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ABSTRACT

Finding ground state energies on current quantum processing units (QPUs) using algorithms such as the variational quantum eigensolver
(VQE) continues to pose challenges. Hardware noise severely affects both the expressivity and trainability of parameterized quantum circuits,
limiting them to shallow depths in practice. Here, we demonstrate that both issues can be addressed by synergistically integrating VQE with a
quantum subspace expansion, allowing for an optimal balance between quantum and classical computing capabilities and costs. We perform
a systematic benchmark analysis of the iterative quantum-assisted eigensolver in the presence of hardware noise. We determine ground state
energies of 1D and 2D mixed-field Ising spin models on noisy simulators and the IBM QPUs ibmg_quito (5 qubits) and ibmg_guadalupe
(16 qubits). To maximize accuracy, we propose a suitable criterion to select the subspace basis vectors according to the trace of the noisy
overlap matrix. Finally, we show how to systematically approach the exact solution by performing controlled quantum error mitigation based
on probabilistic error reduction on the noisy backend fake_guadalupe.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0217294

I. INTRODUCTION the other hand, is generally more demanding.””*”* Here, the limit-
ing factors are that deep circuits are often needed to accurately rep-
resent the ground state, in addition to the need to perform a costly
high-dimensional classical optimization of a (generally nonconvex)
noisy cost function that often experiences barren plateaus.””” The
quantum-—classical feedback loop in VQE results in large measure-
ment overheads although some of the difficulties can be alleviated
with alternative algorithms, such as the quantum imaginary time
evolution.”

Alternatively, quantum subspace expansion (QSE) algorithms
have been proposed to simulate ground and excited states as well

The rapid advancement and deployment of quantum pro-
cessing units (QPUs) demand parallel development of quantum
algorithms, which can leverage this evolving technology to address
open scientific challenges. Many near-term quantum algorithms
have been proposed, among which state preparation, energy estima-
tion, and dynamics simulation methods are particularly pertinent to
physics, chemistry, and materials science research.”  Representative
practical calculations on QPUs include post-quench or periodically
driven nonequilibrium dynamics and correlation function measure-
ment utilizing Trotter-decomposed circuits,” ' ground state energy

L1:6G:50 G202 IudY 2

estimation using auxiliary-field quantum Monte Carlo guided by
trial states prepared on a QPU (QC-AFQMC),'® and state prepa-
ration by optimizing parameterized quantum circuits (PQCs)."” '
Near-term applications with a large number of qubits favor quantum
dynamics simulations with Trotter circuits owing to their modest
circuit depth scaling and the possibility of matching the required
gates to the hardware connectivity." "' The execution of variational
algorithms, such as the variational quantum eigensolver (VQE), on

as nonequilibrium dynamics. The quantum Krylov subspace expan-
sion and its generalizations utilize subspaces that are generated along
the trajectory of quantum imaginary-"""" or real-time’ ™ evolu-
tion from various initial states. One can also use block encodings
to build the Krylov subspace.””” These algorithms are still chal-
lenging to implement on noisy intermediate-scale quantum (NISQ)
devices. For example, measuring off-diagonal elements of Hamilto-

nian and overlap matrices in the nonorthogonal subspace involves
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the use of the Hadamard test, which generally involves deep Trotter
circuits controlled by an ancilla qubit. For practical calculations on
current QPUs, QSE methods where the basis states are prepared by
applying tensor products of Pauli operators on a reference state are
preferable.”” ** They only require direct measurements even though
a substantial number of measurements is often needed.

Here, we focus on the iterative quantum-assisted eigensolver
(IQAE)* to highlight the general idea that VQE and QSE can
be synergistically integrated (VQESE) to improve the accuracy of
ground state energy estimation on noisy intermediate-scale quan-
tum (NISQ) hardware. We systematically investigate the benefits
and trade-offs of balancing the depth of the VQE Ansatz (param-
eterized by the number L of circuit layers) with the size of the
QSE basis (parameterized by the expansion moment K) to obtain
a desired ground state energy accuracy. Since we specifically explore
IQAE along these two different directions parameterized by L and K,
we refer to the algorithm as the “paired iterative quantum-assisted
eigensolver” (PIQAE) in the following.

Our results emphasize the capacity of PIQAE to enhance
the accuracy of ground state calculations by choosing variational
Ansdtze of circuit depth L that are compatible with hardware
errors and subsequently refining the variationally optimized state
via expansion in a fine-grained Krylov subspace (to be defined
below) up to an expansion moment K that is allowed by the clas-
sical and quantum computational budget. The expansion increases
the expressivity of the resulting wavefunction without complicating
trainability since the diagonalization of the low-energy Hamiltonian
in the Krylov subspace (whose coefficients are obtained via quantum
measurements) is performed fully classically. Thus, one can consider
various PQC forms of controlled depth, including adaptively gener-
ated, problem-specific Ansitze."”"’ To demonstrate the versatility of
PIQAE, we here employ the layered Hamiltonian Variational Ansatz
(HVA), which offers flexibility in adjusting circuit depth via layer
number L.

