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Abstract

This thesis focuses on discovering causal dependencies from observational
data, which is one of the most fundamental problems in science. In particular,
causal discovery aims to discover directed graphs among a set of observed
random variables under specified assumptions. While an active area of research,
existing causal discovery approaches are not always applicable to real-world
scenarios. This is mainly due to their underlying assumptions, which limit
their applicability in practice.

In this dissertation, we aim to develop approaches that can be applied to
several real-world scenarios to discover causal dependencies, under mild as-
sumptions. We first focus on a setting where we discover the complete causal
DAG and not just the Markov equivalence class from observational data. We
do so by using the principle of choosing the simplest explanation, measured
in information-theoretic terms, to develop a theoretically sound causal discov-
ery method. Next, we extend causal discovery to data collected across multi-
ple environments, addressing biases from pooling data with different interven-
tional distributions. To this end, we propose an approach that uses a similar
information-theoretic score to discover causal networks in distributed settings
without requiring prior knowledge of whether the data is observational or in-
terventional. Furthermore, we develop a method for continual causal discovery
from episodic data that updates causal hypotheses as new data arrives, with-
out the need to re-learn causal networks from scratch each time. Our proposed
approach for this scenario can learn causal networks adaptively over time and
distinguish between episodes that do not belong to the same causal mechanism.
Lastly, we tackle the important aspect of privacy-preserving federated causal
discovery. To do so, we propose a general framework that effectively identifies
global causal networks without ever sharing the data or learning parameters,
while ensuring differential privacy.
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Zusammenfassung

Diese Arbeit befasst sich mit der Entdeckung kausaler Abhängigkeiten aus
Beobachtungsdaten, eines der grundlegendsten Problemen der Wissenschaft.
Insbesondere zielt die kausale Entdeckung darauf ab, gerichtete Graphen über
einer Reihe von beobachteten Zufallsvariablen unter bestimmten Annahmen
zu entdecken. Obwohl es sich hierbei um ein aktives Forschungsgebiet handelt,
sind bisherige Ansätze nicht in reale Szenarien anwendbar. Dies liegt vor allem
an den ihnen zugrunde liegenden Annahmen, die ihre Anwendbarkeit in der
Praxis einschränken.

In dieser Dissertation wollen wir Ansätze entwickeln, die unter milden
Annahmen auf verschiedene reale Szenarien angewendet werden können, um
kausale Abhängigkeiten zu entdecken. Wir konzentrieren uns zunächst auf
eine Situation, in der wir den vollständingen kausalen Graphen und nicht nur
die Markov-Äquivalenzklasse aus Beobachtungsdaten ermitteln. Dazu verwen-
den wir das sogenannte Minimum Description Length Prinzip, bei dem die
kausale Hypothese nach der einfachsten Erklärung ausgewählt wird, um eine
theoretisch fundierte Methode zur Entdeckung von kausalen Abhangigkeiten
zu entwickeln. Als Nächstes erweiten wir die kausale Entdeckung auf Daten
aus, die in verschiedenen Umgebungen erhoben wurden, und gehen dabei auf
Verzerrungen ein, die sich aus der Zusammenführung von Daten mit unter-
schiedlichen Interventionsverteilungen ergeben. Zu diesem Zweck schlagen wir
einen Ansatz vor, der eine ähnliche informationstheoretische Bewertungsmetrik
verwendet, um kausale Netzwerke in verteilten Umgebungen zu entdecken,
ohne dass vorher bekannt sein muss, ob es sich um Beobachtungs- oder In-
terventionsdaten handelt. Darüber hinaus entwickeln wir eine Methode zur
kontinuierlichen Entdeckung kausaler Zusammenhänge aus episodischen Daten,
die kausale Hypothesen beim Eintreffen neuer Daten aktualisiert, ohne kausale
Netzwerke jedes Mal von Grund auf neu zu lernen. Der von uns vorgeschlagene
Ansatz für dieses Szenario kann kausale Netzwerke über die Zeit hinweg adap-
tiv lernen und zwischen Episoden unterscheiden, die nicht zum selben kausalen
Mechanismus gehören. Schließlich befassen wir uns mit dem wichtigen Aspekt
der datenschutzfreundlichen föderierten Kausalerkennung. Zu diesem Zweck
schlagen wir einen allgemeinen Rahmen vor, der effektiv globale kausale Net-
zwerke identifiziert, ohne dass die Daten oder Lernparameter geteilt werden
müssen, während gleichzeitig der Schutz der Privatsphäre gewährleistet wird.



And it is God who sends the winds, and then they stir the clouds, and
then We drive them to a dead land and then we give life thereby to the

earth after its lifelessness. Thus is the resurrection.

[Quran, 35:9]
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Chapter 1

Introduction

The necessity of reasoning about causes and effects is a fundamental part of
human nature. From taking action against the imminent danger of a sabertooth
tiger lurking around thousands of years ago to learning to take medicine when
having a fever, causal reasoning has helped humans survive and thrive on Earth.
The study of causes and effects, therefore, is a fundamental problem in all
sciences, as having an understanding of the way the world works, i.e. the world
model, gives a significant advantage in that it allows humans to reason by
simulating reality without ever living in it, and hopefully taking better decisions
as a result. The curiosity to reason about the world around us motivates
researchers to investigate causes and effects in a number of real world settings
where our brain does not necessarily know how the world might work. This
could happen due to a number of reasons such as novelty of a situation (should
I be as afraid for my life if a sabertooth tiger was replaced by a dinosaur?),
potential future speculation (will this code also give the same output if we
would run it on the computer of my supervisor?), or hypothetical open-ended
scenarios (what would happen to the motivation of our employees if we gave a
raise to everyone at the company?).

In most situations, the gold standard to infer causality is to meddle with the
nature by intervening on the natural process. One such way to intervene is to
perform a controlled experiment. Controlled experiments are studies where re-
searchers manipulate one variable while keeping all other variables constant to
see the effect of the manipulation. “Participants” are often divided into groups,
with one group receiving the treatment and another group not receiving it. This
allows researchers to attribute any differences in outcomes between the groups
to the manipulated variable, thereby establishing a causal relationship between

1
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Figure 1.1: [Correlation does not always imply causation]: Just because number of
murders predicts the usage of Internet Explorer web browser well, does not mean one
causes the other unless we confirm it by performing controlled experiments. Performing a
controlled experiment here is impossible as it would require forcing people to commit the
illegal act of murder, to check for changes in Internet Explorer usage (Charlatan, 2013).

the manipulated variable and the outcome variable. While controlled experi-
ments are the gold-standard, performing them might be impossible (where do
we get dinosaurs from?), unethical (my supervisor would not appreciate me
using his computer to run my rookie code) or exorbitant (once we give a raise,
we can not reverse it) in many situations.

On the one hand, controlled experiments are not always feasible, on the
other hand we can still “observe” the world around us and try to infer causation
from it. We can, however, only do so much — it should be easy to see that
correlation does not necessarily imply causation. Take Fig. 1.1 for example,
just because we observe a correlation between number of murders and Internet
Explorer usage, does not mean that one is necessarily the cause of the other.
While the latter can not be ruled out, it could be that there is an unobserved
third variable that explains both of these phenomena. Without controlled
experiments we may not be able know, yet we can not conduct controlled
experiments here as it would require forcing people to commit the illegal act
of murder, to check for changes in Internet Explorer usage.

This should give reader a glimpse of the difficulty of the task at hand. Pearl
(2009), in fact, defines learning problem to be a ladder consisting of three rungs:
Associations (seeing), Interventions (doing), and Counterfactuals (imagining).
The first rung, Association, involves identifying correlations between variables
without implying causation. It focuses on observing patterns and statistical
relationships in data, such as noticing that two events often occur together.
This level does not address whether one variable causes the other, only that they
are linked in some way. Pearl (2009) even shows that it is impossible to derive
causal conclusions using only associations unless we make assumptions on how
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the data was generated. Extracting causal knowledge from observational data,
under a given set of necessary assumptions is the focus of research areas known
as causal inference (Pearl et al., 1991; Mohan et al., 2013; Anand et al., 2023)
and causal discovery (Spirtes et al., 2000a; Chickering, 2002; Peters et al.,
2017). Methods that aim to estimate effects of intervening on the system,
given a pre-specified causal structure and observational data are called causal
inference approaches. On the other hand, methods that aim to learn causal
structures from observational data under specified assumptions are known as
causal discovery approaches. In this thesis, we foucs on causal discovery.

The desiderata for a useful causal discovery approach is three-fold. First,
it should be theoretically sound, ensuring that it can accurately identify causal
relationships with infinite data. Second, it should make reasonable assumptions
that we can expect to be fulfilled with (near) infinite data. Finally, the method
must demonstrate reliable performance on existing datasets with known ground
truth to indicate that its theoretical guarantees are transferable to real-world
scenarios. Methods that meet only some of these criteria may face limitations
in their practical use; lacking soundness guarantees undermines the certainty of
causal conclusions, strict underlying assumptions may not align with real-world
conditions, and poor performance on known data could indicate fundamental
flaws in theoretical formulations.

Most of the approaches today only address the first aspect, and only a
handful address two of the three requirents. A number of necessary yet re-
strictive assumptions lie at the core of existing, otherwise theoretically sound,
causal discovery approaches. These assumptions range from linearity of re-
lationships between causes and effects, to having single, fully-specified, static,
centralized, homogeneous, unbiased data to learn from, none of which is usually
the case. This hampers existing methods’ performances in real world scenarios.
The absence of practically useful causal discovery approaches under reasonable
assumptions creates a gap, which motivates the work we present in this thesis.

In this dissertation we develop causal discovery approaches that attempt to
achieve this triad of theoretical correctness, reasonability of assumptions and
strong practical performance. We investigate and relax a number of existing
assumptions such as the need for data centralization, requiring prior knowledge
of data heterogeneity, or learning from scratch each time data gets updated.
We prove the correctness of our proposed approaches and conduct extensive
experiments to show that our proposed methods perform well in practice and
beat the state-of-the-art both in terms of causal discovery as well as a variety
of practical aspects such as privacy considerations, thereby paving the way
towards making causal discovery useful for real world problems. In the following
sections we briefly discuss how causal discovery works in general, what are the
shortcomings of existing approaches, open problems, and how we attempt to
address some of these limitations.
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1.1 Problem Overview

The goal of causal discovery is to learn causal relationships, under specified
assumptions, from observational data between a set of defined variables. This
could be, for example observational data containing records of patients with a
set of symptoms leading to a disease. These causal relationships can be defined
by a Structural Causal Model (SCM). An SCM over each variable X in a given
variable set X assigns value to X in the form

X := f(paX , NX) ,

where f is a complicated modeling function that only depends on causal parents
paX of X, and additional uncertainty in the system that we encapsulate as noise
NX associated with variable X. The noise NX can be considered to be an
abstraction of factors that influence the outcome X but are unobserved in data
and could, for example, be modeled as Gaussian distributed. As an example,
consider a system of 6 covariates, represented using the following SCM,

U := fU (NU ) V := fV (NV )
W := fW (U,NW ) X := fX(V,W,NX)
Y := fY (W,NY ) Z := fZ(X,NZ) .

Together, these equations let us model each covariate as a random variable and
define a joint distribution over these covariates. This lets us reason about the
system at a modular level where changing the value of any variable, or con-
cretely stated, performing a hypothetical intervention only effects the variable
in question without altering mechanisms of other variables. If, for example, we
were to alter variable X and set it to some fixed constant c, we can represent
this changed state by an SCM that differs only in generation of X by replacing
X := fX(V,W,NX) with X := c while leaving all other variables as they are.
This particular intervention is known in literature as a hard intervention. Al-
ternatively we could also introduce soft interventions or mechanism changes,
which roughly means that instead of assigning a specific value to X we replace
its generating mechanism by a different function gX(p̂aX , NX), that may use
only a subset of X’s parents. Having access to the underlying SCM for a set
of variables, constitutes the third rung (Counterfactuals) of Pearl’s causal hi-
erarchy. At this rung, we have a fully defined causal model that can be used
to simulate potential outcomes.

The causal relationships implied by an SCM can be presented in the form
of a causal network, or causal graph. The causal graph for the covariates from
the above-mentioned SCM is shown in Fig. 1.2. A causal graph consists of
nodes that represent variables from dataset at hand, and edges that represent
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Figure 1.2: [Left] Example of a causal network depicting causes of a given set of variables
through directed edges going from the cause to the effect, for an example scenario.
Variables without incoming edges, such as U and V , are only influenced by external
stochastic factors. [Right] Intervening on X by setting it to a fixed value does not
change how we compute the values for all other variables.

causal links. A direct edge from variable U to variable W implies that U is the
direct cause, or causal parent, of W in that it listens to changes in U in some
real world scenario being modeled. Similarly we call U an ancestor of X and
Z, because there is a sequence of directed edges that take us from U to X resp.
Z. We can update this graph to reflect a hard intervention on X by removing
any incoming edges from its parents. Similarly, a soft-intervention may be
reflected in the causal graph with X missing some, and not all of its incoming
edges. Knowing the causal graph for a set of variables, even in the absence of
a Structural Causal Model (SCM), represents the second level (Intervention)
of Pearl’s causal hierarchy. By applying the do-calculus as outlined by Pearl
(2009), it may become possible to infer the potential outcomes of a controlled
experiment from observational data alone, without the need to conduct the
experiment directly.

The discussion up till this point highlights that the distinction between the
first and second levels of the causal hierarchy lies in the availability of a causal
network. This causal network is required for advancing to the second rung and
is essential for identifying the correct Structural Causal Model (SCM) needed
to progress to the third rung. This leads us to the central question of this work:
how do we learn this causal network? This, we describe next.

1.1.1 Causal Discovery

Given data sampled from observational distribution induced by an unknown
SCM, a causal discovery algorithm aims to learn the underlying causal graph.
For purely observational data this is impossible unless we are willing to make
assumptions (Pearl, 2009). The two most common, and necessary, assumptions
include acyclicity, which implies that an effect can not be an ancestor of its own
cause, and causal sufficiency meaning that all noise variables are independent
of each other and subsequently do not affect more than one observed variables.
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Causal sufficiency assumption boils down to assuming that all relevant causes
of each variable in a dataset are also included in that dataset. Acyclicity and
sufficiency assumptions let us to describe the causal network by a directed
acyclic graph (DAG), like the one shown in Fig. 1.2.1

Once we can model causal networks using DAGs, we need to make assump-
tions under which we can reliably test for causality in a given dataset. Two such
assumptions to do so are the causal Markov condition (CMC) and the faithful-
ness assumption. A combination of both these assumptions implies that two
variables uncorrelated in the data are not linked to each other in the true causal
graph and vice versa. We can leverage this to weed out all of the non-causes
for each variable. Once again, consider variables U and V in our described
SCM. Given that both these variables take their values independently of each
other, by the virtue of faithfulness assumption, we conclude (correctly) that
they will not be linked to each other in the underlying DAG. Similarly, looking
at Fig. 1.2, we see that W influences Z via a directed path going through X,
which is the only causal parent of Z. For this case, by the virtue of the causal
Markov condition, we can conclude that once we condition on X, there will no
longer be a dependence between Z and W in data. Then there should, at the
very least, be a perfect agreement between independences present in data and
the separations entailed by the underlying causal network for the same data in
a world where sufficiency, CMC, and faithfulness hold.

With assumptions specified, the next step is to develop a test for causality
under these proposed assumptions. To do so, we need some way to quantify
the agreement between independences in data and the separations in a given
candidate graph. We can define a score to do exactly that. Without loss of
generality, if we can devise a theoretically sound score that is maximized when
there is a perfect agreement between independences and separations in data
resp. graph, we can perform a search over plausible causal structures to find
the true causal network as the one that maximizes this score for given data.
As exhaustive search over all possible structures has been shown to be NP-
hard (Chickering et al., 2004), our aim is to repeatedly, and systematically,
propose plausible causal graphs and score them on given data until we find
the one that has the best score. One such consistent score is the Bayesian
Information Criterion (Schwarz, 1978, BIC), and one such algorithm that op-
timizes over BIC to search for a causal network is the Greedy Equivalence
Search (Chickering, 2002, Ges).

Greedy Equivalence Search (Ges) (Chickering, 2002) is a score-based causal
discovery approach that learns a causal networkG from an observational dataset,
using the BIC score. Starting from an empty network, Ges iteratively builds

1The acyclicity assumption is required when we work with tabular data, but can
be relaxed for time-series data. For the scope of this dissertation we work with tabular
data and all existing methods we look at, require this assumption
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Figure 1.3: [Graphs in the box entail the same set of conditional independences].
All three networks shown within the box above satisfy the independence constraint that X
and Z are independent conditioned on Y . Such a set of graphs that entail the same set of
conditional independences are said to belong to the same Markov equivalence class. Since
none of the edge directions are invariant across all three networks we can not conclude
the true edge directions based on independences alone. Hence we can only predict the
undirected network as shown on the right.

a causal network through repeated forward respectively backward-search. In
each step of the forward search, Ges chooses a single edge addition to the cur-
rent best network such that the edge improves score the most and uses the new
network as the best network for the next step. Similarly, in each step of the
backward search, single edge deletions that improve score the most are chosen.
Each phase ends when no modifications of the current network improve score
anymore. This final network is then reported as the causal network.

This sounds good, with the exception of one problem — the mapping be-
tween independence constraints and separations in a graph is not one to one.
The same set of (conditional) independences can be satisfied by more than one
graph. One such example is shown in Fig. 1.3 where X is independent of Z
given Y in all three of the graphs shown inside the box. The set of all graphs
that satisfy the same set of conditional independences is known as the Markov
equivalence class (MEC). This means that a score such as BIC, that only ex-
ploits independences, will give the same score to all the graphs within a Markov
equivalence class and can not differentiate between members within this MEC.
While this property can be used to speed up search within Ges, by directly
searching over MECs instead of DAGs, it is a downside in terms of the output
that Ges produces. A different class of approaches known as constraint-based
methods, of which the Peter Clark (PC) algorithm (Spirtes et al., 2000a) is an
example, suffer from similar limitations. The causal networks that these ap-
proaches learn, therefore, contain a number of undirected edges, which is one
of many shortcomings of existing approaches.
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1.1.2 Existing Shortcomings

Under the assumptions of causal sufficiency, causal Markov condition, and faith-
fulness specified so far, a partially directed causal network is the best we can
get (Pearl, 2009). This means that within a Markov equivalence class we can
only be sure of those causal links in the network whose directions are invari-
ant across all graphs, else we can only infer that a causal link exists but can
not decide on its direction. Since latter if often the case, we can only obtain
causal graphs that are partially oriented as we show in Fig. 1.3. We can not go
further unless we place more assumptions on the generating mechanism, such
as assuming the causal relationships to be linear functions with additive non-
Gaussian noise (Shimizu et al., 2006). Assumptions like these can be confining
and would limit the applicability of a causal discovery approach.

The lack of full orientation is only the beginning. Most existing algorithms
are limited to finding causal networks over a single dataset where samples are
independent and identically distributed (i.i.d.). Such methods, therefore, can
only be used to learn networks from individual datasets. This is a problem
especially because in real world setting, data is collected across different en-
vironments in multiple batches. The only way to make such data compatible
with such approaches is to stack it together. This, however, fails because the
stacked dataset almost always violates the i.i.d. assumption. This subsequently
limits the applicability of causal discovery approaches to real-world scenarios.

Suppose we could, for the sake of only obtaining theoretical guarantees,
introduce additional assumptions to accommodate learning from data collected
over different sources. All existing algorithms can only work with single, static
data and would be infeasible for the setting where data may arrive over time,
in chunks. This further reduces the real-world applicability of such approaches.

Alongside the above mentioned limitations, causal discovery approaches are
not built for privacy-sensitive applications. These methods lack the mechanism
to learn from data distributed across multiple environments, let alone privacy
guarantees. Consequently, reliable, scalable causal discovery with the need to
protect individual privacy remains a significant challenge. This consequently
limits the use of causal discovery approaches in areas where data confidentiality
is critical.

The power of causal discovery, while significant, is not fully harnessed by
existing methods. This leaves a gap that needs to be filled for these causal
discovery approaches to contribute meaningfully to other branches of science.
In this dissertation, we make an attempt to do exactly this.



9 Introduction

1.2 Research Questions

Following from the discussion in the previous section, the overarching goal of
this thesis, in principle, can be summarized in its title:

Practically Applicable Causal Discovery
This aim consists of developing causal discovery approaches that can be

applied to real-world scenarios e.g. healthcare, weather forecast, such that
the results from these methods can be used by experts to identify causes for
phenomena of interest while fulfilling the three-fold desiderata of theoretical
correctness, reasonability of assumptions and reliable practical performance.

While the first wave of causal discovery approaches gave us algorithms
like Ges (Chickering, 2002) and PC (Spirtes et al., 2000a), they could only
discover causal networks from observational data up to Markov equivalence
class, rendering them incapable of identifying all causal directions for a given
variable set. To go beyond partially directed causal networks, approaches like
Lingam (Shimizu et al., 2006) and later Resit (Peters et al., 2014) introduced
additional assumptions such as linearity of causal relationship resp. indepen-
dence of residuals to achieve a fully oriented causal network. While sound, these
algorithms either work with too strict assumptions or suffer from limitations
entailed by independence testing in high dimensions.

Deriving motivation from the above gap, there is a need for developing
methods that discover fully oriented causal networks without requiring inde-
pendence tests involving conditioning on a large number of variables (Peters
et al., 2014), or placing assumptions on parametric form of causal relation-
ships (Shimizu et al., 2006). In essence we investigate how can we discover
fully oriented causal networks from observational data? In Chapter 2
we attempt to fill this gap. We take inspiration from the postulate of Algorith-
mic Markov Condition (AMC) by Janzing and Schölkopf (2010b). This comes
down to discovering fully oriented causal network from observational data by
choosing the network that results in the simplest description, measured in bits,
of given data. We propose an AMC-based score instantiated using Minimum
Description Length (MDL) principle (Grünwald, 2007), with theoretical guar-
antees. We then present Globe, which is a practical algorithm to discover
fully oriented causal networks using our proposed score. Unlike the algorithms
that precede it, we show that Globe is hyper-parameter free and is able to
beat the state-of-the-art by a clear margin while scaling up to 500 variables.

The next question that follows naturally is how do we perform causal
discovery when data is collected over multiple environments? For ex-
ample across different hospitals, each with their own diagnostic device. If, for
example, one hospital has a diagnostic device with an (undiscovered) internal
anomaly, the data collected there will be from a different, interventional distri-
bution. Pooling data together in such cases, to use with Globe or any other
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single-dataset discovery method, can introduce bias in estimation (Lee and
Tsui, 1982; Tillman, 2009). Proposals to discover causal networks over multi-
ple such environments are of limited applicability as a number of them focus on
a single target variable at a time (Peters et al., 2016; Yu et al., 2019a) and can
not trivially be extended to discover causal networks. For existing methods
that have been developed, almost all assume the unlikely scenario where we
already know which variables (Hauser and Bühlmann, 2012; Triantafillou and
Tsamardinos, 2015; Yang et al., 2018), or environments devices(Squires et al.,
2020; Brouillard et al., 2020) behave anomalously.

