biology behind the respective functions. Here, we present an automated pipeline to address
this problem. Unlike previous approaches for reducing redundancy in GO datasets, we
employ machine learning to identify a subset of functional annotations in a training dataset.
Classes in the resulting predictive model meet four essential criteria: sufficient sample size
for training predictive models, minimal redundancy, strong class separability, and relevance
to substrate transport. Furthermore, we implemented a pipeline for creating training data-
sets of transmembrane transporters that cover a wide range of organisms, including plants,
bacteria, mammals, and single-cell eukaryotes. For a dataset containing 98.1% of transport-
ers from S. cerevisiae, the pipeline automatically reduced the number of functional annota-
tions from 287 to 11 GO terms that could be classified with a median pairwise F1 score of
0.87+0.16. For a meta-organism dataset containing 96% of all transport proteins from S.
cerevisiae, A. thaliana, E. coliand human, the number of classes was reduced from 695 to
49, with a median F1 score of 0.92+0.10 between pairs of GO terms. When lowering the per-
centage of covered proteins down to 67%, the pipeline found a subset of 30 GO terms with a
median F1 score of 0.95+0.06.

Introduction

Proteins fulfill a variety of functions in each cell. One of these functions is the transport of mol-
ecules across biological membranes, specifically those molecules that cannot diffuse across the
membrane on their own. There exist dedicated transmembrane proteins, so-called membrane
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transporters, that enable the uptake of ions and polar molecules such as sugars and amino
acids, enable cell communication and signaling, or mediate drug efflux leading to resistance
against antibiotics in pathogenic micro-organisms, for example [1].

Currently, the substrates transported by many of these transporters are still unknown [2],
and closing the sequence-annotation gap is an important task in bioinformatics [3]. Whereas
certain transmembrane transport proteins can be assigned to their substrate class based on
homology to a protein family, the exact substrate is often determined by a very small part of
the sequence, while the remaining structure is an indicator of the transport mechanism, the
protein family and the ancestry, respectively [4-6]. On top of that, large parts of known prote-
omes do not possess enough sequence similarity to related proteins to infer functional infor-
mation from, and thus belong to the so-called dark proteome [7]. The ability to identify
transporters for specific substrates within a (meta-)proteome is essential across various
research fields, including biotechnology [8-10], pharmacology [11-13], and metabolomics
[14, 15].

Machine learning has been successfully applied to many fields [16, 17], including a number
of studies that aimed to assign substrate classes to membrane transporters. In 2010, Schaadt
and Helms [18] trained Support Vector Machines (SVMs) on the frequencies of amino acid
types in protein sequences, in order to distinguish between four substrate classes in A. thali-
ana. Other studies used sequence encodings based on multiple sequence alignments [19], posi-
tion-specific scoring matrices (PSSMs) [20], and physicochemical properties of the amino
acids in the sequence [21]. Text embedding methods adapted from Natural Language Process-
ing (NLP) were also employed for protein annotation [3]. Previously [22], we introduced a
machine learning approach that combined amino acid frequencies with different PSSMs for
each protein, and optimized the feature dimensions through feature selection on the training
dataset. This model achieved high evaluation scores on a dataset of transporters from A. thali-
ana, and performed even better when applied to a meta-organism dataset.

Machine learning classifiers achieve optimal performance when trained on homogeneous,
well-separated classes, as this improves pattern recognition, reduces model complexity, and
shortens training time [23]. However, the abundance of functional annotations and the com-
plexity of their ontologies make it challenging to define classes of proteins that are distinct,
while also providing useful information in their predictions [24]. In previous studies, classes
for predictive models that aim to annotate substrates for all membrane transporters in a prote-
ome were selected manually. Schaadt and Helms in 2010 [18], considered transporters belong-
ing to four classes of substrates in A. thaliana (amino acids, oligopeptides, phosphates, and
hexoses). Zhao and co-workers [21] split the transporters available in Uniprot (version
2013_03) into seven substrate classes: amino acid/oligopeptide, anion, cation, electron, pro-
tein/mRNA, sugar and other, and removed any transport protein annotated with more than
one substrate. The TranCEP method [25] used this dataset for training as well. In our recent
study [22], we considered four substrate classes (sugar, amino acids, potassium and electron).

However, relying on manually defined substrate classes has inherent limitations. Broad cat-
egories like cation may merge proteins with diverse sequences, structural folds, and transport
mechanisms, potentially introducing confounding variables that prevent accurate predictions.
Likewise, the choice of very specific substrate classes, such as magnesium, might not contain
enough samples per class for training reliable machine learning models [22]. Selecting optimal
substrate classes for each dataset requires extensive manual effort and biological knowledge.
Therefore, we present an automated pipeline that generates distinct, homogeneous protein
classes, using a greedy algorithm that optimizes class selection based on training data. Further-
more, the automated pipeline can rapidly compile convenient datasets for selecting substrate
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classes and training ML models across a variety of organisms, including bacteria, plants, mam-
mals and yeast, and combinations of those.

Although methods for reducing redundancy in sets of GO terms were previously developed
[24, 26], they were not optimized for machine learning tasks. Instead, these approaches were
primarily designed for gene set enrichment analysis, operating on the entire GO and gene
dataset. Therefore, they lack customization for specific datasets and tasks, such as the ability to
identify annotations of transmembrane transporters that are both associated with a sufficient
number of proteins for training and specific enough to provide meaningful information about
the function of each transporter that is classified with the model.

With the recent rise of transformer models and natural language processing, first attempts
have been made to adapt these methods to general protein function prediction [27]. Whereas
most of these methods aim to assign annotations from the entire Gene Ontology (GO) [28] to
the proteins, creating a small and non-redundant subset of functional annotations would con-
siderably reduce the number of nodes in the output layer, leading to simpler models that, in
practice, may provide a similar amount of information by their predictions.

Thus, the aim of this study was to implement a method that identifies an optimal set of
transport-function-related GO terms, so that putative transporters can be reliably annotated
with one or more of these terms. To this end, we implemented an algorithm that drastically
reduces the number of GO terms a protein dataset is annotated with, and then returns a non-
redundant subset with highly accurate pairwise classification results, that still contains the
original functional information found in the complete set of GO annotations. Additionally, we
introduce an improved software pipeline to compile protein datasets, along with functional
annotations, that allows for filtering of transporter sequences by various measures, indicating
data quality and other attributes. Unlike prior approaches that exclude multi-substrate pro-
teins [18, 21, 22], our pipeline supports multi-label datasets, allowing a single protein to belong
to multiple classes. This automated pipeline enables rapid and accurate identification of bio-
logically relevant, separable transporter classes in a protein dataset, significantly reducing
manual curation efforts.

