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Zusammenfassung

Maschinelles Lernen ist in verschiedenen Branchen unverzichtbar geworden, da es
Innovationen vorantreibt und datengetriebene Entscheidungsprozesse ermöglicht. Im
Zentrum dieser Technologie steht die zentrale Rolle von Daten, die grundlegend für
das Modelltraining sind und die Leistung direkt beeinflussen. Allerdings macht diese
Abhängigkeit von Daten maschinelle Lernsysteme auch anfällig für Schwachstellen,
insbesondere im Hinblick auf Datenschutz und Sicherheit.

In dieser Dissertation untersuchen wir die Rolle von Daten im adversarialen maschinellen
Lernen und konzentrieren uns dabei auf zwei große Herausforderungen: Datenschutzver-
letzungen und Datenvergiftung. Zunächst untersuchen wir Datenschutzverletzungen in
modernen Modellen, indem wir einen Membership Inference Angriff gegen In-Context
Learning vorschlagen. Wir zeigen, dass es selbst in eingeschränkten Umgebungen
möglich ist, zu ermitteln, ob bestimmte Datenpunkte für das Training verwendet wur-
den, was erhebliche Risiken in sensiblen Bereichen wie Gesundheit und Finanzen birgt.
Anschließend untersuchen wir, wie Daten als Angriffsfläche ausgenutzt werden können,
indem wir eine robuste Vergiftungstechnik einführen, die derzeitige Abwehrmechanismen
überwinden kann. Außerdem schlagen wir den ersten dynamischen Backdoor-Angriff
vor, der flexible Trigger verwendet, um der Erkennung zu entgehen, und unterstreichen
damit die Notwendigkeit stärkerer Abwehrmechanismen. Zum Schluss führen wir eine
systematische Untersuchung durch, wie Datenmerkmale, wie etwa die Bedeutung von
Daten, den Erfolg von Angriffen auf maschinelles Lernen beeinflussen. Unsere Ergebnisse
deuten darauf hin, dass die Anpassung der Datenbedeutung entweder die Anfälligkeit
erhöhen oder verringern kann, und bieten neue Strategien sowohl für Angriffe als auch
für Verteidigungsmaßnahmen.

Diese Dissertation trägt zu einem tieferen Verständnis der adversarialen Dynamiken
bei und hilft, sicherere und vertrauenswürdigere maschinelle Lernsysteme zu entwickeln.
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Abstract

Machine learning has become indispensable across various industries, driving in-
novation and enabling data-driven decision-making. At the core of this technology is
the critical role of data, which is fundamental to model training and directly impacts
performance. However, this reliance on data also exposes machine learning systems to
vulnerabilities, particularly around privacy and security.

In this dissertation, we explore the role of data in adversarial machine learning,
focusing on two major challenges: data privacy leakage and data poisoning. First,
we investigate privacy leakage in state-of-the-art models by proposing a membership
inference attack against in-context learning. We show that even in restricted settings, it
is possible to infer whether specific data points were used in training, posing significant
risks in sensitive domains such as healthcare and finance. Next, we examine how data
can be exploited as an attack surface, introducing a robust poisoning technique capable
of bypassing current defenses. We also propose the first dynamic backdoor attack,
which uses flexible triggers to evade detection, highlighting the need for stronger defense
mechanisms. Finally, we conduct a systematic study on how data characteristics, such
as data importance, affect the success of machine learning attacks. Our results suggest
that adjusting data importance can either increase or reduce vulnerability, offering new
strategies for both attacks and defenses.

This dissertation contributes to a deeper understanding of adversarial dynamics,
helping to build more secure and trustworthy machine learning systems.
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1.1. OUR CONTRIBUTIONS

Machine learning (ML) has seen rapid advancements over the past decade, becoming
a driving force behind technological innovation across various domains. One of the most
significant developments in this area has been the rise of foundation models, such as large
language models (LLMs) [99, 137, 1] and vision-language models (VLMs) [76]. These
models have pushed the boundaries of artificial intelligence (AI), enabling transformative
applications like real-time language translation [93], sophisticated text generation [90],
and enhanced visual understanding [78]. For instance, LLMs such as GPT-4 [99]
have revolutionized communication by enabling real-time translation, advanced text
generation, and seamless human-computer interaction, while VLMs are pushing the
boundaries of visual understanding in meme detection [110] and medical imaging [146].

At the heart of these advancements is the pivotal role of data in model training.
The quality and diversity of data form the foundation for modern deep learning models,
enabling them to learn patterns and generalize across a wide array of tasks. High-quality
datasets ensure enhanced model performance, while diverse data reduces biases and
fosters fairness. For example, Llama 3.1’s [2] exceptional capabilities in translation,
question answering, and code generation are rooted in its training on over 15 trillion
tokens from varied sources, demonstrating the critical importance of rich datasets for
developing versatile and powerful AI systems.

However, despite data being the bedrock of these advancements, it also introduces
significant security challenges. Data plays a dual role in machine learning attacks: it can
be manipulated to introduce malicious behavior or be exploited in privacy breaches. For
instance, poisoning attacks [22, P2, P3, 26, 19] involve subtle manipulations of training
data, which can severely degrade model performance or embed harmful behaviors into
the model. Membership inference attacks [114, 125, 75, 74, 81, 21, P1], on the other
hand, attempt to determine whether a specific data point was included in the model’s
training set, posing serious privacy concerns.

These dual vulnerabilities—data privacy leakage and data poisoning—present critical
threats to the safety and integrity of ML models. Despite its fundamental role, there is
much to learn about how data characteristics interact with and influence ML attack
dynamics. As society increasingly depends on data-driven technologies for essential
functions, understanding and mitigating these vulnerabilities is of utmost importance.

1.1 Our Contributions

In this dissertation, we address these critical issues surrounding the role of data in
adversarial machine learning, focusing on data privacy leakage, data poisoning, and
the impact of data characteristics on attack performance. Our dissertation begins by
investigating the persistence of data privacy leakage across a range of ML models,
including state-of-the-art LLMs. We then explore how data serves as a key attack
surface in data poisoning attacks, where adversaries can manipulate data to introduce
harmful behaviors into models. Our findings demonstrate that current defenses are
insufficient to prevent these attacks. Finally, we conduct a comprehensive study on
how different data characteristics, such as data importance, affect the performance of
ML attacks, offering insights to guide the development of more robust and trustworthy
machine learning systems. Our dissertation is built upon the following peer-reviewed

3



CHAPTER 1. INTRODUCTION

publications [P1, P2, P3, P4], and we summarize each contribution as follows:

Membership Inference Attacks Against In-Context Learning: In our first
work [P1], we demonstrate the persistence of data privacy leakage in LLMs by proposing
a membership inference attack against in-context learning. We show that even with
only text-based outputs, it is possible to infer whether specific data points were part of
the language model’s demonstrations. Our results reveal that even when model outputs
are restricted to simple categories, such as “positive” or “negative,” an adversary can
still determine the membership status of individual data points. Notably, our long-term
investigation reveals that this leakage does not diminish over time, despite claims from
developers that LLMs are becoming more privacy-conscious. This underscores the
significant, ongoing risks of deploying LLMs in sensitive domains, such as healthcare or
finance, where data confidentiality is paramount.

Robust Poisoning Attack: Our second work [P2] highlights how data can serve as
an attack surface for introducing malicious behavior into ML models. Specifically, we
study availability attacks, where imperceptible perturbations are applied to training
data, severely degrading model performance on clean testing data. We introduce a
novel poisoning technique that entangles the features of different classes, rendering the
corrupted samples ineffective for training—even when adversarial training techniques
are applied. Our findings challenge the conventional belief that adversarial training
can successfully defend against poisoning attacks, providing empirical evidence that
our method can bypass these defenses. This highlights the urgent need for more robust
protection mechanisms in ML systems.

Dynamic Backdoor Attack: Our third work [P3] demonstrates that another impor-
tant line of data poisoning attacks, backdoor attacks, can be strategically designed to
bypass existing defenses, further escalating the urgency of addressing the data threats.
Specifically, we relax the static trigger assumption and proposed the first dynamic
backdoor, which allows dynamic triggers in both pattern and location. Our methods
introduce the first algorithmic backdoor, giving adversaries greater flexibility in trigger
design. The results show that our dynamic backdoor techniques achieve near-perfect
success rates with minimal impact on the model’s overall utility. Furthermore, we tested
our approach against five state-of-the-art backdoor defense mechanisms, and in all cases,
our attacks successfully bypassed these defenses, demonstrating the robustness and
stealthiness of dynamic backdoors.

Understanding Data Importance in ML Attacks: Our final work [P4] presents a
systematic analysis of how data characteristics, specifically data importance, influence
the effectiveness of ML attacks. We empirically show that data points with varying
importance levels have different vulnerabilities to attacks. Moreover, we demonstrate
that manipulating the importance of specific data points can increase or decrease their
vulnerability to attacks. These insights open up new avenues for both enhancing attack
strategies and designing more adaptive, fine-grained defenses. By understanding how
data importance shapes attack dynamics, we can develop more resilient and trustworthy
ML systems.
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1.2 Organization

The rest of this dissertation is organized as follows. We first present the needed
preliminaries and background in Chapter 2. In Chapter 3, we investigate the membership
leakage in LLMs. We challenge the widely held belief that adversarial training mitigates
availability data poisoning attacks in Chapter 4, demonstrating that this consensus is
misleading. In Chapter 5, we further propose novel backdoor attacks that effectively
bypass existing defenses. Chapter 6 offers a systematic analysis of how data with
different characteristics influence machine learning attacks, and how these insights can
be leveraged to design more effective attacks and defenses. Finally, Chapter 7 presents
the related work, and Chapter 8 concludes the dissertation.
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2.1. SUPERVISED MACHINE LEARNING

2.1 Supervised Machine Learning

Supervised machine learning is a powerful approach that aims to create models capable
of predicting outputs based on given inputs. In this context, a classification model is
typically represented as a parameterized function, denoted by fθ, which maps a feature
vector x from the feature space X to an output y in the output space Y. The output
space Y encompasses all possible predictions the model can make.

To train the model, we require a dataset D, consisting of pairs of feature vectors and
their corresponding labels, i.e., D = {(xi, yi)}ni=1, where n denotes the number of data
samples. The training process involves optimizing the model’s parameters by running
a learning algorithm such as gradient descent, guided by a defined loss function. The
objective is to minimize the classification loss, expressed as:

E
(x,y)

[L(fθ(x), y)]

where (x, y) ∈ D are samples from the training dataset. This optimization process
iteratively updates the parameters θ, enabling the model to achieve optimal performance
by accurately predicting outputs based on the learned relationships between inputs and
their corresponding labels.

2.1.1 Data Importance

As discussed in the previous section, data samples play a crucial role in training
machine learning models; however, their impact on model performance is not uniform.
Recent research has highlighted the presence of certain data that exhibit a heightened
influence on the utility of machine learning models [62, 47, 68, 66, 63]. The evaluation
of individual training sample importance is a fundamental and complex problem in
machine learning (ML), with far-reaching implications, particularly in the domain of
data valuation. Understanding the importance of a single training sample within a
learning task profoundly impacts data assessment [14, 47], allocation of resources, and
enhancing interpretability [66, 109, 85, 103].

Leave-one-out (LOO) method has long been regarded as an intuitive approach
for assessing the importance of data samples. Formally, let D and Dval represent the
training set and the validation set, and A denote the learning algorithm. UA,Dval denotes
the validation accuracy of the model trained on D using A. The importance of a target
sample z can be quantified as the difference in utility before and after incorporating the
target sample into the training set, expressed as:

vloo(z) ∝ UA,Dval
(D)− UA,Dval

(D\{z})

Nevertheless, evaluating the importance of all N samples in the training set necessi-
tates retraining the model N times, resulting in computational heaviness. To address
this limitation, Koh and Liang [66] proposed influence functions as an approximation
method, significantly reducing the computational cost from O(Np2 + p3) to O(Np),
where p represents the number of model parameters.
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Despite the effectiveness of LOO, Ghorbani and Zou [47] have raised concerns about
its ability to capture complex interactions between subsets of data. They argue that the
Shapley value provides a more comprehensive framework for measuring data importance.
The Shapley value, originally proposed by Shapley [123], assigns an importance value to
each sample z in the training set using the following formulation:

νshap(z) ∝ 1
N

∑
S⊆D\{z}

1(
N−1
|S|

)[
UA,Dval

(S ∪ {z})− UA,Dval
(S)

]
To simplify the interpretation of the Shapley value assigned to each sample, one can

conceptualize it as the contribution to accuracy in typical scenarios.
For instance, in a hypothetical scenario with 100 samples and a model achieving

90% accuracy, a valuable sample may contribute 2% accuracy, while a less valuable
sample may only contribute 0.1%. Consequently, the importance value assigned to a
valuable sample is 0.02, whereas for a less valuable sample, it is 0.001. Samples with an
importance of 0 signify no contribution to the model’s accuracy, while values below 0
suggest a detrimental impact, possibly due to incorrect labels or samples lying outside
the distribution.

The Shapley value takes into account the contributions of all possible subsets of the
training set, offering a more holistic assessment of data importance. However, the accu-
rate computation of the Shapley value based on the defined formula necessitates training
O(2N ) machine learning models, rendering it impractical for complex datasets. As a
result, existing methods employ approximate algorithms to estimate the Shapley value.
For instance, Ghorbani and Zou [47] introduced two Monte Carlo-based approaches
for Shapley value approximation. To expedite evaluation time and enable analysis of
large datasets, Jia et al. [62] utilized the K-nearest neighbors (KNN) algorithm to
approximate the target learning algorithm, reducing the time complexity to O(N log N).

2.2 Data Poisoning Attacks Against DNNs

Data poisoning attacks are a form of training-time attack where an adversary manipulates
the training dataset to embed malicious behaviors into the model. These behaviors are
carefully crafted by the adversary to impact the model’s performance during testing,
aligning with the attacker’s objectives.

Poisoning attacks can be broadly categorized based on their goals into three types:
availability attacks, targeted attacks, and backdoor attacks. In this dissertation, we
mainly focus on two of them, i.e., availability attacks and backdoor attacks.

2.2.1 Availability Attacks

Unlike targeted poisoning [94, 121, 46] and backdoor attacks [50, 80, P3], which aim to
degrade model performance on specific test samples, availability attacks (also known as
indiscriminate poisoning) focus on degrading the model’s performance across a broader
set of arbitrary clean test samples. Traditional methods of availability attacks often
rely on injecting noisy labels into the training data [19, 18, 94]. However, they can be
easily detected [121, 129].
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To evade detection, more recent methods employ “clean-label” poisoning, where
imperceptible perturbations are added to the training data. This setting is our main
focus in this dissertation. Clean-label poisoning techniques typically use the error-
minimization [54, 136, 43] or error-maximization loss [40], with a pre-trained [40, 149,
136] or trained-from-scratch [54, 43] reference model. To ensure these perturbations are
imperceptible, the adversary constrains them using a predefined parameter known as
the poison budget ϵpoi. This parameter defines the maximum allowable perturbation
size, typically using a norm such as l∞, ensuring that the added perturbations do not
exceed a specified threshold, e.g., ∥δpoi∥∞ ≤ ϵpoi.

Adversarial Training as a Defense: While clean-label poisoning techniques are
effective at bypassing simple defenses, they are vulnerable to adversarial training (AT),
a robust defense method initially developed to defend against test-time adversarial
examples [15, 138]. Adversarial training has recently been demonstrated as a principled
defense against indiscriminate poisoning attacks [136].

Adversarial training works by augmenting the training data with adversarial examples
at each training step. These adversarial examples are constrained by a training budget
ϵadv, similar to the poison budget used in attacks. A larger ϵadv typically leads to better
robustness, though it may come at the cost of reduced accuracy on clean, unperturbed
data.

Early approaches, such as the single-step Fast Gradient Sign Method (FGSM) intro-
duced by Goodfellow et al. [49], were found to be ineffective against more sophisticated,
multi-step attacks [139, 67]. To address this, Madry et al. [86] proposed a stronger
defense based on Projected Gradient Descent (PGD), which uses multi-step optimiza-
tion to improve robustness. This PGD-based adversarial training has since become
a foundation for many advanced methods aimed at improving the balance between
clean accuracy and adversarial robustness. For example, some approaches combine
training on both clean and adversarial samples [160], explicitly differentiate misclassified
examples [147], identifying a bag of training tricks [101], or optimize training efficiency
through techniques such as gradient recycling [122].

The key idea behind adversarial training as a defense against data poisoning is
that when the adversarial training budget ϵadv is equal to or greater than the poison
budget ϵpoi, the clean (unperturbed) sample lies within the perturbation region, or “ball,”
centered around the poisoned sample. This enables the adversarial training algorithm
to recover the clean samples from their poisoned counterparts, effectively mitigating the
impact of the poisoning attack.

Although adversarial training is highly effective, recent studies have shown that
methods such as ADVIN [149] and REM [43] attempt to poison models even under
adversarial training. However, these techniques only succeed in impractical scenarios
where the poisoning budget exceeds twice the adversarial training budget (ϵpoi ≥ 2ϵadv).
Consequently, adversarial training remains widely regarded as an effective defense
against indiscriminate poisoning attacks, provided the training budget is appropriately
set.
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2.2.2 Backdoor Attacks

Backdoor attacks differ from traditional poisoning attacks in that they aim to make a
model behave maliciously only when a specific trigger is present in the input. When
the trigger is absent, the model performs normally, making these attacks particularly
stealthy.

The first backdoor attack, BadNets, introduced by Gu et al. [50], demonstrated
how a fixed, square-shaped trigger could be used to manipulate model behavior on
the MNIST dataset. Liu et al. [80] later advanced this with the Trojan attack, which
removed the need for access to the original training data. Instead, it reverse-engineered
the target model to synthesize both training data and triggers, optimizing the trigger
to activate specific neurons related to a target label.

Both BadNets and Trojan attacks rely on static triggers in terms of pattern and
location, which makes them more vulnerable to detection by modern defenses. To address
this limitation, Nguyen and Tran [97] proposed an input-aware dynamic backdoor, where
a unique trigger is generated for each input, increasing the adaptability of the attack.
However, these dynamic triggers, often scattered across the image, are difficult to apply
to physical objects in real-world scenarios.

In this dissertation, we focus on backdoor attacks specifically in the context of image
classification models. However, backdoor attacks have been extended to other areas like
Federated Learning [144], Video Recognition [165], Transfer Learning [153], and Natural
Language Processing (NLP) [29].

Various approaches have been developed to increase the stealthiness of backdoors.
For example, Saha et al. [111] proposed transforming backdoored images to make them
appear benign and harder to detect, while Li et al. [82] introduced the Reflection Back-
door (Refool), which hides triggers by leveraging the physical properties of reflections.
Other methods include the Targeted Bit Trojan (TBT) [107], which flips bits in the
model’s weights rather than retraining the model, and TrojanNet [133], which appends
a small Trojan module to the model without requiring a full retrain.

Defenses Against Backdoor Attacks: Defenses against backdoor attacks are gener-
ally categorized as model-based or data-based.

Model-based defenses aim to detect backdoors within a model. For instance, Neural
Cleanse (NC) [143] tries to generate the smallest possible trigger for each output
label and uses anomaly detection to identify potential backdoors. Other defenses like
ABS [79] and MNTD [151] analyze the internal behavior of the model’s neurons or use
meta-classifiers trained on shadow models to detect backdoor presence.

Data-based defenses identify if an input contains a backdoor. Methods like STRIP [45]
manipulate the input and measure entropy in the output, with backdoored inputs show-
ing lower entropy. Another approach, Februus [33], uses GradCAM to detect triggers
in input regions, removes them, and restores the input using a GAN-based inpainting
technique. These defenses highlight the ongoing challenge of developing robust strategies
to mitigate increasingly sophisticated backdoor attacks.
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Figure 2.1: An illustrative example of In-Context Learning. The language model is
initialized by a prompt combined with instruction (pink) and demonstrations (green).

2.3 In-Context Learning

In-Context Learning (ICL) emerges as a distinctive feature of large language models
(LLMs) [20], affording LLMs the capability to acquire proficiency in specific tasks
through exposure to limited demonstration examples. In contrast to the conventional
notion of “learning,” In-Context Learning does not require updating model parameters.
Instead, it augments the input with additional content, referred to as a prompt, to
facilitate learning through analogy [34]. Specifically, within the prompt, the model is
provided with several input-output pairs as examples, instructing the model to respond
in a similar format.

To integrate ICL into LLMs, the model undergoes an initialization process. This
process involves carefully constructing a task-specific prompt, encompassing an op-
tional task instruction (I) and k demonstration examples ({(xi, yi)|i ≤ k, i ∈ N+}).
The server concatenates these components to form a complete prompt, denoted as
prompt = {I, s(x1, y1), . . . , s(xk, yk)}. Here, the function s(·, ·) denotes the transfor-
mation of demonstration pairs into natural language following a predefined template,
we show examples in Table 2.1. In addition, for a certain task in ICL, the number of
demonstrations is not large, typically no more than 8, i.e., k ≤ 8. This is due to a
trade-off between input size and performance. Increasing the number of demonstrations
beyond eight results in only marginal performance improvements [166]. We provide
an illustrative case in Figure 2.1. Highlighted in pink are the task instructions, which
instruct the language model to classify the questions into different categories, and in
green are the two demonstrations.

During testing, the language model accepts input samples x in the same format as
the prompt demonstration, i.e., “Question: x; Answer Type:{ }”. Subsequently, the
model assigns probabilities P (yi|x,prompt) to all potential answers yi ∈ Y , and selects
the output token based on sampling strategies, such as greedy decoding, which selects

13
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Table 2.1: Examples of the prompts used for text classification for the ICL setting.

Task Prompt Label Names

DBPediaClassify the documents based on whether they
are about a Company, School, Artist, Athlete,
Politician, Transportation, Building, Nature,
Village, Animal, Plant, Album, Film, or Book.

Article: Leopold Bros. is a family-owned and
operated distillery located in Denver Colorado.
Answer: Company
Article: Aerostar S.A. is an aeronautical man-
ufacturing company based in Bacău Romania.
Answer:

Company, School, Artist,
Athlete, Politician,
Transportation, Building,
Nature, Village, Animal,
Plant, Album, Film,
Book

AGNewsArticle: Kerry-Kerrey Confusion Trips Up
Campaign (AP),"AP - John Kerry, Bob Ker-
rey. It’s easy to get confused."
Answer: World
Article: IBM Chips May Someday Heal Them-
selves,New technology applies electrical fuses
to help identify and repair faults.
Answer:

World, Sports, Business,
Technology

TREC Classify the questions based on whether their
answer type is a Number, Location, Person,
Description, Entity, or Abbreviation.
Question: What is a biosphere?
Answer Type: Description
Question: When was Ozzy Osbourne born?
Answer Type:

Number, Location, Per-
son, Description, Entity,
Abbreviation

the token with the highest probability. Mathematically, this process is represented as:

arg max
yi∈Y

P (yi|x,prompt).

It is important to note that in ICL, the term “model’s training data” might be
misleading. While the prompt contains demonstration data used to guide the model’s
responses, there is no actual retraining of the model’s weights involved. Instead, the
model uses the provided examples to draw analogies and make predictions, simulating a
form of learning without altering its underlying parameters. This distinction is crucial
for understanding the model’s behavior and the potential vulnerabilities associated with
ICL.
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2.3.1 Privacy Attacks Against In-Context Learning

One prominent privacy concern regarding In-Context Learning (ICL) involves the prompt
extraction attack, designed to recover the prompt through API access to the language
model. Zhang and Ippolito [163] first formulate a text-based extract attack. Contrary
to conventional reconstruction attacks on vision models that optimize the input to
reduce testing loss, their work reconstructs the prompt by sending instructions to the
model without using backpropagation. This approach extends the applicability of the
attack to black-box models, encompassing GPT-3.5 and GPT-4. However, the attack’s
performance is closely tied to the quality of instructions, and defensive measures, such
as output filtering, may impede the attack.

Another category of attacks aims to identify whether specific samples were used to
construct the prompt, known as membership inference attacks, which represents one of
the most basic forms of privacy attack [113]. The rationale behind existing membership
inference attacks is mainly based on the observation that models exhibit varying degrees
of confidence in their responses, particularly favoring samples encountered during
training.

Current work [25, 27] predominantly employs loss-based attacks, assuming the
adversary can access the probability associated with the generated content. This allows
the calculation of loss or perplexity for the target sample to determine membership
status. Duan et al. [36] compare membership vulnerabilities for fine-tuning and ICL,
demonstrating that ICL is more susceptible to membership inference attacks. Wen et
al. [T1] further extend this privacy vulnerability comparison to other adaptation methods,
including Low-Rank Adaptation (LoRA) and Soft Prompt Tuning (SPT), concluding
that ICL exhibits the highest membership vulnerability among them. However, existing
membership inference attacks lack the capability to function in a text-only setting,
leaving the vulnerability in a text-only scenario unexplored.
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3.1. INTRODUCTION

3.1 Introduction

Data play a pivotal role in modern machine learning, but it can also serve as a significant
source of privacy leakage. One of the most well-known threats in this domain is the
leakage of membership status, where Membership Inference Attacks (MIAs) [95, 69,
125, 114, 71, 130, 75, 113] exploit this vulnerability, allowing adversaries to determine if
specific data was used during training. MIAs have been shown to be effective against
various types of machine learning models, revealing vulnerabilities across a range of
applications. These attacks expose sensitive information, highlighting the need to better
understand and mitigate privacy risks in deployed models.

While the privacy vulnerabilities of traditional models have been extensively studied,
Large Language Models (LLMs) present new challenges due to their unique capabilities
and scale. LLMs are increasingly integrated into numerous real-world applications, but
the risks associated with membership inference in these models, particularly in light of
novel learning approaches like In-Context Learning (ICL) [20], remain underexplored.
ICL allows LLMs to learn tasks efficiently by leveraging contextual prompts rather than
updating model parameters [34]. This method has demonstrated significant potential
for task-specific adaptation but also introduces new privacy concerns.

Investigating membership inference attacks in the context of LLMs and ICL is
particularly important because these models frequently process sensitive user data
during task adaptation. For instance, in domains such as healthcare [87, 117, 92],
ICL allows models to generate personalized responses based on user-specific prompts,
potentially revealing private information. If an adversary can infer that a user’s data
was included in the prompt used for ICL, they may be able to deduce sensitive details,
such as the victim’s health status.

To address the evolving privacy risks in the era of LLMs, it is necessary to develop
tailored attack methods that accurately reflect these new vulnerabilities. However, a
key challenge arises when adversaries interact with LLMs: typically, the only available
information is the generated text, without access to posterior probabilities. This
limitation makes directly transferring existing attacks [36, 44, 124, 88] to ICL settings
difficult.

3.1.1 Contributions

In this chapter, we address these concerns by investigating membership leakage in the
context of ICL, and present the first text-only membership inference attack that relies
only on the final text generated by the language model. Specifically, we propose four
attack methods: GAP, Inquiry, Repeat, and Brainwash. The GAP attack serves as a
baseline, considering samples as members if correctly classified and as non-members if
not. Among the three advanced attacks, the Inquiry attack directly asks the language
model whether it has encountered specific samples. The Repeat attack identifies samples
as members if the language model can generate text that closely matches the original
input. Finally, in more challenging scenarios where the model produces fixed responses
like “positive” or “negative,” we introduce the Brainwash attack. This novel method
consistently influences the model to provide specific incorrect answers, and membership
is inferred based on the sample’s ability to conform to this brainwashing process.
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We conduct extensive experiments on four popular large language models and
three benchmark datasets. Empirical results show that our attacks achieve significant
performance across various scenarios. For example, the Brainwash attack achieves
over 95% accuracy advantage in inferring membership status against LLaMA on the
DBPedia and AGNews datasets. Even when applied to online commercial models such
as GPT-3.5, our attack maintains an advantage of over 60% on the TREC dataset.

