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ABSTRACT We numerically study three-dimensional colonies of nonmotile stress-responsive bacteria growing under
confining isotropic pressure in a nutrient-rich environment. We develop a novel simulation method to demonstrate how imposing
an external pressure leads to a denser aggregate and strengthens the mechanical interactions between bacteria. Unlike rigid
confinements that prevent bacterial growth, confining pressure acts as a soft constraint and allows colony expansion with a
nearly linear long-term population growth and colony size. Enhancing the mechanosensitivity reduces instantaneous bacterial
growth rates and the overall colony size, though its impact is modest compared to pressure for our studied set of biologically
relevant parameter values. The doubling time grows exponentially at low mechanosensitivity or pressure in our bacterial growth
model. We provide an analytical estimate of the doubling time and develop a population dynamics model consistent with our
simulations. Our findings align with previous experimental results for E. coli colonies under pressure. Understanding the growth
dynamics of stress-responsive bacteria under mechanical stresses provides insight into their adaptive response to varying envi-
ronmental conditions.
SIGNIFICANCE Structural and morphological complexities in bacterial colonies emerge from the interplay of mechanical
stresses, environmental conditions, and bacterial properties. Confinement stiffness significantly influences the
development of stresses and self-organized ordering in colonies. Mechanosensitivity further complicates the dynamics by
linking growth rates to mechanical forces, thus altering cell length, spatial arrangements, and colony structure. This
structure-stress feedback loop enables bacteria to adapt to environmental changes. Using a novel simulation method, we
model the effects of isotropic confining pressure and mechanosensitivity on intercellular forces, population dynamics, and
colony size. We also provide an analytical estimate for cell division time under low mechanosensitivity or pressure and
propose a population dynamics model in the presence of confining pressure.
INTRODUCTION

Bacteria commonly form colonies on surfaces or in confined
natural habitats with porous microstructures upon nutrient
availability (1–3). Although motile bacteria display inter-
esting collective behaviors such as swarming, nonmotile bac-
terial colonies are abundant in nature and daily life. Within
nonmotile colonies, individual bacteria grow, proliferate,
and push their neighbors, constructing an evolving network
of intercellular mechanical forces across the colony.

Understanding the intriguing spatio-temporal organiza-
tion of growing bacterial populations has attracted consid-
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erable attention over the last few decades due to scientific
interest and its importance in biology, medicine, and
technology (4–30). Structural and morphological com-
plexities arise due to the combined effects of various
factors, including mechanical stresses, bacterial character-
istics (namely, their shape, growth dynamics, and stiff-
ness), spatial and temporal variations of environmental
conditions (such as temperature, viscoelasticity, and
nutrient availability), and confinement properties (e.g.,
size, geometry, stiffness, cell-wall adhesion, etc.).

Mechanical interactions between bacteria develop
internal stresses and play a key role in the structural evo-
lution of colonies. Even weak stresses, generated in freely
growing colonies in two dimensions, were shown to
induce a morphological transition from circular to
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branched patterns (13). The interplay of mechanical con-
tact forces and bacterial growth dynamics leads to the
development of active and passive stresses (align and
perpendicular to the cell growth direction, respectively)
(14,15), self-organization of bacteria in ordered subdo-
mains in two dimensions (14–18), and buckling instabil-
ities, which trigger a transition from two-dimensional
(2D) to 3D structures (19,20). Importantly, the imposed
mechanical forces on individual bacteria have been found
to influence the instantaneous cell growth rate (21,22).
The mechanosensitivity of bacterial growth affects the
length diversity and spatial arrangement of cells; thus, it
is expected to influence the stress state of the colony.
Stress-responsive bacteria can exploit this stress feedback
loop for adaptation to environmental changes. Neverthe-
less, a detailed understanding of the impact of mechano-
sensitivity on the dynamics of stress-responsive bacteria
and the evolution of structure and stresses across their
evolving colonies is still lacking.

Another important factor that influences the structure of
bacterial colonies is being constrained to grow against a
confinement. The combination of confinement-induced ef-
fects and cell stiffness and growth diversifies local cell
ordering and self-organized patterns (3,23–26). Bacterial
natural habitats with rigid microstructures impose a hard
constraint, preventing the growth of colonies beyond the
available spaces. In contrast, a soft constraint—such as be-
ing confined with soft agarose pads (20) or growing under a
finite confining pressure (27–30)—allows for expansion and
further growth of the colony. It has been reported that
imposing an external pressure on E. coli colonies leads to
an unlimited growth of the population, though with a
reduced linear rate at long times (27). How imposing a
confining pressure affects the strength of the mechanical in-
teractions between bacteria, the population dynamics, and
the evolving size of the colony has remained unexplored
so far.

