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Abstract

Reward functions are central in reinforcement learning (RL), guiding agents towards
optimal decision-making. The complexity of RL tasks requires meticulously designed
reward functions that effectively drive learning while avoiding unintended consequences.
Effective reward design aims to provide signals that accelerate the agent’s convergence
to optimal behavior. Crafting rewards that align with task objectives, foster desired
behaviors, and prevent undesirable actions is inherently challenging. This thesis delves
into the critical role of reward signals in RL, highlighting their impact on the agent’s
behavior and learning dynamics and addressing challenges such as delayed, ambiguous,
or intricate rewards. In this thesis work, we tackle different aspects of reward shaping.
First, we address the problem of designing informative and interpretable reward signals
from a teacher’s/expert’s perspective (teacher-driven). Here, the expert, equipped
with the optimal policy and the corresponding value function, designs reward signals
that expedite the agent’s convergence to optimal behavior. Second, we build on this
teacher-driven approach by introducing a novel method for adaptive interpretable reward
design. In this scenario, the expert tailors the rewards based on the learner’s current
policy, ensuring alignment and optimal progression. Third, we propose a meta-learning
approach, enabling the agent to self-design its reward signals online without expert input
(agent-driven). This self-driven method considers the agent’s learning and exploration
to establish a self-improving feedback loop.
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Zusammenfassung

Belohnungsfunktionen sind beim Reinforcement Learning (RL) von zentraler Bedeu-
tung, da sie Agenten zu optimalen Entscheidungen führen. Die Komplexität von RL-
Aufgaben erfordert sorgfältig entworfene Belohnungsfunktionen, die das Lernen effektiv
vorantreiben und gleichzeitig unbeabsichtigte Konsequenzen vermeiden. Effektives
Belohnungsdesign zielt darauf ab, Signale zu liefern, die die Konvergenz des Agen-
ten zu optimalem Verhalten beschleunigen. Die Gestaltung von Belohnungen, die
mit den Zielen der Aufgabe übereinstimmen, erwünschte Verhaltensweisen fördern
und unerwünschte Handlungen verhindern, ist von Natur aus eine Herausforderung.
Diese Arbeit befasst sich mit der kritischen Rolle von Belohnungssignalen in RL, wobei
ihre Auswirkungen auf das Verhalten und die Lerndynamik des Agenten hervorge-
hoben werden und Herausforderungen wie verzögerte, mehrdeutige oder komplizierte
Belohnungen behandelt werden. In dieser Arbeit befassen wir uns mit verschiede-
nen Aspekten der Gestaltung von Belohnungen. Zunächst befassen wir uns mit dem
Problem der Gestaltung informativer und interpretierbarer Belohnungssignale aus der
Perspektive des Lehrers/Experten (teacher-driven). Hier entwirft der Experte, ausges-
tattet mit der optimalen Strategie und der entsprechenden Wertfunktion ausgestattet,
Belohnungssignale die die Konvergenz des Agenten zum optimalen Verhalten beschleu-
nigen. Zweitens: Wir bauen auf diesem auf diesem lehrergesteuerten Ansatz auf, indem
wir eine neuartige Methode zur adaptiven, interpretierbaren Gestaltung. In diesem
Szenario passt der Experte die Belohnungen an die aktuelle Strategie des Lernenden an
und sorgt für eine Anpassung und optimale Progression. Drittens schlagen wir einen
Meta-Lernansatz vor einen Meta-Learning-Ansatz vor, der es dem Agenten ermöglicht,
seine Belohnungssignale online selbst zu gestalten, ohne dass ein Experte (agent-driven).
Diese selbstgesteuerte Methode berücksichtigt das Lernen und Erforschen des Agenten
um eine sich selbst verbessernde Feedbackschleife zu etablieren.
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CHAPTER 1
Motivation and Background on Reward

Design

In this chapter, we present an overview of the reinforcement learning (RL) framework
central to this thesis. We also explore the challenges of designing effective reward
functions in RL, which we aim to address. Finally, we provide an outline of the thesis
structure.

1.1 Overview of Reinforcement Learning

RL has become a popular approach in machine learning for training autonomous
agents (Sutton and Barto, 2018). Its impressive results are evident in various domains,
including robotics, game-playing, and control systems. In robotics, RL empowers robots
to learn through interaction, enabling them to navigate complex environments, precisely
control objects, and perform tasks efficiently (Kohl and Stone, 2004; Peters and Schaal,
2006; Kalakrishnan et al., 2012; Deisenroth et al., 2013; Abolghasemi and Bölöni, 2020).
In game-playing, RL has trained agents to master intricate games like chess, Go, and
Atari/Minecraft video games. AlphaGo, by DeepMind, stands out by defeating the world
Go champion, showcasing RL’s potential for complex strategic decision-making (Silver
et al., 2016, 2017; Vinyals et al., 2019). In control systems, RL optimizes processes and
improves efficiency across industries like manufacturing, energy management, and
autonomous vehicles. RL algorithms learn to control systems by adjusting parameters
for desired outcomes, leading to more effective and adaptive control strategies (Han
et al., 2020). Overall, RL has emerged as a powerful technique in machine learning,
with applications spanning across various domains and offering promising solutions to
challenging problems.

Next, we formally describe the interaction between an RL agent and its environment.



Chapter 1. Motivation and Background on Reward Design 2

Current state 𝑠"

Action 𝑎" ∼ 𝜋(⋅ |𝑠")

Original reward 𝑅+ 𝑠", 𝑎"

Learning agent

Policy 𝜋

Environment 

𝑀𝐷𝑃 ≔ (𝑆, 𝐴, 𝑇, 𝛾, 𝑃5, 𝑅+)

Figure 1.1: Interaction of a reinforcement learning (RL) agent with its environment, modeled as a Markov
Decision Process (MDP). At each time step t, the agent observes the current state st, selects an action
at based on its policy π, transitions to the next state st+1, and receives a reward R(st, at) from the
environment.

Environment. An environment in RL is modeled as a Markov Decision Process (MDP)
M := (S,A, T, γ, P0, R). Here, S andA represent the state and action spaces, respectively.
The state transition dynamics are captured by T : S × S ×A → [0, 1], where T (s′ | s, a)
denotes the probability of transitioning to state s′ after taking action a from state s.
The discount factor is denoted by γ, and P0 is the initial state distribution. The reward
function is given byR : S×A → R. Throughout the thesis, we denote the original reward
function, provided by the environment, as R, and the designed reward function as R̂.
The environment acts as the external system with which the agent interacts, providing
the context for the agent’s learning and decision-making processes. Understanding the
environment’s structure, dynamics, and reward mechanisms is essential for the agent to
learn and adapt its behavior effectively over time. Thus, the environment serves as the
stage upon which the learning process unfolds.

Agent. The agent is the primary entity responsible for interacting with the environment
and making decisions to achieve its objectives. It operates based on a policy π : S →
∆(A), which maps each state to a probability distribution over actions. This policy
dictates the agent’s behavior by determining which actions to take in given states. The
agent’s learning algorithm enables it to refine and improve its policy over time through
the experiences of interacting with the environment. By iteratively interacting with
the environment, the agent learns to navigate complex scenarios, optimize its decision-
making process, and maximize the cumulative rewards it receives. This interaction
happens in discrete steps indexed by t = 1, 2, . . . , as illustrated in Figure 1.1.
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1.2 General Framework for Reward Design

In the RL framework, agents are not explicitly programmed to solve tasks. Instead,
they interact with the environment and receive numerical rewards at each step, as
shown in Figure 1.1. Through this interaction, RL algorithms aim to learn a policy that
maximizes the total expected reward or adheres to a related optimality criterion. The
reward function is crucial in RL as it provides the numerical signal that guides the agent’s
behavior. As Sutton and Littman articulate in the reward hypothesis, “all of what we
mean by goals and purposes can be well thought of as maximization of the expected
value of the cumulative sum of a received scalar signal (reward)“ (Sutton, 2004). This
implies that an RL agent’s primary objective is to maximize future rewards, making the
reward function essential for defining and achieving the agent’s goals.

Defining an effective reward function can be particularly challenging, especially for
complex tasks. In many real-world applications, reward functions are sparse, providing
feedback only upon reaching a goal state, solving a problem, or winning/losing a game.
This sparse feedback leads to delayed rewards, significantly slowing the learning process.
The design of the reward function critically impacts the speed at which an RL algorithm
converges.

Generally, if a sequence of actions yields a high reward, the algorithm adjusts its
parameters to increase the likelihood of those actions in the future. Conversely, actions
leading to low rewards are less likely to be chosen again. When an agent receives no
reward signals, it cannot update its parameters and thus continues to take random
actions based on its current policy until a nonzero reward is encountered. The time
it takes to discover nonzero rewards can be exceedingly long, impeding the learning
process. Additionally, when rewards are infrequent, it becomes challenging to discern
which specific actions led to the reward, especially if the sequence of actions is lengthy.
It may be necessary to employ effective heuristics or to design a more informative
reward function that helps guide the agent toward discovering valuable reward signals
to accelerate learning.

Reward design. Reward design involves a teacher/expert substituting the original re-
ward function R (often sparse or non-informative) with a newly crafted reward function,
denoted as R̂, to simplify and expedite the problem-solving process (see Figure 1.2 and
Algorithm 1.1). Intuitively, a well-designed reward function provides the agent with
clear guidance toward the goal by rewarding optimal actions and penalizing incorrect
ones, thereby streamlining the learning process. However, designing effective rewards
is challenging; a poorly conceived reward signal can lead to unintended or suboptimal
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Algorithm 1.1: A General Framework for Reward Design

1 Input: MDP M :=
(
S,A, T, γ, P0, R

)
, target policy πT , learning algorithm L,

reward design objective function I(·), reward constraint setR
2 Initialize: learner’s initial policy πL0
3 for k = 1, 2, . . . , K do

// Expert/teacher designs the reward function by solving the optimization problem
4 Rk ← argmaxR∈R I(R | R, πT , πLk−1)

// Learner updates the policy using designed rewards Rk and learning algorithm L
5 πLk ← L(πLk−1, Rk)

6 Output: learner’s policy πLK

behavior. For instance, a flawed reward function might cause an agent to focus on locally
optimal actions, neglecting the overall goal. Numerous studies have demonstrated that
the choice of the reward function significantly impacts the speed at which an agent learns
the optimal policy (Mataric, 1994; Randløv and Alstrøm, 1998; Ng et al., 1999). There
are countless possible reward functions that can yield the optimal behavior, so the main
challenge is to select one that best induces the desired agent behavior. In the following
section, we will explore the characteristics of effective reward functions.

Current state 𝑠"

Action 𝑎" ∼ 𝜋(⋅ |𝑠")

Original reward 𝑅+ 𝑠", 𝑎"

Learning agent

Policy 𝜋

Environment 

𝑀𝐷𝑃 ≔ (𝑆, 𝐴, 𝑇, 𝛾, 𝑃5, 𝑅+)
Designed reward 𝑅6 𝑠", 𝑎"

Teacher

Figure 1.2: Reward design in reinforcement learning. Similar to Figure 1.1, this figure shows the interaction
between the agent and the environment. Here, the original reward function R is replaced by a newly
designed reward function R̂, created by a teacher or expert to facilitate more efficient learning.

1.3 Desirable Properties of Reward Functions

The reward function plays a pivotal role in shaping the learning process of an RL agent.
Given a task the agent is expected to perform (i.e., the desired learning outcome), there
are typically many different reward specifications under which an optimal policy has
the same performance guarantees. This freedom in choosing the reward function leads
to the fundamental question of reward design: What are the different criteria that one should
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consider in designing a reward function for the agent, apart from the agent’s final output policy?
This section explores three key desirable properties of reward functions: invariance,
interpretability, and informativeness, which are essential for designing effective and
efficient RL systems. We delve into each property’s technical aspects, significance, and
associated challenges.

1.3.1 Invariance

The invariance property in reward functions ensures that the optimal policy derived from
the designed reward function should also be optimal for the original reward function,
i.e., any transformation or shaping of the reward function should not alter the set of
optimal policies. This property is crucial because it preserves the alignment between
the designed reward and the task’s true objectives. Without invariance, the agent might
exploit the reward structure in ways that lead to unintended behaviors, a phenomenon
often referred to as “reward hacking” or “reward bug.” For instance, consider the
example from (Sutton and Barto, 2018), where an assistive robot is programmed to
collect garbage and be rewarded for doing so. Suppose the reward function is not
carefully designed. In that case, the robot might exploit it by creating more trash to
collect later, thus maximizing its long-term reward but deviating from the intended
behavior of simply cleaning up existing garbage. This scenario highlights the need for
reward functions that robustly guide the agent toward the desired behavior without
loopholes (Randløv and Alstrøm, 1998; Demir et al., 2019).

Achieving invariance is challenging because it requires the reward function to
be designed or modified in such a way that it preserves the optimality of policies.
Techniques like potential-based reward shaping (PBRS) can help by adding a potential
function to the reward that does not affect the ranking of policies. Formally, if the reward
function R is transformed into R′ using a potential function Φ such that: R′(s, a, s′) =

R(s, a, s′)+γΦ(s′)−Φ(s), then the optimal policy under R′ remains optimal under R (Ng
et al., 1999). However, identifying appropriate potential functions that guide the agent
without altering the policy’s optimality requires deep domain knowledge.

1.3.2 Interpretability

Interpretability refers to how easily humans can understand and diagnose the reward
function guiding an agent’s behavior. This property is essential because it ensures the
clarity of the reward structure and its alignment with a human’s intuitive understanding
of the task at hand. Interpretability is particularly beneficial in several applications,
especially involving human stakeholders or requiring manual debugging (Maloney et al.,
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2008; O’Rourke et al., 2014). In pedagogical settings, such as educational games or virtual
reality training simulations, interpretable rewards enable instructors to identify and
address learning difficulties, tailoring the learning experience to meet students’ needs
better. For complex, open-ended problem-solving tasks in robotics, where reward func-
tions might be specified through logic, automata, or subgoals, interpretability facilitates
debugging and ensures the agent’s actions adhere to the desired behavior. Furthermore,
in the context of defense against adversarial attacks (see (Zhang and Parkes, 2008; Zhang
et al., 2009; Ma et al., 2019; Rakhsha et al., 2020, 2021)), structured and interpretable
rewards are more straightforward to analyze and verify, providing a layer of protection
against malicious attempts to manipulate the reward function. By ensuring that rewards
are understandable and aligned with the intended goals, interpretability enhances the
overall robustness of RL systems.

Designing interpretable reward functions can be challenging due to the inherent
trade-off between simplicity and the need for detailed feedback. Simplified reward
functions may enhance interpretability but could sacrifice the granularity of feedback
needed for efficient learning. One way to overcome this challenge is by using structural
reward signals, which break complex tasks into simpler, more interpretable subgoals
while still providing sufficient detail to effectively guide the agent.

1.3.3 Informativeness

The informativeness of a reward function measures how effectively it provides useful
signals to the agent, accelerating its learning and guiding it toward the desired behav-
ior (see, (Kearns et al., 2002; Laud and DeJong, 2003; Dai and Walter, 2019; Furuta
et al., 2021; Gleave et al., 2021)). An informative reward function provides consistent
feedback that reduces uncertainty, helping the agent quickly associate its actions with
their outcomes. This clarity is crucial because it directly influences how swiftly and effi-
ciently the agent learns. This property is especially vital in environments characterized
by delayed rewards, where the agent receives feedback only after a significant delay,
making it challenging to link specific actions to their consequences. In complex tasks
requiring sequences of intricate actions, frequent and detailed rewards help the agent
navigate through complexity and expedite learning of the optimal behavior. Further-
more, in dynamic or uncertain environments, informative rewards aid in the agent’s
rapid adaptation to new or changing conditions.

A significant challenge in designing reward functions lies in the difficulty of quanti-
fying “informativeness“ in a way that accurately captures how well a reward function
accelerates an RL agent’s learning process. This informativeness criterion must effec-
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tively reflect how the rewards reduce uncertainty and guide the agent toward desired
behaviors. Additionally, it needs to be amenable to optimization techniques to facilitate
systematic reward design. Establishing such a criterion for informativeness is crucial for
improving the efficiency and effectiveness of RL agents.

1.4 Existing Techniques and Shortcomings

Reward function design in RL involves a multifaceted interplay between invariance,
interpretability, and informativeness. Each property ensures the learned behavior aligns
with the true objective, facilitates human oversight, and accelerates the learning process.
As the field of RL continues to evolve, understanding and incorporating these properties
effectively will be critical for developing robust, efficient, and human-aligned RL systems.
In the following, we review existing reward design techniques in RL, highlighting their
limitations in creating reward signals that are simultaneously invariant, interpretable, and
informative (see Figure 1.3).

Binary reward. One of the biggest challenges in RL is crafting effective reward functions,
especially for complex tasks (Sutton and Barto, 2018). A binary reward is the easiest and
most well-suited way to specify the reward function. The idea is to simply characterize
the criteria for solving the task; then, a reward is provided if the criteria for completion
are met, and no reward is provided otherwise. Such a sparse reward function gives
delayed feedback, resulting in a slow learning process. While designing a suitable sparse
reward function is straightforward, learning from it within a practical amount of time is
often not possible. Accelerating the learning process might require good heuristics or
enhancements to guide the agent toward these sparse rewards effectively.

Hand-crafted reward design techniques. To increase the informativeness and better
guide the agent, one could design a handcrafted reward function by assigning non-zero
reward values to a set of critical states or subgoals. Even though this simple approach
produces a reward function with richer signals and is more dense than a binary reward
function, it often fails to satisfy the invariance requirement. In particular, there are some
well-known “reward bugs” that can arise in this approach and mislead the agent into
learning sub-optimal policies (Randløv and Alstrøm, 1998; Demir et al., 2019).

Potential-based reward design techniques. The most well-studied work in the reward
design domain is the potential-based reward shaping (PBRS) method (Wiewiora, 2003;
Wiewiora et al., 2003; Asmuth et al., 2008; Grzes and Kudenko, 2008; Devlin and Kudenko,
2012; Grzes, 2017; Goyal et al., 2019; Zou et al., 2019; Jiang et al., 2021). The technique
preserves a strong invariance property when the shaped reward is expressed as the
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difference in potential values. Moreover, when the potential function is aligned with
the optimal value function of the original reward, PBRS can maximize informativeness.
However, PBRS assigns numerical values to every state-action pair, producing a less
interpretable, dense reward function.

Optimization-based reward design techniques. Reward design can be effectively ap-
proached as an optimization problem (Zhang and Parkes, 2008; Zhang et al., 2009; Ma
et al., 2019; Rakhsha et al., 2020, 2021). These techniques are especially prevalent in data
poisoning attacks, where the aim is to subtly alter the reward function to steer the agent
towards a specific, attacker-defined policy (Ma et al., 2019; Rakhsha et al., 2020, 2021).
The flexibility of optimization frameworks allows for the integration of various design
criteria and constraints. For example, (Rakhsha et al., 2021) presents a formulation that
simultaneously optimizes the reward function and the transition dynamics of the envi-
ronment. This approach contrasts with reward shaping by focusing on minimizing the
alterations to the reward function, whereas reward shaping aims to accelerate learning
convergence. Although optimization-based methods are effective for designing rewards
that enforce pre-determined policies, their impact on the convergence of RL agents to
these policies remains an open question.

Self-supervised reward design techniques. Self-supervised reward design techniques
employ a parametric reward function, learning its parameters fully self-supervised. Re-
cent notable approaches include Learning Intrinsic Rewards for Policy gradient (LIRPG)
and Self-supervised Online Reward Shaping (SORS) (Zheng et al., 2018; Memarian et al.,
2021). LIRPG updates the reward parameters by evaluating their impact on the learner’s
expected cumulative return (w.r.t. original reward) through policy changes. However,
LIRPG is limited to policy-gradient methods, which restricts its applicability. In contrast,
SORS can be applied across various RL algorithms, not just policy-gradient methods. It
utilizes the original reward signal to rank agent-generated trajectories during training,
employing a classification-based reward inference algorithm known as T-REX (Brown
et al., 2019). Unlike T-REX, which relies on pre-ranked trajectories, SORS uses the origi-
nal reward to rank these trajectories. However, SORS focuses on maintaining relative
pairwise ordering over trajectories and ignores the scale of the returns associated with
trajectories. This can be problematic in environments with noisy or distractive reward
signals, complicating policy training. Both LIRPG and SORS struggle in environments
with extremely sparse rewards, as they depend on receiving non-zero reward signals
to update the reward parameters. Additionally, these techniques prioritize accelerating
learning over interpretability.
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Structural reward design techniques. Structural reward design techniques, such as
Reward Machines (RMs), facilitate breaking down complex tasks into more manageable
sub-goals, enabling more efficient learning (Icarte et al., 2018). RMs utilize a finite
state machine to define rewards in a structured manner. As the agent explores its
environment, it transitions through the states of the RM, each specifying a distinct
reward function. This structured approach provides the agent with clear insights into
the task’s stages, promoting strategic learning and task decomposition. Recent research
has extended structural reward design to interpretable preference-based RL (PbRL),
employing tree-structured reward functions (Bewley and Lécué, 2022). This method uses
human feedback to shape the reward function into a hierarchical, tree-like structure that
reflects desired agent behaviors. While these techniques enhance the interpretability
and organization of reward functions, they do not inherently ensure properties such as
invariance or maximal informativeness.

Technique

Property
Invariance Interpretable Informativeness

Binary " " %

Hand-crafted rewards, e.g., subgoals % " "

Potential-based techniques " % "

Optimization-based techniques " " %

Self-supervised techniques % N/A "

Structured rewards, e.g., logic-based % " %

Figure 1.3: The table compares various reward design techniques based on their ability to achieve three
key properties: invariance, interpretability, and informativeness.

1.5 Overview of our Techniques and Contributions

We now outline the primary question of this thesis work: How can we design reward
signals for an RL agent that is invariant, interpretable, and informative? We propose that
framing the reward design problem as a constrained optimization can lead to significant
advancements. Our proposed metrics for the informativeness of reward functions can
significantly accelerate the agent’s learning process toward optimal solutions. Moreover,
our methods mitigate reward bugs, enhance fault diagnosis, and support adaptive and
non-adaptive reward design techniques within a unified framework that accommodates
varying levels of domain expertise.
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Our reward design framework includes two primary entities: a teacher and a learner.
The teacher designs reward signals to maximize an informativeness criterion I and
provides these to the learning agent. The learner updates its policy using these signals
via a chosen learning algorithm L (see Figure 1.4 and Algorithm 1.1). Below, we delve
into the different aspects of reward shaping addressed in this research.

Domain
Knowledge

𝜋" 𝜋#$%&

Teacher Learner

Teacher designs 𝑅# = max
,∈ℛ

𝐼(𝑅, 𝜋", 𝜋#$%& 	)

Learner updates 𝜋#& ← 𝐿(𝜋#$%& , 𝑅#)

Current
Policy

Figure 1.4: Overview of our reward design framework. The teacher generates reward signals based on
the informativeness criterion I , which are then used by the learner to update its policy using a specified
learning algorithm L.

1.5.1 Non-Adaptive Teacher-Driven Explicable Reward Design

EXPRD

First, we introduce a learner-agnostic explicable reward design framework, EXPRD,
where the teacher designs rewards only once, without considering the learner’s current
policy (see Figure 1.5). As part of the framework, we introduced a new criterion cap-
turing informativeness of reward functions, I(·), that is of independent interest. The
mathematical analysis of EXPRD shows connections of our framework to the popular
reward-design techniques and provides theoretical underpinnings of teacher-driven
interpretable reward design. Importantly, EXPRD allows one to go beyond using a poten-
tial function for principled reward design and provides a general recipe for developing
an optimization-based reward design framework with different structural constraints.
We also provided a practical extension to apply our framework in environments with
large state spaces via state abstractions.

1.5.2 Adaptive Teacher-Driven Explicable Reward Design EXPADARD

Next, we extend the informativeness criterion to account for the learner’s current policy
while designing the reward functions. Based on the new informativeness criterion, we
developed a teacher-driven adaptive reward design framework, EXPADARD. Since the
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Domain
Knowledge

	𝜋#≈ 𝜋∗ 𝜋&'()

Teacher Learner

Teacher designs 𝑅& = max
/∈ℛ

𝐼(𝑅, 𝜋#)

Current
Policy

Figure 1.5: EXPRD framework: The teacher designs rewards once without regard to the learner’s current
policy. This non-adaptive method uses a novel informativeness criterion I(·) to ensure reward signals are
informative and interpretable.

agent’s policy changes over the training, the best reward signals to assist the current
learner’s performance also change. Therefore, to adaptively design effective reward
functions for a given agent during its training, it is crucial to have a reward informative-
ness criterion that accounts for the agent’s learning process. In this work, we propose an
interactive framework between teacher and learner. In each interaction step, the teacher
observes the learner’s policy and designs the rewards that best aid the agent’s progress,
see Figure 1.6.

Domain
Knowledge

	𝜋#≈ 𝜋∗ 𝜋&'()

Teacher Learner

Teacher designs 𝑅& = max
/∈ℛ

𝐼(𝑅, 𝜋#, 𝜋&'() 	)

Learner updates 𝜋&) ← 𝐿(𝜋&'() , 𝑅&)

Current
Policy

Figure 1.6: EXPADARD framework: An adaptive reward design approach where the teacher continuously
observes and adapts to the learner’s evolving policy. This iterative process helps in providing rewards
that are optimal for the learner’s current state.

1.5.3 Adaptive Agent-Driven Reward Design EXPLORS

In Sections 1.5.1 and 1.5.2, we proposed teacher-driven reward design frameworks that
utilize domain knowledge (specified as an optimal policy) to design informative and
interpretable reward signals that speed up the agent’s convergence. These techniques
are particularly suited for applications such as educational games (O’Rourke et al., 2014),
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virtual reality-based training simulators (VirtaMed; Interactive), and solving open-ended
problems like block-based visual programming (Maloney et al., 2008). However, high-
quality domain knowledge in the form of an optimal policy may not be available in
several real-life application domains. In this work, we propose a novel framework,
Exploration-Guided Reward Shaping, EXPLORS, that learns an intrinsic reward function
in combination with exploration-based bonuses to maximize the agent’s utility. EXPLORS
framework operates in a fully self-supervised manner and alternates between reward
learning and policy optimization. Moreover, our framework is compatible with any
existing RL algorithm, not only policy-gradient style learners as considered in the
LIRPG technique (Zheng et al., 2018). We propose a meta-learning approach where
the agent self-designs its reward signals online without expert knowledge (agent-driven).
This approach considers the agent’s learning and exploration and aims to create a self-
improving feedback loop, see Figure 1.7.

Domain
Knowledge

	𝜋#≈ 𝜋%&'( 𝜋%&'(

Teacher Learner

Teacher designs 𝑅% = max
.∈ℛ

𝐼(𝑅, 𝜋#, 𝜋%&'( 	)

Learner updates 𝜋%( ← 𝐿(𝜋%&'( , 𝑅%)

Current
Policy

Figure 1.7: EXPLORS framework: A self-supervised, agent-driven method where the agent learns its own
reward signals using intrinsic rewards and exploration bonuses.

1.6 Outline of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we introduce a new non-adaptive teacher-driven reward design
framework (EXPRD), where the teacher uses domain knowledge to design infor-
mative and structured reward signals for RL agents.

• In Chapter 3, we extend the teacher-driven approach by developing the adaptive
reward design framework (EXPADARD). This framework adapts to the agent’s
current policy and optimizes rewards under specified structural constraints to
enhance interpretability.
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• In Chapter 4, we focus on a self-supervised, agent-driven approach (EXPLORS).
This novel framework empowers the agent to learn and optimize its reward sig-
nals fully self-supervised, accelerating training in environments with sparse or
misleading rewards without relying on expert domain knowledge.

• In Chapter 5, we summarize our work and suggest potential directions for future
work.



CHAPTER 2
Non-Adaptive Teacher-Driven Explicable

Reward Design

We study the design of explicable reward functions for a reinforcement learning (RL) agent
while guaranteeing that an optimal policy induced by the function belongs to a set of
target policies. By being explicable, we seek to capture two properties: (a) informativeness
so that the rewards speed up the agent’s convergence, and (b) sparseness as a proxy for
ease of interpretability of the rewards. The key challenge is that higher informativeness
typically requires dense rewards for many learning tasks, and existing techniques do not
allow one to balance these two properties appropriately. In this work, we investigate the
problem from the perspective of discrete optimization and introduce a novel framework,
EXPRD, to design explicable reward functions. EXPRD builds upon an informativeness
criterion that captures the (sub-)optimality of target policies at different time horizons
in terms of actions taken from any given starting state. We provide a mathematical
analysis of EXPRD, and show its connections to existing reward design techniques,
including potential-based reward shaping. Experimental results on two navigation tasks
demonstrate the effectiveness of EXPRD in designing explicable reward functions.

2.1 Introduction

A reward function plays the central role during the learning/training process of an RL
agent. Given a “task” the agent is expected to perform (i.e., the desired learning out-
come), there are typically many different reward specifications under which an optimal
policy has the same performance guarantees on the task. This freedom in choosing the
reward function, in turn, leads to the fundamental question of reward design: What are
different criteria that one should consider in designing a reward function for the agent, apart from
the agent’s final output policy? (Mataric, 1994; Randløv and Alstrøm, 1998; Ng et al., 1999).
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One of the important criteria is informativeness, capturing that the rewards should
speed up the agent’s convergence (Mataric, 1994; Randløv and Alstrøm, 1998; Ng et al.,
1999; Laud and DeJong, 2003; Dai and Walter, 2019; Arjona-Medina et al., 2019). For
instance, a major challenge faced by an RL agent is because of delayed rewards during
training; in the worst-case, the agent’s convergence is slowed down exponentially w.r.t.
the time horizon of delay (Sutton and Barto, 2018). In this case, we seek to design a
new reward function that reduces this time horizon of delay while guaranteeing that
any optimal policy induced by the designed function is also optimal under the original
reward function (Ng et al., 1999). The classical technique of potential-based reward
shaping (when applied with appropriate state potentials) indeed allows us to reduce this
time horizon of delay to 1; see (Ng et al., 1999; Zou et al., 2019) and Section 2.3. With 1,
it means that globally optimal actions for any state are also myopically optimal, thereby
making the agent’s learning process trivial.

While informativeness is an important criterion, it is not the only criterion to consider
when designing rewards for many practical applications. Another natural criterion to
consider is sparseness as a proxy for ease of interpretability of the rewards. There are sev-
eral practical settings where sparseness and interpretability of rewards are important, as
discussed next. The first motivating application is when rewards are designed for human
learners who are learning to perform sequential tasks, for instance, in pedagogical appli-
cations such as educational games (O’Rourke et al., 2014), virtual reality-based training
simulators (VirtaMed; Interactive), and solving open-ended problems (e.g., block-based
visual programming (Maloney et al., 2008)). In this context, tasks can be challenging
for novice learners and a teacher agent can assist these learners by designing explicable
rewards associated with these tasks. The second motivating application is when rewards
are designed for complex compositional tasks in the robotics domain that involve reward
specifications in terms of logic, automata, or subgoals (Icarte et al., 2020; Jiang et al.,
2021)—these specifications induce a form of sparsity structure on the underlying reward
function. The third motivating application is related to defense against reward-poisoning
attacks in RL (see (Zhang and Parkes, 2008; Zhang et al., 2009; Ma et al., 2019; Rakhsha
et al., 2020, 2021)) by designing structured and sparse reward functions that are easy to
debug/verify. Beyond these practical settings, many naturally occurring reward func-
tions in real-life tasks are inherently sparse and interpretable, further motivating the need
to distill these properties in the automated reward design process. The key challenge
is that higher informativeness typically requires dense rewards for many learning tasks
– for instance, the above-mentioned potential-based shaped rewards that achieve a time
horizon of 1 would require most of the states be associated with some real-valued reward
(see Sections 2.3 and 2.5). To this end, an important research question that we seek to ad-
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dress is: How to balance these two criteria of informativeness and sparseness in the reward design
process while guaranteeing an optimality criterion on policies induced by the reward function?