We further comprehensively investigate factors influencing the attack, including the
number of demonstrations and their position in the prompt. Results indicate that the
vulnerability of demonstrations emerges from a synergistic interplay between prompt size
and the demonstration position. These findings offer insights for designing prompts that
are more resilient against privacy attacks. Moreover, we undertake a comprehensive case
study investigating the evolving behavior of updated language models over time. Despite
ongoing efforts to enhance model safety, our results reveal persistent vulnerabilities in
the prompt, even with updated versions.

Recognizing the applicability of our attacks across diverse scenarios, we further
design a hybrid attack that combines the strengths of the Brainwash and Repeat attacks.
Empirical evidence shows that the hybrid attack outperforms both individual methods in
most cases, e.g., 81.2% accuracy advantage compared to 67.8% and 73.0%, respectively.
Lastly, we explore three potential defenses at the data, instruction, and output levels.
Our results demonstrate that these defenses are effective for specific attacks and datasets.
Additionally, we find that combining defenses from all these orthogonal dimensions
significantly mitigates privacy leakage and provides stronger privacy guarantees.

We summarize our contribution as follows:

• We present the first text-only membership inference attack against ICL. We design
four text-only attacks and empirically demonstrate their effectiveness across four
popular language models and three diverse datasets.

• We conduct extensive studies of factors influencing attack performance and reveal
that the vulnerability of demonstrations emerges as a synergistic interplay between
prompt size and the demonstration position.

• We integrate two powerful attacks to construct a hybrid attack, which significantly
enhances our attack’s performance and generalizability.

• We explore three potential defenses for ICL against text-only attacks and empiri-
cally show their effectiveness in mitigating privacy leakage.

3.2 Problem Statement

Adversary’s Objective: The primary objective of the adversary is to determine
whether a specific target sample x was included in the construction of a prompt used to
customize a language model M. The prompt, denoted as prompt, comprises a set of k
demonstrations, formatted as prompt = {I, s(x1, y1), . . . , s(xk, yk)}. The adversary’s
goal is to determine whether the target sample x has been utilized in crafting the
prompt. That is, the goal is to determine whether x is in the set {x1, . . . , xk}.
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Figure 3.1: The GAP attack involves querying the model with a target sample. The ad-
versary determines the membership status by evaluating the accuracy of the model’s
prediction: if the prediction is correct, the target sample is classified as a member;
otherwise, it is classified as a non-member.

Adversary’s Capabilities: In this work, the adversary can access tailored language
models that are customized via prompts with fixed demonstrations, as indicated in previ-
ous research [S4, 134]. For example, Copy.ai [3] suggests employing well-crafted prompts
that include examples and stylistic instructions to generate high-quality marketing copy,
and these prompts do not change between requests. Furthermore, as GPTs [4] (powered
by GPT-3.5/4) and GLMs [5] (powered by ChatGLM4) gain increasing interest, we
anticipate more use cases of customized LLMs with fixed demonstrations to perform
user-determined tasks, such as sentiment analysis [148] and text summarization [59].

More concretely, we consider the most strict and realistic scenario where the adversary
has only black-box access to the target language model M, meaning they can see the
text generated but not the tokenizer or associated probabilities. Additionally, the
adversary has the ground truth answer y for the target sample x. This assumption
aligns with most existing membership inference works in computer vision [154, 53, 74]
and natural language processing domains [36, T1, 88].

3.3 Attack Methodology

3.3.1 A Baseline Attack: GAP Attack

We start with a baseline attack that extends from the existing attack in the vision
domain. Under the assumption that the adversary only has access to the generated texts
without additional details, a straightforward approach for membership inference involves
exploiting the well-known overfitting phenomenon, where models tend to memorize
samples from the training dataset, thereby exhibiting higher accuracy on these than on
the testing dataset.

Prior research [104] indicates language models exhibit minimal overfitting due to
their massive training dataset and fewer training epochs on individual data points [106].
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However, In-Context Learning introduces a potential vulnerability, as it allows language
models to recall recently encountered demonstrations, thus behaving as if they have
“memorized” them.

Building on this, we categorize samples that are correctly identified as “members”
and the rest as “non-members.” This approach is an uncomplicated extension of existing
work in the vision domain [155] to language model settings. We refer to this basic attack
methodology as the GAP attack, which serves as our starting point and baseline for
comparison.

Methodology: The attack methodology is structured as follows (see Figure 3.1 for an
illustration):

• The adversary selects a target sample x, which is a sentence whose membership
status they aim to determine.

• The adversary sends the target sample x to the model and observes the model’s
response. If the model returns the correct answer, the sentence is classified as a
member of the dataset; if not, it is deemed a non-member.

The results, illustrated in Figure 3.2, reveal unsatisfactory performance, particularly
for LLMs like GPT-3.5 (0 means random guess), as these models perform very well
even when the test samples are not seen in the prompt. This suboptimal performance
motivates us to develop more effective attacks tailored specifically for LLMs.
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Figure 3.2: Performance of the baseline membership inference attack (GAP), revealing
challenges and suboptimal results, particularly evident in larger language models
such as GPT-3.5. In this figure, language models are prompted with one example with
the instruction presented in Figure 3.1. The performance metric, which indicates the
advantage over random guessing, is detailed in Section 3.4.1.
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Figure 3.3: The Inquiry attack determines membership status by directly querying the
model. In our work, we use the prompt “Have you seen this sentence before.”

3.3.2 Inquiry Attack

Intuition: The core concept of this attack method hinges on the language model’s ability
to remember information from past conversations and deliver context-based responses.
When we interact with a language model, it processes the context and produces a
response informed by the knowledge it has acquired from previous inputs by the user,
particularly from the provided prompt (prompt) and its included demonstrations.
Consequently, a direct and intuitive approach is to directly question the language model
about its previous encounters with specific samples.

Methodology: The attack methodology is structured as follows (refer to Figure 3.3
for an illustration):

• The adversary selects a target sample x, which is a sentence that they aim to
determine its membership status.

• The adversary crafts a query to the model with the prompt: “Have you seen this
sentence before: {x}?”

• The adversary sends the query to the model and observes the model’s response.
If the model confirms with a “yes”, the sentence is classified as a member of the
dataset; if not, it is deemed a non-member.

3.3.3 Repeat Attack

The Inquiry attack, while direct and straightforward, may trigger alerts and consequently
be denied a response as it overtly queries the language model’s prompt. To mitigate
this risk, we introduce the Repeat attack, which employs a more subtle approach.

Intuition: This attack leverages the strong memorization capability of language models
to generate context-aware responses. Unlike the Inquiry attack, which uses queries
with clear intentions (such as "Have you seen this sentence before?"), we use the core
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Figure 3.4: The Repeat attack initiates a conversation with a few words and asks
the model to complete the sentence. The adversary predicts membership status by
assessing the semantic similarity between the generated sample and the target sample.

functionality of a language model, which is to predict the next words. When provided
with just the beginning of a target sample, such as the first three words, the model
attempts to complete the sentence by adding more words. Our hypothesis is that the
model’s prior knowledge, enhanced through ICL, will encourage the language model to
generate text that mirrors previously encountered content.

Methodology: The attack method consists of the following steps (see Figure 3.4 for
an illustration):

• The adversary selects a target sample x, which is a sentence that they aim to
determine its membership status.

• The adversary truncates the target sample, retaining only its first few words,
which are then inputted to the language model. The generated response x

′ from
the model is obtained.

• The adversary then feeds x and x
′ to a text encoder E to extract their embeddings

and measure the semantic similarity between them by a function Φ.

Similarity = Φ(E(x), E(x′)) (3.1)

If the similarity score exceeds a predetermined threshold, the sample is classified
as a member of the dataset; otherwise, it is classified as a non-member.

For practical implementation, we use the first three words of the sentence to prompt
the language model. The SentenceTransformer network [108], a widely utilized text
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Figure 3.5: Member samples are more likely to exhibit high similarity with the generated
sample, while the similarity distribution for non-members is more flattened. These
distributions were obtained by querying the GPT-3.5 model using the procedure detailed
in Figure 3.4 with the TREC dataset, using one example as a demonstration.

encoder, is employed to calculate semantic similarity using cosine distance. Figure 3.5
shows that member samples generally exhibit higher similarity with the generated
text, while non-member samples display a more flattened similarity distribution. This
supports our initial hypothesis.

In practice, setting a similarity threshold between 0.8 and 0.9 tends to produce
satisfactory accuracy. Further fine-tuning of this threshold through additional sample
training can enhance the effectiveness of the attack.

3.3.4 Brainwash Attack

In this scenario, we explore a more common and strict scenario where the language
model’s output is confined to a predefined list of responses. This does not entail
modifying the model’s basic operational framework, like converting it into a classification
model based on Large Language Models. Instead, the language model continues to
generate responses in an autoregressive manner as before. The key difference here is
the introduction of a server-side filter, which evaluates the outputs to ensure they are
permissible and non-harmful. This added layer heightens the complexity of launching
effective attacks.

For instance, in the sentiment analysis task, the language model is limited to
outputting “positive” or “negative” predictions. However, to the user, the interaction
with the model remains unchanged.

In such a controlled output environment, launching attacks like the GAP attack
remains feasible, though it represents a suboptimal method. More sophisticated attacks,
such as those that depend on inducing the model to repeat sentences or to disclose
previously seen sentences, are unlikely to succeed due to the server’s filtering mechanism.

To overcome this challenge, we present the last text-only membership inference
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Figure 3.6: The Brainwash attack persistently presents the target sample to the model
with a consistent incorrect answer until the model responds inaccurately. The number
of iterations required indicates the likelihood of membership.

attack, namely Brainwash Attack. This text-only membership inference attack is
designed to operate effectively under the stringent conditions imposed by output filters.

Intuition: Initially, let’s consider a simplified case where an adversary has access to
the probability or logits associated with outputs. Under these conditions, determining
membership is straightforward: a higher probability suggests that the model is more
confident in its prediction, likely because the item was seen in the prompt. The main
idea of this attack is to approximate the confidence, which is challenging given the
limitations of the language model output.

To address this challenge, we approximate confidence by evaluating how firm the
model is on previously encountered correct answers when it is “brainwashed” by unrea-
sonable or incorrect queries. Specifically, if an incorrect fact is presented to the model
and it hasn’t encountered this information before, the model is more susceptible to
being misled. Conversely, if the model is familiar with the correct information from its
prompt, it is less likely to accept the incorrect fact.

Methodology: The approach involves several key steps, as outlined below and illus-
trated in Figure 3.6:

• The adversary selects a target sample x, which is a sentence that they aim to
determine its membership status. In addition, the adversary knows its correct
answer y.

• The adversary crafts a query to the model with the same template, for example:
“Question: x; Answer Type: ŷ.” Here, ŷ denotes the wrong answer compared to
the correct answer y.
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Figure 3.7: Member samples resist incorrect labels, requiring more iterations to change
the model’s output, while non-members are more easily influenced. These distributions
were obtained by querying the GPT-3.5 model using the procedure detailed in Figure 3.6
with the TREC dataset, using one example as a demonstration.

• The adversary repeats querying the model with the above prompt until the model
responds with the incorrect answer ŷ.

• The attacker then counts the number of queries needed for the model to accept
the incorrect answer. If this number exceeds a predefined threshold, the sample is
classified as a member; otherwise, as a non-member.

In our experiments, we consider multiple choice for the incorrect answer ŷ. The adversary
counts the number of queries for each incorrect answer, and we use the average number
of queries as a robust metric for evaluating confidence. Figure 3.7 demonstrates that
member samples necessitate significantly more queries to output the incorrect answer,
i.e., the language model is much firmer for the correct answer it has seen before. In
contrast, non-member samples are more likely to be influenced to output incorrect
answers. This observation confirms our intuition. We empirically determined that
setting the threshold between 3 to 4 is a reasonable choice for most models and datasets,
although the optimal threshold selection necessitates a few additional samples for
refinement.

3.4 Experiments

3.4.1 Experimental Setup

Language Models: We evaluate our attacks on four representative language models,
including GPT2-XL [105], LLaMA [137], Vicuna [1], and GPT-3.5 [6]. GPT2-XL is
a 1.5B parameter version of GPT-2 developed by OpenAI. For LLaMA and Vicuna,
we utilize their 7B version and version 1.5 (Vicuna-7b-v1.5), respectively. We access
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GPT-3.5 through its official API with the version name gpt-3.5-turbo-0613, which was
released on June 13th. We also examine the impact of different versions of this model
in Section 3.4.5, providing insights into how variations in model versions affect our
attack outcomes. This selection spans fully open-source to fully closed commercial
models, demonstrating the applicability of our attacks across a wide spectrum.

Datasets: We assess the impact of our attacks on three benchmark text classification
datasets: AGNews [162], a 4-class News Topic Classification dataset; TREC [72],
a 6-class Question Classification dataset; and DBPedia [162], a 14-class Ontology
Classification dataset. We structure the prompts according to the template designed
by Zhao et al. [166], known for its effective performance, with illustrative examples
provided in Table 2.1. It is worth noting that our objective is to determine if the sample
is included in the prompt. Therefore, there is no requirement to ensure that these
datasets are not utilized in training the pretrained models. Given LLMs are trained
on extensive datasets, we hypothesize that they do not strongly memorize any specific
dataset. Therefore, we anticipate minimal impact on performance. We further explore
the influence of memorization on attack performance in Appendix A.1.

Evaluation Settings: The evaluation setting in our work differs from traditional
membership inference attack settings, where training datasets typically comprise thou-
sands or tens of thousands of data samples. In these cases, adversaries receive both
the training dataset and an equivalently sized testing dataset, tasked with determining
the membership status for all samples within this mixed dataset. However, the context
shifts for In-Context Learning, where membership pertains to a smaller subset, typically
fewer than eight samples. Consequently, evaluating attack performance through a single
run may yield unrepresentative results.

Instead of conducting a single experiment, we repeat the experiment 500 times
and leverage the average performance as our final result. This experimental design,
previously employed in studies targeting In-Context Learning [T1, 36], enhances the
robustness and reliability of our assessments.

Each experiment entails the construction of a target prompt based on specified
hyperparameters, such as the number of demonstrations. Subsequently, we assess the
membership status of two target samples: one sample selected from the prompt is
labeled as a member, while another is randomly chosen and designated as a nonmember.

To facilitate this approach, the dataset is initially deduplicated and randomly divided
into two parts: the demo part, containing samples utilized for prompt construction, and
the test part, housing samples earmarked for testing. For each experiment, we randomly
select samples from the demo part based on the prompt design to construct the prompt.
Simultaneously, one sample from the test part is randomly chosen and labeled as a
nonmember in the experiment. In this chapter, we repeat the experiment 500 times,
equating to the labeling of a dataset with 500 members and 500 nonmembers.

Evaluation Metrics: We consider two widely applied metrics to evaluate the attack
performance:

• Advantage [155, 131]: This metric, denoted as
Adv = 2× (Acc− 0.5),
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measures the advantage over random guessing, which offers an average-case
evaluation of the attack’s effectiveness. Following previous work [155, 131], the
metric is multiplied by 2 to scale a 100% accurate attack performance to 1,
while random guessing remains at 0. A higher advantage implies better-than-
random performance, providing a comprehensive perspective on the attack’s overall
effectiveness.

• Log-scale ROC Analysis [21]: This metric focuses on the true-positive rate at
low false-positive rates, effectively capturing the worst-case attack performance.

Given that determining membership status is a binary classification task, with
an equal number of positive and negative samples, the advantage metric provides an
intuitive measure of performance. An advantage of 0 signifies random guessing, while
an advantage of 1 indicates an accurate prediction of all membership statuses. This
simplicity aids in the straightforward interpretation of the performance of the attacks.

For all proposed attacks, we employ the advantage metric to gauge average-case
performance. In the case of the Repeat and Brainwash attacks, we additionally utilize
the log-scale ROC curve to depict their worst-case performance. It’s important to note
that we cannot present worst-case performance for all attacks since, in the other two,
only hard membership predictions are obtainable.

3.4.2 Results

We start by evaluating the performance of our attacks under the basic setting, where the
prompt contains only one demonstration: prompt = {I, s(x1, y1)}. Here, the adversary
aims to determine whether the target sample x is contained in prompt, i.e., x = x1 or
x ̸= x1.

We report the advantage of all four attacks in Figure 3.8. As we can see, Brainwash
and Repeat attacks consistently exhibit strong performance across all four language
models. This remarkable performance is particularly evident with LLaMA and Vicuna,
as demonstrated in Figure 3.8b and Figure 3.8c. For example, Brainwash achieves nearly
100% advantage on 5 out of 6 tasks with LLaMA and Vicuna.

In contrast, the performance of Inquiry and GAP attacks varies significantly de-
pending on the model architecture. For GPT2-XL, GAP attack even achieves 54.4%
advantage on DBPedia, although this is the optimal performance it can achieve across
all datasets and models. Furthermore, with LLaMA, the Inquiry attack achieves 75.0%
advantage on AGNews, showcasing strong performance even with relatively straight-
forward approaches. However, for GPT-3.5, both attacks prove ineffective, with a
performance close to random guessing. Encouragingly, Brainwash and Repeat attacks,
while showing a slight performance decrease, maintain effectiveness in inferring mem-
bership status on GPT-3.5. This observation highlights the prevalence of membership
leakage vulnerabilities in large language models, even when the model solely outputs
text information.

Notably, while the Brainwash and Repeat attacks consistently outperform the other
two, they show varying advantages under different model architectures. As Figure 3.8
shows, for the GPT family of models (GPT2-XL and GPT-3.5), the Repeat attack

29



CHAPTER 3. MEMBERSHIP INFERENCE ATTACKS AGAINST IN-CONTEXT LEARNING

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
A

dv
an

ta
ge

Brainwash

Repeat

Inquiry

GAP

(a) GPT2-XL

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

(b) LLaMA

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

(c) Vicuna

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

(d) GPT-3.5

Figure 3.8: Comparison of attack performance across three datasets and four lan-
guage models, highlighting the consistent efficacy of Brainwash and Repeat attacks,
alongside the variable performance of Inquiry and GAP attacks contingent on model
architecture.

outperforms Brainwash in most cases, suggesting that the generative behaviors of these
models on members and non-members are quite different when queries starting from
a few words are given complementary words to finish with. However, for LLaMA and
Vicuna, they show greater vulnerability to the Brainwash attack, suggesting that these
models are more firm or believe in the knowledge they have gained from prompt. The
question of why these large language models have different properties and behaviors is
beyond the scope of this work, and we leave it to more relevant research areas.

We further report the worst-case performance (log-scale ROC) of the Brainwash
and Repeat attacks in Figure 3.9. We can observe that both Brainwash and Repeat
attacks exhibit remarkable performance, particularly in the low false positive area. This
observation implies the effectiveness of our attacks in determining the membership
status of samples that are hard to differentiate.
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Figure 3.9: Log-scale Receiver Operating Characteristic (ROC) curve depicting the
worst-case performance of Brainwash and Repeat attacks, revealing their efficacy in
discerning ambiguous samples.

3.4.3 Influence of Number of Demonstrations

In the previous section, we established the effectiveness of our attacks under the scenario
where the prompt solely comprises one demonstration. However, in a more practical
scenario, language model owners often leverage multiple demonstrations to construct
prompt to enhance performance. In this section, we explore the performance of our
proposed attack under the influence of the number of demonstrations.

It is noteworthy that an increased number of demonstrations does not unilaterally
enhance performance, as an extended prompt incurs higher costs in terms of tokens
and may be constrained by input limitations of the language model. Therefore, in this
section, we first vary the number of demonstrations from 1 to 6 to assess its impact on
attack performance. We limited the number of demonstrations to 6 due to the input
size restrictions of GPT2-XL, and further evaluated the long context performance solely
on the latest GPT-3.5 version.

Moreover, we consider the positional influence of demonstrations within the prompt.
Specifically, we posit that for prompt = {I, s(x1, y1) . . . s(xk, yk)} containing k demon-
strations, the impact of x1 and xk should be different. The reason for this argument
is that the demonstrations are entered into the language model sequentially, and the
model’s memory for the first demonstration should be significantly influenced by subse-
quent demonstrations compared to the last demonstration. Consequently, in the ensuing
experiments probing the influence of the demonstration number (k), we examine the
effects on the first and last demonstrations (i.e., x1 and xk) separately.

We first report the effect of k on inferring the first demonstration in Figure 3.10.
We can see that while the GAP and Inquiry attacks are insensitive to the number of
demonstrations, the remaining two attacks show a clear trend between it and attack
performance. Specifically, both the Repeat and Brainwash attacks obtain optimal
results when there is only one demonstration, and the attack performance gradually
decreases as the number of demonstrations increases. We further report the worst-
case performance in Figure 3.11. We can find that attacks against one demonstration
consistently outperform scenarios with more demonstrations, even in terms of low false
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Figure 3.10: Membership Inference Attack (MIA) performance with varying numbers of
demonstrations in the prompt, illustrating the influence of demonstration quantity on
the efficacy of Repeat and Brainwash attacks. Our experiments are conducted on the
TREC dataset.

positives.
We then report the effect of k on inferring the last demonstration. For comparison

purposes, we present the results for both the first and the last presentation. In addition,
in order to observe the trend more clearly, we only present the results in two language
models: GPT2-XL and GPT-3.5. First, as shown in Figure 3.12, we can get a similar
observation that there is no significant trend for GAP and Inquiry attacks, but a
decreasing trend for Repeat and Brainwash attacks. Therefore, we next discuss the
findings based on the latter two powerful attacks (Figure 3.12c and Figure 3.12d). These
observations suggest that attack performance is negatively correlated with the number
of demonstrations, regardless of which demonstrations an adversary aims at to infer
membership. These observations also suggest that more demonstrations will not only
improve model performance, but also reduce membership leakage. Furthermore, we can
find that the attack performance of the first demonstration is more susceptible to the
number of demonstrations compared to the last demonstration, as shown by the steeper
trend of the first demonstration. This observation validates our previously mentioned
argument that the model’s memory on the first demonstration is more likely to be
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Figure 3.11: Log-scale ROC curve illustrating the worst-case performance of Member-
ship Inference Attacks with varying numbers of demonstrations in the prompt, empha-
sizing the consistent superiority of one demonstration over multiple demonstrations.
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Figure 3.12: Comparative analysis of Membership Inference Attack (MIA) performance
targeting the first and last demonstration, underscores the impact of the distance
between the target sample and the query on model memorization. Our experiments
are conducted on the TREC dataset.
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Figure 3.13: Comparative analysis of Brainwash performance targeting the first and
last demonstration, with the number of demonstrations ranging from 1 to 16. The
experiments utilize the gpt-3.5-turbo-0125 model and are performed on the TREC
dataset.

affected than on the last demonstration, as the next few demonstrations may overwrite
the knowledge from the first demonstration.

Long Context Performance: As an increasing number of language models support
long-context capabilities, it is important to understand how vulnerabilities evolve with
extended demonstrations. In this section, we experiment with the latest version of
GPT-3.5 (gpt-3.5-turbo-0125), using a range of demonstrations from 1 to 16, and present
the results in Figure 3.13.

The results indicate that our attacks maintain high performance even as the number
of demonstrations increases. Specifically, when using 16 TREC samples, the Brainwash
attack achieves a 0.582 advantage when inferring the last demonstration, and this
advantage remains at 0.456 for the first demonstration. We also compared these results
on the latest version with our previous findings on gpt-3.5-turbo-0613. It appears that
the latest model is more vulnerable to our attack when more demonstrations are included
in the prompt. This may suggest that the latest version has enhanced capabilities for
handling and remembering long contexts, reflecting the ongoing trend of large language
models improving their long-context abilities.

3.4.4 Influence of the Demonstration Position

The above results suggest that the number of demonstrations has a different effect
on the first and last demonstrations. We next explore in more depth the effect of
demonstration position on attack performance. Concretely, we maintain a consistent
number of demonstrations at 6 and use our proposed attacks to infer the membership
status of each demonstration, ranging from the 1st to the 6th position.
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Figure 3.14: Exploration of attack performance across different positions (1st to 6th) of
demonstrations within a prompt. Results reveal varying vulnerabilities for Repeat and
Brainwash attacks. Notably, demonstrations in the middle exhibit a lower vulnerability
compared to those positioned at the beginning or end. Our experiments are con-
ducted on the TREC dataset.

We report the relationship between demonstration position and attack performance
in Figure 3.14. We can observe that demonstrations at different positions exhibit
varying vulnerability, particularly evident for our two powerful attacks, Repeat and
Brainwash. Interestingly, the results show that the worst attack performance is not
against the first demonstration. Instead, demonstrations positioned in the middle
sometimes exhibit poor attack performance. For instance, as illustrated in Figure 3.14c,
inferring the membership status of the first demonstration in GPT-3.5 yields 27.6%
advantage, while inferring the third demonstration results in only 21.6% advantage.
This observation is further validated in the worst-case performance shown in Figure 3.15.
Notably, for the Brainwash attack (Figure 3.15a), the last demonstration attains the best
performance, as expected, with the first demonstration ranking second. Conversely, the
third demonstration (represented by the green line) exhibits the poorest performance.

We emphasize that this finding aligns with previous research [77], which indicates that
when large language models encounter long input, they are more prone to focusing on
the initial and concluding parts of the context while neglecting the middle section. This
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Figure 3.15: Log-scale ROC curve confirms that demonstrations in the middle exhibit
reduced vulnerability compared to those located at the beginning or end, even in the
worst-case scenario. We use LLaMA as an example here.

conclusion may motivate users to strategically place their valuable demonstrations in the
middle of the prompt. However, this strategic placement may potentially compromise
utility. Consequently, designing a privacy-preserving positional strategy that balances
privacy and utility presents an intriguing problem for further exploration.

3.4.5 Attack Performance Over Time

In response to the increasing security risks associated with Large Language Models, both
researchers and companies are focusing on developing responsible and resilient models
capable of withstanding potential threats, including jailbreak attacks. A significant
area of exploration involves examining how different versions of Large Language Models
address these security challenges, particularly concerning text-only membership inference
attacks, as proposed in our study.

In this section, we conduct a case study using one of the most influential LLMs,
GPT-3.5, to discern how the performance of attacks varies across different versions.
Since the beginning of 2023, the OpenAI has released four API versions: gpt-3.5-turbo-
0301, gpt-3.5-turbo-0613, gpt-3.5-turbo-1106, and the latest gpt-3.5-turbo-0125, with
the numerical suffix denoting the release date (the first three in 2023 and the latest in
2024). Employing these versions, we execute our proposed four attacks and assess how
their performance changes over an eleven-month period.

We first evaluate attack performance with the basic setup of prompt containing
only one demonstration (sampled from the TREC dataset) and report the results
in Figure 3.16a. We can find a clear trend in the different patterns exhibited by different
versions of GPT-3.5 under attacks. Notably, the attack performance of the newly
released APIs decreases under our Brainwash and Inquiry attacks but increases in the
latest version. In contrast, the Repeat attack demonstrates higher performance on
recently released APIs. In the case of the GAP attack, which considers the generalization
gap in training and testing datasets, the attack differences across the four versions of
LLMs are negligible.