The latter, being yet another challenge, creates the need for a more versatile
approach to discover causal networks from datasets collected across multiple
environments. In Chapter 3, we turn our focus on doing this. We again define
a theoretically sound MDL score for jointly discovering the causal model and
local interventions, and provide a practical, highly parallelizable, algorithm,
Orion, to optimize our proposed score. We explicitly do not assume any prior
knowledge of which datasets are observational or interventional and neither
assume anything about the functional form of causal relationships. Our exten-
sive evaluation shows that Orion is able to reliably discover causal networks
better in such a distributed setting where Globe could fail. Keeping in mind
the practical aspects, we implement Orion as a highly parallel algorithm.

The versatility of Orion makes it attractive for a number of settings, but
limitations still exist in setting where we obtain observations over time. Not
only does this mean that we need to learn and update our causal hypothesis
over time, but each episode likely contains samples from a specific time period,
resulting in a biased distribution. It may not be straightforward to update
our knowledge systematically once new data becomes available. Existing algo-
rithms for causal discovery would need to relearn the causal model from scratch
whenever a new episode arrives, making them computationally impractical. To
make the situation harder, collective data distribution over all episodes may
often not be i.i.d since the causal interactions could change over time, leading
to the research question: how do we efficiently discover causal networks
from episodic data that arrives over time? We focus on this in Chapter 4,
where we show how we can avoid learning the causal model from scratch upon
the arrival of each episode, and can instead learn it in an online fashion using
the first-of-its-kind Continent algorithm. Our proposed consistent strategy
updates the causal hypothesis as new episodes arrive, using distribution match-
ing and an information-theoretic perspective of causality. Continent not only
discovers causal networks reliably from data with episodic selection bias, under
interventions, it is the only method, to the best of our knowledge, to learn
the causal model adaptively from data arriving over time. This can address
a novel experimental setting where different causal networks underlie episodic
data and we predict, for a new incoming episode, which causal network it is
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generated from without explicitly having to learn a network over the incoming
episode.

The inapplicability of causal discovery approaches in privacy preserving
settings, such as medical domain, is also one of the fundamental limitations of
modern day approaches. In such settings we can neither pool data, nor expect
it to arrive over time, in episodes. This introduces its own set of additional
challenges and constraints. For privacy sensitive scenarios, we usually have
multiple sites each with their own private data. Learning causal networks over
such data presents a challenging setting where we do not just want to discover
the underlying causal network in a federated manner, we can also not compro-
mise on privacy. This in turn raises the questions as to how do we perform
privacy-preserving federated causal discovery? In Chapter 5, conse-
quently, we focuses on how we can discover the global causal network without
ever sharing any data, model parameters, or even local causal networks— using
regrets. Intuitively, the regret measures how much worse a given causal net-
work is, compared to the best causal network for a given dataset. Using regret,
we first introduce the Rfcd algorithm that can be used to find the underlying
causal structure for distributed, private datasets by minimizing over worst-
case regret, without theoretical guarantees. We then show that the worst-case
regret over these distributed datasets allows us to define a scoring criterion
that, under mild assumptions, is guaranteed to be consistent. Using this result
we propose a consistent, theoretically sound, and scalable Peri framework.
Crucially, we show that using the Laplace mechanism on the shared regrets
guarantees ϵ-differential privacy. Keeping true to our goal of practical causal
discovery, we show that Peri discovers causal networks of higher quality than
the baseline on both synthetic and real-world data, and scales up to 100 dis-
tributed environments while requiring orders of magnitude less communication.

1.3 Contributions of this Thesis

This thesis is in large part based on the research articles listed in Table 1.1. To
keep this cumulative dissertation coherent, we have modified some content from
these research articles and included additional discussions and experiments
to connect the dots across different, evolving settings. For the most part,
nevertheless, the main content of these articles has been included verbatim.
We have removed abstracts, rewritten parts of introduction sections, changed
the notation to be consistent across chapters, removed redundancies in related
work, and performed additional experiments to reflect on the work in hindsight.
For ease of reading, we present our main theorems in each chapter and postpone
the proofs to the appendix. For a high level picture note that Chapter 2 acts
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Table 1.1: Publications that build up this thesis. Authors with equal contributions are
specified using *.

Publication Used In

Mian, O, Marx, A and Vreeken, J Discovering Fully Oriented Causal
Networks. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), AAAI, 2021.

Chapter 2

Mian, O, Kamp, M and Vreeken, J Information-Theoretic Causal Dis-
covery and Intervention Detection over Multiple Environments. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), AAAI,
2023.

Chapter 3

Mian, O and Mameche, S An Information Theoretic Framework for Con-
tinual Learning of Causal Networks. In: Proceedings of The Second AAAI
Bridge Program on Continual Causality at AAAI Conference on Artificial
Intelligence, PMLR, 2024.

Chapter 4

Mian, O*, Mameche, S* and Vreeken, J Learning Causal Networks from
Episodic Data. In: Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), ACM, 2024.

Chapter 4

Mian, O, Kaltenpoth, D and Kamp, M Regret-based Federated Causal
Discovery. In: Proceedings of the ACM SIGKDD Workshop on Causal
Discovery, PMLR, 2022.

Chapter 5

Mian, O, Kaltenpoth, D, Kamp, M and Vreeken, J Nothing but Regrets
— Privacy-Preserving Federated Causal Discovery. In: Proceedings of
the 26th International Conference on Artificial Intelligence and Statistics
(AISTATS), PMLR, 2023.

Chapter 5

as a preliminary for Chapter 3, whereas Chapters 4 and 5 can be considered
two branches stemming from the outcomes we saw in Chapters 2 and 3.

For each of the six research articles listed in Table 1.1, the author of this
thesis was the first author. For each first author paper, the author defined the
idea, the theory and assumptions to implement the idea, as well as came up
with practical instantiaion and conducted experiments for the implemented ap-
proach. For Mian et al. (2024), the contributions were split equally with Sarah
Mameche who helped extensively in devising the conditions and proofs for the
consistency of our proposed approach. For Chapter 2, Alexander Marx helped
derive the consistency proof, whereas David Kaltenpoth and Michael Kamp
contributed to formalizing the proofs and theoretical guarantees for differential-
privacy of the proposed approach for Chapter 5.

In addition to the main chapters included in this work, the author inves-
tigated bivariate causal inference for heterogeneous causal relationships titled:
Inferring cause and effect in the presence of heteroscedastic noise (Xu et al.,
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2022), which is yet another practical issue that a number of existing causal
inference approaches can not trivially handle. This work, for which the au-
thor was the second author, was accepted and published in proceedings of the
International Conference on Machine Learning (ICML) in 2022.
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Chapter 2

Discovering Fully Oriented
Causal Networks

In this chapter, we consider the problem of recovering the causal network over
a set of continuous-valued random variables based on an i.i.d. sample from
their joint distribution. The state-of-the-art does so by first recovering an
undirected causal skeleton—which identifies the variables that have a direct
causal relation—and then uses conditional independence tests to orient as many
edges as possible. By the nature of these tests this can only be done up to
Markov equivalence classes, which means that these methods in practice return
networks where a large number of edges are left unoriented. In contrast, we
develop an approach that discovers fully directed causal graphs.

We base our approach on the algorithmic Markov condition (AMC), a pos-
tulate that states that the factorization of the joint distribution according to
true causal network coincides with the one that achieves the lowest Kolmogorov
complexity (Janzing and Schölkopf, 2010a). As an example, consider the case
where X causes Y . Whereas the traditional statistical Markov condition cannot
differentiate between P (X)P (Y |X) and P (Y )P (X|Y ), as both are valid factor-
izations of joint distribution P (X,Y ), the algorithmic Markov condition addi-
tionally takes the complexities of these distributions into account: in this case,
the simplest factorization of P (X,Y ) is K(P (X)) + K(P (Y |X)) as only this
factorization upholds the true independence between the marginal and condi-
tional distribution—any competing factorization will be more complex because
of inherent redundancy between the terms. As Kolmogorov complexity can

This chapter is based on Mian, Marx, and Vreeken (2021).

15
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capture any physical process (Li and Vitányi, 2009) the AMC is a very general
model for causality. However, Kolmogorov complexity is not computable, and
hence we need a practical score to instantiate it. Throughout this thesis, we
do so through the Minimum Description Length principle (Grünwald, 2007),
which provides a statistically well-founded approach to approximate Kolmogo-
rov complexity from above.

We develop an MDL-based score for directed acyclic graphs (DAGs), where
we model the dependencies between variables through non-parametric multi-
variate regression. Simply put, the lower the regression error of the discovered
model, the lower its cost, while more parameters mean higher complexity. We
show this score is consistent: given sufficiently many samples from the joint
distribution, we can uniquely identify the true causal graph if the causal rela-
tions are either non-invertible or nearly deterministic. To efficiently discover
causal networks directly from data we introduce the Globe algorithm, which
much like the well-known Ges (Chickering, 2002) algorithm greedily adds and
removes edges to optimize the score. Unlike Ges, however, Globe traverses
the space of DAGs rather than Markov equivalence classes—orienting edges
during its search based on the AMC—and hence is guaranteed to result in a
fully directed network.

Through extensive empirical evaluation we show that Globe performs well
in practice and outperforms the state-of-the-art conditional independence and
score based causal discovery algorithms. On synthetic data we confirm Globe
does not discover spurious edges between independent variables, and overall
achieves the best scores on both the structural as well as causal similarity
metrics. Last, but not least, on real-world data we show that Globe even
works well when it is unlikely that our modelling assumptions are met.

This chapter is organized as follows: we first introduce the essential no-
tation in Section 2.1, define the theory behind our approach as well provide
identifiability results in Section 2.2, and describe the Globe algorithm in Sec-
tion 2.3. We discuss the existing approaches in Section 2.4 before providing
empirical results in Section 2.5. We conclude after a short discussion in Sec-
tion 2.6.

2.1 Preliminaries

First, we introduce the notation for causal graphs and the main information
theoretic concepts that we need later on.

Causal Graph We consider data over the joint distribution of m continuous
valued random variables X = {X1, . . . , Xm} with Xi ∈ R. As is common, we
assume causal sufficiency. That is, we assume that X contains all random
variables that are relevant to the system, or in other words, that there exist no
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latent confounders. Under the assumptions of causal sufficiency and acyclicity,
we can model causal relationships over X using a directed acyclic graph (DAG).
A causal DAG G over X is a graph in which the random variables are the nodes
and edges identify the causal relationship between a pair of nodes. In particular,
a directed edge between two nodes Xi → Xj indicates that Xi is a direct cause
or parent of Xj , and that Xj is a child of Xi. We denote the set of all parents
and children of Xj with paj resp. chj .

When working on causal DAGs, we assume the common assumptions, the
causal Markov condition and the faithfulness condition, to hold. Simply put,
the combination of both assumptions implies that each separation present in
the true graph G implies an independence in the joint distribution P over the
random variables X and vice versa (Pearl, 2009).

Identifiability of Causality A causal relationship is said to be identifi-
able if it is possible to unambiguously recover it from observational data alone.
In general, causal dependencies are not identifiable without assumptions on
the causal model. The common assumptions for discovering causal DAGs al-
low identification up to the Markov equivalence class (Pearl, 2009). Given
additional assumptions, such as that the relation between cause and effect is a
non-linear function with additive Gaussian noise (Hoyer et al., 2009b), it is pos-
sible to identify causal directions within a Markov equivalence class (Glymour
et al., 2019). This is the causal model we investigate.

Kolmogorov Complexity The Kolmogorov complexity of a finite binary
string x is the length of the shortest binary program p∗ for a universal Turing
machine U that outputs x and then halts (Kolmogorov, 1965; Li and Vitányi,
2009). Formally,

K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x} .

Simply put, p∗ is the most succinct algorithmic description of x, and therewith
Kolmogorov complexity of x is the length of its ultimate lossless compression.
Conditional Kolmogorov complexity, K(x | y) ≤ K(x), is then the length of
the shortest binary program p∗ that generates x, and halts, given y as input.

The Kolmogorov complexity of a probability distribution P , K(P ), is the
length of the shortest program that outputs P (x) to precision q on input
⟨x, q⟩ (Li and Vitányi, 2009). More formally, we have

K(P ) = min
{
|p| : p ∈ {0, 1}∗, |U(p, x, q)− P (x)| ≤ 1

q

}
.

The conditional, K(P | Q), is defined similarly except that the universal Tur-
ing machine U now gets the additional information Q. For more details on
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Kolmogorov complexity see Li and Vitányi (2009).

Minimum Description Length Principle Although Kolmogorov com-
plexity is not computable, we can approximate it from above through lossless
compression (Li and Vitányi, 2009). The Minimum Description Length (MDL)
principle (Rissanen, 1978; Grünwald, 2007) provides a statistically well-founded
and computable framework to do so. Conceptually, instead of all programs,
ideal MDL considers only those programs for which we know that they output
x and halt, i.e., lossless compressors. Formally, given a model class M, MDL
identifies the best model M ∈M for data D as the one minimizing

L(D,M) = L(M) + L(D |M),

where L(M) is the length in bits of the description of M , and L(D |M) is the
length in bits of the description of data D given M . This is known as two-part,
or crude MDL. There also exists one-part, or refined MDL. Although refined
MDL has theoretically appealing properties, it is efficiently computable for a
small number of model classes. Asymptotically however, there is no difference
between the two (Grünwald, 2007).

To use MDL in practice we need to define a model class, and how to encode
a model, resp. the data given a model, into bits. Note that we are only
concerned with optimal code lengths, not actual codes—our goal is to measure
the complexity of a dataset under a model class, after all (Grünwald, 2007).
Hence, all logarithms are to base 2, and we use the common convention that
0 log 0 = 0.

2.2 Theory

In this section, we will first introduce the algorithmic model of causality which is
based on Kolmogorov complexity. To put it into practice, we need to introduce
a set of modelling assumptions that allow us to approximate it using MDL. We
conclude this section by providing consistency guarantees.

2.2.1 Algorithmic Model of Causality

Here we introduce the main concepts of algorithmic causal inference as intro-
duced by Janzing and Schölkopf (2010a), starting with the causal model.

Postulate 2.1 (Algorithmic Model of Causality) Let G be a DAG for-
malizing the causal structure among the strings x1, . . . , xm. Then, every xj
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is computed by a program qj with constant length from its parents paj and an
additional input nj. That is

xj = qj(paj , nj) ,

where the inputs nj are jointly independent.

As any mathematical object x can be described as a binary string, and a
program qj can model any physical process (Deutsch, 1985) or possible function
hj (Li and Vitányi, 2009), this is a particularly general model of causality.
Equivalent to the statistical model, we can derive that the algorithmic model
of causality fulfils the algorithmic Markov property (Janzing and Schölkopf,
2010a), that is

K(x1, . . . , xm) +=
m∑

j=1
K(xj | pa∗

j ) ,

where += denotes equality up to an additive constant. Meaning, to most suc-
cinctly describe all strings, it suffices to know what are the parents and ad-
ditional inputs nj for each string xj . Unlike its statistical counterpart which
can only identify the causal network up to Markov equivalence, the algorithmic
Markov property can identify a single DAG as the most succinct description
of all strings. As any mathematical object, including distributions, can be de-
scribed by a binary string, Janzing and Schölkopf (2010a) define the following
postulate.

Postulate 2.2 (Algorithmic Markov Condition) A causal DAG G over
random variables X with joint density P is only acceptable if the shortest de-
scription of P factorizes as

K(P (X1, . . . , Xm)) +=
m∑

j=1
K(P (Xj | paj)) . (2.1)

Hence, under the assumption that the true causal graph can be modelled by
a DAG, it has to be the one minimizing Eq. (2.1). As K is not computable
we cannot directly compute this score. What we can however, restrict our
model class from allowing all possible functions to a subset of these and then
approximate K from above using MDL.

2.2.2 Causal Model

As causal model we consider a rich class of structural equation models (Pearl,
2009) (SEMs) where the value of each node is determined by a linear combina-
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tion of functions over all possible subsets of parents and additional independent
noise. Formally, for all Xi ∈ X we have

Xi :=
∑

Sj∈P(pai)

βj · hj(Sj) +Ni , (2.2)

where hj is a non-linear function of the j-th subset over the power set, P(pai), of
parents of Xi, and Ni is an independent noise term. Without loss of generality,
any function defined over parents of an effect can be expressed this way. We
assume that all noise variables are jointly independent, Gaussian distributed
and that Ni⊥⊥pai. Naturally, we do not expect all subsets over parents to
be part of SEM, which would simply evaluate to βj = 0 for that subset. An
advantage of defining the causal model this way is that we can also model
interactions between parents. Note that if βj , 0 only for parent subsets of
size 1, Eq. (2.2) simplifies to an additive model over individual parents.

2.2.3 MDL Encoding of the Causal Model

Next, we specify our MDL score for DAGs. Given an iid sample Xn, containing
n rows, drawn from the joint distribution P over X, our goal is to approximate
Eq. (2.1) using two-part MDL, which means we need to define a model class
M for which we can compute the optimal code length. Here, we define M
to include all possible DAGs over X and their corresponding parametrization
according to our causal model. That is, for each node Xi a model M ∈ M
contains an index indicating the parents of Xi (which is equivalent to storing
the DAG structure), and the corresponding functional dependencies.

Building upon Eq. (2.1), we want to find that model M∗ ∈M such that

M∗ = argmin
M∈M

L(Xn,M)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(Xn
i | pai,M)

)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(ϵi)

)

where pai are the parents of Xi according to the model M . In the last line, we
replace L(Xn

i | pai,M) with L(ϵi) to clarify that for continuous-valued data,
encoding a node given M and its parents comes down to encoding the residuals
ϵi.
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Encoding the Model

The model complexity L(M) for a model M ∈M, comprises of the parameters
of the functional dependencies and the graph structure. The total cost is simply
the sum of the code lengths of the individual nodes

L(M) =
m∑

i=1
L(Mi) .

To encode the individual nodes Xi, we need to transmit its parents, the form
of the functional dependency, and the bias or mean shift µi. We encode the
model Mi for a node Xi as

L(Mi) = LN(k) + k logm+ LF (fi) ,

where we first encode the number of parents using LN, the MDL-optimal encod-
ing for integers z ≥ 0 (Rissanen, 1983). It is defined as LN(z) = log∗ z+ log c0,
where log∗ z = log z + log log z + . . . and we consider only the positive terms,
and c0 is a normalization constant to ensure the Krafft-inequality holds (Krafft,
1949). Next, we identify which out of the m random variables these are, and
then proceed to encode the function fi over these parents, where fi represents
the summation term on the right hand side of Eq. (2.2).

Encoding the Functions We will instantiate the framework using non-
parametric functions hi that also allow for non-linear transformations of the
parent variables. To this end, we fit non-parametric Multivariate Adaptive
Regression Splines (Friedman, 1991). In essence, we estimate Xi as

X̂i :=
|H|∑
j=1

hj(Sj) ,

where hj is called a hinge function that is applied to a subset of the parents,
Sj , with size |Sj |, that is associated with the j-th hinge. A hinge takes the
form

h(S) =
T∏

i=1
ai ·max(0, gi(si)− bi) ,

where T denotes the number of multiplicative terms in h, si ∈ S is the parent
associated with the i-th term, gi is a non-linear transformation applied to si

where gi belongs to the function class F , e.g. the class of all polynomials up
to a certain degree, but the encoding can be very general and can include any
regression function as long as we can describe the parameters and |F| <∞. If
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T = 1 for all hinges, the above definition simplifies to an additive model over
individual parents. We encode a hinge function as follows

LF (h) = LN(|H|) +∑
hj∈H

[
LN(Tj) + log

(
|S|+ Tj − 1

Tj

)
+ Tj log(|F|) + Lp(θ(hj))

]
First, we use LN to encode the number of hinges and the number of terms per
hinge. We then transmit the correct assignment of terms Tj to parents in S,
and finally need log(|F|) bits to identify the specific non-linear transformation
that is used for each of the Tj terms in the hinge.

Encoding Parameters To encode the bias, as well as the set of parameters
associated with function fi in LF , we use the proposal of Marx and Vreeken
(2017) for encoding parameters up to a user specified precision p. We have

Lp(θ) = |θ|+
|θ|∑

i=1
LN(si) + LN(⌈θi · 10si⌉) ,

where si is the smallest integer such that |θi| · 10si ≥ 10p. Simply put, p = 2
implies that we consider two digits of the parameter. We need one bit to store
the sign, then we encode the shift si and the shifted parameter θi.

Encoding Residuals

Last, we need to encode the residual term, L(ϵi). Since we use regression func-
tions, we aim to minimize variance of the residual—and hence should encode
the residual ϵ as Gaussian distributed with zero-mean (Marx and Vreeken, 2017;
Grünwald, 2007)

L(ϵ) = n

2

(
1

ln 2
+ log 2πσ̂2

)
,

where we can compute the empirical variance σ̂2 from ϵ.
Combining the above, we now have a lossless MDL score for a DAG.

2.2.4 Consistency

Since MDL can only upper bound Kolmogorov complexity, but not compute
it, it is not possible to directly derive strict guarantees from the AMC. We
can, however, derive consistency results. We first show that our score allows
for identifying the Markov equivalence class of the true DAG i.e. the partially
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directed network for which each collider is correctly identified. Then, we show
that under additional assumptions, we can orient the remaining edges correctly.

The main idea for the first part is to show that our score is consistent—
simply put, the likelihood term dominates in the limit. For a score with such
properties e.g. BIC (Haughton, 1988), Chickering (2002) showed that it is
possible to identify the Markov equivalence class of the true DAG. To show that
our score behaves in the same way, we need to make two additional assumptions
for n→∞:

1. the number of hinges of |H| is bounded by O(logn), and
2. the precision of the parameters θ is constant w.r.t. to n and hence

Lp(θ) ∈ O(1).
Based on these assumptions, we can show that our score is consistent as it
asymptotically behaves like BIC, meaning that the penalty term for the pa-
rameters only grows with O(logn) complexity, while the likelihood term grows
linearly with n and hence is the dominating term as n→∞.

Theorem 2.1 Given a causal model as defined in Eq. (2.2) and corresponding
data Xn drawn iid from joint distribution P . Under Assumptions (1) and (2),
L(Xn,M) asymptotically behaves like BIC.

With the above, we know that given sufficient data our score will identify
the correct Markov equivalence class.