In this chapter, we formalize the problem of designing explicable reward functions,
focusing on the criteria of informativeness and sparseness. We investigate this problem
from an expert/teacher’s point of view who has full domain knowledge (in this case, an
original reward function along with optimal policies induced by the original function),
and seeks to design a new reward function for the agent—see Figure 2.1 and further
discussion in Section 3.2 on expert-driven vs. agent-driven reward design. We tackle
the problem from the perspective of discrete optimization and introduce a novel frame-
work, EXPRD, to design reward functions. EXPRD allows us to appropriately balance
informativeness and sparseness while guaranteeing that an optimal policy induced by
the function belongs to a set of target policies. EXPRD builds upon an informativeness
criterion that captures the (sub-)optimality of target policies at different time horizons
from any given starting state. Our main contributions are:1

I. We formulate the problem of explicable reward functions to balance the two im-
portant criteria of informativeness and sparseness in the reward design process.
(Sections 2.3 and 2.4.1)

II. We propose a novel optimization framework, EXPRD, to design reward functions.
As part of this framework, we introduce a new criterion capturing informative-
ness of reward functions that is amenable to optimization techniques and is of
independent interest. (Sections 2.4.2 and 2.4.3)

III. We provide a detailed mathematical analysis of EXPRD and show its connec-
tions to popular techniques, including potential-based reward shaping. (Sec-
tions 2.4.3 and 2.4.4)

IV. We provide a practical extension to apply our framework to large state spaces.
We perform extensive experiments on two navigation tasks to demonstrate the
effectiveness of EXPRD in designing explicable reward functions. (Sections 2.4.5
and 2.5)

2.2 Related Work
Potential-based reward shaping. Introduced in the seminal work of (Ng et al., 1999),
potential-based reward shaping is one of the most well-studied reward design technique

1Github repo: https://github.com/adishs/neurips2021_explicable-reward-design_
code.

https://github.com/adishs/neurips2021_explicable-reward-design_code
https://github.com/adishs/neurips2021_explicable-reward-design_code
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(see (Wiewiora, 2003; Wiewiora et al., 2003; Asmuth et al., 2008; Grzes and Kudenko,
2008; Devlin and Kudenko, 2012; Grzes, 2017; Demir et al., 2019; Goyal et al., 2019; Zou
et al., 2019; Jiang et al., 2021)). As we discussed in Section 2.3, the shaped reward func-
tion R̂PBRS is obtained by modifying R using a state-dependent potential function. The
technique preserves a strong invariance property: a policy π is optimal under R̂PBRS iff
it is optimal under R. Furthermore, when using the optimal value-function V

∗
∞ under

R as the potential function, the shaped rewards achieve the maximum possible informa-
tiveness as per the notion we use in EXPRD. To balance informativeness and sparseness,
our framework EXPRD can be seen as a relaxation of the potential-based shaping in the
following ways: (i) EXPRD provides a guarantee on preserving a weaker invariance
property whereby an optimal policy under R̂EXPRD is also optimal under R; (ii) EXPRD
finds R̂EXPRD that maximizes informativeness under hard constraints of preserving this
weaker policy-invariant property and a given spareness-level.

Optimization-based techniques for reward design. Beyond potential-based shap-
ing, we can formulate reward design as an optimization problem (Zhang and Parkes,
2008; Zhang et al., 2009; Ma et al., 2019; Rakhsha et al., 2020, 2021). In particular,
optimization-based techniques for reward design are popularly used in data poisoning
attacks where an attacker’s goal is to minimally perturb the original reward function
to force the agent into executing a target policy chosen by the attacker (Ma et al., 2019;
Rakhsha et al., 2020, 2021). Our EXPRD framework builds on the optimization frame-
work of (Ma et al., 2019; Rakhsha et al., 2020, 2021). The key novelty of EXPRD is that
we optimize for informativeness of the reward function under a sparseness constraint,
which makes our problem formulation much more challenging.

Agent-driven reward design. An important categorization of reward design tech-
niques is based on who is designing the rewards and what domain knowledge is avail-
able. Agent-driven reward design techniques involve a reinforcement learning method
where an agent self-designs its own rewards during the training process, with the objec-
tive of improving the exploration and speeding up the convergence (Sorg et al., 2010c;
Barto, 2013; Kulkarni et al., 2016; Trott et al., 2019; Arjona-Medina et al., 2019; Ferret
et al., 2020). These agent-driven techniques use a wide-variety of ideas such as designing
intrinsic rewards based on exploration bonus (Barto, 2013; Kulkarni et al., 2016; Zhang
et al., 2020), designing rewards using some additional domain knowledge (Trott et al.,
2019), and using credit assignment to create intermediate rewards (Arjona-Medina et al.,
2019; Ferret et al., 2020).

Expert-driven reward design. In contrast to agent-driven techniques, we have
expert-driven reward design techniques where an expert/teacher with full domain
knowledge can design a reward function for the agent (Mataric, 1994; Zhang and Parkes,
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2008; Zhang et al., 2009; Ng et al., 1999; Goyal et al., 2019; Ma et al., 2019; Rakhsha et al.,
2020, 2021; Jiang et al., 2021). Our EXPRD framework falls into the category of teacher-
driven reward design. The above-mentioned techniques of potential-based reward
shaping and optimization-based techniques can be seen as expert-driven reward design
techniques; however, the distinction between expert-driven and agent-driven techniques
can be blurry at times when one uses an expert-driven technique with minimal domain
knowledge (e.g., when using approximate potentials (Ng et al., 1999)).

Reward automatas, landmark-based rewards, and subgoal discovery. Our EX-
PRD framework is also connected to techniques that specify rewards using higher-level
abstract representations of the environment including symbolic automata and land-
marks (Grzes and Kudenko, 2008; Camacho et al., 2017; Demir et al., 2019; Jothimurugan
et al., 2019; Icarte et al., 2020; Jiang et al., 2021). In recent works (Camacho et al., 2017;
Jothimurugan et al., 2019; Icarte et al., 2020; Jiang et al., 2021), potential-based reward
shaping technique has been used with automata-based rewards to design interpretable
and informative rewards. While similar in the overall objective, our work is technically
quite different and our proposed optimization framework to reward design can be seen
as complementary to these works. Another relevant line of work focuses on automatic
discovery of subgoals in the environment (McGovern and Barto, 2001; Simsek et al., 2005;
Florensa et al., 2018; Paul et al., 2019) – these works are complementary and useful as
subroutines in our framework by providing a prior knowledge about which states are
important for assigning rewards.

2.3 Problem Setup

Environment. An environment is defined as a Markov Decision Process (MDP) M :=

(S,A, T, γ, R), where the set of states and actions are denoted by S and A respectively.
T : S × S ×A → [0, 1] captures the state transition dynamics, i.e., T (s′ | s, a) denotes the
probability of landing in state s′ by taking action a from state s. Here, γ is the discounting
factor. The underlying reward function is given by R : S ×A → [−Rmax, Rmax], for some
Rmax > 0. We interchangeably represent the reward function by a vector R ∈ R|S|·|A|,
whose (s |A|+ a)-th entry is given by R (s, a). We define the support of R as supp(R) :=
{s : s ∈ S, R (s, a) ̸= 0 for some a ∈ A}, and the ℓ0-norm of R as ∥R∥0 := |supp(R)|.

Preliminaries and definitions. We denote a stochastic policy π : S → ∆(A) as a map-
ping from a state to a probability distribution over actions, and a deterministic policy π :

S → A as a mapping from a state to an action. For any policy π, the state value function
V π
∞ and the action value function Qπ

∞ in the MDP M are defined as follows respectively:
V π
∞ (s) = E [

∑∞
t=0 γ

tR(st, at)|s0 = s, T, π] and Qπ
∞ (s, a) = E [

∑∞
t=0 γ

trt|s0 = s, a0 = a, T, π].
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Task specified as an
MDP M with given
reward function R

(a)

Teacher computes
optimal Q

∗
∞ and Π

∗

w.r.t. R

(b)

Teacher designs a
new explicable
reward function R̂

(c)

RL agent learns an
optimal π̂∗ ∈ Π̂∗

w.r.t. R̂

(d)

Figure 2.1: Illustration of the explicable reward design problem in terms of a task specified through MDP
M , an RL agent whose objective is to perform this task, and a teacher/expert whose objective is to help
this RL agent. (a) MDP M with a given reward function R specifying the task the RL agent is expected
to perform; (b) The teacher computes optimal action value function Q

∗
∞ along with the set of optimal

policies Π
∗

w.r.t. R; (c) The teacher designs a new explicable reward function R̂ for the RL agent; (d) The
RL agent trains using the designed reward R̂ and outputs a policy π̂∗ from the set of optimal policies
Π̂∗ w.r.t. R̂. Our framework designs an explicable reward function R̂ with three properties: invariance,
informativeness, and sparseness; see main text for formal definitions of these properties.

Further, the optimal value functions are given by V ∗
∞ (s) = supπ V

π
∞ (s) and Q∗

∞ (s, a) =

supπQ
π
∞ (s, a). There always exists a deterministic stationary policy π that achieves

the optimal value function simultaneously for all s ∈ S (Puterman, 1994; Sutton and
Barto, 2018), and we denote all such deterministic optimal policies by the set Π∗ :=

{π : S → A s.t. V π
∞ (s) = V ∗

∞ (s) ,∀s ∈ S}. From here onwards, we focus on deterministic
policies unless stated otherwise. For any π and R, we define the following quantities
that capture the∞-step (global) optimality gap and the 0-step (myopic) optimality gap
of action a at state s, respectively:

δπ∞(s, a) := Qπ
∞(s, π(s))−Qπ

∞(s, a), and δπ0 (s, a) := Qπ
0 (s, π(s))−Qπ

0 (s, a), ∀s ∈ S, a ∈ A,

where Qπ
0 (s, a) = R (s, a) is the 0-step action value function of policy π. The δπ∞(s, a)

values are same for all π ∈ Π∗, and we denote it by δ∗∞(s, a) = V ∗
∞(s)−Q∗

∞(s, a); however,
this is not the case with δπ0 (s, a) values in general. For any state s ∈ S and a set of policies
Π, we define Πs := {a : a = π(s), π ∈ Π}. Then, we have that δ∗∞(s, a) = 0,∀s ∈ S, a ∈ Π∗

s.
Explicable reward design. Figure 2.1 presents an illustration of the explicable re-

ward design problem that we formalize below. A task is specified as an MDP M with
a given goal-based reward function R where R has non-zero rewards only on goal states
G ⊆ S , i.e., R (s, a) = 0,∀s ∈ S\G, a ∈ A. Many naturally occurring tasks (see Section 2.1
for motivating applications) are goal-based and challenging for learning an optimal
policy when the state space S is very large. In this chapter, we study the following
explicable reward design problem from an expert/teacher’s point of view: Given R

and the corresponding optimal policy set Π
∗

w.r.t. R as the input, the teacher designs a
new reward function R̂ with criteria of informativeness and sparseness while guaranteeing
an invariance requirement (these properties are formalized in Section 4.4). Informally,
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the invariance requirement is that any optimal policy learned using the new reward R̂

belongs to the optimal policy set Π
∗

induced by R.2

Typical techniques for reward design and issues. Given a set of important states
(subgoals) in the environment, one could design a handcrafted reward function R̂CRAFT

by assigning non-zero reward values only to these states. Even though this simple
approach produces a reward function with a specified sparsity level, it often fails to
satisfy the invariance requirement. In particular, there are some well-known “reward
bugs” that can arise in this approach and mislead the agent into learning sub-optimal
policies (see (Randløv and Alstrøm, 1998; Ng et al., 1999)). In the seminal work (Ng
et al., 1999), the authors introduced the potential-based reward shaping (PBRS) method
to alleviate this issue. The reward function produced by the PBRS method with optimal
value function V

∗
∞ under R as the potential function is defined as follows:

R̂PBRS (s, a) := R (s, a) + γ
∑
s′∈S

T (s′ | s, a) · V ∗
∞ (s′)− V ∗

∞ (s) . (2.1)

The set of optimal policies Π̂∗ induced by R̂PBRS is exactly equal to the set of optimal
policies Π

∗
induced by R since δ̂π∞(s, a) = δ

∗
∞(s, a) for all π ∈ Π

∗
(Ng et al., 1999). In ad-

dition, for any state s ∈ S , globally optimal actions Π
∗
s ⊆ A under R are also myopically

optimal under R̂PBRS since δ̂π0 (s, a) = δ
∗
∞(s, a) for all π ∈ Π

∗
(Ng et al., 1999; Zou et al.,

2019) – this leads to a dramatic speed-up in the learning process. However, the potential-
based reward shaping produces dense reward function which is less interpretable (see
Section 2.5).

2.4 Methodology

In Sections 2.4.1, 2.4.2, and 2.4.3, we propose an optimization formulation and a greedy
solution for the explicable reward design problem. In Section 2.4.4, we provide a theoret-
ical analysis of our greedy solution. In Section 2.4.5, we provide a practical extension to
apply our framework to large state spaces.

2In the rest of this chapter, the quantities defined corresponding to R := R are denoted by an over-
line, e.g., the optimal policy set by Π

∗
and the ∞-step optimality gaps by δ

∗
∞; the quantities defined

corresponding to R := R̂ are denoted by a widehat, e.g., the optimal policy set by Π̂∗.
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2.4.1 Discrete Optimization Formulation

Given R and the corresponding optimal policy set Π
∗
, we systematically develop a

discrete optimization framework (EXPRD) to design an explicable reward function R̂

(see Figure 2.1).
Sparseness, informativeness, and invariance. The sparseness of the reward function

R̂ is captured by supp(R̂). In Section 2.4.2, we formalize an informativeness criterion
I(R̂) of R̂ that captures how hard/easy it is to learn an optimal behavior induced by R̂.
We explicitly enforce the invariance requirement (see Section 2.3) for the new reward R̂

by choosing a set of candidate policies Π† ⊆ Π
∗
, and satisfying the following (Bellman-

optimality) conditions:

Qπ†

∞(s, a) = R̂(s, a) + γ
∑
s′∈S

T (s′|s, a) ·Qπ†

∞(s′, π†(s′)), ∀a ∈ A, s ∈ S, π† ∈ Π† (C.1)

Qπ†

∞(s, π†(s)) ≥ Qπ†

∞(s, a) + δ
∗
∞(s), ∀a ∈ A\Π∗

s, s ∈ S, π† ∈ Π†, (C.2)

where δ
∗
∞(s) := mina∈A\Π∗

s
δ
∗
∞(s, a),∀s ∈ S.3 The above conditions guarantee that any

optimal policy induced by R̂ is also optimal under R, i.e., Π† ⊆ Π̂∗ ⊆ Π
∗
. Here, the set

Π† ⊆ Π
∗

is used to reduce the number of constraints. Note that for the potential-based
shaped reward R̂PBRS, we have Π̂∗ = Π

∗
.

Maximizing informativeness for a given set of important states. When a domain
expert provides us a set of important states (subgoals) in the environment (McGovern
and Barto, 2001; Simsek et al., 2005; Florensa et al., 2018; Paul et al., 2019), we want to use
this set in a principled way to design a reward R̂, while avoiding the “reward bugs” that
can arise from hand-crafted rewards R̂CRAFT. To this end, for any given set of subgoals
Z ⊆ S\G, we optimize the informativeness criterion I(R) while satisfying the invariance
requirement:

g(Z) := max
R:supp(R)⊆Z∪G

I(R)

subject to conditions (C.1)− (C.2) with R̂ replaced by R hold (P1)

|R (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A.

Let R(Z) denote the R that maximizes g(Z). LetR ⊆ R|S|·|A| be a constraint set on R that
captures only the conditions (C.1)− (C.2) and the Rmax bound.

3Note that the true action values Q
∗
∞ are used in the conditions (C.1)− (C.2) to obtain the terms δ

∗
∞(s, a),

A\Π∗
s , and Π†. However, when we only have an approximate estimate of Q

∗
∞, we can adapt (C.1)− (C.2)

appropriately with approximate versions of δ
∗
∞(s, a), A\Π∗

s , and Π†.
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Jointly finding subgoals along with maximizing informativeness. Based on (P1),
we propose the following discrete optimization formulation that allows us to select a set
of important states (of size B) and design a reward function that maximizes informative-
ness automatically:

max
Z:Z⊆S\G,|Z|≤B

g(Z). (P2)

We can incorporate prior knowledge about the quality of subgoals using a set function
D : 2S → R (we assume D to be a submodular function (Krause and Golovin, 2014)).
Finally, the full EXPRD formulation is given by:

max
Z:Z⊆S\G,|Z|≤B

g(Z) + λ ·D(Z ∪ G), for some λ ≥ 0. (P3)

We study the problems (P1), (P2), and (P3) in the following subsections.

2.4.2 Informativeness Criterion

Understanding the informativeness of a reward function is an important problem, and
several works have investigated it (Laud and DeJong, 2003; Dai and Walter, 2019; Kearns
et al., 2002; Furuta et al., 2021; Gleave et al., 2021). Our goal is to define an infor-
mativeness criterion that is amenable to optimization techniques. As noted in Sec-
tion 2.3, for any policy π ∈ Π

∗
, 0-step and ∞-step optimality gaps induced by R̂PBRS

are all equal to∞-step optimality gaps induced by R, i.e., δ̂π0 (s, a) = δ̂π∞(s, a) = δ
∗
∞(s, a).

For any reward function R, one could ask how much these two quantities could dif-
fer, and even consider the intermediate cases between 0-step and ∞-step optimal-
ity. Inspired by the h-step optimality notions studied in (Laud and DeJong, 2003;
Kearns et al., 2002), we define the h-step action value function of any policy π as
Qπ
h (s, a) = E

[∑h
t=0 γ

tR(st, at)|s0 = s, a0 = a, T, π
]
, and it satisfies the following recursive

relationship: Qπ
h(s, a) = R(s, a) + γ

∑
s′∈S T (s

′|s, a) ·Qπ
h−1(s

′, π(s′)).
Let H be a set of horizons for which we want to maximize informativeness. For

any policy π and reward function R, we define the following quantity that captures
the h-step optimality gap of action a at state s: δπh(s, a) := Qπ

h(s, π(s)) − Qπ
h(s, a),∀s ∈

S, a ∈ A, h ∈ H. Later, in the proof of Proposition 2.2, we show that δπh(s, a) is linear in R,
i.e., δπh(s, a) =

〈
wh;(s,a), R

〉
for some vector wh;(s,a) ∈ R|S|·|A|. Interestingly, the following

proposition states that, for any policy π ∈ Π
∗

and any h, the h-step optimality gap
induced by R̂PBRS given in (2.1) is equal to the∞-step optimality gap induced by R:

Proposition 2.1. The goal-based reward function R, and the potential-based shaped reward
function R̂PBRS given in (2.1) satisfy the following: δ̂πh(s, a) = δ

∗
∞(s, a),∀s ∈ S, a ∈ A, π ∈

Π
∗
, h ∈ H.
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Let ℓ : R→ R be a monotonically non-decreasing concave function. Then, based on
the h-step optimality gaps, we define the informativeness criterion of the reward R as
follows:

Iℓ(R) :=
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

ℓ(δπ
†

h (s, a)).

From here onwards, we let I be Iℓ in the problem (P1). As an example for ℓ, we consider
the negated hinge loss given by ℓhg(δ(s, a)) := −max(0, δ

∗
∞(s, a) − δ(s, a)). By Proposi-

tion 2.1, we have that Iℓhg(R̂PBRS) = 0, and Iℓhg(R) ≤ 0 for any otherR, i.e., R̂PBRS achieves
the maximum value of Iℓhg .

2.4.3 Iterative Greedy Algorithm

First, we show that the problem (P1) can be efficiently solved using the standard concave
optimization methods to find R(Z) for any given Z ⊆ S\G:

Proposition 2.2. For any given Z ⊆ S\G, the problem (P1) is a concave optimization problem
in R ∈ R|S|·|A| with linear constraints. Further, the feasible set of the problem (P1) is non-empty.

Then, inspired by the Forward Stepwise Selection method from (Elenberg et al.,
2018), we propose an iterative greedy solution (see Algorithm 2.1) to solve the prob-
lems (P2) and (P3). To compute the incremental gain at each step, we would need to
solve the concave optimization problem (P1) for different values of Z . The problem (P1)
has |S| · |A| optimization variables and O(|S| · |A| ·

∣∣Π†
∣∣ · |H|) constraints.

Algorithm 2.1: Iterative Greedy Algorithm for EXPRD

1 Input: MDP M :=
(
S,A, T, γ, R

)
, δ

∗
∞(s, a) values, sets Π

∗
,Π

†
,G,H, sparsity

budget B
2 Initialize: Z0 ← ∅
3 for k = 1, 2, . . . , B do
4 zk ← argmaxz∈S\Zk−1

g(Zk−1∪{z})+λ ·D(Zk−1∪G ∪{z})− g(Zk−1)−λ ·D(Zk−1∪G)
5 Zk ← Zk−1 ∪ {zk}
6 Output: ZB and the corresponding optimal reward function R(ZB).

2.4.4 Theoretical Analysis

Here, we provide guarantees for the solution returned by our Algorithm 2.1. Below, we
give an overview of the main technical ideas, and leave a detailed discussion along with
proofs in Appendix A. For some µ ≥ 0, let Ireg

ℓ (R) := Iℓ(R)− µ ∥R∥22 be the regularized
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informativeness criterion. We define a normalized set function f : 2S → R as follows:

f(Z) = max
R:supp(R)⊆Z∪G,R∈R

(I
reg
ℓ (R)− Ireg

ℓ (R(∅))) + λ · (D(Z ∪ G)−D(G)), (2.2)

where R(∅) = argmaxR:supp(R)⊆G,R∈R I
reg
ℓ (R). Note that the regularized variant (Iℓ re-

placed by Ireg
ℓ ) of the optimization problem (P3) is equivalent to maxZ:Z⊆S\G,|Z|≤B f (Z).

For a given sparsity budget B, let ZGreedy
B be the set selected by our Algorithm 2.1 and

ZOPT
B be the optimal set that maximizes the regularized variant of problem (P3). The

corresponding f values of these sets are denoted by fGreedy
B and fOPT

B respectively; in the
following, we are interested in comparing these two values. The problem (P3) is closely
related to the subset selection problem studied in (Elenberg et al., 2018) with a twist of an
additional constraint setR (see the discussion after (P1)), making the theoretical analysis
more challenging. Inspired by the analysis in (Elenberg et al., 2018), we need to prove
a weak form of submodularity (Das and Kempe, 2011; Krause and Golovin, 2014) for
f (since D is already a submodular function, we need to prove this for the case when
λ = 0). To this end, we require the regularized informativeness criterion Ireg

ℓ to satisfy
certain structural assumptions. First, we define the restricted strongly concavity and
restricted smoothness notions of a function that are used in our analysis.

Definition 2.1 (Restricted Strong Concavity, Restricted Smoothness (Negahban et al.,
2012)). A function L : R|S|·|A| → R is said to be restricted strong concave with parameter mΩ

and restricted smooth with parameter MΩ on a domain Ω ⊂ R|S|·|A|×R|S|·|A| if for all (x, y) ∈ Ω:

−mΩ

2
∥y − x∥22 ≥ L (y)− L (x)− ⟨∇L (x), y − x⟩ ≥ − MΩ

2
∥y − x∥22 .

For any integer k, we define the following two sets: Ωk := {(x, y) : ∥x∥0 ≤ k, ∥y∥0 ≤
k, ∥x− y∥0 ≤ k, x, y ∈ R}, and Ω̃k := {(x, y) : ∥x∥0 ≤ k, ∥y∥0 ≤ k, ∥x− y∥0 ≤ 1, x, y ∈ R}.
Let mk := mΩk

and Mk :=MΩk
(similarly we define m̃k and M̃k).

When there is no R ∈ R constraint in (2.2), the following assumption on the reg-
ularized informativeness criterion is sufficient to prove the weak submodularity of
f (Elenberg et al., 2018):

Assumption 2.1. The regularized informativeness criterion Ireg
ℓ is m2B+|G|-restricted strongly

concave and M2B+|G|-restricted smooth on Ω2B+|G|.

However, due to the additional R ∈ R constraint, we need to enforce further re-
quirements on Ireg

ℓ formally captured in Assumption 2 provided in the Appendix; here,
we discuss these requirements informally. Let Z be any set such that Z ⊆ S\G, and
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∇Ireg
ℓ (R(Z)) be the gradient of the regularized informativeness criterion at the optimal

reward R(Z). Then, we need to ensure the following: (i) the ℓ2-norm of the projection
of ∇Ireg

ℓ (R(Z)) on (Z ∪ G) is upper-bounded, captured by doptmax; (ii) the ℓ2-norm of the
projection of ∇Ireg

ℓ (R(Z)) on any j ∈ S\(Z ∪ G) is lower-bounded, captured by dnonmin;
and (iii) the components of the optimal reward R(Z) outside (Z ∪ G) do not lie in the
boundary ofR, captured by κ. Then, by using Assumption 2.1 and Assumption A.1 (see
Appendix A), we prove the weak submodularity of f . Finally, by applying Theorem 3
from (Elenberg et al., 2018), we obtain the following theorem:

Theorem 2.1. Let Ireg
ℓ satisfies Assumption 2.1 and Assumption A.1 requirements. Then, we

have fGreedy
B ≥ (1− e−γ) fOPT

B , where γ =
κ·m2B+|G|
M2B+|G|

· (dnonmin)
2

(doptmax)
2
+(dnonmin)

2 .

We provide Assumption A.1 and a detailed proof of the theorem in Appendix A.

2.4.5 Extension to Large State Spaces using State Abstractions

This section presents an extension of our EXPRD framework that is scalable to large
state spaces by leveraging the techniques from state abstraction literature (Givan et al.,
2003; Li et al., 2006; Abel et al., 2016). We use an abstraction ϕ : S → Xϕ, which is a
mapping from high-dimensional state space S to a low-dimensional latent space Xϕ.
Let ϕ−1(x) := {s ∈ S : ϕ(s) = x} ,∀x ∈ Xϕ, and M :=

(
S,A, T, γ, R

)
. We propose the

following pipeline:

1. By using M and ϕ, we construct an abstract MDP Mϕ =
(
Xϕ,A, Tϕ, γ, Rϕ

)
as follows,

∀x, x′ ∈ Xϕ, a ∈ A: Tϕ(x′|x, a) = 1
|ϕ−1(x)|

∑
s∈ϕ−1(x)

∑
s′∈ϕ−1(x′) T (s

′|s, a), and Rϕ(x, a) =
1

|ϕ−1(x)|
∑

s∈ϕ−1(x)R(s, a). We compute the set of optimal policies Π
∗
ϕ for the MDP Mϕ.

2. We run our EXPRD framework on Mϕ with Π† = Π
∗
ϕ, and the resulting reward is

denoted R̂ϕ.

3. We define the reward function R̂ on the state space S as follows: R̂(s, a) = R̂ϕ(ϕ(s), a).

By assuming certain structural conditions on ϕ formalized in Appendix A, we can show
that any optimal policy induced by the above reward R̂ acts nearly optimal w.r.t. R. This
pipeline can be extended to continuous state space as well, similar to (Marthi, 2007; Abel
et al., 2016; Kamalaruban et al., 2020). We provide more details in Appendix A.

2.5 Experimental Evaluation

In this section, we evaluate EXPRD on two environments: ROOM (Section 2.5.1) and
LINEK (Section 2.5.2). ROOM corresponds to a navigation task in a grid-world where the
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Figure 2.2: Environment ROOM. Figure 2.3: Environment LINEK.

agent has to learn a policy to quickly reach the goal location in one of four rooms, starting
from an initial location. Even though this environment has a small state space, it provides
a very rich and an intuitive problem setting to validate different reward design tech-
niques, and variants of ROOM have been used extensively in the literature (McGovern
and Barto, 2001; Simsek et al., 2005; Grzes and Kudenko, 2008; Asmuth et al., 2008; James
and Singh, 2009; Demir et al., 2019; Jiang et al., 2021). LINEK corresponds to a navigation
task in a one-dimensional space where the agent has to first pick the key and then reach
the goal. The agent’s location in this environment is represented as a point on a line
segment. Given the large state space representation, it is computationally challenging
to apply the reward design technique from Section 2.4.3 and we use the state abstraction-
based extension of our framework from Section 2.4.5. This environment is inspired
by variants of navigation tasks in the literature where an agent needs to perform sub-
tasks (Ng et al., 1999; Raileanu et al., 2018). We give an overview of main results here, and
provide a more detailed description of the setup and additional results in Appendix A.

2.5.1 Evaluation on ROOM

ROOM (Figure 2.2). We represent the environment as an MDP with S states each cor-
responding to cells in the grid-world indicating the agent’s current location (shown
as “blue-circle”). Goal (shown as “green-star”) is located at the top-right corner cell.
The agent can take four actions given by A := {“up”, “left”, “down”, “right”}. An ac-
tion takes the agent to the neighbouring cell represented by the direction of the action;
however, if there is a wall (shown as “brown-segment”), the agent stays at the current
location. Furthermore, when an agent takes an action a ∈ A, there is prand probability that
an action a′ ∈ A \ {a} will be executed instead of a. In addition to these walls, there are
a few terminal walls (shown as “thick-red-segment”) that terminates the episode—at the
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bottom-left corner cell, “left” and “down” actions terminate; at the top-right corner cell,
“right” action terminates. The agent gets a reward of Rmax after it has navigated to the
goal and then takes a “right” action (i.e., only one state-action pair has a reward); note
that this action also terminates the episode. The reward is 0 for all other state-action pairs
and there is a discount factor γ. This MDP has |S| = 49 and |A| = 4; we set prand = 0.1,
Rmax = 10, and γ = 0.95 in our evaluation.

Techniques evaluated. We consider the following baselines: (i) R̂ORIG := R, which
simply represents default reward function, (ii) R̂PBRS obtained via the PBRS technique
with the optimal value function V

∗
∞ w.r.t. R (see Section 2.3), (iii) R̂CRAFT that we design

manually (see Section 2.3 and description below), and (iv) R̂PBRS-CRAFT(B=5) obtained via
the PBRS technique with the optimal value function w.r.t. R̂CRAFT instead of V

∗
∞ (Haru-

tyunyan et al., 2015).4 To design R̂CRAFT, we first hand-crafted a set functionD that assigns
scores to the states in the MDP, e.g., the scores are higher for the four entry points in the
rooms. In general, one could learn such D automatically using the techniques from (Mc-
Govern and Barto, 2001; Simsek et al., 2005; Florensa et al., 2018; Paul et al., 2019)—see
full details about D in Appendix A. Then, for a fixed budget B, we pick the top B states
according to the scoring by D and assign a reward of +1 for optimal actions and −1 for
others. For the evaluation, we useB = 5 and denote the function as R̂CRAFT(B=5). Note that
apart fromB states, R̂CRAFT(B=5) also has a reward assigned for the goal state taken fromR.

The reward functions R̂EXPRD designed by our EXPRD framework are parameterized
by budget B and hyperparameter λ. For λ, we consider two extreme settings: (a)
λ = 0 where the problem (P3) reduces to (P2), and (b) λ → ∞ where the problem (P3)
reduces to (P1) corresponding to the reward design with subgoals pre-selected by the
function D. We use the same function D that we used for R̂CRAFT above. For budget
B, we consider values from {3, 5, |S|}. In particular, we evaluate the following reward
functions: R̂EXPRD(B=5,λ→∞), R̂EXPRD(B=3,λ=0), R̂EXPRD(B=5,λ=0), and R̂EXPRD(B=|S|,λ=0). For
the evaluation in this section, we use the following parameter choices for EXPRD:H =

{1, 4, 8, 16, 32}, ℓ is the negated hinge loss ℓhg, and Π† contains only one policy from Π
∗
.