Through statevector simulations of 1D and 2D transverse and
mixed-field Ising models (TFIMs and MFIMs), we show that PIQAE
achieves accurate ground state solutions along the pair of parameter
axes defined by VQE Ansatz depth L and QSE moment K. Our find-
ings reveal that the convergence with K occurs more rapidly with
increasing L. We then investigate the effects of various hardware
noise sources, focusing first on shot noise. Noise poses a severe chal-
lenge since the generalized eigenvalue problem (defined by noisy
Hamiltonian and overlap matrices) is not bounded from below by
the true ground state energy Eg. One, therefore, needs to impose a
criterion to choose the optimal number of subspace basis vectors,
M ,, to obtain accurate energy estimates. Here, we propose a cri-
terion based on the trace of the overlap matrix, which we find to
provide reliable and accurate energy estimates across different sys-
tem sizes and noise levels. We then perform PIQAE calculations of
5- and 16-site MFIMs on the ibmq_quito and ibmq_guadalupe
QPUs. Using quantum error mitigation techniques, we observe an
order of magnitude improvement of the energy error per site com-
pared to the initial VQE energy. Finally, we demonstrate on the
noisy simulator fake_guadalupe how one can approach the exact
solution of the 16-site MFIM using controlled quantum error miti-
gation based on probabilistic error reduction, which includes noise
tomography.

pubs.aip.org/aip/apq

Il. METHOD

For completeness, we now describe the iterative quantum-
assisted eigensolver of Ref. 40, which is a NISQ-compatible algo-
rithm to obtain the ground state energy of a Hamiltonian based on
the Krylov subspace (KS) expansion. Let us define a generic qubit
Hamiltonian,

Nu
H = Z Cij, (1)
j=1

as a weighted sum of Pauli strings (P; = {I,X,¥,Z}®) for an N-
qubit system, where {1, X, ¥, Z} are the identity and Pauli operators,
respectively. The coefficients ¢; are real owing to the fact that % is
Hermitian.

Starting from a (normalized) state |¥), which can be prepared
on a quantum computer, the fine-grained Krylov subspace (FGKS)
of moment K is defined as the union,

CSk = {|V,~)}1].V§1 = UK. oSk 2
where S = {|V;) = 13]-|\I’)}pj op,- Here, we define
Py = HA\Uf |, 3)

with H¥ being the set of Pauli strings in #* and H® = {{®N}. Thus,
Py is the set of Pauli strings in % that did not appear in any lower
power of %' (I < k). Note that Nx denotes the number of terms in
the overcomplete basis |V;) that spans CSk, which may be different
from the dimension of the FGKS, because some of the vectors |V;)
can be linearly dependent.

An approximation to the ground state is given by the lowest
energy eigenvector |¥ks) of the generalized eigenvalue equation,

> HiVik =, SiViehk (4)
] ]

Here, % = (Vi|#|V) and §; = (Vi|V;) are the Hamiltonian and
overlap matrices, respectively, given in terms of the overcomplete
basis vectors of the subspace CSk. The kth eigenvalue Ay is associ-
ated with (column) eigenvector V. Note that one can measure the
matrix elements of # and & directly on a quantum computer as they
amount to the expectation values of Pauli strings in state [¥'). In the
following, we use Pk = |CPk]| to denote the size of the set of unique
Pauli strings in

5 1
CPx = {P;byP ]}?P“kuﬂ”k . (5)
that are used in the computation of # and §. As discussed in Ref. 40,
the accuracy of the IQAE ground state solution depends on the ini-
tial (or zero-moment) state |¥') and the moment K of the subspace
expansion. The critical moment K, for convergence to a desired
accuracy is problem-dependent and upper bounded by the rank of
the Hamiltonian .

Within PIQAE, one approaches this dependence on [¥) and K
systematically with the goal of improving the ground-state solution
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along these two different directions while balancing the quantum
and classical computational costs according to the available hard-
ware. The quality of the zero-moment state [¥) can be described
by the depth of a state preparation circuit. For the numerical stud-
ies here, we adopt the Hamiltonian Variational Ansatz (HVA) to
prepare the zero-moment state,

[Wr) = T, %(6) o), (6)

where each layer of parameterized unitaries %(6;) depends on the
Hamiltonian and the circuit depth is proportional to total num-
ber of layers L. The reference state [¥o) = H®N|0), where H is the
Hadamard gate and [0) = [0)®Y, is taken to be a uniform product
state in the x basis.

IIl. MODELS AND HVA ANSATZE
We consider an N-site spin-1/2 MFIM with Hamiltonian

% = ]Z ZiZj + Z (hxX,' + h/Z,»), (7)
() i

where X and Z are Pauli matrices, ] is the nearest-neighbor coupling
amplitude, and h, and h; are the transverse and longitudinal mag-
netic field strengths, respectively. (ij) indicates that the summation
is restricted to nearest-neighbors. The model reduces to the TFIM
by setting k. = 0. In the following calculations, we set ] = —1 to be a
ferromagnetic coupling and use |J| = 1 as the energy unit. The other
parameters, h, and h;, are given within each specific calculation
below, where we consider systems in both one and two dimensions.
In 2D, we consider both a square lattice geometry and the heavy-hex
lattice geometry of the IBM QPUs.

For the MFIM, we adopt the following form for the one-layer
unitaries of the HVA Ansatz,

%)) = U ()% (B)U (o), (8)

where

U* () = exp (—iZZ Z,-Z-), )]
(4}

U (B) = exp (—igz Z,-), (10)

U (y) = exp (—%Z Xi). (11)

The unitaries above originate from the exchange coupling term
and the longitudinal and transverse field terms in the Hamiltonian,
respectively. The associated variational parameters are denoted by
a, B, and y. For the TFIM, the one-layer unitaries take a simpler form
since the longitudinal field term vanishes,

%(01) = CZ/X()/[)CZ[ZZ((X]). (12)

pubs.aip.org/aip/apq

IV. QUANTUM RESOURCE ESTIMATION

The quantum resources required for a PIQAE calculation com-
prise the PQCs for preparing the zero-moment state |¥) in Eq. (8)
and measurement circuits for the P Pauli strings in CPk. Since the
preparation of the zero-moment state is a typical VQE calculation
with a particular choice of Ansatz, for which the associated quan-
tum resource requirements have been extensively discussed,”” " we
focus on the contribution from measurements needed for the QSE.
Here, the quantum resource cost is controlled by the number of
groups of commuting Pauli strings in CPx such that all Pauli strings
in a given group can be measured simultaneously. In Fig. 1(a), we
plot the number of groups of Pauli strings N as a function of sys-
tem size N for the 2D TFIM. As the partitioning of observables into
self-commuting groups is equivalent to an NP-hard graph coloring
problem, we use a heuristic greedy coloring algorithm that includes
vertices of the largest degree first" to determine Ny for two differ-
ent values of the expansion moment K. As expected, Ny for K =2
(red squares) is much larger than that for K = 1 (black circles) due
to the larger Pk, as shown in Fig. 1(b). Nevertheless, Ny shows a
modest, approximately linear growth for large N. In practice, this
places within reach system sizes N on the order of a hundred, which
can be challenging to simulate classically.