To infer the complete DAG, we need to be able to infer the direction for
those edges that cannot be inferred using collider structures—i.e. single edges
like X − Y . Closest to our approach is the work of Marx and Vreeken (2019)
who showed that it is possible to distinguish between X → Y and Y → X
using any L0 regularized score—e.g. BIC, if we assume that the underlying
causal function is near deterministic i.e. Y := f(X) + αN , where f is a non-
linear function and N is an unbiased, unit-variance noise regulated by a small
constant α > 0, and that α → 0. Since our score in the limit behaves like
an L0-based score (ref. Theorem 2.1), we can distinguish between Markov
equivalent DAGs under this additional assumption. As an alternate to using
the low-noise assumption, our guarantees would also hold if we assume that
the function f(X) is a non-invertible function, and therefore modeling the
anti-causal relationship would incur a loss of information and result in a lower
score than modeling the causal direction (Hoyer et al., 2009a). We use the
low-noise assumption because it is more general in that it also covers the case
of non-invertible functions.

Although our score is consistent and can be used to distinguish Markov
equivalent DAGs, these guarantees only hold if we were to score all DAGs over
X. Since this is infeasible for large graphs, we propose a modified greedy DAG
search algorithm to minimize L(Xn,M).
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Algorithm 2.1: The Globe Algorithm
Data: Data Xn over X
Result: Causal DAG G

1 Q ← EdgeScoring(Xn)
2 G← ForwardSearch(Q, Xn)
3 G← BackwardSearch(G)
4 return G

2.3 The Globe Algorithm

We now present Globe, a score-based method for discovering directed acyclic
causal graphs from multivariate continuous valued data. Globe consists of
three steps: edge scoring, forward and backward search, as shown in Algo-
rithm 2.1. We subsequently describe these steps and provide pseudocode for
them.

Edge Scoring To improve the forward search where we greedily add the
edge that provides the highest gain, we first order all potential edges in a
priority queue by their causal strength. We measure the causal strength of an
edge, using the absolute gain in bits for orienting an edge in either direction in
our model. Formally, let e = (Xi, Xj) be an undirected edge between Xi and
Xj , and further let e⃗ refer to the directed edge Xi → Xj and ⃗e the directed
edge in the reverse direction. Now, let M be the current model. We write
M ⊕ ⃗e to refer to the model where we add edge ⃗e, and M ⊕ e⃗ for the model
where we add e⃗. We define the gain in bits, δ, associated with edge ⃗e as

δ( ⃗e ) = max {0, L(Xn,M)− L(Xn,M ⊕ ⃗e)}

where L(Xn,M) is defined according to the causal model specified in the theory
section, and define δ( e⃗ ) analogously. Based on δ( ⃗e ) and δ( e⃗ ), we define the
directed gain Ψ( ⃗e) for a given edge as

Ψ( ⃗e) = δ( ⃗e)− δ(e⃗) ,

where Ψ( ⃗e) = −Ψ(e⃗). The higher the value of Ψ( ⃗e), the higher edge ⃗e is
ranked. Intuitively, the larger the difference between the edge direction, the
more certain we are that we inferred the correct direction. The algorithm for
this step is straightforward and is shown in Alg. 2.2 — we pick each undirected
edge e, calculate δ and Ψ (line 3) for ⃗e and e⃗, and add the edges to a priority
queue (lines 4-5). We return this priority queue as the output of this step once
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Algorithm 2.2: Edge Scoring
Data: n samples over X
Result: priority queue of edges Q

1 Q← ∅
2 foreach pair (u, v) ∈ X do
3 ψ ← δ(euv)− δ(evu)
4 Q ← Q ⊕ (euv , ψ)
5 Q ← Q ⊕ (evu ,−ψ)
6 return Q

all edges have been ranked (line 6).

Forward Search For forward search phase shown in Algorithm 2.3, we use
the priority queue obtained from the edge ranking step to build the causal
graph by iteratively adding the highest ranked edge (line 4,6). We reject edges
that would introduce a cycle (line 5). After adding an edge Xi → Xj we
need to update the score of all edges pointing towards Xj and re-rank them
in the priority queue (lines 7-10). Due to the greedy nature of the algorithm,
we may add edges in the wrong direction when we do not yet know all the
parents of a node. Hence, after adding edge Xi → Xj to the current model—
i.e. discovering a new parent for Xj—we check for all children of Xj , whether
flipping the direction of the edge improves the overall score (lines 11-13). If so,
we delete that edge e⃗ji from our model (line 15), re-calculate δ and Ψ for e⃗ji and
⃗eij (line 16), and push them again to the priority queue (line 18) (see Fig. 2.1

for an example scenario). We follow this up by again updating the score of
all existing potential parents for the child node whose edge was removed (lines
19-22). The forward search stops when the priority queue is empty.

To avoid spurious edges, we check for significance of the gain. Let k = δ( ⃗e),
based on the no-hypercompression inequality (Grünwald, 2007), the probability

I
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K I

J

K I

J

K I

J

K

Figure 2.1: Edge reversal in the forward search: We start with the graph where we
wrongly added edge Xj → Xk, then we add the correct edge Xi → Xj . Revisiting the
children of Xj we see that flipping Xj → Xk improves our score and hence delete the
edge. In the next step we add the correct edge.
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Algorithm 2.3: Forward Search
Data: priority queue of edges Q, n samples over X
Result: graph G

1 E ← ∅
2 G← (X, E)
3 while Q not empty do
4 euv ← take top most entry from Q
5 if E ⊕ euv is not cyclic and euv is significant then
6 E ← E ⊕ euv

7 foreach incoming edge to v, exv ∈ Q do
8 ψ ← δ(exv)− δ(evx)
9 update the value of exv in Q to ψ

10 update the value of evx in Q to − ψ
11 foreach outgoing edge from v, evy ∈ E do
12 E ′ ← (E ⊖ evy)⊕ eyv
13 G ′ ← (X,E ′)
14 if Cost(G ′) < Cost(G) then
15 E ← E ⊖ evy
16 ψ ← δ(evy)− δ(eyv)
17 Q ← Q ⊕ (evy, ψ)
18 update the value of eyv in Q to − ψ
19 foreach incoming edge to y, eky ∈ Q do
20 ψ ← δ(eky)− δ(eyk)
21 update value of eky in Q to ψ
22 update value of eyk in Q to − ψ

23 return G

to gain k bits over the null model is smaller or equal to 2−k. If for an edge the
gain k is not significant—i.e. 2−k > α, where α is a user defined significance
threshold, we disregard the edge (line 5).

Backward Search To further refine the graph discovered in the forward
search, we iteratively remove superfluous edges using the backward search pro-
cedure shown in Alg. 2.4. In particular, for each node Xj with |pa(Xj)| = k ≥ 2
we score all graphs for which we only use a subset of the parents of size k − 1
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Algorithm 2.4: Backward Search
Data: graph G
Result: pruned graph G

1 foreach node v ∈ G do
2 while node updated and (|pa(v)| ≥ 2 ) do
3 (p, c)← (pa(v) , Cost(v | pa(v) ))
4 foreach p′ ⊂ pa(v) s.t |p′| = |pa(x)| − 1 do
5 c′ ← Cost(v | p′)
6 if c′ < c then
7 (p, c)← (p′, c′)

8 pa(v)← p

9 return G

(lines 4-5). If any of these graphs provides a gain in compression, we select
the one that provides the largest gain and update the model accordingly (lines
6-8). We continue this process until we cannot find such a subset for any node
and output the current graph as our predicted causal DAG (line 9).

2.3.1 Complexity Analysis

The edge ranking does one pass over the edges, it has a runtime of O(m2). In
the forward search, each edge can lead to at most (m−1) ranking updates due to
edge flips. Resulting in a total complexity in O(m3). The backwards search has
a loose upper bound of O(m3), that results when the forward search returns
a fully connected graph and we delete each of those edges in the backwards
search. Hence, the overall complexity of Globe is in O(c(n) · m3 · logm),
where c(n) denotes the complexity of the regression approach used, and logm
is the time complexity of updating the edge priority queue after each step. In
practice, Globe is fast enough for networks as large as 500 nodes.

2.3.2 Instantiation

We instantiate Globe1 using the open-source implementation in R of Mul-
tivariate Adaptive Regression Splines framework (Friedman, 1991). Since we

1Globe stems from discovering fully, rather than locally, oriented networks, as
well as from it being based on Multivariate Adaptive Regression Splines (Mars), of
which the public implementation is known as Earth.
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could face issues like multi-collinearity (Farrar and Glauber, 1967) and unreal-
istic run times if we allow for arbitrary many interactions between parents, we
restrict the maximum number of interaction terms to 2 for experiments.

2.4 Related Work

Causal discovery on observational data has drawn more attention in recent
years (Bühlmann et al., 2014; Huang et al., 2018; Hu et al., 2018; Margaritis
and Thrun, 2000) and remains an open problem. To give a succinct overview,
we focus on the most related methods, ones that aim to recover a DAG or
its Markov equivalence class from continuous valued data. We exclude meth-
ods that aim at weakening assumptions such as causal sufficiency or acyclic-
ity (Spirtes et al., 2000b) as they do not learn a directed acyclic graph.

Most approaches can be classified as constraint based or score based. Both
rely on the Markov and faithfulness conditions to recover Markov equivalence
classes of the true DAG. Constraint based methods such as the PC and FCI
algorithm (Spirtes et al., 2000b), their extensions (Colombo and Maathuis,
2014; Pearl et al., 1991) as well as the Grow-Shrink algorithm (Margaritis and
Thrun, 2000) rely on conditional independence (CI) tests to first recover the
undirected causal graph and then infer edge directions only up to the Markov
equivalence class using additional edge orientation rules (Meek, 1995). The
main bottleneck for those approaches is the CI test. The standard choice is the
Gaussian CI test (Kalisch and Bühlmann, 2007). However, it cannot capture
non-linear correlations. The current state-of-the-art uses kernel based tests
such as HSIC (Gretton et al., 2005), which can capture non-linear dependencies.

Score based methods define a scoring function, S(G, Xn), that evaluates
how well a causal DAG G fits the provided data Xn. If the true causal graph
G∗ is a DAG, then given infinite data the highest scoring DAG is part of the
equivalence class of G∗ (Chickering, 2002). Score based approaches start with
an empty graph and greedily traverse to the highest scoring Markov equivalence
class that is reachable by adding, deleting or reversing an edge. Well-known
algorithms in this category include the greedy equivalence search (Ges) (Chick-
ering, 2002; Hauser and Bühlmann, 2012), its extensions (Ramsey et al., 2017),
and the current state-of-the-art, generalized-Ges (GGes) (Huang et al., 2018)
which uses kernel regression to capture complex dependencies.

In contrast, additive noise models (ANMs) aim to discover the fully directed
graph (Hoyer et al., 2009b). The primary assumption is that the effect can be
written as a function of the cause plus additive noise that is independent of the
cause. Under this assumption, the function is only admissible in causal direc-
tion and not vice-versa (Hoyer et al., 2009b). Methods range from linear non-
Gaussian (Lingam) (Shimizu et al., 2006), non-linear functions (Resit) (Peters
et al., 2014) to mixtures of non-linear additive noise models (Hu et al., 2018).
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The main caveat of ANMs is also the CI test. Fitting a non-linear function
that maximizes the independence between the cause and noise is a slow process
which restricts ANMs application to small networks (Hoyer et al., 2009b).

Most related to our work are methods based on regression error. Those
methods have been shown to successfully decide between Markov equivalent
DAGs under the assumption of having a non-linear function and low noise (Marx
and Vreeken, 2017; Blöbaum et al., 2018b; Marx and Vreeken, 2019) or proven
to correctly identify the causal ordering of all nodes (Cam) (Bühlmann et al.,
2014). Directly comparing a causal ordering to a DAG is, however, not straight-
forward.

In this chapter, we combine the advantages of score based methods and
methods based on regression error by discovering the fully oriented graph and
allowing for complex non-linear dependencies, while being fast in practice.

2.5 Evaluation

We evaluate Globe on both synthetic and real-world data with known ground
truth. Globe is implemented in Python and both the source code, as well as
the synthetic data are made available for reproducibility2. We compare Globe
to the state-of-the-art from different classes of algorithms. We compare to
Resit (Peters et al., 2014) and Lingam (Shimizu et al., 2006) as representa-
tive ANM-based methods, to GGes as the best score-based method (Huang
et al., 2018), and to PC with the Hilbert Schmidt Independence Criteria,
short PChsic (Colombo and Maathuis, 2014; Gretton et al., 2005), as the
state-of-the-art constraint-based method for causal discovery. Comparison with
Ges (Chickering, 2002; Ramsey et al., 2017) is ommitted since its performance
was significantly worse than the other methods. We provide details on ex-
perimental setup as well as a case-study for our evaluations. Globe finished
within ten minutes for each experimental instance except one pseudo-real-world
dataset with 500 nodes, on which it took 3 days, whereas no other competitor
was able to handle this data.

Evaluation Metrics We evaluate the predicted and the ground truth graphs
on the basis of their structural, as well as their causal similarity.

The Structural Hamming Distance (SHD) (Kalisch and Bühlmann, 2007),
between two partially directed acyclic graphs (PDAGs) G and Ĝ is the the total
number of edges where the two graphs differ. Denoting the edge adjacency
matrix of G and Ĝ with X resp. X̂ we have

2https://eda.rg.cispa.io/globe

https://eda.rg.cispa.io/globe
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Figure 2.2: [Higher is better] Percentage of instances with no spurious edges reported
for the independent data. Globe achieves a perfect score.
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Figure 2.3: [Lower is better] SHD (left) and SID (right) for increasing number of parents.

SHD(G, Ĝ) B
∑

1≤i<j≤m

I((Xij ⊕ X̂ij) ∨ (Xji ⊕ X̂ji)) ,

where ⊕ denotes an XOR operation and I(x) is 1 when the expression x is true
and 0 otherwise.

However, SHD tells us nothing about the causal similarity between two
graphs. Hence, we use the Structural Intervention Distance (SID) (Peters and
Bühlmann, 2015) pre-metric. SID counts the pairs of nodes u and v such that
the effect of intervention from u to v is falsely estimated by Ĝ with respect
to G. In case a method outputs only the Markov equivalence class, SID is an
interval, with smallest and largest scores indicating the best resp. worst scores
for the DAGs in the given Markov equivalence class. For more details on SID,
see Peters and Bühlmann (2015).

2.5.1 Synthetic Data

We start with a sanity check to ensure that Globe can reliably avoid false
positives and build up to the case of varying sample sizes over a more complex
network. We generated 100 instances each with 1 000 observations for the
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n Globe Resit Lingam GGes PChsic

100 0.28 0.45 0.47 [0.18 , 0.48] [0.28 , 0.54]
500 0.26 0.43 0.43 [0.17 , 0.48] [0.21 , 0.55]
1000 0.26 0.42 0.42 [0.17 , 0.48] [0.20 , 0.54]
1500 0.27 0.40 0.43 [0.17 , 0.48] [0.19 , 0.53]
2000 0.26 0.40 0.40 [0.18 , 0.49] [0.19 , 0.54]

Table 2.1: [Lower is Better] Averaged normalized SID for the methods. Interval for
GGes and PChsic indicates the best, resp. worst possible intervention distance for the
DAGs in the discovered Markov equivalence class.

discussed structures, unless stated otherwise. We standardized the data to
have zero mean and unit variance.

Independent Data As a sanity check, we test the methods on instances of a
graph containing 10 independent nodes where the value of each node is sampled
independently from a Gaussian distribution. We expect all the methods to
report empty sets of edges for the instances in this experiment. Globe did
not report a single spurious edge on any of the instances. On the other hand,
Lingam reported at least one spurious edge for 38%, Resit for 42% and PChsic
and GGes for half resp. 10% of the instances.

Effect of Multiple Parents Next we test Globe on a simple case of a
collider where we vary the number of parents from 2 up to 10. The collider
node is calculated as a linear combination of non-linear parent functions given
as

Xj =
∑

Xi∈pa(Xj)

ai · (Xi + bi)ci . (2.3)

Since it is possible to identify a collider structure using conditional indepen-
dence tests, we expect GGes and PChsic to discover a fully directed network.
The results for both SHD and SID are shown in Figure 2.3. In case of SID,
we compare favorably to both GGes and PChsic by only reporting the best
possible achievable score for their predicted graphs’ Markov equivalence class.
Even with this favorable comparison, Globe outperforms the competition.

Data Sampled from a Causal Network Next, we show Globe’s effec-
tiveness in finding the causal relationships in a more general setting. Similar
to Ghanbari et al. (2018), we consider multiple instances of a graph that con-
tains all possible connections that could exist in a DAG. In this setting, each
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Figure 2.4: [Closer to Origin is Better] Comparison of Normalized SHD and Normalized
SID for real world networks.

child node, Xj can alternatively be calculated using more complex multiplica-
tive interactions between the parents given by

Xj = aj ·
∏

Xi∈pa(Xj)

Xi
ci + bj . (2.4)

We generate data where we choose between Eq. (2.3) and (2.4) with probability
0.7 resp. 0.3 and report results over varying sample sizes. We report the values
for SID in Table 2.1. Overall we see that Globe outperforms Resit and
Lingam. The causal networks predicted by Globe have SID closer to the
better end of the range of scores possible for PChsic and GGes. In terms of
SHD, all the methods were found to be consistent over varying sample sizes,
with Globe slightly outperforming the competition.

2.5.2 Real World Data

For real world data with known ground truth, we consider three distinct net-
works of sizes 5, 15 and 500 nodes from the reged dataset (Statnikov et al.,
2015), each containing 1 000 rows. Looking at the results shown in Figure 2.4,
we see that Globe is closest to the true causal network for both the 5 node
(Reged 5) and the 15 node (Reged 15) network. For Reged 15, Globe
reports a better SID than all the competitors. We see that for the Reged 15
network, GGes fails to orient most of the edges, which results in a graph where
both extremes of the SID are possible.

For the 500 node network, Globe was the only algorithm to produce any
kind of result in reasonable time (3 days), with a reported normalized SID and
SHD of 0.1 resp. 0.01. While GGes failed to terminate within one month, all
other methods could not process the data.
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Figure 2.5: Discovered DAGs on the real estate data set. Green edges are causal di-
rections that agree with our domain knowledge, directed red edges are wrongly oriented
causal dependency. Gray edges are associations that agree with domain knowledge but
are left unoriented. Undirected red edges are associations that disagree with domain
knowledge.

2.5.3 Case Study: Real Estate Data

To conclude our evaluation, we perform a case study on a real estate dataset (Yeh
and Hsu, 2018; Dua and Graff, 2017) of market valuation of properties in the
Sindian district, Taiwan. The data contains six continuous valued attributes:
the age of the property (age), the distance to the nearest MRT station (mrt),
the number of convenience stores reachable by foot from the house (str), the
geographical coordinates (lat,lng) and the price of the property (prc). After
additionally normalizing the data between zero and one, we run all the meth-
ods on this data and report the results in Figure 2.5. Overall, we see that
the causal dependencies Globe discovers are in accordance with our domain
knowledge: it finds that by changing the coordinates of the property (lat,lng),
we can alter the distance to the train station (mrt) and that the latitude of the
property determines the number of nearby stores. Globe also discovers three
possible causal relations to the price of the property namely age, str and lat.
However it wrongly orients the direction of price to latitude.

The other methods perform less well. We see that they either orient most
edges against domain knowledge (Resit, Lingam), discover spurious causal
relations (GGes), or report meaningful edges but only for a single variable
(PChsic).
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2.6 Discussion

We considered discovering fully directed causal graphs from observational data.
To tackle this problem, we built upon the algorithmic Markov condition and
proposed a score based on MDL to approximate it from above. For non-linear
mixture models with (low) additive noise assumption, our score allows for dis-
covering the fully directed causal graph. To minimize the proposed score, we
instantiate Globe, a greedy DAG search algorithm that iteratively builds a
DAG to find a locally optimal solution while modeling functional dependen-
cies using non-parametric regression functions. One elegance of Globe lies in
its hyper-parameter-free nature — it is a straightforward end to end causal
discovery algorithm. The user provides a dataset and gets a fully oriented
causal network in return without the need to specify a hyperparameter a pri-
ori. From a user standpoint, the only thing that needs to be factored in is the
significance threshold α that we use for the no-hypercompression inequality.
The latter, nonetheless, only serves as a cut off point to discard insignificant
edges, and does not result in drastic variance across different experiments over
same dataset. This makes Globe a straightforward algorithm to use for causal
discovery.

Throughout this chapter, we have build Globe on the assumption of causal
sufficiency. While this assumption might holds for a number of controlled sce-
narios involving robotics and/or reinforcement learning, it is violated in various
real-world settings as there might be unobserved confounders that explain two
related variables within the data. Adding such a confounder induced edge to
greedy DAG search can mislead the search procedure. Practically, we have
tried to circumvent this by using relative gain ψ(e) instead of absolute gain
δ(e) for each edge e, in the hope that for such confounded variables neither
edge direction would be visibly stronger and would therefore result in both
these edges being ranked lower in importance. While we saw that this works
well in practice, we do not have theoretical guarantees to back such an approach
for causal discovery where causal sufficiency is violated. Working on extending
Globe to entail such guarantees is one of the important lines of future work.

While we were able to scale Globe up to 500 variables using greedy DAG
search, obtaining reasonable results during the process, there exist a number of
alternate strategies that may work better. During experiments we encountered
several individual cases where Globe got stuck in local optima due to a single
wrong edge addition earlier in the search, which is a well known behavior for any
greedy DAG search algorithm. For practical purposes we introduced the edge-
flip phase to try and recover from such errors, to some degree of success. There
exist, however, alternate strategies such as iterative sink/source selection (Pe-
ters et al., 2014) or permutation-based search (Squires et al., 2020). As opposed
to edge-by-edge construction approach that we use, as future work, one could
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investigate the conditions where sink/source selection or permutation-based
approaches may be better suited than a greedy DAG search.

2.7 Conclusion

We developed an approach to discover fully directed causal graphs from obser-
vational data, using a score based on MDL to approximate Kolmogorov com-
plexity. For non-linear mixture models with additive noise, this score identifies
the Markov equivalence class and, with additional low variance assumption on
the noise, finds the fully directed causal graph. We introduced Globe, a greedy
DAG search algorithm that iteratively builds a locally optimal DAG by opti-
mizing our proposed score. Through extensive experiments we showed Globe
outperforms state-of-the-art methods, accurately orients edges with multiple
parents, and efficiently infers networks up to 500 nodes.
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Chapter 3

Information Theoretic
Causal Discovery and
Intervention Detection over
Multiple Environments

In previous chapter, we introduced Globe to discover causal networks beyond
Markov equivalence class. While Globe was a step forward, it worked with
a somewhat restrictive assumption that we receive a single, i.i.d dataset as
input. This is seldom the case in real-world scenarios where data may be
collected in batches e.g. across different hospitals. In this chapter, we aim to
relax this assumption. In particular, we consider the setting where we have
multiple datasets generated by a shared underlying causal mechanism, but
where each dataset is collected over a different environment. That is, each
dataset obtains observations over the same set of variables, but with a different
source distribution, or, may be generated through an intervention upon the
underlying mechanism. Our goal is to jointly discover the overall causal network
as well as the local interventions without knowing apriori which datasets are
observational and which are interventional.