Materials and methods
Data retrieval and preprocessing

Protein data was obtained from UniprotKB, version 2022_05 [29]. Proteins with fragmented
sequences or without experimentally proven existence were not included in the dataset. After
this initial filtering, a total of 1,693,707 proteins remained in the dataset. Non-standard amino
acid codes, such as B, Z, ] or X, were removed from the sequences. These amino acid descrip-
tors were found in 45,718 protein sequences, although none of them were part of the mem-
brane transporter datasets we explored in the results section.

The corresponding dataset 2022-11-03 of all Gene Ontology (GO) annotations [28],
including those that were electronically inferred from other sources, was downloaded from the
official GO webserver and filtered for those genes with Uniprot annotations. The relations
between individual GO terms were downloaded from the Gene Ontology website, in the OBO
format.

The code, along with links for downloading the raw data, is provided in the official reposi-
tory (see Appendix 1).

Dataset creation pipeline

A dataset pipeline was implemented that creates filtered protein datasets and annotates the
proteins with a subset of GO terms. The protein sequences are first filtered for a set of
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organisms, while the GO terms can be filtered for those that are ancestors of a particular node
(e.g. transmembrane transporter activity).

The proteins in the filtered Uniprot dataset are then annotated with the GO annotations
from Section Data retrieval and preprocessing. Outdated GO terms are updated to their cur-
rent version, using the alt_id node annotations in the GO graph. If a protein is associated with
a particular GO term, then the ancestors of that GO term according to the filtered GO graph
receive that relation as well.

For the transmembrane transporter dataset, only molecular_function GO terms that are
descendants of transmembrane transporter activity (abbreviated as TTA) were kept in the data-
set, and only edges with the is_a relation were allowed. Protein annotations were filtered for
the enables qualifier, which denotes that the protein is directly responsible for the molecular
function, as opposed to acting upstream, for example.

Pairwise similarity scores

After creating a dataset of # proteins, and annotating them with a subset of m GO terms, we
used the protein sequences of the annotated proteins, and other associated data, to create simi-
larity matrices of size m x m between pairs of GO terms, with the goal of comparing these sim-
ilarity scores to each other and to evaluation scores calculated from machine learning models.

Sequence similarity. In order to determine a “sequence similarity between two GO
terms”, a matrix of pairwise sequence similarity scores between all proteins annotated with
these two GO terms was computed. This matrix was then aggregated into a single number by
taking the average, minimal or maximal value.

Pairwise sequence similarity scores were calculated with the Biostrings R-package, using
the Needleman-Wunsch algorithm [30] for optimal global sequence alignments, with the BLO-
SUMBS62 substitution matrix [31] and gap opening- and gap extension penalties of 10 and 4,
respectively.

Semantic similarity. Semantic similarity scores between pairs of GO terms were calcu-
lated using the GOSemSim R-package [32]. Here, we used the method proposed by Wang
[33], as it can be calculated directly from the GO graph, and avoids the drawbacks of semamtic
similarity measures that are calculated on term-based information content [33-35].

Overlap matrix. The overlap matrix for a set of m GO terms contains the number of pro-
teins two GO terms have in common. Each position i, j < m in the matrix corresponds to the
size of the intersection set between the set of proteins annotated with GO term i, and the set of
proteins annotated with GO term j.

Evaluation of pairwise machine learning models. Machine learning (ML) models were
trained to distinguish sets of protein sequences annotated with either one of two different GO
terms.

To this aim, the protein sequences were transformed into numerical vectors of constant
length by applying the feature generation algorithms described in [22]: Amino acid composi-
tion (AAC), pair amino acid composition (PAAC), and four PSSM features. The individual
feature vectors were individually standardized along the sample axis, and concatenated into a
single vector of length 1,600. The four PSSMs for each protein were calculated by calling PSI-
BLAST with different parameters: either one or three iterations of PSIBLAST, and either Uni-
ref50 or Uniref90 [36] as the BLAST database, respectively. For this analysis, we did not cluster
the dataset at a sequence identity threshold of 70% as we did before [22], since we wanted to
estimate the correlation between sequence similarity and the performance of the machine
learning models.
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Class labels were derived from the GO annotation data described in Section Dataset crea-
tion pipeline. Depending on what type of model was used, all GO terms annotated to fewer
than k or k, proteins were removed from the dataset.

In our previous work [22], we observed that SVMs with RBF kernels were usually among
the best-performing models, as long as the sample size was greater than 20, and no clear outli-
ers could be found in the training dataset. While we previously removed multi-substrate trans-
porters if both substrates were part of the classification task, we now used multi-output SVM
classifiers that can be trained on a dataset where one sample can belong to multiple classes
(e.g. when distinguishing proton transporters from proton+molecule symporters or antipor-
ters). In the latter case, only pairs of GO terms were allowed where each term is associated
with at least k,, < k unique proteins in the dataset, excluding those that were part of the inter-
section. This was done to avoid cases where all or most proteins that are annotated with the
first GO term are also annotated with the second GO term, which can, for example, occur
when the former is the parent node of the latter.

Since the feature dataset consisted of 1,600 feature dimensions, but only hundreds or tens
of samples, we added a feature selection algorithm to the machine learning pipeline. Based on
the training dataset, the percentage p of best feature dimensions was selected, based on the
ANOVA F-score between the respective feature dimension and the corresponding class label.

The performance of each model was evaluated by computing precision, recall and F1 scores
individually for each class. The metrics represent the average score across five iterations of a
nested cross validation, where the outer cross validation splits the data into a training dataset
and an independent test set. An inner cross validation on the training dataset optimizes the
hyper parameters of the model, that is then evaluated on the independent test set. The position
i, j in the resulting matrix of pairwise evaluation metrics corresponds to the average F1 score
on the independent test sets across all outer folds, when distinguishing the positive class i from
the negative class j. The macro-averaged F1 score for a pair of GO terms was taken as the arith-
metic mean between positions i, j and j, i.

Greedy algorithm for clustering of GO terms

GO terms can be closely related in terms of function, and therefore have many annotated pro-
teins in common. Trying to distinguish two very similar GO terms from each other through
means of machine learning can be a challenge, since the small number of unique samples avail-
able for each class makes it harder for the ML model to find the correct patterns in the feature
vectors, and since the function may be too similar. For that reason, we implemented a pipeline
that reduces the redundancy in a subset of GO terms.