For reference, one can get a loose upper bound for Ng by con-
sidering the specific case of the TFIM [Eq. (7)]. For moment K = 1,
CPx can be split into the following self-commuting groups: all Z
site-wise, all X, all Y, all Z except X;, all Z except Y;, all X except a
nearest neighbor pair ZZ, all X except a nearest neighbor pair YZ,
and all X except a nearest neighbor pair ZY, which amounts to the
upper bound,

Number of groups
— —
(==} (=)
> S
T T
—
[ 5]
&

_
<
T

100+

Dk

2x22x3 3x3 3x4 4x4
N

FIG. 1. System-size dependence of the number of groups of commuting Pauli
strings in CP for the 2D TFIM. (a) Number of self-commuting groups Ng of Pauli
strings as a function of system size N for moments K = 1 (black circles) and K = 2
(red squares) for the 2D TFIM. These numbers are obtained using a heuristic
greedy coloring algorithm with vertices of largest degree first.** The blue line rep-
resents an analytical upper bound for K = 1. (b) Total number of Pauli strings <
in CIPg for PIQAE calculations of the 2D TFIM on the square lattice with K = 1
(black circles) and K = 2 (red squares).
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Ng<1+1+1+N+N+2N+2N+2N =8N +3, (13)

denoted by the blue line in Fig. 1(a). Note that this analytical
upper bound is close to the greedy coloring results and that the
overestimation becomes larger as N increases.

V. STATEVECTOR SIMULATIONS

In this section, we numerically demonstrate the performance
of the PIQAE method in ground state calculations by investigating
its dependence on the HVA Ansatz layer number L and the FGKS
expansion moment K. We choose here the 1D N = 16 MFIM and
the 2D N = 4 x 4 square lattice TFIM and MFIM as examples and
perform statevector simulations. The transverse field strength is set
to hy = —3.05 for both the 2D TFIM and MFIM, thus placing the for-
mer in the vicinity of a ferromagnetic-paramagnetic critical point.*
On the other hand, for the 1D MFIM, we set h, = —h,/2 = 0.5, while
h; = —hy/2 = 1.525 for the 2D MFIM. In the calculations, we vary L
from zero (i.e., [¥) = |+)® is a product state) to L = 2 and K from
zero (i.e., with a single state |[¥) in the FGKS) to K = 3.

In order to evaluate the accuracy of PIQAE calculations, we
consider in Fig. 2 as a figure of merit the energy error per site,

, (14)

where Eg is the exact ground state energy found via exact diagonal-
ization (ED) of the Hamiltonian in Eq. (7), and the infidelity,

pubs.aip.org/aip/apq

1-F=1-|(g(KL)IG)P, (1s)

of the FGKS ground state |g(K, L)) with respect to the ED state |G).

Generally, the fidelity and energy improve when increasing the
number of Ansatz layers L or the expansion moment K, as expected
due to enhanced expressivity of the wavefunction in the FGKS.
Importantly, the convergence rate with K clearly becomes faster
with increasing L. When L = 0, where the zero-moment state |\¥) is
reduced to a simple product state |+)®", the infidelity and energy
error reduce by about one order of magnitude when K increases
from zero to three for the 2D MFIM. In contrast, with L = 2, they
reduce by about six orders of magnitude in the same range of K
for the 2D MFIM. One can reach an accuracy of 1 - % ~ 10™* and
e~ 107" (relative error ~0.01%) from the PIQAE calculations of
the MFIM either for L =1 and K = 2 or for L =2 and K = 1. Note
that the convergence behaviors of the 1D and 2D MFIMs shown in
Figs. 2(a)-2(d) resemble each other, which shows that the dimen-
sionality does not play an important role in the performance of the
algorithm.

Compared with the MFIM results, the PIQAE calculation for
2D TFIM shows overall slower convergence behavior of the state
infidelity and energy error with L and K, which is consistent with
the model being close to quantum criticality. Here, the convergence
rate with K is similar for L =1 and L = 2 but notably faster than
for L = 0. Still, both calculations with L = 1,2 reach an accuracy of
1-F~10% and e~ 107% at K=2. For reference, in Fig. 2,
we also plot the results from simulations similar to PIQAE but

2D TFIM

[ —— FGKS,L=0
FGKS, L=1
- FGKS,L=2

 N=4x4

-e- KS,L=0
KS,L=1
- N=4x4 - KS,L=2
L L L 1 I L 1 L 1 L 1
0 2 30 1 2 3
Moment K Moment K Moment K

FIG. 2. Fidelity and energy convergence of PIQAE calculations with HVA Ansatz layer number L and FGKS expansion moment K using statevector simulator. (a) State
infidelity, 1 — F = 1 — [(g(K, L)| G)|?, as a function of K with L = 0 (black filled circles), L = 1 (orange filled squares), and L = 2 (blue filled diamonds) for the 1D MFIM
of N = 16 sites. Here, |g(K, L)) is the FGKS ground state, and |G) is the ED ground state. (c) and (e) Similar to (a) but for the 2D MFIM and TFIM on an N = 4 x 4
square lattice. (b) Similar to (a) but for the energy error per site e = [Eq(K, L) — Eg]/N, with Eg(K, L) = (g(K, L|#Z|9(K, L) and Eg = (G|Z|G). (d) and (f) Similar to (b)
but for 2D MFIM and TFIM with N = 4 x 4 sites. For reference, the state infidelity and energy error from the same type of subspace expansion calculations but within the
conventional Krylov subspace (KS), {7 |‘Y)},’f:0, are also presented in each panel, with L = 0 (black open circles), L = 1 (orange open squares), and L = 2 (blue open

diamonds) (see text for Hamiltonian parameters.)