Results. We use standard Q-learning method for the agent with a learning rate 0.5

and exploration factor 0.1 (Sutton and Barto, 2018). During training, the agent receives
rewards based on R̂, however, is evaluated based on R. A training episode ends when
the maximum steps (set to 50) is reached or an agent’s action terminates the episode.
All the results are reported as average over 40 runs and convergence plots show mean
with standard error bars. The convergence behavior in Figure 2.4a demonstrates the

4The reward shaping method in (Harutyunyan et al., 2015) is based on the PBRS technique and leads
to dense reward functions. However, their method is more practical as it does not require solving the
original task w.r.t. R.
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Figure 2.4: Results for ROOM. (a) shows convergence in performance of the agent w.r.t. training episodes.
Here, performance is measured as the expected reward per episode computed using R; note that the x-axis
is exponential in scale. (b-d) visualize the designed reward functions R̂ORIG, R̂PBRS, and R̂EXPRD(B=5,λ=0).
These plots illustrate reward values for all combinations of S ×A shown as four 7× 7 grids corresponding
to different actions. Blue color represents positive reward, red color represents negative reward, and the
magnitude of the reward is indicated by color intensity. As an example, consider “right” action grid for
R̂ORIG in (b) where the dark blue color in the corner indicates the goal. To increase the color contrast, we
clipped rewards in the range [−4,+4] for this visualization even though the designed rewards are in the
range [−10,+10]. See Section 2.5.1 for details.

effectiveness of the reward functions designed by our EXPRD framework.5 Note that
R̂CRAFT(B=5) leads to sub-optimal behavior due to “reward bugs” (see Section 2.3), whereas
R̂EXPRD(B=5,λ→∞) fixes this issue using the same set of subgoals. EXPRD leads to good
performance even without domain knowledge (i.e., when λ = 0), e.g., the performance
corresponding to R̂EXPRD(B=3,λ=0) is comparable to that of R̂EXPRD(B=5,λ→∞). The visual-
izations of R̂ORIG, R̂PBRS, and R̂EXPRD(B=5,λ=0) in Figures 2.4b, 2.4c, and 2.4d highlight the
trade-offs in terms of sparseness and interpretability of the reward functions. The reward
function R̂EXPRD(B=5,λ=0) designed by our EXPRD framework provides a good balance
in terms of convergence performance while maintaining high sparseness. Additional
visualizations and results are provided in Appendix A.

2.5.2 Evaluation on LINEK

LINEK (Figure 2.3). We represent the environment as an MDP with S states correspond-
ing to the agent’s status comprising of the current location (shown as “blue-circle” and
is a point x in [0, 1]) and a binary flag whether the agent has acquired a key (shown
as “cyan-bolt”). Goal (shown as “green-star”) is available in locations on the segment
[0.9, 1], and the key is available in locations on the segment [0.1, 0.2]. The agent can take
three actions given by A := {“left”, “right”, , “pick”}. “pick” action does not change the
agent’s location, however, when executed in locations with availability of the key, the

5As we discussed in Sections 2.1 and 2.3, R̂PBRS designed using V
∗
∞ makes the agent’s learning process

trivial.
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agent acquires the key; if agent already had a key, the action does not affect the status.
A move action of “left” or “right” takes the agent from the current location in the direc-
tion of move with the dynamics of the final location captured by two hyperparameters
(∆a,1,∆a,2); for instance, with current location x and action “left”, the new location x′ is
sampled uniformly among locations from (x−∆a,1 −∆a,2) to (x−∆a,1 +∆a,2). Similar
to ROOM, the agent’s move action is not applied if the new location crosses the wall, and
there is prand probability of a random action. The agent gets a reward of Rmax after it has
navigated to the goal locations after acquiring the key and then takes a “right” action;
note that this action also terminates the episode. The reward is 0 elsewhere and there is
a discount factor γ. We set prand = 0.1, Rmax = 10, γ = 0.95, ∆a,1 = 0.075 and ∆a,2 = 0.01.

Techniques evaluated. The baseline R̂ORIG := R represents the default reward func-
tion. We evaluate the variants of R̂PBRS and R̂EXPRD using an abstraction. For a given
hyperparameter α ∈ (0, 1), the set of possible locations X are obtained by α-level dis-
cretization of the line segment from 0.0 to 1.0, leading to a 1/α set of locations. For the
abstraction ϕ associated with this discretization (Burden and Kudenko, 2020), the abstract
MDP Mϕ (see Section 2.4.5) has |Xϕ| = 2/α and |A| = 3. We use α = 0.05. We compute the
optimal state value function in the abstract MDP Mϕ, lift it to the original state space via
ϕ, and use the lifted value function as the potential to design R̂PBRS (Marthi, 2007). We
follow the pipeline in Section 2.4.5 to design R̂EXPRD – in the subroutine, we run EXPRD
on Mϕ for a budget B = 5 and a full budget B = |Xϕ|; we set λ = 0. For other parameters
(H, ℓ, and Π†), we use the same choices as in Section 2.5.1.

Results. The agent uses Q-learning method in the original MDP M by using a fine-
grained discretization of the state space; rest of the method’s parameters are same as in
Section 2.5.1. All the results are reported as average over 40 runs and convergence plots
show mean with standard error bars. Figure 2.5a demonstrates that all three designed
reward functions—R̂PBRS, R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xϕ|,λ=0)—substantially improves the
convergence, whereas the agent is not able to learn under R̂ORIG. Based on the visual-
izations in Figures 2.5b, 2.5c, and 2.5d, R̂EXPRD(B=5,λ=0) provides a good balance between
convergence and sparseness. Interestingly, R̂EXPRD(B=5,λ=0) assigned a high positive re-
ward for the “pick” action when the agent is in the locations with key (see ‘p-’ bar in
Figure 2.5d).

2.6 Conclusions
We developed a novel optimization framework, EXPRD, to design explicable reward
functions in which we can appropriately balance informativeness and sparseness in
the reward design process. As part of the framework, we introduced a new criterion
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Figure 2.5: Results for LINEK. (a) shows convergence in performance of the agent w.r.t. training episodes.
Here, performance is measured as the expected reward per episode computed using R. (b-d) visualize
the designed reward functions R̂ORIG, R̂PBRS, and R̂EXPRD(B=5,λ=0). These plots illustrate reward values
for all combination of triplets, i.e., agent’s location on the segment [0.0, 1.0] (shown as horizontal bar),
agent’s status whether it has acquired key or not (indicated as ‘K’ or ‘-’), and three actions (indicated
as ‘l’ for “left”, ‘r’ for “right”, ‘p’ for “pick”). We use a color representation similar to Figure 2.4, and we
clipped rewards in the range [−3,+3] to increase the color contrast for this visualization. As an example,
consider ‘rK’ bar for R̂ORIG in (b) where the dark blue color on the segment [0.9, 1] indicate the locations
with goal. See Section 2.5.2 for details.

capturing informativeness of reward functions that is of independent interest. The
mathematical analysis of EXPRD shows connections of our framework to the popular
reward-design techniques, and provides theoretical underpinnings of expert-driven
explicable reward design. Importantly, EXPRD allows one to go beyond using a potential
function for principled reward design, and provides a general recipe for developing an
optimization-based reward design framework with different structural constraints. We
also provided a practical extension to apply our framework in environments with large
state spaces via state abstractions.

There are several promising directions for future work, including but not limited to
the following: (a) using a combination of our optimization-based reward design tech-
nique with automata-driven rewards as well as other structured rewards, (b) extending
our framework for agent-driven reward design, (c) applying our framework in a transfer
setting using techniques from (Brys et al., 2015b; Harutyunyan et al., 2015), and (d)
investigating the usage of our informativeness criterion for discovering subgoals.



CHAPTER 3
Adaptive Teacher-Driven Explicable

Reward Design

Reward functions are central in specifying the task we want a reinforcement learning
(RL) agent to perform. Given a task and desired optimal behavior, we study the problem
of designing informative reward functions so that the designed rewards speed up the
agent’s convergence. In particular, we consider expert-driven reward design settings
where an expert or teacher seeks to provide informative and interpretable rewards
to a learning agent. Existing works have considered several different reward design
formulations; however, the key challenge is formulating a reward informativeness
criterion that adapts w.r.t. the agent’s current policy and can be optimized under specified
structural constraints to obtain interpretable rewards. In this chapter, we propose a
novel reward informativeness criterion, a quantitative measure that captures how the
agent’s current policy will improve if it receives rewards from a specific reward function.
We theoretically showcase the utility of the proposed informativeness criterion for
adaptively designing rewards for an agent. Experimental results on two navigation tasks
demonstrate the effectiveness of our adaptive reward informativeness criterion.

3.1 Introduction

Reward functions play a central role during the learning/training process of an RL agent.
Given a task the agent is expected to perform, many different reward functions exist
under which an optimal policy has the same performance on the task. This freedom in
choosing a reward function for the task, in turn, leads to the fundamental question of de-
signing appropriate rewards for the RL agent that match certain desired criteria (Mataric,
1994; Randløv and Alstrøm, 1998; Ng et al., 1999). In this chapter, we study the problem
of designing informative reward functions so that the designed rewards speed up the
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agent’s convergence (Mataric, 1994; Randløv and Alstrøm, 1998; Ng et al., 1999; Laud
and DeJong, 2003; Dai and Walter, 2019; Arjona-Medina et al., 2019).

More concretely, we focus on expert-driven reward design settings where an expert
or teacher seeks to provide informative rewards to a learning agent (Mataric, 1994; Ng
et al., 1999; Zhang and Parkes, 2008; Zhang et al., 2009; Goyal et al., 2019; Ma et al., 2019;
Rakhsha et al., 2020, 2021; Jiang et al., 2021; Devidze et al., 2021). In expert-driven reward
design settings, the designed reward functions should also satisfy certain structural con-
straints apart from being informative, e.g., to ensure interpretability of reward signals or
to match required reward specifications (Grzes and Kudenko, 2008; Demir et al., 2019; Ca-
macho et al., 2017; Jothimurugan et al., 2019; Jiang et al., 2021; Devidze et al., 2021; Icarte
et al., 2022; Bewley and Lécué, 2022). For instance, informativeness and interpretability
become crucial in settings where rewards are designed for human learners who are
learning to perform sequential tasks in pedagogical applications such as educational
games (O’Rourke et al., 2014) and open-ended problem solving domains (Maloney et al.,
2008). Analogously, informativeness and structural constraints become crucial in settings
where rewards are designed for complex compositional tasks in the robotics domain
that involve reward specifications in terms of automata or subgoals (Jiang et al., 2021;
Icarte et al., 2022). To this end, an important research question is: How to formulate reward
informativeness criterion that can be optimized under specified structural constraints?

Existing works have considered different reward design formulations; however,
they have limitations in appropriately incorporating informativeness and structural
properties. On the one hand, potential-based reward shaping (PBRS) is a well-studied
family of reward design techniques (Ng et al., 1999; Wiewiora, 2003; Asmuth et al., 2008;
Grzes and Kudenko, 2008; Devlin and Kudenko, 2012; Grzes, 2017; Demir et al., 2019;
Goyal et al., 2019; Jiang et al., 2021). While PBRS techniques enable designing infor-
mative rewards via utilizing informative potential functions (e.g., near-optimal value
function for the task), the resulting reward functions do not adhere to specific structural
constraints. On the other hand, optimization-based reward design techniques is another
popular family of techniques (Zhang and Parkes, 2008; Zhang et al., 2009; Ma et al.,
2019; Rakhsha et al., 2020, 2021; Devidze et al., 2021). While optimization-based tech-
niques enable enforcing specific structural constraints, there is a lack of suitable reward
informativeness criterion that is amenable to optimization as part of these techniques.
In this family of techniques, a recent work (Devidze et al., 2021) introduced a reward
informativeness criterion suitable for optimization under sparseness structure; however,
their informativeness criterion doesn’t account for the agent’s current policy, making the
reward design process agnostic to the agent’s learning progress.
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In this chapter, we present a general framework, EXPADARD, for expert-driven
explicable and adaptive reward design. EXPADARD utilizes a novel reward informative-
ness criterion, a quantitative measure that captures how the agent’s current policy will
improve if it receives rewards from a specific reward function. Crucially, the informa-
tiveness criterion adapts w.r.t. the agent’s current policy and can be optimized under
specified structural constraints to obtain interpretable rewards. Our main results and
contributions are:

I. We introduce a reward informativeness criterion formulated within bi-level opti-
mization. By analyzing it for a specific learning algorithm, we derive a novel in-
formativeness criterion that is amenable to the reward optimization process (Sec-
tions 3.4.1 and 3.4.2).

II. We theoretically showcase the utility of our informativeness criterion in adaptively
designing rewards by analyzing the convergence speed up of an agent in a simplified
setting (Section 3.4.3).

III. We empirically demonstrate the effectiveness of our reward informativeness criterion
for designing explicable and adaptive reward functions in two navigation environ-
ments. (Section 3.5).6

3.2 Related Work

Expert-driven reward design. As previously discussed, well-studied families of expert-
driven reward design techniques include potential-based reward shaping (PBRS) (Ng
et al., 1999; Wiewiora, 2003; Asmuth et al., 2008; Grzes and Kudenko, 2008; Devlin
and Kudenko, 2012; Grzes, 2017; Demir et al., 2019; Goyal et al., 2019; Jiang et al.,
2021), optimization-based techniques (Zhang and Parkes, 2008; Zhang et al., 2009; Ma
et al., 2019; Rakhsha et al., 2020, 2021; Devidze et al., 2021), and reward shaping with
expert demonstrations or feedback (Daniel et al., 2014; Brys et al., 2015a; De Giacomo
et al., 2020; Xiao et al., 2020). Our reward design framework, EXPADARD, also uses
an optimization-based design process. The key issue with existing optimization-based
techniques is a lack of suitable reward informativeness criterion. A recent work (Devidze
et al., 2021) introduced an expert-driven explicable reward design framework (EXPRD)
that optimizes an informativeness criterion under sparseness structure. However, their
informativeness criterion doesn’t account for the agent’s current policy, making the

6Github: https://github.com/machine-teaching-group/aamas2024-
informativeness-of-reward-functions.

https://github.com/machine-teaching-group/aamas2024-informativeness-of-reward-functions
https://github.com/machine-teaching-group/aamas2024-informativeness-of-reward-functions


Chapter 3. Adaptive Teacher-Driven Explicable Reward Design 34

reward design process agnostic to the agent’s learning progress. In contrast, we propose
an adaptive informativeness criterion enabling it to provide more informative reward
signals. Technically, our proposed reward informativeness criterion is quite different
from that proposed in (Devidze et al., 2021) and is derived based on analyzing meta-
gradients within bi-level optimization formulation.

Learner-driven reward design. Learner-driven reward design techniques involve an
agent designing its own rewards throughout the training process to accelerate conver-
gence (Sorg et al., 2010c; Barto, 2013; Kulkarni et al., 2016; Zheng et al., 2018; Trott et al.,
2019; Arjona-Medina et al., 2019; Ferret et al., 2020; Memarian et al., 2021; Devidze et al.,
2022). These learner-driven techniques employ various strategies, including designing
intrinsic rewards based on exploration bonuses (Barto, 2013; Kulkarni et al., 2016; Zhang
et al., 2020), crafting rewards using domain-specific knowledge (Trott et al., 2019), using
credit assignment to create intermediate rewards (Arjona-Medina et al., 2019; Ferret
et al., 2020), and designing parametric reward functions by iteratively updating reward
parameters and optimizing the agent’s policy based on learned rewards (Sorg et al.,
2010c; Zheng et al., 2018; Memarian et al., 2021; Devidze et al., 2022). While these learner-
driven techniques are typically designing adaptive and online reward functions, these
techniques do not emphasize the formulation of an informativeness criterion explicitly.
In our work, we draw on insights from meta-gradient derivations presented in (Sorg
et al., 2010c; Zheng et al., 2018; Memarian et al., 2021; Devidze et al., 2022) to develop an
adaptive informativeness criterion tailored for the expert-driven reward design settings.

3.3 Problem Setup

3.3.1 Preliminaries

Environment. An environment is defined as a Markov Decision Process (MDP) denoted
by M := (S,A, T, P0, γ, R), where S and A represent the state and action spaces respec-
tively. The state transition dynamics are captured by T : S × S × A → [0, 1], where
T (s′ | s, a) denotes the probability of transitioning to state s′ by taking action a from state
s. The discounting factor is denoted by γ, and P0 represents the initial state distribution.
The reward function is given by R : S ×A → R.

Policy and performance. We denote a stochastic policy π : S → ∆(A) as a mapping from
a state to a probability distribution over actions, and a deterministic policy π : S → A as
a mapping from a state to an action. For any trajectory ξ = {(st, at)}t=0,1,...,H , we define
its cumulative return with respect to reward function R as J(ξ, R) :=

∑H
t=0 γ

t ·R(st, at).
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The expected cumulative return (value) of a policy π with respect to R is then defined
as J(π,R) := E [J(ξ, R)|P0, T, π], where s0 ∼ P0(·), at ∼ π(·|st), and st+1 ∼ T (·|st, at). A
learning agent (learner) in our setting seeks to find a policy that has maximum value
with respect to R, i.e., maxπ J(π,R). We denote the state occupancy measure of a policy π
by dπ. Furthermore, we define the state value function V π

R and the action value function
Qπ
R of a policy π with respect to R as follows, respectively: V π

R (s) = E[J(ξ, R)|s0 = s, T, π]

and Qπ
R(s, a) = E[J(ξ, R)|s0 = s, a0 = a, T, π]. The optimal value functions are given by

V ∗
R(s) = supπ V

π
R (s) and Q∗

R(s, a) = supπQ
π
R(s, a).

3.3.2 Expert-driven Explicable and Adaptive Reward Design

In this section, we present a general framework for expert-driven reward design, EX-
PADARD, as outlined in Algorithm 3.1. In our framework, an expert or teacher seeks
to provide informative and interpretable rewards to a learning agent. In each round
k, we address a reward design problem involving the following key elements: an un-
derlying reward function R, a target policy πT (e.g., a near-optimal policy w.r.t. R), a
learner’s policy πLk−1, and a learning algorithm L. The main objective of this reward
design problem is to craft a new reward function Rk under constraintsR such that Rk

provides informative learning signals when employed to update the policy πLk−1 using the
algorithm L. To quantify this objective, it is essential to define a reward informativeness
criterion, IL(R | R, πT , πLk−1), that adapts w.r.t. the agent’s current policy and can be
optimized under specified structural constraints to obtain interpretable rewards. Given
this informativeness criterion IL (to be developed in Section 3.4), the reward design
problem can be formulated as follows:

max
R∈R

IL(R | R, πT , πLk−1). (3.1)

Here, the setR encompasses additional constraints tailored to the application-specific
requirements, including (i) policy invariance constraintsRinv to guarantee that the de-
signed reward function induces the desired target policy and (ii) structural constraints
Rstr to obtain interpretable rewards, as further discussed below.

Invariance constraints. Let Π
∗
:= {π : S → A s.t. V π

R
(s) = V ∗

R
(s),∀s ∈ S} denote the set

of all deterministic optimal policies under R. Next, we defineRinv as a set of invariant
reward functions, where each R ∈ Rinv satisfies the following conditions (Ng et al., 1999;
Devidze et al., 2021):

QπT

R (s, a)− V πT

R (s) ≤ QπT

R
(s, a)− V πT

R
(s), ∀a ∈ A, s ∈ S.
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Algorithm 3.1: A General Framework for Expert-driven Explicable and Adaptive
Reward Design (EXPADARD)

1 Input: MDP M :=
(
S,A, T, γ, R

)
, target policy πT , learning algorithm L,

informativeness criterion IL, reward constraint setR
2 Initialize: learner’s initial policy πL0
3 for k = 1, 2, . . . , K do

// Expert updates the reward function
4 Rk ← argmaxR∈R IL(R | R, πT , πLk−1)

// Learner updates the policy
5 πLk ← L(πLk−1, Rk)

6 Output: learner’s policy πLK

When πT is an optimal policy under R (i.e., πT ∈ Π
∗
), these conditions guarantee the

following: (i) πT is an optimal policy under R; (ii) any optimal policy induced by R is
also an optimal policy under R; (iii) reward function R ∈ Rinv, i.e.,Rinv is non-empty.7

Structural constraints. We consider structural constraints as a way to obtain interpretable
rewards (e.g., sparsity or tree-structured rewards) and satisfy application-specific re-
quirements (e.g., bounded rewards). We denote the set of reward functions conforming
to specified structural constraints asRstr (Grzes and Kudenko, 2008; Camacho et al., 2017;
Demir et al., 2019; Jothimurugan et al., 2019; Icarte et al., 2022; Jiang et al., 2021; Devidze
et al., 2021; Bewley and Lécué, 2022). We implement these constraints via a set of param-
eterized reward functions, denoted asRstr = {Rϕ : S ×A → R where ϕ ∈ Rd}. For exam-
ple, given a feature representation f : S ×A → {0, 1}d, we employ Rϕ(s, a) = ⟨ϕ, f(s, a)⟩
in our experimental evaluation (Section 3.5). In particular, we will use different feature
representations to specify constraints induced by coarse-grained state abstraction (Ka-
malaruban et al., 2020) and tree structure (Bewley and Lécué, 2022). Furthermore, it is
possible to impose additional constraints on ϕ, such as bounding its ℓ∞ norm by Rmax or
requiring that its support supp(ϕ), defined as {i : i ∈ [d], ϕi ̸= 0}, matches a predefined
set Z ⊆ [d] (Devidze et al., 2021).

3.4 Methodology

In this section, we focus on developing a reward informativeness criterion that can
be optimized for the reward design formulation in Eq. (3.1). We first introduce an
informativeness criterion formulated within a bi-level optimization framework and then

7We can guarantee point (i) of πT being an optimal policy under R by replacing the right-hand side
with −ϵ for ϵ > 0; however, this would not guarantee (ii) and (iii).
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propose an intuitive informativeness criterion that can be generally applied to various
learning algorithms.

Notation. In the subscript of the expectations E, let π(a|s) mean a ∼ π(·|s), µπ(s, a) mean
s ∼ dπ, a ∼ π(·|s), and µπ(s) mean s ∼ dπ. Further, we use shorthand notation µπs,a and
µπs to refer µπ(s, a) and µπ(s), respectively.

3.4.1 Bi-Level Formulation for Reward Informativeness IL(R)

We consider parametric reward functions of the form Rϕ : S ×A → R, where ϕ ∈ Rd, and
parametric policies of the form πθ : S → ∆(A), where θ ∈ Rn. Let R be the underlying re-
ward function, and let πT be a target policy (e.g., a near-optimal policy w.r.t. R). We mea-
sure the performance of any policy πθ w.r.t. R and πT using the following performance
metric: J(πθ;R, πT ) = EµπT

s

[
Eπθ(a|s)

[
Aπ

T

R
(s, a)

]]
, where AπT

R
(s, a) = QπT

R
(s, a)− V πT

R
(s) is

the advantage function of policy πT w.r.t. R. Given a current policy πθ and a reward
function R, the learner updates the policy parameter using a learning algorithm L as
follows: θnew ← L(θ, R).

To evaluate the informativeness of a reward function Rϕ in guiding the convergence
of the learner’s policy πL := πθL towards the target policy πT , we define the following
informativeness criterion:

IL(Rϕ | R, πT , πL) := J(πθLnew(ϕ);R, π
T )

where θLnew(ϕ)← L(θL, Rϕ). (3.2)

The above criterion measures the performance of the resulting policy after the learner
updates πL using the reward function Rϕ. However, this criterion relies on having access
to the learning algorithm L and evaluating this criterion requires potentially expensive
policy updates using L. In the subsequent analysis, we further examine this criterion
to develop an intuitive alternative that is independent of any specific learning algorithm
and does not require any policy updates for its evaluation.

Analysis for a specific learning algorithmL. Here, we present an analysis of the informa-
tiveness criterion defined above, considering a simple learning algorithm L. Specifically,
we consider an algorithm L that utilizes parametric policies {πθ : θ ∈ Rn} and performs
single-step vanilla policy gradient updates using Q-values computed using h-depth
planning (Sorg et al., 2010c; Zheng et al., 2018; Devidze et al., 2022). We update the policy
parameter θ by employing a reward function R in the following manner:

L(θ, R) : = θ + α ·
[
∇θJ(πθ, R)

]
θ
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= θ + α · Eµπθs,a
[[
∇θ log πθ(a|s)

]
θ
Qπθ
R,h(s, a)

]
,

where Qπθ
R,h(s, a) = E

[∑h
t=0 γ

tR(st, at)
∣∣s0 = s, a0 = a, T, πθ

]
is the h-depth Q-value with

respect to R, and α is the learning rate. Furthermore, we assume that L uses a tabu-
lar representation, where θ ∈ R|S|·|A|, and a softmax policy parameterization given by
πθ(a|s) := exp(θ(s,a))∑

b exp(θ(s,b))
,∀s ∈ S, a ∈ A. For this L, the following proposition provides an

intuitive form of the gradient of IL in Eq. (3.2).

Proposition 3.1. The gradient of the informativeness criterion in Eq. (3.2) for the simplified
learning algorithm L with h-depth planning described above takes the following form:

∇ϕIL(Rϕ | R, πT , πL) ≈ α · ∇ϕEµπL
s,a

[
µπ

T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· AπL

Rϕ,h
(s, a)

]
,

where AπT

R
(s, πL(s)) = EπL(a′|s)

[
Aπ

T

R
(s, a′)

]
, and AπL

Rϕ,h
(s, a) = QπL

Rϕ,h
(s, a)− V πL

Rϕ,h
(s).

Proof. We discuss key proof steps here and provide a more detailed proof in Appendix B.
For the simple learning algorithm L described above, we can write the derivative of the
informativeness criterion in Eq. (3.2) as follows:

[
∇ϕIL(Rϕ | R, πT , πL)

]
ϕ

(a)
=
[
∇ϕθ

L
new(ϕ) · ∇θLnew(ϕ)J(πθLnew(ϕ);R, π

T )
]
ϕ

(b)
≈
[
∇ϕθ

L
new(ϕ)

]
ϕ
·
[
∇θJ(πθ;R, π

T )
]
θL
,

where the equality in (a) is due to chain rule, and the approximation in (b) assumes a
smoothness condition of

∥∥∥ [∇θJ(πθ;R, π
T )
]
θLnew(ϕ)

−
[
∇θJ(πθ;R, π

T )
]
θL

∥∥∥
2
≤ c·

∥∥θLnew(ϕ)− θL
∥∥
2

for some c > 0. For the L described above, we can obtain intuitive forms of the terms[
∇ϕθ

L
new(ϕ)

]
ϕ

and
[
∇θJ(πθ;R, π

T )
]
θL

. For any s ∈ S, a ∈ A, let 1s,a ∈ R|S|·|A| denote a
vector with 1 in the (s, a)-th entry and 0 elsewhere. By using the meta-gradient deriva-
tions presented in (Andrychowicz et al., 2016; Santoro et al., 2016; Nichol et al., 2018), we
simplify the first term as follows:

[
∇ϕθ

L
new(ϕ)

]
ϕ

= α · EµπL
s

[∑
a

πL(a|s) ·
[
∇ϕA

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]
.

Then, we simplify the second term as follows:

[
∇θJ(πθ;R, π

T )
]
θL

= EµπT
s

[∑
a

πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· 1s,a

]
.

Taking the matrix product of two terms completes the proof.
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3.4.2 Intuitive Formulation for Reward Informativeness Ih(R)

Based on Proposition 3.1, for the simple learning algorithm L discussed in Section 3.4.1,
the informativeness criterion in Eq. (3.2) can be written as follows:

IL(Rϕ | R, πT , πL) ≈ α · EµπL
s,a

[
µπ

T

s · πL(a|s)

·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· AπL

Rϕ,h
(s, a)

]
+ κ,

for some κ ∈ R. By dropping the constant terms α and κ, we define the following
intuitive informativeness criterion:

Ih(Rϕ | R, πT , πL) := EµπL
s,a

[
µπ

T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· AπL

Rϕ,h
(s, a)

]
.

(3.3)

The above criterion doesn’t require the knowledge of the learning algorithm L and only
relies on πL, R, and πT . Therefore, it serves as a generic informativeness measure that
can be used to evaluate the usefulness of reward functions for a range of limited-capacity
learners, specifically those with different h-horizon planning budgets. In practice, we
use the criterion Ih with h = 1. In this case, the criterion simplifies to the following form:

Ih=1(Rϕ | R, πT , πL) : = EµπL
s,a

[
µπ

T

s · πL(a|s)

·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
·
(
Rϕ(s, a)−Rϕ(s, π

L(s))
)]
,

where Rϕ(s, π
L(s)) = EπL(b|s)[Rϕ(s, b)]. Intuitively, this criterion measures the alignment

of a reward functionRϕ with better actions according to policy πT , and how well it boosts
the reward values for these actions in each state.

3.4.3 Using Ih(R) in EXPADARD Framework

Next, we will use the informativeness criterion Ih for designing reward functions to
accelerate the training process of a learning agent within the EXPADARD framework.
Specifically, we use Ih in place of IL to address the reward design problem formulated
in Eq. (3.1):

max
Rϕ∈R

Ih(Rϕ | R, πT , πLk−1), (3.4)

where the set R captures the additional constraints discussed in Section 3.3.2 (e.g.,
R = Rinv ∩ Rstr). In Section 3.5, we will implement EXPADARD framework with two
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types of structural constraints and design adaptive reward functions for different learners;
below, we theoretically showcase the utility of using Ih by analyzing the improvement
in the convergence in a simplified setting.

More concretely, we present a theoretical analysis of the reward design problem
formulated in Eq. (3.4) without structural constraints and in a simplified setting to illus-
trate how this informativeness criterion for adaptive reward shaping can substantially
improve the agent’s convergence speed toward the target policy. For our theoretical
analysis, we consider a finite MDP M , with the target policy πT being an optimal policy
for this MDP. We use a tabular representation for the reward, i.e., ϕ ∈ R|S|·|A|. We con-
sider a constraint setR = {R : |R (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A}. Additionally, we use the
informativeness criterion in Eq. (3.3) with h = 1, i.e., Ih=1(Rϕ | R, πT , πL). For the policy,
we also use a tabular representation, i.e., θ ∈ R|S|·|A|. We use a greedy (policy iteration

style) learning algorithm L that first learns the h-step action-value function Q
πL
k−1

Rk,h
w.r.t.

current reward Rk and updates the policy by selecting actions greedily based on the

value function, i.e., πLk (s)← argmaxaQ
πL
k−1

Rk,h
(s, a) with random tie-breaking. In particular,

we consider a learner with h = 1, i.e., we have πLk (s)← argmaxaRk(s, a). For the above
setting, the following theorem provides a convergence guarantee for Algorithm 3.1.

Theorem 3.1. Consider Algorithm 3.1 with inputs πT , L, Ih, and R as described above. We
define a policy πT,Adv induced by the advantage function of the target policy πT (w.r.t. R) as
follows: πT,Adv(s)← argmaxaA

πT

R
(s, a) with random tie-breaking. Then, the learner’s policy

πLk will converge to the policy πT,Adv in O(|A|) iterations.

Proof and additional details are provided in Appendix B. We note that the target
policy πT does not need to be optimal for better convergence, and the results also hold
with a sufficiently good (weak) target policy πT̃ s.t. πT̃ ,Adv is near-optimal.