As a motivating example, suppose we are interested in learning the under-
lying causal process of some rare disease. A single hospital typically sees too
few such patients as to collect sufficient data for drawing causal conclusions,

This chapter is based on Mian, Kamp, and Vreeken (2023b).
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and hence we will have to consider data collected at multiple hospitals. It is at
best cumbersome to centralize the data due to privacy regulations. Even if we
could centrally collect the data, by their location, every hospital could have a
different distribution of patients, and because of difference in machinery, etc.,
the parameters of the local data generating mechanisms will not all be exactly
the same. If, for example, one hospital has a diagnostic device with an (undis-
covered) internal anomaly, the data collected there will be from an intervention
distribution, and pooling all data together in such cases can introduce bias in
estimation (Lee and Tsui, 1982; Tillman, 2009).

While there exist approaches capable of discovering causal networks (Spirtes
et al., 2000a; Chickering, 2002; Shimizu et al., 2006; Huang et al., 2018; Peters
et al., 2014; Mian et al., 2021), they are designed to work only on a single
dataset. Approaches that do take the multiple datasets into account work on
strict assumptions such as having prior knowledge of intervention targets (Yang
et al., 2018; Hauser and Bühlmann, 2012), can not match interventions on en-
vironments (Zhang et al., 2017) or impose strict assumptions on the underlying
causal mechanisms that are unlikely to hold in practice (Shimizu, 2012; Ghas-
sami et al., 2017).

To discover causal networks using data over multiple environments, we
build our approach on the algorithmic model of causality. We use the postu-
late of Algorithmic Markov Condition (AMC) (Janzing and Schölkopf, 2010b)
stating that the true causal factorization of the joint distribution has the lowest
Kolmogorov complexity, which allows us to uniquely identify a fully directed
overall causal networks and local interventions. As explained in Chapter. 2,
Kolmogorov complexity is not computable itself, but can be instantiated in a
statistically well-founded manner using MDL (Marx and Vreeken, 2021).

In this chapter, we define a theoretically sound MDL score for jointly discov-
ering the causal model and local interventions, and provide a practical greedy-
algorithm to optimize our proposed score. We explicitly do not assume any
prior knowledge of which datasets are observational or interventional and nei-
ther assume anything about the functional form of causal relationships.

This chapter is organized as follows: we first introduce the essential no-
tation in Section 3.1. Next we define the theory behind our approach as well
provide consistency results in Section 3.2, and describe the Orion algorithm in
Section 3.3. We discuss the existing approaches in Section 3.4 before providing
empirical results and discussion in in Section 3.5 resp. Section 3.6.

3.1 Preliminaries

Setup and Notation For a set of random variables, X = {X1, . . . , Xm} with
Xi ∈ R, a Structural Causal Model (SCM) (Pearl, 2009) S models a joint
distribution P over X corresponding to the observational distribution of the
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system. For the scope of this work, we assume that we are given data D =
{D1, . . . ,Dd} from d environments, over X, that share a common SCM. A
causal DAG G over X is a graph in which the nodes represent random variables
and edges identify the causal relationships as defined by S. A directed edge
between two variables Xi → Xj implies that Xi is a direct cause or parent of
Xj , and Xj is a child of Xi. We denote the set of parents of Xj with paj and
use |paj | to denote the size of the parent-set. Similarly we denote the set of
children of Xj with chj and use |chj | to denote the size of the child-set. Given
a sample D ∈ Rm×n of size n from P , the goal of causal discovery is to identify
the underlying causal directed acyclic graph (DAG) G entailed by S from this
sample.

Similar to Chapter 2 we will work with the assumptions of 1) causal faith-
fulness, 2) the causal Markov condition (Spirtes et al., 2000a) and 3) causal
sufficiency (Pearl, 2009), which makes it possible to discover causal networks
from observational data up to the Markov equivalence class (Glymour et al.,
2019). When we want to identify a fully oriented causal network we need
additional assumptions (Peters et al., 2017), such as non-linear additive Gaus-
sian noise models (Hoyer et al., 2009b) or the assumption of low-noise between
causal pairs (Marx and Vreeken, 2019). We elaborate the latter in Sec. 3.2.
Under these assumptions, fully directed causal networks can be identified and
learned from observational data (Shimizu et al., 2006; Mian et al., 2021).

Intervention Detection An intervention set Υ over an SCM S defines
any external perturbation that inhibits the influence of one or more parents of
any Xi ∈ X, resulting in a new joint distribution P̃ over X. If we were to know
the true causal DAG G∗ that models the observational distribution over X
and have infinite samples from some new environment D̃, it is straightforward
to discover if D̃ was generated from the original DAG G∗ or an intervened
DAG G̃: First, we would discover G̃ over D̃. We can then simply consider
the difference between the edge-sets E(G∗) − E(G̃) to discover what are the
intervened variables, if any.

In practice, neither do we have infinite data, nor do we know G∗ in advance.
Even if we could learn G∗ from limited data D, we first need to ensure that
there are no interventions present in D. This results in a cyclic dependency
as learning what interventions are present in the data was our goal in the
first place. The key question we hence need to answer is: How can we, given
only limited data from multiple environments, simultaneously discover the true
overall causal network, the local causal structures as well as the intervention
targets within each environment? This we discuss next.
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3.2 Causal Discovery from Data Drawn from Multiple En-
vironments

In this section we build on the algorithmic Markov condition described in Sec-
tion. 2.1 of the previous chapter, to identify the global resp. local causal models,
as well as the intervention targets. Formally, our problem statement is:

Problem Statement 3.1 Given samples D = {D1, . . . ,Dd} over d environ-
ments that share a common SCM. Our goal is to (a) identify a single causal
DAG G∗ representing the true SCM; (b) identify which Dk ∈ D are interven-
tional and which Xi ∈ Dk are intervened upon; and (c) identify the local causal
network, Gk, for each Dk.

To address this, we first define our causal model, list down the assumptions
necessary to prove identifiability and present a novel score. Then we show that
the optimizer of this score identifies the true causal model and interventions in
the limit.

3.2.1 Causal Model and Assumptions

We consider a setup where in each environment k, the value of each variable
Xi is determined by a non-linear function fk

i over its causal parents and ad-
ditive independent Gaussian noise term with zero mean and unit variance Ni,
regulated by a scaling factor αk

i . For Xi in environment k we have

Xi := fk
i (pai) + αk

i ·Ni . (3.1)

We assume that all Ni are jointly independent and that Ni⊥⊥pai for all Xi ∈
Dk. We assume that the number of parameters required to non-parametrically
model fk

i are upper-bounded by O(logn) (Mian et al., 2021).

Assumptions for Identifying Markov Equivalence Classes To dis-
cover causal networks up to Markov equivalence class we need to assume 1) the
causal Markov condition, 2) the causal faithfulness (Spirtes et al., 2000a), and
3) causal sufficiency (Pearl, 2009). These assumptions allows us to guarantee
identifiability up to the Markov equivalence class of DAGs, and not just partial
ancestral graphs (PAGs) (Spirtes et al., 1999).

Assumptions for Identifying Fully Oriented Networks To ensure
that we can orient edges between any pair of variables, and not just the edges
coming into colliders, as is the case with the Markov equivalence class, we addi-
tionally need the low-noise assumption, meaning that the noise variance is suf-
ficiently small for the causal pairs within a Markov equivalence class (Blöbaum
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et al., 2018a) i.e. α → 0, where α is the vector consisting of scaling factors
αk

i for the bivariate causal edges and 0 is the null vector.1 This, however,
does not imply that the causal relationships are deterministic. For an exten-
sive discussion on the low-noise assumption see Section 3 in Blöbaum et al.
(2018a).

Assumptions for Identifying Interventions We assume that the true
underlying causal network G that generates the data remains the same for all
environments unless it is specifically changed by either (i) Hard-Interventions
Hi(Xj); or (ii) inhibiting Soft-Interventions Si(Xj). A hard intervention on
variable Xj eliminates the effect of paj on Xj , whereas a soft-intervention
causes a mechanism change that sets the effect of a subset of paj to 0.

3.2.2 Encoding the Causal Model

To instantiate AMC (Eq. (2.1)) for our causal model (Eq. (3.1)) we need to
define a lossless MDL score (Marx and Vreeken, 2021). The model class M
that we consider for our proposed MDL score consists of all possible DAGs over
X, the set of local DAGs each environment, as well as the SCM that models
fk

i for all Xi in each Dk ∈ D. The correct model M ∈M is therefore one that
minimizes L(D,M) such that

M∗ = argmin
M∈M

L(D,M)

= argmin
M∈M

(
L(M) +

d∑
k=1

m∑
i=1

L(Xk
i |pak

i , f
k
i )

)

= argmin
M∈M

(
L(M) +

d∑
k=1

m∑
i=1

L(ϵki )

)

where pak
i are parents of variable Xi in dataset k according to the model M .

We reformulate L(Xk
i |pak

i , f
k
i ) in the above equation by L(ϵki ) to highlight that

encoding each Xi once fk
i and the parents are specified, comes down to storing

1Alternatively, we can make the assumption that these bivariate causal relation-
ships are non-invertible. In this work, we make the low-noise assumption because
it also covers the class of non-invertible causal relationships and is therefore a more
general case of the two.
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the residuals ϵki . We define the cost of the model as

L(M) = Lstr(M) +
d∑

k=1

Lmec(Mk|M) ,

where Lstr is the cost of storing the network structures and Lmec is the
cost of storing the SCM once the structure is specified. Next, we describe what
each of these costs are.

Structure The structure cost consists of the number of bits required to
encode the global causal network as well as the interventions present in each
environment. Formally we have

Lstr(M) = L(G∗) +
d∑

k=1

L(Gk|G∗) ,

where we first encode the global causal network G∗, and for each Gk what are
the interventions on G∗. Formally stated

L(G∗) = LN(d) + LN(m) +
m∑

i=1
LN(|pai|) + log

(
m

|pai|

)
,

where we first encode the number of environments, resp. variables, using LN,
the optimal encoding for integers z ≥ 0 (Rissanen, 1983). It is defined as
LN(z) = log∗ z + log c0, where log∗ z = log z + log log z + . . . and we consider
only the positive terms, c0 is a normalization constant to ensure the Krafft-
inequality holds (Krafft, 1949). Then, for each of the m variables, we encode
the number of parents |pai| and identify pai from m using log

(
m

|pai|
)

bits.

Next we encode the local networks Gk once the interventions over G∗ are
provided, i.e. L(Gk|G∗) is defined as

L(Gk|G∗) = log(m) + log
(
m

m̃k

)
+

∑
Xi∈X̃k

log(|pai|) + log
(
|pai |
|pak

i |

)

For each local network, we encode the number, m̃ and identity X̃k of intervened
variables. Then, for each intervened variable, we identify the its active set of
parents.

Combining the above, we have a lossless code for the causal structure.
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Mechanisms Next we define how to encode an SCM over M . Effectively we
have to encode the function fk

i for all Xi in each Dk ∈ D. This is defined as

Lmec(Mk|M) =
m∑

i=1
L(fk

i ) .

Our causal model makes no assumption on the functional form of the causal
relationship. We model each fk

i non-parametrically. In particular we use mul-
tivariate regression splines (Friedman, 1991) of the form Xi :=

∑|H|
j=1 fj(Pj) ,

where fj is a hinge function applied to a subset Pj with size |Pj |, of Xi’s par-
ents. Recall from Chapter 2 that a hinge function is of the form f(P)j) =
a ·
∏T

t=1 max(0, gt(pat) − bt) , where T denotes the number of multiplicative
terms in the hinge, pat ∈ P is the parent associated with the t-th term, and
gt is a non-linear transformation from a finite function class F applied to pat.
The cost to store the causal mechanism using multivariate regression splines
can then be defined as

L(f)=LN(|H|) +
∑

hj∈H

[
LN(Tj) + log

(
|P|+ Tj − 1

Tj

)
+ Tj log(|F|) + Lp(θj)

]
.

We use LN to encode the number of hinges. Then for each hinge, we encode
the number of terms per hinge, the correct assignment of terms Tj to parents
in P, the number of bits to identify non-linear transformations used for each
term in the hinge, and parameters θj associated with th j-th term. We encode
the parameters θj using Lp(θj) defined it Section 2.2. As the precision upto
which each value is stored is fixed, computing Lp does not depend on sample
size n.

Residuals As a final step to obtaining a lossless score, we need to encode
the noise that remains in the system once the specified model has captured
the structure and generating mechanism of the data. Since we use regression
functions, we aim to minimize the variance of the residual, and hence encode
the residual ϵ as Gaussian distributed with zero-mean (Grünwald, 2007):

L(ϵi,k) = n

2

(
1

ln 2
+ log 2πσ̂2

i,k

)
,

where we compute the empirical variance σ̂2
i,k from the residual, ϵki .

Combining all of the above, we have a lossless MDL score by which we can
instantiate the AMC. Next we establish theoretical guarantees entailed by the
defined causal model and prove that the minimizer of L(D,M) identifies the
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correct causal network and interventions in the limit.

3.2.3 Asymptotic Guarantees

We now provide formal guarantees and show that our proposed score in Sec-
tion 3.2.2 is consistent when n → ∞. We show that under the assumptions
described in Section. 3.2.1, it identifies hard interventions as well as inhibiting
soft-interventions.

We begin by showing that missing edges in local causal networks are the
result of interventions.

Lemma 3.1 ∀i, k Hi(Xk
i ) ⇐⇒ pak

i = ∅ , and Si(Xk
i ) ⇐⇒ pak

i ⊂ pai

To provide further identifiability results we first state the definition of a
conservative set of interventions as stated by Hauser and Bühlmann (Hauser
and Bühlmann, 2012).

Definition 3.2 ( (Hauser and Bühlmann, 2012)) A set of interventions
Υ is conservative, if ∀Xi ∈

⋃d
k=1 Υk,∃Υk ∈ Υ such that Xi < Υk.

Simply put, a set of interventions Υ is conservative if for each variable
Xi we can find at least one environment in which it is not intervened upon
(Xi < Υk). This implies that to reliably find the set of parents for Xi, we need
to atleast observe it once without intervention.

Further, letG∗ be the true global network andGk be the network discovered
for environment k.

Lemma 3.3 If Υ is conservative,
⋃d

k=1 Gk = G∗, if Υ is non-conservative,⋃d
k=1 Gk ⊆ G∗.

Lemma 3.3 shows that under the conservative intervention assumption, we
can discover the underlying global causal network and that under the viola-
tion of this assumption, the discovered network will be a subgraph of the true
network.

Next, we provide our main result. We can show the following best resp.
worst case result that we can guarantee for the causal model defined in Eq. (3.1).
Moreover we can still identify the correct Markov equivalence class, even when
the low noise assumption is violated.

Theorem 3.4 Let Y be the set of all non-collider nodes. If ∀Yi, k α
k
i → 0,

L(D,M) will be the lowest for the true fully-oriented causal network.

Theorem 3.5 L(D,M) correctly identifies the collider structures in the un-
derlying causal network.
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As a sketch of proof, note that to prove both Thm. 4 and 5, it suffices to
show that L(D,M) is a valid L0 regularized score (e.g. BIC). Note that showing
L(D,M) is a valid L0 regularized score suffices to prove Thm. 5 and the only
additional step needed to prove Thm. 4 is the low-noise assumption as this lets
us identify bivariate cases in the resulting Markov Equivalence class (Marx
and Vreeken, 2019).

For an intuitive explanation of our main result, consider Thm. 3.5 first.
Identifying collider structure means that our score identifies causal DAGs up
to Markov equivalence class at the very least. This implies that any undirected
edges that exist in the final network are between variables that are not colliders.
For such case, our causal model simplifies to the pair-wise model of Marx and
Vreeken (2019). They prove that under the low-noise assumption, orientation
of such pair-wise edges is identifiable using an L0 regularized score (e.g. BIC).
Meaning, for the pair-wise model between variables X and Y , the BIC score for
regressing Y onto X, resp. X onto Y , will be highest in the causal direction.
Next, note that the BIC score is equal to the negative of the MDL criterion.
Thus, if we were to score all Markov equivalent DAGs using an MDL based L0
regularized score, the causal one will obtain the lowest score. Consequently, to
prove Thm. 3.5, we reformulate L(D,M) to show that it is a valid L0 regularized
score. Using this score in conjunction with the low-noise assumption stated in
Sec 3.2.2 lets us orient any remaining edges in the causal network, which proves
Thm. 3.4.

It is worth noting that our proposed score identifies the fully oriented causal
network, it neither requires using distribution-shifts nor introducing additional
context variables to orient any remaining edges. These theoretical guarantees,
however, only hold if we score all possible DAGs over the data. This quickly
becomes infeasible for large graphs. Indeed, finding the exact Bayesian network
is known to be NP-hard (Chickering et al., 2004). Hence, we propose a heuristic-
based practical approach to minimizing L(D,M).

3.3 The Orion Algorithm

In this section we present a practical algorithm Orion for discovering causal
DAGs from multivariate continuous valued data over multiple environments.
Orion greedily adds and removes edges to the global resp. local causal net-
works such that it reduces L(D,M) most. Akin to Globe, it performs forward
and backward search, repeated until convergence. We provide the algorithm
outline in Alg. 3.1 and give detailed pseudocode. It learns a causal network
by iteratively adding and removing edges to the global structure, and encoding
interventions for the datasets that reject the globally introduced edges. As
output, it returns the (intervened) local causal networks. We take union over
these networks to reconstruct the predicted global causal network (Lem. 3.3)
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Algorithm 3.1: The Orion Algorithm
Input: Datasets D over X
Output: Array of causal networks G

1 for k = 1 . . . d do
2 Gk ← ∅
3 G← [G1, . . . Gd]
4 repeat
5 G← ForwardSearch(G, D)
6 G← BackwardSearch(G, D)
7 until convergence;
8 return G

Algorithm 3.2: Forward Search
Data: Environments D over X, array of causal networks G
Result: Array of updated networks G

1 E∗(G)← all possible edges in G
2 Ecand ← E∗(G)− E(G)
3 Q← ScoreEdgeAddition(Ecand)
4 while Q not empty do
5 e← take top most entry from Q
6 che ← child variable for edge e
7 if G⊕ e not cyclic and e is significant then
8 G← G⊕ e
9 foreach edge ek, connected to che ∈ Q do

10 update score of ek ∈ Q to ψ(ek)

11 return G

and take the difference between the edge-sets of global and local causal networks
to determine the intervention targets (Lem. 3.1) As our score is lower-bounded
at 0, and we only take steps that reduce our score, it is guaranteed to converge.
Even though the guarantees of greedy DAG search are limited to causal trees,
we show in Sec. 3.5 that Orion outperforms state-of-the-art search algorithms.
Next, we describe the ranking mechanism and the search phases.
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Algorithm 3.3: Score Edge Addition
Data: edgeset E over G
Result: priority queue of edges Q

1 Q← ∅
2 foreach pair (u, v) ∈ E do
3 ψ ← δ⊕(euv)− δ⊕(evu)
4 Q ← Q ⊕ (euv , ψ)
5 Q ← Q ⊕ (evu ,−ψ)
6 return Q

Edge gain To calculate the gain provided by each edge, we first measure
the bits that we save by adding an edge in the current model. Formally, let
eij = Xi → Xj , and M be the current model. We write M ⊕ eij to denote the
model with edge eij included. We define the absolute gain in bits δ associated
with edge eij as

δ(eij) = max {0, L(D,M)− L(D,M ⊕ eij)} .

Next, we calculate the true gain for this edge by calculating the relative bits
we gain over adding this edge in the opposite direction. Formally,

ψ(eij) = δ(eij)− δ(eji) .

Intuitively, the higher the value of ψ(eij), the more certain we are that we
inferred the correct direction for this edge. This is motivated by the no-
hypercompression inequality (Grünwald, 2007), which we use to test the sig-
nificance of each edge. Let s = ψ(e), the probability of gaining s bits over the
null model is less than or equal to 2−s. If we find that the gain for an edge is
not significant— i.e. 2−s is greater than the desired significance threshold—
we do not add this edge.

Forward Search In forward search, we maintain a priority queue contain-
ing the edges eij ordered by the gain in bits ψ(eij), when adding the edge to
the model. This edge scoring is done by the ScoreEdgeAddition function
(line 3) shown in Alg. 3.3. We iteratively build the causal graph by adding the
highest ranked edge from the priority queue to the global causal DAG (lines
5-6). We reject edges that introduce cycles in the network (line 7). Once an
edge eij is added to the network, we re-rank all the candidate edges associated
with variables Xj in the priority queue (lines 9-10). We repeat this until all
the edges have been evaluated and no edge addition provides gain anymore.
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Algorithm 3.4: Backward Search
Data: Environments D over X, array of causal networks G
Result: Array of updated networks G

1 Ecand ← E(G)
2 Q← ScoreEdgeRemoval(Ecand)
3 while Q not empty do
4 e← take top most entry from Q
5 if e is significant then
6 G← G⊖ e
7 foreach edge ek, connected to che ∈ G do
8 update score of ek ∈ Q to ψ(ek)

9 return G

Algorithm 3.5: Score Edge Removal
Data: edgeset E over G
Result: priority queue of edges Q

1 Q← ∅
2 foreach pair (u, v) ∈ E do
3 ψ ← δ⊖(euv)
4 Q ← Q ⊕ (euv , ψ)
5 return Q

We introduce each edge as part of the global network which means that
the structure cost is shared across datasets. Each of the datasets, therefore,
only need to pay a discounted cost of storing their causal mechanism in order
to include this edge. If the discounted cost is not enough to register a gain, an
intervention is encoded for this dataset.

Backward Search Since we greedily add edges during the forward search
phase, some parents of variable Xj may become redundant as forward search
progresses. This is because a subset of these parents may be able to explain
Xj better. To remove these redundant parents, we need a backward search
as shown in Alg. 3.4. We populate a priority queue containing the edges eij

ordered by the gain in bits ψ(eij), when removing the edge from the model.
This edge deletion scoring is done by the ScoreEdgeRemoval function (line
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2) shown in Alg. 3.5. We iteratively remove that edge from the network which
improves score the most (lines 4-6). After removing the edge, we update the
costs associated with remaining parents in the priority queue (lines 7-8). We
remove edges until no edge removal improves L(D,M) anymore.