APL Quantum 1, 036127 (2024); doi: 10.1063/5.0217294
© Author(s) 2024

1,036127-4

L1:6G:50 G202 IudY 2


https://pubs.aip.org/aip/apq

APL Quantum ARTICLE

calculated within the conventional Krylov subspace (KS) spanned
by the set of vectors {F#¥|¥)}X, rather than the FGKS. Gener-
ally, the KS expansion results show a slower convergence behavior
than PIQAE calculations. For example, the state infidelity is about
9 x 107*, and energy error per site is about 7 x 10™* for the KS results
of 2D TFIM, compared to 1 — F ~ 2 x 10~ and e ~ 2 x 10~ for the
PIQAE resultsat L = 1 and K = 2.

The observed numerical convergence behaviors are consistent
with the Kaniel-Paige inequality, """ which bounds the error for the
ground state energy estimation using Krylov subspace methods as

Eg(K,L) - Eg < (Ene — E¢)(1/%1 - l)lez(bO)) (16)

with %1 = |(g(K = 0,L)|G)]>. The function Tk is the Kth order
Chebyshev polynomial of the first kind, with the argument
bo =1+ 2(Ere — Eg)/(Ehe. — Ere.) > 1. The error bound is tied to
the many-body bandwidth of the Hamiltonian (the energy differ-
ence between the highest excited state Ej. and the ground state
Eg), the fidelity of the L-layer HVA Ansatz %, and the ratio of the
energy gap between the first excited state Ej .. and the ground state
to that between highest excited state and the first excited state. Note
that Tk (bo) grows rapidly above one with by > 1 and K > 0. Consid-
ering a specific model with fixed by > 0 and bandwidth E;. — Eg,
the reduction of the error bound (16) with K is proportional to
1/%1 — 1, which typically decreases with increasing L and leads to
faster convergence. Taking the N = 16 MFIM (1D) as an example
shown in Fig. 2(a), 1/%; — 1 quickly decreases from 133 to 0.04 to
0.009 when L increases from 0 to 1 to 2. Across the three models
presented in Fig. 2, the & values are quite close between the N = 16
and N = 4 x 4 MFIMs. Furthermore, the crucial factor by control-
ling energy convergence is nearly equal between the N = 16 MFIM
(bo =1.13) and N = 4 x 4 MFIM (by = 1.14). In contrast, we have
bo = 1.05 for the N =4 x4 TFIM, which is significantly smaller
owing to the steepness of the Chebyshev polynomial Tz*(bo)
for by > 1. This accounts for the similar convergence behavior
of the PIQAE calculations for the N =16 and N =4 x4 MFIMs
demonstrated in Fig. 2.

These results demonstrate the flexibility of ground state prepa-
ration using PIQAE, where the simulation strategy can be tailored to
quantum hardware with specific error rates. The classical resource
cost set by K (which fixes the size Dk of #;j and &) and the quan-
tum resource cost tied to L for the circuit depth and K for the
number of measurement bases needed, Ny, can be tuned to reach
optimal results.

Finally, we make a brief technical note. In the above PIQAE
calculations, the ground state is obtained by numerically diagonaliz-
ing the generalized eigenvalue Eq. (4). In practice, the Hamiltonian
matrix & and overlap matrix & may not be full rank due to a linear
dependence of some the FGKS vectors in CSk. This issue is resolved
by the Hamiltonian regularization procedure, which reconstructs
a Hamiltonian matrix in a smaller subspace spanned by the set of
eigenvectors of & with eigenvalues larger than a threshold, which we
setto & = 107°. We refer to the number of truncated subspace basis
vectors as .. We find that Hamiltonian regularization can reduce
the corresponding matrix dimension, with an increasing reduction
rate as a function of expansion moment K, ranging from ~33% for
K =1 and 75% for K = 3 in the calculations shown in Fig. 2.

pubs.aip.org/aip/apq

VI. SHOT-NOISE EFFECTS

The statevector simulations assume infinite precision for the
expectation value (O) of an observable O, while, in practice, (O) is
always subject to statistical errors due to the finite number of sam-
ples (or shots) M; for each measurement, even within a fault-tolerant
quantum computer. Therefore, it is crucial to assess and mitigate the
impact of shot noise on the PIQAE calculations. Specifically, we are
interested to determine how statistical noise in the Hamiltonian %
and overlap matrix & impact the accuracy of the lowest eigenvalue
E¢(K,L) of Eq. (4). This issue has been discussed previously in the
QSE literature,”*" and one possible solution is to use the Hamil-
tonian regularization method adopted in the statevector simulations
but with the number of truncated subspace basis vectors ./ fixed
by a modified hyperparameter, which is the eigenvalue size thresh-
old &_ tied to the number of shots M;. Here, however, we propose
using a hyperparameter-free approach based on preserving the trace
of the overlap matrix, Trd. Since the vectors {|V;)} are normalized,
we find Tr§ = Nk in the noiseless case. After diagonalizing & (with
eigenvalues s; ordered in decreasing size), we can impose the crite-

rion Zi/:%l” si = Nk at the minimal ./, as a way to select the optimal
number /A = M, of states to keep.