First, all GO terms with fewer than n associated proteins were removed from the dataset,
since they would anyhow not possess enough samples available for training a ML model. In
some cases, we also removed the top pth percentile of GO terms according to the distribution
of sample counts. For the remaining GO terms, a sparse matrix of pairwise ML evaluation
scores was created. For each pair of GO terms, a multi-output SVM with ANOVA-based fea-
ture selection was evaluated by a 5-fold cross-validation approach. The average F1 score across
the respective test sets of CV iterations was then used as a measure for how well the model can
assign the correct GO terms to the associated protein sets, using the ML features described in
Section Evaluation of pairwise machine learning models. Evaluation scores were only calcu-
lated for pairs of GO terms where both have at least 1 unique proteins that are not annotated
with the respective other GO term. If not enough unique proteins were available for training a
classifier on a pair of GO terms, the respective position in the matrix was left empty. This
threshold m was necessary to avoid cases where the annotated proteins of one GO term are a
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subset of the annotated proteins of another GO term, which would leave us with little or no
training data for the minority class.

The set of GO terms was then optimized via a greedy algorithm that iteratively removed
one GO term per step. For each GO term g in the subset, the coverage of remaining GO terms
(i.e. those that have not been removed yet and are not equal to g) was calculated by dividing
the number of proteins annotated with those GO terms by the total number of proteins. If
removing a particular GO term would not cause the coverage to fall below a specified thresh-
old, that GO term was considered as a candidate for removal. For each of these GO terms, the
potential impact (increase) of its removal on the average F1 score was calculated. When calcu-
lating the average, the empty positions in the F1 matrix were filled with a specified constant
value, by default with -1, which ensures that these GO terms get lower average scores and are
removed first. The list of GO terms considered for removal was then shortened to those with
the highest positive impact on the average F1 score when deleted, plus a small term ¢, which
causes GO terms with a very similar impact on average F1 scores, e.g. a difference of less than
0.001, to be considered to have the same impact.

The GO terms with the highest positive impact were sorted by their level in the GO graph
(i.e. the distance from the selected root node), and either the most abstract or the most con-
crete GO term was selected for removal, according to the preference of the user. Should there
still be multiple GO terms on the same level, one of those terms was drawn by a deterministic
random number generator and removed from the set of GO terms. This method was repeated,
until no more GO terms could be removed without the coverage falling below the specified
threshold.

The exact algorithm used for optimizing GO annotation sets is described in more detail in
Appendix 4.

Pipeline overview and complexity

The full pipeline, including transporter dataset creation, feature calculation, pairwise machine
learning model evaluation, and application of the greedy algorithm, is outlined in a flowchart
available in S11 Fig. The entire software package makes extensive use of caching, so after an
initial pre-calculation phase that requires up to a few hours on a modern desktop processor,
the entire pipeline can subsequently be executed within seconds. Pre-calculated PSSMs for the
feature calculation are provided together with the raw data, as the calculation of four PSSMs
for each protein is the most time-intensive task. During the pre-calculation step for the greedy
algorithm (see Section Evaluation of pairwise machine learning models), a total of % —jML
pipelines are trained and evaluated, where k is the initial number of GO terms and j is the
number of GO term pairs that share too many proteins to have enough samples per class for
training (e.g. when two annotations are parent and child nodes in the Gene Ontology graph).
The greedy algorithm itself removes GO terms until a number of conditions are met, meaning
that its linear runtime has an upper bound of k.

Results
Dataset creation pipeline

First, we employed an updated version of the transporter dataset creation pipeline described in
[22] to create a meta-organism transmembrane transporter dataset. This dataset included
transporters from four organisms: Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia
coli and human.
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The proteins were filtered according to multiple criteria that measure the quality of the
underlying data: The manual review status by Swissprot reviewers, whether there are known
genes associated with the proteins, the type of evidence used to annotate the protein with a
particular GO term, and whether the protein is still part of the dataset after applying sequence
clustering with a particular threshold (see S1 and S2 Tables) shows the number of transport-
related GO terms that these proteins are annotated with.

When selecting only manually curated data based on experiments, we obtained a total of
1.602 transporters at a clustering threshold of 70%. With all of Uniprot and the same parame-
ters, we would only get additional 250 proteins, meaning that these four organisms provide an
adequate representation of all organisms in Uniprot. The transporters in this meta-organism
dataset were annotated with 679 transmembrane-transporter-related GO terms, compared to
639 for all of Uniprot. This was due to the sequence clustering, where lower clustering thresh-
olds are more likely to assign two proteins with different GO terms into the same cluster,
thereby potentially removing the GO terms of one of these proteins from the dataset.

Application of the redundancy reduction pipeline to the meta-organism
dataset

Next, the GO term clustering pipeline described in Section Greedy algorithm for clustering of
GO terms was applied to this dataset. Due to the large number of proteins, we found it neces-
sary to not only remove GO terms with fewer than 20 proteins from the dataset, but to also
remove the top pth percentile of most general GO terms, according to the distribution of pro-
tein counts. Protein counts follow a steep exponential distribution, with a median of 4.0 and a
maximum of 815, excluding the root node transmembrane transporter activity (see Fig 1).
When keeping GO terms at or below the 99th percentile, which lies at 454.44, only seven out
of 695 GO terms are removed. Removing the 35 terms above the 95th percentile at 110.6 leaves
us with 660 GO terms.

Before applying the greedy algorithm and when calculating pairwise F1 scores with m = 10
and after removing GO terms with less than n = 20 proteins, the dataset consisted of 1661 pro-
teins annotated with 137 GO terms. For 1.666 pairs of these GO terms, no evaluation scores
were available since their protein sets were too similar to train a ML algorithm on them. The
median F1 score for the remaining pairs was 0.916.

With p = 0 (i.e. when not removing the top p-th percentile GO terms according to the num-
ber of annotated proteins), the median F1 score at a coverage of 100% starts at around 0.845
(see S2 Fig). Subset sizes are comparatively small (see S3 Fig), many pairs without F1 scores
still remain in the dataset (see S4 Fig). This is doe to the presence of abstract GO terms that
cover many proteins, but also have large overlaps with each other, such as channel activity or
secondary active transmembrane transporter activity (see S10 Fig). After the greedy algorithm
removed these abstract terms, they were replaced by their child terms, which are more precise
and have less overlap. This more than doubled the number of GO terms needed to reach the
required coverage, and caused the number of pairs without scores to drop, while the median
score rose sharply. At lower coverage thresholds, the subset sizes dropped again, while the F1
scores and available pairs continued to improve.