3.5 Experimental Evaluation

In this section, we evaluate our expert-driven explicable and adaptive reward design
framework, EXPADARD, on two environments: ROOM (Section 3.5.1) and LINEK (Sec-
tion 3.5.2). ROOM corresponds to a navigation task in a grid-world where the agent
has to learn a policy to quickly reach the goal location in one of four rooms, starting
from an initial location. Even though this environment has small state and action spaces,
it provides a rich problem setting to validate different reward design techniques. In
fact, variants of ROOM have been used in the literature (McGovern and Barto, 2001;
Simsek et al., 2005; Grzes and Kudenko, 2008; Asmuth et al., 2008; James and Singh, 2009;
Demir et al., 2019; Jiang et al., 2021; Devidze et al., 2021, 2022). LINEK corresponds to
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a navigation task in a one-dimensional space where the agent has to first pick the key
and then reach the goal. The agent’s location is represented as a node in a long chain.
This environment is inspired by variants of navigation tasks in the literature where an
agent needs to perform subtasks (Ng et al., 1999; Raileanu et al., 2018; Devidze et al.,
2021, 2022). Both the ROOM and LINEK environments have sparse and delayed rewards,
which pose a challenge for learning optimal behavior.

3.5.1 Evaluation on ROOM

ROOM (Figure 4.3a). This environment is based on the work of (Devidze et al., 2021) that
also serves as a baseline technique. The environment is represented as an MDP with S
states corresponding to cells in a grid-world with the “blue-circle” indicating the agent’s
initial location. The goal (“green-star”) is located at the top-right corner cell. Agent
can take four actions given by A := {“up”, “left”, “down”, “right”}. An action takes the
agent to the neighbouring cell represented by the direction of the action; however, if
there is a wall (“brown-segment”), the agent stays at the current location. There are also
a few terminal walls (“thick-red-segment”) that terminate the episode, located at the
bottom-left corner cell, where “left” and “down” actions terminate the episode; at the
top-right corner cell, “right” action terminates. The agent gets a reward of Rmax after
it has navigated to the goal and then takes a “right” action (i.e., only one state-action
pair has a reward); note that this action also terminates the episode. The reward is 0 for
all other state-action pairs. Furthermore, when an agent takes an action a ∈ A, there is
prand = 0.05 probability that an action a′ ∈ A \ {a} will be executed. The environment-
specific parameters are as follows: Rmax = 10, γ = 0.95, and the environment resets after
a horizon of H = 30 steps.

Reward structure. In this environment, we consider a configuration of nine 3× 3

grids along with a single 1 × 1 grid representing the goal state, as visually depicted
in Figure 3.1b. To effectively represent the state space, we employ a state abstraction
function denoted as ψ : S → {0, 1}10. For each state s ∈ S, the i-th entry of ψ(s) is set to
1 if s resides in the i-th grid, and 0 otherwise. Building upon this state abstraction, we
introduce a feature representation function, f : S ×A → {0, 1}10·|A|, defined as follows:
f(s, a)(·,a) = ψ(s), and f(s, a)(·,a′) = 0,∀a′ ̸= a. Here, for any vector v ∈ {0, 1}10·|A|, we
use the notation v(i,a) to refer to the (i, a)-th entry of the vector. Finally, we establish the
set Rstr = {Rϕ : S × A → R where ϕ ∈ Rd}, where Rϕ(s, a) = ⟨ϕ, f(s, a)⟩. Further, we
defineR := Rinv ∩Rstr as discussed in Section 3.3.2. We note that R ∈ R.

Evaluation setup. We conduct our experiments with a tabular REINFORCE agent (Sut-
ton and Barto, 2018), and employ an optimal policy under the underlying reward function
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R as the target policy πT . Algorithm 3.1 provides a sketch of the overall training process
and shows how the agent’s training interleaves with the expert-driven reward design
process. Specifically, during training, the agent receives rewards based on the designed
reward function R; the performance is always evaluated w.r.t. R (also reported in the
plots). In our experiments, we considered two settings to systematically evaluate the
utility of adaptive reward design: (i) a single learner with a uniformly random initial
policy (where each action is taken with a probability of 0.25) and (ii) a diverse group of
learners, each with distinct initial policies. To generate a collection of distinctive initial
policies, we introduced modifications to a uniformly random policy. These modifications
were designed to incorporate a 0.5 probability of the agent selecting suboptimal actions
when encountering various “gate-states” (i.e., states with openings for navigation to
other rooms). In our evaluation, we included five such unique initial policies.

Techniques evaluated. We evaluate the effectiveness of the following reward design
techniques:

(i) RORIG := R is a default baseline without any reward design.

(ii) RINVAR is obtained via solving the optimization problem in Eq. (3.4) with the substi-
tution of Ih by a constant. This technique does not involve explicitly maximizing
any reward informativeness during the optimization process.

(iii) REXPRD is obtained via solving the optimization problem proposed in (Devidze
et al., 2021). This optimization problem is equivalent to Eq. (3.4), with the substi-
tution of Ih by a non-adaptive informativeness criterion. We have employed the
hyperparameters consistent with those provided in their work.

(iv) REXPADARD
k is based on our framework EXPADARD and obtained via solving the

optimization problem in Eq. (3.4). For stability of the learning process, we update
the policy more frequently than the reward as typically considered in the litera-
ture (Zheng et al., 2018; Memarian et al., 2021; Devidze et al., 2022) – we provide
additional details in Appendix B.

Results. Figure 3.1 presents the results for both settings (i.e., a single learner and
a diverse group of learners). The reported results are averaged over 40 runs (where
each run corresponds to designing rewards for a specific learner), and convergence plots
show the mean performance with standard error bars.8 As evident from the results in
Figures 3.1c and 3.1d, the rewards designed by EXPADARD significantly speed up the

8We conducted the experiments on a cluster consisting of machines equipped with a 3.30 GHz Intel
Xeon CPU E5-2667 v2 processor and 256 GB of RAM.
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(c) Single learner
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(d) Diverse learners
Figure 3.1: Results for ROOM. (a) shows the environment. (b) shows the abstracted feature space used for
the representation of designed reward functions as a structural constraint. (c) shows results for the setting
with a single learner. (d) shows results for the setting with a diverse group of learners with different initial
policies. EXPADARD designs adaptive reward functions w.r.t. the learner’s current policies, whereas
other techniques are agnostic to the learner’s policy. See Section 3.5.1 for details.

learner’s convergence to optimal behavior when compared to the rewards designed
by baseline techniques. Notably, the effectiveness of EXPADARD becomes more pro-
nounced in scenarios featuring a diverse group of learners with distinct initial policies,
where adaptive reward design plays a crucial role. Figure 3.2 presents a visualization
of the designed reward functions generated by different techniques at various episodes.
Notably, the rewards RORIG, RINVAR, and REXPRD are agnostic to the learner’s policy and
remain constant throughout the training process. In Figures 3.2d, 3.2e, and 3.2f, we illus-
trate the REXPADARD

k rewards designed by our technique for three learners each with its
distinct initial policy at k = 1000, 2000, 3000, 100000, and 200000 episodes. As observed
in these plots, EXPADARD rapidly assigns high-magnitude numerical values to the
designed rewards and adapts these rewards w.r.t. the learner’s current policy. Initially
(see k = 1000 episode plots), the rewards designed by EXPADARD encourage the agent
to quickly reach the goal state (“green-star”) by providing positive reward signals for
optimal actions (“up”, “right”) followed by modifying reward signals in each episode
to align with the learner’s current policy.
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(d) ROOM: REXPADARD for learner 1 at k = 1000, 2000, 3000, 100000, and 200000 episodes.
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(e) ROOM: REXPADARD for learner 2 at k = 1000, 2000, 3000, 100000, and 200000 episodes.
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(f) ROOM: REXPADARD for learner 3 at k = 1000, 2000, 3000, 100000, and 200000 episodes.

Figure 3.2: Visualization of reward functions designed by different techniques in the ROOM environment
for all four actions {“up”, “left”, “down”, “right”}. (a) shows original reward function RORIG. (b) shows
reward function RINVAR. (c) shows reward function REXPRD designed by expert-driven non-adaptive
reward design technique (Devidze et al., 2021). (d, e, f) show reward functions REXPADARD designed by our
framework EXPADARD for three learners, each with its distinct initial policy, at different training episodes
k. A negative reward is shown in Red color with the sign “-”, a positive reward is shown in Blue color
with the sign “+”, and a zero reward is shown in white. The color intensity indicates the magnitude of the
reward.

3.5.2 Evaluation on LINEK

LINEK (Figure 4.3b). This environment corresponds to a navigation task in a one-
dimensional space where the agent has to first pick the key and then reach the goal. The
environment used in our experiments is based on the work of (Devidze et al., 2021) that
also serves as a baseline technique. We represent the environment as an MDP with S
states corresponding to nodes in a chain with the “gray circle” indicating the agent’s
initial location. Goal (“green-star”) is available in the rightmost state, and the key is
available at the state shown as “cyan-bolt”. The agent can take three actions given
by A := {“left”, “right”, “pick”}. “pick” action does not change the agent’s location,
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however, when executed in locations with the availability of the key, the agent acquires
the key; if the agent already had a key, the action does not affect the status. A move
action of “left” or “right” takes the agent from the current location to the neighboring
node according to the direction of the action. Similar to ROOM, the agent’s move action is
not applied if the new location crosses the wall, and there is prand probability of a random
action. The agent gets a reward of Rmax after it has navigated to the goal locations after
acquiring the key and then takes a “right” action; note that this action also terminates the
episode. The reward is 0 elsewhere and there is a discount factor γ. We set prand = 0.1,
Rmax = 10, γ = 0.95, and the environment resets after a horizon of H = 30 steps.

Reward structure. We adopt a tree structured representation of the state space, as
visually depicted in Figure 3.3b. To formalize this representation, we employ a state
abstraction function denoted as ψ : S → {0, 1}5. For each state s ∈ S, the i-th entry of
ψ(s) is set to 1 if smaps to the i-th circled node of the tree (i.e., parent to leaf nodes), and 0

otherwise. Then, we define the setRstr in a manner similar to that outlined in Section 3.5.1.
Further, we defineR := Rinv ∩Rstr as discussed in Section 3.3.2. We note that R ∈ R.

Evaluation setup and techniques evaluated. Our evaluation setup for LINEK
environment is exactly the same as that used for ROOM environment (described in
Section 3.5.1). In particular, all the hyperparameters (related to the REINFORCE agent,
reward design techniques, and training process) are the same as in Section 3.5.1. In this
evaluation, we again have two settings to evaluate the utility of adaptive reward design:
(i) a single learner with a uniformly random initial policy (where each action is taken
with a probability of 0.33) and (ii) a diverse group of learners, each with distinct initial
policies. To generate a collection of distinctive initial policies, we introduced modifica-
tions to a uniformly random policy. These modifications were designed to incorporate
a 0.7 probability of the agent selecting suboptimal actions from various states. In our
evaluation, we included five such unique initial policies.

Results. Figure 3.3 presents the results for both settings (i.e., a single learner and
a diverse group of learners). The reported results are averaged over 30 runs, and conver-
gence plots show the mean performance with standard error bars. These results further
demonstrate the effectiveness and robustness of EXPADARD across different settings in
comparison to baselines. Analogous to Figure 3.2 in Section 3.5.1, Figure 3.4 presents a
visualization of the designed reward functions produced by different techniques at vari-
ous training episodes. These results illustrate the utility of our proposed informativeness
criterion for adaptive reward design, particularly when dealing with various structural
constraints to obtain interpretable rewards, including tree-structured reward functions.
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Figure 3.3: Results for LINEK. (a) shows the environment. (b) shows the tree-based feature space used for
the representation of designed reward functions as a structural constraint. (c) shows results for the setting
with a single learner. (d) shows results for the setting with a diverse group of learners with different initial
policies. EXPADARD designs adaptive reward functions w.r.t. the learner’s current policies, whereas other
techniques are agnostic to the learner’s policy. See Section 3.5.2 for details.

3.6 Conclusions

We studied the problem of expert-driven reward design, where an expert/teacher seeks
to provide informative and interpretable rewards to a learning agent. We introduced a
novel reward informativeness criterion that adapts w.r.t. the agent’s current policy. Based
on this informativeness criterion, we developed an expert-driven adaptive reward design
framework, EXPADARD. We empirically demonstrated the utility of our framework on
two navigation tasks.

Next, we discuss a few limitations of our work and outline a future plan to address
them. First, we conducted experiments on simpler environments to systematically in-
vestigate the effectiveness of our informativeness criterion in terms of adaptivity and
structure of designed reward functions. It would be interesting to extend the evaluation
of the reward design framework in more complex environments (e.g., with continuous
state/action spaces) by leveraging an abstraction-based pipeline considered in (Devidze
et al., 2021). Second, we considered fixed structural properties to induce interpretable
reward functions. It would also be interesting to investigate the usage of our informa-
tiveness criterion for automatically discovering or optimizing the structured properties
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(c) LINEK: REXPRD
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(d) LINEK: REXPADARD for learner 1 at k = 100, 30000, and 50000 episodes.
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(e) LINEK: REXPADARD for learner 2 at k = 100, 30000, and 50000 episodes.
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(f) LINEK: REXPADARD for learner 3 at k = 100, 30000, and 50000 episodes.

Figure 3.4: Visualization of reward functions designed by different techniques in the LINEK environment
for all three actions {“left”, “right”, “pick”}. (a) shows original reward function RORIG. (b) shows reward
function RINVAR. (c) shows reward function REXPRD designed by expert-driven non-adaptive reward design
technique (Devidze et al., 2021). (d, e, f) show reward functions REXPADARD designed by our framework
EXPADARD for three learners, each with its distinct initial policy, at different training episodes k. These
plots illustrate reward values for all combinations of triplets: agent’s location (indicated as “key loc”,
“goal loc” in tree plots), agent’s status whether it has acquired the key or not (indicated as “has key” in tree
plots and letter “K” in bar plots), and three actions (indicated as ‘l’ for “left”, ‘r’ for “right”, ‘p’ for “pick”).
A negative reward is shown in Red color with the sign “-”, a positive reward is shown in Blue color with
the sign “+”, and a zero reward is shown in white. The color intensity indicates the reward magnitude.
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(e.g., nodes in the tree structure). Third, we empirically showed the effectiveness of
our adaptive rewards, but adaptive rewards could also lead to instability in the agent’s
learning process. It would be useful to analyze our adaptive reward design framework
in terms of an agent’s convergence speed and stability.



CHAPTER 4
Adaptive Agent-Driven Reward Design

We study the problem of reward shaping to accelerate the training process of a reinforce-
ment learning (RL) agent. Existing works have considered a number of different reward
shaping formulations; however, they either require external domain knowledge or fail
in environments with extremely sparse rewards. In this chapter, we propose a novel
framework, Exploration-Guided Reward Shaping (EXPLORS), that operates in a fully
self-supervised manner and can accelerate an agent’s learning even in sparse-reward
environments. The key idea of EXPLORS is to learn an intrinsic reward function in com-
bination with exploration-based bonuses to maximize the agent’s utility w.r.t. extrinsic
rewards. We theoretically showcase the usefulness of our reward shaping framework in a
special family of MDPs. Experimental results on several environments with sparse/noisy
reward signals demonstrate the effectiveness of EXPLORS.

4.1 Introduction

Training RL agents in environments with extremely sparse or distracting rewards is
challenging. Existing works have studied several approaches to design informative
rewards that speed up the agent’s convergence (Mataric, 1994; Randløv and Alstrøm,
1998; Ng et al., 1999; Laud and DeJong, 2003; Sutton and Barto, 2018; Dai and Walter,
2019; Arjona-Medina et al., 2019). One well-studied line of work is potential-based
reward shaping, where a potential function is specified by an expert or obtained via
transfer learning techniques (see (Ng et al., 1999; Wiewiora, 2003; Wiewiora et al., 2003;
Asmuth et al., 2008; Grzes and Kudenko, 2008; Devlin and Kudenko, 2012; Grzes, 2017;
Demir et al., 2019; Goyal et al., 2019; Zou et al., 2019; Jiang et al., 2021)). Another popular
approach is to learn rewards via Inverse-RL using expert demonstrations (Abbeel and
Ng, 2004). Alternatively, one could also consider a manual specification of rewards,
e.g., using distance-based metrics (Trott et al., 2019). However, these reward design
techniques typically rely on high-quality domain knowledge and may fail in practice.
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In fact, the RL agents can easily exploit poorly designed rewards and get stuck in local
optima. This naturally leads to the fundamental question of how to do online reward
shaping without relying on expert domain knowledge. More concretely, can we design
informative rewards that will accelerate the agent’s training process by leveraging experience
gained online during the agent’s training lifetime itself? (Singh et al., 2004, 2009, 2010; Sorg
et al., 2010b,c)

To tackle this question, recent works (Sorg et al., 2010c; Zheng et al., 2018; Memarian
et al., 2021) have explored fully self-supervised learning of parametric intrinsic rewards
that can improve the performance of RL agents. In particular, these methods alternate
between intrinsic reward parameter learning and the agent’s policy optimization w.r.t.
the learned reward. For instance, Learning Intrinsic Rewards for Policy Gradient (LIRPG)
technique (Zheng et al., 2018) updates the intrinsic reward parameters to maximize the
extrinsic rewards received by the policy from the environment. Self-supervised Online
Reward Shaping (SORS) technique (Memarian et al., 2021) infers an intrinsic reward
using a classification-based reward inference algorithm, TREX (Brown et al., 2019).
However, these fully self-supervised reward shaping techniques might fail to produce
meaningful agent behavior in environments with extremely sparse rewards (called hard-
exploration domains) as they lack an explicit explorative component. Intuitively, these
techniques will not be able to make updates to parameters of their intrinsic reward
functions, without receiving a non-zero extrinsic reward signal.

In a parallel line of work, several techniques have been proposed to specifically
tackle the challenges of extreme sparsity and exploration. One such line of work is to add
more stochasticity in the agent’s behavior (e.g., (Mnih et al., 2015; Lillicrap et al., 2015;
Schulman et al., 2015)); however such techniques typically succeed in tasks with already
well-shaped rewards. Another important line of work, relevant to our proposed frame-
work, is bonus-driven exploration techniques for tackling hard-exploration domains –
these techniques augment the extrinsic rewards with additional intrinsic bonus signals
to encourage extra exploration (Weng, 2020). A popular category of intrinsic bonuses
is count-based bonuses that encourage RL agents to experience infrequently visited
states (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017). Another category
of intrinsic bonuses is providing rewards for improving the agent’s knowledge about
the environment (Oudeyer et al., 2007; Oudeyer and Kaplan, 2009; Schmidhuber, 2010;
Stadie et al., 2015; Houthooft et al., 2016; Pathak et al., 2017). However, simply relying on
these bonus-driven signals can mislead the agent towards sub-optimal or bad behaviors
— for instance, in noisy-distractive domains such as the “noisy TV” problem (Burda et al.,
2018), unpredictable random or noisy outputs would attract the agent’s attention forever.
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An important research question that we seek to address is: How can we design an online
intrinsic reward function, without any domain knowledge, that can speed up the agent’s learning
process even in environments with extremely sparse rewards and noisy distractions? To this
end, we propose a novel framework, Exploration-Guided Reward Shaping (EXPLORS),
that learns an intrinsic reward function in combination with exploration-based bonuses
to maximize the agent’s utility. EXPLORS operates in a fully self-supervised manner,
and alternates between reward learning and policy optimization. Our main results and
contributions are:

I. We propose a novel reward shaping framework, EXPLORS, that operates in a fully
self-supervised manner and can accelerate an agent’s learning even in sparse-
reward environments. (Section 4.4.1).

II. We derive intuitive meta-gradients for updating the intrinsic reward component
of EXPLORS that enables our framework to be broadly applicable to any RL agent
and not only policy-gradient based agents (Sections 4.4.2 and 4.4.3).

III. We theoretically showcase the usefulness of our reward shaping framework in
accelerating an agent’s learning in a special family of chain environments (Sec-
tion 4.4.4).

IV. We empirically demonstrate the effectiveness of EXPLORS on several environments
with sparse and noisy reward signals (Section 4.5).9

4.2 Related Work

A popular technique for reward shaping is potential-based reward shaping (PBRS) which
guarantees that any optimal policy induced by the designed reward function is also
optimal under the extrinsic reward function (Ng et al., 1999). However, for PBRS to
be effective in accelerating the training process of an RL agent, we need to have access
to good potential functions based on expert domain knowledge (Cheng et al., 2021).
The focus of our work is on designing fully self-supervised reward shaping techniques.
Below, we provide a discussion of existing techniques that do not require any expert
guidance or domain knowledge, and also discuss their limitations.

Reward shaping based on exploration bonuses. In the bonus-driven exploration
framework (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), a count-based

9Github repo: https://github.com/machine-teaching-group/neurips2022_
exploration-guided-reward-shaping.

https://github.com/machine-teaching-group/neurips2022_exploration-guided-reward-shaping
https://github.com/machine-teaching-group/neurips2022_exploration-guided-reward-shaping
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intrinsic bonus Bk(s) is given to the agent to encourage exploration. The bonus Bk(s)

measures the “novelty” of a state s given the history of all transitions up to round k. The
authors in (Tang et al., 2017) extend the classic exploration methods with count-based
intrinsic bonuses (Brafman and Tennenholtz, 2002; Strehl and Littman, 2008; Kolter and
Ng, 2009; Sorg et al., 2010a) to high-dimensional, continuous state spaces. However,
these “exploration-only” reward shaping techniques do not appropriately combine the
successful extrinsic reward signals received from the environment. When there are
distractive zones in the state space, these methods will keep on exploring the state space
even after obtaining extrinsic reward signals.

Fully self-supervised reward shaping: LIRPG (Zheng et al., 2018). Learning
Intrinsic Rewards for Policy Gradient (LIRPG) technique (Zheng et al., 2018) considers
a parametric reward function of the form R̂LIRPG(s, a) = R(s, a) +Rϕ(s, a), and learns
the parameter ϕ of the intrinsic reward function Rϕ in a fully self-supervised manner.
LIRPG alternates between learning the intrinsic reward parameter ϕ and the agent’s
policy optimization w.r.t. the learned reward R̂LIRPG. At round k, for fixed πk, LIRPG
updates the parameter ϕk−1 to ϕk by considering the effect such a change would have on
the expected cumulative return (w.r.t. R) of the learner through the change in the policy
πk, i.e., update ϕ using the gradient

[
∇ϕJ(L(πk, R̂

LIRPG), R)
]
ϕk−1

. In order to develop
an update rule for ϕ, LIRPG considers policy gradient style learning algorithm L with
parametric policies

{
πθ : θ ∈ Rdθ

}
. More concretely, for a parameter θk at round k s.t.

πk := πθk , the learner’s policy update depends on ϕ as L(πk, R̂LIRPG) := πθ(ϕ), where
θ(ϕ) = θk + α ·

[
∇θJ(πθ, R̂

LIRPG)
]
θk

. Based on this learner update, the LIRPG update for

the intrinsic reward parameters, at round k, is based on the following meta-gradients:
ϕk = ϕk−1 + η · [∇ϕθ(ϕ)]ϕk−1

·
[
∇θ(ϕ)J(πθ(ϕ), R)

]
ϕk−1

, where η is the learning rate. We note
that the LIRPG technique could fail in environments with extremely sparse rewards as the
agent may not receive a non-zero extrinsic reward signal needed to update the parameter
ϕ. Moreover, the LIRPG technique is applicable only to policy-gradient based RL agents.

Fully self-supervised reward shaping: SORS (Memarian et al., 2021). Self-supervised
Online Reward Shaping (SORS) technique (Memarian et al., 2021) considers a reward
function of the form R̂SORS(s, a) = Rϕ(s, a), and infers the parameter ϕ using a
classification-based reward inference algorithm, T-REX (Brown et al., 2019). However,
unlike T-REX that requires rankings over the trajectories as input, SORS uses the extrinsic
reward R as a self-supervised learning signal to rank the trajectories generated by the
agent during training. By design, SORS only enforces the relative pairwise ordering over
the trajectories w.r.t. R when training Rϕ and ignores the scale of the returns associated
with trajectories w.r.t. R. This makes training a policy challenging when the environment
has noisy or distractive reward signals. Further, similar to LIRPG, the SORS technique
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could fail in environments with extremely sparse rewards as the agent may not obtain
any trajectories with non-zero extrinsic reward signal needed to update the parameter ϕ.

In this chapter, we seek to develop an online reward shaping technique that can accel-
erate the agent’s training process in environments with extremely sparse and distractive
rewards, without any expert domain knowledge. As discussed above, techniques that
rely only on intrinsic bonuses (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al.,
2017) could mislead the agent towards sub-optimal behaviors in noisy-distractive do-
mains. Similarly, the fully self-supervised reward shaping techniques (LIRPG and SORS)
might be ineffective in environments with extremely sparse rewards. We overcome these
limitations by designing a novel reward shaping framework that appropriately balances
exploration (via an intrinsic bonus component) and exploitation (via an intrinsic reward
component) of extrinsic reward signals.

4.3 Problem Setup

In Section 4.3.1, we present a general framework of online reward shaping technique for
RL agents.

4.3.1 General Framework of Online Reward Shaping

Preliminaries. An environment is defined as a Markov Decision Process (MDP) M :=

(S,A, T, P0, γ, R), where the state and action spaces are denoted by S and A respectively.
T : S × S ×A → [0, 1] captures the state transition dynamics, i.e., T (s′ | s, a) denotes the
probability of landing in state s′ by taking action a from state s. γ is the discounting factor,
and P0 is the initial state distribution. The reward function is given by R : S × A →
[−Rmax, Rmax], for some Rmax > 0. We denote the true underlying extrinsic reward
function by R and the designed reward function by R̂. We denote a stochastic policy
π : S → ∆(A) as a mapping from a state to a probability distribution over actions,
and a deterministic policy π : S → A as a mapping from a state to an action. For any
trajectory ξ = {(st, at)}t=0,1,...,H , we define its cumulative return w.r.t. reward function R
as J(ξ, R) :=

∑H
t=0 γ

t ·R(st, at). Then, the expected cumulative return (value) of a policy
π w.r.t. R is defined as J(π,R) := E [J(ξ, R)|P0, T, π], where s0 ∼ P0(·), at ∼ π(·|st), and
st+1 ∼ T (·|st, at). The learner seeks to find a policy that has maximum value w.r.t. the
extrinsic reward function R, i.e., maxπ J(π,R).

Online reward shaping. A general framework of online reward shaping for RL
agents is given in Algorithm 4.1. A natural objective here is to design informative re-
wards R̂k at each round k so that the resulting final policy πK performs better (i.e., has



Chapter 4. Adaptive Agent-Driven Reward Design 54

Algorithm 4.1: Online Reward Shaping

1 Input: Extrinsic reward R, and RL algorithm L

2 Initialization: π0, R̂0

3 for k = 1, 2, . . . , K do
4 update policy πk ← L(πk−1, R̂k−1)

5 update reward R̂k using R̂k−1 and πk
6 Output: πK

high value w.r.t. R) compared to the corresponding policy obtained via the standard
training with R̂k = R. Note that we consider a single lifetime training setting for an RL
agent on a single task, i.e., there is no resetting of the policy between rounds.

4.4 Methodology

In Sections 4.4.1, 4.4.2, and 4.4.3, we propose an exploration-guided reward shaping
framework, EXPLORS, to accelerate an RL agent’s training process. In Section 4.4.4, we
theoretically showcase the usefulness of our framework in a chain environment.

4.4.1 Our Reward Formulation

We consider the following parametric reward function for EXPLORS (see Algorithm 4.1):

R̂EXPLORS(s, a) := R(s, a) +RSELFRS
ϕ (s, a) +BEXPLOB

w (s), (4.1)

where ϕ ∈ Rdϕ and w ∈ Rdw . Here, RSELFRS
ϕ corresponds to the intrinsic rewards in

self-supervised reward shaping techniques, and BEXPLOB
w corresponds to the intrinsic

bonuses in exploration-only reward shaping techniques. At round k of Algorithm 4.1,
R̂EXPLORS
k−1 (s, a) is designed with parameters (ϕk−1, wk−1). Then, given updated policy πk,

we update the parameters (ϕk−1, wk−1) to (ϕk, wk).
Notation. For the remainder of this section, we drop the superscripts (EXPLORS,

SELFRS, and EXPLOB) when referring to the reward functions in Eq. (4.1). In the subscript
of the expectations E, let π(a|s) mean a ∼ π(·|s), µπ(s, a) mean s ∼ dπ, a ∼ π(·|s), and
µπ(s) mean s ∼ dπ. Further, we use shorthand notation µks,a and µks to refer µπθk (s, a) and
µπθk (s), respectively.

Intrinsic reward Rϕ. We model the intrinsic reward Rϕ using any parameterized
function. At round k, for fixed πk andwk−1, we update the parameter ϕk−1 to ϕk by consid-
ering the effect such a change would have on the the expected cumulative return w.r.t. R
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through the change in the policy πk (Sorg et al., 2010c; Zheng et al., 2018). In particular, we
update ϕ using the gradient

[
∇ϕJ(L(πk, R̂), R)

]
ϕk−1

, where R̂(s, a) = R(s, a) +Rϕ(s, a) +

Bwk−1
(s). However, when considering L with neural policies, it is challenging to directly

analyze the impact of ϕ in the policy πk. Since our goal is to design a reward shaping
technique that is applicable to any RL agent, we consider a simple surrogate learning
algorithm L̃ for our analysis. In particular, we consider L̃ with parametric policies{
πθ : θ ∈ Rdθ

}
that does single-step vanilla policy gradient update with Q-values com-

puted using h-depth planning. We map the policy πk to a parameter θk ∈ Rdθ and define:

L̃(θk, R̂) := θk + α ·
[
∇θJ(πθ, R̂)

]
θk

= θk + α · Eµks,a
[[
∇θ log πθ(a|s)

]
θk
Q
πθk
R̂,h

(s, a)
]
,

where α is the learning rate and Q
πθk
R̂,h

(s, a) = E
[∑h

t=0 γ
tR̂(st, at)

∣∣s0 = s, a0 = a, T, πθk

]
is

the h-depth Q-value w.r.t. R̂. Then, we update ϕ using the following bi-level optimiza-
tion:

argmax
ϕ

J(πθ(ϕ), R) (P1.U)

subject to θ(ϕ)← L̃(θk, R̂), (P1.L)

where R̂(s, a) := R(s, a) +Rϕ(s, a) +Bwk−1
(s). In the above bi-level formulation, L̃ with

h-depth planning for small values of h essentially requires designing more informative
intrinsic rewards to benefit the agent’s training process (Sorg et al., 2010c).

Intrinsic bonus Bw. Given a state abstraction ψ : S → Xψ (with |Xψ| = dw), we main-
tain the visitation count of the abstracted states inw, i.e.,w[x] corresponds to the visitation
counts of the states {s ∈ S : ψ(s) = x}. This allows us to implicitly maintain pseudo-
counts Nw(s) of visiting states s ∈ S. In particular, we set Nw(s) =

(
λ

Bmax

)2
+ w[ψ(s)] for

some Bmax, λ > 0. Then, we define the intrinsic bonus as follows: Bw(s) =
λ√
Nw(s)

. We

update w based on the rollouts in round k (Bellemare et al., 2016; Ostrovski et al., 2017;
Tang et al., 2017).

4.4.2 Derivation of Gradient Updates for Rϕ

In this subsection, we first obtain high-level meta-gradient updates for Rϕ similar to
LIRPG (Zheng et al., 2018). Then, we derive intuitive meta-gradient updates that would
allow EXPLORS to be compatible with any RL agent.