Extending our observations to prompt with multiple demonstrations, as depicted
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Figure 3.16: Evolution of Attack Performance: Comparative analysis of attack perfor-
mance on four GPT-3.5 API versions (gpt-3.5-turbo-0301, gpt-3.5-turbo-0613, gpt-3.5-
turbo-1106, and gpt-3.5-turbo-0124) over a ten-month period. Results demonstrate that
the robustness of commercial models like GPT-3.5 doesn’t monotonically increase over
time. We conduct our experiments on the TREC dataset. Experiments on the DBPedia
dataset derive the same conclusion, detailed results can be found in Appendix A.2.

in Figure 3.16b, where prompt contains 6 demonstrations, and the target demonstration
is positioned at the beginning, reveals an intriguing pattern. The older version (gpt-
3.5-turbo-0301) exhibits higher attack performance for Brainwash and Inquiry attacks,
while Repeat shows significantly lower performance. This observation remains consistent
regardless of the target demonstration’s position, as illustrated in Figure 3.16c, where
placing the target demonstration at the end yields conclusions analogous to those when
positioned at the beginning.

This observation may stem from synergies between attacks, as observed in previous
studies [131, S2], different attacks exhibit correlations. For instance, defending against
adversarial examples could inevitably increase vulnerability to membership inference
attacks. Given the diverse attack surface against LLMs, protecting against all potential
threats becomes exceedingly challenging.

In summary, different versions of GPT-3.5 APIs manifest varied behaviors when
subjected to attacks, and no single version outperforms all four types of attacks. This
understanding helps us navigate the challenge of securing language models in the face
of evolving security threats.

3.5 Hybrid Attack

Given the observed varieties in the effectiveness of different attacks across models,
datasets, and model versions, it becomes a fascinating challenge from an adversary’s
point of view to devise a combined approach that consistently performs well in different
scenarios. In this section, we present a hybrid attack that combines the strengths of
both the Brainwash attack and the Repeat attack to achieve strong performance in all
scenarios. We chose these two attacks because they are resilient across different models
and datasets.
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Figure 3.17: Performance comparison of the hybrid attack against individual Brainwash
and Repeat attacks across four language models. The hybrid attack effectively com-
bines the strengths of both, often surpassing individual attack performances. In this
figure, language models are prompted with one example.

3.5.1 Methodology

Recall that the Repeat attack involves sending the first few words to the language model
and assessing the semantic similarity between generated text and target samples, while
the Brainwash attack iteratively induces the language model with incorrect answers and
uses the number of iterations to determine membership status. In the hybrid attack,
we concatenate both the similarity and iteration number, training a two-layer neural
network as the attack model.

The attack model comprises fully connected layers and takes two inputs: the
similarity returned by the Repeat attack and the average iteration number from the
Brainwash attack. The output is the probability of membership. To train the attack
model, we assume the adversary can collect a small shadow dataset sampled from
the same distribution as the demonstrations contained in prompt. Our experiments
indicate that training the attack model with the ensemble of Brainwash and Repeat
attacks is not arduous: only 100 samples are sufficient.

Once the attack model is trained, the hybrid attack is deployed as follows: for a
target sample, both Repeat and Brainwash attacks are applied to obtain corresponding
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Figure 3.18: Log-scale ROC curve illustrating the performance of the hybrid attack in
leveraging the strengths of both Brainwash and Repeat attacks. The hybrid attack
strategically combines their advantages to achieve superior performance across the
false positive rate spectrum.

metrics (similarity and iteration number). These values are then fed into the attack
model to obtain the final prediction.

3.5.2 Results

We evaluate the effectiveness of our hybrid attack across four language models and
present the results in Figure 3.17. Notably, the hybrid attack capitalizes on the strengths
of both Brainwash and Repeat attacks. In the majority of cases, the hybrid attack
exhibits performance no less than the optimal performance achievable by Brainwash
and Repeat attacks individually. Moreover, in certain scenarios, the hybrid attack even
outperforms each individual attack. For instance, in Figure 3.17a, where Brainwash
and Repeat attacks achieve advantages of 67.8% and 73.0%, respectively, the hybrid
attack achieves an advantage of 81.2%, showcasing its ability to derive benefits from
both attacks.

To delve into how the hybrid attack leverages the advantages of both attacks, we
present the log-scale ROC curve in Figure 3.18. In the high false positive rate area, the
hybrid attack capitalizes on the superior performance of the Repeat attack, while in
the low false positive area, it aligns with the strategy of the Brainwash attack. This
strategic combination results in high overall performance across the entire false positive
rate area.

Furthermore, we demonstrate that the hybrid attack maintains its advantage when
targeting prompt consisting of multiple demonstrations (Figure 3.19a) and attacking
demonstrations at different positions within the prompt (Figure 3.19b). This evidence
suggests that an adversary does not need to select a specific language model/dataset to
attack; instead, the hybrid attack proves to be effective in different scenarios and can
be used as a general attack against In-Context Learning.

39



CHAPTER 3. MEMBERSHIP INFERENCE ATTACKS AGAINST IN-CONTEXT LEARNING

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

Hybrid

Brainwash

Repeat

(a) Six Demonstrations (last)

TREC DBPedia AGNews
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

(b) Six Demonstrations (first)

Figure 3.19: Performance evaluation of the hybrid attack on prompts with multiple
demonstrations (Figure 3.19a) and at various positions within a prompt (Figure 3.19b),
demonstrating its consistent efficacy across different settings. In this figure, the language
model used is Vicuna.

3.6 Potential Defenses

Our proposed attack demonstrates effective performance in inferring the membership
status of target samples, revealing significant privacy threats. However, as of our current
knowledge, there is a lack of a comprehensive defense framework to safeguard In-Context
Learning (ICL) from membership inference attacks.

In this section, we explore three potential defenses aiming to minimize the information
leakage from the language model regarding its prompt.

3.6.1 Instruction-Based Defense

Drawing inspiration from the strong control that instructions can exert over language
models (e.g., prompt injection attack), our initial approach involves using instructions
to compel the language model to refrain from leaking any information related to its
prompt.

Specifically, we task GPT-3.5 with designing a prompt intended to prevent the model
from disclosure of prompt-related details. This strategy leverages previous findings [168]
which suggest that language models can be particularly adept at crafting prompts,
potentially surpassing human efforts in this domain. The generated instruction by
GPT-3.5 is as follows:“Respond to the following queries without directly mentioning or
alluding to any specific examples, demonstrations, or instances that might have been
used in the prompt.”

We place this defense instruction at the end of the prompt and conduct the three
most powerful attacks against demonstrations protected by this instruction.

While the efficacy of the defense instruction is evident in Figure 3.20, showcasing
a reduction in the performance of the Inquiry attack for the TREC dataset, this
effectiveness does not uniformly extend to other datasets, as depicted in Figure 3.21.
Notably, the addition of the defense instruction tends to marginally decrease the
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Figure 3.20: The defense instruction successfully reduces the effectiveness of the Inquiry
attack for the TREC dataset; nevertheless, this mitigating effect does not extend to the
Repeat attack or other datasets.
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Figure 3.21: Evaluation of the defense instruction’s impact on the performance of
different attacks across diverse datasets, highlighting varying levels of efficacy and
nuances in defense outcomes.
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performance of the Brainwash attack in most instances, though the variance is not
statistically significant, we posit this reduction primarily to the increased distance
between the query and the demonstration. Intriguingly, when evaluating the defense
effect against Repeat attacks, in certain scenarios, the attack performance is observed
to be even higher compared to scenarios without defense. We posit that integrating a
well-designed defense instruction tailored to a specific attack and dataset may constitute
a pragmatic approach to mitigate privacy leakage. However, the creation of a universally
applicable defense instruction necessitates further scrutiny and exploration.

3.6.2 Filter-Based Defense

While acknowledging the resilience of the Repeat attack against simple defense instruc-
tions, we leverage insights from this attack methodology to devise an ad-hoc defense
that actively modifies the language model’s output. Specifically, since the Repeat attack
determines membership status based on semantic similarity between the generated re-
sponse and the target sample, we implement an output filter that modifies the response
while preserving its utility. To achieve this, when the language model outputs content,
we send that content to GPT-3.5 and request a sentence rewrite. This filter-based
defense consistently reduces the performance of the Repeat attack across all datasets,
as illustrated in both Figure 3.22a and Figure 3.22b.

It is worth noting that our approach involves actively modifying the response,
distinguishing it from common filter defenses [163]. Blacklist-based filter defenses, which
return an empty string if the output significantly overlaps with the prompt, may initially
seem effective against prompt leakage but are susceptible to circumvention. For instance,
an attacker could instruct the language model to output text encoded in a Caesar cipher
or introduce additional spaces between characters to evade detection. On the other
hand, whitelist-based filters, which only permit output from a predefined list, pose a
greater challenge to bypass but may impact the utility, and we have considered and
proposed the Brainwash attack tailored for this challenging scenario.

To understand how our filter-based defense diminishes the attack performance of
Repeat, we analyze the semantic similarity distribution for member samples before
and after the defense. As shown in Figure 3.22c, before the defense, a considerable
number of responses generated by the language model exhibit high similarity to the
target sample (similarity close to 1). Our observations, along with previous work [163],
indicate that the language model can sometimes reproduce the exact content from its
prompt. However, after applying the output filter, the semantic similarity spreads more
smoothly rather than concentrating near 1. The log-scale ROC curve (Figure 3.22d)
emphasizes that the performance degradation primarily occurs in the low false-positive
rate area, indicating the defense’s effectiveness against worst-case scenarios.

It’s important to note that while rewriting the output is effective against the Repeat
attack, it is not applicable to Brainwash and Inquiry attacks. These attacks only
require the model to produce a predefined output or a binary answer, and manipulating
the output can either distort the intended meaning (thus impacting utility) or render
the defense ineffective. Consequently, the implementation of output filtering stands
as a supplementary defense tailored to specific attack types, rather than offering a
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Figure 3.22: Evaluation of a filter-based defense strategy against our attacks. Fig-
ure 3.22a and Figure 3.22b demonstrate the defense’s impact on Repeat attack
performance. Figure 3.22c depicts the change in semantic similarity distribution for
member samples before and after the defense. Figure 3.22d presents the log-scale
ROC curve, highlighting the defense’s effectiveness against worst-case performance
scenarios.

comprehensive, universal solution.

3.6.3 DP-based Defense

Differential privacy (DP) has been established as a key defense mechanism against
membership inference attacks. In this section, we assess the effectiveness of an existing
DP-based defense strategy [134], which generates synthetic demonstrations from the
private dataset with DP guarantees. Specifically, we set num-private-train to 1 to
exclude unseen data. The resulting DP demonstrations are of low quality, such as
“Users Admin ApollosemblingIC negatives direct@GetMapping.” Because of the high
dissimilarity between the generated DP and original demonstrations, the effectiveness
of the Repeat attack is reduced to almost random guessing.

However, DP is less effective against the Brainwash attack. Despite the generated
samples being dissimilar to the original samples, the Brainwash attack still achieves a
0.228 advantage, as depicted in the yellow bar in Figure 3.23.
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Figure 3.23: Effectiveness of combining defenses from multiple dimensions. Results
demonstrate that integrating defenses targeting different dimensions—such as data,
instruction, and postprocessing—substantially enhances overall defense effectiveness
and significantly reduces privacy leakage.

As DP-based, instruction-based, and filter-based defenses target orthogonal com-
ponents of the language model—namely, the data, the instruction, and the output—a
logical approach is to combine these three defenses for enhanced protection. In Fig-
ure 3.23, we illustrate the synergy of combining different defense strategies. On the
basis of the DP-based defense, the instruction-based defense further reduces the per-
formance of the Brainwash attack while having a negligible influence on the Repeat
attack performance. Adding the filter-based defense on top of these two defenses further
reduces the effectiveness of the Repeat attack. Upon combining all three defenses, the
overall performance of the hybrid attack is reduced from 0.59 to 0.11. These results
suggest that effective defense strategies should not focus on a single component but
rather leverage a combination of defenses targeting orthogonal components.

3.7 Discussion and Limitations

In this section, we discuss how our findings can advance our understanding of vulnera-
bilities in ICL, as well as the current limitations.

For Attack: We first evaluated the worst-case performance using a posterior-based
method across three datasets for three open-source models: GPT2-XL, LLaMA, and
Vicuna. The results, presented in Figure 3.24, illustrate that utilizing posterior proba-
bilities to determine membership status yields robust performance. This supports our
hypothesis that samples within the prompt exhibit a significantly lower loss, indicating
higher model confidence in demonstrations.

However, despite the effectiveness of the posterior-based attack, the inability to
observe the loss directly from text output highlights the difficulty of conducting mem-

44



3.7. DISCUSSION AND LIMITATIONS

10 4 10 3 10 2 10 1 100

False Positive Rate
10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

GPT2-XL
LLaMA
Vicuna

(a) TREC

10 4 10 3 10 2 10 1 100

False Positive Rate
10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e
(b) DBPedia

10 4 10 3 10 2 10 1 100

False Positive Rate
10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

(c) AGNews

Figure 3.24: Worst-case evaluation with access to the posterior, these results provide an
estimation of how traditional posterior-based attack could perform for the in-context
learning paradigm.

bership inference attacks using only text data. The main challenge lies in converting
these unobservable aspects into observable ones.

To tackle this, we conducted an in-depth analysis to understand how the Brainwash
attack converts unobservable signals, such as loss, into observable ones. Specifically, we
visualized the loss dynamics for both the correct class and the maliciously introduced
“brainwash” class, as illustrated in Figure 3.25.

Both two figures indicate that when we brainwash the language model using incorrect
labels, the loss on the correct class gradually increases, while the loss on the incorrect
brainwash class decreases. When the loss of the correct class surpasses that of the
brainwash class, the language model predicts the wrong label. This phenomenon explains
how ICL interacts with brainwash samples.

Furthermore, we can see that for member samples and non-member samples, the
speed loss increase is different. Specifically, as shown in Figure 3.25b, for non-member
samples that are not included in the prompt, the loss on the correct class increases
rapidly when facing brainwash samples. This indicates that the language model’s
confidence in target samples can easily be influenced, and the language model quickly
accepts the brainwash class, evidenced by the sharp decrease of the loss on the brainwash
class. However, for member samples, the loss on the correct class increases more slowly,
and the brainwash class requires more repetitions to reduce the loss, resulting in a
delayed intersection point.

This analysis highlights how our brainwash attack can transform unobservable
signals, such as loss, into observable signals, such as the number of repetitions. This
novel conversion makes the attack feasible in realistic and challenging scenarios where
the target model outputs only text. Besides, this approach is analogous to label-only
membership inference attacks in the vision domain, where adversarial perturbations
indicate model confidence in target samples. Our method can be regarded as an
adversarial perturbation technique for LLMs with text-only output, even with restricted
output.

We acknowledge that currently, it’s challenging to provide a theoretical understanding
of the vulnerability, as the community is still exploring how ICL interacts with the model.
For example, NeedleInAHayStack [7] demonstrates that when facing a long context,
the models are more likely to memorize information encoded at the beginning/end, but
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Figure 3.25: Visualization of loss dynamics in the Brainwash attack: The figures demon-
strate that the loss for the correct class increases when the language model is brain-
washed by wrong labels, translating unobservable loss changes into observable signals,
such as the number of repetitions.

Anthropic [8] later pointed out that these findings may be influenced by the prompt.
Our attack provides empirical evidence on how models memorize demonstrations in

an adversarial setting and shares some common vulnerabilities, like the first and last
demonstrations are more more vulnerable to privacy leakage. Moreover, our analysis
suggests further attacks could follow the same intuition by proposing different methods
that better approximate the confidence of the LLMs to the target samples, thereby
enhancing attack performance.

For Defense: Our work provides insights into defense strategies, indicating that
effective defenses should combine multiple components, such as data, instruction, and
output, rather than focusing on a single aspect. As shown in Figure 3.23, different
defense mechanisms each have their own advantages, and combining defenses from
orthogonal dimensions can result in better synergy.

Additionally, our study indicates that relying solely on developer interventions, such
as Reinforcement Learning from Human Feedback (RLHF), may introduce side effects.
This is evidenced by the varying attack performance across different model versions, as
shown in Figure 3.16. A version that is effective at defending against one type of attack
may inadvertently increase the model’s vulnerability to another type of attack.

While it is challenging to draw a formalized conclusion at this stage, we believe our
findings offer valuable insights that could benefit the community in better understanding
these vulnerabilities.

3.8 Ethical and Privacy Considerations

Membership inference attacks against ICL in LLMs pose significant privacy risks, as
they can reveal whether specific data points were used in the model’s demonstrations.
This threat can lead to the exposure of sensitive personal information, undermining
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user trust and potentially causing harm. Ethically, it is crucial to ensure transparency,
fairness, and accountability in the use of LLMs.

On the other hand, these attacks can serve as auditing tools to verify whether
unauthorized data has been used to construct prompts. To mitigate these risks, we
suggest a series of strategies, including differential privacy, instruction-based, and filter-
based defenses. We strongly recommend that developers integrate these approaches
when releasing query APIs. Employing these mitigation strategies can protect user data
and maintain ethical standards in AI development and deployment.

3.9 Conclusion

In this chapter, we propose the first text-only membership inference attack against
ICL. Our attack exhibits effectiveness across various scenarios, including instances
where the language model is constrained to generating responses from a predefined list.
We conduct extensive experiments across diverse datasets and language models and
empirically demonstrate the effectiveness of our attacks. We delve into an exploration
of factors influencing attack efficacy, revealing that the vulnerability of demonstrations
results from the intricate interplay between prompt size and the demonstration position.
A thorough investigation into the information leakage in language models over time
uncovers persistent vulnerabilities even with updated versions, heightening our concerns.
To mitigate membership leakage, we explore three potential defenses, finding that their
combination significantly reduces privacy leakage.

Our study not only enhances our understanding of the intricacies of ICL vulner-
abilities but also contributes practical considerations for prompt design and defense
mechanisms. Despite the successful implementation of defenses in specific scenarios,
the quest for a comprehensive and generalized defense strategy persists. As the field
continues to advance, our findings provide a foundation for researchers and practitioners
alike, guiding efforts toward a more secure and privacy-conscious integration of ICL into
the transformative landscape of LLMs.
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4.1. INTRODUCTION

4.1 Introduction

While data is often considered the target of attacks, such as membership inference
where an adversary determines whether a specific data point was part of the training
set, it can also serve as a potent tool for launching attacks. One notable example is
the data poisoning attack, where an adversary manipulates the training data to cause
the resulting model to behave maliciously or perform incorrectly, as intended by the
attacker.

Although various defenses have been proposed to counter these attacks, creating
the impression that the problem is largely solved, in the next two chapters, we will
demonstrate that these defenses provide users with a false sense of security. Specifically,
for two types of poisoning attacks—indiscriminate poisoning attacks and backdoor
attacks—we show how it is possible to design powerful attack strategies that can bypass
existing defenses. In this chapter, we discuss indiscriminate data poisoning first.

Indiscriminate data poisoning aims to degrade the overall prediction performance of
a machine learning model at test time by manipulating its training data. This form of
poisoning has become increasingly relevant as web scraping is commonly used to gather
large datasets for training advanced models [20, 35, 22]. While small perturbations to
training samples have been shown to effectively poison deep learning models, there is a
widely accepted belief that adversarial training can protect against such attacks if the
perturbation budget for adversarial training, denoted as ϵadv, is greater than or equal
to the poison budget, ϵpoi, i.e., ϵadv ≥ ϵpoi [39, 40, 54, 136, 149, 43, 135]. In particular,
Tao et al. [136] have proved that in this setting, adversarial training can serve as a
principled defense against existing poisoning methods.

4.1.1 Contributions

In this chapter, we challenge this widely held consensus by rethinking data poisoning from
a fundamentally new perspective. Specifically, we introduce a new poisoning approach
that entangles the features of training samples from different classes. In this way,
the entangled samples would hardly contribute to model training no matter whether
adversarial training is applied or not, causing substantial performance degradation
of models. Different from our attack strategy, existing methods commonly inject
perturbations as shortcuts, as pointed out by Yu et al. [157]. This ensures that the
model wrongly learns the shortcuts rather than the clean features, leading to low test
accuracy (on clean samples) [118, 38, 157].

Figure 4.1 illustrates the working mechanism of our new poisoning approach, with
a comparison to a reverse operation that instead aims to eliminate entangled features.
Our new approach is also inspired by the conventional, noisy label-based poisoning
approach [19, 18, 94], where entangled labels are introduced by directly flipping labels
(e.g., assigning a “dog” (or “cat”) label to both the “dog” and “cat” images) under a
strong assumption that the labeling process of the target model can be manipulated.
However, due to the imperceptibility constraint in the common clean-label setting, we
instead propose to introduce entangled features represented in the latent space. Our
work mainly makes three contributions:
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Figure 4.1: The t-SNE feature visualizations for (a) clean CIFAR-10 vs. poisoned CIFAR-10
achieved by our (b) EntF-pull and (c) EntF-push, which aim to induce entangled features.
As a comparison, (d) uses a reverse objective of EntF-push and instead increases the
model accuracy. Different from our EntF, existing methods lead to well-separable
features (see Appendix A.3). All t-SNE visualizations in this chapter are obtained from
the same clean reference model with ϵref = 4.

• We demonstrate that, contrary to the consensus view, indiscriminate data poisoning
can actually decrease the clean test accuracy of adversarially-trained (AT) models
to a substantial extent. Specifically, we propose EntF, a new poisoning approach
that is based on inducing entangled features in the latent space of a pre-trained
reference model.

• We conduct extensive experiments to demonstrate the effectiveness of EntF against
AT in the reasonable setting with ϵadv = ϵpoi and also its generalizability to a variety
of more challenging settings, such as AT with higher budgets, partial poisoning,
unseen model architectures, and stronger (ensemble or adaptive) defenses.

• We further highlight the distinct roles of non-robust vs. robust features in
compromising standard vs. AT models and also propose hybrid attacks that are
effective even when the defender is free to adjust their AT budget ϵadv.

4.2 Problem statement

We formulate the problem in the context of image classification DNNs. There are two
parties involved, the poisoner and the victim. The poisoner has full access to the clean
training dataset Dc = {(xi, yi)}ni=1 and is able to add perturbations δpoi to each sample
and release the poisoned version Dp = {(x′

i, yi)}ni=1, where x′
i = xi + δpoi

i . Once the
poisoned dataset is generated and released, the poisoner cannot further modify the
dataset. Moreover, the poisoner has no control over the target model’s training process
and the labeling function of the victim. The victim only has access to the poisoned
dataset and aims to train a well-generalized model using this dataset. As the victim is
aware that the obtained dataset may be poisoned, they decide to deploy adversarial
training to secure their model. The goal of the poisoner is to decrease the clean
test accuracy of the adversarially-trained model by poisoning its training
dataset.

When perturbing the clean dataset, the poisoner wants to ensure that the perturba-
tion is imperceptible and can escape any detection from the victim. To this end, the
poisoner constrains the generated perturbations δpoi by a certain poison budget ϵpoi,
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i.e., ∥δpoi∥∞ ≤ ϵpoi. Take the widely-adopted adversarial training framework [86] as an
example, the victim trains a target model F on the poisoned dataset Dp by a certain
adversarial training budget ϵadv following the objective:

arg min
θ

E(x′,y)∼Dp

[
max
δadv
L(F (x′ + δadv), y)

]
s.t. ∥δadv∥∞ ≤ ϵadv, (4.1)

where x′ denotes the poisoned input, δadv denotes the adversarial perturbations, θ
denotes the model parameters, and L is the classification loss (e.g., the commonly used
cross-entropy loss).

In this chapter, we focus on the reasonable setting with ϵpoi ≤ ϵadv. In contrast, the
two concurrent studies, ADVIN [149] and REM [43], focus on much easier settings with
ϵpoi ≥ 2ϵadv, in which it is not surprising that AT would fail because the clean samples
are already out of the ϵadv-ball of the poisoned samples [136].

4.3 Methodology

In this section, we introduce EntF, our new poisoning approach to compromising
adversarial training. The key intuition of EntF is to cause samples from different
classes to share entangled features and then become useless for model training, including
adversarial training. Specifically, we propose two different variants of EntF, namely
EntF-push and EntF-pull. For EntF-push, all training samples in each of the original
classes y are pushed away from the corresponding class centroid µy in the latent feature
space (i.e., the output of the penultimate layer F ∗

L−1) of a reference model F ∗, which
has totally L layers. The objective function can be formulated as:

Lpush = max
δpoi
∥F ∗

L−1(x + δpoi)− µy∥2 s.t. ∥δpoi∥∞ ≤ ϵpoi. (4.2)

For EntF-pull, each training sample is pulled towards the centroid of its nearest
class y′:

Lpull = min
δpoi
∥F ∗

L−1(x + δpoi)− µy′∥2 s.t. ∥δpoi∥∞ ≤ ϵpoi. (4.3)

The above class centroid is computed as the average features of all clean samples X in
that class:

µ = 1
|X |

∑
x∈X

F ∗
L−1(x). (4.4)

We find this simple, average-based method works well in our case, and we leave the
exploration of other, metric learning methods [65] to future work.

In order to learn a similar representation space to that of an AT target model, the
reference model F ∗ is also adversarially trained with a certain perturbation budget ϵref .
We discuss the impact of ϵref on the poisoning performance in Section 4.5. Following
the common practice, we adopt the Projected Gradient Descent (PGD) [86] to solve the
above poison optimization.
Why adversarial training can be compromised. Tao et al. [136] have proved that
adversarial training can serve as a principled defense against data poisoning based on
the following theorem.
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Theorem 1. Given a classifier f : X → Y, for any data distribution D and any
perturbed distribution D̂ such that D̂ ∈ BW∞(D, ϵ), we have

Rnat(f,D) ≤ max
D′∈BW∞ (D̂,ϵ)

Rnat(f,D′) = Radv(f, D̂).

where Rnat denotes natural risk and Radv denotes adversarial risk. Theorem 1
guarantees that adversarial training on the poisoned data distribution D̂ optimizes
an upper bound of natural risk on the original data distribution D if D̂ is within the
∞-Wasserstein ball of D [136]. That is to say, achieving a low natural risk on D (i.e.,
high clean test accuracy) requires a low adversarial risk on D̂. This guarantee is based on
an implicit assumption that adversarial training is capable of minimizing the adversarial
risk on the poisoned data distribution D̂, which holds for existing attacks. However, for
our EntF, the poisoned data that share entangled features become not useful even for
adversarial training, and as a result, the assumption required for the proof is broken.
Our experimental results in Figure 4.2 validate this claim.
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Figure 4.2: Adversarial risk curves for clean and poison data.

Important note on the cross-entropy loss. The key novelty of our EntF over
existing methods lies in not only the attack strategy (entangled features vs. shortcuts)
but also the specific loss (feature-level vs. output-level). Existing methods on poisoning
standard models have commonly adopted the cross-entropy (CE) loss and concluded that
the targeted optimization, either with an incorrect [40, 136, 149] or original [54] class as
the target, is generally stronger than the untargeted CE. This conclusion somewhat leads
to the fact that the two concurrent studies on poisoning AT models (i.e., ADVIN [149]
and REM [43]) have completely ignored the untargeted CE as their baseline.