Removing the top 5th percentile of GO terms at the beginning of the pipeline with p =5
means that they do not have have to be removed by the greedy method, and already yields
good results at a coverage threshold of 100% (see Figs 2, 3 and 4). With m =5 and a coverage
threshold of 0.96, which was the highest coverage for which there were F1 scores available for
all pairs, we found a subset of 49 GO terms, with a median pairwise F1 score of 0.92+0.10.
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Overlaps between the terms were low, the mean overlap was 2% and the maximum overlap
was 77% (see Fig 5).

Finally, we calculated the best subsets with m = 20. At this number of unique proteins per
GO term, the highest possible coverage is 67% with p = 5, and 60% with p = 0 (see Fig 4, S4
Fig). The resulting subset of length 30 reached a median F1 score of 0.95+0.06. Overlaps were
minimal (see S8 Fig), with a mean and maximum overlap of 1% and 42%, respectively. In con-
clusion, setting m to 20 represents a trade-off between coverage and subset size. After the low-
est possible redundancy is reached (as in Fig 5), the number of GO terms can be further
reduced by lowering the coverage threshold until pairwise F1 scores are available for all GO
terms at m = 20. This also has a positive impact on the pairwise F1 scores.

Comparison of meta-organism results with substrate classes used in
previous studies

Finally, we compared the results of this study to previous machine learning works that classi-
fied a set of transmembrane transporters into substrate classes. For this, we searched the meta-
organism dataset for GO terms that matched the corresponding substrate transport functions.
We evaluated the resulting sets of GO annotations in terms of protein coverage, pairwise F1
scores, and annotation overlap. Previous studies used keyword annotations from UniprotKB
to retrieve substrate classes, and one of these substrates was electron. However, in the Gene
Ontology, which was used in this study as basis of functional annotations, electron transfer
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activity is classified as a molecular function that is separate from transmembrane transporter
activity, rather than a descendant of it. Therefore, membrane proteins that enable reactions of
electron donors and electron acceptors were not part of the new dataset, and were not available
for comparison.

In 2010, Schaadt and Helms only considered four substrate classes of phosphate, amino
acid, oligopeptide, and hexose [18]. In our dataset, using that subset of proteins would have
only covered 17.8% of transporters. The overlap between the classes was small, only amino
acid and oligopeptide had an overlap of 6%. The average pairwise F1 score was 0.83+0.14.

In 2014, Mishra et al. [21] also considered a category of other transporters based on data
from version 2013_03 of Uniprot. However, it was unclear to us which substrates were
included in that category. Furthermore, electron transfer proteins were not part of our dataset.
The remaining five classes of sugar, protein, cation, anion and amino acid provided a protein
coverage of 66.6%, with average F1 scores of 0.85+0.13. Three substrate classes (amino acid,
anion and sugar) had overlaps of 22-36% with the cation class, in part because cation sympor-
ters and antiporters were included in the dataset. Otherwise, the overlaps were small.

Finally, we analyzed the substrate classes that we used in our previous study [22]. When
excluding the electron transfer proteins, the remaining three substrate classes sugar, amino
acid and potassium had no pairwise overlaps and covered 26.2% of the meta-organism dataset,
with average pairwise F1 scores of 0.9+0.05.

By comparison, the meta-organism GO subset of 49 GO terms that was optimized for high
protein coverage included 96% of transporters, with median F1 scores of 0.92+0.1. The median
overlap was 0.0, with a small number of outliers that were necessary to reach the high coverage

PLOS ONE | https://doi.org/10.1371/journal.pone.0315330 December 19, 2024 9/24


https://doi.org/10.1371/journal.pone.0315330.g002
https://doi.org/10.1371/journal.pone.0315330

PLOS ONE

Identifying optimal substrate classes

50

40

Subset size
w
o

N
o

10

Minimum unique samples per class
5
— 10
— U5
— 20

0.9 0.8 0.7 0.6 0.5
Protein coverage

Fig 3. Subset sizes for meta-organism dataset at different coverage thresholds, when removing most abstract terms. Final subset sizes for
the meta-organism dataset generated by the pipeline, after removing the top 5th percentile of GO terms according to sample count.

https://doi.org/10.1371/journal.pone.0315330.g003

(see Fig 5). When accepting a lower coverage of 67%, we found a subset of 30 GO terms with
median F1 scores of 0.95+0.06, and much smaller overlap between the classes (see S8 Fig),
meaning that the increased detail of the larger subset led to better classification performance
and more consistent ML models.

Yeast transporter dataset

Results of the dataset creation pipeline. In a second stage, we analyzed a single-organism
dataset, containing transporters from S. cerevisiae. Here, all transporters in our dataset are part
of the manually curated SwissProt database, meaning that considering data from TrEMBL
would not have increased the sample count. The gene names of all proteins in the dataset were
known. The final protein dataset contained 332 transport proteins. Sequence clustering with
CD-HIT [37] at a similarity threshold of 70% would reduce that number to 303.

When applying the annotation pipeline described in Section Dataset creation pipeline, the
transporters were directly annotated with 211 unique transport-related molecular function
GO terms. Adding the ancestors of these GO-MF terms to the dataset increased that number
to 288. Overall, our yeast dataset contained a total of 3,299 unique relations between transport
proteins and transport-related functional GO terms, 380 of which were inferred by electronic
annotation (IEA).

Evaluation score matrix from machine learning models. Previously [22], we showed
that at least 20 proteins per class are necessary to predict substrates of transmembrane trans-
porters with good accuracy. Therefore, we pruned the GO terms in our dataset to those with at
least 20 associated proteins. This represents a tradeoff, because the number of GO terms
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Fig 4. ML models excluded due to low sample count for the meta-organism dataset, when removing the most abstract terms. Number of
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percentile of GO terms according to the sample count distribution.

https://doi.org/10.1371/journal.pone.0315330.9004

available for classification decreases rapidly if the minimum required number of proteins per
GO term is raised (see Fig 6). Filtering the GO terms in this way did not decrease the number
of proteins in our dataset, since they were still annotated with the ancestors of these more spe-
cific terms.