Here, we study the growth of 3D nonmotile bacterial
colonies under confining isotropic pressure. We consider
a model for the mechanosensitivity of bacteria in which
the exerted forces parallel to the major axis of stress-
responsive bacteria reduce the bacterial instantaneous
growth rate. By developing a simulation method to impose
a confining isotropic pressure on the bacterial colony, we
demonstrate the impact of the pressure on the intercellular
forces and address the question of how the population dy-
namics and the overall size of the colony depend on the
confining pressure and mechanosensitivity of bacteria. An
analytical estimate is provided for the exponential increase
of the cell division time at low mechanosensitivity or pres-
sure, with the pressure dependence being consistent with
the experimental results (27). We also propose a population
dynamics model in the presence of confining pressure,
which accounts for experimental observations (27) and
our numerical data.
808 Biophysical Journal 124, 807–817, March 4, 2025
MATERIALS AND METHODS

Bacterial dynamics under isotropic pressure

Wemodel each bacterium as a spherocylinder with a constant
diameter d0 and a time-dependent length lðtÞ of the cylindrical
part, i.e., excluding the caps on both ends as shown in Fig. 1 a.
The orientation of bacterium i is shown by the unit vector bni
along the major axis of the cell, with components given bybni ¼ sin qi cos fibx þ sin qi sin fiby þ cos qibz in the lab co-
ordinates ðx;y;zÞ. The bacteria grow and divide in a 3D space
and interact with each other via Hertzian contact forces given

by~f ij ¼ Ed
1=2
0 hij

3=2cecij acting from cell j on cell i, where E is

the Young’s modulus, hij is the overlap distance between the

interacting cells, and cecij is the unit vector along the line con-
necting the nearest points on the axes of the jth and ith cells
(see Fig. 1 b).

To investigate bacterial dynamics in a homogeneous envi-
ronment, we employ periodic boundary conditions in all di-
rections to eliminate boundary effects. This, however,
complicates the application of an external pressure on bac-
teria in the absence of moving walls or a confining piston.
To overcome this problem, we employ a previously devel-
oped approach to impose isotropic pressure on a system
with periodic boundaries by means of an imaginary piston
(31,32). In this method, the volume of the system V is
treated as a dynamical variable whose time evolution is
driven by the interplay between a constant external pressure
pout and the evolving internal pressure pin of the system. De-
noting the inertia of the piston withM, the change of the vol-
ume is governed by

M
d2VðtÞ
dt2

¼ pinðtÞ � pout ¼ DpðtÞ: (1)

By properly rescaling the momenta and positions of par-
ticles due to the volume change, the method was proven to
be able to generate isotropic and homogeneous jammed
packings of grains (33,34). Adapting this method to the
overdamped dynamic of bacteria, the change in the position
~ri of the ith bacterium can be described by

d~ri
dt

¼ 1
zli

PNi
c

j ¼ 1

~f ij þ 1
3
~riðtÞ dlnVðtÞ

dt
; (2)

where the sum runs over all contacts of the ith cell, denoted

by Ni. z represents the drag per unit length, giving it the
c

dimension ½z� ¼
h

force
velocity�length

i
¼ �

M
LT

�
. Thus, the first

term on the right-hand side has the dimension
�
L
T

�
, consistent

with the left-hand side. Equation 2 (without the last term on
the right-hand side) represents Newtonian overdamped dy-
namics, widely used to model the motion of nonmotile ob-
jects in viscous environments (see, e.g., (15,18,23)). In our
formalism, we introduce the last term on the right-hand
side of the above equation to rescale the position according
to the relative volume change. By rewriting this term as



FIGURE 1 Bacterial model. (a) Geometry of a

spherocylindrical cell. (b) A cell-cell contact.

The overlap between contacting bacteria is shown

with hij . (c) A divided cell into two daughter cells

after reaching the division length ld.
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1
3
~riðtÞ 1

V
dVðtÞ
dt , it becomes clear that it also has the dimension�

L
T

�
, maintaining dimensional consistency across Eq. 2.