However, we find that the above conclusion does not hold for poisoning AT models.
Specifically, we notice that the untargeted CE can also lead to entangled features to
some extent and as a result yield a substantial accuracy drop (12.02%), while its targeted
counterpart (i.e, ADVIN [149] shown in our Table 4.2) completely fails. Note that the
untargeted CE still performs worse than our EntF-push, especially in the more complex
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tasks, i.e., CIFAR-100 and TinyImageNet as shown in Table 4.1. This indicates that
using the CE loss is not an ultimate solution in practice.

Table 4.1: EntF vs. the CE loss using the same robust reference model.

Poison Method \ Dataset CIFAR-10 CIFAR-100 TinyImageNet
AdvPoison-untar 72.86 50.45 45.47
EntF-push 71.57 47.29 41.32

4.4 Results

In this section, we conduct extensive experiments to validate that adversarial training
(AT) can be compromised by our new poisoning attack. In particular, we consider chal-
lenging scenarios with high AT budgets, partial poisoning, unseen model architectures,
or strong (ensemble or adaptive) defenses.

4.4.1 Experimental settings

We use three image classification benchmark datasets: CIFAR-10 [9], CIFAR-100 [9],
and TinyImageNet [10]. These datasets have been commonly used in the poisoning
literature. We adopt the perturbation budget ϵref = 4/255 for adversarially training the
reference model and find that other values also work well (see results in Section 4.5).
PGD-300 with a step size of 0.4/255 and differentiable data augmentation [40] is used
for poison optimization. If not explicitly mentioned, we focus on the reasonable setting
with ϵpoi = ϵadv = 8/255 and adopt ResNet-18 for both the reference and target models.
All reference and target models are trained for 100 epochs using SGD optimizer with
an initial learning rate of 0.1 that is decayed by a factor of 0.1 at the 75-th and 90-th
training epochs. The optimizer is set with momentum 0.9 and weight decay 5× 10−4.
The inner maximization (i.e., generation of adversarial examples) of the adversarial
training is solved by 10-step PGD with a step size of 2/255. All experiments are
performed on an NVIDIA DGX-A100 server.

4.4.2 EntF compared to existing attacks under ϵadv = ϵpoi

We first evaluate the performance of different state-of-the-art poisoning methods against
adversarial training in the basic setting with ϵpoi = ϵadv on CIFAR-10. As can be seen
from Table 4.2, all existing methods can hardly decrease the model accuracy. Specifically,
although ADVIN [149] and REM [43] have claimed effectiveness in the unreasonable
settings with ϵpoi ≥ 2ϵadv, they fail in our reasonable setting. In some cases, the poisons
may even slightly increase the model accuracy, which is also noticed in the concurrent
work [135].

In contrast to existing methods, both our EntF-push and EntF-pull can substantially
decrease the model accuracy. Note that decreasing the model accuracy to 71.57% is
dramatic because it equals the performance achieved by directly discarding 83% of
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Table 4.2: Comparison of different poisoning methods against adversarial training.
ADVIN, Hypocritical+, and REM also adopt an adversarially-trained reference model,
as our methods.

Poison Method Clean Test Accuracy (%, ↓)
None (Clean) 84.88

Hypocritical [136] 84.96
Unlearnable [54] 84.91

Class-wise Random Noise 84.06
AdvPoison [40] 83.11

ADVIN [149] 86.76
Hypocritical+ [135] 86.56

REM [43] 84.21
EntF-pull (ours) 72.99
EntF-push (ours) 71.57

the original training data (see more relevant discussions in Section 4.4.5). In addition,
EntF-push and EntF-pull achieve similar results but obviously, EntF-pull is less efficient
because it needs to calculate and then rank the distance between each sample and class
centroid. Moreover, the class selection strategy in EntF-pull may have an impact on
the final performance (see more analysis in Appendix A.4). For these reasons, if not
specifically mentioned, we choose to use EntF-push in the following experiments.

Table 4.3: Evaluating EntF on different datasets.

Poison Method \ Dataset CIFAR-10 CIFAR-100 TinyImageNet
None (Clean) 84.88 59.50 51.95
EntF (ours) 71.57 47.29 41.32

4.4.3 EntF for larger datasets and other AT frameworks under ϵadv = ϵpoi

The results shown in Table 4.3 further validate the general effectiveness of our EntF on
larger datasets, where the model accuracy consistently drops by more than 10%. We
also evaluate EntF against different widely-used AT frameworks. Figure 4.3 shows
the learning curves of the poisoned AT target model that is trained with Madry [86],
TRADES [160], or MART [147]. As can be seen, our EntF largely decreases the clean
test accuracy in all cases. We can also observe that all three frameworks exhibit a
relatively steady learning process, i.e., the model accuracy monotonically increases
over epochs, and finally reaches an accuracy that is still lower than that of the model
trained on clean data. This pattern is different from that in poisoning standard models,
where the model accuracy is found to increase at a few early epochs, and then start
to decrease dramatically to the final low accuracy [54, 83, 118]. This fundamental
difference indicates that early stopping cannot be used as an effective defense against
poisoning for AT models.
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Figure 4.3: Evaluating EntF against three different well-known adversarial training frame-
works.

4.4.4 EntF under higher AT budgets

We further test EntF under higher adversarial training budgets and also consider
different poison budgets. As can be seen from Table 4.4, even with an overwhelming
budget, adversarial training can still be largely degraded by our EntF. For example,
when the AT budget is ϵadv = 16/255, which is 2× larger than the poison budget
ϵpoi = 8/255, our EntF still yields a substantial accuracy drop of 10.05%. In addition,
under the same setting with ϵadv = ϵpoi, a larger poison budget leads to a better poison
performance. Specifically, for ϵadv = ϵpoi = 4/255, model accuracy drops by 5.94%
(90.31% → 84.37%), while for a larger poison budget, 8/255 or 16/255, the accuracy
drops by 13.31% (84.88% → 71.57%) or 20.75% (73.78% → 53.03%). We can also
observe that under a specific poison budget, the model accuracy and AT budget do not
have a clear correlation. This is reasonable because although enlarging the AT budget
can increase clean accuracy due to higher robustness to poisons, it also inevitably leads
to an accuracy drop compared to standard training. We leave detailed explorations for
future work.

Table 4.4: Evaluating EntF under different ϵpoi vs. ϵadv.

Poison Budget \ AdvTrain Budget ϵadv = 4/255 ϵadv = 8/255 ϵadv = 16/255
None (Clean) 90.31 84.88 73.78

ϵpoi = 4/255 84.37 79.25 69.35
ϵpoi = 8/255 75.39 71.57 63.73
ϵpoi = 16/255 50.27 60.29 53.03

4.4.5 EntF under partial poisoning

We also examine EntF in a more challenging scenario where only partial training data
are allowed to be poisoned. We consider two different poisoning settings where different
data are used for calculating the class centroids. Specifically, the first setting is based on
the whole original (clean) dataset but the second, worse-case one is based on only the
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partial clean data that are allowed to be poisoned. As can be seen from Table 4.5, our
EntF is still effective in this challenging scenario. Recall that other attacks can hardly
decrease the model accuracy even when the whole dataset is poisoned. In particular,
EntF decreases the model accuracy from 84.88% to 81.41% by only poisoning 0.2 of the
training data, and this result is also lower than the baseline that is achieved by directly
discarding these poisoned data (83.66%).

Table 4.5: Effects of adjusting the poison proportion. “None (Clean)” shows the baseline
results where the rest clean data is used without poisoning.

Poison Method \ Poison Proportion 0.2 0.4 0.6 0.8
None (Clean) 83.66 81.82 79.16 73.23
Clean+EntF 81.41 78.67 75.84 73.56

Clean+EntF (worse case) 81.84 78.83 75.92 74.01

We can also observe that the two different poisoning settings yield very similar
results. This indicates that the calculation of class centroids in our EntF is not sensitive
to the amount of data, and as a result, its efficiency can be potentially improved by
using fewer data for the centroid calculation. The fact that poisoning more data yields
better performance can also be explained by Figure 4.4 where a larger poison proportion
leads to a larger number of entangled features.
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Figure 4.4: The t-SNE visualizations for different poison proportions.

4.4.6 Transferability of EntF to unseen model architectures

The latent feature space that is used for generating poisons is specific to a certain
reference model. For this reason, one natural question to ask is whether the poisons
generated on one model architecture are still effective when the target model adopts a
different architecture. Table 4.6 demonstrates that the poisoning effects of our EntF
optimized against a ResNet-18 reference model can transfer to other target model
architectures. Specifically, for the four different (unseen) architectures, the generated
poisons are able to degrade the model accuracy to almost the same extent, indicating
the strong generalizability of our EntF.

4.4.7 EntF against other defenses

Ensemble defenses with data augmentations. Applying additional data augmen-
tations before standard training has been shown to be able to mitigate the effects of
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Table 4.6: Transferability of EntF poisons from ResNet-18 to other model architectures.

Poison Method \ Target ResNet-18 ResNet-34 VGG-19 DenseNet-121 MobileNetV2
None (Clean) 84.88 86.58 75.99 87.22 80.11

EntF 71.57 73.05 64.66 74.35 67.21

perturbation-based poisons [54, 40, 83, 136]. Here we study if data augmentations
can complement adversarial training when facing our EntF. Following previous work,
we test a diverse set of data augmentations, including random noise, Mixup [161],
Cutmix [158], and Cutout [32]. We also test gray-scale pre-filtering [83], which shows
strong performance in mitigating unlearnable examples [54]. Table 4.7 shows that all
the data augmentation methods fail to help AT to mitigate our EntF.

Table 4.7: Evaluating EntF against defenses that apply both data augmentations and
AT.

Defense Clean Test Accuracy (%)
None (Clean) 84.88
Adversarial Training 71.57

+Random Noise 71.88
+JPEG Compression 70.40
+Mixup [161] 71.84
+Cutout [32] 69.81
+Cutmix [158] 68.85
+Grayscale [83] 68.67

Adaptive defenses by filtering out entangled samples. In addition to existing
defense methods, we also consider stronger, adaptive defenses that the victim may
design based on a certain level of knowledge about our EntF. It is worth noting that, in
realistic scenarios, the victim can only leverage a poisoned model, and so it also has no
access to a clean AT reference model, which is available to the poisoner, including our
EntF. This is reasonable because if it is indeed feasible for the victim to get a clean AT
(reference) model, there is no need for dealing with the poisoned data in the first place,
and the clean AT model can already be used as an effective target model.

When the victim knows that entangled features have been introduced by EntF,
they would filter out the “overlapped samples”, which are located close in the feature
space but from different classes. We test by removing different proportions of such
“overlapped samples” and find that the best setting can only recover the accuracy from
71.57% to 72.43%. We go a step further by considering a stronger victim who even
knows the specific algorithm of EntF-push (i.e., Equation 4.2). In this case, the victim
would recover the data by pulling the poisoned samples back toward their original class
centroids. We find that this defense is stronger than the above but still can only recover
the accuracy to 75.32% (about 10% lower than the clean AT accuracy). We also consider
a practical scenario in which the victim can leverage an ST or AT CIFAR-100 model as
a general-purpose model. In this scenario, the adaptive defense only recovers the model
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accuracy to 72.97%.
Adaptive defenses through feature perturbation-based AT. We further test
a new defense that uses Equation 4.2 for generating the adversarial examples in AT
instead of the common, cross-entropy loss. When trained on clean data, this new AT
variant yields an accuracy of 86.84%, similar to that achieved by the conventional AT.
However, when trained on our poisoned data, the model accuracy still substantially
drops to 72.99%, indicating that it is not a satisfying defense. This defense is even worse
than the above one with a pre-trained AT model (72.99% vs. 75.32%). This might be
because the class centroids calculated when the model is not well trained (in the early
AT training stage) cannot provide meaningful guidance compared to those based on
the pre-trained model. As a sanity check, we also try another AT variant that uses a
reverse loss of Equation 4.2 and find that as expected, it causes the model accuracy to
drop a lot (to 47.26%).

(a)

Clean ϵref = 0 ϵref = 1 ϵref = 2 ϵref = 4 ϵref = 8

(b)

Figure 4.5: Impact of the robustness of the reference model on poisoning standard (ST,
ϵref = 0) vs. adversarially-trained (AT) target model. (a) Clean test accuracy for both ST
and AT; (b) Perturbation visualizations for different ϵref . More visualizations can be found
in Appendix A.5.

4.5 Poisoning AT vs. ST Models

All our experiments have so far been focused on poisoning AT models. However, it is
also valuable to study the problem in the context of standard training and figure out the
difference. To this end, we analyze the poisons against a standard (ST) model vs. an
AT model. Specifically, we adjust the perturbation budget ϵref for adversarially training
the reference model and analyze the poisons in terms of both the poisoning strength
and the visual characteristics of perturbations.

As can be seen from Figure 4.5a, for poisoning the AT model, the poisoning strength
is gradually improved as the reference model becomes more robust (i.e., ϵref is increased).
In contrast, for poisoning the ST model, the poisoning is gradually degraded. Concurrent
work [135] also discusses the impact of ϵref on poisoning AT models but focuses on a
fundamentally different task where the attack aims to degrade the adversarial robustness
of AT models (rather than the clean accuracy here). It is also important to note that
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our EntF can work well under different ϵref between 2 and 8, where their approach
is much more sensitive to the choice of ϵref in their task (see their Figure 2(a)). We
further visualize the perturbations generated with different ϵref in Figure 4.5b. As can
be seen, when using a standard reference model (i.e., ϵref = 0), the perturbations exhibit
noisy patterns, but as the ϵref is gradually increased, the perturbations tend to be more
aligned with image semantics.

These observations suggest that poisoning ST and AT models requires modifying
different types of features. More specifically, modifying the robust (semantic) features
is the key to poisoning AT models, while modifying the non-robust features works for
ST models. This conclusion also supports the well-known perspective that non-robust
features can be picked up by models during standard training, even in the presence of
robust features, while adversarial training tends to utilize robust features [55]. Figure 4.5a
also confirms that our EntF is effective in poisoning ST models since it can decrease
the model accuracy to the random guess level (i.e., 10% for CIFAR-10).
Hybrid attacks. The distinct roles of robust and non-robust features in poisoning AT
and ST models inspire us to search for a hybrid attack to poison the ST and AT models
simultaneously. This is particularly relevant for practical defenders who may want to
adjust their AT budget to achieve optimal accuracy. A straightforward idea is to simply
average the perturbations generated using an ST reference model and those using an
AT reference model. In this case, the poison budget remains unchanged. Alternatively,
we propose a hybrid attack that is based on jointly optimizing the perturbations against
both ST and AT reference models, balanced by factors λi that correspond to different
AT models. This modifies Equation 4.2 to the following Equation 4.5.

Lhybrid = max
δpoi
∥F ∗

L−1,ST(x + δpoi)− µy,ST∥2 +
∑

i

λi∥F ∗
L−1,ATi

(x + δpoi)− µy,ATi
∥2.

(4.5)

Here we adopt two AT reference models with ϵref = 2/255 and 4/255. Table 4.8
shows that both hybrid attacks substantially decrease the model accuracy across different
AT budgets ϵadv varying from 0 (i.e., ST) to 16. Specifically, the optimization-based
method performs much better than the average-based method. Table 4.9 further shows
the much worse performance of other attacks and confirms the general effectiveness of
our hybrid attack strategy, see ours (Hybrid) vs. AdvPoison (Hybrid).

Table 4.8: Evaluating two hybrid attacks (average/optimization) under different ϵpoi vs.
ϵadv.

ϵpoi\ϵadv 0/255 4/255 8/255 16/255 Optimal
None (Clean) 94.59 90.31 84.88 73.78 94.59

4/255 51.98/29.51 86.87/84.48 81.24/80.53 71.13/70.26 86.87/84.48
8/255 22.86/11.89 82.30/76.55 77.19/74.30 66.70/65.75 82.30/76.55
16/255 5.34/6.59 75.32/59.55 69.41/66.25 59.40/60.73 75.32/66.25
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Table 4.9: Attack performance when the defender adjusts AT budget ϵadv to obtain the
optimal accuracy.

Poison Method (ϵpoi = 8/255) 0/255 4/255 8/255 16/255 Optimal
None (Clean) 94.59 90.31 84.88 73.78 94.59

AdvPoison 9.91 88.98 83.11 71.31 88.98
REM 25.59 46.57 84.21 85.76 85.76

ADVIN 77.31 90.08 86.76 72.16 90.08
Unlearnable 25.69 90.47 84.91 79.81 90.47
Hypocritical 74.06 91.18 84.96 73.33 91.18

Hypocritical+ 75.22 84.82 86.56 82.26 86.56
AdvPoison (Hybrid) 4.16 82.74 78.65 67.17 82.74

Ours (Hybrid) 12.93 76.55 74.30 65.75 76.55

4.6 Conclusion

In this chapter, we have proposed EntF, a new poisoning approach to decreasing the deep
learning classifier’s accuracy even when adversarial training is applied. This approach
is based on a new attack strategy that makes the features of training samples from
different classes become entangled. Extensive experiments demonstrate the effectiveness
of EntF against adversarial training in different scenarios, including those with more
aggressive AT budgets, unseen model architectures, and adaptive defenses. We also
discuss the distinct roles of the robust vs. non-robust features in poisoning standard
vs. adversarially-trained models and demonstrate that our hybrid attacks can poison
standard and AT models simultaneously.

We encourage future research to analyze EntF in more comprehensive settings and
compare it to the current, shortcut-based methods from different angles. In particular,
it is important to come up with new defenses against EntF, possibly based on advanced
techniques of learning from noisy labels [129]. It is also worth noting that most of
the current poisoning studies, including ours, have assumed that the poisoner has
access to the training dataset of the target model. This assumption is realistic in
specific threat models (e.g., secure dataset release [39]) but may not be plausible for
sensitive/private data. Therefore, it would be promising to extend EntF to addressing
data-free poisons [157, 119].

On the one hand, data poisoning could be potentially leveraged by malicious parties
as attacks. In this case, we hope our work can inspire the community to develop stronger
defenses based on our comprehensive analysis. On the other hand, when data poisoning
is directly used for social good, e.g., for protecting personal data from being misused [39,
54, 43], our new approach for generating stronger poisons leads to stronger protective
effects.
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5.1. INTRODUCTION

5.1 Introduction

In the previous chapter, we demonstrated that widely adopted defenses are insufficient
to protect against indiscriminate poisoning attacks. In this chapter, we extend this
discussion by examining another critical category of poisoning attacks, known as back-
door attacks. Our findings reveal that backdoor attacks can be strategically designed to
bypass existing defenses, further escalating the urgency of addressing these threats.

A backdoor attack involves an adversary embedding a hidden trigger in the model
during the training phase, which, when activated, causes the model to behave mali-
ciously. This type of attack can lead to severe security and privacy issues, especially
as machine learning models are increasingly deployed in security-critical applications.
For example, Apple’s FaceID [11] relies on machine learning-based facial recognition to
unlock devices and authenticate purchases. An attacker could implant a backdoor in
such an authentication system, gaining unauthorized access without detection.

Several well-known backdoor attacks [153, 50, 80] have already been developed,
demonstrating high levels of effectiveness. However, these attacks typically assume
a static trigger, meaning the trigger has a fixed pattern and location. For example,
as illustrated in Figure 5.1, Badnets [50], one of the most prominent backdoor attack
methods, uses a simple white square as a trigger, consistently placed in the top-left
corner of all inputs.

This static nature of the trigger—both in pattern and position—has been a key
factor in the development of many existing defenses against backdoor attacks [143, 79].
These defenses exploit the predictable nature of static triggers, which makes it easier
to detect backdoored data. Moreover, the uniformity of the trigger placement enables
defenders to link all backdoored inputs together. In scenarios where a single backdoored
input is detected, the defender can extract the trigger from that input, generate a
dataset, and fine-tune the model to neutralize the backdoor without needing advanced
defense mechanisms.

While these defenses have proven to be efficient and effective at identifying or
removing static backdoor patterns, they may foster a false sense of security. Many
users might wrongly believe that backdoor attacks are well understood and adequately
addressed. However, as we show in this chapter, this belief is both misleading and risky.
Relying exclusively on defenses targeting static triggers overlooks the possibility of more
sophisticated, dynamic backdoor attacks, leaving systems vulnerable to emerging and
evolving threats.

5.1.1 Our Contributions

In this chapter, we demonstrate that existing defenses can be bypassed by introducing
the first class of backdoor techniques against deep neural network (DNN) models that
employ dynamic triggers. These triggers are dynamic in both pattern and location,
making them more stealthy and harder to detect. We refer to this new class of attacks
as dynamic backdoor attacks.

Dynamic backdoor attacks offer several advantages to adversaries, particularly in
terms of flexibility. Unlike static backdoors, dynamic backdoor attacks allow the trigger’s
pattern and location to vary, making it more difficult for defenders to detect and remove
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(a) Static backdoor

(b) Dynamic backdoor

Figure 5.1: A comparison between static and dynamic backdoors. Figure 5.1a shows
an example for static backdoors with a fixed trigger (white square at top left corner
of the image). Figure 5.1b show examples for the dynamic backdoor with different
triggers for the same target label. As the figures show, the dynamic backdoor trigger
have different location and patterns, compared to the static backdoor where there is
only a single trigger with a fixed location and pattern.

the backdoor. As shown in Figure 5.1b, we implemented a dynamic backdoor attack in
a model trained on the CelebA dataset [84].

Moreover, our techniques extend beyond the traditional focus of backdoor attacks
on a single or limited set of target labels. Instead, we introduce methods that can apply
backdoors to all labels of the machine learning model. This significantly increases the
difficulty of mitigating our dynamic backdoors.

We propose three distinct dynamic backdoor techniques: Random Backdoor, Back-
door Generating Network (BaN), and conditional Backdoor Generating Network (c-BaN).
In particular, the latter two attacks algorithmically generate triggers to mount backdoor
attacks which are first of their kind. In the following, we abstractly introduce each of
our techniques.

Random Backdoor: In this approach, triggers are generated by sampling patterns
from a uniform distribution and placing each trigger at a random location for every
input. These randomly generated triggers are then mixed with clean data to train
the backdoored model. This randomness in both pattern and location adds a layer of
unpredictability, making detection more difficult.

Backdoor Generating Network (BaN): Our second technique, BaN, introduces a
generative model to construct backdoor triggers. To the best of our knowledge, this is
the first backdoor attack using a generative network to create triggers automatically,
offering the adversary enhanced flexibility. BaN is trained jointly with the backdoor
model, taking a latent code sampled from a uniform distribution to generate a trigger,
which is placed at random locations on the input. This dynamic generation process
makes both the pattern and location of the trigger unpredictable. Moreover, BaN serves
as a general framework, allowing the adversary to adjust the model’s loss function to
adapt to specific defense mechanisms. For example, if a particular backdoor defense is
known, BaN can incorporate a tailored loss function to evade detection.

conditional Backdoor Generating Network (c-BaN): While both Random Back-
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door and BaN can apply dynamic backdoors to multiple target labels, they require
each label to have its own distinct set of trigger locations. This means a single location
cannot have triggers for multiple target labels. c-BaN overcomes this limitation by
transforming BaN into a conditional backdoor generating network. c-BaN takes the
target label as input and generates a label-specific trigger, allowing triggers for different
labels to be placed at any location without the need for disjoint location sets. This
flexibility further enhances the stealth and complexity of the attack.

We evaluate our proposed dynamic backdoor techniques across three different ML
model architectures and three benchmark datasets. The results demonstrate that all
our techniques achieve near-perfect backdoor success rates, with minimal impact on
model utility. For instance, our BaN trained models on CelebA [84] and MNIST [12]
datasets achieve 70% and 99% accuracy, respectively, which is the same accuracy as the
clean models. Similarly, models trained with c-BaN, BaN, and Random Backdoor on
the CIFAR-10 [9] dataset achieve 92%, 92.1%, and 92% accuracy, respectively, which is
almost the same as the performance of a clean model (92.4%).

Additionally, we evaluate our dynamic backdoor attacks against five state-of-the-art
backdoor defense techniques: Neural Cleanse [143], ABS [79], MNTD [151], STRIP [45],
and Februus [33]. Our results demonstrate that all of our techniques successfully bypass
these defenses, further underscoring the robustness and stealth of dynamic backdoor
attacks.

In general, our contributions can be summarized as follows:

• We broaden the class of backdoor attacks against deep neural network (DNN)
models by introducing dynamic backdoor attacks.

• We propose both Backdoor Generating Network (BaN) and conditional Backdoor
Generating Network (c-BaN), which are the first algorithmic backdoor paradigm.

• Our dynamic backdoor attacks achieve strong performance, while bypassing the
current state-of-the-art backdoor defense techniques.

5.2 Problem Statement

In this part, our objective is to develop dynamic backdoor attacks, where the pattern
and location of the trigger are dynamic, rather than static as in traditional backdoor
attacks. Specifically, we aim to design backdoors with varying trigger values (patterns)
that can be placed at different positions (locations) within the input, providing the
adversary with greater flexibility and making detection more difficult.

A dynamic backdoor attack involves a set of triggers T , corresponding target labels
ℓ′, and a backdoor embedding function A. We define this function as: A(x, ti, κ) =
xbd, where x is the input feature vector, ti ∈ T is the trigger, and κ represents the
position where the backdoor is inserted, yielding the modified input xbd. More formally,
A(x, ti, κ) = ti · κ + x · (1 − κ), where κ is a binary mask specifying the location of
the trigger. To train such a model, an adversary needs both clean Dc (to preserve the
model’s utility) and backdoored data Dbd (to implement the backdoor behaviour), where
Dbd is constructed by adding triggers on a subset of Dc.
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Compared to static backdoor attacks, dynamic backdoor attacks introduce additional
complexity by allowing multiple trigger patterns and positions. This flexibility not only
increases the adversary’s ability to tailor the attack but also complicates detection, as
existing defenses are designed with static backdoors in mind. Furthermore, dynamic
triggers can be algorithmically generated, offering the adversary even more customization,
as we will explore in Section 5.3.2 and Section 5.3.3.

5.2.1 Threat Model

Dynamic backdoor attacks occur during the training phase, where the adversary interferes
with the training process. We assume that the adversary controls the training of the
target model and has access to the training data, consistent with prior works on backdoor
attacks [50]. We further relax this assumption (in Section 5.4.7) to only assume the
ability to poison the target model’s training data.

Once the backdoored model is deployed, the adversary can trigger the attack by
embedding a trigger into an input and querying the model. This can be done either
digitally, by adding the trigger to an image, or physically, by printing the trigger and
attaching it to the image, following previous approaches [50]. The presence of the trigger
causes the model to misclassify the input, potentially allowing the adversary to bypass
security mechanisms such as authentication systems.

5.3 Dynamic Backdoors

In this section, we propose three different techniques for performing dynamic back-
door attacks, namely, Random Backdoor, Backdoor Generating Network (BaN), and
conditional Backdoor Generating Network (c-BaN).

5.3.1 Random Backdoor

We start with our simplest approach, i.e., the Random Backdoor technique. Abstractly,
the Random Backdoor technique constructs triggers by sampling them from a uniform
distribution, and adding them to the inputs at random locations. We first introduce
how to use our Random Backdoor technique to implement a dynamic backdoor for a
single target label, then we generalize it to consider multiple target labels.

Single Target Label: We start with the simple case of considering dynamic backdoors
for a single target label. Intuitively, we construct a set of triggers (T ) and a set of
possible locations (K), such that for any trigger sampled from T and added to any input
at a random location sampled from K, the model will output the specified target label.
More formally, for any location κi ∈ K, any trigger ti ∈ T , and any input xi ∈ X :

Mbd(A(xi, ti, κi)) = ℓ

where ℓ is the target label, T is the set of triggers, and K is the set of locations.
To implement such a backdoor in a model, an adversary needs first to select their

desired trigger locations, and create the set of possible locations K. Then, they use
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both clean and backdoored data to update the model for each epoch. More concretely,
the adversary trains the model as mentioned in Section 5.2 with the following two
differences.