High-level gradient updates for Rϕ. We solve the bi-level optimization prob-
lem (P1.U)-(P1.L) of the intrinsic reward component in an iterative manner using the
gradient updates that we derive below. At round k, for fixed πk and wk−1, we update the
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parameter ϕk−1 to ϕk as follows:

ϕk = ϕk−1 + η ·
[
∇ϕJ(πθ(ϕ), R)

]
ϕk−1

(a)
= ϕk−1 + η ·

[
∇ϕθ(ϕ) · ∇θ(ϕ)J(πθ(ϕ), R)

]
ϕk−1

(b)
≈ ϕk−1 + η · [∇ϕθ(ϕ)]ϕk−1︸ ︷︷ ︸

1⃝

·
[
∇θJ(πθ, R)

]
θk︸ ︷︷ ︸

2⃝

, (4.2)

where η is the learning rate, the equality in (a) is due to chain rule, and the approximation
in (b) is made by assuming a smoothness condition:

∥∥∥[∇θJ(πθ, R)
]
θ(ϕk−1)

−
[
∇θJ(πθ, R)

]
θk

∥∥∥
2

≤ c·∥θ(ϕk−1)− θk∥2 for some c > 0. By using the meta-gradient derivations in (Andrychow-
icz et al., 2016; Santoro et al., 2016; Nichol et al., 2018), we write the term 1⃝ as fol-
lows: [∇ϕθ(ϕ)]ϕk−1

= α · Eµks,a
[[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
·
[
∇θ log πθ(a|s)

]⊤
θk

]
, where R̂(s, a) :=

R(s, a) +Rϕ(s, a) +Bwk−1
(s). By using the policy gradient theorem (Sutton et al., 1999),

we write the term 2⃝ as follows:
[
∇θJ(πθ, R)

]
θk

= Eµks,a
[[
∇θ log πθ(a|s)

]
θk
Q
πθk
R

(s, a)
]
. The

above gradient update of ϕk, involving the terms 1⃝ and 2⃝, resembles the LIRPG (Zheng
et al., 2018) update. However, both the terms 1⃝ and 2⃝ require computing the gradient
of the policy, i.e., ∇θ log πθ(a|s). This requirement makes the above update applicable
only for policy-gradient based agents. Below, we derive intuitive simplifications of the
above two terms, 1⃝ and 2⃝, that would enable our technique to be applicable to any RL
agent, and not only policy-gradient based agents.

Intuitive gradient updates for Rϕ. In order to obtain intuitive forms of the terms
1⃝ and 2⃝, we consider further simplifications to the surrogate learning algorithm L̃

introduced in Section 4.4.1. In particular, for our analysis and derivation, we let L̃ use tab-

ular representation θ ∈ R|S|·|A| and softmax policy given by πθ(a|s) :=
exp
(
θ(s,a)

)
∑

b exp
(
θ(s,b)

) ,∀s ∈
S, a ∈ A. We defineA

πθk
R̂,h

(s, a) := Q
πθk
R̂,h

(s, a)−V πθk
R̂,h

(s) andA
πθk
R

(s, a) := Q
πθk
R

(s, a)−V πθk
R

(s).
Based on this, the following proposition provides intuitive gradient updates for Rϕ.

Proposition 4.1. For the simplified surrogate learning algorithm L̃ with h-depth planning, the
gradient term [∇ϕθ(ϕ)]ϕk−1

·
[
∇θJ(πθ, R)

]
θk

in Eq. (4.2) takes the following form:

α · Eµks,a

[
µks,a · A

πθk
R

(s, a) ·
[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

]
.

For the special case of h = 1, the gradient term further simplifies to the following form:

α · Eµks,a

[
µks,a · A

πθk
R

(s, a) ·
[
∇ϕ

(
Rϕ(s, a)− Eπθk (b|s)[Rϕ(s, b)]

)]
ϕk−1

]
.
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Compared to Eq. (4.2), the intuitive gradient update term in the above proposition
does not require computing the policy gradient ∇θ log πθ(a|s). This allows us to develop
an update rule for intrinsic reward parameter ϕ that is applicable to any RL agent. In
particular, given the current policy πk (possibly without any differentiable parameteriza-
tion), we simplify Eq. (4.2) and propose the following gradient update rule for parameter
ϕ:

ϕk ≈ ϕk−1 + η′ · Eµks,a
[
µks,a · A

πk
R
(s, a) ·

[
∇ϕ

(
Rϕ(s, a)− Eπk(b|s)[Rϕ(s, b)]

)]
ϕk−1

]
, (4.3)

where η′ = η · α. Note that the above gradient update only requires black-box access to
the policy πk in the form of trajectory rollouts as in the SORS technique (Memarian et al.,
2021).

4.4.3 Empirical Updates and Practical Aspects

In this subsection, we present a concrete pseudocode for training an RL agent with
EXPLORS reward shaping technique. Algorithm 4.2 provides a sketch of the overall
training process, interleaving the agent’s training with EXPLORS. The sketch presented
in Algorithm 4.2 is adapted from the training process proposed for the SORS tech-
nique (Memarian et al., 2021). Further, we consider rollouts where each round corre-
sponds to a single rollout, instead of environment steps, as in SORS. Below, we discuss
the empirical updates for intrinsic reward and bonus components of Eq. (4.1).

Empirical updates for intrinsic reward Rϕ. We translate the final expectation-based
update of ϕk in Eq. (4.3) to its empirical counterpart using the rollout data D collected by
executing the current policy πk (or recent policies) in the MDP M . At any round k, let D
contain a collection of trajectories {ξi}ni=1, where ξi = (si0, a

i
0, s

i
1, a

i
1, . . . , s

i
H). For a given

trajectory ξi and time index t, we denote a partial trajectory as ξit = (sit, a
i
t, . . . , s

i
H). Based

on this notation, we empirically update the parameter ϕ as follows:

ϕk ← ϕk−1 + ηϕk ·
∑
ξit

πk(a
i
t|sit) ·

(
J(ξit, R)− V

πk
R

(sit)
)
·
[
∇ϕA

πk
R̂,1

(sit, a
i
t)
]
ϕk−1

, (4.4)

where we absorb the normalization factors into ηϕk , ignore the term µπk(sit), and set[
∇ϕA

πk
R̂,1

(sit, a
i
t)
]
ϕk−1

=
[
∇ϕ

(
Rϕ(s

i
t, a

i
t)− Eπk(b|sit)[Rϕ(s

i
t, b)]

)]
ϕk−1

. Similar to LIRPG (Zheng

et al., 2018), we also maintain a critic VR,ϕ̃k−1
(·) to approximate V πk

R
(·) in Eq. (4.4). We

update the parameters of the critic, ϕ̃k−1 to ϕ̃k, using the same rollout dataD and learning
rate ηϕ̃k . In Algorithm 4.2, hyperparameters Nr and Nπ control the frequency of updates
for the intrinsic reward Rϕ and policy π, respectively. For stability reasons, we update
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the policy more frequently compared to the intrinsic reward, i.e., Nπ < Nr. We provide
full implementation details in Section 4.5 and Appendix C.

Empirical updates for intrinsic bonus Bw. We update Bw based on the history of
all the states visited up to round k. Similar to #Exploration (Tang et al., 2017), we use
the count-based intrinsic bonuses with a state abstraction ψ : S → Xψ. We maintain
the visitation count of the abstracted states in w. For each rollout ξk, we update the
parameter w of the intrinsic bonus as follows:

wk[x] = wk−1[x] +
∑
skt ∈ξk

1
{
ψ(skt ) = x

}
, ∀x ∈ Xψ. (4.5)

Similar to the existing count-based exploration techniques (Bellemare et al., 2016; Os-
trovski et al., 2017; Tang et al., 2017), we use a lookahead step when incorporating the
bonus term (see line 5 in Algorithm 4.2). In our implementation, we update the intrinsic
bonus at a more fine-grained level, i.e., we update Bw at each environment step t within
each round k directly, instead of waiting for the rollout to finish. However, for clear
presentation in Algorithm 4.2, we write the Bw update at the level of round k, not at the
level of environment step t. We provide full implementation details in Section 4.5 and
Appendix C.

4.4.4 Theoretical Analysis

In this subsection, we theoretically showcase the usefulness of our exploration-guided
reward shaping framework in accelerating an agent’s learning in a chain environment
with extremely-sparse rewards and distractive zones in the state space. Our analysis
considers a stylized learning setting with simplified versions of different reward shaping
techniques.

Chain environment. We consider a chain environment M =
(
S,A, T, P0, γ, R

)
of

length n1+n2+1. Let the state space be S = {x−n2 , . . . , x−1, x0, x1, . . . , xn1}, and the action
space be A = {←,→}. We always start in the state x0, i.e., the initial state distribution is
P0(x0) = 1. The transition dynamics is deterministic and given as follows: T (xi+1|xi,→
) = 1 for−n2 ≤ i ≤ n1−1, T (xi−1|xi,←) = 1 for−(n2−1) ≤ i ≤ n1, T (terminal|xn1 ,→
) = 1, and T (terminal|x−n2 ,←) = 1. The reward function is defined as follows:
R(xi,→) = 0 for −n2 ≤ i ≤ n1 − 1, R(xn1 ,→) = 1, and R(xi,←) = 0 for −n2 ≤ i ≤ n1.
We consider an infinite horizon setting with discounted returns, i.e., H →∞ and γ < 1.

Learning algorithm and reward shaping techniques. For our theoretical analysis,
we consider a stylized learning setting with a TD-style RL algorithm L and simplified
versions of different reward shaping techniques; details are provided in appendices. We
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Algorithm 4.2: RL Training with EXPLORS
1 Inputs and hyperparameters: RL algorithm L; first-in-first-out buffer D with size

Dmax; abstraction ψ; learning rates {ηϕk}, {η
ϕ̃
k}; bonus parameters Bmax, λ; update

rates Nr, Nπ

2 Initialization: Initialize the parameters for intrinsic reward and its critic (ϕ0, ϕ̃0),
parameters for intrinsic bonus w0, and the policy π0

3 for k = 1, 2, . . . , K do
// policy update

4 if k%Nπ = 0 then
5 Define reward R̂k−1(s, a, s

′) := R(s, a) +Rϕk−1
(s, a) +Bwk−1

(s′)

6 Obtain updated policy πk ← L(πk−1, R̂k−1) using the latest rollouts in D
7 else
8 Keep previous policy πk ← πk−1

// data collection
9 Rollout the policy πk in the MDP M to obtain a trajectory ξk =

(
sk0, a

k
0, s

k
1, a

k
1, . . . , s

k
H

)
10 Store ξk in the buffer D.add(ξk); if the buffer D is full, remove the oldest trajectory

// intrinsic reward update
11 if k%Nr = 0 then
12 Obtain updated reward parameter ϕk from ϕk−1 as in Eq. (4.4) using D and learning

rate ηϕk
13 Obtain updated critic parameter ϕ̃k from ϕ̃k−1 using D and learning rate ηϕ̃k
14 else
15 Keep previous parameters ϕk ← ϕk−1 and ϕ̃k ← ϕ̃k−1

// intrinsic bonus update
16 Update wk as in Eq. (4.5) using the states visited in the trajectory ξk

17 Define bonus Bwk
(s) = λ√

Nwk
(s)

, where Nwk
(s) =

(
λ

Bmax

)2
+ wk[ψ(s)]

18 Output: Policy πK

analyze the total number time steps required for L to learn an optimal policy in the chain
environment under four different settings: (i) Case L(SELFRS = 0,EXPLOB = 0) is a
default setting without any shaping; (ii) Case L(SELFRS = 0,EXPLOB = 1) uses only the
intrinsic bonuses; (iii) Case L(SELFRS = 1,EXPLOB = 0) uses only the intrinsic rewards;
(iv) Case L(SELFRS = 1,EXPLOB = 1) combines intrinsic bonuses with intrinsic rewards.
The following theorem compares these four settings and showcases the usefulness of our
framework, i.e., Case L(SELFRS = 1,EXPLOB = 1) – proof is provided in Appendix C.

Theorem 4.1. Consider the chain environment M and the algorithm L defined above. Let
cost(L(SELFRS,EXPLOB)) denote the total number time steps required forL(SELFRS,EXPLOB)
to learn an optimal policy in M . Then, we have the following (expected) costs for the four settings:

(i) E [cost(L(SELFRS = 0,EXPLOB = 0))] ≥ 2n1−1;
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(ii) cost(L(SELFRS = 0,EXPLOB = 1)) = n1 · (n1 + n2 + 2);

(iii) E [cost(L(SELFRS = 1,EXPLOB = 0))] ≥ 2n1−1;

(iv) cost(L(SELFRS = 1,EXPLOB = 1)) ≤ n1 + n2 + 2

The proof and additional details about the learning setting are provided in Ap-
pendix C.

4.5 Experimental Evaluation
In this section, we evaluate our reward shaping framework on three environments:
CHAIN (Section 4.5.1), ROOM (Section 4.5.2), and LINEK (Section 4.5.3). CHAIN corre-
sponds to a navigation task in a chain, adapted from the environment used for theoretical
analysis in Section 4.4.4; this is a canonical environment used for studying extremely
sparse-reward settings (Sutton and Barto, 2018). ROOM corresponds to a navigation task
in a grid-world where the agent has to learn a policy to quickly reach the goal location
in one of four rooms, starting from an initial location. Even though this environment
has a small state/action space, it provides a very rich and intuitive problem setting to
validate different reward shaping techniques. In fact, variants of ROOM have been used
extensively in the literature (McGovern and Barto, 2001; Simsek et al., 2005; Grzes and
Kudenko, 2008; Asmuth et al., 2008; James and Singh, 2009; Demir et al., 2019; Jiang et al.,
2021; Devidze et al., 2021)—the environment used in our experiments is adapted from
(Devidze et al., 2021). LINEK corresponds to a navigation task in a one-dimensional
space where the agent has to first pick the correct key and then reach the goal. The
agent’s location is represented as a point on a line segment. This environment is in-
spired by variants of navigation tasks in the literature where an agent needs to perform
subtasks (Ng et al., 1999; Raileanu et al., 2018; Devidze et al., 2021)—the environment
used in our experiments is adapted from (Devidze et al., 2021). We give an overview of
main results here, and provide a more detailed description of the setup and additional
implementation details in Appendix C.

4.5.1 Evaluation on CHAIN

CHAIN (Figure 4.1). We represent the chain environment of length n1+n2+1 as an MDP
with state-space S consisting of an initial location x0 (shown as “blue-circle”), n1 nodes to
the right of x0, and n2 nodes to the left of x0. The rightmost node of the chain is the “goal”
state (shown as “green-star”). In the left part of the chain, there can be a “distractor” state
(shown as “green-plus”). The agent can take two actions given byA := {“left”, “right”} –
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Figure 4.1: CHAIN0 / CHAIN+
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(a) CHAIN0, REINFORCE
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(b) CHAIN+, REINFORCE
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(c) CHAIN0, Q-learning
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Figure 4.2: Results for CHAIN environment. These plots show convergence in performance of the agent
w.r.t. training episodes. (a, b) show results for REINFORCE agent on CHAIN0 (i.e., CHAIN variant without
any distractor state) and CHAIN+ (i.e., CHAIN variant with a distractor state). (c, d) show results for
Q-learning agent on CHAIN0 and CHAIN+. See Section 4.5.1 for details.

an action takes the agent to the intended neighboring node with probability of (1− prand)

for prand = 0.05. The agent receives a reward of Rmax = 1 for the “right” action at the
goal state, Rdis for the “left” action at the distractor state, and 0 for all other state-action
pairs. There is a discount factor γ = 0.99 and the environment resets after a horizon of
H = n2 steps. We consider two different variants of the chain environment: (i) CHAIN0

with (n1 = 20, n2 = 40, Rdis = 0); (ii) CHAIN+ with (n1 = 20, n2 = 40, Rdis = 0.01). We
defer the full environment details to Appendix C.

Evaluation setup. We conduct our experiments with two different types of RL agents
for CHAIN: tabular REINFORCE agent (Sutton and Barto, 2018) and tabular Q-learning
agent (Sutton and Barto, 2018). Algorithm 4.2 provides a sketch of the overall training
process, and shows how agent’s training interleaves with reward shaping techniques.
We compare the performance of the following reward shaping techniques: (i) R̂ORIG := R

is a default baseline without any shaping; (ii) R̂SORS’ := R +RSORS
ϕ is based on the SORS

technique (Memarian et al., 2021) (see Section 4.2);10 (iii) R̂LIRPG’ is obtained via adapting
the LIRPG technique (Zheng et al., 2018) to our training pipeline (see Algorithm 4.2,
Sections 4.2 and 4.4.2)—note that R̂LIRPG’ is not applicable to Q-learning agent;11 (iv)
R̂EXPLOB := R + BEXPLOB

w uses only the intrinsic bonuses; (v) R̂SELFRS := R + RSELFRS
ϕ uses

only the intrinsic rewards; (vi) R̂EXPLORS := R + RSELFRS
ϕ + BEXPLOB

w combines intrinsic

10In our implementation, we use a variant of the SORS technique which also incorporates the extrinsic
reward component R as done in all other techniques in our evaluation setup.

11Throughout the experimental evaluation, we refer to our implementation of the LIRPG technique
as R̂LIRPG’ instead of R̂LIRPG – our implementation of the LIRPG technique is not based on computing
meta-gradients as in the original work (Zheng et al., 2018). Instead, we implemented R̂LIRPG’ as a variant
of R̂SELFRS where we set h → ∞ instead of 1 in A

πθk

R̂,h
(s, a) (see Section 4.4.2). We provide additional

implementation details in Appendix C.
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bonuses with intrinsic rewards. We provide full details about the implementation and
hyperparameters in Appendix C.

Results. During training, the agent receives rewards based on R̂ and is evaluated
based on R. Figure 4.2 shows results for both the variants of CHAIN environment; the
reported results are averaged over 20 runs and convergence plots show the mean per-
formance with standard error bars. These results demonstrate the effectiveness of our
exploration-guided reward shaping framework (R̂EXPLORS), in comparison to baselines
(R̂ORIG, R̂SORS’, R̂LIRPG’, R̂EXPLOB, R̂SELFRS). Next, we summarize some of our key findings.
First, our results show that R̂EXPLORS outperforms the baselines in both CHAIN0 and
CHAIN+ environments, irrespective of the RL agent (REINFORCE and Q-learning). Sec-
ond, the performance of R̂EXPLORS is better than variants which only use either intrinsic
bonuses or intrinsic rewards, i.e., R̂EXPLOB or R̂SELFRS – this demonstrates the utility of
combining these two signals. Third, results in Figures 4.2b and 4.2d show that three
reward shaping techniques (R̂SORS’, R̂LIRPG’, R̂SELFRS) could fail or lead to sub-optimal
policies because of the presence of distractor states.

4.5.2 Evaluation on ROOM

ROOM (Figure 4.3a). This environment is based on the work of (Devidze et al., 2021);
however, we adapted it to have a “distractor” state (shown as “green-plus”) that provides
a small reward. Similar to the two variants of CHAIN, we have two variants of this
environment: (i) ROOM0 has Rdis = 0 at the distractor state shown as “green-plus”
(equivalently, there is no distractor state); (ii) ROOM+ has Rdis = 0.01 at the distractor
state. The environment-specific parameters (including prand, Rmax, γ) are kept same as in
Section 4.5.1. We defer full details to Appendix C.

Evaluation setup and results. Our evaluation setup for this environment is exactly
same as that used for CHAIN environment (described in Section 4.5.1); here, we consider
only the tabular REINFORCE agent. In particular, all the hyperparameters (related to
the REINFORCE agent, reward shaping techniques, and training process) are the same
as in Section 4.5.1. Figures 4.4a and 4.4b show the agent’s performance for environments
ROOM0 and ROOM+ (averaged over 20 runs). These results, along with results obtained
in Figure 4.2, further demonstrate the effectiveness and robustness of R̂EXPLORS across
different environments in comparison to baselines.

4.5.3 Evaluation on LINEK

LINEK (Figure 4.3b). This environment corresponds to a navigation task in a one-
dimensional space where the agent has to first pick the correct key and then reach the
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(a) ROOM0 / ROOM+ (b) LINEK0 / LINEK+

Figure 4.3: Environments.
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(a) ROOM0, REINFORCE
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(b) ROOM+, REINFORCE
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(c) LINEK0, REINFORCE
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(d) LINEK+, REINFORCE
Figure 4.4: Results for ROOM and LINEK environments. These plots show convergence in performance of
the agent w.r.t. training episodes. (a, b) show results for REINFORCE agent on ROOM0 (i.e., ROOM variant
without any distractor state) and ROOM+ (i.e., ROOM variant with a distractor state). (c, d) show results for
REINFORCE agent on LINEK0 (i.e., LINEK variant without any distractor state) and LINEK+ (i.e., LINEK
variant with distractor states). See Sections 4.5.2 and 4.5.3 for details.

goal. The environment used in our experiments is based on the work of (Devidze et al.,
2021); however, we adapted it to have multiple keys (only one being correct) and “dis-
tractor” states that provide a small reward at goal locations even without the correct key.
The environment comprises of the following main elements: (a) an agent whose current
location (shown as “blue-circle”) is a point x in [0, 1]; (b) goal (shown as “green-star”)
is available in locations on the segment [0.9, 1]; (c) a set of k keys that are available
in locations on the segment [0.0, 0.1], (d) among k keys, only 1 key is correct and the
remaining k − 1 keys are wrong (i.e., irrelevant at the goal). Moreover, we consider the
agent with two different actions related to picking a key: (a) “pickCorrect” makes the
agent collect the correct key required at the goal; (b) “pickWrong” makes the agent collect
one of the k − 1 wrong keys, chosen at random. Similar to Sections 4.5.1 and 4.5.2, we
use two adaptations of the environment: (i) LINEK0 with (k = 10, Rdis = 0); (ii) LINEK+

with (k = 10, Rdis = 0.01). We defer full details to Appendix C.
Experimental setup. We conduct our experiments with a neural REINFORCE agent

using a two-layered neural network architecture (i.e., one fully connected hidden layer
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with 256 nodes and RELU activation) (Sutton and Barto, 2018). Similar to Section 4.5.1,
we compare the performance of six techniques. As a crucial difference, here we use
neural-network based reward functions for R̂SORS’, R̂LIRPG’, R̂SELFRS, and R̂EXPLORS (see
Footnotes 10 and 11). Based on (Zheng et al., 2018; Memarian et al., 2021), we use the
same neural-network architecture for intrinsic reward functions as used for the agent’s
policy by applying appropriate transformations at the output layer (e.g., instead of using
soft-max, use tanh-clipping to get output reward values for actions). We provide full
details about the implementation and hyperparameters in Appendix C.

Results. During training, the agent receives rewards based on R̂ and is evaluated
based on R. Figures 4.4c and 4.4d show results for both the variants of LINEK environ-
ment; the reported results are averaged over 30 runs and convergence plots show the
mean performance with standard error bars. These plots showcase the performance of
different techniques as we vary Rdis ∈ {0.00, 0.01} – this in turn decides whether there
are any distractor states that can serve as local minima for the agent. The convergence
behavior in Figures 4.4c and 4.4d demonstrates the effectiveness of our exploration-
guided reward shaping framework (R̂EXPLORS), in comparison to baselines (R̂ORIG, R̂SORS’,
R̂LIRPG’, R̂EXPLOB, R̂SELFRS). Next, we summarize some of our key findings. First, our
results show that R̂EXPLORS outperforms all the baselines in both LINEK0 and LINEK+

environments. Second, results in Figure 4.4d show that three reward shaping techniques
(R̂SORS’, R̂LIRPG’, R̂SELFRS) performed worse than R̂ORIG – this is because of the presence
of distractor states which create local minima for the agent and these shaped functions
could further encourage learning a sub-optimal policy. In contrast, R̂EXPLORS combines
the benefits of intrinsic rewards (R̂SELFRS) and intrinsic bonuses (R̂EXPLOB) to speed up
agent’s learning in a robust and efficient manner. Overall, these results demonstrate
that our shaping technique R̂EXPLORS results in efficient learning even when dealing with
complex state representations and when learning neural-network based intrinsic reward
functions.

4.6 Conclusions
We proposed a novel reward shaping framework, EXPLORS, that operates in a fully
self-supervised manner and could accelerate an agent’s learning even in sparse-reward
environments. Next, we discuss a few limitations of our work and outline a future plan to
address them. First, the experimental evaluation is conducted on simpler environments
to study the performance of techniques w.r.t. the three characteristics of (a) hard explo-
ration, (b) local minima, and (c) “noisy TV” problem. It would be interesting to evaluate
different reward design techniques in more complex environments (e.g., with continuous
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state/action spaces); this would also require designing benchmark environments that
systematically capture the above three characteristics. Second, EXPLORS combines the
intrinsic rewards and intrinsic bonuses that allows it to overcome the limitations of
state-of-the-art techniques. It would be interesting to develop more principled ways
to combine these two signals. Third, it would be useful to provide rigorous analysis of
EXPLORS in terms of convergence speed and stability of an agent.



CHAPTER 5
Concluding Discussions

In this chapter, we summarize our contributions and discuss potential avenues for future
work.

5.1 Summary of our Work

In this thesis work, we addressed the problem of reward design in reinforcement learn-
ing (RL). First, we developed a novel optimization framework, EXPRD, for designing
explicable reward functions that effectively balance informativeness and sparsity. As
part of the framework, we introduced a new criterion for measuring the informativeness
of reward functions. Crucially, EXPRD goes beyond traditional potential-based methods,
offering a comprehensive optimization-based framework for designing informative and
interpretable rewards under various structural constraints. Second, further expanded our
work by introducing a novel reward informativeness criterion that adapts to the agent’s
current policy. This led to the development of the expert-driven adaptive reward design
framework, EXPADARD, which tailors rewards to the agent’s current policy, ensuring
optimal alignment between reward signals and the agent’s current capabilities. Third,
we proposed a novel reward-shaping framework, EXPLORS, which operates entirely
self-supervised, without relying on expert knowledge. EXPLORS enhances learning even
in environments with sparse or distracting rewards by integrating the agent’s learning
process and exploration into a self-improving feedback loop.

In summary, our research addresses the shortcomings of existing reward design
techniques, including potential-based reward shaping, logic-based reward design, and
self-supervised reward shaping. We aimed to balance critical aspects of reward design:
(i) informativeness to accelerate learning, (ii) invariance to prevent reward bugs, and
(iii) interpretability to facilitate fault diagnosis. Notably, our optimization framework
supports both non-adaptive and adaptive reward design techniques, accommodating
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different levels of domain expertise and offering robust measures for the informativeness
of reward functions.

Finally, the code implementation of all the frameworks proposed in this thesis is
available at: https://github.com/machine-teaching-group

5.2 Future Work Directions

Our findings in this thesis present a strong foundation for future research. Below, we
outline a few key directions for further investigation.

Incorporating more natural and interpretable structures for reward design. Our teacher-
driven reward design techniques allow one to go beyond using a potential function for
principled reward design and provide a general recipe for developing an optimization-
based reward design framework with different structural constraints. Our study focused
on two types of structural constraints for clarity and ease of interpretation: sparseness
and tree structures. Extending this approach could involve integrating more intuitive
structures such as temporal logic formulas, enabling teachers to articulate intricate
constraints and objectives (e.g., “The robot must charge the battery before reaching the
goal”), which are easily comprehensible to humans. By leveraging temporal logic, reward
functions can capture temporal relationships between events, thereby enhancing their
interpretability and facilitating the infusion of human expertise into the learning process.
This advancement promises to foster more robust and well-aligned agent behaviors in
complex environments.

Conducting user studies about the effectiveness of designed rewards. In this thesis,
our experimental evaluations were limited to RL agents, raising the question of how
these interpretable reward design techniques might impact other types of learners. An
important avenue for future research is to conduct user studies involving human learners.
This would empirically verify the hypothesis that interpretable rewards enhance learn-
ing efficiency and skill acquisition in tasks performed within surgical simulators (Vir-
taMed). Such studies would entail designing experimental setups to compare human
performance under various reward structures that are interpretable and informative in
comparison to standard dense or binary rewards.

Applying agent-driven reward design for challenging settings. While our focus was
primarily on traditional RL environments, extending self-supervised reward design to
the domain of large language models (LLMs) presents a compelling research direction.
In this context, rather than relying on predefined reward functions, a self-supervised
reward design could enable an LLM agent to refine its reward signals continuously.

https://github.com/machine-teaching-group
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However, this approach introduces unique challenges. LLMs can generate plausible yet
incorrect information, necessitating the guarantee of an invariance property to ensure
that self-generated rewards are reliable and guide the desired behaviors. Moreover,
rigorously evaluating the quality of such self-generated rewards remains an important
question for future research.



APPENDIX A
Non-Adaptive Teacher-Driven Explicable

Reward Design

A.1 Content of this Appendix

Here, we give a brief description of the content provided in this appendix.

• Appendix A.2 provides proofs for Propositions 2.1 and 2.2. (Sections 2.4.2 and 2.4.3)

• Appendix A.3 provides additional details and proofs for the theoretical analysis.
(Section 2.4.4)

• Appendix A.4 provides additional details and proofs for using state abstractions.
(Section 2.4.5)

• Appendix A.5 provides additional results for ROOM. (Section 2.5.1)

• Appendix A.6 provides additional results for LINEK. (Section 2.5.2)
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A.2 Proofs for Propositions 2.1 and 2.2 (Sections 2.4.2 and 2.4.3)

A.2.1 Proof of Proposition 2.1

Proof. Consider any optimal policy π ∈ Π
∗
, s ∈ S, a ∈ A, and h ∈ H. The ∞-step

optimality gap induced by R is δ
∗
∞(s, a) = V

∗
∞ (s)−Q∗

∞ (s, a), and the h-step optimality
gap induced by R̂PBRS is δ̂πh(s, a) = Q̂π

h(s, π(s)) − Q̂π
h(s, a). In the following, we express

the two terms of δ̂πh in terms of V
∗
∞ and Q

∗
∞.

The term Q̂π
h(s, π(s)) for any π ∈ Π

∗
. We show that Q̂π

h(s, π(s)) = 0 for any non-negative
integer h by using mathematical induction. First (h = 0 case), we consider the 0-step
optimal action value function:

Q̂π
0 (s, π (s)) = R̂PBRS (s, π (s))

= R (s, π (s)) + γ
∑
s′∈S

T (s′ | s, π (s))V ∗
∞ (s′)− V ∗

∞ (s)

= Q
∗
∞ (s, π (s))− V ∗

∞ (s)

= V
∗
∞ (s)− V ∗

∞ (s)

= 0.

Now assume that Q̂π
h−1(s, π(s)) = 0. Then, consider the h-step optimal action value

function:

Q̂π
h(s, π (s)) = R̂PBRS (s, π (s)) + γ

∑
s′∈S

T (s′ | s, π (s)) Q̂π
h−1 (s

′, π (s))

= R̂PBRS (s, π (s)) + 0

= 0.

Thus, by mathematical induction, we have that Q̂π
h(s, π(s)) = 0 for any non-negative

integer h.

The term Q̂π
h(s, a) for any a ∈ A. Consider the h-step optimal action value function:

Q̂π
h(s, a) = R̂PBRS (s, a) + γ

∑
s′∈S

T (s′ | s, a) Q̂π
h−1 (s

′, π (s′))

= R̂PBRS (s, a) + 0

= R (s, a) + γ
∑
s′∈S

T (s′ | s, a)V ∗
∞ (s′)− V ∗

∞ (s)

= Q
∗
∞ (s, a)− V ∗

∞ (s) .
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Finally, by combining these two terms, we get:

δ̂πh(s, a) = Q̂π
h(s, π(s))− Q̂π

h(s, a) = V
∗
∞ (s)−Q∗

∞ (s, a) = δ
∗
∞(s, a).