Figure 3 shows results for the 2D square lattice TFIM with
N =4x4 sites obtained on the quantum assembly language
(QASM)-based simulator as implemented in Qiskit.”! We set L = 1
for the HVA Ansatz and K = 2 for the FGKS expansion moment.
Since the focus here is on the impact of shot noise on the solution of
the generalized eigenvalue equation [Eq. (4)], we fix the variational
parameters of the HVA Ansatz to those obtained from statevector
simulations (« = 0.154,y = 0.785). We choose M, = 2! for the num-
ber of measurements of each Pauli string in CPx. Figure 3(a) plots
the energy error per site & = |E; — Eg|/N as a function of the num-
ber of truncated subspace basis vectors .#. Here, Eg = Eg(K, L, )
is the lowest energy of the measured (noisy) Hamiltonian matrix
;= (si|#]s;) in the subspace spanned by the eigenvectors {|s;)}
of the noisy & with the largest . eigenvalues. From now on, we
shall use O to emphasize the observable O evaluated in the presence
of shot noise or device errors where needed to avoid confusion. The
associated ground state |g) = |g(K, L, #)) reads

Y N
lg) = > cilsi) =Y el Vi), (17)
i=1 k=1

where ¢; and ¢] are expansion coefficients. The energy error per site
starts at e( = 1) = 0.0217(2), which is slightly higher than that of
the HVA energy (Euva — Eg)/N = 0.017(3) [upper dotted line in
Fig. 3(a)]. Note that the basis vector of the truncated subspace with
A =1 does not necessarily coincide with the zeroth-moment HVA
starting state |¥') owing to the subspace construction method involv-
ing the diagonalization of &. The energy error initially decreases
with increasing ./ and reaches a minimum of about e(.# = 310)
=0.1(9) x 107%, which is comparable to the K = 2, L = 1 statevector
result esy = 0.8 x 107, denoted by the lower dotted line in Fig. 3(a).

The above discussion assumes knowledge of the exact refer-
ence point Eg, for which the minimal error is obtained. Since this
is unknown for larger systems, one needs a criterion independent of
Eg to determine the optimal value of /# = /., for noisy calculations.
The &-trace criterion takes note that Tr& = Nk since the Nk vectors
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FIG. 3. QASM simulator results for 4 x 4 TFIM. (a) Energy error per site ¢ = |Eg
— Eg|/N of the estimated FGKS ground state |g) in the presence of shot noise
as a function of the number of truncated subspace basis vectors .. The zeroth
moment state is an HVA Ansatz with L = 1 layer, the expansion moment is K = 2,
and we used Ms = 2'* measurement shots for each circuit. For comparison, we
also show the error |(g|#|g) — Es|/N of the exact energy of the state |g) as a
function of . (red squares). This quantity is a figure of merit of the ground state
|g). (b) Absolute difference |§j,.ﬁ”1 s; — Nk| between the sum of the largest .#
eigenvalues s; of & and the trace of the overlap matrix Tr & = N as a function of
. The dashed gray line indicates .. Error bars in (a) are standard deviations

estimated based on ten sets of % and <), obtained from sampling the expectation
values of Pauli strings in CIPx according to the multivariate normal distribution
specified by the measured means and standard errors. For clarity, the results are
shown at every tenth point. We set h, = —3.05 for the 2D TFIM as in Fig. 2.

{IV;j)} spanning the FGKS are normalized (recall that this provides
an overcomplete basis for the FGKS). Therefore, the cumulative sum
of the eigenvalues ¥ s; of the overlap matrix & evaluated without
noise is upper bounded by the matrix dimension Nx. Note that the
eigenvalues are ordered such that s; > s;;; for all i. While this upper
bound does not hold in the presence of noise, we propose the §-trace
criterion to determine .#, by minimizing the distance,

/A
Mo = min|Z si — Nx|. (18)
M

Note that generally . can be larger than the truncated subspace
dimension due to potential linear dependence among the .# basis
vectors, which can be subtle in the presence of noise. The §-trace
criterion aims to capture the maximal number (/,) of linearly
independent basis vectors. In Fig. 3(b), we plot the distance as a func-
tion of .. Following the §-trace criterion, we determine /#, = 267.
This gives £ = (1 +1) x 107, which is close to the ranges of esti-
mation above [0.1(9) x 107*]. We include these results in Table I,
which summarizes the accuracy of the ground state energy obtained
for the different noisy simulations performed in this work. As a
figure of merit for the estimated ground state |¢) in Eq. (17), we show
its exact energy expectation value, E; = ( g|#lg) (after normalizing
|g)), as a function of ./ in red squares in Fig. 3(a). Note that we use
the exact Hamiltonian from Eq. (7) here. One can see that the two
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TABLE I. Summary of ground state energy accuracies obtained in the different sim-
ulations in the presence of noise. Here, e( o) = |Eq(K,L, M) — Eg|/N denotes

the error per site at the optimal value of #o and e (Mo) = |Eq(K, L, Mo) ~
Eg|/Eg the relative error.

Model Backend K L e(AMo) erel(Mo) (%)
4 x 4 TFIM QASM 21 1(1)x107° 0.03(3)
5-site MFIM ~ ibm_quito 2 2 2.9(6)x10™°  0.18(4)
16-site MFIM ibm_guadalupe 1 1  0.05(4) 3(2)
16-site MFIM  fake_guadalupe 1 1 1(1)x 107 0.06(6)

curves in Fig. 3(a) exhibit a similar behavior, showing a larger devia-
tion around . 2 200 and starting a slight upturn around ., = 267,
above which they continue to increase. The presence of a minimum
of E, = (g|%#|g) at M, validates the S-trace criterion and provides a
sense of its operational meaning.