Since the imposed isotropic pressure has no influence on
the orientation of individual bacteria, the polar and
azimuthal angles, qi and fi, are independent of pout, and
their evolution is given by the following equations:

dqi
dt

¼ 12

zl3i

XNi
c

j ¼ 1

��
~rci � ~ri

�
� ~f ij

�
$bf i; (3)

PNi
c
�� � �
dfi
dt

¼ 12
zl3
i j ¼ 1

~rci �~ri �~f ij $bz; (4)

where~rci � ~ri is the contact position vector connecting the
center of mass of the ith cell to the contact point on the ma-

jor axis of the ith cell. Equations 3 and 4 describe the time
evolution of bacterial orientation in three dimensions, ex-
tending the well-known and widely used relation from two
dimensions to three (see, e.g., (15,18,23)). Since z has the
dimension

�
M
LT

�
, the right-hand sides of Eqs. 3 and 4 have

the dimension
�
1
T

�
, consistent with the dimension of the

angular velocity on the left-hand side.
The gradual growth and division of bacteria and the

decrease of the system size due to the imposed external pres-
sure result in the formation of contacts between bacteria.
The contacting cells deform each other, which is reproduced
in the model by letting them overlap. The elements of the
average stress tensor, sh;m, can be calculated from the con-
tact forces as (23,35)

sh;m ¼ 1

V

0
@1

2

XN
i ¼ 1

XNi
c

j ¼ 1

rcij;h fij;m

1
A; (5)

where~rcij ¼ ~rci � ~rcj and N denotes the number of bacte-
ria. The internal pressure is then given by the trace of the

stress tensor divided by the dimension of the system:

pinðtÞ ¼ 1
3V

0
@1

2

PN
i ¼ 1

PNi
c

j ¼ 1

~rcij $
~f ij

1
A: (6)
By calculating the pressure difference DpðtÞ at each time
step, we update the volume of the system via Eq. 1, which is
required for the position update in Eq. 2. For the integration
of equations of motion (Eqs. 2, 3, and 4), we use the implicit
first-order Euler scheme. Assuming that an isotropic drag
force acts on bacteria, a proper choice for the time step of
simulations to generate smooth bacterial rearrangements
in the presence of mechanical interactions can be estimated
as Dtzz=E.

In general, the above method enables overdamped
dynamics simulations of objects of constant size
under confining pressure. To adapt the method to the
bacterial dynamics, we need to further incorporate the
growth and division dynamics of individual bacteria at
the beginning of each time step, as described in the
following.
Stress-responsive growth and division model

Cell-cell mechanical interactions cause rearrangements and
spatial reorganizations, which influence the overall growth
dynamics of bacterial colonies (6,36,26,15,18,13,17). At
the individual cell level, mechanical interactions with the
environment have been shown to affect the cell growth dy-
namics (21,36,22): while the growth rate of the cell can be
influenced by the mechanical forces exerted along the major
axis of the cell (21), the growth rate is often insensitive to
contact forces acting perpendicular to the major axis (except
in cases of extremely large forces, which can halt cell
growth (36)).

Inspired by these observations, we develop the following
stress-responsive model of bacterial growth and division: in
the absence of mechanical stresses, a stochastic time-inde-
pendent growth rate rg;i is assigned to each bacterium i,

drawn from a uniform distribution over
h
rg
2
;
3rg
2

i
with mean

rg. We model the time evolution of the cell length liðtÞ under
evolving mechanical stresses as

dliðtÞ
dt

¼
8<
:

rg;i � bjfkiðtÞj; rg;i > bjfkiðtÞj;

0; rg;i % bjfkiðtÞj;
(7)
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FIGURE 2 Sample configurations of 3D bacterial colonies growing (a)

freely and (b) under confining pressure in a cubic box with periodic bound-

ary conditions.
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where j fkiðtÞj is the total value of the projected forces along

the major axis of the ith bacterium, i.e., jfkiðtÞj ¼PNi
c

j¼ 1

�����~f ijðtÞ $bni
�����. The constant parameter b is the mechano-

sensitivity of the bacterium, characterizing the strength of
its response to mechanical stimuli. To take into account
the fact that an extremely large lateral force hinders the bac-
terial growth, we impose an extra constraint on the bacterial
growth dynamics: if the overlap distance between the ith
bacterium and any of its contacting neighbors exceeds the

threshold d0
2
(half of the cell diameter), it pauses the cell

growth (i.e., causes dli
dt ¼ 0) until the overlap decreases

below the threshold level again. This constraint has priority
over the general growth (Eq. 7).