A.2.2 Proof of Proposition 2.2

Proof. We write the problem (P1) explicitly as follows:

max
R

∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

ℓ(δπ
†

h (s, a)) (A.1)

subject to R (s, a) = 0, ∀s ∈ S\ {Z ∪ G} , a ∈ A (A.2)

Qπ†

∞(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)Qπ†

∞(s′, π†(s′)), ∀s ∈ S, a ∈ A, π† ∈ Π
†

(A.3)

Qπ†

∞(s, π†(s)) ≥ Qπ†

∞(s, a) + δ
∗
∞(s), ∀s ∈ S, a ∈ A\Π∗

s, π
† ∈ Π

†
(A.4)

Qπ†

0 (s, a) = R(s, a), ∀s ∈ S, a ∈ A, π† ∈ Π
†

(A.5)

Qπ†

h (s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)Qπ†

h−1(s
′, π(s′)), ∀s ∈ S, a ∈ A, h ∈ H, π† ∈ Π

†

(A.6)

δπ
†

h (s, a) = Qπ
h(s, π

†(s))−Qπ†

h (s, a),∀s ∈ S, a ∈ A, h ∈ H, π† ∈ Π
†

(A.7)

|R (s, a)| ≤ Rmax, ∀s ∈ S, a ∈ A (A.8)

In the following, we show that the above problem is a concave optimization problem
(the objective is concave and the constraints are linear) by writing it in the matrix form
as follows:

max
R∈R|S|·|A|

∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

ℓ
(〈
wπ

†

h;(s,a), R
〉)

subject to A ·R ⪰ b,

for some vectors wπ†

h;(s,a), b ∈ R|S|·|A|, and some matrix A ∈ R|S|·|A|×|S|·|A|.

Notation. We mainly follow the notation from (Agarwal et al., 2019). Given a determin-
istic policy π : S → A, we define the transition matrix Tπ ∈ R|S|·|A|×|S|·|A| induced by π as
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follows:

[Tπ](s,a),(s′,a′) :=

T (s′|s, a), if a′ = π(s′)

0, otherwise.

Also, for any s ∈ S, we define Idπ (s) ∈ R|A|×|A| as follows:

[Idπ (s)]:,a :=

1, if a = π(s)

0, otherwise.

Then, we define Idπ ∈ R|S|·|A|×|S|·|A| as a block diagonal matrix with block size of |A|×|A|,
and Idπ (s) as the sth diagonal block, ∀s ∈ S. We define the diagonal matrix LΠ

∗ ∈
R|S|·|A|×|S|·|A|, whose (s, a)th diagonal entry is given by:

[LΠ
∗ ](s,a),(s,a) :=

0, if a ∈ Π
∗
s

1, otherwise.

We define the diagonal matrix LZ ∈ R|S|·|A|×|S|·|A|, whose (s, a)th diagonal entry is given
by:

[LZ ](s,a),(s,a) :=

0, if s ∈ Z

1, otherwise.

Let ei ∈ R|S|·|A| be a vector having 1 only in the ith entry, and 0 elsewhere. Let δ
∗
∞ ∈

R|S|·|A| be a vector such that its (s, a)th entry is given by
[
δ
∗
∞

]
(s,a)

= δ
∗
∞ (s) ,∀a ∈ A. Let

1 ∈ R|S|·|A| be a vector of all ones. Let Id ∈ R|S|·|A|×|S|·|A| be the identity matrix.

Bound constraint. The bound constraint in Eq. (A.8) can be written as follows:

Rmax · 1 ⪰ R ⪰ −Rmax · 1.

The above is linear inequality in R.

Sparsity constraint. The sparsity constraint in Eq. (A.2) can be written as follows:

LZR = 0.

The above is linear equality in R.
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Global optimality constraints. The recursive form of the action value functionQπ
∞(s, a) =

R(s, a) + γ
∑

s′∈S T (s
′ | s, a)Qπ

∞(s′, π(s′)) can be written in the matrix form as follows:

Qπ
∞ = R + γTπQ

π
∞ =⇒ Qπ

∞ = (Id− γTπ)−1R.

Then, the global optimality constraints in Eq. (A.4) can be written as follows, for all
π† ∈ Π

†
:

(Idπ† − Id)Qπ†

∞ ⪰ LΠ
∗δ

∗
∞ =⇒ (Idπ† − Id) (Id− γTπ†)−1R ⪰ LΠ

∗δ
∗
∞.

The above is linear inequality in R.

Information Iℓ(R) is concave in R. For h = 0, Qπ
0 (s, a) = R (s, a) can be written as

follows:
Qπ

0 = R.

For h = 1, Qπ
1 (s, a) = R(s, a) + γ

∑
s′∈S T (s

′ | s, a)Qπ
0 (s

′, π(s′)) can be written as follows:

Qπ
1 = R + γTπQ

π
0 = (Id + γTπ)R.

For h = 2, Qπ
2 (s, a) = R(s, a) + γ

∑
s′∈S T (s

′ | s, a)Qπ
1 (s

′, π(s′)) can be written as follows:

Qπ
2 = R + γTπQ

π
1 =

(
Id + γTπ + γ2TπTπ

)
R.

For any h, Qπ
h(s, a) = R(s, a)+γ

∑
s′∈S T (s

′ | s, a)Qπ
h−1(s

′, π(s′)) can be written as follows:

Qπ
h =

(
Id + γTπ + γ2T (2)

π + · · ·+ γhT (h)
π

)
R,

where T (h)
π = TπTπ · · ·Tπ︸ ︷︷ ︸

h−times

. Then, we can write δπh(s, a) = Qπ
h(s, π(s))−Qπ

h(s, a) as follows:

δπh(s, a) =
〈
(Idπ − Id)

(
Id + γTπ + γ2T (2)

π + · · ·+ γhT (h)
π

)
R, e(s,a)

〉
,

i.e., δπh(s, a) is linear in R for every s ∈ S, and a ∈ A. From the above equation, one
can easily show that δπh(s, a) =

〈
wπ

†

h;(s,a), R
〉

, where wπ†

h;(s,a) := ρπ
†

h;(s,π†(s)) − ρ
π†

h;(s,a). Since
ℓ : R→ R is monotonically non-decreasing concave function, we have that ℓ ◦ δπh(s, a) is
concave (Boyd et al., 2004). From the fact that the sum of concave functions is concave,
Iℓ(R) is concave in R.

In summary, for the problem (P1), the objective is concave and the constraints are of
linear form (A ·R ⪰ b). Thus, (P1) is a concave optimization problem.
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Feasibility. One can easily verify that the original reward function R satisfies all the
constraints in (A.2)-(A.8) of the sparse reward shaping formulation for any Z , i.e., R is
a feasible solution. Furthermore, when Z = S\G, the potential-based shaped reward
function R̂PBRS given in (2.1) satisfies all the constraints in (A.2)-(A.8) of the sparse
reward shaping formulation.
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A.3 Additional Details and Proofs for Theoretical Analy-

sis (Section 2.4.4)

First, we define the submodularity and weak submodularity notions of a normalized set
function, which are used in the proof of Theorem 2.1.

Definition A.1 (Submodularity (Bach et al., 2013)). Let g : 2V → R be a normalized set
function (g(∅) = 0). g is submodular if for allW ⊆ V and j, k ∈ V\W :

g(W ∪ {k})− g(W) ≥ g(W ∪ {j, k})− g(W ∪ {j}).

Definition A.2 (Weak Submodularity (Das and Kempe, 2011)). Let Y ,X ⊂ V be two
disjoint sets, and g : 2V → R be a normalized set function. The submodularity ratio of X with
respect to Y is given by

γX ,Y :=

∑
j∈Y (g (X ∪ {j})− g (X ))
g (X ∪ Y)− g (X )

. (A.9)

The submodularity ratio of a setW with respect to an integer k is given by

γW,k := min
X ,Y:X∩Y=∅,X⊆W,|Y|≤k

γX ,Y .

Let γ > 0. We call a function γ-weakly submodular at a setW and an integer k if γW,k ≥ γ.

A set function g : 2V → R is called monotone if and only if g(X ) ≤ g(Y) for all
X ⊆ Y .

For any x ∈ R|S|·|A| and U ⊆ S, xU is defined as xU (j, a) = x (j, a) ,∀a ∈ A when
j ∈ U , and xU (j, a) = 0,∀a ∈ A otherwise. For any j ∈ S, ej ∈ R|S|·|A| is defined as
ej (j

′, a) = 1,∀a ∈ A when j′ = j, and ej (j
′, a) = 0,∀a ∈ A otherwise. The following

assumption captures the additional requirements on the regularized informativeness
criterion Ireg

ℓ :

Assumption A.1. Let Z be any set such that Z ⊆ S\G. The regularized informativeness
criterion Ireg

ℓ satisfies the following:

•
∥∥∥∇Ireg

ℓ (R(Z))(Z∪G)

∥∥∥
2
≤ doptmax,

•
∥∥∥∇Ireg

ℓ (R(Z))j

∥∥∥
2
≥ dnonmin, ∀j ∈ S\(Z ∪ G),

•
∥∥∥∇Ireg

ℓ (R(Z))j

∥∥∥
∞
≤ dnonmax,∀j ∈ S\(Z ∪ G), and



Appendix A. Non-Adaptive Teacher-Driven Explicable Reward Design 76

• ∃κ ≤ 1 such that ∀j ∈ S\(Z ∪ G) : R(Z) ± κ · dnonmax

M̃|Z|+|G|+1
· ej ∈ R.

A.3.1 Proof of Theorem 2.1

Let Z ⊆ S\G. Consider the set function f : 2S → R+ defined in (2.2):

f(Z) = max
R:supp(R)⊆Z∪G,R∈R

(I
reg
ℓ (R)− Ireg

ℓ (R(∅))) + λ · (D(Z ∪ G)−D(G)),

where R(∅) = argmaxR:supp(R)⊆G,R∈R I
reg
ℓ (R). Note that f is a normalized, monotone

set function. For a given sparsity budget B, let ZGreedy
B be the set selected by our Al-

gorithm 2.1, and ZOPT
B be the optimal set that maximizes the regularized variant of

Problem (P3). The corresponding f values of these sets are denoted by fGreedy
B and fOPT

B

respectively.

Proof. If f is γ-weakly submodular at the set ZB and the integer B (i.e., γZB ,B ≥ γ), then,
using Theorem 3 from (Elenberg et al., 2018) (which holds for any normalized, monotone,
γ-weakly submodular function), we can complete the proof of Theorem 2.1:

fGreedy ≥
(
1− e

−γ
ZGreedy
B

,B

)
fOPT ≥

(
1− e−γ

)
fOPT.

Thus, it remains to prove the weak submodularity of f . Let f0 denote f with λ = 0, and
define D̄ (Z) := D (Z ∪ G)−D (G). Note that D̄ is a normalized, monotone, submodular
function. Then, the submodularity ratio of f with general λ is bounded as follows:

γX ,Y =

∑
j∈Y (f0 (X ∪ {j})− f0 (X )) + λ

∑
j∈Y
(
D̄ (X ∪ {j})− D̄ (X )

)
f0 (X ∪ Y)− f0 (X ) + λ

(
D̄ (X ∪ Y)− D̄ (X )

)
≥ min

(∑
j∈Y (f0 (X ∪ {j})− f0 (X ))
f0 (X ∪ Y)− f0 (X )

, 1

)
,

where the inequality is due to the fact that the submodularity ratio of D̄ is ≥ 1 (Elenberg
et al., 2018). If the submodularity ratio of f0 is ≥ 1, then γX ,Y ≥ 1. This would lead to the
following bound:

fGreedy ≥
(
1− 1

e

)
fOPT.

If the submodularity ratio of f0 is≤ 1 (this would be the case in general; thus, we consider
this case in the theorem), then the submodularity ratio γX ,Y of f with general λ is lower
bounded by the submodularity ratio of f0. By applying Lemma A.1 with

(
ZGreedy
B , B

)
,
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we have that (since
∣∣∣ZGreedy

B

∣∣∣ = B):

γZGreedy
B ,B ≥

κ ·m2B+|G|

M2B+|G|
· (dnonmin)

2(
doptmax

)2
+ (dnonmin)

2
=: γ.

This completes the proof.

The following lemma provides a lower bound on the submodularity ratio γZ,k of f0
(for any Z s.t. |Z| ≤ B, and k ≤ B):

Lemma A.1. Let the regularized informativeness criterion Ireg
ℓ satisfies the Assumption 2.1 and A.1.

Then, for any set Z s.t. Z ⊆ S\G, |Z| ≤ B, and k ≤ B, the submodularity ratio γZ,k of f0 is
lower bounded by

γZ,k ≥
κ ·m|Z|+|G|+k

M|Z|+|G|+k
· (dnonmin)

2(
doptmax

)2
+ (dnonmin)

2
.

Proof. Since Ireg
ℓ is m2B+|G|-restricted strongly concave and M2B+|G|-restricted smooth

on Ω2B+|G|, we have that Ireg
ℓ is m|Z|+|G|+k-restricted strongly concave and M|Z|+|G|+k-

restricted smooth on Ω|Z|+|G|+k for any Z s.t. |Z| ≤ B, and k ≤ B. In addition I
reg
ℓ is

M̃|Z|+|G|+1-restricted smooth on Ω̃|Z|+|G|+1 since Ω|Z|+|G|+k ⊇ Ω̃|Z|+|G|+k ⊇ Ω̃|Z|+|G|+1 (and
M|Z|+|G|+k ≥ M̃|Z|+|G|+k ≥ M̃|Z|+|G|+1).

Consider the two sets X ,Y such that (X ∪ G) ∩ Y = ∅, X ⊆ Z , and |Y| ≤ k. We
proceed by upper bounding the denominator and lower bounding the numerator of
Eq. (A.9). Let k = |X | + |G| + k. First, we apply Definition 2.1 with x = R(X ) and
y = R(X∪Y) (note that (x, y) ∈ Ωk):

mk

2

∥∥R(X∪Y) −R(X )
∥∥2
2
≤ I

reg
ℓ (R(X ))− Ireg

ℓ (R(X∪Y)) +
〈
∇Ireg

ℓ (R(X )), R(X∪Y) −R(X )
〉
.

Rearranging and noting that Ireg
ℓ is monotone for increasing supports:

0 ≤ I
reg
ℓ (R(X∪Y))− Ireg

ℓ (R(X )) ≤
〈
∇Ireg

ℓ (R(X )), R(X∪Y) −R(X )
〉
− mk

2

∥∥R(X∪Y) −R(X )
∥∥2
2

≤ max
v:v(X∪Y∪G)c=0

〈
∇Ireg

ℓ (R(X )), v −R(X )
〉
− mk

2

∥∥v −R(X )
∥∥2
2
.

Setting v = R(X ) + 1
mk
∇Ireg

ℓ (R(X ))X∪Y∪G that achieves the maximum above, we have

0 ≤ I
reg
ℓ (R(X∪Y))− Ireg

ℓ (R(X )) ≤ 1

2mk

∥∥∇Ireg
ℓ (R(X ))X∪Y∪G

∥∥2
2

=
1

2mk

(∥∥∇Ireg
ℓ (R(X ))X∪G

∥∥2
2
+
∥∥∇Ireg

ℓ (R(X ))Y
∥∥2
2

)
,
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where the last equality is due to (X ∪ G) ∩ Y = ∅.
Next, consider a single state j ∈ Y . The function I

reg
ℓ at R(X∪{j}) is larger than the

function at any other R on the same support. In particular, Ireg
ℓ

(
R(X∪{j})) ≥ I

reg
ℓ (yj),

where yj := R(X )+ κ
M̃|X|+|G|+1

∇Ireg
ℓ (R(X ))j . Noting that

(
x = R(X ), y = yj

)
∈ Ω̃|X |+|G|+1 and

applying Definition 2.1:

I
reg
ℓ (R(X∪{j}))− Ireg

ℓ (R(X ))

≥ I
reg
ℓ

(
R(X ) +

κ

M̃|X |+|G|+1

∇Ireg
ℓ (R(X ))j

)
− Ireg

ℓ (R(X ))

≥

〈
∇Ireg

ℓ (R(X )),
κ

M̃|X |+|G|+1

∇Ireg
ℓ (R(X ))j

〉
−
M̃|X |+|G|+1

2

∥∥∥∥∥ κ

M̃|X |+|G|+1

∇Ireg
ℓ (R(X ))j

∥∥∥∥∥
2

2

=
κ

M̃|X |+|G|+1

∥∥∥∇Ireg
ℓ (R(X ))j

∥∥∥2
2
− κ2

2M̃|X |+|G|+1

∥∥∥∇Ireg
ℓ (R(X ))j

∥∥∥2
2

≥ κ

2M̃|X |+|G|+1

∥∥∥∇Ireg
ℓ (R(X ))j

∥∥∥2
2
.

Summing over all j ∈ Y :

∑
j∈Y

[
I

reg
ℓ (R(X∪{j}))− Ireg

ℓ (R(X ))
]
≥ κ

2M̃|X |+|G|+1

∑
j∈Y

∥∥∥∇Ireg
ℓ (R(X ))j

∥∥∥2
2

=
κ

2M̃|X |+|G|+1

∥∥∇Ireg
ℓ (R(X ))Y

∥∥2
2
.

Then, we have:

γX ,Y ≥
κ ·m|X |+|G|+k

M̃|X |+|G|+1

·
∥∥∇Ireg

ℓ (R(X ))Y
∥∥2
2∥∥∇Ireg

ℓ (R(X ))X∪G

∥∥2
2
+
∥∥∇Ireg

ℓ (R(X ))Y
∥∥2
2

=
κ ·m|X |+|G|+k

M̃|X |+|G|+1

· 1

∥∇Ireg
ℓ (R(X ))X∪G∥

2

2

∥∇Ireg
ℓ (R(X ))Y∥

2

2

+ 1

(i)

≥
κ ·m|X |+|G|+k

M̃|X |+|G|+1

· 1

(doptmax)
2

(dnonmin)
2 + 1

(ii)

≥
κ ·m|Z|+|G|+k

M|Z|+|G|+k
· 1

(doptmax)
2

(dnonmin)
2 + 1

,
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where (i) is due to
∥∥∇Ireg

ℓ (R(X ))X∪G

∥∥2
2
≤ (doptmax)

2 and
∥∥∇Ireg

ℓ (R(X ))Y
∥∥2
2
≥ |Y| (dnonmin)

2 ≥
(dnonmin)

2 (see Assumption A.1); and (ii) is due to m|X |+|G|+k ≥ m|Z|+|G|+k and M|Z|+|G|+k ≥
M̃|X |+|G|+k ≥ M̃|X |+|G|+1 (note that 1 ≤ |Y| ≤ k and 1 ≤ |X | ≤ |Z|).
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A.4 Additional Details and Proofs for using State Abstrac-

tions (Section 2.4.5)

We present an extension of our EXPRD framework that is scalable to large state spaces
by leveraging the techniques from state abstraction literature (Givan et al., 2003; Li et al.,
2006; Abel et al., 2016). We use an abstraction ϕ : S → Xϕ, which is a mapping from
high-dimensional state-space S to a low-dimensional latent space Xϕ. Let ϕ−1(x) :=

{s ∈ S : ϕ(s) = x} ,∀x ∈ Xϕ. We propose the following pipeline (called EXPRD-ABS):

1. By using the original MDP M =
(
S,A, T, γ, P0, R

)
and the abstraction ϕ, we con-

struct an abstract MDP Mϕ =
(
Xϕ,A, Tϕ, γ, P0, Rϕ

)
as follows, ∀x, x′ ∈ Xϕ, a ∈ A:

Tϕ(x
′|x, a) = 1

|ϕ−1(x)|
∑

s∈ϕ−1(x)

∑
s′∈ϕ−1(x′) T (s

′|s, a), andRϕ(x, a) =
1

|ϕ−1(x)|
∑

s∈ϕ−1(x)R(s, a).
We compute the set of optimal policies Π

∗
ϕ for the MDP Mϕ.

2. We run our EXPRD framework on Mϕ with Π† = Π
∗
ϕ, and the resulting reward is

denoted R̂ϕ. The corresponding MDP is denoted by M̂ϕ =
(
Xϕ,A, Tϕ, γ, P0, R̂ϕ

)
.

3. We define the reward function R̂ on the state space S as follows: R̂(s, a) = R̂ϕ(ϕ(s), a).
The corresponding MDP is denoted by M̂ =

(
S,A, T, γ, P0, R̂

)
.

In summary, the EXPRD-ABS pipeline is given by: M →Mϕ → M̂ϕ → M̂ .
Define ϵϕ := minx∈Xϕ

mina∈A\Π∗
ϕ,x
δ
∗
ϕ,∞(x, a), where δ

∗
ϕ,∞ is the ∞-step optimality

gap in the abstract MDP Mϕ =
(
Xϕ,A, Tϕ, γ, P0, Rϕ

)
. For our analysis, we require the

abstraction ϕ : S → Xϕ to satisfy the following conditions:

• ϕ is (ϵR, ϵT )-approximate model irrelevant abstraction (Abel et al., 2016) for the MDP
M =

(
S,A, T, γ, P0, R

)
, i.e., ∀s1, s2 ∈ S where ϕ(s1) = ϕ(s2), we have, ∀a ∈ A:∣∣R(s1, a)−R(s2, a)∣∣ ≤ ϵR, and

∑
x′∈Xϕ

∣∣∣∑s′∈ϕ−1(x′) (T (s
′|s1, a)− T (s′|s2, a))

∣∣∣ ≤ ϵT .

• The change in the transition dynamics T during the compression-decompression pro-
cess using the abstraction ϕ is very small, i.e., maxs,a

∑
s′

∣∣∣T (s′|s, a)− Tϕ(ϕ(s
′)|ϕ(s),a)

|ϕ−1(ϕ(s′))|

∣∣∣ ≤
(1−γ)2ϵϕ
2γRmax

.

The following theorem shows that any optimal policy induced by the reward R̂ resulting
from the EXPRD-ABS pipeline acts nearly optimal w.r.t. R:

Theorem A.1. Let ϕ : S → Xϕ satisfy the conditions discussed above. The original reward
function R, and the reward function R̂ output by the EXPRD-ABS pipeline satisfy the following:
maxs

∣∣V ∗
∞(s) − V π

∞(s)
∣∣ ≤ 2ϵR

(1−γ)2 + γ·ϵT ·Rmax

2(1−γ)3 ,∀π ∈ Π̂∗, i.e., any optimal policy induced by R̂
acts nearly optimal w.r.t. R.
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Proof. Given an abstract policy π : Xϕ → A acting on Xϕ, we define the lifted policy
[π]↑M : S → A as [π]↑M (s) := π (ϕ (s)) ,∀s ∈ S. Similarly, given a set of policies Π =

{π : Xϕ → A}, we define [Π]↑M := {[π]↑M : π ∈ Π}. We define an auxiliary MDP M̃ =(
S,A, T̃ , γ, P0, R̃

)
, where R̃(s, a) = R̂ϕ(ϕ(s), a), and T̃ (s′|s, a) = Tϕ(ϕ(s

′)|ϕ(s),a)
|ϕ−1(ϕ(s′))| .

Step M → Mϕ. Since ϕ is (ϵR, ϵT )-approximate model irrelevant abstraction, we have
the following (see (Abel et al., 2016)):∣∣∣Q∗

∞(s, a)−Q∗
ϕ,∞(ϕ(s), a)

∣∣∣ ≤ ϵR
1− γ

+
γ · ϵT ·Rmax

2(1− γ)2
, ∀s ∈ S, a ∈ A,

where Q
∗
ϕ,∞ is the optimal action value function of the MDP Mϕ. Then, for any π ∈[

Π
∗
ϕ

]
↑M

, we have the following (see (Singh and Yee, 1994)):

max
s

∣∣∣V ∗
∞(s)− V π

∞(s)
∣∣∣ ≤ 2

1− γ
·max
s,a

∣∣∣Q∗
∞(s, a)−Q∗

ϕ,∞(ϕ(s), a)
∣∣∣ ≤ 2ϵR

(1− γ)2
+
γ · ϵT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of Mϕ, when lifted to S, acts as a near-optimal policy in M .

Step Mϕ → M̂ϕ. In the step 2 of our EXPRD-ABS pipeline, we set Π† = Π
∗
ϕ. Our EX-

PRD framework ensures that any optimal policy for M̂ϕ is also optimal in Mϕ, i.e.,
Π̂∗
ϕ ⊆ Π

∗
ϕ. In addition, since Π† = Π

∗
ϕ and Π† ⊆ Π̂∗

ϕ, we have that Π̂∗
ϕ = Π

∗
ϕ.

Step M̂ϕ → M̃ . By the definition of M̃ , ϕ is a model irrelevant abstraction for M̃ . Thus,
we have the following (see (Abel et al., 2016)):

Q̃∗
∞(s, a) = Q̂∗

ϕ,∞(ϕ(s), a), ∀s ∈ S, a ∈ A. (A.10)

From the above equation, note that Π̃∗ =
[
Π̂∗
ϕ

]
↑M̃

. Finally, we have that, for any π ∈ Π̃∗:

max
s

∣∣∣V ∗
∞(s)− V π

∞(s)
∣∣∣ ≤ 2ϵR

(1− γ)2
+
γ · ϵT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of M̃ acts as a near-optimal policy in the original MDP M .

Optimality in M̃ . Our EXPRD framework guarantees the following:

Q̂π†

ϕ,∞(x, π†(x)) ≥ Q̂π†

ϕ,∞(x, a) + ϵϕ, ∀x ∈ Xϕ, a ∈ A\Π
∗
ϕ,x, π

† ∈ Π†,

which can be rewritten as follows:

Q̂∗
ϕ,∞(ϕ(s), π†(ϕ(s))) ≥ Q̂∗

ϕ,∞(ϕ(s), a) + ϵϕ, ∀s ∈ S, a ∈ A\Π∗
ϕ,ϕ(s), π

† ∈ Π†.
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From the above inequality and using Eq. (A.10), we have the following:

Q̃∗
∞(s,

[
π†]

↑M̃ (s)) ≥ Q̃∗
∞(s, a) + ϵϕ, ∀s ∈ S, a ∈ A\

[
Π

∗
ϕ

]
↑M̃,s

,
[
π†]

↑M̃ ∈
[
Π†]

↑M̃ ,

which can be rewritten as follows:

Q̃∗
∞(s, π∗(s)) ≥ Q̃∗

∞(s, a) + ϵϕ, ∀s ∈ S, a ∈ A\Π̃∗
s, π

∗ ∈ Π̃∗.

From the above inequality, for any deterministic policy π /∈ Π̃∗, we have (at least on one
state s ∈ S):

Ṽ ∗
∞(s) = Q̃∗

∞(s, π∗(s)) ≥ Q̃∗
∞(s, π(s)) + ϵϕ ≥ Q̃π

∞(s, π(s)) + ϵϕ = Ṽ π
∞(s) + ϵϕ,

i.e., maxs

∣∣∣Ṽ ∗
∞(s)− Ṽ π

∞(s)
∣∣∣ ≥ ϵϕ.

Comparison M̂ vs. M̃ . Now, we show that any deterministic optimal policy in M̂ is also
optimal in M̃ , i.e., Π̂∗ ⊆ Π̃∗. Let maxs,a

∥∥∥T (·|s, a)− T̃ (·|s, a)∥∥∥
1
= βT . Then, for any π̂ ∈ Π̂∗

and s ∈ S, we have:∣∣∣Ṽ ∗
∞(s)− Ṽ π̂

∞(s)
∣∣∣ ≤ ∣∣∣Ṽ ∗

∞(s)− V̂ π̂
∞(s)

∣∣∣+ ∣∣∣V̂ π̂
∞(s)− Ṽ π̂

∞(s)
∣∣∣ ≤ 2γβTRmax

(1− γ)2
< ϵϕ,

where the second last inequality is due to Lemma 3 and Lemma 4 from (Kamalaruban
et al., 2020). Then, from the optimality in M̃ , it must me the case that π̂ ∈ Π̃∗.

Finally, for any π ∈ Π̂∗, we have:

max
s

∣∣∣V ∗
∞(s)− V π

∞(s)
∣∣∣ ≤ 2ϵR

(1− γ)2
+
γ · ϵT ·Rmax

2(1− γ)3
,

i.e., any optimal policy of M̂ acts as a near-optimal policy in the original MDP M .
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A.5 Additional Details and Results for ROOM (Section 2.5.1)

In this subsection, we expand on Section 2.5.1 and provide a more detailed description of
the setup as well as additional results. Full implementation of our techniques is available
in a Github repo as mentioned in Footnote 9.

Recall that the MDP for ROOM has |S| = 49 states corresponding to cells in the
grid-world and four actions given by A := {“up”, “left”, “down”, “right”}. To refer to a
specific state, we will use an enumeration scheme where the bottom-left cell is s = 0; the
cell numbers increase going from left to right and bottom to top. With this convention,
the top-right cell with the goal is s = 48, and four “gates” (cells that need to be crossed to
go across rooms when navigating to the goal) correspond to states {9, 15, 19, 37}. In this
MDP, we have one goal state s = 48, i.e., the set G in Problem (P3) is {48}. Furthermore,
the original reward function has R(48, “right”) = Rmax and is 0 elsewhere.

Additional details for the techniques evaluated. Below, we describe different
reward design techniques along with hyperparameters that are evaluated in this section.
More concretely, we have:

(i) R̂ORIG simply represents the default reward function R.

(ii) R̂PBRS is obtained via the PBRS technique based on Eq. 2.1, see Section 2.3.

(iii) R̂CRAFT(B) is designed manually based on the ideas discussed in Section 2.3. For
selecting the states that we will assign non-zero rewards, we first develop a set
function D as described below after this list. Then, for a fixed budget B, we pick
a set of top B + |G| states that maximize the value of the set function D. Then, we
assign rewards to these picked states as follows: (a) for the B states excluding |G|
goal states, we assign a reward of +1 for one of the optimal action and −1 for others;
(b) for |G| goal states, we assign the same rewards as R. For the evaluation, we use
B = 5 and denote the function as R̂CRAFT(B=5).

(iv) R̂PBRS-CRAFT(B=5) is obtained via the reward shaping technique from (Harutyunyan
et al., 2015). First, we compute the optimal state value function V̂ ∗

∞ w.r.t. R̂CRAFT(B=5)

designed above, i.e., we need to solve the task with the reward function R̂CRAFT(B=5).
Then, we obtain the reward function R̂PBRS-CRAFT(B=5) using the PBRS technique
based on Eq. 2.1 with the value function V̂ ∗

∞ instead of the optimal value function
V

∗
∞ w.r.t. R.

(v) R̂EXPRD(B,λ→∞) is the reward function designed by our EXPRD framework for a budget
B and an extreme setting of λ→∞. For this setting, the problem (P3) reduces to (P1)
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corresponding to the reward design with subgoals pre-selected by the function D—
we use the same function D that we used for R̂CRAFT above. For the evaluation,
we use B = 5 and denote the designed reward function as R̂EXPRD(B=5,λ→∞). As
discussed in Section 4.4, the budget B here refers to the additional number of states
that are allowed to be in supp(R) along with the goal states G (see (P3)). Apart from
hyperparameters B and λ, EXPRD requires a choice of Π†,H, and I(R) – we discuss
that below after this list.

(vi) R̂EXPRD(B,λ=0) is the reward function designed by our EXPRD framework for a budget
B and an important setting of λ = 0 where the problem (P3) reduces to (P2) cor-
responding to fully automated reward design without using any prior knowledge
about the importance of states. For budget B, we consider values from {3, 5, |S|}
and denote the designed reward functions as R̂EXPRD(B=3,λ=0), R̂EXPRD(B=5,λ=0), and
R̂EXPRD(B=|S|,λ=0). As stated above, the budget B here refers to the additional number
of states that are allowed to be in supp(R) along with the goal states G; the choice of
Π†,H, and I(R) is discussed below.