VIl. QUANTUM HARDWARE CALCULATIONS
A. 5-site MFIM simulations on ibm_quito

To demonstrate PIQAE calculations on quantum hardware, we
first choose a MFIM of N =5 on a lattice matching the qubit lay-
out of the ibmg_quito QPU, as shown in Fig. 4. An HVA Ansatz of
L = 1isadopted, and the FGKS moment is set to K = 2. Similar to the
benchmark calculations with shot noise, we optimize the parameters
of HVA using the statevector simulator to focus on the impact of
device errors on the subspace expansion step. We obtain the opti-
mal values & = -1 x 1078, B =-1.09, and y = 1.57, which define the
zeroth moment state [¥').

To obtain %;; and &, we have to execute N = 142 measure-
ment circuits, which yields the expectation values of Jx-, = 822
Pauli operators in CPx—,. We adopt the model-free twirled read-
out error extinction (TREX) technique in all the QPU calculations.’?
Diagonalizing the generalized eigenvalue problem (4) then yields
Ej(K=2,L=1,4).

Figure 4(a) shows that the average energy error per site, e(/#),
of the estimated ground state |g) decreases with .# from its ini-
tial value e(.# =1) = 0.0788(5) and reaches a minimum around
A = 49. However, if we were working in a regime where the exact
ground state energy was not available, we would not be able to select
M a posteriori according to the criterion of minimal energy error.
In this case, it is desirable to implement a heuristic such as the
S-trace criterion to select /. As shown in Fig. 4(b), the $-trace crite-
rion suggests an optimal .#, = 29, where the average error is e( /)
=0.0029(6). This is more than an order of magnitude improvement
compared to the initial error and also to the L = 1 HVA energy error
per site 0.13(2). We observe that the exact energy Eg = (g|7f|g) of
the state |g) reaches a minimal error around ., = 29, again vali-
dating the §-trace criterion. The minimal error of the exact energy
at M, is |(g|7#|g) — Ec|/N = 0.0009(1), which is about three times
smaller than the noisy error (., ). This arises from the difference
between % and the measured %, i and suggests sizable device errors.

In the above calculation, the HVA circuit is directly transpiled
to the native gates of ibmq_quito without optimization. As a result,
the transpiled circuit has eight CNOT gates, which is expected to
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FIG. 4. PIQAE results on ibmq_quito QPU. (a) Energy error per site & = |Eg
— Eg|/N (black dots) as a function of the number of subspace basis vectors .4
for a five-site MFIM on the ibmq_quito lattice (see inset). For comparison, we
show the error |(g|#g) — EG_| /N of the exact energy of the FGKS ground state
|g) obtained from the noisy & and S} (red squares). (b) Absolute difference
|Z,{1[ si — Nk| between the sum of (sorted) eigenvalues s; and the dimension of
the overlap matrix Tr & = Nk as a function of .Z. Panels (c) and (d) show the
same information as (a) and (b) except that the entangling gates have been omitted
from the HVA Ansatz owing to the small optimal angle a < 10~2. The error bars in
(@) and (c) are obtained in the same way as in Fig. 3. We sethy = —1and h, = 0.5

and use Ms = 2' shots to measure each group of commuting Pauli strings in
CPx.

dominate the errors in the QPU calculations. To verify this conjec-
ture, we leverage the fact that the optimal angle for the entangling
gates is negligible, & ~ 1075, and repeat the calculations with the
two qubit unitaries %% [Eq. (9)] removed from the HVA Ansatz.
Figure 4(c) shows that the agreement between the noisy energy E,
and the exact E, = (g|%|g) is much better. At the optimal ./, = 17,
we find e(/,) = 2(4) x 107 in close agreement with |(g|%|g)
— Eg|/N = 4(1) x 10™*. The error is lower than in Fig. 4(a) due to
the simplified circuit free of entangling gates, which also improves
the noisy overlap matrix S-,j.

B. 16-site MFIM simulations on ibmq_guadalupe

Next, we perform PIQAE calculations of a 16-site MFIM on
the ibmq_quadalupe QPU, where we choose the spin model lat-
tice to match the heavy-hex lattice qubit layout of the hardware. We
use an L = 1 HVA Ansatz at optimal angles a = 5 x 107, = =1.17,
and y = 1.57, obtained using statevector simulations. Note that rota-
tion gates with negligible angles are also explicitly included in the
QPU calculations to account for noise present in the HVA circuit
at generic angles and also to test the effect of error mitigation tech-
niques. We set the subspace moment K = 1 for the FGKS expansion,
which amounts to measuring Px = 14 672 Pauli strings in CPPx on
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the QPU to obtain %ij and &;;. Grouping into qubit-wise com-
muting sets of Pauli strings using a greedy coloring algorithm™
splits CPk- into N = 83 groups. We thus need to execute N cir-
cuits with different measurement bases to obtain expectation values
of all Pk Pauli operators. Besides adopting the TREX technique
for readout calibrations, we also apply dynamical decoupling and
Pauli twirling for CNOT gates to mitigate device errors. Specifi-
cally, we create 32 equivalent circuits with dynamical decoupling
and Pauli twirling and use 2'* shots for each circuit to measure the
observables.