As the cell length gradually increases according to Eq. 7,
it eventually reaches a threshold length ld at which the cell
division occurs (see Fig. 1 c). Following the division, the
two daughter cells tend to inherit the orientation of the
mother cell. However, imperfect alignment during division
practically leads to a slight stochastic deviation for each
daughter cell, which is chosen to be up to a maximum of
10� in our simulations. Moreover, the growth rates of the
daughter cells are also unequal in general, each of them
drawn independently from the uniform distribution over

the
h
rg
2
;
3rg
2

i
range with a mean value rg.
RESULTS

Evolution of bacterial colonies

To provide insight into the evolution of colonies of stress-
responsive bacteria under confining pressure, we perform
simulations based on the bacterial growth, division, and
dynamics models described in the previous sections.
The default parameter values (unless varied) are taken
to be d0 ¼ 0:5 mm, rg ¼ 2 mm h� 1, ld ¼ 2 mm, z ¼
200 Pa h, E ¼ 400 kPa, M ¼ 10� 4kg m� 4, b ¼
0:4 ðmm kPa hÞ� 1, and Dt ¼ 5� 10� 4 h. As the simula-
tion starts with the growth of a single elongated bacterium,
applying the isotropic confining pressure method leads to a
singular behavior of the linear size of the system in different
directions. To avoid this technical problem, we do not
switch on the confining pressure during the early stages of
the simulation until the bacteria occupy a threshold volume
of Vc ¼ 27 mm3 (above which imposing a cubic box shape
is definitely feasible). For comparison, the volume of a sin-
gle bacterium at the onset of division is � 0:46 mm3. One
can alternatively initiate the simulation with a multicellular
random compact colony and equilibrate it before applying
the confining pressure.

In a nutrient-rich environment, the proliferation of bacteria
in the absence of confining pressure results in a freely
growing bacterial colony, which gradually develops a spher-
810 Biophysical Journal 124, 807–817, March 4, 2025
ical shape (see Fig. 2 a and Video S1). When the confining
pressure is imposed according to our developed method, it re-
stricts the growth of the colony within a cubic box with peri-
odic boundary conditions, as shown in Fig. 2 b. We expect
that the growth under confinement will lead to denser col-
onies and affect the population dynamics of stress-responsive
bacteria due to the development of internal stresses. In the
following, we demonstrate how the space-filling and prolifer-
ation statistics of the colonies are influenced by key parame-
ters including the imposed pressure, mechanosensitivity, and
growth rate. For ease of comparison, we nondimensionalize
the measured quantities using the following units: t0 ¼
1
4
h, rg0 ¼ 2 mm h� 1, V0 ¼ 103d0 ¼ 125 mm3, and

b0 ¼ 2 rg0
E d2

0

¼ 0:02 ðmm kPa hÞ� 1.

We first investigate the pressure dependence of the popula-
tion dynamics. Fig. 3 shows the time evolution of the total
number of bacteria for two different growth rates and various
values of the imposed confining pressure. As explained
above, the simulation initially starts with pout ¼ 0 until the
threshold volume Vc is reached, which occurs at t � 12 t0
or 6 t0 for a bacterial colony with the growth rate of rg0 or
2 rg0 , respectively. In this initial growth phase, the colonies
experience nearly exponential growth. Note that as a result
of the mechanosensitivity of bacteria (i.e., bs0), the instan-
taneous growth rate of each bacterium varies over time, de-
pending on the exerted local forces that arise due to the
growth and division dynamics of neighboring bacteria.
Switching on the external pressure slows down the popula-
tion dynamics; an extremely large pressure can even
completely prevent the population growth, similar to what
happens in a confined geometry with rigid boundaries. A
similar pressure dependence of population was observed in
experiments on E. coli colonies (27). By imposing the
confining pressure, we observe that the slow growth of the to-
tal number of bacteria at long times is nearly linear (rather
than exponential) with a slope that decreases with increasing
pout. The choice of rg influences the results quantitatively but
not qualitatively. We note that a similar power-law behavior
in population dynamics was previously reported for growing
biofilms near surfaces (37), though the slowed dynamics in



FIGURE 3 Time evolution of the total number

of bacteria N for different values of pout and (a)

rg ¼ rg0 and (b) rg ¼ 2 rg0 . The top and bottom

images represent the same plots in linear and

log-lin scales, respectively.
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that case were attributed to different mechanisms, such as cell
death and growth inhibition within the biofilm.