Next, we generated a sparse matrix containing the evaluation scores of pairwise machine
learning classifiers, as described in Section Evaluation of pairwise machine learning models.
Each matrix entry is equal to the score of a multi-output SVM-RBEF classifier that annotates a
protein sequence with either one or both of the GO terms. Models were only trained on pairs
of GO terms where each term was associated with m unique proteins, i.e. those that were not
in the intersection set between the protein sets of the two GO terms. The final matrix had 37
dimensions. With m = 20, 524 out of 1,332 distinct pairs of GO terms were not suitable for
evaluation due to a lack of unique samples in at least one of the classes.

After performing a nested cross validation for each pair of GO terms, the median F1 score
on the independent test sets was 0.91 (see S3 Table). In order to test the impact of feature selec-
tion and dimensionality reduction on the scores, we trained two additional ML pipelines that
employed either ANOV A-based feature selection or PCA to reduce the number of feature
dimensions, based on the respective training dataset at hand. While feature selection did not
substantially impact the median F1 score, it improved the minimum scores between pairs of
GO terms from 0.15 to 0.23 and 0.37 for PCA and ANOVA, respectively. Overall, the model
with ANOVA-based feature selection seemed to perform best.

Finally, we repeated the same tests after removing redundant sequences with more than
70% sequence similarity from the dataset using cd-hit. This reduced the number of proteins in
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Fig 5. Overlap heatmap for all transporters in meta-organism dataset. Heatmap showing the fraction of proteins annotated with GO term 1 that are
also annotated with GO term 2, for all pairs of GO terms in the optimized subset for the meta-organism dataset.

https://doi.org/10.1371/journal.pone.0315330.9005

the dataset from 332 to 303, and the number of GO terms with more than 20 associated pro-
teins from 37 to 32. Median F1 scores on independent test sets between all GO term pairs were
between 0.02 and 0.04 lower across the different models (see S3 Table).

Comparative analysis. Now we wanted to find out which pairs of GO terms can be well
distinguished and which ones not. Intuitively, one may expect that it is more difficult to distin-
guish transporters of substrates A and B when either the protein sequences are highly similar
to each other or when A and B are very similar. To this aim, we compared the model evalua-
tion scores of binary machine learning models trained on pairs of GO terms to similarity
scores for those GO terms.

The data was split into two subsets: GO term pairs with a macro-averaged F1 score below
0.75, and GO term pairs with an F1 score above or equal to 0.75. This threshold was selected
based on the minimum sample size in each set, where a lower value would result in fewer than
30 GO term pairs in the subset of low-performing pairs, which could lead to biased results.

We tested using the Shapiro-Wilk test [38] which of the similarity scores follow a normal
distribution. The median and mean sequence identities, and the GO semantic similarity had a
test statistic higher than 0.9, indicating they follow a normal distribution.
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For each of these normally distributed variables, we performed a one-tailed independent t-
test between the two subsets of low-performing and high-performing GO term pairs, with the
alternative hypothesis that the mean similarity score of the pairs with low F1 score was smaller
than the mean of the population. After multiple-hypothesis correction by the Benjamini-
Hochberg method, only the mean sequence identity (p = 0.0306) was statistically significant
with p < 0.05. No statistically significant similarity scores were found for the other tail of the
distribution.

For the similarity scores that did not follow a normal distribution, we performed two non-
parametric Mann-Whitney-U tests between the two subsets for each score, one for each tail of
the distribution. After Benjamini-Hochberg correction, the mean sequence identity and the
minimal sequence identity had statistically significant p-values, with the alternative hypothesis
that pairs with lower F1 scores have a lower similarity score. For the other alternative hypothe-
sis, i.e. that pairs with lower F1 score have a higher similarity score, we found the absolute dif-
ference in sample count, the maximum sequence identity between proteins annotated with the
GO terms, and the semantic similarity to be statistically significant.

In summary, good ML separability between a pair of GO terms requires (unexpectedly)
that the sequence similarity between the associated proteins should be higher than a certain
minimum, but also (expectedly) should not exceed a certain maximum. The Wang method
[33] for calculating semantic similarity between GO terms was also able to predict good ML
performance, meaning that proteins annotated with more dissimilar molecular functions are
also better separable by the ML model.
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Table 1. Spearman correlation between F1 scores and similarity measures.

score mean train score mean test score
go max sequence identity -0.602 -0.555
overlap -0.475 -0.421
sample count diff -0.446 -0.420
go semantic similarity -0.331 -0.312
go median sequence identity -0.054 -0.032
go mean sequence identity -0.039 -0.017
go min sequence identity 0.442 0.405
mean train score 1.000 0.957
mean test score 0.957 1.000

https://doi.org/10.1371/journal.pone.0315330.t001

In addition, we also calculated correlation coefficients between F1 scores and similarity
measures of all pairs in the dataset. Spearmans rank correlation was used, since most of the
tested variables were not normally distributed. The F1 scores on the training and test data
showed a very high correlation of 0.956, meaning that the trained models adapt well to the
independent test sets. The highest correlation (0.44) was observed for the minimum sequence
identity, the lowest correlation (-0.55) for the maximum sequence identity (see Table 1), which
corresponds to the results obtained from the statistical tests.

Finally, we calculated mean F1 scores of individual GO terms across the pairs and com-
pared them to a variety of attributes, including the number of annotated proteins and the level
(i.e. the distance from the root node). The highest positive correlation with the test F1 score
was found with the level (0.39), while the lowest (-0.61) was with the number of annotated pro-
teins. This means that class labels should not be too abstract, since the set of protein sequences
annotated with very broad GO terms is more diverse, making it harder for the machine learn-
ing model to find patterns.

Applying the GO term clustering algorithm to the yeast dataset. After removing all GO
terms with fewer than n = 20 samples from the S. cerevisiae dataset, we were left with 36 out of
287 transmembrane transport-related GO terms.