As shown in Fig. 5(a), the average error ¢ (black dots) rapidly
drops from e(.# =1) =0.45(1) to (. =3) = 0.29(5) in the ini-
tial two steps. This is followed by a rather slow decrease with an
increasing number of truncated subspace basis vectors / to ()
=0.21(4), where M, = 48 = Dk-1 — 1 [see Fig. 5(b)]. The final point
at M = Dx=1 =49 is excluded from the analysis due to a sud-
den large drop in energy by over 5.5. For reference, the L =1
HVA energy error per site is 0.53(1). In contrast, the exact energy
Eg = (g|#g) of the state |g) experiences an error that is about ten
times smaller (red squares) and reduces only marginally from 0.015
to a final value of |(g|#]g) — Ec|/N = 0.011 at .,. The error ¢ for
the N = 16 model is much larger than for the N = 5 model, which is
due to the larger number of entangling gates, which is Ncx = 32 for
the N = 16 site model compared to Ncx = 8 for five sites.

100F

(@) 8 2=1 -8 ZNE B~ (g|#g)

|E—Eg| /N

— 10' - (b)
=

I
ST
w

ibmq_guadalupe

0 10 20 30 40

FIG. 5. PIQAE results on ibmq_guadalupe QPU. (a) Energy error per site
e = |Eq — Eg|/N (black dots) as a function of number of truncated subspace basis
vectors ./ for a 16-site MFIM on the ibmq_guadalupe heavy-hex lattice (see
inset). For comparison, we show both the zero-noise extrapolated curve (blue dots)
and the error |(g|%|g) — Eg|/N (red squares) of the exact energy of |g). (b)
Absolute difference \Z{ff s; — Ng| of the (sorted) eigenvalues s; of the noisy over-

lap matrix c'S’i,- and the trace of the noiseless one Nk as a function of .Z. We set
hy = —1and h; = 0.5 for the model and use an L = 1 HVA Ansatz and expansion
moment K = 1. The error bars in (a) represent the standard deviations estimated
using eight sets of 5 and &, each of which is derived from seven out of eight
equal partitions of the full set of measurement outcomes. For clarity, the results
are shown for every second point.
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To improve the energy estimation for the state |g), we apply
the digital zero-noise extrapolation (ZNE) technique,””* where
we assume a uniform CNOT gate error rate of 0.98 and perfect
single-qubit gates. A noise scaling factor is varied in the range
A€[1,1.25,1.5,1.75,2], with A = 1 meaning no noise amplification.
In addition, we construct 32 circuits with random gate folding at
each A using the open-source software package Mitig,” followed
by the application of dynamical decoupling and Pauli twirling. In
Fig. 5(a), we plot the average error of the improved estimation of E,
based on ZNE with second-order polynomial fitting. ZNE generally
improves the energy estimation, reducing the initial error at /4 =1
from &y-; = 0.45(1) to ezxg = 0.38(1) and the final one at ., from
&1=1 = 0.21(4) to ezne(Mo) = 0.05(4). The extrapolation becomes
more effective at large ., yielding a smaller error ¢ as the subspace
expands.

We perform ZNE in the following way: first, we determine the
ground state |gi-1) = X% ¢i|V;) according to Eq. (17) from solv-
ing the generalized eigenvalue problem at A = 1, i.e., with 4 ij and
& obtained at A = 1. Then, we evaluate the energy of |g,_,) with
respect to the noisy Hamiltonians at other values of A > 1 by evaluat-
ing ¥ c,-cj??,-j/zkl k€18 with fi’,-j and C:S’ij measured at A > 1. Note
that it is important to renormalize |g) at each A using the associated
noisy overlap matrix.

Vill. PROBABILISTIC ERROR REDUCTION
ON NOISY SIMULATOR

In Sec. VII B, we observed significant errors in the L =16
model [see Fig. 5(a)] on the ibm_guadalupe QPU, attributed to the
increase in the number of entangling gates with system size. Despite
applying quantum error mitigation protocols, such as ZNE, dynam-
ical decoupling, and Pauli twirling, we noted a limited improvement
in energy estimates. Consequently, a more refined error mitiga-
tion strategy is essential, necessitating the learning of error channels
through tomography. In this section, we use a robust and con-
trolled quantum error mitigation protocol involving noise tailoring
where initially noise characterization is performed using Pauli noise
tomography (PNT).””* Subsequently, error mitigation is carried
out using the probabilistic error reduction (PER)’*® technique,
which combines quasiprobabilistic sampling similar to probabilis-
tic error cancellation (PEC)°* with ZNE. The PNT technique entails
converting arbitrary noise channels into Pauli error channels by
applying Pauli twirling to the entangling gates within each quantum
circuit layer. The resulting twirled noise channel is then modeled
using a sparse Lindblad model that only includes single-site and
two-site Pauli operators on physically connected qubits. This is
based on the assumption that strong noise correlation exists mostly
between physically connected qubits, particularly nearest-neighbor
pairs. This characteristic enables PNT to achieve constant scaling in
the number of qubits, rendering it efficient for larger systems. Lever-
aging the obtained sparse Pauli noise model, we efficiently sample
PER circuits from a partially inverted noise channel, where the noise
strength is controlled by an external parameter A.””° Below, we
present the resources utilized and the results of the calculations
for the PNT and PER analyses performed using a completely auto-
mated open-source software called AutomatedPERTools.”*”” The
objective of this section is to conduct the PIQAE calculation utiliz-
ing the error-mitigated expectation values of each of the Ny = 83

55,56
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Pauli groups of commuting operators, which construct the K =1
FGKS on the fake_guadalupe backend for the N = 16-site MFIM,
as described in Sec. VII.