The reduction of the population growth rate upon
increasing pout is expected to influence the evolving volume
of the bacterial colony. As shown in Fig. 4, the rate of vol-
ume expansion is inversely related to pout. The growth rate
rg is also influential; for instance, while an external pressure
smaller than 0:07 E suffices to prevent the expansion of a
colony with rg ¼ rg0 , a larger pressure pout R 0:1 E is
required to stop the expansion of a colony with rg ¼ 2 rg0 .

The degree of mechanosensitivity of bacteria, reflected in
the parameter b, determines how far the growth dynamics of
individual bacteria and the overall growth of the bacterial
FIGURE 4 Volume of the bacterial colony as a function of time for

different values of pout and (a) rg ¼ rg0 and (b) rg ¼ 2 rg0 .
colony are affected by the evolving internal stresses. By
varying b over a wide range, we compare the total number
of bacteria Nf and the volume of the developed colony Vf af-
ter a given long time tfx300 t0. A larger b slows down the
growth dynamics of individual bacteria, which slightly re-
duces the total number of bacteria and the size of the colony;
see Fig. 5. For the chosen reference set of biologically rele-
vant parameter values, the sensitivity of the bacterial growth
dynamics to the choice of b is rather modest: A 10-fold in-
crease in b (from b ¼ 2b0 to 20b0) induces nearly 1% and
3% reduction in Nf and Vf , respectively.

To better understand the population dynamics under
confining pressure, we extract the probability distributions
of the overlaps h and the instantaneous growth rates dl

dt of
bacteria across the colony after a long time tfx300 t0.
The increase of the external pressure leads to denser col-
onies in which the bacteria experience larger deformations.
Fig. 6 a confirms that the peak position and mean value of
the overlap distribution shift to larger values of h upon
increasing pout. Therefore, as the exerted forces on bacteria

grow, smaller values of instantaneous growth rates dliðtÞ
dt are

expected according to Eq. 7. The results shown in Fig. 6 b
reveal that the increase of pout leads to smaller instanta-
neous growth rates of individual bacteria; the probability

distribution P
�
dl
dt

�
evolves from a broad shape with a

mean at intermediate values of dl
dt to a monotonically

decreasing form with a maximum around dl
dtz0. The slower
Biophysical Journal 124, 807–817, March 4, 2025 811



FIGURE 5 (a) Total number of bacteria and (b) volume of the colony at

tfx300 t0 in terms of the mechanosensitivity b.

FIGURE 6 (a) Probability distribution of the scaled overlap h=d0 and (b)

probability distribution of the instantaneous growth rate dl
dt at tx300 t0 for

different values of pout.
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growth rates at larger external pressures lead to longer di-
vision times of bacteria. By extracting the division time td
via N ¼ N02

t=td , Fig. 7 a shows that the division time td
initially grows with pout and eventually plateaus. The in-
crease of td at small pout is nearly exponential with a slope
that is inversely related to rg. In previous experiments on

E. coli colonies (27), an exponential increase in td with
pout was reported. Interestingly, the slope also decreased
with increasing temperature, which is associated with a
higher growth rate. As pout was increased in these experi-
ments, td eventually diverged because the growth and divi-
sion dynamics ceased, resulting in an infinite division time
for an increasing fraction of bacteria under extremely high
stress. In our numerical study, the simulation time window
tmax is finite; thus, we record td % tmax instead of N for
nongrowing bacteria, leading to the saturation rather than
the divergence of td at large pout. Fig. 7 b reveals that the
variation of td versus b has a very limited range but follows
a similar trend as for pout: td grows exponentially with small
values of b and saturates at large b.
Effective-medium estimate of the doubling time

The doubling time td can be analytically estimated by
approximating the fluctuating stress field across the colony
at long times (when the internal pressure equals pout) by
an isotropic homogeneous stress field characterized by
pout. Thus, the discrete contact force network between bac-
teria is replaced with an effective uniform stress medium. As
812 Biophysical Journal 124, 807–817, March 4, 2025
a result, Eq. 7 for bacterial growth dynamics can be approx-
imated as

dlðtÞ
dt

¼ rg � 2 b s pout; (8)

with s ¼ pd2
0

4
being the cross-section area perpendicular to

the major axis of each bacterium. Then, the average length

of bacteria at time t follows

lðtÞ ¼ ld
2
þ �

rg � 2 b s pout
�
t; (9)

from which the doubling time td can be extracted as
td ¼ ld

2
�
rg � 2 b s pout

� : (10)