Since the multi-output classifiers we used are capable of annotating proteins with one or
both of the GO terms, we needed to filter out pairs where the minimum number of unique
proteins per class, i.e. proteins that were not part of the intersection of the classes, was higher
than a threshold m. We tested four different values for the parameter m: 5, 10, 15 and 20. Set-
ting m to a value lower than five was technically not possible in our workflow, since we need at
least five unique proteins for the 5-fold cross validation. Increasing m leads to a smaller num-
ber of pairs with F1 scores available in the pairwise evaluation matrix at high coverage values
(see S5 Fig), but leads to more consistent median F1 scores (see S6 Fig). Based on these find-
ings, we selected m = 10 as a trade-off between high coverage of the resulting subset and large
enough sample count during evaluation of the pairwise SVM models. Before optimizing the
subset, evaluation scores were available for 244 out of 1296 possible pairs, and the median F1
score was 0.90. Applying the greedy optimization algorithm described in Section Greedy algo-
rithm for clustering of GO terms with m = 10, € = 0 and a preference for less abstract terms
yielded a subset of 11 GO terms that cover 98.1% of all transmembrane transport related pro-
teins in S. cerevisiae. F1 scores were available for all pairs of GO terms in the optimized subset,
the median score was 0.87 (see Table 2). The pairwise overlap matrix of the subset (see S1 Fig)
has a relatively low median value of 0.07 (arithmetic mean of 0.12), with a maximum pairwise
overlap of 0.66. This is mostly due to the fact that abstract terms such as primary active
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Table 2. Subset of GO terms selected for the yeast dataset when prioritizing more specific terms and optimizing
for protein coverage.

GO term Proteins
amide TTA 21
carbohydrate derivative TTA 25
carboxylic acid TTA 64
monoatomic cation TTA 131
organophosphate ester TTA 22
passive TTA 32
primary active TTA 61
protein TTA 21
salt TTA 72
secondary active TTA 80
sulfur compound TTA 21

https://doi.org/10.1371/journal.pone.0315330.t002

transmembrane transporter activity need to remain in the dataset in order to reach the 98%
coverage, since many of their child terms do not have enough annotated proteins to be
included. For the meta-organism dataset, this issue was overcome when we included proteins
from other organisms. Asking the pipeline to prefer more abstract terms did not have an effect
on the subset that was found by the algorithm, with the given parameters.

Next, we tried other values of €, along with ten different random seeds for the random num-
ber generator. Higher values of € cause more GO terms to be considered to have the same
impact on the average F1 score, therefore making the results more dependent on the random
draws that happen at the end of the pipeline. This can be used as an additional optimization
step, in cases where the greedy algorithm finds a local minimum. Results were filtered for
those subsets with high coverage (98% or more) and with F1 scores available for each pair.
With m = 10, all resulting subsets were made up of 11 GO terms and a minimal variance
between the results obtained with different random seeds and e values. When telling the algo-
rithm to prefer abstract terms and setting e to 0.005, a subset with a slightly higher coverage
was found (99% compared to the previous 98.1%), with a median F1 score of 0.87 (see
Table 3). The resulting subset showed a higher average and median overlap (0.16 and 0.1,
respectively), and a much larger maximum overlap of 0.91. While preferring abstract terms

Table 3. Subset of GO terms selected when prioritizing abstract terms and optimizing for protein coverage, on the
yeast dataset.

GO term Proteins
amide TTA 21
carbohydrate derivative TTA 25
inorganic molecular entity TTA 158
macromolecule TTA 21
monoatomic ion TTA 142
organic acid TTA 65
organophosphate ester TTA 22
primary active TTA 61
salt TTA 72
secondary active TTA 80
sulfur compound TTA 21

https://doi.org/10.1371/journal.pone.0315330.t003
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can increase the protein coverage, for example by selecting organic acid (65 proteins) instead
of its child term carboxylic acid (64 proteins), the more generalized terms are more likely to
annotate other proteins in the dataset, leading to larger pairwise overlaps.

Discussion

Here, we aimed at identifying an optimal set of molecular function GO terms to split the mem-
bers of a membrane transporter dataset, where optimality is meant in terms of separability. As
an analogy, one could try to classify humans into those that like pop music, jazz, classical
music or none of all. One question would then be whether it is beneficial to subdivide classical
music into sub-categories, or to remain at the more abstract level of classical music. The anal-
ogy of music styles are GO terms at different abstraction levels of the Gene Ontology.

First, we implemented a software pipeline that automatically generates datasets of specified
transmembrane transporter proteins, where the proteins and their functional annotations can
be filtered for a variety of attributes, such as data quality, organism or the cellular compart-
ment where they carry out their functions. Using this pipeline we created two transmembrane
transporter datasets: A single-organism dataset containing only proteins of S. cerevisiae, as
well as a meta-organism combining the transporters of human, S. cerevisiae, E. coli and A.
thaliana.

Then we implemented an algorithm for reducing the redundancy in a set of GO terms, in
order to find an optimal set of classes for training a machine learning algorithm. This greedy
algorithm aims to minimize the pairwise overlaps of annotated protein sets, while producing
subsets containing either abstract terms or specific terms. A filter for minimum and maximum
protein count of the GO terms is employed, in order to reduce major differences in sample
size.

When applying the pipeline to the meta-organism transporter dataset, the optimized subset
contained 49 out of 695 functional annotations, which provided a coverage of 96%, a median
pairwise F1 score of 0.92+0.10, and a mean overlap of 2%. Lowering the minimum required
protein coverage to 67% reduced the subset size to 30 GO terms, with a median F1 score of
0.95+0.06 and a mean annotation overlap of 1%. This was an improvement on previous
attempts at dividing transporters into substrate classes, which either provided a much smaller
protein coverage, or led to lower pairwise F1 scores because of broader functional annotations.
For the yeast dataset, the algorithm lowered the number of transporter GO terms from 287 to
11, with a median pairwise F1 score of 0.87+0.16 and covering 98.1% of transmembrane
transporters.

Also, we tested for the yeast dataset what characteristics of two sample groups determine
whether they are well separable or not. To this end, we computed multiple pairwise similarity
measures for the GO terms. On each pair of GO terms, we trained and evaluated a multi-out-
put SVM model with RBF-kernel, using ML-features derived from the amino acid sequence
and from evolutionary information. Model evaluation was carried out in a nested 5-fold cross
validation approach, and the average F1 score across the five test sets was used as a metric for
how well the model can distinguish proteins of these two classes. When only evaluating pairs
of GO terms where each GO term has at least m = 20 unique samples available for training, the
SVM-RBF model with our combined ML-feature and ANOV A-based feature selection
achieved a mean F1 score of 0.88+0.11 on the test sets for the S. cerevisiae dataset (see S3
Table).

Then, we compared the similarity scores to these F1 scores on the yeast dataset using corre-
lation coefficients and statistical tests. We found that the strongest predictor of low F1 scores
was a low mean sequence identity between proteins annotated to the two different GO terms.
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On the other hand, both a lower minimum sequence identity and a higher maximum sequence
identity between pairs of proteins annotated with the GO terms are predictors of low F1 scores.
Together, this means that the protein sets should not be too similar, but also not too dissimilar
to each other. Another predictor of a low evaluation score was a large difference in sample
count, so comparing very abstract to very specific functional annotations can lead to poor
results. The GO semantic similarity was also able to predict good separability with machine
learning models.