Complexity Analysis We first make a pass over the entire edge-set for each
environment to determine the initial edge gains. This requires O(cdm2 logm)
steps where c denotes the complexity of the regression approach that is used.
In forward search, each edge can lead to at most m − 1 ranking updates,
each of which require O(logm) time when priority queue is implemented as
a heap. Resulting in a complexity of O(cdm3 logm). The backwards search
has a similar upper bound of O(cdm3 logm). Hence, the overall complexity is
in O(cdm3 logm). Orion compares favorably to the worst-case complexities of
Pc , O(2m), Ges, O(2m), CdNod, O(n3). Orion is inherently parallelizable
over both edges and environments, and we implement it as such. It is therefore
quite fast in practice.

3.4 Related Work

There exist many proposals for discovering causal networks from a single (typi-
cally observational) i.i.d. dataset (Spirtes et al., 2000a; Chickering, 2002; Huang
et al., 2018; Compton et al., 2021), which discover partially directed causal net-
works. While Globe (Mian et al., 2021) discussed in Chapter 2 discovers fully
directed networks, it is restricted to a single dataset and can not handle inter-
ventions. Initial proposals that discover causal networks over multiple environ-
ments focused on single target variables (Peters et al., 2016; Yu et al., 2019a)
and can not trivially be extended to discover causal networks. Many methods
assume we either know the intervention targets (Hauser and Bühlmann, 2012;
Triantafillou and Tsamardinos, 2015; Yang et al., 2018), or the environments
that were intervened upon(Squires et al., 2020; Brouillard et al., 2020). Re-
cently, Faria et al. (2022) proposed an approach to relax the assumption of
known intervention environments.

Approaches that do not need prior knowledge of interventions substitute
it with other restrictive assumptions such as assuming a single type of inter-
vention (Cooper and Yoo, 1999; Kocaoglu et al., 2019) or fixing a functional
form between cause and effect (Eaton and Murphy, 2007; Shimizu, 2012). In
practice we often neither know which environments are interventional, nor do
we know intervened variables, nor the causal functional forms.

The task of discovering causal networks over multiple environments without
assuming any prior knowledge of interventions has been addressed by introduc-
ing an additional context variable that takes a fixed value within each environ-
ment (Zhang et al., 2017). While a single context variable allows to identify
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intervention targets across different environments, one can not single out the
environment where the intervention happens. Mooij et al. (2016) propose the
unifying Joint Causal Inference (Jci) framework that can be implemented us-
ing any constraint-based causal discovery algorithm. Jci proposes to introduce
one context variable per environment, thereby allowing localization of inter-
vention targets within each context. Jci, however, outputs the overall global
causal network and the intervention targets. It does not give us information
about what are the local causal networks within environment, or what type of
intervention has been performed. Finally, Jaber et al. (2020) recently provide
a graphical characterization for testing whether two causal graphs with poten-
tially different intervention targets belong to the same equivalence class. They,
however, works under the assumption that the underlying structure stays the
same for all the environments.

3.5 Evaluation

In this section we empirically evaluate Orion, we are mainly interested in
answering the following three questions – (1) Does Orion accurately discover
causal networks over data from multiple environments? (2) How well does
Orion perform on real world networks where our assumptions may not hold?
and (3) Does Orion reliably identify intervention targets? We first describe
our experimental setup and then answer these questions in the subsequent set
of experiments.

Setup We compare to state-of-the-art approaches from the classes of ANM,
constraint, and score-based methods. As the representative ANM-based method,
we compare to MultiGroup-Lingam (Shimizu, 2012) which is an extension of
the original Lingam (Shimizu et al., 2006) to multiple datasets. For constraint-
based methods, we compare to CdNod (Zhang et al., 2017), and to the Jci
framework of Mooij et al. (2016) using Pc (Spirtes et al., 2000a) resp. Fci (Spirtes
et al., 1999). For score-based approaches, we compare to the permutation-
based greedy search approach, Ut-Igsp (Squires et al., 2020), the Ges algo-
rithm (Chickering, 2002; Ramsey et al., 2017) using the two-layer approach
proposed by Eaton and Murphy (2007), which we refer to as EGes. As base-
line, we compute results over vanilla fast-Ges (FGes) (Ramsey et al., 2017)
by taking a union over locally discovered networks. Furthermore, we include
our previously proposed approach Globe to these evaluations to see how its
performance changes as we introduce new data that breaks the assumptions
behind Globe. To learn network using latter, we stack all data together and
give it as input to Globe.

We evaluate the quality of the discovered networks in terms of struc-
tural similarity using the Structural Hamming Distance (SHD) (Kalisch and
Bühlmann, 2007) which measures the number of edges in which two networks
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d Orion Lingam Ut-Igsp PC CdNod Globe

3 0.45 0.58 0.58 [0.47, 0.67] [0.48, 0.55] 0.37
5 0.44 0.55 0.58 [0.45, 0.67] [0.44, 0.48] 0.30
7 0.42 0.53 0.57 [0.42, 0.65] [0.56, 0.66] 0.27
9 0.43 0.52 0.57 [0.44, 0.63] [0.60, 0.70] 0.22

Table 3.1: [Lower is Better] Averaged normalized SID for synthetic data with m =
10. Intervals indicates the best, resp. worst possible intervention distance for methods
that output the Markov equivalence class of the causal network. Globe shows superior
performance with increasing environments as it first stacks all data together. For this
experiment, all samples follow the i.i.d. assumption, which works in favor of Globe.

differ. SHD, however, tells us nothing about the difference in networks’ causal
implications. To measure this causal similarity, we use the Structural Interven-
tion Distance (SID) (Peters and Bühlmann, 2015). SID counts those pairs of
variables Xi and Xj , such that the effect experienced by Xj due to an inter-
vention on Xi differs between two networks. For comparability over different
datasets, we normalize SHD and SID between 0 and 1. To avoid practical
issues like var-sortability (Reisach et al., 2021), we standardize all data. We
make our code and data available for research purposes2.

Q1. Does Orion accurately discover causal networks over data from
multiple environments? We start with a simple setting where we generate
multiple datasets using the same underlying distribution. We simulate DAGs
using the Erdős-Rényi model. We model effect as a function of its causes using
polynomial functions in half of the cases. For other half we use randomly
initialized 2-layer neural networks to model the mechanism. We average the
resulting SID over 100 different runs and report the results in Table. 3.1. We
omit Jci-Fci because it almost always returns empty networks, and FGes
as it reports SID intervals too wide to convey meaningful information. We
find that Orion reports the best SID, at least as good as the lowest score
over the equivalence classes that PC resp. CdNod report. For this case, we
see that Globe actually has the best performance among all methods by a
large margin, which only gets better with more environments being observed.
This result is not suprising given that each dataset is i.i.d. and stacking them
together does not introduce any biases. In fact, such stacking works in favor of
Globe since it has larger number of samples to work with, which results in a
clearly superior performance.

2https://eda.rg.cispa.io/orion
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Figure 3.1: [Closer to origin is better] Comparison of normalized SHD and SID for
environment sizes d ∈ {3, 5, 7, 9} when all environments contain data from a different
intervention distribution over the same causal network. Dotted lines indicate the uncer-
tainty interval over SID for PC, EGes and FGes. Globe deteriorates considerably as
stacking the data for this setting introduces biases in result because the i.i.d. assumption
no longer holds.

Next, and more interestingly, we generate each environment using different
intervention distributions from a fixed underlying causal network. This means
that the data for each environment comes from a different (sub)network, about
which we know neither the type nor the targets of intervention. We report
the results in Fig. 3.1 where we see that Orion performs best whereas Globe
this time deteriorates noticeably, which results in a performance that is worse
than PC and Ges. This corroborates the fact that stacking data together from
different environments can indeed introduce bias during learning (Lee and Tsui,
1982; Tillman, 2009), thereby rendering the results from Globe unreliable for
such scenario. We omit CdNod as it is unable to handle the cases involving
hard interventions.

Q2. How well does Orion perform when assumptions may not hold?
To this end, we use the re-simulated Lung-cancer gene expression, Reged net-
work (Statnikov et al., 2015). We extract two non-overlapping connected com-
ponents of 5 resp. 15 variables, which we refer to as Reged 5 and Reged 15.
For both networks, we randomly divide the data into 3 environments containing
250 samples each.
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Figure 3.2: [Closer to origin is better] Comparison of normalized SHD and SID for the
Reged networks without selection bias (Reged5, Reged15) and with selection bias
(Reged5s, Reged15s). Dotted lines indicate the interval over SID for PC, EGes and
CdNod.

Next, we introduce selection bias in the data by sorting on one of the vari-
able and dividing the resulting dataset into three partially overlapping datasets
of 200 samples each. We repeat this for each variable thereby giving us a total
of 5 resp. 15 separate experiment instances for each network. We refer to these
datasets as Reged5s resp. Reged15s.

We show the results for both aforementioned setups in Fig. 3.2 where we see
that Orion performs the best overall. Moreover, we see that EGes, CdNod
and PC have very wide SID intervals, which restricts us from drawing useful
causal conclusions from the discovered networks.

Q3. Can Orion reliably identify intervention targets? We test how
well Orion can identify both direct and indirect intervention targets over mul-
tiple environments. We use the same structure as used by Zhang et al. (2017)
for their experiments and report the F1-scores for this experiment in Fig. 3.3.
We see that Orion gets an F1-score average of 0.63, which is twice as good
as Lingam and PC. Surprisingly, FGes, although only a baseline, performs
better than both Lingam and PC.
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Figure 3.3: [Higher is better] F1 scores for Orion, Lingam, PC, EGes and FGes for
identifying intervention targets in synthetic data over different environment sizes, d. We
omit CdNod as it can not match intervention targets to environment.
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Figure 3.4: [Higher is better] F1 scores for identifying direct intervention targets in
synthetic data over different environment sizes, d. We omit CdNod as it does not
contain a mechanism to identify intervention targets within each environment.

3.6 Discussion

We proposed a novel score for the discovery of causal networks over multiple
environments based on the algorithmic Markov condition and its approxima-
tion via MDL. Our analysis proved that optimizing this score identifies the
true DAG and all local interventions in the limit. This allows us to simulta-
neously discover the underlying causal mechanism and local interventions over
multiple datasets. We proposed a practical algorithm Orion which, through
extensive experiments, we showed that it outperforms the state of the art at
discovering the true causal networks given multiple datasets, even when all the
environments contain data generated from unknown intervention distributions
over the same network, and reliably identifies intervention targets.

Although non-trivial, it is a promising direction to investigate implement-
ing the GES (Chickering, 2002) procedure using Orion score as a line of future
work. Such an implementation will extend theoretical guarantees entailed by
our proposed score to also hold for the practical implementation. This ex-
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tension while theoretically appealing, may not be straightforward as perform-
ing an efficient search using GES requires that our proposed score satisfies
the score-equivalence property (Chickering, 2002), while we explicitly use non-
score equivalence to quantify and exploit the asymmetry in explaining cause
from effect. Using non-efficient Ges can allow us to overcome this limitation,
at the expense of the worst-case runtime becoming exponential in the number
of variables.

Another worthwhile area of exploration would be to investigate evolving
our proposed score to handle edge-introducing interventions alongside inhibit-
ing interventions that we already consider. Maintaining identifiabilty guar-
antees while doing so is rewarding yet challenging line of future work as this
would require redefining what we mean by "true" underlying causal network
and reformulate identification guarantees with respect to our new definition.

3.7 Conclusion

In this chapter, we introduced novel scores for discovering causal networks
across multiple environments grounded in algorithmic Markov condition and
MDL approximation. Our analysis showed that optimizing our proposed score
accurately identifies the true Causal DAG and local interventions in the limit,
allowing for the discovery of underlying causal mechanisms across various datasets.
As practical instantiation we developed the Orion algorithm, which exten-
sive experiments demonstrate, outperforms current state-of-the-art methods in
identifying true causal networks and reliably pinpointing intervention targets,
even with data from unknown intervention distributions.
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Chapter 4

Learning Causal Networks
from Episodic Data

Until this point we have considered those settings where all data is fixed, be
it in a single dataset or pre-specified static multiple datasets that never get
updated. While the latter might still be applicable to certain domains where
we have collected enough data across different environments, it may not be
straightforward to update our knowledge systematically once new data be-
comes available. In contrast, a more realistic setting is one where we obtain
observations in batches, or episodes, at different points in time, potentially for-
ever. Not only does this mean that we need to learn and update our causal
hypothesis over time, but each batch likely contains samples from a specific
time period or sub-population, resulting in a biased distribution. Even the
collective data distribution over all episodes is often not identically distributed
since the causal interactions could differ across domains or change over time.

To motivate the episodic setting and illustrate its challenges, consider an ex-
ample in environmental monitoring where we measure two markers X1: temper-
ature and X2: ozone concentration over the course of a year. Suppose we obtain
measurements at the end of each quarter, resulting in episodes {D(1), ...D(4)}
at timepoints {t(1), ...t(4)}. We show the data in Fig. 4.1, coloring samples by
episode. In our example taken from the Tübingen cause-effect pairs (Mooij
et al., 2014), X1 is considered the cause of X2 and the overall data suggest a
roughly linear trend of the causal mechanism relating them. However, when we

This chapter is based on Mian and Mameche (2024) and Mian, Mameche, and
Vreeken (2024).
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Figure 4.1: Cause X1 and effect X2 (Mooij et al., 2014) measured in episodes over
time (D(1)-D(4)). Each episode comes from an unknown season (S+, S−), and unknown
context (Switzerland in this case). We are interested in causal discovery with data arriving
in episodes over time. For example, we could obtain episodes from different seasons where
individual seasons (e.g. D(1)) show a biased trend between two causally related variables
(X1, X2). Episodes could also come from different contexts (a different location, e.g.
Sahara Desert) where a different causal model applies.

consider the winter months D(1) (blue) on their own, it appears that both vari-
ables are uncorrelated. The same is the case for D(2) and D(4), and only once
we include the summer months D(3) (yellow) do we obtain a complete picture.
To show which part of the domain of X each episode covers, we can consider
different subregions, for example, there is a high-temperature season S+ where
some samples are observed (diamond), others missing (circle), similarly a low-
temperature season S−. Episodes coming from such a specific subregion likely
have a biased distribution.

While this simplistic example suggests that combining all episodes is a
good practice to remove seasonal bias, this can lead to its own set of issues.
Data could also arrive from a different geographical region or context where
due to local measuring devices noise levels are different, or even the underly-
ing causal relationship changes. For example, a phenomenon known as ozone
suppression (Steiner et al.) leads to a different trend where ozone levels are
no longer positively correlated with temperature. Ozone suppression only oc-
curs above a temperature threshold, hence is not visible in the data obtained
in Switzerland shown in Fig. 4.1 but likely the case if a future episode D(5)

arrives from a region with exceptionally high temperatures. Overall, whereas
episodes D(1) − D(4) should be combined to remove seasonal bias, combining
samples from different contexts D(1) − D(5) obscures context-specific causal
relationships (Zhang et al., 2017).

While recent work in causal discovery considers different contexts (Mooij
et al., 2016; Zhang et al., 2017; Squires et al., 2020), it neither addresses episodes
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nor allows for structural changes in the causal model across contexts. In con-
trast, we propose a causal modeling framework for episodes with selection bias
where an unknown number of causal networks underlie the data-generating pro-
cess. We show that in principle, we can use a consistent scoring criterion for
causal discovery in this setting so long as we observe sufficiently many episodes.

From a practical perspective, existing algorithms for causal discovery (Pearl,
2009; Chickering, 2002; Mian et al., 2021) start from a single batch of data and
hence would need to relearn the causal model whenever a new episode arrives.
Not only is this computationally impractical, but a domain expert likely wants
to gain preliminary insights into the causal relationships already based on data
from the earlier episodes, and be ready to update these insights as new data
becomes available.

To address these limitations, we develop the algorithm Continent for
discovering a faithful causal network, or multiple networks, over episodic data.
Taking inspiration from continual learning, we hereby avoid fully re-learning
the causal model upon the arrival of each episode but learn it in an online
fashion. We propose a strategy to update the causal hypothesis as new episodes
arrive, using distribution matching and an information-theoretic perspective
of causality, and show that our updating strategy is consistent. We show in
experiments that Continent discovers causal networks reliably from data with
episodic selection bias, under interventions, as well as structural changes in
causal networks. Not only does it compare favorably to its competitors, but
Continent alone can learn the causal model adaptively over time, and can
address a novel experimental setting where different causal networks underlie
episodic data and we predict, for a new incoming episode, which causal network
it is generated from. To summarize our main contributions, we

• introduce a causal modeling framework for episodic data,
• show under which conditions we can use a consistent information-theoretic

scoring criterion to identify the underlying set of causal networks,
• develop the practical approach Continent for efficient learning of the

causal networks in a continual fashion,
• confirm in experiments that Continent works in practice.

We structure our exposition according to the above, we first introduce notation
and preliminaries in Section 4.2, then provide our causal model and practical
algorithm in Section 4.3 resp. 4.4, before concluding with experimental evalu-
ation and discussion in Sections 4.5 and 4.6.

4.1 Related Work

As we have seen from the previous chapters, causal discovery approaches typi-
cally fall into the categorizations of constraint-based methods, such as PC (Pearl,
2009), or score-based methods, such as GES (Chickering, 2002; Ramsey et al.,
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2017). However, the examples given up to this point assume an i.i.d. data
distribution where a single causal network can capture the causal interactions,
and where neither selection bias nor contexts exist. We therefore, discuss the
related work in those two aspects.

Selection Bias Missingness is a well-studied problem in statistical infer-
ence and in particular, many approaches exist for correcting for missingness
and selection bias (Gretton et al., 2008; Sugiyama et al., 2007; Boeken et al.,
2023); see Little and Rubin (2019) for an overview. Only very recent work
studies assumptions for identifying whether selection bias holds in a given
dataset (Kaltenpoth and Vreeken, 2023c). Our perspective is different as we
are interested in adapting causal discovery to the presence of missingness. An
important line of work studies recoverability (Bareinboim et al., 2014; Pearl,
2012) from selection bias in causal discovery, modeled through unobserved sink
node S in the causal graph. We also adopt this model here using multiple
missingness regions, and in addition consider the presence of multiple contexts
in the form of varying causal mechanisms.

Different Contexts A wealth of recent literature studies causal discovery
from different environments, experimental regimes, or contexts (Zhang et al.,
2017; Squires et al., 2020; Jaber et al., 2020; Magliacane et al., 2018); promi-
nent examples include the constraint-based JCI framework (Mooij et al., 2016),
additive noise model based multi-group Lingam (Shimizu, 2012), and score-
based approaches (Eaton and Murphy, 2007; Mian et al., 2023b) for discovering
causal DAGs from multi-context data. However, existing work assumes that
each context is an identically distributed (i.i.d.) sample with fixed causal model.
We make this setting more general in that we obtain biased samples from each
context, which need to be combined to result in i.i.d. data. To our knowl-
edge, we are the first to allow a different causal model with episodic bias in
different contexts, and also address the algorithmic challenges associated with
discovering causal networks in an online fashion.

To demonstrate how classical and environment-based causal discovery ap-
proaches fare with episodic selection bias in practice, we next compare them
against Continent.

4.2 Preliminaries

First, we outline our problem setting and review causal modeling techniques
for independent and identically distributed (i.i.d.) data.
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4.2.1 Notation and Problem Setting

Throughout this chapter, we consider a batch setting where we obtain ob-
servations as a sequence of perennially arriving datasets {D(1), D(2), . . .} at
timepoints {t(1), t(2), . . .}, and refer to dataset D(i) at time t(i) as an episode.
We denote the dataset that combines all episodes up to time t(d) as Dd =
∪d

i=1D
(i). In each episode, we observe a fixed set of continuous random vari-

ables X = {X1, . . . , Xm} with overall distribution P (X).

Different Contexts Our main interest are the causal interactions between
X. As our motivating example suggests, these could change over time or across
domains, hence unlike Globe or Orion, we do not assume a fixed causal
model over X. Rather, we consider different contexts, also known as regimes
or environments, with a different causal model each. We denote the set of
contexts as {C0, . . . , CR}. Each episode D(i) is a member of a unique context,
which we write as C(D(i)) for short. We write Xr, P r to refer to variables,
resp. distributions, in the rth context. Novel to our work is that we neither
know how many contexts R exist nor which context C(D(i)) each episode comes
from.

Biased Episodes In addition to coming from different contexts, i.i.d.-ness
may not hold for our episodes. Each episode could for example preferentially
include samples from a certain subpopulation. In other words, some samples
from the population P (X) are missing and others observed in a given episode.
We can represent this using a binary variable S taking labels S = 0 for missing,
S = 1 for observed samples. As an illustration, Fig. 4.1 shows the season S+
with values S+ = ⋄ for observed, S+ = ◦ for missing samples, so that episode
D(3) only includes the observed samples. We can also consider multiple such
seasons, for example both {S+, S−}. In general, we consider a categorical
variable S with values {s1, . . . , sK}. In our example, colored samples from each
season form a biased distribution, such as the summer season P (X | S+ = ⋄).

In this episodic setting, we want to discover how many and which causal
models there are.

Problem Statement (informal). Given datasets {D(1), . . . , D(d)} where
each episode D(i) is generated from the causal model in an unknown context Cr

and by conditioning on an unknown value sk of S, we want to discover the set
of causal models over X.

Before we address this problem, we take a step back to recall how we did
causal discovery in an i.i.d. setting and use that to introduce the concepts and
assumptions that we build on.



4.2. Preliminaries 62

4.2.2 Causal Discovery for I.i.d. Data

For now, consider the case of a single context without selection bias. We can
specify a causal model over the variables X by a directed acyclic graph (DAG)
G = (X,E) with node set X and edges (i, j) ∈ E whenever the variable Xi

is a cause of Xj (Pearl, 2009). To denote the set of direct causes of Xj we
write paj where we leave G implicit. Together with the network structure in
G, we assume a structural causal model over the variables, where each effect is
generated from its causes through a causal function or mechanism fj ,

Xj = fj(paj , Nj)

where Nj is a noise variable implicit in G with Nj ⊥⊥ Xj .

To ensure identifiability we assume causal sufficiency, which states that
no latent variable jointly causes any of the observed variables, as well as the
causal Markov and faithfulness conditions, which together imply that edge
separations in the graphical model G correspond to independence constraints
in the observed distribution P . Under these assumptions, it is well known that
identifiability holds up to the Markov Equivalence Class (MEC) of G (Hauser
and Bühlmann, 2013).