We performed PNT and PER calculations on the
fake_guadalupe backend for the L =16 MFIM, utilizing a
lattice matching the native qubit connectivity of the backend.
Similar to Sec. VII, we used an L = 1 layer HVA Ansatz at optimized
angles obtained from statevector simulations with the K = 1 FGKS
expansion. For PNT, we considered a total of 150 samples for the
Pauli twirl consisting of 50 samples for pair-fidelity and 100 for
single-fidelity. We run circuits of varying depths ([2,4,8,16]) with
1000 shots each to ensure the proper diagonalization of the noise
channel. This process generated a Pauli noise model necessary
for PER, where we sampled from the partial inverse of the noise
model and Pauli twirl. For PER, all 83 commuting Pauli groups
are measured with 1000 samples each for five noise strengths
A €[0,0.25,0.5,0.75,1,1.5], evaluated with 1000 shots each. This
step in the procedure is the most resource-intensive. We then
extrapolate each Pauli expectation value to zero noise using the
PER results obtained for different noise strengths A for all measured
Pauli groups. These ZNE estimated expectations determine #;; and
Sj> which are used to perform the PIQAE calculation. Note that we
solve a single generalized eigenvalue problem here to obtain Ej, |g),
and ¢, and the results are shown in Fig. 6. The average error with
PER mitigated calculations decreased by an order of magnitude

(@ —— A=1 =3 PER 7| [T
107! LT

=
~
sk ot
|
[S3] _ L
- —L] e
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—&— (¢pgRr|“Z |spER) \"""H\/
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FIG. 6. PIQAE results on fake_guadalupe using PER quantum error mitiga-
tion. () Energy error per site ¢ = |Eq — Eg|/N (gray dots) as a function of number
of subspace basis vectors .# for a 16-sitt MFIM on the fake_guadalupe
backend. We use an L =1 HVA Ansatz for the zeroth moment state and an
expansion moment K = 1. PIQAE calculations using H;; and S;; obtained from
PER (blue dots) yield substantially reduced error. For comparison, we include the
error |(grer|# |9rer) — Eg|/N (red squares) of the exact energy of the FGKS
ground state |g)per Using PER and the error |(gsy|#|gsv) — Es|/N (green line)
derived from an overlap matrix obtained from statevector simulations. (b) Absolute
difference |Z,/ff si — Ni| of the (sorted) eigenvalues and dimension of the over-
lap matrix & as a function of .#, demonstrating .#, = 29. We set hy = —1 and
h, = 0.5 for the model. The error bars in (a) are obtained in the same way as in
Fig. 3.
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between . = 1 and the optimal number of subspace basis vectors
Mo = 22.In comparison to results for A = 1 (gray points), indicating
the original noise on fake_guadalupe, we achieved a significant
two-order-of-magnitude error reduction up to M =M, It is
important to emphasize that the ZNE results with PER closely
approximate the exact calculations, wherein |g) is derived by diago-
nalizing the overlap matrix obtained from statevector simulations.
This is illustrated by the green line in Fig. 6(a). When comparing
the results depicted in Fig. 5(a) with those in Fig. 6(a), it becomes
evident that PER proves more effective in mitigating device errors,
and performing PER on quantum hardware is a promising next
step.

IX. CONCLUSION

In this paper, we highlight the generic idea of improving the
accuracy of ground state energy calculations by synergistically inte-
grating VQE with quantum subspace expansion (VQESE). As a
specific implementation, we presented a detailed study of the paired
iterative quantum-assisted eigensolver (PIQAE) in the presence of
hardware noise, providing a benchmark toward near-term quan-
tum computing applications. We have shown that by balancing the
depth of the VQE Ansatz L, which sets the zeroth moment state
|¥), with the dimension of the subspace, set by K, one can tailor the
PIQAE method according to the available QPU and CPU resources.
We have demonstrated a significant enhancement of the accuracy of
the ground state energy on ibm_guadalupe by about one order of
magnitude compared with HVA.

Using statevector simulations of the 1D and 2D TFIM and
MFIM, we have established that the convergence of the energy with
the moment K occurs more rapidly for larger L. Thus, one can
choose the PQC depth L and the subspace expansion moment K in
order to achieve accurate ground state estimations, which are com-
patible with available resources. We also analyzed the impact of shot
noise and proposed a criterion based on the trace of the overlap
matrix to determine the optimal number of truncated subspace basis
vectors . We used this criterion to perform PIQAE calculations
on IBM hardware and simulated a 5-site MFIM on ibmq_quito and
a 16-site MFIM on ibmq_guadalupe. For the system with fewer
qubits, we have obtained reasonably accurate results with an energy
error per site of & < 0.01, corresponding to relative error & < 0.7%.
For the 16-site system, we employed standard error suppression
and mitigation techniques, including ZNE, to achieve an average
error per site of £  0.05 (& ~ 3%). Finally, we have demonstrated
that using a more controlled quantum error mitigation technique,
such as PER, can significantly improve the energy estimates, and we
report an improvement by two orders of magnitude to epgr = 0.001
(&rel ~ 0.06%) for a 16-site MFIM on fake_guadalupe.

Our study is a detailed benchmark of the performance and
robustness of QSE approaches in the presence of hardware noise
and, thus, lays the groundwork for future applications of this method
on QPUs to larger models that are no longer accessible via ED. When
combined with controlled quantum error mitigation methods, our
work suggests that PIQAE is a viable candidate to perform ground
state calculations on such large systems to achieve quantum utility
before fault tolerance, adding to the prospect for utility in quan-
tum dynamics simulations.” Concretely, for PIQAE calculations of
a N = 127 heavy-hex spin lattice model on ibm_sherbrooke with

pubs.aip.org/aip/apq

expansion moment K = 1, we estimate the number of distinct mea-
surement circuits to be smaller than 8 x 127 + 3 = 1019 according
to the upper bound given by Eq. (13). Combined with controlled
quantum error mitigation methods, such as those used here’”” and
demonstrated in Ref. 9, we expect that PIQAE can provide accu-
rate estimates of the ground state energy and other ground state
observables for large model sizes that are not accessible by classical
computational approaches.
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