1. First, instead of using a fixed trigger for all inputs, each time the adversary wants
to add a trigger to an input, they sample a new trigger from a uniform distribution,
i.e., t ∼ U(0, 1). Here, the set of possible triggers T contains the full range of
all possible values for the triggers, since the trigger is randomly sampled from a
uniform distribution.

2. Second, instead of placing the trigger in a fixed location, they place it at a random
location κ, sampled from the predefined set of locations, i.e., κ ∈ K.

This technique is not only limited to the uniform distribution, but the adversary can
use different distributions like the Gaussian distribution to construct triggers. Using
different distributions can, for example, help the adversary to change the appearance of
the used triggers.

Finally, the adversary does not need access to the training of the target model for this
technique. Instead, they can backdoor a target model by only adding the backdoored
data to its training set, i.e., poison the training set.

Multiple Target Labels: Next, we consider the more complex case of having multiple
target labels. Without loss of generality, we consider implementing a backdoor for each
label in the dataset, since this is the most challenging setting. However, our techniques
can be applied to any smaller subset of labels. This means that for any label ℓi ∈ ℓ,
there exists a trigger t which when added to the input x at a location κ, will make the
model Mbd output ℓi. More formally,

∀ℓi ∈ ℓ ∃ t, κ :Mbd(A(x, t, κ)) = ℓi

To achieve the dynamic backdoor behaviour in this setting, each target label should
have a set of possible triggers and a set of possible locations. More formally,

∀ℓi ∈ ℓ ∃ Ti,Ki

where Ti is the set of possible triggers and Ki is the set of possible locations for the
target label ℓi.

We generalize the Random Backdoor technique by dividing the set of possible loca-
tions K into disjoint subsets for each target label, while keeping the trigger construction
method the same as in the single target label case, i.e., the triggers are still sampled
from a uniform distribution. For instance, for the target label ℓi, we sample a set of
possible locations Ki, where Ki is a subset of K (Ki ⊂ K).

The adversary can construct the disjoint sets of possible locations as follows:

1. First, the adversary selects all possible trigger locations and constructs the set K.

2. Second, for each target label ℓi, they construct the set of possible locations for
this label Ki by sampling the set K. Then, they remove the sampled locations
from the set K.
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Figure 5.2: An illustration of our location setting technique for 6 target labels. The red
dotted line demonstrates the boundary of the vertical movement for each target label.

We propose the following simple algorithm to assign the locations for the different
target labels. However, an adversary can construct the location sets arbitrarily with the
only restriction that no location can be used for more than one target label.

We uniformly split the image into non-intersecting regions, and assign a region for
each target label, in which the triggers’ locations can move vertically. Figure 5.2 shows
an example of our location setting technique for a use case with 6 target labels. As
the figure shows, each target label has its own region, for example, label 1 occupies the
top left region of the image. We stress that this is one way of dividing the location set
K to the different target labels. However, an adversary can choose a different way of
splitting the locations inside K to the different target labels. The only requirement the
adversary has to fulfill is to avoid assigning a location for different target labels. Later,
we will show how to overcome this limitation with our more advanced c-BaN technique.

5.3.2 Backdoor Generating Network (BaN)

Our Random Backdoor technique successfully implements dynamic triggers, however, it
offers the adversary limited flexibility as triggers are sampled from a preset distribution.
Moreover, the triggers are sampled independently of the target model. In other words,
the Random Backdoor technique does not search for the best triggers to implement the
backdoor attack. To address these limitations, we introduce our second technique to
implement dynamic backdoors, namely, Backdoor Generating Network (BaN). BaN is
the first approach to algorithmically generate backdoor triggers, instead of using fixed
triggers or sampling triggers from a uniform distribution (as in Section 5.3.1).

BaN is inspired by the state-of-the-art generative models, i.e., Generative Adversarial
Networks (GANs) [48]. However, it is different from the original GANs in the following
aspects. First, instead of generating images, it generates backdoor triggers. Second, we
jointly train the BaN’s generator with the target model instead of the discriminator,
to learn (the generator) and implement (the target model) the best patterns for the
backdoor triggers.

After training, the BaN can generate a trigger (t) for each noise vector (z ∼ U(0, 1)).
This trigger is then added to an input using the backdoor adding function A, to create
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Figure 5.3: An overview of the BaN technique.

the backdoored input as shown in Figure 5.3. Similar to the previous approach (Random
Backdoor), the generated triggers are placed at random locations.

In this section, we first introduce the BaN technique for a single target label, and
then we generalize it for multiple target labels.

Single Target Label: We start with presenting how to implement a dynamic backdoor
for a single target label, using our BaN technique. First, the adversary creates the set
K of the possible locations. They then jointly train the BaN with the backdoored Mbd

model as follows:

1. The adversary starts each training epoch by querying the clean data to the
backdoored model Mbd. Then, they calculate the clean loss Lc between the
ground truth and the output labels. We use the cross-entropy loss for our clean
loss, which is defined as follows: ∑

i

yi log(ŷi)

where yi is the true probability of label ℓi and ŷi is our predicted probability of
label ℓi.

2. They then generate n noise vectors, where n is the batch size.

3. On the input of the n noise vectors, the BaN generates n triggers.

4. The adversary then creates the backdoored data by adding the generated triggers
to the clean data using the backdoor adding function A.

5. They then query the backdoored data to the backdoored modelMbd and calculate
the backdoor loss Lbd on the model’s output and the target label. Similar to the
clean loss, we use the cross-entropy loss as our loss function for Lbd.

6. Finally, the adversary updates the backdoor model Mbd using both the clean and
backdoor losses (Lc + Lbd) and updates the BaN with the backdoor loss (Lbd).

We show later in Section 5.4.7 how to simplify the threat model for the BaN technique
to only assume the ability to poison the training data, i.e., the adversary backdoors the
target model without interfering with its training algorithm.
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Multiple Target Labels: We now consider the more complex case of building a
dynamic backdoor for multiple target labels using our BaN technique. To recap, our
BaN generates general triggers and does not label specific triggers. In other words, the
same trigger pattern can be used to trigger multiple target labels. Thus similar to the
Random Backdoor, we depend on the location of the triggers to determine the output
label.

We follow the same approach of the Random Backdoor technique to assign different
locations for different target labels (Section 5.3.1), to generalize the BaN technique.
More concretely, the adversary implements the dynamic backdoor for multiple target
labels using the BaN technique as follows:

1. The adversary starts by creating disjoint sets of locations for all target labels.

2. Next, they follow the same steps as in training the backdoor for a single target
label, while repeating from step 2 to 5 for each target label and adding all their
backdoor losses together. More formally, for the multiple target label case, the
backdoor loss is defined as: ∑|ℓ′|

i Lbdi
, where ℓ′ is the set of target labels, and Lbdi

is the backdoor loss for target label ℓi.

5.3.3 conditional Backdoor Generating Network (c-BaN)

So far, we have proposed two techniques to implement dynamic backdoors for both single
and multiple target labels, i.e, Random Backdoor (Section 5.3.1) and BaN (Section 5.3.2).
To recap, both techniques have the limitation of not having label-specific triggers and
only depending on the trigger location to determine the target label. We now introduce
our third and most advanced technique, the conditional Backdoor Generating Network
(c-BaN), which overcomes this limitation. More concretely, with the c-BaN technique
any location κ inside the location set K can be used to trigger any target label. To
achieve this location independence, the triggers need to be label-specific. Therefore, we
convert the Backdoor Generating Network (BaN) into a conditional Backdoor Generating
Network (c-BaN). More specifically, we add the target label as an additional input to
the BaN for conditioning it to generate target-specific triggers.

We construct c-BaN by adding an additional input layer to BaN to include the
target label as an input. Figure 5.4 represents an illustration of c-BaN. As the figure
shows, the noise vector and the target label are encoded to latent vectors with the
same size (to give equal weights for both inputs). These two latent vectors are then
concatenated and used as input to the next layer.

The c-BaN is trained similarly to the BaN, with the following two exceptions.

1. First, the adversary does not have to create disjoint sets of locations for all target
labels (step 1), they can use the complete location set K for all target labels.

2. Second, instead of using only the noise vectors as an input to the BaN, the
adversary one-hot encodes the target label, then uses it together with the noise
vectors as the input to the c-BaN.
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Figure 5.4: An overview of the c-BaN technique.

Similar to BaN, we later (Section 5.4.7) show how to simplify the threat model for
the c-BaN.

To use the c-BaN, the adversary first samples a noise vector and one-hot encodes
the label. Then, they input both of them to the c-BaN, which generates a trigger.
The adversary uses the backdoor adding function A to add the trigger to the target
input. Finally, they query the backdoored input to the backdoored model, which will
output the target label. We visualize the complete pipeline of using the c-BaN technique
in Figure 5.4.

In this section, we have introduced three techniques for implementing dynamic
backdoors, namely, the Random Backdoor, the Backdoor Generating Network (BaN),
and the conditional Backdoor Generating Network (c-BaN). These three dynamic
backdoor techniques present a framework to generate dynamic backdoors for different
settings. For instance, our framework can generate target-specific triggers’ pattern using
the c-BaN, or target-specific triggers’ location like the Random Backdoor and BaN.
More interestingly, our framework allows the adversary to customize their backdoor by
adapting the backdoor loss functions. For instance, the adversary can adapt to different
defenses against the backdoor attack that can be modeled as a machine learning model.
This can be achieved by adding any defense as a discriminator into the training of the
BaN or c-BaN. Adding this discriminator will penalize/guide the backdoored model to
bypass the modeled defense.

5.4 Evaluation

We evaluate our dynamic backdoor attacks on three widely used image datasets:
MNIST, CIFAR-10, and CelebA, which are commonly employed for benchmarking
security, privacy, and computer vision tasks. For CelebA, we focus on three balanced
attributes—Heavy Makeup, Mouth Slightly Open, and Smiling—and combine them into
8 classes for a multi-label classification task, using 10,000 images each for training and
testing. Unlike MNIST and CIFAR-10, CelebA is imbalanced, adding another layer of
complexity to our evaluations. Although our attack is demonstrated on these datasets, it
can be easily generalized to other datasets by adapting the architectures of our models.
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5.4.1 Experimental Setup

We first present our target models, then the evaluation metrics. For the target models’
architecture, we use the VGG-19 [126] for the CIFAR-10 dataset, and build our own
convolution neural networks (CNN) for the CelebA and MNIST datasets. More con-
cretely, we use 3 convolution layers and 5 fully connected layers for the CelebA CNN.
And 2 convolution layers and 2 fully connected layers for the MNIST CNN. Moreover,
we use dropout for both the CelebA and MNIST models to avoid overfitting.

For BaN, we use the following architecture:

Backdoor Generating Network (BaN)’s architecture:

z → FullyConnected(64)

FullyConnected(128)

FullyConnected(128)

FullyConnected(|t|)

Sigmoid→ t

Here, FullyConnected(x) denotes a fully connected layer with x hidden units, |t|
denotes the size of the required trigger, and Sigmoid is the Sigmoid function. We
adopt ReLU as the activation function for all layers, and apply dropout after all layers
except the first and last ones.

For c-BaN, we use the following architecture:

conditional Backdoor Generating Network (c-BaN)’s architecture:

z, ℓ→ 2× FullyConnected(64)
FullyConnected(128)

FullyConnected(128)

FullyConnected(128)

FullyConnected(|t|)

Sigmoid→ t

The first layer consists of two separate fully connected layers, where each one of them
takes an independent input, i.e., the first takes the noise vector z and the second takes
the target label ℓ. The outputs of these two layers are then concatenated and used as
an input to the next layer (see Section 5.3.3). Similar to BaN, we adopt ReLU as the
activation function for all layers and apply dropout after all layers except the first and
last one.

For evaluating the dynamic backdoor attacks’ performance, we define the following
two metrics: Backdoor success rate which calculates the backdoored model’s accuracy
on the backdoored data; Model utility which measures the original functionality of the
backdoored model. We quantify the model utility by comparing the accuracy of the
backdoored model with the accuracy of a clean model on clean data. Closer accuracies
imply a better model utility. All of our experiments are implemented using Pytorch
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Figure 5.5: The result of our dynamic backdoor techniques for a single target label on
the clean testing dataset.

and our code will be published for reproducibility.

5.4.2 Random Backdoor

We now evaluate the performance of our first dynamic backdooring technique, namely,
the Random Backdoor. We use all three datasets for the evaluation. First, we evaluate
the single target label case, where we only implement a backdoor for a single target
label. Then we evaluate the more generalized case, i.e., the multiple target labels case,
where we implement a backdoor for all possible labels in the dataset.

For both the single and multiple target label cases, we split each dataset into training
and testing datasets. The training dataset is used to train the MNIST and CelebA
models from scratch. For CIFAR-10, we use a pre-trained VGG-19 model. For evaluating
our models, we use the testing dataset as our clean testing dataset. And construct a
backdoored testing dataset, by adding triggers to all members of the testing dataset. To
recap, for the Random Backdoor technique, we construct the triggers by sampling them
from a uniform distribution, and add them to the images using the backdoor adding
function A. We use the backdoored testing dataset to calculate the backdoor success
rate, and the training dataset to train a clean model -for each dataset- to evaluate the
backdoored model’s (Mbd) utility.

We follow Section 5.3.1 to train our backdoored model Mbd for both the single and
multiple target label cases. Abstractly, for each epoch, we update the backdoored model
Mbd using both the clean and backdoor losses Lc +Lbd. For the set of possible locations
K, we use four possible locations.

The backdoor success rate is always 100% for both the single and multiple target
label cases on all three datasets, hence, we only focus on the backdoored model’s (Mbd)
utility.

Single Target Label: We first present our results for the single target label case.
Figure 5.5 compares the accuracies of the backdoored model Mbd and the clean model
M. As the figure shows, our backdoored models achieve the same performance as the
clean models for both the MNIST and CelebA datasets, i.e., 99% for MNIST and 70%
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(a) Random Backdoor

(b) BaN

(c) BaN with higher randomness

Figure 5.6: The result of our Random Backdoor (Figure 5.6a), BaN (Figure 5.6b), and BaN
with higher randomness (Figure 5.6c) techniques for a single target label (0).

for CelebA. For the CIFAR-10 dataset, there is a slight drop in performance, which
is less than 2%. This shows that our Random Backdoor technique can implement a
perfectly functioning backdoor, i.e., the backdoor success rate of Mbd is 100% on the
backdoored testing dataset, with a negligible utility loss.

To visualize the output of our Random Backdoor technique, we first randomly sample
8 images from the MNIST dataset, and then use the Random Backdoor technique to
construct triggers for them. Finally, we add these triggers to the images using the
backdoor adding function A, and show the result in Figure 5.6a. As the figure shows,
the triggers all look distinctly different and are located at different locations as expected.

Multiple Target Labels: Second, we present our results for the multiple target label
case. To recap, we consider all possible labels for this case. For instance, for the MNIST
dataset, we consider all digits from 0 to 9 as our target labels. We train our Random
Backdoor models for the multiple target labels as mentioned in Section 5.3.1.

We use a similar evaluation setting to the single target label case, with the following
exception. To evaluate the performance of the backdoored model Mbd with multiple
target labels, we construct a backdoored testing dataset for each target label by gener-
ating and adding triggers to the clean testing dataset. In other words, we use all images
in the testing dataset to evaluate all possible labels.

Similar to the single target label case, we focus on the accuracy on the clean testing
dataset, since the backdoor success rate for all models on the backdoored testing datasets
are approximately 100% for all target labels.

We use the clean testing datasets to evaluate the backdoored model’s Mbd utility,
i.e., we compare the performance of the backdoored modelMbd with the clean modelM
in Figure 5.7. As the figure shows, using our Random Backdoor technique, we are able
to train backdoored models that achieve similar performance as the clean models for
all datasets. For instance, for the CIFAR-10 dataset, our Random Backdoor technique
achieves 92% accuracy, which is very similar to the accuracy of the clean model (92.4%).
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Figure 5.7: The result of our dynamic backdoor techniques for multiple target labels on
the clean testing dataset.

For the CelebA dataset, the Random Backdoor technique achieves a slightly (about 2%)
better performance than the clean model. We believe this is due to the regularization
effect of the Random Backdoor technique. Finally, for the MNIST dataset, both models
achieve a similar performance with just 1% difference between the clean model (99%)
and the backdoored one (98%).

To visualize the output of our Random Backdoor technique on multiple target labels,
we construct triggers for all possible labels in the CIFAR-10 dataset, and use A to add
them to a randomly sampled image from the CIFAR-10 clean testing dataset. Figure 5.8a
shows the image with different triggers. The different patterns and locations used for
the different target labels can be clearly demonstrated in Figure 5.8a. For instance,
comparing the location of the trigger for the first and sixth images, the triggers are in
the same horizontal position but a different vertical position, as previously illustrated
in Figure 5.2.

Moreover, we further visualize in Figure 5.9a the dynamic behavior of the triggers
generated by our Random Backdoor technique. Without loss of generality, we generate
triggers for the target label 5 (plane) and add them to randomly sampled CIFAR-10
images. To make it clear, we train the backdoor model Mbd for all possible labels set
as target labels, but we visualize the triggers for a single label to show the dynamic
behaviour of our Random Backdoor technique with respect to the triggers’ pattern and
locations. As Figure 5.9a shows, the generated triggers have different patterns and
locations for the same target label, which achieves our desired dynamic behavior.

5.4.3 Backdoor Generating Network (BaN)

Next, we evaluate our BaN technique. We follow the same evaluation settings for the
Random Backdoor technique, except with respect to how the triggers are generated.
We train our BaN model and generate the triggers as mentioned in Section 5.3.2.

Single Target Label: Similar to the Random Backdoor, the BaN technique achieves
a perfect backdoor success rate with a negligible utility loss. Figure 5.5 compares the
performance of the backdoored models -trained using the BaN technique- with the
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clean models, when tested using the clean testing dataset. As Figure 5.5 shows, our
BaN trained backdoored models achieve 99%, 92.4%, and 70% accuracy on the MNIST,
CIFAR-10, and CelebA datasets, respectively, which is the same performance of the
clean models.

We visualize the BaN generated triggers using the MNIST dataset in Figure 5.6b.
To construct the figure, we use the BaN to generate multiple triggers -for the target
label 0-, then we add them on a set of randomly sampled MNIST images using the
backdoor adding function A.

The generated triggers look very similar as shown in Figure 5.6b. This behaviour is
expected as the MNIST dataset is simple, and the BaN technique does not have any
explicit loss to enforce the network to generate different triggers. However, to show
the flexibility of our approach, we increase the randomness of the BaN network by
simply adding one more dropout layer after the last layer, to avoid the overfitting of
the BaN model to a unique pattern. We show the results of the BaN model with higher
randomness in Figure 5.6c. The resulting model still achieves the same performance,
i.e., 99% accuracy on the clean data and 100% backdoor success rate, but as the figure
shows the triggers look significantly different. This again shows that our framework can
easily adapt to the requirements of an adversary.

These results together with the results of the Random Backdoor (Section 5.4.2)
clearly show the effectiveness of both of our proposed techniques, for the single target
label case. They are both able to achieve almost the same accuracy of a clean model,
with a 100% working backdoor, for a single target label.

Multiple Target Labels: Similar to the single target label case, we focus on the
backdoored models’ performance on the clean testing dataset, as our BaN backdoored
models achieve a perfect accuracy on the backdoored testing dataset, i.e., the backdoor
success rate for all datasets is approximately 100% for all target labels.

We compare the performance of the BaN backdoored models with one of the clean
models using the clean testing dataset in Figure 5.7. Our BaN backdoored models are
able to achieve almost the same accuracy as the clean model for all datasets, as can be
shown in Figure 5.7. For instance, for the CIFAR-10 dataset, our BaN achieves 92.1%
accuracy, which is only 0.3% less than the performance of the clean model (92.4%).
Similar to the Random Backdoor backdoored models, our BaN backdoored models
achieve marginally better performance for the CelebA dataset. More concretely, our BaN
backdoored models trained for the CelebA dataset achieve about 2% better performance
than the clean model, on the clean testing dataset. We also believe this improvement is
due to the regularization effect of the BaN technique. Finally, for the MNIST dataset,
our BaN backdoored models achieve strong performance on the clean testing dataset
(98%), which is just 1% lower than the performance of the clean models (99%).

Similar to the Random Backdoor, we visualize the results of the BaN backdoored
models with two figures. The first (Figure 5.8b) shows the different triggers for the
different target labels on the same CIFAR-10 image, and the second (Figure 5.9b) shows
the different triggers for the same target label (plane) on randomly sampled CIFAR-10
images. As both figures show, the BaN generated triggers achieve dynamic behaviour
in both locations and patterns. For instance, for the same target label (Figure 5.9b),
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(a) Random Backdoor

(b) BaN

(c) c-BaN

Figure 5.8: The visualization result of our Random Backdoor (Figure 5.8a), BaN (Fig-
ure 5.8b), and c-BaN (Figure 5.8c) techniques for all labels of the CIFAR-10 dataset.

the patterns of the triggers look significantly different and the locations vary vertically.
Similarly, for different target labels (Figure 5.8b), both the pattern and location of
triggers are significantly different.

5.4.4 conditional Backdoor Generating Network (c-BaN)

Next, we evaluate our conditional Backdoor Generating Network (c-BaN) technique.
For the single target label case, the c-BaN technique is the same as the BaN technique.
Thus, we only consider the multiple target labels case in this section.

We follow a similar setup as the one introduced in Section 5.4.3, with the exception
on how to train the backdoored model Mbd and generate the triggers. We follow Sec-
tion 5.3.3 to train the backdoored model and generate the triggers. For the set of
possible locations K, we use four possible locations.

We compare the performance of the c-BaN with the other two techniques in addition
to the clean model. All of our three dynamic backdoor techniques achieve an almost
perfect backdoor success rate on the backdoored testing datasets, hence similar to the
previous sections, we focus on the performance on the clean testing datasets.

Figure 5.7 compares the accuracy of the backdoored and clean models using the clean
testing dataset, for all of our three dynamic backdoor techniques. As the figure shows,
all of our dynamic backdoored models have similar performance as the clean models.
For instance, for the CIFAR-10 dataset, our c-BaN, BaN and Random Backdoor achieve
92%, 92.1%, and 92% accuracy, respectively, which is very similar to the accuracy of
the clean model (92.4%). Also for the MNIST dataset, all models achieve very similar
performance with no difference between the clean and c-BaN models (99%) and only
1% difference between them, and the BaN and Random Backdoor models (98%).

Similar to the previous two techniques, we visualize the dynamic behaviour of the
c-BaN backdoored models using two different figures. First, by generating triggers for
all possible labels and adding them on a CIFAR-10 image in Figure 5.8c. More generally,
Figure 5.8 shows the visualization of all three dynamic backdoor techniques in the same
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(a) Random Backdoor

(b) BaN

(c) c-BaN

Figure 5.9: The result of our Random Backdoor (Figure 5.9a), BaN (Figure 5.9b), and
c-BaN (Figure 5.9c) techniques for the target target label 5 (plane).

settings, i.e., backdooring a single image to all possible labels. As the figure shows,
the Random Backdoor Figure 5.8a has the most random patterns, which is expected
as they are sampled from a uniform distribution. The figure also shows the different
triggers’ patterns and locations used for the different techniques. For instance, each
target label in the Random Backdoor (Figure 5.8a) and BaN (Figure 5.8b) techniques
have a unique (horizontal) location, unlike the c-BaN (Figure 5.8c) generated triggers,
which different target labels can share the same locations, as can be shown for example
in the first, second, and ninth images. To recap, both the Random Backdoor and BaN
techniques split the location set K on all target labels, such that no two labels share a
location, unlike the c-BaN technique which does not have this limitation.

Second, we visualize the dynamic behaviour of our techniques, by generating triggers
for the same target label 5 (plane) and adding them to a set of randomly sampled
CIFAR-10 images. Figure 5.9 compares the visualization of our three different dynamic
backdoor techniques in this setting. More concretely, we train the backdoor model
Mbd for all possible labels set as target labels. Then, for space restrictions, we plot
the backdoored inputs for a single target label. As the figure shows, the Random
Backdoor (Figure 5.9a) and BaN (Figure 5.9b) generated triggers can move vertically,
however, they have a fixed position horizontally as mentioned in Section 5.3.1 and
illustrated in Figure 5.2. The c-BaN (Figure 5.9c) triggers also show different locations.
However, the locations of these triggers are more distant and can be shared for different
target labels, unlike the other two techniques. Furthermore, the figure shows that most
of our triggers have different patterns for our techniques for the same target label, which
achieves our targeted dynamic behavior concerning the patterns and locations of the
triggers.

Finally, we compare the attention of the backdoored models on both clean and
backdoored inputs. We use the Gradient-weighted Class Activation Mapping (Grad-

80



5.4. EVALUATION
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(c) BaN (d) c-BaN

Figure 5.10: Visualization of attention maps for all our techniques using the Grad-CAM
technique.

CAM) technique [120] to compute the attention maps for our backdoored models.
These maps show the most influential parts of the input that resulted in the model’s
output. Figure 5.10 depicts the results of our three different techniques. As expected
all backdoored models mainly focus on the triggers in backdoored inputs and the main
objects in the clean ones.

5.4.5 Evaluating Against Current State-Of-The-Art Defenses

We now evaluate our attacks against the current state-of-the-art backdoor defenses.
Backdoor defenses can be classified into the following two categories, data-based defenses
and model-based defenses. On the one hand, data-based defenses focus on identifying if
a given input is clean or contains a trigger. On the other hand, model-based defenses
focus on identifying if a given model is clean or backdoored.

We first evaluate our attacks against model-based defenses, then we evaluate them
against data-based ones.

Model-based Defense: We evaluate all of our dynamic backdoor techniques in the
multiple target label case against three of the current state-of-the-art model-based
defenses, namely, Neural Cleanse [143], ABS [79], and MNTD [151].

We start by evaluating the ABS defense. We use the CIFAR-10 dataset to evaluate
this defense, since it is the only supported dataset by the published defense model. As
expected, running the ABS model against our dynamic backdoored ones does not result
in detecting any backdoor for all of our models.

For Neural Cleanse, we use all three datasets to evaluate our techniques against
it. Similar to ABS, all of our models are predicted to be clean models. Moreover, in
multiple cases, our models had a lower anomaly index (the lower the better) than the
clean model.

We believe that both of these defenses fail to detect our backdoors for two reasons.
First, we break one of their main assumption, i.e., that the triggers are static in terms
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of location and pattern. Second, we implement a backdoor for all possible labels, which
makes the detection a more challenging task.

Finally, we evaluate the MNTD defense. To this end, we use the CIFAR-10 dataset
to evaluate our three backdoor techniques. Following the same setting in [61], we build
200 shadow benign and backdoored models to train 50 meta-classifiers sequentially for
further evaluation. The meta-classifier takes a target model as its input and outputs a
score. This score represents the likelihood of the model being backdoored, i.e., a higher
score indicates the target model is more likely to be backdoored.