As we also already show in case of Orion, identification of causal directions
beyond the MEC is possible using additional information about how the sys-
tem reacts to interventions (Hauser and Bühlmann, 2014; Zhang et al., 2017;
Mameche et al., 2023). In the absence of such information, we need to make
additional assumptions, such as restricting the functional dependencies f to
nonlinear functions with additive noise (Bühlmann et al., 2014; Hoyer et al.,
2009a; Marx and Vreeken, 2021). As an example of the latter, a family of meth-
ods build on the algorithmic framework of causation (Janzing and Schölkopf,
2010b) and derive consistent scoring criterion that can be used for causal dis-
covery within a given class of functional models. This is the approach we will
continue to follow in this chapter.

Continuing to build on our Information theoretic approach to causal dis-
covery we assume, throughout this chapter, a given any MDL-based score L
that decomposes as in Eq. (4.1) (as we already define in Chapter 2), and is
consistent in the sense that it allows estimating a DAG G ∼ G∗ that is Markov
equivalent to G∗ in the limit, limn→∞ P (Ĝ ∼ G∗) = 1 for i.i.d. data with
sample size n.
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M∗ = argmin
M∈M

L(Xn,M)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(Xn
i | pai,M)

)
(4.1)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(ϵi)

)

We refer to Chapter 2 for definitions of L in a multivariate setting and a
consistent algorithm for discovering G in from an i.i.d. data distribution. As
consistency results and practical algorithms have only been explored in the
i.i.d. case (Mian et al., 2021) or interventional data (Mameche et al., 2023;
Mian et al., 2023b), we turn to episodic data here.

4.3 Theory

Now that we have refreshed our knowledge of causal discovery on i.i.d. data,
we introduce the concepts and assumptions for episodic data. We first define a
causal model over episodic data and concretize the assumptions that we need
and then provide theoretical guarantees to show that a consistent score can be
used to discover causal networks in a setting with unknown contexts.

4.3.1 Causal Model

Unlike previous chapters where we only considered searching for a single causal
graph, our causal model now comprises of a set of causal DAGs G = {G1, . . . ,
GR} over a common set of variables X∪{S}, where X are measured, continuous
random variables of interest, and S is an unmeasured categorical variable with
values S = {s1, . . . , sK}. Each DAG Gr is a causal model over Xr, i.e., it
describes the causal relationships in all episodes from a given context Cr. The
additional variable Sr models that certain observations may be missing in each
episode.

To do so, we extend upon a missingness framework commonly used to
handle selection bias (Rubin, 1976; Bareinboim and Pearl, 2012). To explain,
consider the nth observation, where we represent S using a one-hot encoding,(

X
(n)
1 , . . . , X(n)

m , s
(n)
1 , . . . , s

(n)
K

)
where we omit the dependency on the context to avoid clutter. Above, X(n) is
associated to indicators sk where sk = 1 if X(n) is observed, else sk = 0 if it is
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missing in a distribution k. We obtain K biased distributions P (X | S = sk)
where any number of samples of the support of X are missing.

Exactly which samples are observed could depend on X; in Fig. 4.1, for
instance, S+ = ⋄ holds for the temperature range X1 ≥ 10. In general, we
assume that any unknown mechanism assigns S,

S = g(X,Ns), Ns ⊥⊥ S ,

where g maps each sample to an assignment of S using input X, which could
be noisy, through Ns. We therefore include S in the causal model together
with edges Xj → S for all Xj , and assume that S is a sink node. We do the
above in any context, that is, include a sink node Sr in Gr. We assume causal
sufficiency over Xr ∪ {Sr}. To summarize, we work with the following causal
model.

Assumption 4.1 (Causal model with contexts and selection) Our causal
model is given by a set of DAGs G = {G1, . . . , GR} over X ∪ {S} from a finite
number of contexts R such that in context Cr, each observed variable Xj is
generated as

Xr
j = fr

j (par
j , N

r
j ), Nr

j ⊥⊥ Xr
j , (4.2)

where par
j denote the causal parents of Xr

j in Gr and Nr
j is an independent

noise term. The latent variable S is generated as

Sr = gr(Xr
j , N

r
s ), Nr

s ⊥⊥ Sr . (4.3)

Equation (4.2) above describes an unbiased generating process where each
variable Xj is a function of its causal parents paj and noise Nj . In addition,
the mechanism g with noise Ns generates S as shown in Eq. (4.3). This gener-
ating process happens independently in each context. We further assume that
episodes result from conditioning on a specific value of the unobserved selection
variable.

Assumption 4.2 (Episodic data) Under the causal model in Assumption 4.1,
after generating an unbiased distribution P r(X,S) from the DAG Gr in each
context Cr, all episodes E coming from context C(E) = Cr have distribution
P r(X | S = sk) for some specific sk ∈ {s1, . . . , sK}.

With no assumption on the selection mechanism g, number of contexts R,
or number of selection regions K, our model can encompass general cases of
episodic data. This invariably also makes it more challenging to discover the
causal model from data. To do so, nevertheless, recall the algorithmic Markov
condition first described in Chapter 2 and note that for our case we can rewrite
it as follows.
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Postulate 4.1 (Algorithmic Markov Condition) Under Assumptions 4.1
and 4.2, a set of causal DAGs G = {G1, . . . , GR} is only admissible as the
causal hypothesis over X and S if

K
(
P
(
X ∪ {S}

)) +=
R∑

r=1

m∑
j=1

K
(
P r(Xj | paj)

)
+K(P r(S | X))

+= K
(
P (X)

)
+K

(
P (S | X)

)
where += holds up to an additive constant.

As S is not included in any parent set, we can in principle consider the
complexity of, and hence causal structure over, X independently of the com-
plexity of S. This motivates the idea of using a consistent scoring criterion to
find the causal structure over X in each context.

As a complication, we hereby need to discover the number of contexts.
Suppose we obtained data Dn accumulated over n episodes. There could be
any number R of different causal models, with 1 ≤ R ≤ n. Thus, we need to
consider any partition of our samples into R disjoint sets, which we write as
Π(Dn) = {X1, . . . XR}. In each set, we propose discovering the causal DAG
using the consistent score L(Xr;G), and overall find the partition minimizing
this score.

To summarize, our objective is as follows.
Problem Statement. Given variables X and data Dn over n episodes,

we aim to discover the partition Π(Dn) of Dn into contexts and the causal
model Ĝr in each context minimizing

min
Π(Dn)

|Π(Dn)|∑
r=1

min
Gr

L(Xr;Gr) . (4.4)

where we write Xr for the data in the r-th set of Π(Dn).
This leaves us with two questions; first, ensuring that the above is a consis-

tent way of identifying the causal model, and second, how to efficiently minimize
it in practice.

4.3.2 Asymptotic Guarantees

We first want to establish conditions under which L can be used in a consistent
way to discover the causal DAGs in all contexts.

This revolves around whether the biased distributions in each episode even-
tually allow us to estimate the relevant distributions in Postulate 4.1 in an un-
biased way so that we can apply Eq. (4.4). That is, estimation of each causal
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mechanism should not depend on the selection variable. We therefore need to
make the following assumption.

Assumption 4.3 (Ignorability) Under the causal model in Assumption 4.1
and given Dd over d episodes, in each context Cr, we assume the following
ignorability of selection bias,

Xr
j ⊥⊥ Sr | Zr

for each Xr
j and conditioning set Zr ⊆ Xr \ {X ,

jS
r}.

Examples of when the above holds are cases known as Missing At Random
(MAR) or Missing Completely At Random (MCAR) (Rubin, 1976; Bareinboim
and Pearl, 2012; Bareinboim et al., 2014), for example, when a biased P (X |
S = sk) is a uniform sample from the population P (X). A more realistic case
is the one in Fig. 4.1 where the selection mechanism depends on temperature
X1. We can see that episodes from the cold season P (X | S− = ◦) indeed do
not allow an unbiased view of the causal mechanism, however once we obtain
enough episodes from both S−, S+ then ignorability holds. More generally, we
ensure via Assumption 4.3 that we eventually obtain enough samples from the
support of X.

With this, we can show that an MDL-based score L can be used for causal
discovery with unknown contexts. For ease of exposition, we separate out the
case of a single context with one causal model and show it first.

Lemma 4.1 (Consistency of L for a single causal model) For the causal
model in assumption 4.1 and assumption 4.2 with R=1 and data Dn over n
episodes covering each value sk of S, with a consistent scoring criterion L that
decomposes as in Eq. 4.1 then L is consistent,

lim
n→∞

P (Ĝ ∼ G∗) = 1 .

Using the result above, we move to our full causal model with multiple
contexts.

Theorem 4.2 (Consistency of L in the episodic setting) For the causal
model in Assumption 4.1 and given data Dn over n episodes as in Assump-
tion 4.2. Under Assumption 4.3, a consistent scoring criterion L that decom-
poses as in Eq. 4.1 remains consistent,

lim
|Dn|→∞

P (Ĝr ∼ G∗
r) = 1 for all r ∈ {1, . . . , R} .

This, however, does not make it obvious how to apply L in practice. First,
note that the result relies on enough episodes being observed so that selection
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is ignorable, that is, we did not yet address how to deal with non-ignorable
selection at each time point when we only observed a subset of episodes. Second,
even when observing enough episodes, searching over the space of DAGs to
minimize L as in Eq. 4.4 is prohibitive even for a single causal model due
to the super-exponential search space over DAGs (Chickering et al., 2004).
While there exist greedy algorithms to do so, such as the MDL-based Globe ,
applying such methods to any partition of the data with unknown number
of contexts is not favorable as it could violate the i.i.d. assumption required
for these methods. We address these issues in the following and subsequently
propose an algorithm for causal discovery over episodic data.

4.4 The Continent Algorithm for Online Causal Discovery

Using the concepts defined in Section 4.3, we now introduce our algorithm to
discover causal networks from episodic data. We show under which conditions
our proposed algorithm, Continent, entails correctness guarantees and can
therefore find the correct causal network(s) for episodic data given enough
evidence.

4.4.1 Overview

To motivate our algorithm setup, let us revisit our motivating example in
Fig. 4.1 showing episodes obtained in winter D(1), spring D(2), summer D(3),
and autumn D(4). We consider a fixed number of seasons, here S+, S−. All
episodes D(1)-D(4) shown come from a context C1 but any number of future
episodes could arrive from a different C2.

Given a learner A for greedy DAG search with a consistent scoring criterion
L, we aim to discover the underlying causal DAG G1 over D(1)-D(4), and
possibly add a causal model G2 if future episodes from a different C2 arrive.
Applying A to all episodes at each time point is not only impractical, but
may also not be consistent given that selection bias is not ignorable until all
episodes arrived. Instead, we propose an algorithm Continent that maintains
plausible causal models G = {G1, . . . , GR} at each time ti and uses a strategy
for updating G when a new episode D(i+1) arrives.

Model Updating In our example, say that we obtained episodes D(1)-D(3)

and the current causal model is G = {G1}. As we already observed episodes
from both seasons S+ resp. S− we likely already learned an unbiased model
G1. As the autumn episode D(4) arrives, we want to assign it to G1 without
re-learning the causal model from scratch. To this end, we propose using a
two-sample testing procedure T for deciding whether a given episode matches
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Algorithm 4.1: Continent (E,A, T )
input : episodes E arriving over time, residual test T ,

causal discovery algorithm A with score L
output: causal model G = {G1, ...GR}

1 G← {}
2 τ ← 0
3 while a new episode D(i) arrives do
4 G← Update (G, D(i),A, T )
5 τ ← τ + 1
6 if τ ≥ τmax then
7 G←Merge (G,A, T )
8 τ ← 0
9 end

10 end
11 G←Merge (G,A)
12 return G

an existing causal model. Here, after checking with T that D(1)-D(4) can be
stacked we combine the data D(1)-D(4) and keep the model G1 as is.

On the other hand, say episode D(5) from a different context C2 arrives1

and T decides that it does not match any current causal model. Then we
apply the learner A to learn a new model G2 over D(5) and add it to our set
of models, G = {G1, G2}.

Note that the above assumes that we already learned an unbiased causal
model over the available episodes. We also need to consider the case where a
causal model is biased, such that we need to update it after merging data from
multiple episodes.

Model Merging Say that we observed episodes D(1)-D(2) to learn a causal
model G0. From the winter seasons S− alone, it appears that X1, X2 are
uncorrelated, hence G0 is biased. When D(3) from summer season S+ arrives,
we need to merge the data to the previous episodes and learn a new model G1.

To do this, we attempt merging data over multiple episodes at regular time
intervals. We again apply T to check whether a merge is possible, and if so,
check whether merging any two causal models results in an improved model,

1This could be e.g. readings obtained from a different geographical region where
causal mechanism between X1 and X2 is different/non-existent.



69 Episodic Causal Discovery

Algorithm 4.2: TestResidualEq (Gr, D
(i), D, T )

input : causal model G, episode D(i), data D, residual test T
output: test result

1 foreach Xj with parent set Z in G do
2 pj ← T .Test(H0 : PD(Xj | Z) ≡ P i(Xj | Z);α)
3 end
4 p← T .Correct({p1, ...pm})
5 if T .Significant(p) return True else return False

judging by our score L. As stacking may be sufficient when we already gained
sufficient evidence for a candidate model, in practice, we attempt merging at
regular time intervals using pre-specified tolerance parameter τmax.

Combining the model updating and model merging described above, we
have our proposed approach, Continent. We show the pseudocode of Con-
tinent in Alg. 4.1. We maintain a set of models G throughout, where we
associate each G ∈ G to a dataset D of episodes, initially empty (line 1). As
new episodes arrive, we update G at each time step using the Update function
(line 4). In short, it checks using hypothesis testing whether a new episode
D(i) matches the data D under an existing model, in which case we stack the
datasets D(i) and D; else we apply A to D(i) to discover a new model Gi which
we add to G. We show our hypothesis test in Alg. 4.2, and Update in Alg. 4.3.

After a pre-specified number of episodes, we attempt merging existing mod-
els (line 7), with a tolerance parameter τ keeping track of the time since a merge
last happened (line 8). In essence, Merge performs pairwise comparison of
models G,G′. If appropriate, it learns a new model G∪ after pooling the resp.
datasets D,D′ of the pair. During the algorithm, we only allow such a merge
if T marks the residual distributions of D,D′ as compa‘tible, for which we
again apply our hypothesis test in Alg. 4.2. We provide the pseudocode for the
Merge in Alg. 4.4.

Our alternation of updating and merging continues as long as new episodes
arrive. We conclude with a final merge (line 11). Compared to merge steps
throughout our algorithm which we protect by T , we consider all remaining
possible merges of model pairs G,G′ in this step given that no more episodes
arrive (line 11).

4.4.2 Consistency

Naturally, we want to make sure that our adaptive strategy is consistent. At
any time point t(i), however, we only have access to a subset of the episodes so
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Algorithm 4.3: Update (G, E,A, T )
input : episode E,

causal model G,
causal discovery algorithm A with score L,
residual test T

output: updated causal model G
1 accepted ← False
2 foreach Gr over data D in G do
3 if TestResidualEq (Gr, E,D, T ) then
4 accepted ← True
5 D ← D.stackData (E)
6 end
7 end
8 if not accepted then
9 G← A.Learn(E)

10 G = G ∪ {G}
11 end
12 return G

that ignorability in Assumption 4.3 unlikely holds, and hence any causal model
inferred using A may be incorrect. Nevertheless, we need to avoid merging
episodes with different underlying models. We now show that we can do so
without knowing the true models. To do so, we assume a hypothesis test T
testing

H0 : P 1(Xj | Z) ≡ P 2(Xj | Z)

for a given variable Xj , conditioning set Z and two datasets P 1, P 2. Given any
causal DAG, we test H0 for each variable given its estimated parent set and
include a multiple testing correction, as shown in Alg. 4.2. We can show that
our updating strategy protected by this test is consistent under the following
condition.

Assumption 4.4 (Detectable selection) We assume that selection detectable
for a variable Xj and pair of contexts Cr, C

′
r meaning

P r(Xj | paj) , P r′
(Xj | paj)

⇒ P r(Xj | paj , S = sk) , P r′
(Xj | paj , S = sk)

holds for each value sk of S.
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Algorithm 4.4: Merge (G,A, T )
input : causal model G,

causal discovery algorithm A with score L,
residual test T

output: updated causal model G
1 repeat
2 foreach G over data D in G do
3 D⋆ ← D
4 G⋆ ← G
5 L⋆ ← G.Score(D)
6 foreach G′ over data D′ in G not seen yet do
7 if not TestResidualEq (G′, D,D′, T ) continue;
8 D∪ = D ∪D′

9 G∪ ← A.Learn(D∪)
10 L∪ ← G∪.Score(D∪)
11 if TestScoreDiff (L∪, L⋆) then
12 D⋆ ← D∪

13 L⋆ ← L∪

14 G⋆ ← G∪

15 end
16 end
17 if G⋆ is not G then
18 replace corresponding G,G′ with G∪ in G
19 end
20 end
21 until convergence;
22 return G

Unlike ignorability in Assumption 4.3 which requires full independence of the
causal mechanism and selection mechanism, i.e. ensures that we can estimate
the causal mechanism for each variable in a fully unbiased way, Assumption 4.4
only requires that distribution differences of P (X) hold also in the biased dis-
tribution P (X | S = sk). Given that the latter are subsamples of the overall
distribution, this is reasonable in practice. With this, we can show that our
updating strategy is consistent.

Theorem 4.3 (Consistency of updating using T ) With discrepancy test
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T we will never merge a new episode D(i+1) with a set X̂r from an incorrect
context where C(D(i+1)) , C(E) for some E ∈ X̂r.

This shows that our updating step is safe in the sense that we always
discover subsets of the correct contexts. When we observed all episodes, we can
also recover the exact sets of contexts if ignorability holds, based on Thm. 4.2.

Corollary 4.4 (Consistency of Continent ) Given a consistent DAG search
algorithm A and score L, under assumption 4.3 our algorithm is consistent, so
that

lim
|Dn|→∞

P (Ĝr ∼ Gr∗) = 1 for all r ∈ {1 . . . , R}

holds after we obtain n episodes Dn and perform the merge step.

As the final step in this section, we address practical considerations around
our algorithm.

4.4.3 Instantiation

We conclude this section by giving details on the components of Continent .

Causal Discovery Algorithm A We assume a score-based causal discov-
ery algorithm A that allows discovering a causal DAG G from an i.i.d. dataset
D. While in principle, this could be any score-based method with a consistent
scoring criterion L decomposing according to Eq. (4.1), we use an MDL-based
approach in our practical instantiation as it allows for a principled way for
model comparison. We instantiate A with Globe (Mian et al., 2021) which is
an efficient algorithm for discovering causal networks. It models causal func-
tions through non-parametric multivariate regression with additive noise.

Residual Test T Our method can also work together with any hypothesis
test T for differences in conditional distributions under a causal model. As
Globe models causal functions through non-parametric spline regression, a
natural choice is testing residual distributions under a given model for equality.
As we apply a test per each variable, we perform Bonferroni correction to obtain
a p-value from the test results {p1, . . . , pm}. Unless otherwise stated, we apply
the non-parametric Kolmogorov-Smirnov (AN, 1933; Smirnov, 1948) test in our
evaluations.
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4.5 Evaluation

Since to the best of our knowledge, there is no specific algorithm designed for
causal discovery from continually arriving episodic data, we look at the near-
est possible modifications of existing algorithms for comparison. As baseline
we compare to Globe (Mian et al., 2021), Resit (Peters et al., 2014) and
Ges (Chickering, 2002; Ramsey et al., 2017). We modify these algorithms as
follows — we first learn a causal network over each individual incoming episode
of data, and then take a union over the edges. This is correct, under the as-
sumption underlying each of these approaches, that each episode comes from
the same causal network (Mian et al., 2023b). We also compare to multi-
environment causal discovery approaches such as the JCI-framework (Mooij
et al., 2016) using the Pc algorithm (Spirtes et al., 2000a), the Orion algo-
rithm Mian et al. (2023b), as well as Multi-Group Lingam (Lingam) (Shimizu,
2012). The latter three approaches, however, require that all episodes are
available to learn a causal network. Hence, we provide all episodes in one go
to these approaches. This constitutes an advantage as they can learn from
complete data from the very start.

To measure the quality of the predicted causal structures we use the Struc-
tural Hamming Distance (Shd) (Kalisch and Bühlmann, 2007) , the Struc-
tural Intervention Distance (Sid) (Peters and Bühlmann, 2015), as well as
Orientation-F1 score over learned networks. Shd counts the number of edges
where the predicted causal network differs from the true causal network, Sid
counts pairs of variables for which intervention estimation differs across pre-
dicted resp. true causal network and F1 score allows us to see how accurately
are the edges oriented in the learned network. Next, we discuss results over
both synthetic and real-world data.

4.5.1 Synthetic Data

For each of the proposed experiment setups, we generate random graphs using
Erdős-Rényi model for network sizes d = {5, 10, 15}, and generate data for
effects using functions of the following form, Xi =

∑
x∈pai

f(x)+Ni, where f(x)
is either a polynomial function or a combination of sine and cosine functions
defined over each parent x ∈ pai of Xi, and Ni is either Gaussian or Uniform.
For each graph/function combination, we generate a total of 10, 000 samples
and then split them into 10 episodes of size 1000 each. We transmit these
episodes to each algorithm one at a time. After each episode, we note the
updated causal network for each of the methods. As PC and Lingam are
provided all episodes together, we only measure performance over the final
network. Primarily, we investigate over the following questions:
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Figure 4.2: Normalized Shd and Sid [Left, Closer to origin is better] and Orientation
F1 [Right, Higher is better] for networks learned over episodic data with selection bias.

Q1 Can Continent reliably discover causal networks when the incoming
episodes come from the same underlying causal network?

Q2 How well does Continent perform when episodes contain unknown in-
terventions?

Q3 Can Continent identify causal networks from episodic data containing
different causal mechanisms?

Q4 How does Continent ’s performance change over time as episodes ar-
rive?

Continent is designed without the assumption that each data comes from
the same underlying causal network, and therefore maintains a list of candidate
networks for groups of episodes. For comparability to other approaches, we
force Continent to predict a single causal network for cases Q1 and Q2 by
taking a union over the edges in candidate models as this should result in the
correct causal network in the limit (Mian et al., 2023b). We further provide an
analysis of the individually learned causal networks for evaluation in Q3. We
release all our code and data for research purposes2. Next, we show results for
each of the four questions.