While correlations with machine learning performance were observed, such as with mini-
mum and maximum sequence identity (see Table 1), these correlations were not strong
enough to make decisions about which annotations to keep and remove. Hence, we imple-
mented a greedy algorithm that optimizes class selection based on the training dataset.
Although the requirement of at least 20 samples per functional annotation prevents the inclu-
sion of very specific GO terms, we addressed this limitation by adding the ability to create
meta-organism training datasets that can include proteins from plants, bacteria, single-cell
eukaryotes, and mammals. Multi-output machine learning algorithms, which allow training
on proteins with multiple substrates are helpful in increasing the number of available samples
per annotation.

Our method offers an automated solution to identify which functional annotations of trans-
membrane transporters can be separated with sufficient accuracy through machine learning. It
provides a pipeline that vastly reduces the redundancy in a set of functional annotations, using
a greedy algorithm and training data. Another pipeline allows for the creation of custom train-
ing datasets for a variety of organisms, including plants, single-cell eukaryotes, bacteria and
mammals. This approach reduces the need for extensive manual effort in simplifying datasets,
and helps in improving machine learning model efficiency, classification performance, and
training time. This brings us closer to the goal of creating predictive models that can automati-
cally annotate entire proteomes and metaproteomes with transmembrane transport annota-
tions and transported substrates, providing valuable information for various fields of research
8,9, 13, 14].

Appendix 1
Code and data

The code developed for this study was uploaded to GitHub as a Python package, along with a
link to download the raw data, and Jupyter Notebooks that reproduce the results. The reposi-
tory can be found under https://github.com/adenger/subpred4.

Appendix 2
Chemical similarity between substrates associated with GO terms

Mapping the Gene Ontology to ChEBI. Cross-ontology relations between GO and the
ChEBI ontology [39] were retrieved through the QuickGO API [40]. After the preprocessing
described in Section Dataset creation pipeline, the GO terms are mapped to their correspond-
ing ChEBI terms, if any are available.

Calculating the chemical similarity of two GO terms. In order to calculate a measure of
the chemical similarity between two substrate transport GO terms, the GO annotations are
first filtered for those that are annotated with ChEBI identifiers representing primary substrate
molecules. Molecular fingerprints are derived from the SMILES-representations [41] of the
ChEBI terms, using RDKit [42]. Four different methods are used: Morgan [43], Atompairs
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[44], Topological torsion [45], and MACCS [46]. The chemical similarity between two sub-
strates is estimated as the Tanimoto coefficient [47] of their fingerprints.

The chemical similarity between two substrate-transport GO terms is then defined as the
Tanimoto coefficient between the respective transported substrates. If more than one molecule
is associated with a GO term, the average, maximal and minimal pairwise Tanimoto coefficient
is calculated.

Results on yeast transporter dataset. We explored if ChEBI terms associated with GO
terms can be used to filter out non-substrate related transporter function GO terms, such as
those that describe transport mechanisms. Of these 288 GO terms, 221 were annotated with
ChEBI terms, and 149 of which had SMILES representations available. Only 15 GO terms had
both SMILES representations of their primary substrates, and were annotated with 20 or more
proteins from yeast. These 15 GO terms annotate 173 of 332 transmembrane transport pro-
teins in S. cerevisiae, meaning that only using GO terms that are annotated with ChEBI terms
would lower the number of proteins and substrate classes in our dataset considerably.

Appendix 3
Transporter dataset pipeline parameters

Manually curated proteins. Proteins that have not been manually curated (i.e. those
available in TrTEMBL but not in SwissProt) can be removed from the dataset.

Sequence evidence. Proteins with experimental sequence evidence at transcript level but
not at protein level can be added to the dataset. Predicted sequences are removed during pre-
processing, and are not available for the pipeline.

GO evidence. GO annotations can be filtered for their evidence codes, e.g. to remove elec-
tronically inferred information that has not been manually reviewed. Annotations with the
NOT prefix, which denotes that a protein is explicitly not annotated with a particular GO
term, are already removed during pre-processing.

Organisms. Proteins can be filtered for a subset of taxonomy identifiers, e.g. 9606 for
human.

External proteins. Proteins that do not occur in the provided organisms can be added to
the dataset, e.g. to simulate experiments where proteins from one organism are expressed in
another one.

Gene names available. The 671,750 proteins without any annotated gene names can be
removed from the dataset, for example if the data needs to be linked to genetics- or transcrip-
tomics datasets.

GO subset. A sub-tree of GO can be selected by providing a new root node. Further filter-
ing can be applied to the GO subset, for example for the aspect (i.e. molecular_function, cellu-
lar_component, biological_process) and for a subset of edge annotations (relationships)
between GO terms (e.g. is_a). All GO terms that are not descendants of the new root node,
according to the filtered subset of edge annotations, are then removed from the graph. Only
proteins annotated with this subset of GO terms remain in the dataset.

ChEBI quality. ChEBI terms can optionally be filtered by their star rating system, e.g. for
those that have been manually verified.

Cellular component. Optionally, a subset of cellular component annotations can be cre-
ated, which then get filtered for those with the located_in or is_active_in qualifiers, and only
is_a relations between GO terms are kept. Proteins are also annotated with the ancestor GO
terms of their cellular components. The subset of transport proteins that are located in a par-
ticular set of compartments, such as plasma membrane, mitochondrion or eisosome, can then
be selected for further analysis.
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Appendix 4
Steps in the algorithm pipeline
Input.

« Transport protein dataset and corresponding GO annotation data created with the trans-

porter dataset creation pipeline described in Section Dataset creation pipeline

 Ontology graph for the annotation data in OBO format, created by the preprocessing pipe-

line (see Section Data retrieval and preprocessing)
Parameters.
n GO terms annotated with fewer than n proteins in the dataset are removed. (Default: 20)

m GO terms annotated with fewer than m unique proteins are removed, i.e. proteins that are
only annotated with one of the GO terms in a binary classification task, not both. (Default:
15)

p The top pth percentile of GO terms according to the distribution of annotated samples is
removed (see Section Greedy algorithm for clustering of GO terms). (Default: 0)

¢ The minimum allowed coverage of the resulting set of GO terms, i.e. the percentage of pro-
teins in the original protein dataset that are annotated with a GO term from the optimized
subset. (Default: 0.9)

a Whether to prefer abstract or specific GO terms. Higher specificity is defined as increased
distance to root node. (Default: specific)

€ Reduces the influence of rounding errors and local minima on the algorithm, by allowing
the optimization to consider GO terms that are within € of the best score during the iteration.
Scores are in the interval [0, 1], therefore values of ¢ < = 0.05 are recommended. (Default: 0.0)

Steps.