Our results show that the score predicted by the MNTD meta classifier drops from
67.08(± 20.49) for static backdoors to 3.05(± 0.82), 0.54(± 0.83), and 1.47(± 0.87) for
the random backdoor, BaN, and cBaN backdoors. This significant reduction of scores
(with at least a factor of 22×) demonstrates the advantage of our techniques compared
to the static ones. In this setting, each meta-classifier would output a score, then based
on a threshold, the decision if the model is backdoored or not is made [61]. We use the
default threshold (median of training models’ scores), which results in 98%, 74%, and
98% accuracy for the random backdoor, BaN, and cBaN techniques, respectively. This
percentage corresponds to the number of meta-classifiers correctly classifying the model
as a backdoored one. To improve the stealthiness of our backdoored models, we add
a discriminator when training the models, aiming to lower the score predicted by the
MNTD meta classifier. More concretely, we train a local meta-classifier (with a disjoint
dataset compared to the one used for evaluation) and use it as our discriminator. We
demonstrate this with the cBaN technique; however, it can be easily extended to the
other two techniques. Using this technique, our results are significantly improved, i.e.,
only a single meta-classifier out of the 50 classified the model as a backdoored one. In
other words, the detection accuracy is dropped to 2%, with a negligible performance
drop, i.e., the ASR and utility dropped by less than 1%.

This again demonstrates that our dynamic backdoor techniques are more stealthy
than the static ones. Moreover, they can be easily adapted to bypass backdoor defenses,
e.g., by adding the corresponding discriminator as mentioned in Section 5.3.3.

Data-based Defense: Next, we evaluate some of the current state-of-the-art data-based
defenses. Namely, we start by evaluating STRIP [45], then Februus [33].

STRIP tries to identify if a given input is clean or contains a trigger. It works by
creating multiple images from the input image by fusing it with multiple clean images
one at a time. Then STRIP applies all fused images to the target model and calculates
the entropy of predicted labels. Backdoored inputs tend to have lower entropy compared
to clean ones.

We use all of our three datasets to evaluate the c-BaN models against this defense.
First, we scale the patterns by half while training the backdoored models, to make them
more susceptible to changes. Second, for the MNIST dataset, we move the possible
locations to the middle of the image to overlap with the image content, since the value
of the MNIST images at the corners are always 0. All trained scaled backdoored models
achieve similar performance to the non-scaled backdoored models.

Our backdoored models successfully flatten the distribution of entropy for the
backdoored data, for a subset of target labels. In other words, the distribution of
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Figure 5.11: The histogram of the entropy of the backdoored vs clean input, for our
best performing labels against the STRIP defense, for the CIFAR-10 (Figure 5.11a), MNIST
(Figure 5.11b), and CelebA (Figure 5.11c) datasets.

entropy for our backdoored data overlaps with the distributions of entropy of the clean
data. This subset of target labels makes picking a threshold to identify backdoored
data from clean data impossible without increasing the false positive rate, i.e., various
clean images will be detected as backdoored ones. We visualize the entropy of our
best performing labels against the STRIP defense in Figure 5.11. Moreover, since our
dynamic backdoors can generate dynamic triggers for the same input and target label,
the adversary can keep querying the target model while backdooring the input with a
freshly generated trigger until the model accepts it.

Next, we evaluate Februus. Intuitively, Februus first detects the trigger from
backdoored samples before removing it and patching the image. To detect these triggers,
Februus first uses GradCAM to identify the influential region on the input. Then based
on a security hyperparameter –which is dependent on the underlying task–, it decides if
this area is to be removed and replaced by a neutral color. Finally, Februus develops a
GAN-based inpainting technique to restore the image before querying it to the target
model.

As the training code of Februus is not public yet, we only use CIFAR-10 – since it is
the only dataset we consider that has its Februus models available – to evaluate against
our different backdoor techniques.

Our results show that Februus only succeeds in dropping the ASR of our random
backdoor, BaN, and cBaN backdoored models from 100% to approximately 80.5%,
81.7%, and 72%, respectively. This demonstrates the strong performance of our attack
against the data-based defenses, especially compared to the static backdoored – whose
ASR drops to 0.25% when applying Februus–.

These results against the data and model-based defenses show the effectiveness of
our dynamic backdoor attacks, and opens the door for designing backdoor detection
systems that work against both static and dynamic backdoors.
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Figure 5.12: The result of trying different trigger sizes for the c-BaN technique on the
MNIST dataset. The figure shows for each trigger size the accuracy on the clean and
backdoored testing datasets.

5.4.6 Evaluating Different Hyperparameters

We now evaluate the effect of different hyperparameters for our dynamic backdooring
techniques. We start by evaluating the percentage of the backdoored data needed
to implement a dynamic backdoor into the model. Then, we evaluate the effect of
increasing the size of the location set K. Finally, we evaluate the size of the trigger
and the possibility of making it more transparent, i.e., instead of replacing the original
values in the input with the backdoor, we fuse them.

Proportion of the Backdoored Data: We start by evaluating the percentage of
backdoored data needed to implement a dynamic backdoor in the model. We use
the MNIST dataset and the c-BaN technique to perform the evaluation. First, we
construct different training datasets with different percentages of backdoored data. More
concretely, we try all proportions from 10% to 50%, with a step of 10. In this setting,
10% means that 10% of the data is backdoored, and 90% is clean. Our results show
that using 30% is already enough to get a perfectly working dynamic backdoor, i.e., the
model has a similar performance like a clean model on the clean dataset (99% accuracy),
and 100% backdoor success rate on the backdoored dataset. For any percentage below
30%, the accuracy of the model on clean data is still the same, however, the performance
on the backdoored dataset starts degrading. This demonstrates the ability of the
adversary to implement dynamic backdoor attacks with 30% overhead for each target
label, compared to training a clean model.

Number of Locations: Second, we explore the effect of increasing the size of the set
of possible locations (K) for the c-BaN technique. We use the CIFAR-10 dataset to
train a backdoored model using the c-BaN technique, but with more than double the
size of K, i.e., 8 locations. The trained model achieves similar performance on the clean
(92%) and backdoored (100%) datasets. We then doubled the size again to have 16
possible locations in K, and the model again achieves the same results on both clean
and backdoored datasets. We repeat the experiment with the CelebA datasets and
achieve similar results, i.e., the performance of the model with a larger set of possible
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Figure 5.13: An illustration of the effect of using different transparency scales (from 0 to
1 with a step of 0.25) when adding the trigger. Scale 0 (the most left image) shows the
original input, and scale 1 (the most right image) the original backdoored input without
any transparency.

locations is similar to the previously reported one. However, when we try to completely
remove the location set K and consider all possible locations with a sliding window, the
performance on both clean and backdoored datasets drops significantly.

Trigger Size: Next, we evaluate the effect of the trigger size on our c-BaN technique
using the MNIST dataset. We train different models with the c-BaN technique, while
setting the trigger size from 1 to 6. We define the trigger size to be the width and height
of the trigger. For instance, a trigger size of 3 means that the trigger is 3× 3 pixels.

We calculate the accuracy on the clean and backdoored testing datasets for each
trigger size, and show our results in Figure 5.12. Our results show that the smaller
the trigger, the harder it is for the model to implement the backdoor behaviour.
Moreover, small triggers confuse the model, which results in reducing the model’s utility.
As Figure 5.12 shows, a trigger with size 5 achieves a perfect accuracy (100%) on the
backdoored testing dataset, while preserving the accuracy on the clean testing dataset
(99%).

Transparency of the Triggers: Finally, we evaluate the effect of making the trigger
more transparent. More specifically, we change the backdoor adding function A to
apply a weighted sum, instead of replacing the original input’s values. Abstractly, we
define the weighted sum of the trigger and the image as: xbd = s · t + (1− s) · x, where
s is the scale controlling the transparency rate, x is the input and t is the trigger. We
implement this weighted sum only at the location of the trigger, while maintaining the
remaining of the input unchanged.

We use the MNIST dataset and c-BaN technique to evaluate the scale from 0 to 1,
with a step of 0.25. Figure 5.13 visualizes the effect of varying the scale when adding a
trigger to an input.

Our results show that our technique can achieve the same performance on both the
clean (99%) and backdoored (100%) testing datasets, when setting the scale to 0.5 or
higher. However, when the scale is set below 0.5, the performance starts degrading on
the backdoored dataset but stays the same on the clean dataset. We repeat the same
experiments for the CelebA and CIFAR-10 datasets and find similar results.

We believe that the transparency of our triggers can be further increased when
using triggers with larger sizes. To this end, we use the CIFAR-10 dataset to repeat
the experiments previously mentioned in this section. However, we set the trigger size
to be the size of the image. Our experiments show that in this setting, our dynamic
backdoor attacks can still achieve a perfect attack success rate (100%) with a negligible
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Figure 5.14: Visualization of the c-BaN backdoored images when setting the trans-
parency scale to 0.1.

drop in utility (0.3%) when setting the scale to 0.1. More concretely, the model’s
accuracy on clean data is 91.7% compared to the 92% accuracy of the backdoored model
trained without any transparency. We visualize a set of randomly backdoored samples
in Figure 5.14. As the figure shows, setting the scale to 0.1 makes the triggers hardly
visible.

5.4.7 Relaxing the Threat Model (Transferability of the Triggers)

For our dynamic backdoor attacks, we assume the adversary to control the training of
the target model. We now relax this assumption by only allowing them to poison the
dataset.

First, it is important to mention that our Random Backdoor technique does not need
to change the training of the target model, i.e., the adversary only needs to poison the
training dataset with backdoored images and the corresponding target labels. Second,
for both the BaN and c-BaN techniques, the adversary can rely on pre-trained BaN
and c-BaN models instead of training them jointly with the target model. In detail, the
adversary uses the pre-trained BaN and c-BaN model to generate multiple triggers and
randomly place them to a set of – randomly picked – images. Then, they poison the
training set with this set of backdoored images and their corresponding target labels.

We use the MNIST dataset for evaluation and follow the same target models’
structure as previously introduced in Section 5.4.3 and Section 5.4.4. However, to show
the flexibility of our techniques, we use data from different distributions to pre-train the
BaN and c-BaN models. We first use the CIFAR-10 dataset to train backdoored models
with the BaN (Section 5.3.2) and c-BaN (Section 5.3.3) techniques. Next, we use the
pre-trained BaN and c-BaN models to generate the backdoored dataset and poison the
target dataset as previously mentioned. It is important to mention that the CIFAR-10
based BaN and c-BaN models generate 3-channel triggers, to use them to poison the
MNIST dataset, we convert them to 1-channel triggers by taking the mean over the
different channels. Finally, we use the poisoned dataset to train the target model.

As expected, the backdoored models achieve a perfect attack success rate (100%),
while keeping the same utility as the backdoored models jointly trained with the BaN
and c-BaN. This shows the flexibility of our attacks, i.e., the training procedure can
be adapted by the adversary depending on their specific application. However, it is
important to mention that jointly training the models has the advantage of giving the
adversary more power, e.g., they can add a customized loss function to the target model
while implanting the backdoor.

Finally, as a side-effect of transferring the BaN and c-BaN; The poisoning rate for
the dynamic backdoor can now be lowered to about 10%, as there is no joint models
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trained with the target model anymore.

5.4.8 Possible Defenses

In this section, we propose potential defenses against dynamic backdoor attacks, starting
with a denoising mechanism to filter out triggers, which can be viewed as anomalies
or distortions in the input. Specifically, we employ autoencoders, a common denoising
technique. The process works as follows: we first train an autoencoder on clean data,
then use it to reconstruct or denoise inputs by encoding and decoding them. Triggers
are expected to be filtered out for two main reasons: the autoencoder’s tendency to
overfit to clean data and the inherent lossy nature of the reconstruction process.

To implement our defense, all inputs are passed through the autoencoder before
being fed into the target model. The autoencoder is expected to remove the trigger
from backdoored inputs without significantly altering clean ones.

We evaluate this defense against the c-BaN technique using the MNIST and CIFAR-
10 datasets. In simpler datasets like MNIST, the defense performs well, successfully
mitigating the backdoor attack with negligible utility loss (less than 1%). However,
on more complex datasets like CIFAR-10, the defense’s performance degrades due to
the increased level of detail, making it harder to accurately reconstruct both clean and
backdoored inputs. For instance, the accuracy of the target model drops by 4.8% for
clean data and 25% for backdoored data.

Another defense approach could involve calculating the distance between the recon-
structed and original inputs, then deciding whether to forward the input based on a
predetermined threshold. We plan to explore this approach and other potential defenses
in future work.

We also investigate data augmentation as a defense, focusing on the effects of resizing,
cropping, and flipping target images on dynamic backdoor attacks. Using the CIFAR-10
dataset, we assess how these augmentations affect both the attack success rate (ASR)
and model utility in our simplest (random backdoor with a single target label) and most
complex (cBaN with all target labels) scenarios. First, flipping the input reduces ASR
to 88.6% for cBaN and 93.4% for the random backdoor, with minimal impact on utility,
demonstrating that our attacks are resilient to flipping. Second, resizing the image to
16× 16 before scaling it back to 32× 32 drops the ASR to 57.4% and 66.5%, but at the
cost of a 15.4% and 15.9% utility loss, respectively. Lastly, cropping, where we pad the
input with 4-pixel borders and crop back to the original size, reduces the ASR to 73.2%
and 89.2%, with accuracy dropping by only 0.7% and 0.25%.

We next include the three data augmentation techniques in the training of the
models and repeat the same experiments, i.e., testing the effect of applying each data
augmentation separately at the inference time. We observe that the results did not
differ significantly from the previous set of experiments; hence we plot the result
in Appendix A.6.

Overall, while data augmentation can reduce the effectiveness of dynamic backdoor
attacks, it does not completely prevent them and often results in a significant utility
drop. In other words, our attacks remain viable, albeit with a reduced ASR when
different augmentation techniques are applied.
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5.5 Conclusion

The tremendous progress of machine learning has led to its adoption in multiple critical
real-world applications. However, it has been shown that ML models are vulnerable to
various types of security and privacy attacks. In this chapter, we focus on backdoor
attacks where an adversary manipulates the training of the model to intentionally
misclassify any input with an added trigger.

Current backdoor attacks only consider static triggers in terms of patterns and
locations. In this chapter, we propose the first set of dynamic backdoor attacks against
deep neural networks (DNN) models, where the trigger can have multiple patterns and
locations. To this end, we propose three different techniques.

Our first technique Random Backdoor samples triggers from a uniform distribution
and places them at random locations of an input. For the second technique, i.e., Backdoor
Generating Network (BaN), we propose a novel generative network to construct triggers.
Finally, we introduce conditional Backdoor Generating Network (c-BaN) to generate
label-specific triggers.

We evaluate our techniques using three benchmark datasets. The evaluation shows
that all our techniques can achieve almost a perfect backdoor success rate while preserving
the model’s utility. Moreover, we show that our techniques successfully bypass state-of-
the-art defense mechanisms against backdoor attacks.
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6.1. INTRODUCTION

6.1 Introduction

Data lies at the core of machine learning, serving as the foundation for training models
and shaping their performance and accuracy. However, as highlighted in previous
chapters, this essential role also introduces critical vulnerabilities. Data can become
a target in two major ways: first, through exposing sensitive information about its
membership status, leading to membership inference attacks ( Chapter 3), and second, by
being manipulated to carry out attacks like data poisoning ( Chapter 4 and Chapter 5).

In this chapter, we delve deeper into the central role of data in the context of
security threats. Specifically, how data with different characteristics influences ML
attacks. Recent research highlights the heterogeneous impact of individual data samples,
revealing that certain data points disproportionately influence the utility and effectiveness
of machine learning models [62, 47, 68, 66, 63]. Understanding this variability is
important for two main reasons. First, knowing how individual data samples affect
model performance is key to improving machine learning explainability, offering new
insights into model behavior, and enhancing interpretability [66, 109, 85, 103]. Second,
this knowledge can guide data trading practices, where the importance of data is a
significant factor [14, 47].

Despite these advancements, the impact of diverse data on model leakage and
security remains underexplored. Existing research predominantly concentrates on the
models themselves; for example, studies [114, S2] suggest that overfitted models are
more prone to membership inference attacks. Nevertheless, even within the same model,
distinct data samples exhibit varying vulnerabilities to attacks. This prompts a crucial
question: do these valuable data samples also exhibit an increased vulnerability to a
spectrum of machine learning attacks? Understanding the differential vulnerability of
data samples has significant practical implications. In medical diagnostics, for example,
patient records with rare but highly indicative symptoms are considered high importance
samples. Assessing whether these records are more prone to attacks is crucial, as breaches
could lead to discrimination, higher insurance premiums, or other serious consequences
for individuals.

6.1.1 Contributions

In this chapter, our focus on understanding the link between data importance and
machine learning attacks. Our primary objective is to thoroughly investigate whether
valuable data samples, which contribute significantly to the utility of machine learning
models, are exposed to an elevated risk of exploitation by malicious actors.

To achieve our objectives, we focus on five distinct types of attacks, encompassing
both training-time and testing-time attacks. The training-time attack we consider is
the backdoor attack [50, 80, P3], while the testing-time attacks consist of membership
inference attack [81, 125, 114, 31, 75], model stealing attack [142, 141, 116], attribute
inference attack [91, 128], and data reconstruction attack [164, 156, 41]. For each of
these attacks, we thoroughly analyze the behavior and impact on both high importance
and low importance data samples, aiming to uncover any discernible differences.

Main Findings: Our research has yielded significant findings that shed light on the
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heightened vulnerability of valuable data samples to privacy attacks. Specifically, our
key findings are as follows:

• Membership Inference Attack: High importance data samples exhibit a higher
vulnerability compared to low importance samples, particularly in the low false-
positive rate region. For instance, in the CIFAR10 dataset, at a false positive
rate (FPR) of 1%, the true positive rate (TPR) of high importance data is 10.2×
greater than that of low importance samples.

• Privacy Onion Effect: The concept of the privacy onion effect [24] can be ex-
tended to the distribution of data importance. Specifically, previously considered
unimportant samples gain significance when the dataset removes the important
samples.

• Model Stealing Attack: High importance samples demonstrate greater efficiency
in stealing models when the target model is trained on the same distribution as
the query distribution. However, we empirically demonstrate that the importance
does not transfer between different tasks.

• Backdoor Attack: Poisoning high importance data enhances the efficiency of
the poisoning process, particularly when the size of the poison is small. On the
other hand, the influence on clean accuracy does not yield a definitive conclusion,
poisoning either type of data has a limited impact on clean accuracy.

• Attribute Inference and Data Reconstruction Attacks: We observe no significant
distinction between high and low importance data in these attacks.

Our research provides empirical evidence establishing a correlation between data
importance and vulnerabilities across diverse attack scenarios. This introduces a novel
perspective for analyzing sample-specific vulnerabilities, enriching our understanding of
the security implications within the realm of machine learning.

Beyond theoretical insights, our study showcases practical applications of these
findings, illustrating how they can be utilized to devise more potent attacks. On one
hand, these findings can be utilized in a passive manner. For example, we empirically
demonstrate that membership inference attacks can be improved by introducing sample-
specific criteria based on sample importance. Additionally, adjusting the poisoning
strategy according to sample importance proves to enhance the efficacy of backdoor
attacks, particularly with a reduced poisoning rate.

More interestingly, we can actively modify samples to alter their importance, which
subsequently impacts both attack and defense performance. For example, recognizing
that high importance samples are more vulnerable to membership inference attacks,
attackers could increase the importance of targeted samples to heighten their vulnerabil-
ity. This approach follows exactly the same idea as the attack accepted at CCS’22 [140],
effectively demonstrating how we can “reinvent” state-of-the-art attacks guided by
findings in our work.

In summary, our work represents a pioneering step in systematically understanding
the vulnerabilities of the machine learning ecosystem through the lens of data. These
findings serve as a resounding call to action, urging researchers and practitioners to
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Figure 6.1: LOO and Trak fail to capture the complex interactions between subsets of
data, resulting in suboptimal sample importance identification performance.

develop innovative defenses that strike a delicate balance between maximizing utility
and safeguarding valuable data against malicious exploitation.

6.2 Evaluation Setup

In this work, we deploy KNN-Shapley [62] to assess the importance of samples in the
training set, which takes a dataset as input and assigns an importance value to each
sample in the dataset. This decision is justified by two main considerations.

Firstly, from the perspective of utility, traditional data attribution methods struggle
to account for the complex interactions within data subsets. Previous research, as
discussed by Gupta and Zou [47], highlights this limitation. Consequently, we adopt
Shapley value-based approaches for a more accurate assessment of data importance. We
further examine the efficacy of two non-Shapley-based measurement techniques: Leave-
one-out (LOO) and the advanced data attribution method, Trak1 [103]. As evidenced
in Figure 6.1, when comparing the performance of models trained with 5000 samples of
varying significance, the accuracy discrepancy is less than 7% for these methods. In
contrast, the KNN-Shapley method identifies samples that yield an accuracy difference
exceeding 20%, thereby demonstrating its superior capability in accurately quantifying
importance.

Secondly, regarding scalability, most measurement methods are highly computa-
tionally inefficient. For instance, employing Leave-one-out to calculate importance
values for CIFAR10 necessitates over 80 hours on 8×A100 GPUs. Shapley value-based
methods are generally more demanding. In Jia et al.’s work [63], the authors provide a
runtime demonstration showing that existing measurement methods, except for KNN-
Shapley, do not scale efficiently to large datasets, even as CIFAR10. We defer the details
to Appendix A.7.

Furthermore, the comprehensive evaluations conducted by prior studies [63] consis-
tently underscore the effectiveness and accuracy of KNN-Shapley. Therefore, considering

1Trak quantifies the influence of each sample on specific test samples within a dataset. To adhere to
the established definition of data importance, we calculate the average influence exerted by each sample
across the entire test dataset as the importance of each sample.
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both utility and scalability, KNN-Shapley emerges as the sole feasible method for con-
ducting experiments.

Datasets: Our evaluation encompasses three widely-used benchmark datasets, namely
CIFAR10 [9], CelebA [84], and TinyImageNet [10]. CIFAR10 comprises a collection
of 60,000 colored images evenly distributed across ten classes, representing common
objects encountered in everyday life, including airplanes, birds, and dogs. CelebA is
a large-scale face dataset that encompasses over 40 annotated binary attributes. To
ensure balance in our analysis, we follow previous works [98, P3, 167, S2] that select
the three most balanced attributes (Heavy Makeup, Mouth Slightly Open, and Smiling)
to create an 8-class (23) classification task. Note that our findings are not dependent
on this specific attribute selection, as validated in Appendix A.10. Additionally, our
evaluation incorporates TinyImageNet, which constitutes a subset of the ImageNet
dataset. It encompasses 200 distinct object classes, each with 500 training images. We
further validate the generalizability of our conclusions across different modalities, with
detailed information deferred to Section 6.8.

6.2.1 Learning Characteristic

In order to gain a deep understanding of the disparities between high and low importance
data, we delve into the learning characteristics, such as loss, associated with these samples.
To the best of our knowledge, our study represents the first endeavor to investigate the
learning characteristics of samples with varying degrees of importance, diverging from
the conventional focus solely on their contribution to the final performance.

To quantify these learning characteristics, we initially train a model using the
complete dataset, comprising both high and low importance data. Subsequently, we
compute the loss for each individual data point and explore the correlation between the
loss and its corresponding importance value.

In Figure 6.2a, we present a visual representation of the relationship between loss and
importance value. The x-axis represents the importance order of a sample in the dataset,
with 1 denoting the lowest importance and 50000 representing the most valuable data.
Initially, it may seem that there is no discernible pattern between loss and importance
value, as both low and high importance samples can exhibit either low or high loss.
However, upon further analysis, we statistically observe that higher importance samples
tend to demonstrate lower loss, as depicted in Figure 6.2b, Figure 6.2c, and Figure 6.2d.

To arrive at this conclusion, we divide the samples into 200 bins based on their
importance value. For instance, the lowest 1 to 250 samples are categorized into bin one,
251 to 500 are allocated to bin two, and so forth. For each bin, we calculate the sum
of the losses and plot these 200 data points to generate the final curve. Despite some
fluctuations observed in the curve, it is evident that valuable samples tend to exhibit
lower loss. This finding aligns with our expectations, as lower loss signifies greater
representativeness, thereby facilitating easier learning and enhancing their contribution
to the overall utility of the model.

Having established the effectiveness of importance assignment and gained prelim-
inary insights into the learning characteristics, we proceed to conduct representative
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Figure 6.2: Relationship between loss and importance value. Low importance samples
statistically have higher losses.

machine learning attacks to investigate the impact of data importance in such at-
tacks. Our experimental investigations are carried out using the ResNet18 architecture,
and in Section 6.8, we demonstrate the generalizability of our conclusions to different
architectures.

6.3 Membership Inference Attack

Membership Inference Attack (MIA) [81, 125, 114, 31, 75, 154] is a prominent privacy
attack utilized to determine whether a specific data sample belongs to a training dataset.
This attack is widely employed to assess the privacy of training data due to its simplicity
and broad applicability.

In the attack scenario, the adversary A is granted access to a target model and is
tasked with determining the membership status of a given data sample (x, y). Formally,
the membership inference attack can be defined as a security game, referred to as
Membership Inference Security Game, which is described as follows:

Requirement 1 (Membership Inference Security Game [21]). The game proceeds
between a challenger C and an adversary A:
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1. The challenger samples a training dataset D ← D and trains a model fθ ← T (D)
on the dataset D.

2. The challenger flips a bit b, and if b = 0, samples a fresh challenge point from the
distribution (x, y)← D (such that (x, y) /∈ D). Otherwise, the challenger selects a
point from the training set (x, y) $← D.

3. The challenger sends (x, y) to the adversary.

4. The adversary gets query access to the distribution D, and to the model fθ, and
outputs a bit b̂← AD,f (x, y).

5. Output 1 if b̂ = b, and 0 otherwise.

The adversary A is provided with auxiliary information about the data distribution
D. This allows the adversary to sample a shadow dataset from the same or a similar
distribution, which is a common assumption in the existing literature.

The attack accuracy for the adversary is defined as follows:

Acc = Pr
x,y,f,b

[AD,f (x, y) = b].

To assess the privacy leakage caused by membership inference attacks (MIAs), we
employ two metrics commonly used in prior research, focusing on both worst-case and
average-case performance:

1. (Log-scale) ROC Analysis [21], which focuses on the true-positive rate at low
false-positive rates, effectively capturing the worst-case privacy vulnerabilities of
machine learning models.

2. Membership Advantage [155, 131], defined as

Adv = 2× (Acc− 0.5).

This metric represents the advantage over random guessing, multiplied by 2,
providing an average-case measure to gain an overview of the attack’s efficacy.

In this work, we investigate four specific membership inference attacks. For the
CIFAR10 and CelebA tasks, a training set of 50,000 samples is employed, while for the
TinyImageNet task, we utilize a training set of 100,000 samples to construct the target
model.

To assess the membership status of samples, we first adopt a methodology based
on previous research [31, 75] that considers the distance to the decision boundary as a
reflection of membership status. Specifically, they claim that samples located near the
decision boundary are more likely to be non-members, whereas samples positioned in
the central region of the decision area are more likely to be members.

We calculate the distance to the decision boundary for all samples in the training
dataset. Specifically, for each sample, we iteratively perturb it using Projected Gra-
dient Descent (PGD) with a small step size until it is classified into a different class.
Subsequently, we compute the distance between the perturbed sample and its original
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Figure 6.3: Relationship between distance to the decision boundary and importance
value. Low importance samples are statistically closer to the decision boundary. The
distance measured with different norms can be found in Appendix A.11.

counterpart. In this analysis, the distance is measured using the ℓ∞ norm, and we
find consistent results across different norms such as ℓ1 and ℓ2, as evidenced by the
corresponding findings presented in Appendix A.11.