Q1. Identical Networks We first test all methods on the cases where
each incoming episode comes from the same underlying causal network, both
for i.i.d. as well as selection-bias. Interesting for us is the latter where episodes
can contain selection bias. We generate this case by choosing a variable at
random from our dataset and sorting the entire data over that variable before
splitting the data into episodes and transmitting it. We show the results for
this in Fig 4.2 where we see that Continent shows superior performance
to the competition. It is second in terms of Sid only to Orion, which can be
attributed to the latter having the full picture from the beginning. Nonetheless,

2https://eda.rg.cispa.io/prj/continent/
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Figure 4.3: Normalized Shd and Sid [Left, Closer to origin is better] and Orientation
F1 [Right, Higher is better] for networks learned over episodic data with unknown inter-
ventions. Continent gives almost on-par performance to Orion, which gets all data in
one go.

we see that both Orion and Continent have the same Shd, indicating that
they likely find the same underlying causal skeleton and the difference in Sid
is therefore due to Continent finding it harder to orient edges in some of the
cases. Moreover, among the methods that do not get access to full data from
the start, Continent not only discovers causal network structurally closer to
the ground truth, but also clearly performs well when orienting the edges as
can be seen by the F1 score in Fig. 4.2.

Q2. Interventions After our sanity check using i.i.d. data and dominant
performance over data with selection bias, we level up the difficulty by intro-
ducing episodes that contain interventions. To do so, we generate 3 datasets.
The first dataset is observational, whereas for the other two, we select a subset
of at most log2(d) variables and perform a do-intervention (Pearl, 2009) on that
subset, before generating the data. This gives us data sampled from three dif-
ferent distributions. We further split each of these datasets into episodes before
transmitting them. We never provide information about these interventions to
any of the methods beforehand.

We show the results of this experiment in Fig. 4.3, where we see that
Globe already degrades significantly as can be seen by the drop in F1 score,
Continent’s performance does not degrade compared to the setup in Q1.
Continent, in fact, continues to clearly outperform the baselines for episodic
discovery and is almost on par with Orion when it comes to methods that get
access to complete data.
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Experiment Nodes Shd Sid F1 Shd Sid F1

Continent Orion

Interventions
5 0.23 0.15 0.68 0.24 0.14 0.70
10 0.25 0.34 0.54 0.24 0.30 0.62
15 0.29 0.50 0.43 0.26 0.45 0.49

Mechanism
Changes

5 0.21 0.15 0.74 0.54 0.23 0.46
10 0.26 0.38 0.64 0.56 0.52 0.41
15 0.36 0.65 0.41 0.6 0.7 0.4

Table 4.1: Normalized Shd [Lower is better], normalized Sid [Lower is better] and
Orientation F1 [Higher is better] for networks predicted by Continent and Orion
for held-out episodes for interventional data as well as mechanism changes. Continent
consistently performs well across both settings. Orion works well in case of interventional
data where there is a single underlying causal network, but fails when incoming episodes
come from networks with different causal mechanisms.

Q3. Changing Mechanisms. As the next challenging step, we introduce
episodes containing different causal networks/mechanisms over the same vari-
ables. To evaluate Continent in this setting, we additionally generate a hold-
out set of episodes that we do not learn over. Once Continent has learned
over the training episodes, we try to predict the causal network for hold-out
episodes, without learning it explicitly, using the existing learned models. We
do so by simply taking the model that compresses this hold-out episode best
(ref. Eq. (4.1)) and compare the predicted network to the ground truth. Note
that this rules out using any of our competitors except Orion as they do not
maintain a list of plausible causal networks. For Orion we simply check at the
end, which of the learned interventional sub-networks compress data best and
use that as the predicted causal network.

We show the results in Table. 4.1 where we observe that Continent shows
competitive performance for the case where each episode comes from same un-
derlying causal network but different interventional sub-networks, and is infact
superior to Orion when incoming episodes come from causal structures that
may change across episodes. In contrast Orion, being biased towards finding
a single global causal network, can not handle changing mechanisms. Further-
more, we see that for the more challenging setting with changing mechanisms,
Continent can find a reasonable skeleton (lower Shd) but conflicting mech-
anisms may cause it to get edge directions wrong more often (higher Sid).
Nevertheless, we see that Continent’s performance does not degrade, even in
this challenging case.
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Figure 4.4: [Lower is better] Change in Shd over increasing number of episodes e for data
with selection bias (left) and unknown interventions (right) for graph sizes d = {5, 10, 15}.
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Figure 4.5: Model Count over increasing episodes e for data with selection bias (left)
and data with (unknown) interventions (right) for graphs of size d = {5, 10, 15}. There
are 1 resp. 3 true underlying models for bias resp. intervention cases.

Q4. Performance over time. We measure how the individual models
present inside Continent evolve over time. To that end, we show how the
Shd (Fig. 4.4) as well as the model count (Fig. 4.5) progresses as we receive
new episodes. For the case of Shd, we find that Continent always ends up
with a lower Shd at the final episode, than the one it starts with, this effect is
more profound for networks of size d = 15 than d = 5 as it might be harder to
identify the correct network over a larger number of variables in the beginning.
We see that Continent is able to improve as the number of episodes increase.
For data with selection bias, we see that Continent keeps on average 2 models
throughout the learning as shown in Fig. 4.5. More interestingly Continent
ends up converging to almost 4 models for interventional data as shown in
Fig. 4.5, which is very close to the the actual number of different networks (3)
present across episodes.
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Figure 4.6: Normalized Shd and Sid [Left, Closer to origin is better] and Orientation
F1 [Right, Higher is better] for networks learned Reged Lung cancer gene expression
dataset.

4.5.2 Lung cancer gene expression data

After measuring the efficacy of our approach using synthetic data, we turn to
(pseudo) real-world Reged dataset (Statnikov et al., 2015) containing 20, 000
samples over 500 variables for lung cancer gene-expressions. We split the sam-
ples into ten non-overlapping episodes and consider two non-overlapping net-
works of sizes d = 5, 15 within the ground truth network and run a total of
10 experiments as follows. First, we randomly choose a subset of 5 episodes,
merge them and introduce selection bias over stacked data akin to Q2, before
splitting it back. We show the results for Reged dataset in Fig. 3.2 where we
see once again Continent comes out on top of the baselines.

4.6 Discussion

Our interest in this work is determining causality when data arrives progres-
sively over time in multiple episodes. Each representing sub samples of the
population or subregions of the data that need to be pooled together to avoid
bias. At the same time, we address that the causal relationships may not be
stationary over time, and treat episodes from different contexts under a seper-
ate causal model. To address this setting, we propose a causal model over a
set of latent contexts leading to a set of different causal networks, as well as
model episodic bias through a hidden selection variable. Unlike Globe and
Orion, Continent, relaxes the causal sufficiency assumption slightly in that
it does not require selection variables to be explicitely observed, and can still
discover the correct causal networks for the observed variables provided that
the hidden variables are all sink nodes. This, however, does not address the
case when the hidden selection variable is in fact a source node for any two
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observed variables. For such unobserved confounding, theoretical guarantees
do not directly hold and it remains an involving line of future work to address
the more general case of (hidden) selection variables.

While we have shown that information-theoretic scoring criteria remain
consistent for our defined model in the limit if we obtain sufficiently many
episodes so that selection bias becomes ignorable, practical issues might still
exist. This includes merging of two models from different contexts due to finite-
sample behavior of the residual test being used. Since Continent does not
employ a Split step, a wrong merge can mislead the search process. While
not trivial, including steps to identify and rectify incorrect Merge operations
is one of the lines of future work.

Continent is capable of learning causal networks in a somewhat realistic
setting where episodes arrive one by one over time with non-ignorable selection.
It does this by maintaining a set of causal networks over all episodes and
incorporates new episodes into the model, using a residual testing strategy to
avoid combining episodes from different contexts. We can, however, address
non-ignorability further, by using correction or extrapolation techniques, which
is an ongoing continuation of our research on this topic.

4.7 Conclusion

In this chapter we considered the case of causal discovery over datasets that
perennially arrive over time. We showed why the conventional approached in
causal discovery that expect a single, observational dataset can not be applied
to such scenarios. Namely, not only because each episode may be a biased
sample of the population but also because multiple episodes may differ in the
causal interactions underlying the observed variables. We addressed these is-
sues using notions of episodic selection bias and context switches and showed
under which conditions we can apply information-theoretic scoring criteria for
causal discovery in episodic settings while preserving consistency. To discover
the causal model progressively over time in practice, we proposed the Con-
tinent algorithm which, taking inspiration from continual learning, discovers
the causal model in an online fashion without having to re-learn the model
upon arrival of each episode.

Through extensive experimental evaluation, we showed that our method
performs reliably in the presence of selection bias, under unknown interventions,
and even when different causal models underlie the data generating process,
which to our knowledge no existing methods can address.
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Chapter 5

Privacy-preserving
Federated Causal Discovery

In privacy sensitive applications such as healthcare, we cannot pool data.
Causal discovery in such critical applications, therefore, comes with its own
set of additional challenges and constraints. In these cases we usually have
multiple sites each with their own private data. Learning causal networks over
such data presents a challenging setting where we don’t just want to discover
the underlying causal network in a federated manner, we can also not com-
promise on privacy. We therefore consider the problem of discovering a global
causal network over distributed datasets with a fixed set of variables — in a
privacy preserving manner.

While a plethora of approaches for discovering causal networks are designed
for single datasets (Spirtes et al., 2000a; Chickering, 2002; Shimizu et al., 2006;
Peters et al., 2014; Huang et al., 2018), most state-of-the-art causal discovery
approaches that can work with multiple datasets, including Orion proposed
in Chapter 3 and Continent proposed in Chapter 4, require that we have
access to the data (Mooij et al., 2016; Zhang et al., 2017; Mian et al., 2023b).
This requirement makes them inapplicable to our new privacy-critical setting.
Multi-dataset approaches that do not require data to be pooled, work only for a
single target variable (Peters et al., 2016) at a time — rendering them inappli-
cable for overall structure discovery, or place strict assumptions on the causal
mechanisms that are unlikely to hold in practice (Shimizu, 2012; Ghassami

This chapter is based on Mian, Kaltenpoth, and Kamp (2022) and Mian,
Kaltenpoth, Kamp, and Vreeken (2023a).

81



82

et al., 2017).
On the other hand, state of the art federated learning approaches allow

to train models in a distributed manner without sharing any data, but their
application to causal discovery is not straightforward. A naive approach is
discovering individual causal models for each local dataset, pooling those mod-
els and computing the likely global causal model governing the process that
generated all local datasets. Sharing models, however, is not guaranteed to
be privacy-preserving, since one can make inferences about local datasets from
model parameters (Geiping et al., 2020; Lyu and Chen, 2021; Singhal et al.,
2021). Another naive approach is to discover local causal networks for each
dataset and compute their union. This has two major issues: (i) For finite
dataset sizes, locally discovered causal models can vary substantially from the
true network and may contain spurious edges, leading to a bad performance,
and (ii) this still requires us to explicitly communicate the local causal networks
for pooling, which may compromise privacy guarantees (Geiping et al., 2020;
Wang et al., 2020).

In this chapter, we propose to discover the global causal network without
sharing any data, model parameters, or even local causal networks— using re-
grets. Intuitively, the regret measures how much worse a given causal network
is, compared to the best causal network for a given dataset. We first propose
a simple algorithm that can be used to find the underlying causal structure
for distributed, private datasets by minimizing over worst-case regret. We fur-
ther show that minimizing the worst-case regret over these distributed datasets
allows us to define a scoring criterion that, under mild assumptions, is guaran-
teed to be consistent. This implies that we can now employ worst-case regret
as a score within Greedy Equivalence Search (Ges) (Chickering, 2002) to dis-
cover the global causal network with correctness and privacy guarantees, by
only using regrets obtained from local datasets. We obtain this as follows: we
first let each site discover the best network for its dataset using Ges with any
consistent scoring criterion (e.g., MDL or BIC), and then optimize the worst-
case regret, once again using Ges, with respect to the locally discovered causal
networks. Throughout the entire learning process, the optimizing algorithm
neither sees the data, nor knows the local model parameters. To ensure pri-
vacy of local data, we show that using the Laplace mechanism on the shared
regrets guarantees ϵ-differential privacy.

To perform federated causal discovery, we instantiate our proposed ap-
proach, which we call Peri1, using three well known consistent scoring criteria.
Through extensive experiments we show that Peri discovers causal networks of

1In astronomy, Peri is the point at which an orbiting object is closest to the
center of mass of the body it is orbiting (such as a planet). In our approach, we
aim to discover that network which is collectively closest to the local networks of all
environments.
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higher quality than the state of the art on both synthetic and real-world data,
scales upto 100 distributed environments while requiring orders of magnitude
less communication.

We organize this chapter as follows. We start with a review of existing
literature in Sec. 5.1, and preliminaries in Sec 5.2. Next we explain the concept
of regret in Sec. 5.3 and propose a naive algorithm to perform regret-based
federated causal discovery using beam-search in Sec. 5.4. We then show in
Sec. 5.5 that using regret as a score within well known causal discovery al-
gorithm preserves consistency guarantees which lets us build a theoretically
sound, scalable federated causal discovery algorithm, Peri, in Sec. 5.6. For
this proposed algorithm Peri, we describe how to additionaly provide privacy
guarantees in Sec. 5.7. Finally, we provide experimental evaluation in Sec. 5.8
before providing concluding discussion in Sec. 5.9.

5.1 Related Work

Many methods have been proposed to discover causal networks given a single
dataset (Spirtes et al., 2000a; Chickering, 2002; Shimizu et al., 2006; Peters
et al., 2014; Blöbaum et al., 2018a; Huang et al., 2018; Zheng et al., 2018a;
Mian et al., 2021), much fewer for doing so given data collected from multiple
environments (Zhang et al., 2017; Mooij et al., 2016), and only a small handful
for doing so when the data cannot be gathered centrally (Ng and Zhang, 2022).

Methods that can consider only a single dataset are not applicable in our
setting; even if we ignore all privacy aspects and were to centrally collect and
pool all data, it is well known that naively pooling the data can introduce
unwanted bias in estimation (Tillman, 2009). Methods that can consider mul-
tiple datasets, such as when data has been collected from different environ-
ments (Yang et al., 2018; Squires et al., 2020), come one step closer to the
scenario we consider in this paper. The most prominent approaches still com-
bine all data, adding one or more context variables to distinguish the rows of
the combined datasets, and then perform causal discovery on the augmented
data (Zhang et al., 2017; Magliacane et al., 2018). A very general such ap-
proach is the Joint Causal Inference (Jci) framework proposed by Mooij et al.
(2016), which permits any constraint-based causal discovery algorithm to work
with data from multiple environments. Each of these approaches require that
all data is available at one site, which is prohibitive in our setting.

Federated learning allows for learning without the need for centralized data.
Rather than sharing data with other nodes, the key idea in federated learning
is that we share (partial) local results. The topic of federated causal discovery
is relatively young. Proposals for federated causal inference (Xiong et al.,
2021) and federated causal discovery (Shimizu, 2012) require strong parametric
assumptions. Recent approaches avoid these, either by sacrificing convergence
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guarantees (Gao et al., 2021) or by sharing additional learning parameters (Ye
et al., 2022; Ng and Zhang, 2022). Although these methods do not directly
share data, by sharing completely specified local causal models they can provide
attackers sufficient information to reconstruct local data (Geiping et al., 2020;
Singhal et al., 2021).

In this paper we propose a framework for federated causal discovery that,
rather than parameters, only shares regret values. We build upon the idea of
regret-based learning to propose a theoretically sound score that comes with
strong privacy guarantees and achieves lower communication costs while scaling
up to 100 environments.

5.2 Preliminaries

5.2.1 Notation and Assumptions

We consider data consisting of m variables X = {X1, . . . , Xm} with Xi ∈ R,
split into d different environements D = {D1, . . . ,Dd} of sizes n(1), . . . , n(d).
We assume that each Di is drawn i.i.d. from a distribution Pi(X), which are
all are entailed by the same true causal network G∗ but where the parameters
associated with G∗ may be different between Di. Our goal is to solve the
following problem.

Problem Statement 5.1 (Informal) Given data X, discover the true causal
network G∗ in a federated (without pooling data) and privacy-preserving (with-
out sharing any models fit over individual datasets) manner.

Akin to previous chapters we need to assume 1) the causal Markov condi-
tion (Spirtes et al., 2000a), 2) causal faithfulness, and 3) causal sufficiency (Pearl,
2009), which makes it possible to discover causal networks from observational
data up to the Markov equivalence class (MEC). When all of the above as-
sumptions hold, algorithms such as Greedy Equivalence Search (Chickering,
2002) can discover causal networks, for a single dataset, up to Markov equiv-
alence (Glymour et al., 2019) i.e. partially oriented causal networks where all
collider structures are correctly identified. Unlike Chapters 2 and 3, however,
causal sufficiency and faithfulness assumptions may not always be necessary
and we provide a discussion in Sec 5.9 on how they can be avoided.

5.2.2 Greedy Equivalence Search

Greedy Equivalence Search (Ges) (Chickering, 2002) is a score-based causal
discovery approach that learns a causal network Ĝ from observational dataset
X. To do so it uses a scoring criterion L to measure how well a network
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G describes X. Starting from an empty network, Ges iteratively builds a
causal network through repeated forward respectively backward-search. In each
step of the forward search, Ges chooses a single edge addition to the current
best network such that the edge improves score the most and uses the new
network as the best network for the next step. Similarly, in each step of the
backward search, single edge deletions that improve score the most are chosen.
Each phase ends when no modifications of the current network improve score
anymore. Ges is guaranteed to return the correct Markov equivalence class as
n→∞ if the following two conditions hold:

1. L is decomposable.
2. L satisfies the (global) consistency property.

Decomposable Score A given score L is decomposable means that L can
be expressed as

L(X;G) =
m∑

j=1
lj(Xj ; paG

j ) ,

where paG
j are the parents of variable Xj in G and lj is only a function of Xj

and its parents.

Score Consistency Chickering (2002) defines consistency property of a
given score L as follows.

Definition 5.1 (Chickering (2002), Consistent Scoring Criterion) Let G,
H be any pair of DAGs, X be a set of data consisting of n records that are i.i.d.
samples from some distribution P (·). A (minimizing) scoring criterion L is
consistent if in the limit n→∞, the following two properties hold:

1. If H contains P and G does not contain P , then L(X;H) < L(X;G)
2. If H and G both contain P , and G contains fewer parameters than H,

then L(X;G) < L(X;H),

where contains means that G has the exact independence constraints implied
by P .

Despite its greedy nature, if L is consistent, Ges is guaranteed to find
a graph in the MEC of the true G in the large sample limit, although (in
the worst-case) this discovery could require runtime super-exponential in the
number of variables. Examples of decomposable consistent scores include the
Akaike’s Information Criterion (AIC) (Akaike, 1974), Bayesian Information
Criterion (BIC) (Schwarz, 1978) and scores defined using Minimum Description
Length (MDL) (Grünwald, 2007; Mian et al., 2021).

Ges, however, is limited to finding causal networks over a single dataset
and can therefore only be used to learn individual networks Gi for each dataset
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Di. To extend Ges to a federated setting, we require that we can measure the
score of a global network G relative to a locally learned Gi without knowing
what the local networks are. To do so, we introduce the concept of regret.

5.2.3 Regret

Given data D and some model M , from a model class M that explains the
data, let L(D;M) be a score function that is minimized when M is the true
model for X. Regret R(M) for a given model M with respect to data D is
defined as the difference in scores when evaluating D using M instead of the
best model M∗ for D. Formally stated

R(M) B L(D;M)− min
M∗∈M

L(D;M∗) , (5.1)

where we drop the dependence on the data D and write R(M) instead of
R

D
(M) to simplify notation. Simply put, regret measures how much worse the

proposed model M is compared to the best model for the data. If both M and
M∗ are present in M, R(M) is lower bounded by 0, which is achieved when
M ≡M∗.

5.3 Learning from Regrets

In this section we show that we can use regret defined in Eq. (5.1) to build a
score for federated causal structure discovery. Using such a regret-based score,
we can propose a straightforward algorithm to search for global causal network
over multiple private datasets without ever looking at the data or any of the
locally learned information. For our model class M defined in Eq (5.1), we
consider the space of all Directed Acyclic Graphs (DAGs), G. Hence for our
proposed setup we can write Eq. (5.1) as

Ri(G) B L(Di;G)− min
Gi∈G

L(Di;Gi) ,

where Ri(G) is the regret associated with dataset Di when using network G.
Now it becomes easy to see the merit of using regret from a federated learn-

ing perspective: Given a server S that aims to learn a global causal network
using d different sites, each with their own private datasets D1, . . . , Dd, S can
send a network G and a scoring criterion L to each site and optimize over re-
grets that it receives back. To do so, S needs to consolidate these regret values
received back from each site into a meaningful score. We propose this to be
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the worst-case regret calculated over all environments,

LF (G) B max
i
Ri(G)

= max
i

(
L(Di;G)− L(Di;Gi)

)
(5.2)

where Gi is the minimizer for L(Di; ·).
Using the aforementioned formulation, the goal of the server is to find

that network G that minimizes the worst-case regret among all the networks.
Formally stated

Problem Statement 5.2 Given samples X = {X1, . . . , Xd} corresponding
to d environments D = {D1, . . . , Dd} that share a common underlying causal
DAG, find Ĝ such that

Ĝ = argmin
G∈G

max
i
Ri(G) . (5.3)

This obtained network Ĝ is the one which trades off errors relative to one
local network Gi to another local network Gj and tries to jointly minimize
them. Such a Ĝ is the least bad network relative to any of the local networks.
To simplify notation, we use Xi and Di interchangeably from next section
onward.

5.4 Optimizing over Worst-case regret

Using the concept of regrets in Eq (5.1) and a consistent scoring criteria, we
can already propose a straightforward algorithm for federated causal struc-
ture learning. We refer to this basic ideas as Regret-based Federated Causal
Discovery (Rfcd). To this end, let A be any score-based structure discov-
ery algorithm, e.g. GES (Chickering, 2002) or GSP (Solus et al., 2017) and
let L be any consistent score used within A such as the BIC-score (Schwarz,
1978) or MDL-based score (Mian et al., 2021). Then we can replace the terms
minGi

L(Xi;Gi) in the regret term as follows

Ĝ = argmin
G

max
i

(
R̂i(G)

)
, where

R̂i(G) B L(Di;G)− L(Di; Ĝi) ,

where Ĝi is the graph learned by A on Di, and L(Di;G) is the score that
evaluates how well does G fit the data Di, The idea is that when A is a
consistent algorithm with respect to L then as n(i) →∞ we find that Ĝi → G∗,
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and subsequently argminGi
L(Di;Gi) → G∗. This means that for sufficiently

large datasets the above replacement is harmless.
Next, given the goal in Eq. (5.3), how do we estimate Ĝ? We can, in

theory, find the true causal network by exhaustively searching over the space
of DAGs and taking the one minimizes Eq. 5.4. Such an approach, however
quickly becomes infeasible as the space of DAGs grows super-exponentially in
the number of nodes and the loss landscape associated with L does not exhibit
any structural regularities, which makes optimal Bayesian structure discovery
NP-Hard (Chickering et al., 2004).