Here we describe the set functionD used for computing R̂CRAFT(B=5) and R̂EXPRD(B=5,λ→∞).
For the set function D, we used a simple modular function given by D(Z) :=

∑
s∈Z ws

where ws is a weight/score assigned to a state s capturing its importance in terms of
reward design. We used the following weights: ws = 2 for s = 48 (the goal state); ws = 1

for s = 9, s = 15, s = 19, and s = 37 (the four “gates”); ws = 0.5 for s = 8, s = 11, s = 29,
and s = 32 (centers of the four rooms); and ws = 0.1 otherwise. Even though this function
is simple, it captures the prior knowledge one expects to intuitively apply in practice. In
general, one could learn such D automatically using the techniques from (McGovern
and Barto, 2001; Simsek et al., 2005; Florensa et al., 2018; Paul et al., 2019).

Apart from B and λ, EXPRD requires us to specify Π†,H, and I(R). For the results
reported in Figures 2.4 and A.1, we use the following parameter choices for EXPRD:
H = {1, 4, 8, 16, 32}, I(R) is given by Eq. A.13, and the set Π† contains only one policy
from Π

∗
. Later in this section, we also consider variations of H and I(R), and report

additional results in Figures A.4 and A.5.
Results w.r.t. different criteria. Next, we evaluate the above-mentioned designed

reward functions w.r.t. criteria of sparseness, invariance, informativeness, and conver-
gence. Sparseness is measured by |supp(R̂)|, and informativeness is measured by I(R̂)
that is used in the optimization problem (P3). Convergence is measured w.r.t the number
of episodes needed to get a specific % of the total expected reward, and is based on the
convergence results in Figure 2.4a by taking various horizontal slices of the convergence



Appendix A. Non-Adaptive Teacher-Driven Explicable Reward Design 85

Reward R̂ Sparseness Invariance property Informativeness Convergence: #Episodes to % value
|supp(R̂)| Eq. A.11 Eq. A.12 I(R̂) 25% 75% 95%

R̂ORIG 1 0.0009 0.0009 −0.1557 1, 688 6, 752 20, 570

R̂PBRS 49 0.0009 0.0009 0.0000 3 5 15

R̂CRAFT(B=5) 6 −4.8366 −0.1645 −0.1122 1010 ∞ ∞
R̂PBRS-CRAFT(B=5) 49 0.0009 0.0009 −0.0797 35 79 146

R̂EXPRD(B=5,λ→∞) 6 0.0000 0.0010 −0.1070 49 773 14, 252

R̂EXPRD(B=3,λ=0) 4 0.0000 0.0009 −0.0842 177 474 1, 514

R̂EXPRD(B=5,λ=0) 6 0.0000 0.0009 −0.0709 37 280 822

R̂EXPRD(B=|S|,λ=0) 49 0.0000 1.5147 0.0000 9 48 90

Figure A.1: Results for ROOM. The designed reward functions are evaluated w.r.t. criteria of sparseness,
invariance, informativeness, and convergence. Here, the invariance property is captured through two
different notions stated in Eq. A.11 and Eq. A.12 (a negative value represents a violation in the invariance
property). Convergence is measured w.r.t the number of episodes needed to get a specific % of the total
expected reward, and are based on the convergence results in Figure 2.4a.

plot. To measure the invariance property, we consider two different notions stated below:

min
π̂∗∈Π̂∗

min
s∈S

(
Q

∗
∞(s, π̂∗(s))−Q∗

∞(s, π∗(s))
)

for any π∗ ∈ Π
∗

(A.11)

min
π∈Π†

min
s∈S

min
a∈A\Π∗

s

(
Q̂π

∞(s, π(s))− Q̂π
∞(s, a)

)
(A.12)

The notion in Eq. (A.11) looks at one of the optimal policy π̂∗ w.r.t. R̂, and compares the
gap in Q action values w.r.t. R – this quantity should be zero to ensure that none of the
optimal policies w.r.t. R̂ is suboptimal w.r.t. R. The notion in Eq. (A.12) is closer to the
invariance constraint that we incorporate in the optimization problem of EXPRD – this
quantity should be non-negative to ensure that none of the optimal policies w.r.t. R̂ is
suboptimal w.r.t. R.

In Figure A.1, we compare the designed reward functions w.r.t. these different
criteria. In the “Sparseness” column, the quantity |supp(R̂)| is B + 1 for R̂CRAFT(B=5),
R̂EXPRD(B=5,λ→∞), R̂EXPRD(B=3,λ=0), and R̂EXPRD(B=5,λ=0) as the goal states G are included in
the design. In the “Invariance property” columns, we see that R̂CRAFT(B=5) fails to satisfy
the invariance property highlighting the well-known “reward bugs” that can arise in
this approach and mislead the agent into learning suboptimal policies (see Section 2.3
and (Randløv and Alstrøm, 1998; Ng et al., 1999)); this issue is further emphasized in
the “Convergence” columns for R̂CRAFT(B=5), highlighting that the agent is stuck with a
suboptimal policy.

The last three columns related to “Convergence” highlight that the informative-
ness criteria we use in the optimization problem is a useful indicator about the agent’s
convergence when learning from designed reward functions. Furthermore, EXPRD
can provide an effective trade-off in sparseness and informativeness while maintaining
invariance property and speed up the agent’s convergence. Even for small budgets of
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B = 3 or B = 5, the reward functions R̂EXPRD(3,λ=0) and R̂EXPRD(5,λ=0) lead to substantial
speedups in the agent’s convergence in contrast to the original reward function R. Fig-
ures A.2f and A.2g further highlights that the states picked by EXPRD are important –
the Algorithm 2.1 automatically picked the “gates” in the design process.

Visualizations of the designed reward functions. Figure A.2 below shows a visual-
ization of the eight different designed reward functions – this visualization is a variant of
the visualization shown in Figure 2.4, where only three reward functions were shown.
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(d) R̂PBRS-CRAFT(B=5)
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(e) R̂EXPRD(B=5,λ→∞)
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(f) R̂EXPRD(B=3,λ=0)
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(g) R̂EXPRD(B=5,λ=0)
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(h) R̂EXPRD(B=|S|,λ=0)

Figure A.2: Results for ROOM. These plots show visualization of different designed reward functions
discussed in Figure A.1 – this visualization is a variant of the visualization shown in Figure 2.4 where only
three reward functions were shown. For each of the reward functions, the first plot titled R(s, .) ̸= 0 shows
which states have a non-zero reward assigned to at least one action and are marked with Gray color. The
next four plots titled R(s, “up”), R(s, “left”), R(s, “down”), R(s, “right”) show rewards assigned to each
state/action: here, a negative reward is shown in Red color with sign “−”, a positive reward is shown
in Blue color with sign “+” and zero reward is shown in white. The magnitude of the reward is indicated
by Red or Blue color intensity (see color representation in Figure 2.4).



Appendix A. Non-Adaptive Teacher-Driven Explicable Reward Design 88

Results w.r.t. variations in I(R). For the results reported in Figures 2.4 and A.4a,
we fixH = {1, 4, 8, 16, 32}, the set Π† contains only one policy from Π

∗
, and we use the

following functional form for I(R) corresponding to the negated hinge loss:

I1(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

max
a∈A\Π∗

s

(
−max(0, δ

∗
∞(s)− δπ†

h (s, a))
)

(A.13)

Here, we perform additional experiments to understand the effect of variations in I(R) on
the reward functions designed by EXPRD. In Figures A.4b, A.4c, and A.4d, we consider
the following different functional forms of I(R) corresponding to the negated hinge loss,
respectively:

I2(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

max
a∈A\Π∗

s

(
−max(0, δ

∗
∞(s, a)− δπ†

h (s, a))
)

(A.14)

I3(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

(
−max(0, δ

∗
∞(s)− δπ†

h (s, a))
)

(A.15)

I4(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

(
−max(0, δ

∗
∞(s, a)− δπ†

h (s, a))
)

(A.16)

Finally, in Figures A.4e and A.4f, we use the following different functional forms of I(R)
corresponding to the linear and negated exponential functions (instead of negated hinge
loss), respectively:

I5(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

(
−(δ∗∞(s, a)− δπ†

h (s, a))
)

(A.17)

I6(R) :=
1

|Π†| · |H| · |S|
·
∑
π†∈Π†

∑
h∈H

∑
s∈S

∑
a∈A\Π∗

s

(
− exp(δ

∗
∞(s, a)− δπ†

h (s, a))
)

(A.18)

Additionally, we report results by varying the choice of the set H. More con-
cretely, in Figure A.5, we fix the functional form of I(R) as given Eq. A.13, the set
Π† is same as above, and we vary the setH as follows: {1, 4, 8, 16, 32}, {1, 2, . . . , 19, 20},
and {10, 11, . . . , 19, 20}. Note that the value 20 corresponds to 1

1−γ .
All the results in this section are reported as an average over 40 runs and conver-

gence plots show mean with standard error bars. Overall, the convergence behavior
in Figures A.4 and A.5 suggests that the reward functions designed by our EXPRD
framework are effective under different functional forms of I(R) and different choices of
the setH.
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Run times for a varying number of states and actions. Here, we report the run
times for solving an instance of the optimization problem (P1) when set Z is fixed. In
order to easily vary the number of states |S| as well as the number of actions |A|, we
consider a simple chain navigation environment where an agent can take “left” or “right”
actions to navigate across the states (think of this as a one-dimensional variant of ROOM).
To increase |A| beyond size 2, we added dummy actions which keep the agent’s location
unchanged. For reporting the run times, we consider |Π†| = 1,H = {1, 4, 8, 16, 32}, and
vary |S| as well as |A|. These run times are reported when solving the formulation of the
optimization problem in terms of matrices as shown in Section 2.2. Numbers are reported
in seconds and are based on an average of 5 runs for each setting. These run times are
obtained by running the computation on a laptop machine with 2.3 GHz Quad-Core
Intel Core i5 processor and 16 GB RAM. Overall, these run times are of the same order
as that of solving an optimization problem instance in environment poisoning attacks
reported in the literature (see (Rakhsha et al., 2021) and Section 3.2).

|A|
|S|

25 50 75 100 125 150 175 200

2 0.42s 0.91s 1.63s 2.35s 3.22s 4.34s 6.42s 7.62s
5 1.11s 3.04s 6.73s 13.48s 26.89s 51.52s 102.22s 335.38s

Figure A.3: Run times for solving an instance of the optimization problem (P1) as we vary |S| and |A|.
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(b) I(R) from Eq. A.14
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(c) I(R) from Eq. A.15
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(e) I(R) from Eq. A.17
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Figure A.4: Results for ROOM. The plots show convergence in performance of the agent w.r.t. training
episodes. Here, performance is measured as the expected reward per episode computed using R; note that
the x-axis is exponential in scale. As the parameter choices for EXPRD, we use H = {1, 4, 8, 16, 32} and
the set Π† contains only one policy from Π

∗
. Each plot is obtained for a different functional form of I(R).
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(a)H = {1, 4, 8, 16, 32}
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Figure A.5: Results for ROOM. The plots show convergence in performance of the agent w.r.t. training
episodes. Here, performance is measured as the expected reward per episode computed using R; note
that the x-axis is exponential in scale. As the parameter choices for EXPRD, we use I(R) from Eq. A.13
and the set Π† contains only one policy from Π

∗
. Each plot is obtained for a different choice ofH. Note

that Figure A.5a is same as Figure A.4a.
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A.6 Additional Details and Results for LINEK (Section 2.5.2)

In this subsection, we expand on Section 2.5.2 and provide a more detailed description of
the setup as well as additional results. Full implementation of our techniques is available
in a Github repo as mentioned in Footnote 9.

Additional details for the techniques evaluated. Below, we describe different
reward design techniques along with hyperparameters that are evaluated in this section.
More concretely, we have:

(i) R̂ORIG simply represents the default reward function R.

(ii) R̂PBRS is obtained via the PBRS technique based on Eq. 2.1 and using an abstraction
(see Section 2.4.5, (Marthi, 2007)). We first define an abstraction ϕ : S → Xϕ as de-
scribed below after this list. Based on this abstraction ϕ, we construct an abstract MDP
Mϕ using the original MDP M , and compute the optimal state value function V

∗
ϕ,∞

in the abstract MDP Mϕ. Finally, we lift V
∗
ϕ,∞ to the original state space S (see Ap-

pendix A.4), and use the lifted value function as the potential function for the PBRS.

(iii) R̂PBRS-ABS is a variant of R̂PBRS. Similar to R̂PBRS, we compute the optimal state value
function V

∗
ϕ,∞ in the abstract MDP Mϕ. We use this value function as the potential

function for the PBRS to design R̂PBRS,ϕ in the MDP Mϕ. Finally, we lift R̂PBRS,ϕ to the
original state space S (see Appendix A.4). Note that R̂PBRS-ABS is not guaranteed to
satisfy the invariance property of R̂PBRS.

(iv) R̂EXPRD(B,λ=0) is the reward function designed by our pipeline in Section 2.4.5 that
relies on our EXPRD framework and an abstraction. We use the same abstraction
ϕ : S → Xϕ for all the techniques and is described below after this list. In the
subroutine, we run EXPRD on Mϕ for a budget B = 5 and a full budget B = |Xϕ|;
we set λ = 0. We denote the designed reward functions as R̂EXPRD(B=5,λ=0) and
R̂EXPRD(B=|Xϕ|,λ=0). Similar to Figure A.4a, we fixH = {1, 4, 8, 16, 32}, and we use the
functional form given in Eq. A.13 for I(R).

Here, we describe the abstraction ϕ used for computing R̂PBRS, R̂PBRS-ABS, and R̂EXPRD(B,λ=0).
Recall the description of the original MDP M from Section 2.5.2 – the state corresponds to
the agent’s status comprising of the current location (a point x in [0, 1]) and a binary flag
whether the agent has acquired a key. For a given hyperparameter α ∈ (0, 1), we obtain
a finite set of locations X by α-level discretization of the line segment [0, 1], leading to
a 1/α number of locations. For the abstraction ϕ associated with this discretization, the
abstract MDP Mϕ has |Xϕ| = 2/α corresponding to 1/α locations and a binary flag for the
key. We use α = 0.05 in the experiments.
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Results for Q-learning agent with 0.01-level location discretization. For the results
reported in the Chapter 2 (Figure 2.5a) and in Figure A.6a, the agent uses Q-learning
method in a discretized version of the original MDP M with a 0.01-level discretization
of the location (i.e., the number of states in the agent’s discretized MDP is 200). The rest
of the method’s parameters are same as in Section 2.5.1, i.e., we use standard Q-learning
method for the agent with a learning rate 0.5 and exploration factor 0.1 (Sutton and Barto,
2018). During training, the agent receives rewards based on R̂, however, is evaluated
based on R. A training episode ends when the maximum steps (set to 50) is reached
or an agent’s action terminates the episode. For this agent, the convergence results are
reported in Figure A.6a as an average over 40 runs. These results demonstrate that all
four designed reward functions—R̂PBRS, R̂PBRS-ABS, R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xϕ|,λ=0)—
substantially improves the convergence, whereas the agent is not able to learn under
R̂ORIG.

Results for Q-learning agent with 0.005-level location discretization. Here, we
demonstrate that our abstraction based pipeline in Section 2.4.5 is robust to the state
representation used by the agent. In particular, for the results reported in Figure A.6b, the
agent uses a discretized version of the original MDPM with a 0.005-level discretization of
the location. As in the setting above, the agent uses Q-learning method in this discretized
version of the original MDP M . Similar to Figure A.6a, Figure A.6b demonstrates that
the performance associated with all four designed reward functions—R̂PBRS, R̂PBRS-ABS,
R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xϕ|,λ=0)—substantially improves the convergence in contrast
to R̂ORIG.

Results for REINFORCE agent with continuous location representation. For the
results reported in Figure A.6c, the agent uses the REINFORCE policy gradient method
(see (Williams, 1992; Sutton and Barto, 2018)) in the original MDP M with continuous
representation of the location. We use a neural network to learn the policy, which takes a
continuous value in [0, 1] (the location) and a binary flag (whether the agent has acquired
a key) as the input representing a state s. The neural network has a hidden layer with 256

nodes. Given a state s (the input to the network), the policy network outputs three scores
for three different actions. Then, applying softmax operation over these three scores
gives the policy’s action distribution. We use the REINFORCE method with a learning
rate 0.0005. The gradient update happens at the end of each episode. In contrast to the
maximum episode length of 50 used by Q-learning agents, we set this to 150 for the
REINFORCE agent.

Figure A.6c shows convergence results for this agent as an average over 20 runs; for
each individual run, we additionally applied a moving-window average over a window
size of 100 episodes. With neural representation for states, the policy invariance might
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(c) REINFORCE agent

Figure A.6: Results for LINEK. These plots show convergence in performance of the agent w.r.t. training
episodes. Here, performance is measured as the expected reward per episode computed using R. (a)
shows convergence for a Q-learning agent who uses a 0.01-level discretization of the location. (b) shows
convergence for a Q-learning agent who uses a 0.005-level discretization of the location. (c) shows
convergence for an agent who uses REINFORCE learning method with continuous representation of the
location. All these agents receive rewards using the designed reward functions shown in Figure A.7.

not hold anymore. However, Figure A.6c demonstrates that all four designed reward
functions—R̂PBRS, R̂PBRS-ABS, R̂EXPRD(B=5,λ=0), R̂EXPRD(B=|Xϕ|,λ=0)—substantially improves
the convergence (slightly weaker compared to Figures A.6a and A.6b), whereas the agent
is not able to learn under R̂ORIG. This observation highlights our pipeline in Section 2.4.5
as a promising approach for reward design in high-dimensional settings. As future
work, we plan to (both theoretically and empirically) investigate the effectiveness of the
reward functions designed by our EXPRD framework or its adaptions in accelerating
the learning process in high-dimensional settings for policy gradient methods.

Visualizations of the designed reward functions. Figure A.7 shows visualization
of the five different designed reward functions discussed above – this visualization is
a variant of the visualization shown in Figure 2.5 where only three reward functions
were shown. This visualization provides important insights into the reward functions
designed by EXPRD. Interestingly, R̂EXPRD(B=5,λ=0) assigned a high positive reward for
the “pick” action when the agent is in the locations with key (see R((x,−), “pick”) bar in
Figure A.7d).
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Figure A.7: Results for LINEK. These plots show visualization of the five different designed reward
functions discussed above – this visualization is a variant of the visualization shown in Figure 2.5 where
only three reward functions were shown. For each of the reward functions, we show a total of 8 horizontal
bars. Denoting a state as tuple (x,−) (i.e., location x when the key has not been picked) or (x,key) (i.e.,
location x when the key has been picked), these 8 horizontal bars have the following interpretation. The
two bars, titled R((x,−), ·) ̸= 0 and R((x,key), ·) ̸= 0, indicate states in Gray color for which a non-zero
reward is assigned to at least one action; in these two bars, we have further highlighted the segment
[0.9, 1] with the goal, and the segment [0.1, 0.2] with the key. The remaining six bars, titled R((x,−), “left”),
R((x,−), “right”), R((x,−), “pick”), R((x,key), “left”), R((x,key), “right”), and R((x,key), “pick”), show
rewards assigned to each state/action: here, a negative reward is shown in Red color, a positive reward is
shown in Blue color, and zero reward is shown in white. The magnitude of the reward is indicated by Red
or Blue color intensity and we use the same color representation as in Figure 2.5.



APPENDIX B
Adaptive Teacher-Driven Explicable

Reward Design

B.1 Content of this Appendix

Here, we give a brief description of the content provided in this appendix.

• Appendix B.2 provides additional details on the algorithm and implementation.

• Appendix B.3 provides proof of Proposition 3.1.

• Appendix B.4 provides proof of Theorem 3.1.

B.2 Additional Details

Implementation details. In Algorithm B.1, we present an extended version of Algo-
rithm 3.1 with full implementation details. In our experiments in the Chapter 3 (Sec-
tion 3.5), we used Nπ = 2 and Nr = 5 similar to hyperparameters considered in existing
works on self-supervised reward design (Zheng et al., 2018; Memarian et al., 2021; De-
vidze et al., 2022). Here, we update the policy more frequently than the reward for
stability of the learning process. We also conducted additional experiments with values
of Nr = 100 and Nr = 1000, while keeping Nπ = 2. These increased values of Nr lowered
the variance without affecting the overall performance. In general, there is limited the-
oretical understanding of the impact of adaptive rewards on learning process stability,
and it would be interesting to investigate this in future work.

Impact of horizon h in Eq. (3.4). For the lower h values, the reward design process can
provide stronger reward signals, thereby speeding up the learning process. The choice
h = 1 further simplifies the computation of Ih as it doesn’t require computing the h-step
advantage value function. In general, when we are designing rewards for different types
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Algorithm B.1: Expert-driven Explicable and Adaptive Reward Design
(EXPADARD): Full Implementation

1 Input: MDP M :=
(
S,A, T, P0, γ, R

)
,

target policy πT , RL algorithm L, reward constraint setR, first-in-first-out
buffer D with size Dmax, reward update rate Nr, policy update rate Nπ

2 Initialize: learner’s initial policy πL0
3 for k = 1, 2, . . . , K do

// reward update
4 if k%Nr = 0 then
5 Expert/teacher updates the reward function by solving the optimization problem in

Eq. (3.4)
6 else
7 Keep previous reward Rk ← Rk−1

// policy update
8 if k%Nπ = 0 then
9 Learner updates the policy: πLk ← L(πLk−1, Rk) using the latest rollouts in D

10 else
11 Keep previous policy πLk ← πLk−1

// data collection
12 Rollout the policy πLk in the MDP M to obtain a trajectory ξk =

(
sk0, a

k
0, s

k
1, a

k
1, . . . , s

k
H

)
13 Add ξk to the buffer D (the oldest trajectory gets removed when the buffer D is full)

14 Output: learner’s policy πLK

of learners, it could be more effective to use the informativeness criterion summed up
over different values of h.

Structural constraints inR. Given a feature representation f : S ×A → {0, 1}d, we em-
ployed parametric reward functions of the formRϕ(s, a) = ⟨ϕ, f(s, a)⟩ in our experiments
in the Chapter 3 (Section 3.5). A general methodology to create feature representations
could be based on state/action abstractions. It would be interesting to automatically
learn such abstractions and quantify the size of the required abstraction for a given envi-
ronment. EXPADARD framework can be extended to incorporate structural constraints
such as those defined by a set of logical rules defined over state/action space. When
the set of logical rules induces a partition over the state-action space, we can define a
one-hot feature representation over this partitioned space.

Computational complexity of different techniques. At every step k of Algorithm 3.1,
EXPADARD requires to solve the optimization problem in Eq. (3.4). However, since it
is a linearly constrained concave-maximization problem w.r.t. R ∈ R|S|×|A|, it can be
efficiently solved using standard convex programs (similar to the inner problem (P1) in
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EXPRD (Devidze et al., 2021)). Notably, the rewards RORIG, RINVAR, and REXPRD are agnos-
tic to the learner’s policy and remain constant throughout the training process. RINVAR

baseline technique is based on related work (Rakhsha et al., 2020, 2021) when not con-
sidering informativeness. This baseline still requires solving a constrained optimization
problem and has a similar computational complexity of REXPRD.

B.3 Proof of Proposition 3.1

Proof. For the simple learning algorithm L, we can write the derivative of the informa-
tiveness criterion in Eq. (3.2) as follows:

[
∇ϕIL(Rϕ | R, πT , πL)

]
ϕ

(a)
=
[
∇ϕθ

L
new(ϕ) · ∇θLnew(ϕ)J(πθLnew(ϕ);R, π

T )
]
ϕ

(b)
≈
[
∇ϕθ

L
new(ϕ)

]
ϕ︸ ︷︷ ︸

1⃝

·
[
∇θJ(πθ;R, π

T )
]
θL︸ ︷︷ ︸

2⃝

,

where the equality in (a) is due to chain rule, and the approximation in (b) assumes a
smoothness condition of

∥∥∥ [∇θJ(πθ;R, π
T )
]
θLnew(ϕ)

−
[
∇θJ(πθ;R, π

T )
]
θL

∥∥∥
2
≤ c·

∥∥θLnew(ϕ)− θL
∥∥
2

for some c > 0. For the L described above, we can obtain intuitive forms of the terms 1⃝
and 2⃝. For any s ∈ S, a ∈ A, let 1s,a ∈ R|S|·|A| denote a vector with 1 in the (s, a)-th entry
and 0 elsewhere.

First, we simplify the term 1⃝ as follows:

[
∇ϕθ

L
new(ϕ)

]
ϕ

(a)
= α · EµπL

s,a

[[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
·
[
∇θ log πθ(a|s)

]⊤
θL

]
= α · EµπL

s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
·
[
∇θ log πθ(a|s)

]⊤
θL

]
(b)
= α · EµπL

s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]

− EµπL
s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
·
(∑

a′

πL(a′|s) · 1⊤
s,a′

)]

= α · EµπL
s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]

− EµπL
s

[[
∇ϕ

∑
a

πL(a|s) ·QπL

Rϕ,h
(s, a)

]
ϕ
·
(∑

a′

πL(a′|s) · 1⊤
s,a′

)]
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= α · EµπL
s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]
− EµπL

s

[[
∇ϕV

πL

Rϕ,h
(s)
]
ϕ
·
(∑

a′

πL(a′|s) · 1⊤
s,a′

)]
(c)
= α · EµπL

s

[∑
a

πL(a|s) ·
[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]
− EµπL

s

[∑
a

πL(a|s) ·
[
∇ϕV

πL

Rϕ,h
(s)
]
ϕ
· 1⊤

s,a

]
= α · EµπL

s,a

[[
∇ϕQ

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a −
[
∇ϕV

πL

Rϕ,h
(s)
]
ϕ
· 1⊤

s,a

]
= α · EµπL

s,a

[[
∇ϕA

πL

Rϕ,h
(s, a)

]
ϕ
· 1⊤

s,a

]
.

The equality in (a) arises from the meta-gradient derivations presented in (Andrychowicz
et al., 2016; Santoro et al., 2016; Nichol et al., 2018). In (b), the equality is a consequence
of the relationship

[
∇θ log πθ(a|s)

]
θL

=
(
1s,a −

∑
a′ π

L(a′|s) · 1s,a′
)

. Finally, in (c), the
equality can be attributed to the change of variable from a′ to a. Then, by applying
analogous reasoning to the above discussion, we simplify the term 2⃝ as follows:

[
∇θJ(πθ;R, π

T )
]
θL

= EµπT
s

[∑
a

Aπ
T

R
(s, a) ·

[
∇θπθ(a|s)

]
θL

]

= EµπT
s

[∑
a

πL(a|s) · AπT

R
(s, a) ·

[
∇θ log πθ(a|s)

]
θL

]

= EµπT
s

[∑
a

πL(a|s) · AπT

R
(s, a) · 1s,a

]
− EµπT

s

[∑
a

πL(a|s) · AπT

R
(s, a) ·

(∑
a′

πL(a′|s) · 1s,a′
)]

= EµπT
s

[∑
a

πL(a|s) · AπT

R
(s, a) · 1s,a

]
− EµπT

s

[
Aπ

T

R
(s, πL(s)) ·

(∑
a′

πL(a′|s) · 1s,a′
)]

= EµπT
s

[∑
a

πL(a|s) · AπT

R
(s, a) · 1s,a

]
− EµπT

s

[∑
a

πL(a|s) · AπT

R
(s, πL(s)) · 1s,a

]

= EµπT
s

[∑
a

πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· 1s,a

]
.

Finally, by taking the matrix product of the terms 1⃝ and 2⃝, we have the following:

[
∇ϕθ

L
new(ϕ)

]
ϕ
·
[
∇θJ(πθ;R, π

T )
]
θL

= α ·
(∑
s′,a′

µπ
L

s′,a′ ·
[
∇ϕA

πL

Rϕ,h
(s′, a′)

]
ϕ
· 1⊤

s′,a′

)
·
(∑

s,a

µπ
T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· 1s,a

)
= α ·

∑
s,a

µπ
T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
·
(∑
s′,a′

µπ
L

s′,a′ ·
[
∇ϕA

πL

Rϕ,h
(s′, a′)

]
ϕ
· 1⊤

s′,a′

)
· 1s,a
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= α ·
∑
s,a

µπ
T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
· µπL

s,a ·
[
∇ϕA

πL

Rϕ,h
(s, a)

]
ϕ

= α · EµπL
s,a

[
µπ

T

s · πL(a|s) ·
(
Aπ

T

R
(s, a)− AπT

R
(s, πL(s))

)
·
[
∇ϕA

πL

Rϕ,h
(s, a)

]
ϕ

]
,

which completes the proof.

B.4 Proof of Theorem 3.1

Proof. For any fixed policy πL, consider the following reward design problem:

max
R∈R

Ih=1(R | R, πT , πL),

where R = {R : |R (s, a)| ≤ Rmax,∀s ∈ S, a ∈ A}. Since Ih=1(R | R, πT , πL) =
∑

s µ
πT

s ·
µπ

L

s ·
∑

a

{
πL(a|s)

}2 ·(AπT

R
(s, a)− EπL(b|s)

[
Aπ

T

R
(s, b)

])
·
(
R(s, a)− EπL(b|s)[R(s, b)]

)
, reward

values for each state s can be independently optimized. Thus, for each state s ∈ S, we
solve the following problem independently to find optimal values for R(s, a), ∀a:

max
R∈R

∑
a

{
πL(a|s)

}2 · (AπT

R
(s, a)− EπL(b|s)

[
Aπ

T

R
(s, b)

])
·
(
R(s, a)− EπL(b|s)[R(s, b)]

)
.

The above problem can be further simplified by gathering the terms involving R(s, a):

max
R(s,a):|R(s,a)|≤Rmax

πL(a|s) · Z(s, a) ·R(s, a),

where

Z(s, a) = πL(a|s) ·
(
Aπ

T

R
(s, a)− EπL(b|s)

[
Aπ

T

R
(s, b)

])
−
∑
a′

{
πL(a′|s)

}2 · (AπT

R
(s, a′)− EπL(b|s)

[
Aπ

T

R
(s, b)

])
.

Then, we have the following solution for the reward design problem:

R(s, a) =

+Rmax, if Z(s, a) ≥ 0

−Rmax, otherwise.

We conduct the following "worst-case" analysis for Algorithm 3.1. For any state s ∈ S:
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1. reward update at step k = 1: for the randomly initialized policy πL0 (a|s) =

1/ |A| , ∀a ∈ A, for the highly sub-optimal action a1 w.r.t. πT , we have:

Z(s, a1) =
1

|A|
·
(
Aπ

T

R
(s, a1)− EπL

0 (b|s)

[
Aπ

T

R
(s, b)

])
−
∑
a′

1

|A|2
·
(
Aπ

T

R
(s, a′)− EπL

0 (b|s)

[
Aπ

T

R
(s, b)

])
=

1

|A|
·
(
Aπ

T

R
(s, a1)− EπL

0 (b|s)

[
Aπ

T

R
(s, b)

])
< 0.

Then, the updated reward will be R1(s, a1) = −Rmax and R1(s, a) = +Rmax,∀a ∈
A\{a1}

2. policy update at step k = 1: for the updated reward function R1, the policy πL1 (s)←
argmaxaR1(s, a) is given by πL1 (a1|s) = 0 and πL1 (a|s) = 1/(|A| − 1),∀a ∈ A\{a1}.

3. reward update at step k = 2: for the updated policy πL1 , for the second highly
sub-optimal action a2 w.r.t. πT also, we have:

Z(s, a2) =
1

(|A| − 1)
·
(
Aπ

T

R
(s, a2)− EπL

1 (b|s)

[
Aπ

T

R
(s, b)

])
−

∑
a′∈A\{a1}

1

(|A| − 1)2
·
(
Aπ

T

R
(s, a′)− EπL

1 (b|s)

[
Aπ

T

R
(s, b)

])
=

1

(|A| − 1)
·
(
Aπ

T

R
(s, a2)− EπL

1 (b|s)

[
Aπ

T

R
(s, b)

])
< 0.

Then, the updated reward will be R2(s, a1) = R2(s, a2) = −Rmax and R2(s, a) =

+Rmax,∀a ∈ A\{a1, a2}.