According to this approximation, the doubling time di-

verges at the threshold confining pressure pmax
out ¼ rg

2sb
,

where the mean stresses exerted along the major axis of bac-

teria reach the required value to fulfill dl
dt ¼ 0. However,

even below the pmax
out threshold, individual cells in a bacterial

colony may randomly experience large forces, which pre-
vent their length growth and division (leading to an infinite
doubling time). The increase of pout enhances the frequency
of such stochastic singular events in the system. Therefore,
the approximation (10) underestimates td at larger values of
pout and predicts a pressure threshold pmax

out higher than what
occurs in practice. As no such singular event occurs in the
limit of small pout, the analytical prediction (10) is expected
to successfully capture the behavior. By expanding this
equation around pout ¼ 0, we can extract an exponential
approximation of td at small confining pressures as

td � exp

	
2s

rg
b pout



: (11)

Fig. 7 a shows that the behavior of td at small pout is well
captured by the exponential relation (11). Expansion of Eq.
10 around b ¼ 0 similarly leads to Eq. 11, i.e., td also grows
exponentially with b in the limit of small b. The fit to Eq. 11
shown in Fig. 7 b verifies that the agreement is satisfactory.



FIGURE 7 Log-lin plots of doubling time of bacteria td versus (a) pout
and (b) b, for two different growth rates. Other parameters: (a) b= b0 ¼
20 and (b) pout=E ¼ 0:007. The lines represent exponential fits according

to Eq. 11.
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Population growth model

In order to quantitatively describe the bacterial population
growth under confining pressure, we develop a minimal
theoretical model for the time evolution of the population
of bacteria N in the course of internal pressure development.
Initially, without the external pressure pout, the bacterial col-
ony can freely expand and relax the internal stresses by
eliminating the deformations induced by bacterial division
and growth dynamics. This prevents the increase of the in-
ternal pressure pin beyond a small minimal level p free

in

despite the population growth.
Switching on the external pressure pout (pout >p free

in ) im-
poses a constraint on the expansion of the colony, resulting
in an increase in the number of intercellular interactions in
the system and a gradual development of internal pressure.
Supposing that the interactions are dominated by binary
contacts between neighboring bacteria, our key assumption
is that the number of binary interactions, and thus pin, grow
proportionally with the square of the number of bacteria,
i.e., pinfN2, for pin % pout. The simulation results shown
in Fig. 8 a support the validity of our assumption: in the
initial phase of exponential growth at pout ¼ 0, pin remains
negligible (pin � p free

in ) despite the increase of the number of
bacteria. By imposing pout > p free

in , pin grows nearly linearly
with N2 until pin and pout eventually balance. Beyond this
point, the division and growth dynamics of bacteria does
not lead to a further increase of pin since the system can
relax excess internal stresses such that pinzpout holds while
the population can still grow.

To clarify how the magnitude of pout affects the popula-
tion dynamics, we obtain the population at the onset of
pin ¼ pout, denoted with Np0 , from the simulations. Fig. 8
b shows that Np0 decays with pout, and their relation is
roughly captured by Np0f1=pout within the studied range
of pout. This leads to our next simplifying assumption that
the strength of the imposed constraint is linearly propor-
tional to the applied external pressure.

Based on the above considerations, we propose the
following master equation for the time evolution of the num-
ber of bacteria:

dN

dt
¼ rg N � poutrg

E
N2: (12)

According to the first term on the right-hand side, the rate
of change of the population is proportional to the current
population, leading to an unlimited exponential growth of
NðtÞ. The second term slows the growth rate by increasing

the number of binary interactions ðfN2Þ in the presence
of external pressure. Equation 12 implies that the evolution
of N is entirely determined by the confining external pres-
sure, Young’s modulus, and mean growth rate. The solution
of this logistic growth model is given by

NðtÞ ¼ NN

1þ
�
NN

N0

� 1

�
e� rgt

; (13)

with NN ¼ E=pout being the carrying capacity of the sys-
tem and N0 the initial number of bacteria when pout is

switched on.