. Create a starting set of GO terms to optimize from the provided proteins and their

annotations.

. Filter the GO terms in the set, as well as the corresponding ontology graph, according to

parameters n, m and p.

. Train and evaluate pairwise binary ML models for GO terms, as described in Section Evalu-

ation of pairwise machine learning models

. For each GO term calculate:

(a) Coverage loss: The percentage of protein that would be annotated if the GO term was
removed from the current set.

(b) Score delta: The average ML evaluation score across all pairwise models, if the GO term
was removed from the current set.

. Removal candidates: Select all GO terms that can be removed without the coverage falling

below c.

. Sort removal candidates by score delta, select those with the highest improvement in aver-

age F1 score when removed, while also considering those that are within € of the maximum
score.
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7. End condition: If the list of removal candidates is empty then return the optimized list of
GO terms.

8. If the list of removal candidates contains more than one GO term:
1. Select either the most specific or most abstract term(s), depending on parameter a.

2. If the list of removal candidates still contains more than one GO term, draw one of them
using deterministic random sampling.

9. Remove the selected GO term from the set, go back to step 4 and repeat the process with
the smaller subset.

Supporting information

S1 Fig. Overlap percentage heatmap for yeast dataset at 98% coverage. Heatmap showing
the fraction of yeast dataset proteins annotated with GO term 1 that are also annotated with
GO term 2, for all pairs of GO terms in the optimized subset. Removal of any term would
cause the protein coverage to fall below the specified 98%.

(TIF)

S2 Fig. Median F1 scores for meta-organism dataset when not removing abstract terms.
Median F1 scores between pairs of GO terms for the meta-organism dataset, when not remov-
ing the top 5th percentile of GO terms according to sample count.

(TIF)

S3 Fig. Subset sizes for meta-organism dataset when not removing abstract terms. Final
subset sizes for the meta-organism dataset after applying the pipeline, when not removing the
top 5th percentile of GO terms according to sample count.

(TIF)

$4 Fig. GO terms that were excluded in meta-organism dataset due to low sample count,
when not removing abstract terms. Number of GO terms with no available F1 scores for the
meta-organism dataset, when not removing the top 5th percentile of GO terms according to
sample count.

(TIF)

§5 Fig. GO terms excluded in yeast dataset due to low sample count, at different thresh-
olds. Number of GO term pairs in the yeast dataset without evaluation scores available, at dif-
ferent protein coverage thresholds and for four different values of m. ML models are only
available for pairs that are distinct enough, meaning that each term has at least m proteins
available for training that are not also annotated with the respective other term.

(TIF)

S6 Fig. Median F1 scores for yeast dataset, at different thresholds for coverage and sample
count. Median F1 scores between pairs of GO terms in the yeast dataset, at different protein
coverage thresholds, using four different evaluation matrices that were created with different
values of m, i.e. the threshold for how few unique samples are allowed per class during train-
ing.

(TIF)

S7 Fig. Optimized subset sizes for yeast dataset, at different thresholds for coverage and
sample count. Subset sizes found by the redundancy reduction pipeline for GO term subsets
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in the yeast dataset, at different values of m. With lower coverage, fewer terms are necessary
for reaching the threshold. At higher values of m, there are more pairs in the dataset with no
ML model available, and these terms are removed first by the pipeline.

(TIF)

S8 Fig. Overlap percentage heatmap for the meta-organism dataset, after removing the
most abstract GO terms. Heatmap showing of the fraction of proteins annotated with GO
term 1 that is also annotated with GO term 2, for all pairs of GO terms in the optimized subset
for the meta-organism dataset, when removing the top 5th percentile of GO terms. Here, the
coverage threshold was reduced to 67, and m was set to 20.

(TIF)

S9 Fig. Overlap percentage heatmap for the meta-organism dataset, when using the ¢
parameter at 99% coverage. Heatmap showing the fraction of proteins annotated with GO
term 1 that is also annotated with GO term 2, for all pairs of GO terms in the optimized subset.
This subset was generated by preferring abstract GO terms and setting € to 0.005. Removal of
any term would cause the protein coverage to fall below the specified 99%.

(TIF)

$10 Fig. Overlap percentage heatmap for the meta-organisn dataset, when not removing
the most abstract GO terms. Heatmap showing the fraction of proteins annotated with GO
term 1 that are also annotated with GO term 2, for all pairs of GO terms in the optimized sub-
set for the meta-organism dataset, but without removing the top 5th percentile of GO terms.
(TIF)

S11 Fig. Flowchart of the entire pipeline. First, the raw data is filtered and cleaned, and con-
verted to a binary data format for faster reading (see Section Data retrieval and preprocessing).
Next, the general protein dataset is converted to a specific transporter dataset according to
specified parameters (see Section Dataset creation pipeline). Then, the protein feature genera-
tion algorithms described in our previous study [22] are applied to the data, and pairwise ML
models are trained and evaluated (see Section Evaluation of pairwise machine learning mod-
els). Finally, the iterative optimization algorithm described in Section Greedy algorithm for
clustering of GO terms and in Appendix 4 is applied to the dataset, and an optimized set of
functional annotations is returned.

(PNG)

S1 Table. Meta dataset protein counts. Number of unique proteins in the transmembrane
transporter dataset, after filtering for criteria related to data quality.
(PDF)

S2 Table. Meta dataset GO term counts. Number of unique GO terms in the transmembrane
transporter dataset, after filtering for criteria related to data quality.
(PDF)

S3 Table. Yeast dataset pairwise evaluation scores. F1 scores for different machine learning
models that were trained on pairs of GO terms and their associated proteins, optionally with
70% sequence clustering, for the yeast dataset. The goal was to remove the worst-performing
GO terms with the clustering pipeline described in Section Greedy algorithm for clustering of
GO terms. ANOVA and PCA refer to two different types methods that were used to reduce
the number of feature dimensions (see Section scoresEvaluation of pairwise machine learning
models).

(PDF)
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