Our initial visualization focuses on examining the distances of samples with different
importance values. Similar to the observation made regarding the distribution of loss
values in Section 6.2.1, no direct relationship is discernible between the importance value
and the distance to the decision boundary. Notably, samples with similar importance
values may exhibit substantial differences in their distances to the decision boundary. In
contrast, we further analyze the statistical characteristics of these samples, as performed
in Section 6.2.1 and present the “group distance” in Figure 6.3b, Figure 6.3c, and
Figure 6.3d. The results reveal that low importance samples are statistically closer to
the decision boundary, which aligns with the previous conclusion that low importance
samples tend to have higher loss compared to high importance samples.

We follow the same procedure to derive the distance for samples in the testing
dataset and launch the membership inference attack based on the distance. We identify
10,000 samples with the highest importance value as the high group, and an equivalent
number of samples with the lowest value as the low group. The resulting ROC curves,
depicted in Figure 6.4, are presented on a logarithmic scale to compare the performance
between these two groups.
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Figure 6.4: Log-scale ROC curve: membership inference attack based on the distance
to the decision boundary. High importance samples exhibited substantially higher
true-positive rates, particularly in the low false-positive rate region. Results with different
norms can be found in Appendix A.11.

From the figures, we observe significant differences in the behavior of high importance
samples and low importance samples, particularly in the low false-positive rate area.
Specifically, for the CIFAR10 dataset, high importance samples demonstrate a true-
positive rate (TPR) 10.2× higher than low importance samples at a low false-positive
rate of 1%. For the TinyImageNet dataset, the difference is even more pronounced,
with high importance samples exhibiting a TPR that is 27.9× higher than that of low
importance samples at the same false-positive rate.

These observations provide compelling and empirical evidence supporting the notion
that high importance samples are considerably more vulnerable to membership inference
attacks, which satisfies our expectation as the importance of data samples can be
regarded as the proxy of memorization [37]. These findings thus pose a significant and
tangible threat to the safeguarding of high importance data privacy. On the other hand,
these findings may also prompt researchers to consider adopting strategic sampling
methods for more effective privacy auditing [96, 58].

We further validate the generalizability of this finding across various attack method-
ologies by conducting experiments with three additional metric-based attacks: prediction
confidence-based attack [155, 131], entropy-based attack [125, 114], and modified pre-
diction entropy-based attack [130]. The first two attacks were enhanced by introducing
class-dependent thresholds, as demonstrated by Song and Mittal [130].

By grouping the samples based on their importance values in intervals of 10,000
samples (equivalent to the size of the testing dataset), we conducted the aforementioned
attacks on these subsets. The membership advantage achieved for each subset is
illustrated in Figure 6.5. Notably, a clear monotonic increase in attack advantage is
observed as the importance value increases, establishing a positive correlation between
the importance value and the susceptibility of membership inference.

This empirical trend aligns with our expectations. As evidenced by the metrics
in Figure 6.2 and Figure 6.3, samples with lower importance inherently present greater
learning challenges compared to their higher-importance counterparts. Even post-
learning, these samples exhibit worse membership metrics compared to those of higher
importance. This circumstance renders them challenging to distinguish from non-
member samples, especially when certain non-member samples manifest a lower learning
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Figure 6.5: Membership advantage: membership inference attack based on three
metrics. Attack advantage steadily escalates as the importance value of the samples
increases.

difficulty and consequently exhibit better metrics compared to the more challenging
member samples.

Drawing from this insight, one potential strategy to enhance the efficiency of
membership inference attacks is to compare each sample with others of comparable
difficulty. A pragmatic approach to actualize this entails introducing sample-specific
criteria. Rather than employing a uniform threshold across the entire testing dataset,
such criteria should intricately correlate with the sample’s characteristics, with their
designated importance level serving as a robust quantitative index to reflect this
alignment.

In this study, we initiate an exploration into the feasibility of such an approach.
To seamlessly integrate our method into the existing metric-based framework, we
introduce a sample-specific threshold in a consistent manner: while maintaining a
uniform threshold for the dataset, we modify the membership metrics by incorporating
an importance-related term:

CaliMem(x) = OriMem(x) + k × Shapley(x)

Here, OriMem(x) denotes the conventional membership metric, including elements such as
confidence, entropy, and modified entropy. The term Shapley(x) signifies the importance
value attributed to the specific sample x, and CaliMem(x) represents the recalibrated
membership metric.

As a proof of concept, we empirically determine the hyperparameter k in an ex-
ploratory manner, adjusting its magnitude until optimal performance is attained. The
experimental outcomes, depicted in Figure 6.6, illustrate that the incorporation of im-
portance calibration notably enhances the efficacy of metric-based attacks. Nevertheless,
it is pertinent to acknowledge that identifying the optimal hyperparameter and devising
more refined methods for integrating importance values warrant further investigation.

We also emphasize that this improvement does not necessitate additional require-
ments compared to standard attacks; specifically, the adversary does not need full access
to the training dataset to obtain importance values. Although importance values cannot
be calculated for single samples, most membership inference attacks assume access to a
shadow dataset. We validate the feasibility of our approach using a shadow dataset.
Specifically, we randomly select 1,000 samples from the CIFAR10 dataset to calculate
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Figure 6.6: Incorporation of importance values in calibrating membership inference
metrics improves the attack performance, demonstrating the strength of employing
sample-specific membership criteria.

their importance value, we first calculate the importance value for all samples using the
whole CIFAR10 dataset as the ground truth. Then we assume the adversary can only
access a shadow dataset containing 10,000 samples, and calculate the importance value
for each sample using only the shadow dataset. We found a correlation coefficient of
0.957 between these values, indicating that using the shadow dataset could provide a
good approximation.

6.3.1 Privacy Onion Effect

Carlini et al. [24] have identified the onion effect of memorization, which refers to the
phenomenon wherein “removing the layer of outlier points that are most vulnerable to a
privacy attack exposes a new layer of previously-safe points to the same attack.” Their
research demonstrates this effect by removing samples that are at the highest risk of
being compromised through membership inference, resulting in formerly safe samples
becoming vulnerable to the attack.

Building upon the insights from the preceding section, our empirical findings confirm
a positive correlation between membership inference vulnerability and data importance.
This prompts an intriguing question: Does this effect reflect in the importance values
assigned to the data? Put differently, when high importance samples are removed from
a dataset, do previously designated low importance samples gain significance?

To avoid ambiguity, it is imperative to understand that the term “importance” in
this context is not subjective or relative. The removal of high importance data points
does not inherently increase the importance of those initially deemed low importance.
Furthermore, it is conceivable for a dataset to exclusively consist of low importance
samples. This clarification is indispensable; otherwise, the studied question may seem
trivial.
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Figure 6.7: The privacy onion effect can be extended to the importance distribution.
For Figure 6.7a, we remove all examples with importance values larger than the red
line. Samples that remain after removal have their importance value increase past the
red line. Subsequent figures confirm that removing highly important samples elevates
the significance of the remaining set, while the removal of less significant samples has
no such effect, ruling out dataset size influence.

Our results indicate that removing important samples indeed makes samples pre-
viously considered unimportant gain importance. Specifically, upon removing 10,000
data points with the highest importance scores, we recalculated the importance for
the remaining samples. As depicted in Figure 6.7a, this removal led to a noticeable
redistribution in data point importance, with previously low important data points now
being assigned greater significance.

However, a note of caution is warranted in interpreting this result. The removal of a
substantial number of samples (10,000 in this context) might introduce a baseline drift.
Therefore, attributing the observed importance augmentation solely to the exclusion of
important samples might be premature. To further validate our findings, we executed
controlled experiments wherein we systematically excluded either the most or least
significant data points. This approach mitigates potential biases stemming from dataset
size discrepancies. To emphasize the impact of these exclusions, we quantified the
importance value discrepancies for data points ranked between 10,000 and 20,000 in
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Figure 6.8: Impact of sample duplication on importance values. Following the du-
plication process (16 duplications per sample), 45 out of 50 target samples showed
a marked increase in importance, averaging a 53.02% rise, while the importance of
control samples (unduplicated) remained relatively stable.

descending order of importance in the original dataset, as they remained for both
removal procedures.

Our results, as visualized in Figure 6.7b, Figure 6.7c, and Figure 6.7d, underscore the
pronounced disparities in how the exclusion of high importance versus low importance
data samples influences the remaining dataset’s importance distribution. Using CIFAR10
as an illustrative case, removing the most significant data points caused 99.14% of the
remaining data points to be reevaluated as more important. In contrast, removing the
least significant data points led to a 45.88% decrease in importance for the affected
data points. These findings robustly support our hypothesis that data points previously
deemed of lesser importance assume greater significance when high importance data
points are excluded, and such a conclusion cannot be attributed to dataset size variation.

6.3.2 Actively Modify Sample Importance

As discussed in the previous section, altering the dataset can influence the importance of
samples. Given the observed linkage between membership vulnerability and importance
value, an interesting question arises: can we actively use our findings to design more
advanced attacks by modifying the importance of target samples?

However, directly altering sample importance is challenging due to the absence of
a standardized method or framework. In this section, we explore an ad-hoc approach
aimed at increasing the importance of target samples. Specifically, we select a set of
target samples and duplicate each one multiple times with consistently incorrect labels.
This strategy intuitively heightens the influence of these samples by causing the model
to consider them as “outliers” due to the prevalence of incorrect duplicates. We tested
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Figure 6.9: Comparison of importance values before and after replacing 1,000 samples
with their augmented versions using ColorJitter, Grayscale, HorizontalFlip, and Verti-
calFlip techniques. The plot illustrates that augmentation caused variable changes in
importance, with some samples gaining and others losing importance.

this idea by duplicating 50 target samples 16 times and reassessing their importance
values. As shown in Figure 6.8, the duplicated samples generally exhibited an increase
in importance. Specifically, 45 of the 50 target samples experienced an increase in
importance, with an average increase of 53.02%, while the importance of the unaltered
samples remained nearly constant.

This approach is exactly the membership poisoning attack proposed by Tramèr
et al. [140], where they comprehensively demonstrated the method’s efficiency. This
indicates that increasing the importance of samples can be a practical approach to
enhance their vulnerability. By revisiting their technique from a data importance
perspective, we highlight that actively modifying sample importance could be a promising
strategy for developing sophisticated attack techniques or formulating robust defenses.

6.3.3 Data Augmentation

In previous discussions, it has been demonstrated that manipulating data samples can
alter their importance values and, consequently, their susceptibility to attacks. Given
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Figure 6.10: Analysis of the impact on importance values when 1,000 augmented
samples are added to the original dataset, compared to a baseline scenario where
the same 1,000 samples were duplicated. The figure demonstrates that the presence
of both original and augmented samples had minimal effect on the importance of the
original samples, showing no significant differences from simple duplication.

that data augmentation is the most widely used method for data manipulation, it would
be interesting to ask: does data augmentation affect the importance of a sample?

In our study, we examined the impact of four data augmentation techniques—ColorJitter,
Grayscale, HorizontalFlip, and VerticalFlip—under two specific scenarios. In both sce-
narios, we selected 1,000 samples for augmentation while leaving the rest of the dataset
unaltered:

Augmented Versions Only: In this scenario, we aimed to investigate how data
augmentation impacts the importance of the augmented samples and the unaltered
samples in the dataset. Specifically, we replaced 1,000 samples with their augmented
versions, recalculated their importance values, and compared these values to the original.
As illustrated in Figure 6.9, we found that the augmented versions had variable effects
on importance: some samples gained higher importance, while others lost it. Overall,
a slight majority of the samples experienced a decrease in importance following aug-
mentation. However, the augmented samples had a negligible impact on the remaining
non-augmented samples.
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Original and Augmented Versions: In this scenario, we examined the effect of
having both augmented and original versions of certain samples in the dataset. We
added 1,000 augmented samples to the original dataset and recalculated the importance
values for the original samples. To control for dataset size, we also considered a baseline
case where the same 1,000 samples were duplicated. As shown in Figure 6.10, the
presence of both original and augmented samples had minimal impact on the importance
of the original samples, with no significant differences compared to simple duplication.

We acknowledge that more complex augmentation techniques, such as those us-
ing generative models, may have different effects. The exploration of these complex
augmentation techniques remains an avenue for future research.

Takeaways: Our findings highlight the vulnerability of high importance samples to
membership inference attacks. Significant differences were observed in the behavior
of high importance and low importance samples, particularly in the low false-positive
rate region, where high importance samples exhibited substantially higher true-positive
rates. This emphasizes the necessity of addressing the privacy risks associated with
high importance samples and implementing effective safeguards. Simultaneously, it
encourages researchers to explore strategic sampling methods to enhance the effectiveness
of privacy audits.

The observation also suggests a potential enhancement to membership inference
attacks through the introduction of sample-specific criteria. We empirically validate
the practicality of using importance values to calibrate membership metrics, thereby
enhancing attack efficiency.

Moreover, our findings reveal the “privacy onion effect” within the sample importance
distribution, where previously overlooked samples gain importance when key samples
are removed. Furthermore, by revisiting an advanced membership poisoning attack
from the perspective of data importance, we suggest that actively manipulating sample
importance can be a potent strategy for developing sophisticated cybersecurity measures,
both offensive and defensive, but finding general manipulating methods needs further
investigation.

6.4 Model Stealing

Model stealing attack [142, 141, 116, 56, 23] differs from membership inference attack as it
aims to compromise the confidentiality of the model itself rather than exploiting privacy
information about training samples. This type of attack does not have information
about the target model’s architecture or parameters but seeks to create a surrogate
model that emulates the functionality of the target model. Such attacks can be employed
by adversaries for various purposes, including monetary gains or as a preliminary step
for subsequent attacks [102].

The workflow of a model stealing attack is visualized in Figure 6.11. The adversary
samples data from a specific distribution D and simultaneously queries the target and
surrogate models. To ensure similarity between the surrogate and target models, the
adversary optimizes the surrogate model to produce similar outputs S(x) as the target
outputs T (x). While the attack approach is straightforward, selecting an appropriate
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Figure 6.11: The workflow of model stealing attack, the adversary leverages the target
model to guide the surrogate model.

query data distribution poses a challenge, as it directly impacts the stolen accuracy
and query efficiency. Recent research has explored efficient and data-free methods for
launching these attacks [100, 64, 116], yet the question of selecting high-quality samples
when the target task is known remains intriguing.

In this work, we focus on the primary scenario where the adversary can query the
target model to obtain corresponding posteriors, while having knowledge of the target
task. Specifically, the adversary could query the model with a dataset from the same
or a similar distribution. This scenario has practical applications, such as creating
a surrogate model to facilitate further attacks or to save on labeling costs. We limit
our discussion to this primary scenario and do not delve into more advanced model
stealing techniques that focus on reducing the dataset assumption, as our interest lies
in understanding how different data interact with the model stealing process.

Our goal is to investigate whether query samples with different importance values
exhibit varying efficiency in stealing models. We explore two settings in our experiments.
First, we launch the attack using query data from the same distribution as the target
model trained on. For example, if the target model is trained on CIFAR10, we employ
CIFAR10 data to query the model. The second scenario involves using data from
different distributions, specifically CelebA and TinyImageNet, to query the CIFAR10
model. We choose accuracy and query budget as the metrics to evaluate the success of
the attack, using less query budget to achieve higher accuracy denotes better attack
performance.

6.4.1 Same Distribution Query

Three target models were trained using a standard training procedure, resulting in testing
accuracies of 95.15% for CIFAR10, 79.05% for CelebA, and 65.01% for TinyImageNet.
After training the target models, our attack solely interacts with the target models
through their outputs without accessing or reading their parameters.

To initiate the attack, we establish a query budget ranging from 100 to 10,000. Once
the query budget is determined, we prioritize collecting high importance data until the
budget is exhausted, and the same principle applies to the collection of low importance
data.
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Figure 6.12: Model stealing attack that queried with data from the same distribution.
High importance samples exhibit greater efficiency in stealing models when the target
model is trained on the same distribution as the query distribution.

The attack results are illustrated in Figure 6.12, highlighting the superior efficiency
of high importance samples in the model stealing process. For instance, when the
query budget is set to 1000, high importance data steal a CIFAR10 model with 53.77%
accuracy, which is 1.6× higher than the model stolen by low importance data (33.29%).
This trend holds true for the other two datasets as well. Taking TinyImageNet as an
example, when the query budget is 1000, high importance data yield a model accuracy
of 19.25%, whereas low importance data only result in a model accuracy of 9.25%,
exhibiting a notable 2.1-fold disparity.

One plausible explanation for this difference may arise from variations in class
balance, given that the query sets are chosen based on sample importance. It is
conceivable that the low importance query set may lack samples from certain classes,
thereby resulting in suboptimal performance. Prior research has suggested that a more
balanced data distribution could potentially improve model stealing performance [116,
T3]. However, upon examining the data distribution for both high and low significance
samples, we observed no significant disparities. For example, in the case of CIFAR10, the
entropy values for the top-10,000 high importance and low importance distributions were
3.282 and 3.245, respectively. Even when considering 1000 samples, the corresponding
entropy values were 3.161 (high importance) and 3.229 (low importance). For context,
a perfectly uniform distribution has an entropy of 3.322. This indicates that both the
high and low importance subsets closely approximate a uniform distribution. Such
findings reinforce our assertion that high importance data can indeed augment model
stealing performance, mitigating concerns related to distributional biases.

6.4.2 Different Distribution Query

The previous section highlighted the enhanced efficiency of high importance samples in
stealing models trained on the same task. However, it remains uncertain whether this
efficiency persists when the target model is trained using a different dataset or task,
and whether importance values can be transferred across tasks.

To investigate, we conducted experiments involving query data that differed from
the distribution used to train the target model. Specifically, we employed a CIFAR10
model as the target model and queried it with the CelebA and TinyImageNet datasets.
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Figure 6.13: Model stealing attack that queried with data from different distributions.
The target model is trained on the CIFAR10 task. Results show that importance does not
transfer between different tasks.

Interestingly, as depicted in Figure 6.13, we observed that the advantage of high
importance samples disappeared in this cross-task scenario. When the query budget
was consistent, the stolen accuracy for both high and low importance samples was
comparable. This suggests that samples deemed important for one task may not transfer
effectively to arbitrary tasks.

Takeaways: Our findings demonstrate that high importance samples exhibit greater
efficiency in stealing models when the target model is trained on the same distribution as
the query distribution. Importantly, this enhanced efficiency cannot be solely attributed
to distribution bias. This suggests that adversaries, when aware of the target task, can
employ high importance samples to optimize attack performance with a reduced query
budget. However, this conclusion does not hold when the target task differs from the
query distribution. Consequently, this implies that selecting a group of high importance
samples as a “universal” query set for efficient model stealing attacks, regardless of the
target task, is not feasible.

6.5 Backdoor Attack

Backdoor attack [50, 80, P3] is a training-time attack that involves actively interfering
with the training process to manipulate the resulting model. Its primary objective is
to introduce malicious behavior into the model, making it behave like a benign model
for normal inputs. However, when a specific trigger is detected, the backdoored model
intentionally misclassifies the input to a predetermined class. This type of attack can
have severe consequences, such as compromising the integrity and reliability of the
model, leading to potential security breaches, data manipulation, or unauthorized access
to sensitive information.

Despite the severe consequences that a backdoor attack may cause, the attack itself
is relatively easy to achieve by poisoning the training dataset, thereby posing an even
stronger threat. For instance, a straightforward attack approach called BadNets [50]
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adds a fixed trigger to a portion of the training dataset, resulting in a perfect attack
where almost all triggered samples are misclassified into the target class, while the
accuracy on the original task remains largely unaffected.

In the context of backdoor attacks, the poison rate plays a critical role as it directly
influences the effectiveness and concealment of the attack. A higher poison rate can
lead to an increased attack success rate, but it also raises the risk of detection since a
large number of samples need to be modified. Conversely, a lower poison rate may offer
better concealment, but it may not achieve optimal attack performance. Additionally,
there are situations where the adversary can only control a small set of samples, making
it impossible to poison a large number of samples to achieve the attack. Consequently,
the problem of backdooring a model with a limited poison rate becomes an interesting
and challenging research question.

In this section, we conduct empirical investigations to explore whether poisoning
samples with different importance levels influences the attack performance under the
same poison rate. We utilize two metrics to evaluate the attack performance:

1. Accuracy. This metric assesses the deviation of the backdoored model from the
clean model. We measure the performance of the backdoored model on the clean
dataset, and a successful attack should result in accuracy close to that of the clean
model, making it difficult to detect.

2. Attack Success Rate (ASR). This metric evaluates the functionality of the
backdoored model and is measured on the triggered dataset. A desirable back-
doored model should exhibit a high ASR, indicating its ability to misclassify all
triggered samples into the target label.

By analyzing these metrics, we aim to gain insights into the influence of data impor-
tance on the attack performance and further understand the trade-offs between attack
effectiveness and concealment in the context of backdoor attacks.

In this part, we adopt the same approach as BadNets to backdoor the model,
with hyperparameter details provided in Appendix A.12. Additionally, we validate
the generalizability of our conclusion across five other backdoor attacks—Blend [30],
SSBA [73], LF [159], SIG [17], and CTRL [70]—which utilize various trigger patterns or
target different learning paradigms, as discussed in Appendix A.13.

We present the visualized attack success rate in Figure 6.14. As depicted in the
figure, there is a noticeable increase in the attack success rate as the number of poisons
increases. Concurrently, we observe significant differences between poisoning high
importance samples and low importance samples. Specifically, poisoning an equal
number of high importance samples proves to be more effective in increasing the attack
success rate compared to poisoning low importance samples. This phenomenon becomes
more pronounced when the poisoning rate is small. For instance, in the case of CIFAR10,
with a poisoning size of 50, poisoning high importance data results in a model with an
ASR of 54.42%, whereas poisoning low importance data only achieves 37.74%, indicating
a 1.44× advantage. Similar trends can be observed across the other two datasets.

However, we also find that when the poisoning rate is large, the difference is not
significant. We believe this is due to the trade-off between the importance advantage
and the attack upper bound. As the number of poisons increases, the advantage of
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Figure 6.14: Relationship between attack success rate and the poisoning rate, high
importance samples enhance the efficiency of the poisoning process, particularly
when the poisoning rate is small.

using high importance data becomes more evident. However, achieving the optimal
ASR for the backdoor attack does not require a large amount of data. Generally,
poisoning approximately 10% of the dataset is sufficient. Therefore, as the number
of poisons increases, the gap between high importance and low importance samples
is reduced. Nevertheless, it is still observed that poisoning high importance samples
requires poisoning fewer samples to achieve its optimal ASR.

In scenarios where adversaries have limited access to data, determining the true
importance of samples can be challenging, which impacts the feasibility of selectively
poisoning high importance samples. In this case, we empirically demonstrate that
calculating the importance value using just a fraction of the training set can provide a
good approximation of the true importance. For example, with just 2% of the CIFAR10
data available, the computed importance values correlate strongly with those derived
from the entire dataset, achieving a correlation coefficient of 0.811±0.016. The accuracy
of these approximations improves with more data: with 5% of the data, the correlation
coefficient rises to 0.899±0.006, and with 20% of the data, it exceeds 0.96. These results
demonstrate that even with limited data access, it is feasible to closely estimate the
importance of samples, facilitating effective attack planning under realistic constraints.

Additionally, our investigation into the impact on clean accuracy reveals no significant
trends suggesting that poisoning samples of differing importance levels affects clean
accuracy. In both scenarios, the influence on clean accuracy remains below 2%, indicating
the concealment of the backdoor attack. Due to space constraints, detailed results are
deferred to Appendix A.14.

Takeaways: Our experimental results demonstrate that poisoning high importance
samples enhances the efficiency of the poisoning process, particularly when the poisoning
rate is small. This insight offers valuable guidance for developing attack strategies
aimed at compromising models with restricted data accessibility. Beyond refining trigger
patterns for effective injections, prioritizing the poisoning of high importance samples
emerges as a promising approach. On the other hand, the influence on clean accuracy
does not yield a definitive conclusion, as poisoning either type of data has a limited
impact on clean accuracy.
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Figure 6.15: The attack scenario for attribute inference attack. The adversary can
get the embeddings and aims to infer sensitive attributes based on the information
encoded in embeddings.

6.6 Attribute Inference Attack

Attribute inference attack is a privacy attack that aims to infer sensitive attributes that
are not directly related to the original task of a machine learning model. For instance,
a model trained to predict age from profile photos may unintentionally learn to predict
race as well [127, 91, 128]. This type of attack has significant implications for privacy
and fairness, as the inadvertent leakage of sensitive attributes can have far-reaching
consequences, including the violation of privacy rights, potential discrimination, and
the undermining of trust in machine learning systems.

In this work, we focus on a commonly considered attack scenario as depicted
in Figure 6.15, where the adversary exploits the embeddings of a target sample obtained
from the target model to predict its sensitive attributes 2 To perform attribute inference,
the adversary assumes auxiliary information about the training dataset and collects a
shadow dataset from similar distributions. They train a shadow model to mimic the
behavior of the target model and use the embeddings and sensitive attributes to train
an attack classifier.

In this section, we investigate the impact of data importance on the CelebA dataset,
which contains several attributes that can be inferred. We categorize the samples into
five groups, each comprising 10,000 samples, based on their importance values ranging
from low to high. Following this categorization, we train five models using these groups
as target models.

To perform the attack, we utilize 10,000 samples, disjoint from the 50,000 training
samples, to train a shadow model. This shadow model is employed to generate datasets
for training the attack model, where the inputs are embeddings, and the associated
sensitive attributes serve as labels. We train a two-layer fully connected network as the
attack model, which is then utilized to infer the sensitive attribute from the embeddings.

To evaluate the attack performance, we utilize relative accuracy as the metric,
comparing the accuracy against a random guessing baseline that varies for different
attributes due to the uneven distribution of the CelebA dataset.

2We acknowledge that there exists a separate line of research on attribute inference attacks targeting
tabular data [89, 60, 42], which primarily aims to reconstruct missing attribute values in original records.
Given that these attacks employ different technical methodologies and pursue distinct objectives, our
conclusions may not necessarily apply to such work.
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Figure 6.16: Attribute inference attack performance on different attributes, no signif-
icant correlation between attribute inference attacks and data importance is ob-
served. These confirm our hypothesis that the importance of data samples is context-
dependent and can vary based on the specific task at hand.

The experimental results, as shown in Figure 6.16, reveal no significant connection
between data importance and the success of attribute inference attacks. For instance,
the “Arched Eyebrows” attribute is easily inferred for high importance samples, while
only low importance samples can be inferred for the “High Cheekbones” attribute.
Furthermore, the vulnerability to attribute inference for the “Mouth Slightly Open”
attribute is most prominent among samples with middle importance values. These
results demonstrate that there is no significant correlation between attribute inference
attacks and data importance.
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Figure 6.17: The heatmap depicts the correlation among importance values assigned
to different attributes. It indicates that a sample’s elevated importance on one attribute
may not align with its importance on another attribute.

One possible explanation for these results is that the importance value of data
samples may vary depending on the prediction task. In other words, the significance of
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certain features or attributes may differ across different prediction tasks. For example,
while whiskers may be an important feature for predicting gender, it may hold less
importance when predicting income. We validate our conjecture by visualizing the
correlation among importance values assigned to different attributes in Figure 6.17. It
indicates that a sample’s elevated importance on one attribute may not align with its
importance on another attribute.