Fig. 8, c and d, represents the time evolution of N via Eq.
13 for different values of mean growth rate and external
pressure. It can be seen that our simple model qualitatively
reproduces the observed behavior in simulations (see the
time evolution of N after the initial exponential growth
phase on the bottom of Fig. 3 for comparison). Note that
choosing pout ¼ 0 reduces Eq. 12 to a simple exponential
growth, and a negative external pressure pout < 0 even accel-
erates the population growth, as shown in Fig. 8 d.

The asymptotic behavior of NðtÞ is shown in the inset of
Fig. 8 c, highlighting that NðtÞ reaches a plateau at long
times. This behavior differs from the simulation results in
Fig. 3, where NðtÞ continues to grow at long times with a
slope that is inversely related to the external pressure. In
the logistic growth model (Eq. 12), the maximum possible
number of bacteria NN is set by the ratio E=pout; thus, the
Biophysical Journal 124, 807–817, March 4, 2025 813



FIGURE 8 (a) Internal pressure pin, scaled by

the Young’s modulus E, versus the square of the

increasing number of bacteria at the given external

pressure pout. (b) Population of bacteria Np0 at the

onset of pin ¼ pout in terms of the external pres-

sure pout. The line is a fit to Np0f1=pout. (c and

d) Time evolution of the number of bacteria via

Eq. 13 for N0 ¼ 10 and (c) pout=E ¼ 0:002 and

different values of rg and (d) rg=rg0 ¼ 0:1 and

different values of pout=E. The inset of (c) repre-

sents the long time behavior of N.
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carrying capacity is fixed. Nevertheless, as we previously
showed in Fig. 8 a, the carrying capacity of the system
grows forever beyond the onset of pin ¼ pout since the sys-
tem can expand and relax the excess internal pressure gener-
ated by the bacterial division and growth dynamics. To
consider this effect in our model, we rewrite Eq. 12 such
that a linearly growing term with time, A

pout
t, is added to

the maximum possible number of bacteria (with A being a
constant) to allow the gradual increase of the capacity of
the system. Therefore, we propose the following master
equation for the time evolution of the number of bacteria
in the colony under confining pressure:

dN

dt
¼ rg N

�
1 � N

ðEþ A tÞ=pout

�
: (14)

This equation can be numerically solved for a given set of
frg; pout;E;Ag values to obtain NðtÞ. The results shown in

Fig. 9 reveal that the asymptotic continuous growth of
NðtÞ is reproduced with the modified master equation (Eq.
14), and even the inverse pout dependence of the slope at
long times is captured.
DISCUSSION AND CONCLUSION

We have numerically studied the evolution of colonies of
stress-responsive bacterial under confining isotropic pres-
sure. To generate homogeneous colonies, boundary effects
have been eliminated by employing periodic boundary con-
ditions, which makes imposing a confining pressure chal-
lenging. We have implemented a method based on
rescaling the momenta and positions of cells and adapted
814 Biophysical Journal 124, 807–817, March 4, 2025
it to the overdamped dynamics of bacteria. The growth dy-
namics of the colony is influenced by the imposed pressure
through affecting the intercellular interactions as well as the
growth dynamics of individual stress-responsive bacteria.
By introducing the mechanosensitivity in our model, the
sensitivity of the bacterial growth to the exerted stresses
can be tuned. The validity of our model is ensured by the
remarkable agreement between our numerical predictions
and experimental results of evolving E. coli colonies under
confining pressure (27). The simulation method presented in
this work can be efficiently parallelized for large-scale sim-
ulations of bacterial systems since the varying volume
method is compatible with effective parallelization tech-
niques based on adaptive hierarchical domain decomposi-
tion with dynamic load balancing (38). The simulation
method can be also straightforwardly generalized to model
assemblies of motile cells.

In the present work, we have chosen constant values for
the model parameters for simplicity. This includes the
structural and mechanical properties of bacteria (such as
cell diameter d0 and Young’s modulus E), bacterial growth
parameters (i.e., growth rate rg and division length ld), and
environmental properties, including the drag per unit
length z and temperature (implicitly). Nevertheless, this
does not reflect the diverse phenotypic characteristics of
bacteria, such as their morphology and differentiation
variability. Real distributions of the relevant quantities
can be extracted experimentally and served as input for
simulations to produce quantitatively comparable statis-
tics. To this end, the mechanical interactions and equa-
tions of motion in our model would require slight
modifications.