4. policy update at step k = 2: for the updated reward function R2, the policy
πL2 (s) ← argmaxaR2(s, a) is given by πL2 (a1|s) = πL2 (a2|s) = 0 and πL2 (a|s) =

1/(|A| − 2),∀a ∈ A\{a1, a2}.

By continuing the above argument for |A| steps, we can show that πLk converges to the
target policy πT , which completes the proof.



APPENDIX C
Adaptive Agent-Driven Reward Design

C.1 Content of this Appendix

Here, we give a brief description of the content provided in this appendix.

• Appendix C.2 provides derivations for the intuitive gradient updates for Rϕ. (Sec-
tion 4.4.2)

• Appendix C.3 provides proof for the theoretical analysis. (Section 4.4.4)

• Appendix C.4 provides additional details for CHAIN. (Section 4.5.1)

• Appendix C.5 provides additional details for ROOM. (Section 4.5.2)

• Appendix C.6 provides additional details for LINEK. (Section 4.5.3)
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C.2 Derivation of Gradient Updates for Rϕ: Proof (Sec-

tion 4.4.2)

Proof of Proposition 4.1. For any s ∈ S, a ∈ A, let 1s,a ∈ R|S|·|A| denote a vector with 1 in
the (s, a)-th entry and 0 elsewhere. First, we simplify the term 1⃝ as follows:

1

α
· [∇ϕθ(ϕ)]ϕk−1

= Eµks,a
[[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
·
[
∇θ log πθ(a|s)

]⊤
θk

]
= Eµks,a

[∇ϕQ
πθk
R̂,h

(s, a)
]
ϕk−1
·

(
1s,a −

∑
a′

πθk(a
′|s) · 1s,a′

)⊤


= Eµks

∑
a

πθk(a|s) ·
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
·

(
1s,a −

∑
a′

πθk(a
′|s) · 1s,a′

)⊤


= Eµks

[∑
a

πθk(a|s)
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1

1⊤
s,a −

∑
a

πθk(a|s)
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1

(∑
a′

πθk(a
′|s)1⊤

s,a′

)]

= Eµks

[∑
a

πθk(a|s)
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1

1⊤
s,a −

[
∇ϕ

∑
a

πθk(a|s)Q
πθk
R̂,h

(s, a)

]
ϕk−1

(∑
a′

πθk(a
′|s)1⊤

s,a′

)]

= Eµks

∑
a

πθk(a|s) ·
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
· 1⊤

s,a −
[
∇ϕV

πθk
R̂,h

(s)
]
ϕk−1
·

(∑
a′

πθk(a
′|s) · 1s,a′

)⊤


= Eµks

[∑
a

πθk(a|s) ·
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
· 1⊤

s,a −
[
∇ϕV

πθk
R̂,h

(s)
]
ϕk−1
·

(∑
a

πθk(a|s) · 1⊤
s,a

)]

= Eµks

[∑
a

πθk(a|s) ·
[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
· 1⊤

s,a −
∑
a

πθk(a|s) ·
[
∇ϕV

πθk
R̂,h

(s)
]
ϕk−1
· 1⊤

s,a

]
= Eµks,a

[[
∇ϕQ

πθk
R̂,h

(s, a)
]
ϕk−1
· 1⊤

s,a −
[
∇ϕV

πθk
R̂,h

(s)
]
ϕk−1
· 1⊤

s,a

]
= Eµks,a

[[
∇ϕ

(
Q
πθk
R̂,h

(s, a)− V πθk
R̂,h

(s)
)]

ϕk−1

· 1⊤
s,a

]
.

Then, we simplify the term 2⃝ as follows:

[
∇θJ(πθ, R)

]
θk

= Eµks,a
[[
∇θ log πθ(a|s)

]
θk
·Qπθk

R
(s, a)

]
= Eµks,a

[(
1s,a −

∑
a′

πθk(a
′|s) · 1s,a′

)
·Qπθk

R
(s, a)

]
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= Eµks

[∑
a

πθk(a|s) ·

(
1s,a −

∑
a′

πθk(a
′|s) · 1s,a′

)
·Qπθk

R
(s, a)

]

= Eµks

[∑
a

πθk(a|s) ·Q
πθk
R

(s, a) · 1s,a −
∑
a

πθk(a|s) ·Q
πθk
R

(s, a) ·

(∑
a′

πθk(a
′|s) · 1s,a′

)]

= Eµks

[∑
a

πθk(a|s) ·Q
πθk
R

(s, a) · 1s,a − V
πθk
R

(s) ·

(∑
a′

πθk(a
′|s) · 1s,a′

)]

= Eµks

[∑
a

πθk(a|s) ·Q
πθk
R

(s, a) · 1s,a −
∑
a′

πθk(a
′|s) · V πθk

R
(s) · 1s,a′

]

= Eµks

[∑
a

πθk(a|s) ·Q
πθk
R

(s, a) · 1s,a −
∑
a

πθk(a|s) · V
πθk
R

(s) · 1s,a

]

= Eµks

[∑
a

πθk(a|s) ·
(
Q
πθk
R

(s, a)− V πθk
R

(s)
)
· 1s,a

]
= Eµks,a

[(
Q
πθk
R

(s, a)− V πθk
R

(s)
)
· 1s,a

]
.

Finally, we consider the following:

[∇ϕθ(ϕ)]ϕk−1
·
[
∇θJ(πθ, R)

]
θk

= α · Eµks,a

[[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

· 1⊤
s,a

]
· Eµk

s′,a′

[
A
πθk
R

(s′, a′) · 1s′,a′
]

= α · Eµks,a

[[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

· 1⊤
s,a · Eµk

s′,a′

[
A
πθk
R

(s′, a′) · 1s′,a′
]]

= α · Eµks,a

[[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

· 1⊤
s,a · µks,a · A

πθk
R

(s, a) · 1s,a
]

= α · Eµks,a

[
µks,a · A

πθk
R

(s, a) ·
[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

]
= α · Eµπθk (s,a)

[
µπθk (s) · πθk(a|s) · A

πθk
R

(s, a) ·
[
∇ϕA

πθk
R̂,h

(s, a)
]
ϕk−1

]
.
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Algorithm C.1: Simplified RL Algorithm L with Reward Shaping
1 Input: Binary flags SELFRS and EXPLOB
2 Initialize: V0(s) = 0; R(s, a) = 0, B(s) = 1, ∀s ∈ S, a ∈ A; λ ∈ (0, 1)
3 s1 = x0; B(s1) = λ
4 for each t = 1, 2, . . . do
5 if EXPLOB = 0 then
6 B(s) = 0, ∀s ∈ S

// bonus component used for action selection
7 at = argmaxa′ R(st, a

′) +R(st, a
′) +B(T (st, a

′)) + γ · Vt−1(T (st, a
′))

8 st+1 = T (st, at)
// we do not consider the bonus component when updating the value

function
9 Vt(st) = R(st, at) +R(st, at) + γ · Vt−1(st+1)

10 if st+1 = terminal then
11 if R(st, at) = 1 and SELFRS = 1 then

// update the intrinsic reward component
12 ϕ(s) = 0, ∀s ∈ S
13 Update ϕ(s) for all the states in the current rollout as the discounted

return
14 R(s, a) = γ · ϕ(T (s, a))− ϕ(s), ∀s ∈ S, a ∈ A

// reset the value function to account for change in R
15 Vt(s) = 0, ∀s ∈ S
16 reset st+1 = x0

// update the bonus component
17 B(st+1) = λ ·B(st+1)

18 Output: policy πt

C.3 Theoretical Analysis: Proof (Section 4.4.4)

Proof of Theorem 4.1. We prove Theorem 4.1 via case-by-case analysis of Algorithm C.1.
Case L(SELFRS = 0,EXPLOB = 0). This case corresponds to learning without any

reward shaping, i.e., learning with the extrinsic reward only: R(s, a). Then, we note the
following:

I. Initially, we have a random policy except at state xn1 , where we take the optimal
action→ (line 7). We maintain zero value function Vt for all the states (line 9) until
we obtain the first success complete rollout, i.e., st+1 is terminal and R(st, at) = 1.

II. With an initial random policy and starting from x0, probability of obtaining a
success complete rollout is

(
1
2

)n1 +
(
1
2

)n1+2
+
(
1
2

)n1+4
+ . . . , which is upper bounded

by pmax =
∑∞

i=0

(
1
2

)n1+i =
(
1
2

)n1−1.
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III. Let E [T1] be the expected number of steps required for the first occurrence of the
above successful rollout. Then, we have: E [T1] ≥ 1

pmax
= 2n1−1.

IV. After the first successful rollout, we will have Vt(xn1) = 1 and zero elsewhere (line
9). Then, we will have a random policy except at xn1 and x(n1−1), where we take
the optimal action (line 7). This effectively repeats the same steps above for the
chain without xn1 .

V. Let E [T2] be the expected number of steps required for the second occurrence of
the above successful rollout. Then, we have: E [T2] ≥ 2n1−2.

VI. After the second successful rollout, we will have Vt(xn1) = 1, Vt(x(n1−1)) = γ, and
zero elsewhere (line 9). Then, we will have a random policy except at xn1 , x(n1−1),
and x(n1−2), where we take the optimal action (line 7). This effectively repeats the
same steps above for the chain without xn1 and x(n1−1).

VII. After following the above procedure for n1 success rollouts, we will have the
optimal value/policy learnt for the chain (solving the MDP). Thus, the expected
sample complexity is lower bounded by E [cost(L(SELFRS = 0,EXPLOB = 0))] =∑n1

i=1 E [Ti] ≥
∑n1

i=1 2
n1−i.

Case L(SELFRS = 0,EXPLOB = 1) This case corresponds to learning with the
extrinsic reward and intrinsic bonus: R(s, a) +B(T (s, a)). Then, we note the following
(here, we need λ ≤ γ):

I. We have zero value function (line 9) until we get the first success complete rollout,
i.e., st+1 is terminal and R(st, at) = 1.

II. W.l.o.g. we take→ action at time t = 1 at x0. Then, we continue to take→ action
(for n1 + 1 steps) until we reach rightmost terminal state, since λ < 1 (lines 7 and
17).

III. After the first successful rollout, we will have Vt(xn1) = 1 and zero elsewhere (line
9). Note that Vt(terminal) = 0, ∀t.

IV. Once we reset to x0, we take← since λ < 1 (line 7). Then, we continue to take←
action (for n2 + 1 steps) until we reach leftmost terminal state, since λ < 1 (lines 7
and 17).

V. This alternating one-sided navigation process will continue until Vt values are
updated for all the nodes right to x0 (one node at a time per one full cycle). The
condition λ ≤ γ ensures that after all the nodes right to x0 get updated with right Vt
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values, there will be no further exploration on the left-side of x0. Thus, the sample
complexity is given by cost(L(SELFRS = 0,EXPLOB = 1)) = n1 · (n1 + n2 + 2).

Case L(SELFRS = 1,EXPLOB = 0) This case corresponds to learning with the
extrinsic reward and intrinsic reward : R(s, a) +R(s, a). Then, we note the following:

I. From the analysis for the case L(1, 1), we have: E [T1] ≥ 1
pmax

= 2n1−1.

II. However, after the first successful rollout, we obtain the optimal policy (line
7) immediately since the shaping reward (line 14) contains myopic-optimality
information. Thus, the expected sample complexity is lower bounded by:

E [cost(L(SELFRS = 1,EXPLOB = 0))] = E [T1] ≥ 2n1−1.

Case L(SELFRS = 1,EXPLOB = 1) This case corresponds to learning with the
extrinsic reward and intrinsic reward and bonus: R(s, a) + R(s, a) + B(T (s, a)). Then,
we note the following (here, we need λ2 ≤ γn1):

I. From the analysis for the case L(1, 0), we obtain first successful trajectory after
n1 + n2 + 2 steps (utmost). Then, as in the case of L(0, 1), shaping reward (line 14)
will propagate myopic-optimality information immediately. The condition λ2 ≤ γn1

ensures that after all the nodes right to x0 get updated with right Vt values, there
will be no further exploration on the left-side of x0. Thus, the sample complexity is
upper bounded by cost(L(SELFRS = 1,EXPLOB = 1)) ≤ n1 + n2 + 2.
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C.4 Evaluation on CHAIN: Additional Details (Section 4.5.1)

CHAIN (Figure 4.1). We expand on the details of the CHAIN environment, introduced in
Section 4.5.1. We represent the chain environment of length n1 + n2 + 1 as an MDP with
state-space S consisting of an initial location x0 (shown as “blue-circle”), n1 nodes to the
right of x0, and n2 nodes to the left of x0. The rightmost node of the chain is the “goal”
state (shown as “green-star”). In the left part of the chain, there can be a “distractor” state
(shown as “green-plus”). The agent can take two actions given by A := {“left”, “right”}.
An action takes the agent to the neighboring node represented by the direction of the
action. However, taking “left” action at the leftmost node (shown as “thick-red-circle”)
leads to termination, and “right” action at the rightmost node (goal) keeps the agent at
the current location. Furthermore, when an agent takes an action a ∈ A, there is prand

probability that an action a′ ∈ A \ {a}will be executed instead of a. The agent receives
rewards as follows: Rmax for the “right” action at the goal state, Rdis for the “left” action
at the distractor state, and 0 for all other state-action pairs. There is a discount factor γ
and the environment resets after a horizon of H = n2 steps. In our evaluation, we set
prand = 0.05, Rmax = 1, Rdis = 0 or 0.01, and γ = 0.99. We obtain different variants of the
chain environment by changing the values of (n1, n2, Rdis). We consider two different
variants of the chain environment: (i) CHAIN0 with (n1 = 20, n2 = 40, Rdis = 0); (ii)
CHAIN+ with (n1 = 20, n2 = 40, Rdis = 0.01). The “distractor” state (shown as “green-
plus”) with Rdis reward is located 15 nodes to the left of x0 in both the environments.

Evaluation setup: agents. As mentioned in Section 4.5.1, we conduct our experi-
ments with two different types of RL agents for CHAIN: tabular REINFORCE agent (Sut-
ton and Barto, 2018) and tabular Q-learning agent (Sutton and Barto, 2018). First, we
consider tabular REINFORCE agent that maintain scores θ[s, a] for each state-action pair
and applies soft-max operation over the scores to obtain the policy π. When computing
the agent’s performance during evaluation, we also use the agent’s soft-max policy
(instead of choosing actions greedily). Second, we consider tabular Q-learning agent
with exploration factor ϵ = 0.05. When computing the agent’s performance during
evaluation, we also use the agent’s ϵ-greedy policy (instead of choosing actions greedily).
Algorithm 4.2 provides a sketch of the overall training process, and shows how agent’s
training interleaves with reward shaping techniques – the agent’s policy is updated
in lines 4–8 of the algorithm. For the agent’s training process, we use a fixed set of
hyperparameters irrespective of the type of agent or the reward shaping technique. More
concretely, we have the following: (a) the agent’s learning rate is set to 0.1; (b) frequency
of updates Nπ is set to be 2, i.e., update after every 2 rollouts in the environment; (c) a
rollout buffer (first-in-first-out) D of size 10 is maintained and we update the agent’s
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policy using the last 5 rollouts in D. In the tabular setting with CHAIN, we find that the
overall quantitative results are robust to these hyperparameters – we use the exact same
set of hyperparameters for evaluation on ROOM, described in Section 4.5.2.

Evaluation setup: shaping techniques. Next, we describe different reward shaping
techniques used during the agent’s training phase. Specifically, during training, the
agent receives rewards based on the shaped reward function R̂; the performance (as
reported in the plots) is always evaluated w.r.t. the extrinsic reward function R. More
concretely, we have the following shaping techniques:

• R̂ORIG := R. This serves as a default baseline where extrinsic reward function is used
during training without any shaping.

• R̂SORS’ := R + RSORS
ϕ . This is based on the SORS technique (Memarian et al., 2021);

see additional details in Section 4.2 (also see Footnote 10 about R̂SORS’). For CHAIN

environment, we use tabular representation for RSORS
ϕ and perform gradient updates

as described in the work of (Memarian et al., 2021). Algorithm 4.2 provides a sketch
of the overall training process – the RSORS

ϕ updates would be applied in lines 11–15
in the algorithm. In fact, the training process presented in Algorithm 4.2 is adapted
from the training process proposed for the SORS technique (Memarian et al., 2021).
We update the intrinsic reward function using the following hyperparameters: (a)
the learning rate is set to 0.01; (b) frequency of updates Nr is set to be 5, i.e., update
after every 5 rollouts in the environment; (c) we have a rollout buffer D of size 10 and
sample a set of 10 pairs of rollouts for the gradient updates (in our implementation,
we prioritized sampling of pairs that have non-zero gap between returns).

• R̂LIRPG’ := R +RLIRPG’
ϕ . This is obtained via adapting the LIRPG technique of (Zheng

et al., 2018) to our training pipeline; see Algorithm 4.2, Sections 4.2 and 4.4.2 (also see
Footnote 11 about R̂LIRPG’). More specifically, when considering tabular REINFORCE
agent, we implemented R̂LIRPG’ as an adaptation of R̂SELFRS where we set h → ∞
instead of 1 (see Section 4.4.2) – the rest of the implementation is same as described
below for R̂SELFRS. Note that the LIRPG technique is not applicable to Q-learning
agent.

• R̂EXPLOB := R +BEXPLOB
w . This corresponds to a part of our reward shaping technique

which uses only the intrinsic bonuses BEXPLOB
w . As discussed in Sections 4.4.1 and 4.4.3,

we use a count-based bonus BEXPLOB
w . For CHAIN environment, we use a tabular

representation for BEXPLOB
w where w[s] captures the state-visitation counts for a state s.

Algorithm 4.2 provides a sketch of the overall training process – the BEXPLOB
w updates
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are applied in lines 16–17 in the algorithm. We set the hyperparameters Bmax and λ to
be same as Rmax (= 1.0 for CHAIN).12

• R̂SELFRS := R + RSELFRS
ϕ . This corresponds to a part of our reward shaping technique

which uses only the intrinsic rewards RSELFRS
ϕ . For CHAIN environment, we use a

tabular representation for RSELFRS
ϕ where ϕ[s, a] reward values are learned for each

state-action pair and RSELFRS
ϕ (s, a) := ϕ[s, a] ∀(s, a). Along with RSELFRS

ϕ , a tabular
value-function VR,ϕ̃ is maintained w.r.t. R, serving as critic to compute values V πk

R
(s)

as needed for the empirical updates (see Section 4.4.3). For updating VR,ϕ̃, we use
Monte Carlo updates based on the trajectory returns as target and using a ℓ2-norm
loss function (Sutton and Barto, 2018). Algorithm 4.2 provides a sketch of the overall
training process – the RSELFRS

ϕ updates are applied in lines 11–15 in the algorithm.
We set the following values for hyperparameters: (a) learning rate for updating
ϕ parameters is set to 0.01; (b) learning rate for updating ϕ̃ parameters is set to
0.01; (c) frequency of updates Nr is set to be 5, i.e., update after every 5 rollouts
in the environment; (d) we have a rollout buffer D of size 10. Furthermore, in all
our experiments with Q-learning agent, we clipped the values of ϕ in the range
[−0.01, 0.01] (see Section 4.5.3 and Appendix C.6 for another variant of clipping used
with neural agents).

• R̂EXPLORS := R + RSELFRS
ϕ + BEXPLOB

w . This is our exploration-guided reward shaping
technique that combines intrinsic bonuses with intrinsic rewards. Algorithm 4.2
provides a sketch of the overall training process; we update RSELFRS

ϕ and BEXPLOB
w in the

same way as described in the previous two points above.

Note that, for stability, we update the policy more frequently than the intrinsic
reward (Nπ = 2 vs. Nr = 5) and at a higher learning rate (0.1 vs. 0.01), as considered in the
work of (Zheng et al., 2018; Memarian et al., 2021). In the tabular setting with CHAIN, we
find that the overall quantitative results are robust to hyperparameters mentioned above
– we use the exact same set of hyperparameters for evaluation on ROOM in Section 4.5.2.

Evaluation setup: compute resources. We ran the experiments on a cluster com-
prising of machines with 3.30 GHz Intel Xeon CPU E5-2667 v2 processor and 256 GB
RAM.

12In our implementation, we do a more fine-grained update where the counts are updated during the
rollout itself, instead of waiting for the end of the rollout. Moreoever, in our implementation, the bonus
reward given for state-action (s, a) corresponds to bonus associated with the next state s′ visited in the
rollout.
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C.5 Evaluation on ROOM: Additional Details (Section 4.5.2)

ROOM (Figure 4.3a). The environment used in our experiments is based on the work
of (Devidze et al., 2021); however, we adapted it to have a “distractor” state (shown as
“green-plus”) that could provide a small positive reward. Next, we present additional
details about the environment. We represent the environment as an MDP with S states,
each corresponding to cells in the grid-world indicating the agent’s current location
(shown as “blue-circle”). The goal (shown as “green-star”) is located at the top-right cor-
ner cell; in the bottom-left room, there can be a “distractor” state (shown as “green-plus”)
that could provide a small positive reward. The agent can take four actions given by
A := {“up”, “left”, “down”, “right”}. An action takes the agent to the neighbouring cell
represented by the direction of the action; however, if there is a wall (shown as “brown-
segment”), the agent stays at the current location. There are also a few terminal walls
(shown as “thick-red-segment”) that terminate the episode, located at the bottom-left
corner cell, where “left” and “down” actions terminate the episode. Furthermore, when
an agent takes an action a ∈ A, there is prand probability that an action a′ ∈ A \ {a}will
be executed instead of a. The agent gets a reward of Rmax after it has navigated to the
goal and then takes a “right” action (i.e., the reward can be accumulated in this state);
similarly, the “up” action in the distractor state gives a reward of Rdis. The reward is 0 for
all other state-action pairs. There is a discount factor γ and an episode terminates after
H = 30 steps. The environment-specific parameters (including prand, Rmax, Rdis, γ) are
kept same as in Section 4.5.1, i.e., prand = 0.05, Rmax = 1, Rdis = 0 or 0.01, and γ = 0.99.
Similar to the two variants of CHAIN environment, we have two variants of this environ-
ment: (a) ROOM0 has Rdis = 0 at the distractor state shown as “green-plus” (equivalently,
there is no distractor state); (b) ROOM+ has Rdis = 0.01 at the distractor state.
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C.6 Evaluation on LINEK: Additional Details (Section 4.5.3)

LINEK (Figure 4.3b). We expand on the details of the LINEK environment, introduced in
Section 4.5.3. As discussed in Section 4.5.3, this environment corresponds to a navigation
task in a one-dimensional space where the agent has to first pick the correct key and
then reach the goal. The environment used in our experiments is based on the work
of (Devidze et al., 2021); however, we adapted it to have multiple keys (only one being
correct) and “distractor” states that provide a small reward at goal locations even without
the correct key. The environment comprises of the following main elements: (a) an agent
whose current location (shown as “blue-circle”) is a point x in [0, 1]; (b) goal (shown as
“green-star”) is available in locations on the segment [0.9, 1]; (c) a set of k keys that are
available in locations on the segment [0.0, 0.1]; (d) among k keys, only 1 key is correct
and the remaining k − 1 keys are wrong (i.e., irrelevant at the goal). The agent’s initial
location is sampled from [0.3, 0.4].

The agent can take four actions given by A := {“left”, “right”, “pickCorrect”,
“pickWrong”}. “pickCorrect” action does not change the agent’s location, however, when
executed in locations where keys are available, the agent acquires the correct key required
at the goal; if the agent already possesses any key, the action has no effect. “pickWrong”
action does not change the agent’s location, however, when executed in locations where
keys are available, the agent acquires one of the k − 1 wrong keys (chosen at random); if
agent possesses a key, the action has no effect. A move action of type “left” or “right”
takes the agent from the current location in the direction of the move with the dynamics
of the final location captured by two hyperparameters (∆a,1,∆a,2); for instance, with
current location x and action “left”, the new location x′ is sampled uniformly among
locations from (x−∆a,1−∆a,2) to (x−∆a,1+∆a,2). The agent’s move action is not applied
if the new location crosses the wall, and there is prand probability of a random action.

The agent receives rewards as follows: (a) Rmax once it has navigated to the goal
location after acquiring the correct key and then takes a “right” action (the action doesn’t
terminate the episode and reward can be accumulated); (b) Rdis after it has navigated to
the goal location without acquiring the correct key and then takes a “right” action (the
action doesn’t terminate the episode and reward can be accumulated); (c) the reward
is 0 elsewhere. We have a discount factor γ and the environment resets after a horizon
of H . We set prand = 0.05, Rmax = 1, Rdis = 0 or 0.01, H = 60, γ = 0.99, ∆a,1 = 0.075, and
∆a,2 = 0.01.

We obtain different variants of the environment by changing the values of Rdis and
number of keys k. Similar to Sections 4.5.1 and 4.5.2, we use two adaptations of the
environment: (i) LINEK0 with (k = 10, Rdis = 0) (i.e., without any distractor state); (ii)
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LINEK+ with (k = 10, Rdis = 0.01) (i.e., with distractor states). In our experiments, we
represent the environment as an MDP with S states comprising of the following: (a)
the agent’s current location (a point x in [0, 1]); (b) one bit indicating if the agent is on a
segment with keys; (c) one bit indicating if the agent is on a segment with the goal; (d) k
bits, corresponding to each of the k keys, indicating whether agent has that key or not (at
most one of these bits can be one, as the agent can acquire only one key at any point in
time, according to the transition dynamics specified above). This state representation is
the input observation space for neural networks used by our policy and intrinsic reward
functions.

Evaluation setup: agents. We conduct our experiments with a neural REINFORCE
agent using a two-layered neural network architecture (i.e., one fully connected hidden
layer with 256 nodes and RELU activation) (Sutton and Barto, 2018). In all the experi-
ments that used neural-network based policies for agents, we also kept an exploration
factor of ϵ = 0.05, i.e., the agent uses soft-max neural policy with probability (1− ϵ) and
chooses a random action with ϵ. Algorithm 4.2 provides a sketch of the overall training
process, and shows how agent’s training interleaves with reward shaping techniques
– the agent’s policy is updated in lines 4–8 of the algorithm. For the agent’s training
process, we use a fixed set of hyperparameters irrespective of the type of reward shaping
technique or specific variant of the environment. More concretely, we have the following:
(a) the agent’s learning rate is set to 10−5; (b) frequency of updates Nπ is set to be 2, i.e.,
update after every 2 rollouts in the environment; (c) a rollout buffer (first-in-first-out)
D of size 10 is maintained and we update the agent’s policy using the last 5 rollouts in D.
Most of these hyperparameters are close to what we used for the tabular REINFORCE
agent in the CHAIN environment, described in Appendix C.4.

Evaluation setup: shaping techniques. Next, we describe different reward shaping
techniques used during the agent’s training phase. Specifically, during training, the
agent receives rewards based on the shaped reward function R̂; the performance (as
reported in the plots) is always evaluated w.r.t. the extrinsic reward function R. Similar
to Section 4.5.1, we compare the performance of six techniques. As a crucial difference,
here we use neural-network based reward functions for R̂SORS’, R̂LIRPG’, R̂SELFRS, and
R̂EXPLORS. We provide details of the different reward shaping techniques below:

• R̂ORIG := R. This serves as a default baseline where extrinsic reward function is used
during training without any shaping.

• R̂SORS’ := R+RSORS
ϕ . This is based on the SORS technique (Memarian et al., 2021); see

additional details in Section 4.2 (also see Footnote 10 about R̂SORS’). Following the
neural architectures used for reward functions in (Zheng et al., 2018; Memarian et al.,
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2021), we use the same neural-network architecture as used for the agent’s policy –
instead of using soft-max at the output layer to compute probability distribution over
actions, here we use tanh-clipping (with a scaling factor of 0.10) to get output reward
values for actions. Algorithm 4.2 provides a sketch of the overall training process –
the RSORS

ϕ updates would be applied in lines 11–15 in the algorithm. We update the
intrinsic reward function using the following hyperparameters: (a) the learning rate
is set to 10−3; (b) frequency of updates Nr is set to be 20, i.e., update after every 20

rollouts in the environment; (c) we have a rollout buffer D of size 10 and sample a set
of 10 pairs of rollouts for the gradient updates (in our implementation, we prioritized
sampling of pairs that have non-zero gap between returns).

• R̂LIRPG’ := R +RLIRPG’
ϕ . This is obtained via adapting the LIRPG technique of (Zheng

et al., 2018) to our training pipeline; see Algorithm 4.2, Sections 4.2 and 4.4.2 (also see
Footnote 11 about R̂LIRPG’). More specifically, in our experiments, we implemented
R̂LIRPG’ as an adaptation of R̂SELFRS where we set h→∞ instead of 1 in A

πθk
R̂,h

(s, a) (see

Section 4.4.2) – the rest of the implementation is same as described below for R̂SELFRS.
When computing A

πθk
R̂,h

(s, a) for h > 1, we need an additional rollout to be able to
compute this quantity. In our experiments with LINEK, we set h → ∞ only for the
starting state of the episode and kept h = 1 for the rest of the trajectory – this helped
in reducing the computation time and variance.

• R̂EXPLOB := R +BEXPLOB
w . This corresponds to a part of our reward shaping technique

which uses only the intrinsic bonuses BEXPLOB
w . As discussed in Sections 4.4.1 and 4.4.3,

we use a count-based bonus BEXPLOB
w . For this environment, we use an abstraction

that discretizes the continuous location part of the state to 0.1-length segments, i.e.,
creating 10 segments in total; the bits used to represent different indicator flags are
then used along with these segments to represent an abstracted state. Given this
abstraction, the rest of the process and hyperparameters for updating BEXPLOB

w are the
same as discussed in Appendix C.4.

• R̂SELFRS := R + RSELFRS
ϕ . This corresponds to a part of our reward shaping technique

which uses only the intrinsic rewards RSELFRS
ϕ . By following the neural architectures

used for reward functions in (Zheng et al., 2018; Memarian et al., 2021), we use the
same neural-network architecture as used for the agent’s policy. In particular, we use
two networks for R̂SELFRS: (a) one network is used for the reward function RSELFRS

ϕ that
applies tanh-clipping (with a scaling factor of 0.10) instead of soft-max to get output
reward values for actions; (b) the second network is used for learning value-function
VR,ϕ̃ that applies a linear layer instead of a soft-max layer to obtain state-values. For



Appendix C. Adaptive Agent-Driven Reward Design 114

updating VR,ϕ̃, we use Monte Carlo updates based on the trajectory returns as target
and using a ℓ2-norm loss function (Sutton and Barto, 2018). Algorithm 4.2 provides a
sketch of the overall training process – the RSELFRS

ϕ updates are applied in lines 11–15
in the algorithm. We set the following values for hyperparameters: (a) learning rate
for updating ϕ parameters is set to 10−3; (b) learning rate for updating ϕ̃ parameters
is set to 5 · 10−3; (c) frequency of updates Nr is set to be 20, i.e., update after every 20

rollouts in the environment; (d) we have a rollout buffer D of size 10.

• R̂EXPLORS := R + RSELFRS
ϕ + BEXPLOB

w . This is our exploration-guided reward shaping
technique that combines intrinsic bonuses with intrinsic rewards. Algorithm 4.2
provides a sketch of the overall training process; we update RSELFRS

ϕ and BEXPLOB
w in the

same way as described in the previous two points above.

We update the policy more frequently than the intrinsic reward (Nπ = 2 vs. Nr = 20),
as considered in the work of (Zheng et al., 2018; Memarian et al., 2021). Moreover, for
the first 5000 episodes of training, we do not supply intrinsic reward signals from neural
network components of R̂SORS’, R̂LIRPG’, R̂SELFRS, or R̂EXPLORS (even though we keep up-
dating their neural network components as usual) – this helps in preventing spuriourous
reward signals associated with initialization of neural networks.
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