Takeaways: Our findings indicate that there is not a straightforward correlation
between the significance of data samples and the performance of an attack, aligning
with our initial hypothesis. A pivotal insight from this section demonstrates that the
importance of data samples is context-dependent and can vary based on the specific
task at hand, which resonates with our earlier discovery in Section 6.4.2.

6.7 Data Reconstruction Attack

Data reconstruction attack [164, 156, 41, 152, 112] refers to recovering the target dataset
with limited access to the target model, with the aid of additional knowledge possessed
by the adversary. While data reconstruction attack shares similarities with membership
inference attack, there are significant differences that make data reconstruction a stronger
attack. Specifically, membership inference operates at the sample level, determining
the membership status of individual samples. In contrast, data reconstruction is a
dataset-level attack aimed at extracting the entire training dataset. This distinction
necessitates different technical approaches for data reconstruction.

In this work, we employ two data reconstruction attacks, namely DeepInversion [156]
and Revealer [164], to investigate the influence of data importance on the reconstruction
process. These attacks are based on the optimization of input samples, as illustrated
in Figure 6.18. Specifically, given a target class y, both methods initialize a sample x
and iteratively update it to maximize the likelihood or probability of belonging to that
class while keeping the model parameters fixed. This optimization process is guided by
the following loss function:

min
x
L(fθ(x), y)

DeepInversion leverages statistical information encoded in the batch normalization
layer to enhance the quality of reconstructions, while Revealer employs a Generative
Adversarial Network (GAN) to generate high-quality reconstructions.

Figure 6.18: The workflow of a basic data reconstruction attack, the adversary optimizes
the input to maximize the likelihood of the target class.
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Figure 6.19: Relationship between reconstruction quality and data importance, recon-
struction performance remains steady regardless of the importance level of the data
samples.

To investigate the impact of data importance on the performance of data reconstruc-
tion attacks, we partition the samples into groups of 10,000 based on their importance
values, ranging from low importance to high importance. Subsequently, we train one
target model for each sample group, resulting in a total of five models for CIFAR10 and
CelebA datasets, and ten models for TinyImageNet. We then apply two reconstruction
attacks on each of them. We leverage Fréchet Inception Distance (FID) to measure
the similarity between reconstructed samples and the training samples, given its es-
tablished utility in evaluating the quality of generated distributions [164, 156, 132]. A
smaller FID denotes better reconstruction quality. For each target model, we generate
10,000 reconstructions, matching the size of the training dataset. Subsequently, we
calculate the FID score, quantifying the discrepancy between the reconstructions and
the corresponding training dataset.

The findings presented in Figure 6.19 suggest that there is no significant distinction
between high and low importance data samples in terms of data reconstruction. Taking
CIFAR10 as an example, DeepInversion exhibits a maximum deviation of only 13.02%
compared to the mean value, indicating a consistent performance. Similar results are
observed with Revealer, where the maximum deviation is merely 5.35% compared to the
mean value. Moreover, this consistent performance extends to more complex datasets.
For instance, in the case of CelebA dataset, the maximum deviation is less than 8.27%,
while for TinyImageNet, the deviation is less than 4.01%. These findings suggest that
the reconstruction performance remains steady regardless of the importance level of the
data samples.

6.8 Transferability Study

In order to fortify the generalizability of our conclusions, this section investigates the
transferability of our findings across various model architectures and data modalities.
For the vision modality, we conducted experiments employing two distinct model
architectures, namely MobileNetV2 [115] and ResNet50 [52].

To evaluate the transferability to diverse data modalities, we introduced the tabular
dataset Purchase-100 [13], consisting of 600 binary features for classifying 100 classes. We
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Figure 6.20: Relationship between membership inference attack advantage and data
importance. Results show that our conclusion can be generalized to different model
architectures and data modalities.

focus on the tabular modality considering that existing Shapley methods predominantly
support vision and tabular modalities. We utilize a Multilayer Perceptron (MLP) to
process the Purchase task, aligning with established practices in prior research [125, 114].

Our experimental results consistently support our conclusions, irrespective of the
model architecture and data modality. For example, in Figure 6.20, the three left figures
depict a consistent relationship between the advantage of membership inference attacks
and the importance of data across all three model architectures. This trend is also
evident when performing the attack based on the distance to the boundary (see results
in Appendix A.15). Additionally, Figure 6.20d illustrates that this conclusion holds for
the tabular modality. Although slight fluctuations are observed in the low importance
area, the overall picture demonstrates a consistent relationship between importance and
membership vulnerability, aligning with the conclusions drawn from the vision modality.

Furthermore, this conclusion extends to other attack types, such as model stealing
and backdoor attacks. Due to space constraints, we defer the results to Appendix A.15.
These findings reaffirm the consistent impact of data importance across different attack
scenarios, underscoring the generalizability of our observations.

To foster further research and collaboration, we have open-sourced our evaluation
framework, available at https://github.com/TrustAIRLab/importance-in-
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mlattacks. This will enable other researchers to examine whether the observed data
discrepancies hold for new types of attacks, thereby benefiting the broader community.

6.9 Conclusion

In this chapter, our research systematically studies the vulnerability of heterogeneous
data when confronted with machine learning attacks. Our findings underscore a height-
ened susceptibility of high importance data samples to privacy attacks, including
membership inference attacks and model stealing attacks. Our findings also carry practi-
cal implications, inspiring researchers to design more efficient attacks. For example, we
empirically showcase the potential enhancement of membership inference attacks through
the incorporation of sample-specific criteria based on importance values. Additionally,
we demonstrate that our findings can be strategically employed to guide the creation of
more advanced attacks through the active manipulation of sample importance.
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7.1. MEMBERSHIP INFERENCE ATTACK

In addition to the attack approach investigated in our dissertation, several methods
exist for privacy and security attacks against machine learning models. In the following
section, we provide a brief overview of these approaches.

7.1 Membership Inference Attack

Membership Inference Attacks (MIA) [125, 114, 75, P1, T2, S6] have emerged as a
significant threat to privacy in the context of machine learning models. These attacks
aim to reveal the membership status of a target sample, i.e., whether the sample was
part of the training dataset or not, thereby directly breaching privacy.

The seminal work by Shokri et al.[125] introduced MIA against machine learning
models, wherein multiple shadow models were trained to mimic the behavior of the
target model. This attack originally required access to data from the same distribution
as the training dataset. However, Salem et al.[114] relaxed this assumption by demon-
strating the effectiveness of using only a single shadow model, substantially reducing
the computational cost involved.

Subsequent research [31, 75] has explored more challenging settings for MIA. In
these scenarios, the adversary only has access to hard-label predictions from the target
model. Li and Zhang [75] proposed a method that approximates the distance between
the target sample and its decision boundary using adversarial examples, enabling the
attacker to make decisions based on this distance.

Recent advancements in MIA have focused on enhancing attack performance. Carlini
et al.[21] leveraged the discrepancy between models trained with and without the target
sample to improve attack effectiveness. Liu et al.[81] demonstrated the utility of loss
trajectory analysis in MIA. Furthermore, Tramèr et al. [140] highlighted the potential of
data poisoning, showing that even with access to a small fraction of the training dataset,
the attacker can significantly boost the performance of membership inference attacks.

7.2 Model Stealing Attack

Model stealing attacks [141, 100, 64, 142, T3, T1] aim to extract information from
a victim model and construct a local surrogate model. This attack was initially
proposed by Tramèr et al.[141], assuming that the adversary has access to a surrogate
dataset for stealing the model. Orekondy et al. further advanced this approach by
developing a reinforcement learning-based framework that optimizes query time and
effectiveness [100].

Recent research has focused on the more stringent data-free setting, where adversaries
lack access to any data. In this context, Kariyappa et al. [64] propose MAZE, which
employs a generative model to generate synthetic data samples for launching the attack.
The generator is trained to maximize disagreement between the victim model and the
clone model, requiring the gradients from the victim model. To approximate these
gradients with only black-box access, zeroth-order gradient estimation techniques are
adopted.

Truong et al. [142] present a similar approach, where they replace the loss function
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from Kullback-Leibler (KL) divergence to ℓ1 norm loss for training the student model.
In contrast to the previous attacks that generate “hard” queries that differ in predictions
between the victim and clone models, Sanyal et al. [116] adopt a different strategy by
generating "diverse" queries to increase predictions belonging to different classes.

7.3 Backdoor Attack

Backdoor attacks [50, 80, P3, 16, 70] are training-time attacks that introduce malicious
behavior into the model, making it behave like a benign model for normal inputs, while
intentionally misclassifying the input to a predetermined class when the trigger appears.

The seminal work by Gu et al.[50] introduced the concept of the backdoor attack
on machine learning models. Building upon this, Liu et al.[80] proposed an advanced
backdooring technique that incorporates enhanced triggers and relies on fewer assump-
tions. However, these attacks were limited to injecting static triggers, making them
susceptible to detection.

Salem et al.[P3] integrated generative models to perform dynamic backdoor attacks,
where the trigger is not fixed thus increasing the difficulty of detection. Nguyen and
Tran[97] further extended this concept to design an input-aware attack. Most existing
attacks in this domain are based on poisoning attacks [P2, 94, 121, 169], which involve
poisoning the training dataset. In contrast, Bagdasaryan and Shmatikov [16] propose a
distinct attack target in the scenario where the learning algorithm itself is poisoned,
presenting an alternative approach in this field of study.

7.4 Data Reconstruction Attack

Data reconstruction attacks [41, 152, 51, 112] aim to recover the target dataset with
limited access to the target model, with the aid of additional knowledge possessed by
the adversary.

In the realm of data reconstruction attacks, existing approaches can be broadly
classified into three categories: optimization-based attacks, training-based attacks, and
analysis-based attacks.

Optimization-based attacks, first introduced by Fredrikson et al.[41], represent
the majority of existing reconstruction attacks. These attacks employ an iterative
optimization process to reconstruct the training dataset, with the objective of obtaining
a high likelihood score for the desired class. Notably, the integration of generative
models by Zhang et al.[164] has contributed to improving the quality of reconstruction.
Building on this line of research, several studies have explored diverse architectural
choices [28, 145] and loss functions [132] to further enhance reconstruction performance.

Conversely, training-based attacks [152] regard the target model as an encoder and
train a corresponding decoder network to reconstruct inputs based on the model’s
outputs. Recently, Haim et al. [51] presented a theoretical demonstration that, under
specific assumptions, the training data can be completely recovered, leading to a new
attack approach.
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Machine learning (ML) has undergone rapid development, significantly driving
technological innovations through models like large language models (LLMs) and vision-
language models (VLMs). A key factor behind these breakthroughs is the critical role
of data, where high-quality and diverse datasets are essential for improving model
performance and mitigating biases. However, this heavy reliance on data also exposes
vulnerabilities, such as data poisoning and privacy risks, including membership inference
attacks that reveal whether specific data points were used in training. While data drives
ML advancements, it also introduces significant security and privacy concerns.

This dissertation presents four peer-reviewed publications [P1, P2, P3, P4] that
examine the role of data in adversarial machine learning.

In our first work [P1], we introduced the first text-only membership inference attack
targeting in-context learning (ICL). Our attack proved effective across various scenarios,
including cases where the language model is restricted to generating responses from a
predefined list. Extensive experiments with diverse datasets and models demonstrated
the attack’s efficacy. We identified that the vulnerability arises from the interplay
between prompt size and demonstration position. Furthermore, our investigation
revealed that information leakage persists even as models evolve over time. To mitigate
this, we explored three defense strategies, finding that their combination significantly
reduces privacy risks. While our study advanced understanding of ICL vulnerabilities
and proposed practical defenses, achieving a comprehensive and generalized defense
remains an open challenge. Our findings provide valuable insights for researchers and
practitioners focused on secure, privacy-conscious LLM development.

In our second work [P2], we proposed EntF, a novel poisoning attack that decreases
a deep learning classifier’s accuracy, even with adversarial training (AT). Our approach
exploits feature entanglement between different classes, showing effectiveness against
adversarial training in diverse settings, including more aggressive AT budgets and
unseen model architectures. We also explored the distinct roles of robust and non-robust
features in poisoning both standard and AT models, demonstrating that hybrid attacks
can successfully target both. We encourage future research to develop stronger defenses
and analyze EntF in broader contexts, particularly in scenarios where the poisoner does
not have access to the training data. Extending this approach to data-free poisons could
also be a promising direction.

Our third work [P3] focused on backdoor attacks, where an adversary manipulates a
model to misclassify any input with a specific trigger. We introduced the first set of
dynamic backdoor attacks, allowing triggers to have multiple patterns and locations. We
proposed three techniques: Random Backdoor, which samples triggers randomly, BaN,
a generative network to construct triggers, and c-BaN, which generates label-specific
triggers. Our evaluations showed that all methods achieved high success rates while
preserving model utility, and they effectively bypassed state-of-the-art defenses against
backdoor attacks.

In our final work [P4], we studied the vulnerability of heterogeneous data to machine
learning attacks, revealing that high-importance data samples are more susceptible
to privacy attacks such as membership inference and model stealing. We empirically
demonstrated that attacks can be enhanced by targeting these critical data samples
and suggested that these insights could be used to design more advanced attacks.
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Future Research Directions: The concept of availability attacks has potential use
cases in protecting user data from misuse. However, two key challenges need addressing.
First, attackers typically do not have access to the reference model, making it difficult
to design effective attacks without this assumption. While some research has explored
data-free poisons [119], these methods can often be defended with adversarial training.
Developing robust availability attacks without the need for a reference model is an
important area for future exploration. Second, current clean-label attacks typically
require poisoning the entire dataset, which is impractical in many scenarios. Our findings
in Chapter 4 suggest that poisoning only a subset of the data can still significantly
degrade model performance, but further improvement is possible. Research has shown
that poisoning a small portion of the dataset can reduce performance to near-random
guessing [57, 19], though applying such methods to more complex models like neural
networks is still a challenge, especially in adversarial training contexts.

While this dissertation provides valuable insights into the relationship between data
importance and vulnerability to specific attacks, several limitations exist that warrant
further investigation. Our study focuses on a specific set of attacks. Although these are
important, they may not cover the entire spectrum of potential threats. Other types of
attacks could exhibit different relationships between data importance and vulnerability,
and understanding how these various attacks interact with data importance remains an
open area for exploration.

Extending our findings to Large Language Models (LLMs) presents substantial chal-
lenges despite their promising advancements. The primary obstacle is the computational
cost associated with calculating importance values. To manage this burden, current
methods often resort to computationally lighter algorithms like KNN for classification
tasks. However, it is unclear whether similar computationally efficient approaches
can be adapted to approximate auto-regression models, especially since LLMs exhibit
unique emergent characteristics when scaled beyond certain thresholds. Additionally,
the considerably larger datasets typical of LLMs further complicate the feasibility of
extending these methods.

Furthermore, when discussing how data augmentation influences data importance,
our research does not examine more complex augmentation techniques, such as those
utilizing generative models. Future work should investigate whether these advanced
techniques affect data importance and vulnerability differently. Additionally, exploring
whether there exists a generalizable method to manipulate data importance across
various augmentation techniques would be invaluable.
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A.1. INFLUENCE OF MEMORIZATION ON ATTACK PERFORMANCE

A.1 Influence of Memorization on Attack Performance

To investigate the effect of memorization, we fine-tuned the LLaMA model using the
LoRA technique with 2,000 samples from DBPedia, resulting in the model heavily
memorizing DBPedia content. The attack performance showed a significant decrease,
with accuracy dropping from 0.934 to 0.782. Specifically, after being fine-tuned on
the DBPedia dataset, the model exhibited increased confidence in its responses to test
samples, regardless of their presence in the prompt. As illustrated in Figure A.1, after
fine-tuning, more number of brainwash is required to change the model’s prediction,
indicating strong memorization.

However, it is important to note that this represents an extreme case. Our ex-
periments are conducted on commonly used benchmark datasets typically used for
pre-training. If evaluated on entirely unseen datasets, we would expect even better
performance, as the model would be less confident on unseen data.
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Figure A.1: Distribution of the number of iterations before and after fine-tuning. The
results indicate that post-fine-tuning, the model exhibits increased confidence in its
samples, irrespective of their membership status. Both member and non-member
samples require a greater number of iterations to alter their predictions, leading to a
degradation in attack performance. The experiments are conducted on the DBPedia
dataset using the LLaMA model.

A.2 Attack Performance Over Time (DBPedia)

We investigated performance changes using the DBPedia dataset. Due to the deprecation
of some versions, we conducted experiments on gpt-3.5-turbo-0613, gpt-3.5-turbo-1106,
and gpt-3.5-turbo-0125. Results presented in Figure A.2 indicate that no single version
consistently outperforms the others in terms of robustness.

127



APPENDIX A. APPENDIX

GAP Inquiry Repeat Brainwash
Attack

0.0

0.2

0.4

0.6

0.8

1.0

A
dv

an
ta

ge

0613

1106

0125

Figure A.2: We evaluate the evolution of attack performance on the DBPedia dataset
using three versions of the GPT-3.5 API (gpt-3.5-turbo-0613, gpt-3.5-turbo-1106, and
gpt-3.5-turbo-0124). The results from the DBPedia dataset align with our findings on the
TREC dataset, indicating that the robustness of commercial models like GPT-3.5 does
not consistently improve over time.

A.3 Well-Separable Features in Existing Methods

Instead of introducing entangled features, most existing poisoning methods rely on
generating certain shortcut perturbations that can be more easily learned by the target
model than the actual image content [136, 118, 38, 157]. Figure A.3 visualizes the poison
representations of different existing methods on an adversarially-trained model. As
can be seen, although there exist certain differences between the patterns of different
methods (e.g., regarding the relative positions of different classes), all these methods
indeed yield well-separable data. This observation also confirms that causing entangled
features is a sufficient condition to degrade adversarial training.
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Figure A.3: The t-SNE visualizations of the feature representations for existing poisoning
methods.

A.4 Additional Analysis of Entangled Features

Our experimental results have demonstrated the effectiveness of EntF in various scenarios.
Here we provide additional analysis to better understand the property of entangled
features. To this end, we adjust the class selection strategy in EntF-pull to be simply
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based on pairwise entangled features. Specifically, each pair consists of two classes that
have a minimal centroid distance. For optimization, we calculate the centroids of each
class pair and then minimize the distance between samples in one class and the centroid
of the other class. We denote this attack variant targeting pairwise entangled features
as EntF-pull-pair.

We find that EntF-pull-pair can decrease the model accuracy from 84.88% to 78.21%,
which indicates that introducing pairwise entangled features can already substantially
compromise adversarial training. However, there is still a large performance gap between
EntF-pull-pair and our original EntF. This can be explained by the fact that EntF-
pull exploits more diverse pulling directions based on the sample-class distance, and
EntF-push makes samples from multiple classes become overlapped. The visualizations
in Figure A.4 clearly confirm the above observation that EntF-pull-pair yields entangled
features to some extent but still fewer than the original EntF-pull and EntF-push.
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Figure A.4: The t-SNE visualizations for EntF-pull-pair vs. our original EntF (Pull and Push).

A.5 Additional Perturbation Visualizations

Perturbation visualizations for different ϵref for more datasets can be found in Figure A.5.
Visualizations suggest that poisoning ST and AT models requires modifying different
types of features. More specifically, modifying the robust (semantic) features is the key
to poisoning AT models, while modifying the non-robust features works for ST models.

A.6 Augmentation As A Defense

Experiments in Figure A.6 show that data augmentations can reduce the performance
of our dynamic backdoor attacks; however, they cannot prevent it and can drop the
utility significantly.

A.7 Effectiveness of KNN-Shapley

We validate the efficacy of the KNN-Shapley method to ensure its accurate assign-
ment of importance value to individual samples, the parameter settings are presented
in Appendix A.8.

We apply the KNN-Shapley approach to three distinct datasets and compute the
importance value for each sample. To gain insight into the contribution of different
samples to the model’s utility, we visualize the distribution of importance values for the
CIFAR10 dataset in Figure A.7a. Full results are depicted in Appendix A.9.
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Clean ϵref = 4 ϵref = 8

(a) CIFAR-100

Clean ϵref = 4 ϵref = 8

(b) TinyImageNet

Figure A.5: Perturbation (normalized to [0,1]) visualizations for CIFAR-100 and TinyIma-
geNet.

The observed distribution aligns with our expectations, as most samples exhibit
similar contributions, while certain samples significantly influence the model’s behavior.
We corroborate this finding with the other two datasets, and include the corresponding
visualizations in Appendix A.9.

Subsequently, we empirically validate whether samples with high importance values
and those with low importance values demonstrate distinct training performance. To
achieve this, we sort the samples based on their importance values and form two sets:
one comprising samples with the highest values and the other consisting of samples with
the lowest values. We employ these two sets to train two separate models and evaluate
their performance on the testing dataset. We vary the size of these two sets from 50
to 5000 and plot the corresponding testing accuracy in Figure A.7b, Figure A.7c, and
Figure A.7d.

The figures clearly demonstrate that samples with varying importance values exhibit
significant differences in training performance. Specifically, considering the CIFAR10
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A.8. MEASUREMENT HYPERPARAMETER
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Figure A.6: The performance of the cBaN technique when applying data augmenta-
tions techniques when training the target model. Figure A.6a and Figure A.6b shows
the utility and ASR, respectively.
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Figure A.7: Distribution of importance value and learning characteristics for data with
different importance. High importance samples contribute to better model utility when
the dataset has the same size. Importance distribution for CelebA and TinyImageNet
can be found in Appendix A.9.

dataset trained with 2000 samples, the model trained with high importance samples
achieves a testing accuracy that is 1.6× higher compared to the model trained with
low importance samples. Moreover, in the case of TinyImageNet, the disparity is even
more pronounced. When the training set comprises 5000 samples, the model trained
with valuable data attains a testing accuracy that is 4.4× higher than that of the
model trained with low importance samples. These experimental findings provide strong
evidence supporting the effectiveness of KNN-Shapley.

Regarding scalability, Jia et al. [63] provide a runtime demonstration (Figure A.8 for
ease reference) showing that existing measurement methods, except for KNN-Shapley,
do not scale efficiently to large datasets, even as CIFAR10.

A.8 Measurement Hyperparameter

In implementing the KNN-Shapley method, we set the hyperparameter k = 6, following
the suggestion in the original paper [62]. Further experimentation with k = 7 and k = 8
indicated that performance remains largely consistent across these settings. Specifically,
the correlation between importance values calculated with k = 6 and k = 7 is 0.9988,
and between k = 6 and k = 8, it’s 0.9972, demonstrating the robustness of our results
with respect to this hyperparameter.
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Figure A.8: A runtime comparison of current measurement methods reveals their
significant computational inefficiency. (Figure adapted from Figure 1 in [63])
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Figure A.9: Importance distribution for CelebA, TinyImagenet, Purchase.

A.9 Importance Distribution

Figure A.9 shows the importance distributions for the CelebA and TinyImageNet
dataset.

A.10 CelebA Attribute Selection

The CelebA dataset contains 40 binary attributes, which is not suitable for multi-class
classification. Therefore, we follow previous works [98, P3, 167, S2] that select the three
most balanced attributes (Heavy Makeup, Mouth Slightly Open, and Smiling) to create
an 8-class (23) classification task.

To validate that our findings are not dependent on this specific attribute selection, we
conducted the same experiments using another randomly selected set of attributes (High
Cheekbones, Arched Eyebrows, and Wearing Lipstick). We evaluated the performance
on membership inference attacks, model stealing, and backdoor attacks. The results
are depicted in Figure A.10, confirming that our findings are consistent across these
different attribute sets. For example, Figure A.10a demonstrate that samples with higher
importance are more vulnerable to membership inference attack; it also reflects on the
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A.11. MEMBERSHIP INFERENCE ATTACK
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Figure A.10: Attack performance on samples with high and low importance. The
results demonstrate that our conclusions are consistent across different sets of selected
attributes.

worst-case evaluation as illustrated in Figure A.10b. The conclusion holds for backdoor
and model stealing attack, specifically, with a 1500 query budget, high importance
samples can steal a surrogate model with 48% higher accuracy than that stolen by low
importance samples.

A.11 Membership Inference Attack
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Figure A.11: Relationship between distance to the decision boundary and importance
value.

Figure A.11 depicts the distance to the boundary for samples with different impor-
tance values, measured by two different norms. Figure A.12 represents the log-scale
ROC curves for attacks conducted based on the distance to the boundary.
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(d) CIFAR10
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Figure A.12: Log-scale ROC curve: membership inference attack based on the distance
to the decision boundary. The first row is results generated using ℓ1 norm while the
second row is using ℓ2 norm.

A.12 Hyperparameters for Backdoor Attacks

For the three datasets evaluated in our study—CIFAR10, CelebA, and TinyImagenet—a
consistent modification was applied to each image: a black square was positioned at the
bottom left corner.

The dimension of this black square, or backdoor trigger, varied according to the
image sizes of the respective datasets to maintain proportional consistency. Specifically,
for the CIFAR10 dataset, with an image resolution of 32× 32, the trigger was sized at
2× 2. In the case of CelebA, which features larger images with dimensions of 178× 218,
the trigger’s size was increased to 8× 8. Lastly, for images from TinyImagenet, which
are 64× 64 pixels, a 5× 5 square was used as the trigger.

A.13 More Backdoor Attacks

To assess whether the observation that poisoning high importance data samples enhances
backdoor attack effectiveness is applicable to various trigger patterns, we broadened
our study to include three additional backdoor methods. These methods comprise
Blend [30], which incorporates triggers covering the entirety of the input; SSBA [73],
characterized by sample-specific and invisible triggers; LF [159], which utilizes triggers
of low frequency; SIG [17], a method without label poisoning; and CTRL [70], which
targets contrastive learning.

We utilized the BackdoorBench tool [150] to conduct our experiments, adhering
to all default implementation settings with the sole modification being the selection
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A.14. CLEAN ACCURACY PERFORMANCE
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(a) Blend [30]
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Figure A.13: Relationship between attack success rate and the poisoning rate on
different backdoor attacks, the conclusion that high importance samples enhance
the efficiency of the poisoning process holds for other backdoor attacks with different
backdoor patterns and learning paradigms.

process for poisoning samples.
The results, depicted in Figure A.13, consistently demonstrate that the poisoning

of high importance samples significantly improves the efficacy of the backdoor attacks
across more complex trigger patterns, thus underscoring the robust generalizability of
our conclusions.

A.14 Clean Accuracy Performance

The effect of poisoning high and low importance samples on clean accuracy is depicted
in Figure A.14.

A.15 Transferability Study

Figure A.15 and Figure A.16 demonstrate the transferability on model stealing and
backdoor attack.

Figure A.17 showcases Log-scale ROC curves for three distinct architectures utilizing
three different norms. The experiments are conducted on the CIFAR10 target dataset.
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Figure A.14: Relationship between accuracy and the poisoning rate, poisoning samples
with different importance does not have a significant difference.
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Figure A.15: Relationship between model stealing accuracy and the query budget.
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Figure A.16: Relationship between backdoor attack success rate and the poisoning
rate.
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A.15. TRANSFERABILITY STUDY
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(c) ResNet50
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(e) MobileNetV2
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(g) ResNet18
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(h) MobileNetV2
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(i) ResNet50

Figure A.17: Log-scale ROC curve: membership inference attack based on the distance
to the decision boundary. The first row is results generated using ℓ1 norm, the second
row is using ℓ2 norm, and the third row is using ℓ∞ norm.
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