FIGURE 9 Time evolution of N according to Eq. 14 in (a) linear and (b)

log-lin scales for N0 ¼ 2, rg=rg0 ¼ 1, AE ¼ 10� 4h� 1, and different values

of the external pressure.
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The exponential growth of bacterial and other populations
under ideal conditions can be profoundly affected by envi-
ronmental and biological constraints. The presence of con-
straints—such as limited resources, competition, toxic
metabolite accumulation, or mechanical interactions be-
tween bacteria (as in our system)—can fundamentally
disrupt exponential growth, leading to alternative growth
patterns such as power-law, logistic, or plateaued dynamics
(27,37,39). In contrast, factors like suboptimal nutrient dis-
tribution or intrinsic genetic and metabolic limitations may
reduce the growth rate while preserving the exponential na-
ture of the dynamics. Hence, the appropriate modeling
approach for constrained systems depends on the nature of
the constraints in each particular system.

Introducing mechanosensitivity in our model can have
complex effects on the structure and dynamics of bacterial
colonies. For the chosen set of parameter values in our
study, the sensitivity of the results to the choice of b has
been modest. However, more generally, the reduction of
the growth rates of mechanosensitive bacteria under me-
chanical stresses influences their length diversity and spatial
rearrangements, which changes the stress state of the sys-
tem. Such a feedback loop can be exploited by stress-
responsive bacteria to adapt themselves to environmental
changes. It will be interesting to explore the impact of me-
chanosensitivity on structure, dynamics, and adaptation of
bacterial colonies for broader biologically relevant ranges
of model parameters.
In the absence of quantitative experimental data, we have
chosen a simple linear force-dependent form for the mecha-
nosensitivity in Eq. 7. This functionality can be adapted to
the specific response of each different type of bacteria to
the imposed stresses. Stress-responsive bacteria in our
model experience time-dependent instantaneous growth
rates due to the variations of mechanical stresses. The model
can be extended to take into account the spatial and tempo-
ral changes of growth rates in response to local nutrient
availability (10,40) or viscoelasticity variations (41). Ac-
cording to experimental observations (27,36,21), imposed
stresses can additionally affect the threshold division length
and even shape of bacteria and induce aging of cell mechan-
ical properties. Algorithmic implementation of these con-
cepts requires further quantitative experimental data.

We have modeled the growth of nonmotile bacterial col-
onies under confining pressure by our generalized dissipative
Newtonian dynamics approach. Overdamped Newtonian dy-
namics is widely employed to describe bacterial dynamics in
viscous environments. However, it assumes that the environ-
ment exerts a purely viscous drag and does not account for
memory or elasticity effects. As a result, it is unable to cap-
ture the time-dependent mechanical responses characteristic
of viscoelastic media, such as biofilms, where bacteria are
embedded in extracellular polymeric substances (EPSs). To
accurately model bacterial dynamics within viscoelastic
EPS matrices, approaches such as Maxwell models or similar
viscoelastic frameworks are required. These models combine
reversible elastic responses with irreversible dissipative de-
formations across different timescales, thereby incorporating
the memory effects that govern how stress evolves with strain
over time. This enables a more realistic representation of bac-
terial behavior in media where deformations do not relax
instantaneously. While our current approach effectively
models the effects of confining pressure on bacterial popula-
tion growth, further developments are needed to incorporate
the influence of confining pressure on the EPS matrix struc-
ture as well. Experimental evidence has shown that high
confining pressures can affect bacterial activity (42,43),
altering the structural characteristics of the biofilm. Address-
ing this aspect would provide a more comprehensive under-
standing of the interplay between confining pressure and
biofilm mechanics.

To summarize, we have developed methods and carried
out numerical simulations to study evolving 3D colonies
of stress-responsive bacteria under confining pressure. Our
results demonstrate how physical interactions regulate bio-
logical processes at the microscale and highlight the intri-
cate feedback mechanism between mechanical stimuli and
bacterial growth dynamics. Understanding the interplay of
mechanosensitivity, structural characteristics of bacteria,
and mechanical interactions can provide insights into the
adaptive responses under varying environmental conditions
and may inspire novel approaches to control bacterial
infections.
Biophysical Journal 124, 807–817, March 4, 2025 815
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