Nevertheless, in practice, we can implement the above approach as a beam
search which is guaranteed to find the optimum, given large enough beam size,
and also allows for reducing beam size to trade optimality for runtime. That is,
starting from the empty network G0 we evaluate at every step every one-edge
extension G of the b best networks Gt,1, . . . , Gt,b from the previous step and
keep the b best networks from the current step Gt+1,1, . . . , Gt+1,b. We repeat
this until no further extensions of any of the networks Gt,j improve upon the
best network already found. Then we set

ĜB = argmin
Gt,j

max
i

(
L(Di;Gt,j)− L(Di; Ĝi)

)
,

to be the best performing network discovered so far.
We can use the above formulation to perform federated causal discovery

as shown in Algorithm 5.1. Given a server S and d different sites D1, . . . , Dd,
the server communicates the algorithm A and the scoring metric L to each of
the clients. Each client then runs A on its own data to learn the local Ĝi (line
4). The server then sends an empty network G0 to each client and receives
the regrets r(i)

0 w.r.t locally learned networks back from each C(i). Next, the
server calculates the worst-case regret r0 (lines 5-7) and initializes a beam B of
size b with the state (G0, r0) (line 8). Then the search process begins. At each
search-step, all possible single edge extensions of each DAG in the beam are
enumerated and their worst-case regret calculated via communication between
the server and clients (lines 11-14). The top b extensions with lowest worst-case
regret are then retained as the new beam (line 15). An immediate advantage
of our search procedure is that it is guaranteed to converge. This is because
regret defined using a consistent score L used within A can never go below
0, and we only take steps that reduce regret. Hence we continue the search
until convergence. During the entire learning process, the server neither sees
the data, nor the locally learned causal networks for each dataset. The only
communication that takes place between server and client is the regret value
rG for a query DAG G.

Setting beam size to
(

m2

(m2−m)/2
)

is equivalent to an exhaustive search where
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Algorithm 5.1: Causal Discovery using Rfcd
Input: Algorithm A, Consistent scoring criteria L, beam size b
Output: Causal network G

1 B ← ∅
2 r0 = 0, G0 ← ∅
3 for i = 1 . . . l do
4 c[i].learn(A, L)
5 ri

0 ← c[i].regret(G0, L)
6 if ri

0 > r0 then
7 r0 ← ri

0

8 B ← B ⊕ (G0 , r0 )
9 repeat

10 Q← B.copy()
11 G← all admissible single edge extensions of DAGs in B
12 foreach G ∈ G do
13 rG ← max(c[i].regret(G,L)) for i = 1 . . . l
14 Q ← Q ⊕ (G, rG)
15 B ← first b entries in Q
16 until convergence;
17 G∗ ← first entry in B
18 return G∗

we are guaranteed to find the global optimum. This, however, is only suitable
for networks with small number of variables. Alternatively, setting b = 1 results
in a greedy DAG search algorithm which is only guaranteed to discover correct
causal network if the underlying structure is a tree. In practice, we find that
setting beam-sizes as small as 10 already performs well even though our search
is only guaranteed to find local optima in those cases.

Minimizing worst-case regret using beam search using Rfcd as shown in
Alg. 5.1 is a simple and straightforward idea. This, however, neither entails
theoretical guarantees for fixed beam size nor does it scale. To build an al-
gorithm that is scalable and entails correctness guarantees require us to prove
consitency property for our proposed score. This we do next.
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5.5 Consistency Guarantees for Worst-case Regret

An obvious consideration to solve both above mentioned limitations is to use
worst-case regret as a score within well established causal structural learning
algorithms such as Ges (Chickering, 2002; Ramsey et al., 2017). We can not,
however, directly plug in our proposed score into Ges as the latter requires the
score to fulfill certain properties. Therefore, we must first prove that worst-case
regret is both a decomposable, as well as consistent scoring criterion thereby
implying that the minimizer for Eq. (5.3) is the true causal network. This we
can prove for a class of regularization-based scores that we describe next.

To prove that the minimizer for Eq. (5.3) is the true causal network, we
consider scores, L(Di;G), of the form

L(Di;G) = L(G) + L(Di|G) ,

where L(G) is a function penalizing the complexity of the network G and the
parameters associated with the class of generating functions e.g. linear or
spline relationships between each variable and its parents, and L(Di|G) is the
log-likelihood of the data given the G.

We can now show that in the limit, when every site uses the same consistent
score L and obtains arbitrarily much data then our method is guaranteed to
find the correct MEC.

Theorem 5.2 Let G∗ be the true underlying causal network for all P (Di) and
let n(1) . . . , n(d) → ∞. Further let L be a consistent and decomposable score.
Then

lim
n(1),...,n(d)→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, maxi Ri(G) is consistent when all n(i) →∞.

We can further relax Thm. 5.2 to not require that every site’s amount of
data grows over time. In fact, as long as even one of the datasets grows, we
nevertheless find all edges.

Theorem 5.3 Let G∗ be the true causal network for all P (Di) and let N B
maxi n

(i) →∞. Further let L be a consistent and decomposable score. Then

lim
N→∞

P
(
Ĝ ⊒ G∗

)
= 1 .

For scores L, like AIC, the correct MEC is generally impossible to recover
precisely because the penalty for additional edges does not scale with the num-
ber of data points. In contrast, for the BIC score this is not an issue.
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Algorithm 5.2: Peri for federated causal discovery
Input: Scoring criterion L
Output: Causal network G

1 for i = 1 . . . d do
2 site[i].Ges(L)
3 G∗ ← ∅
4 Define LF (G) B maxi [L(Xi, G)− L(Xi, Gi)]
5 repeat
6 G∗ ← server.ForwardEqvSearch(G∗, LF )
7 G∗ ← server.BackwardEqvSearch(G∗, LF )
8 until convergence;
9 return G∗

Corollary 5.4 Let the assumptions of Thm. 5.3 hold and let L be the BIC
score. Then

lim
N→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, the score maxi Ri(G) is consistent when L incorporates a BIC-penalty
for parameters and N →∞.

The proof of Cor. 5.4 applies equally to any other consistent criterion where
the parameter-penalty grows strictly with sample size, e.g., MDL-based scores
such as those used in Globe or Orion. In Sec. 5.9 we discuss how to extend our
work to other types of scores. These results imply that Ri(G) remains both
a decomposable and a consistent scoring criterion as long as L used within
Ri(G) is consistent. We can hence, as explained in Sec. 5.4, define Ri(G) using
any consistent L and perform a search for the underlying causal network G
by exhaustively evaluating all possible causal networks and choosing one that
minimizes Eq (5.3). Moreover using our derived consistency guarantees, we
can now instantiate our search more efficiently making it scale with increasing
number of variables, using any of the well known causal discovery algorithms.

Using these results we show in the next section how we can instantiate an
efficient regret-based causal learning framework, while maintaining correctness
guarantees.

5.6 The Peri Framework

Using consistency results derived in 5.5 we now describe Peri, a score-based
federated causal discovery approach for distributed environments. For this
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explanation we consider the well-known Ges algorithm. Peri, however, can
be applied to any score-based algorithm with likelihood-based scoring criteria.

Let L be any consistent score used within Ges, such as BIC, and let LF

be the composition that calculates the worst-case regret using L as defined
in Eq.(5.2). Then LF can be used as a consistent score within Ges (Thm. 5.3,
Cor. 5.4) to discover causal networks in a federated fashion. As a result, we
can perform federated causal discovery as shown in Algorithm 5.2. Given a
server S and d different sites, each with their own private datasets D1, . . . , Dd,
the server communicates L to each of the sites. Each site then learns a local
network Gi using Ges (lines 1-2). The server then instantiates LF as defined
in Eq. (5.2) (line. 4) and runs its own Ges using LF . In the forward pass (line.
6), the server communicates the best discovered network Gt, at iteration t, to
all sites. Each site converts Gt to the MEC Et and calculates regret over all
possible single edge extensions of Et. The list of these scores is communicated
back to the server. Next, the server chooses the network Gt+1 with the lowest
worst-case regret among all these extensions and sets this network as the best
network for the next iteration. The forward search ends when no extensions of
Gt improve the score anymore. The backward search (line. 7) is analogous to
the forward search except that the regret scores are calculated over single edge
deletions of Et at each iteration. We repeat the search process until convergence
(line. 8). During the learning process, the server neither sees the data, nor
knows the local models for any site. The only communication that takes place
is the list of regret values for networks in the MEC for the query DAG Gt.

This proposed approach has several advantages: First, the regret for a query
network can be calculated locally at each site and returned back to the server,
requiring no communication of model parameters — the job of the server is to
choose the worst-case regret for a given network G. Second, Peri is guaranteed
to converge. This is because regret is lower-bounded by 0, and we only take
steps that reduce regret. Third, we do not need any additional assumptions
except the ones required for L — to be used within Ges we require L to be
decomposable and consistent. Peri, in fact, can be viewed as a generalization
of Ges to multiple datasets as Peri for a single site simplifies to Ges.

5.7 Privacy Guarantees

With the framework explained, we now describe how we can go an extra step
and guarantee differential privacy using Peri. Intuitively, sharing only re-
grets reveals less about local data than sharing model parameters and causal
networks: Attackers can infer membership in local datasets from model param-
eters (Shokri et al., 2017; Ma et al., 2020) and even reconstruct local datasets
from model updates (Zhu and Han, 2020). Moreover, model parameters allow
an attacker to craft poisoning and backdoor attacks (Sun et al., 2019). Shar-
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ing only causal graphs still does not fully protect local data, since "a causal
graph can leak information about participants in the dataset" (Wang et al.,
2020). Peri shares only regret values, but local causal networks can be re-
constructed by optimizing Eq. (5.3) with respect to the target site, which in
principle remains NP-hard (Chickering et al., 2004).

By applying the Laplace mechanism (Dwork et al., 2006), i.e., adding ap-
propriate noise to the regret values, we can guarantee that sensitive local data
is protected in terms of ϵ-differential privacy. To prove this guarantee holds,
it suffices to show that all regrets Ri have bounded sensitivity. For that, we
assume that G corresponds at each site i to a parameter vector θ(i) such that
Xj is modeled via X(i)

j = f(paj , ϵj ; θ(i)) with independent noise ϵj . We assume
that our score L is well-behaved in the following sense: when Xi is of size n
and X ′(i) differs in one element from Xj then the corresponding optimizers
for L differ by

∥∥θ(i) − θ′(i)
∥∥

1 ∝ 1/n. This assumption holds for many learning
algorithms, e.g. convex empirical risk minimization with finite VC-dimension
or Rademacher complexity (Von Luxburg and Schölkopf, 2011).

Lemma 5.5 Assume that Pi(x; θ) is uniformly lower-bounded bounded by r,
i.e., ∀x ∈ X ∀θ ∈ Θ : Pi(x; θ) ≥ r, that ∥θ∥ ≤M for all local model parameters
θ ∈ Θ, and that the score L is partially differentiable with respect to θ. Let X(i)

and X ′(i) be datasets that differ in a single element, i.e. X(i) \ X ′(i) = xk, θ
and θ′ the respective local parameters, and R̂i(G) and R̂′

i(G) the respective
regrets. Assume that ∥θ − θ′∥1 ≤ 2M/n. Then the sensitivity ∆R̂i of the regret
is bounded by

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ ≤ (4M + 1) log r +O

(
logn
n

)
.

With this, it follows from the Laplace mechanism (Dwork et al., 2006) that
adding Laplacian noise to regrets before sending them to the server guarantees
ϵ-differential privacy.

Proposition 5.6 Assume that each local regret R̂i has sensitivity ≤ Q. Then
Peri with i.i.d. Laplace noise with scale λ = Q/ϵ added to each R̂i is ϵ-
differentially private.

In practice, adding noise can deteriorate the training process, but we show
in Sec. 5.8 that the practical performance of Peri is robust against noise added
to local regret values and that it performs well under privacy requirements.
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5.8 Evaluation

5.8.1 Setup

We instantiate Peri using three consistent scoring criteria, which are: the
AIC (Sakamoto et al., 1986), BIC (Schwarz, 1978) and spline-based MDL
score (Mian et al., 2021). We refer to these instantiations as Peri-Aic, Peri-Bic
and Peri-Mdl respectively. Since Ges could get stuck in local-optima when
discovering local causal networks with limited sample sizes (Lu et al., 2021),
for practical reasons we run Peri in two rounds to prevent it from being misled
due to incorrectly discovered local networks: first we use Peri to learn G̃ using
the local Gi for each environment. Next, we learn the actual G∗ using Peri
by enforcing G̃ as the local model for all environments.

We compare to RFcd (Mian et al., 2022) as representative score-based ap-
proach. As representative ANM based method we compare to Direct-Lingam
(Shimizu, 2012), which is a modified version of the original Lingam (Shimizu
et al., 2006) for causal discovery over multiple groups. We compare to the
nonlinear version of NOTEARS-ADMM (NT-Admm) (Ng and Zhang, 2022)
as continuous optimization based federated causal discovery approach. Both
of the above approaches require that the model parameters be communicated
between server and sites. As baseline, we use Ges (Chickering, 2002) to locally
discover causal networks within each environment and take a union over the
discovered networks to predict the global causal network. While no parameter
exchange takes place, the local causal networks are still shared with the server.
For this particular work we cannot compare to approaches like Orion (Mian
et al., 2023b), Continent (Mian et al., 2024), CdNod (Zhang et al., 2017)
or Jci (Mooij et al., 2016) as these methods require that we first pool all data
and are therefore not applicable to our setting.

We evaluate the predicted networks in terms of structural similarity using
the Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) — which
counts the number of edges where two networks differ. For comparability across
multiple experiments, we normalize SHD to be in the range [0, 1]. To measure
correctness of edge orientations in the predicted networks, we use the F1 score.
For synthetic data, we terminate all experiments that do not finish within 24
hours. We standardize all data to have zero mean and unit variance to avoid
practical issues like var-sortability (Reisach et al., 2021) and make all code and
data available for research purposes.2

2https://eda.rg.cispa.io/prj/peri/
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Figure 5.1: [Top, Lower is better] SHD and [Bottom, Higher is better] F 1 over environ-
ment size d = {3, 5, 7, 9}. Peri-Mdl performs the best overall.

5.8.2 Results

Next, we provide empirical results of our work on Peri. We extensively test
Peri using both synthetic and real-world data and evaluate Peri ’s perfor-
mance on five distinct aspects: 1) causal discovery in our intended setting 2)
causal discovery when only a subset of environments are available at each learn-
ing iteration, 3) performance under privacy considerations, 4) communication
efficiency, and 5) causal discovery on real-world data.

Causal discovery in our intended setting We start with the simplest
setting where we generate multiple datasets using the same underlying distri-
bution. We have number of environments d ∈ {3, 5, 7, 9}, number of variables
m ∈ {5, 10, 15}, and samples per environment n = 5000 as our experimen-
tal setting. We perform a total of 52 experiments for each m. We simulate
DAGs using the Erdős-Rényi model and generate each effect, Xi from its par-
ents pai using functions of the form Xi = f(pai) + ϵi, where f is a non-linear
function defined over pai, and ϵi is independent additive noise Gaussian noise
with zero mean. We generate complex causal relationships by defining f to
be a randomly initialized 2-layer neural network, using the causal discovery
toolbox (Kalainathan and Goudet, 2019).

We report the results across varying number of environments in Fig. 5.1
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Figure 5.2: [Top, Lower is better] SHD and [Bottom, Higher is better] F 1 over networks
with variable count m = {5, 10, 15}. Peri-Mdl consistently performs the best overall.
Rfcd does not terminate within 24 hours for any 15 variable networks.

and for different sized networks in Fig. 5.2. We see that overall Peri-Mdl
outperforms all other approaches in terms of both SHD as well as orientation-
F1. One reason for this is that spline-based MDL score uses non-parmetric
regression to model causal relationships and is therefore able to identify the
causal parents with higher accuracy. This is in contrast to Peri-Bic and
Rfcd-B, both of which use the BIC score with a lenient parameter penalty
which could support inclusion of spurious edges. We see in Fig. 5.2 that both
Rfcd variants, despite their competitive performance, fail to scale to networks
with m = 15. Moreover we find that baseline Ges has better F1-scores than
Lingam and NT-Admm..

Discovering networks when only a subset of environments are
available As our next experiment, we generate data using two well known
causal structures, namely the Asia (Lauritzen and Spiegelhalter, 1988) and
Waste (Lauritzen, 1992) networks. We generate a total of 10 experiments,
each containing 100 unique environments. At each round of update, we allow
the methods to only query a fraction s ∈ {0.2, 0.4, 0.6, 0.8, 1.0} of randomly
chosen environments. We average the results over 30 iterations of each experi-
ment for Peri-Mdl, Peri-Bic and Peri-Aic whereas for NT-Admm,Rfcd-M
and Rfcd-B we average over 10 iterations due to longer run times. We omit
Lingam as it does not contain a mechanism to query a subset of environments.
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Figure 5.3: [Lower is better] Averaged SHD over Asia (Left) and Waste (Right) net-
works when querying only a subset s of environments. Peri-Mdl performs best. Results
for Peri progressively improve as more environments are allowed to be queried. Rfcd-B
and Rfcd-M do not finish within 24 hours for any experiments with s > 0.4.
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Figure 5.4: [Lower is better] Averaged SHD over Asia (Left) and Waste (Right)
networks with d = 100 and Laplace noise on regret values with scale parameter
λ ∈ [0.0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. Peri-Mdl deteriorates the slowest. Rfcd
is omitted as it does not produce any output after 24 hours for this experiment.

We show the results in Fig 5.3 where we see that Peri-Mdl performs the
best overall. All of the Peri approaches show improvement in results as the
available number of environments increase. Surprisingly, NT-Admm shows in-
consistent performance which initially improves with increasing environment,
but subsequently worsens even when all of the sites are available.

Performance under privacy considerations We test the effect of adding
Laplacian noise with 0 mean and increasing scale λ over the range [0.01− 100]
to the values of regret before communicating the regret values to the server.
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Figure 5.5: [Lower is better] Average number of parameter values, T , communicated to
infer causal structures over Asia and Waste networks at d = 100. For baseline Ges, the
number of parameters is always 6400 and 8100 for Asia resp. Waste networks. Neither
Rfcd-M nor Rfcd-B produce any results within 24 hours for d = 100. We therefore
report their results for d = 40.

The results in Fig. 5.4 indicate that Peri is robust to Laplacian noise. Indeed,
the performance of Peri does not change significantly with λ up to 1; and not
even with λ = 10 when we use MDL. Since the larger noise corresponds to
stronger privacy guarantees, this implies that Peri performs well under pri-
vacy requirements. We find that neither Rfcd-M nor Rfcd-B produced any
output after 24 hours for any of the settings in this experiment.

Communication efficiency To measure communication efficiency between
server and sites, we investigate the total rounds of communications required
by each approach to infer a causal network. Overall Peri-Mdl is able to
discover the causal network on average 15 rounds of communications for the
Asia network, with Peri-Bic and Peri-Aic following closely with 21 resp. 23
rounds. This is much less than NT-Admm which always terminates after the
max iteration cap of 176 rounds set by Ng and Zhang (2022). This means that
the number of parameters that Peri exchanges during the course of learning
for both Asia and Waste networks are significantly less than NT-Admm and
Rfcd as we show in Fig. 5.5.

Real world Data To see how well Peri performs on real-world data, we
consider three distinct real-world networks. We consider two non-overlapping
networks of sizes {5, 15} from the Lung cancer gene-expression dataset (Reged)
(Statnikov et al., 2015). For each of the Reged networks we generate 9 distinct
environments without any sample overlap, each with 2000 samples per environ-
ment. Third, we consider the Sachs protein signaling network (Sachs et al.,
2005) consisting of 11 variables, already measured over 9 distinct environments.
The Sachs dataset provides a challenging setting since each environment has
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Table 5.1: [Lower is better] SHD for multiple real-world networks. Peri-Mdl discovers
the exact ground truth for both Reged 5 and Reged 15.

Reged 5 Reged 15 Sachs

Peri-Mdl 0 0 18
Peri-Bic 1 25 18
Rfcd-M 0 5 17
Rfcd-B 1 37 18
Lingam 4 26 17

NT-Admm 6 23 23
Ges 2 55 25

its data generated from a different intervened-upon causal network. This vio-
lates our assumption of a common, shared ground truth network.

We see from the results in Table 5.1 that Peri-Mdl discovers the exact
ground truth for both Reged 5 and Reged 15 networks and is marginally
outperformed by Lingam on the assumption-breaking case of Sachs dataset.
We find that Rfcd-M, which also uses a spline-based MDL score, recovers the
correct causal network for Reged 5 but fails to do the same for Reged 15.

5.9 Discussion

We considered the problem of discovering causal networks in a federated setup.
We have proposed a new method Peri that allows us to discover causal net-
works in a privacy-preserving manner. Extensive experiments on diverse set-
tings show that Peri outperforms the state of the art in federated causal dis-
covery, both in quality of the discovered causal networks and communication
efficiency while providing privacy guarantees on top of it.

We considered three different scores to instantiate Peri: AIC (Akaike,
1974), BIC (Schwarz, 1978), and spline-based MDL score (Mian et al., 2021).
We found that while all three work well, the MDL score overall works best in
practice. One of the reasons for the superiority is the ability of the proposed
MDL score to model causal relationships non-parametrically in combination
with an adaptive penalty for the parameters, rendering the method robust
even when large noise values are added to regret.

We discover the global DAG by sharing only regrets, but we do not obtain
the global models for each causal relationship; methods that share local model
parameters do obtain them, at the cost of privacy and communication. We
could additionally measure the regret with respect to global parameters θ. In
such a scenario, the server proposes both G and θ to each site, instead of
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sending G alone. The conditions under which the parameter space Θ can be
efficiently searched remains an open question.

We have used orientation-F1 to measure the correctness of edge orientation.
Alternatively, one could consider the use of Structural Intervention Distance
SID (Peters and Bühlmann, 2015), which measures the number of intervention
distributions where two networks differ. It is, however, not straightforward
to interpret SID between two Markov equivalence classes. This is because, as
opposed to SHD, the SID of the ground-truth Markov equivalence class with
itself is almost always non-zero. This makes SID dependent on the underlying
Markov equivalence class and incomparable across experiments.

While in this work we instantiate Peri using Ges, regret-based federated
causal discovery framework is agnostic of the underlying causal discovery al-
gorithm: For any score-based causal discovery algorithm A and a consistent
score L̃ with respect to A, if LF defined in Eq. (5.3) can be proven to be con-
sistent for L̃, we can simply replace Ges in Algorithm. 5.2 with A and perform
federated causal learning using L̃ as the score. This implies that, unlike Ges,
if A does not require the faithfulness assumption as in the case of Gsp (Solus
et al., 2017), we can perform causal discovery without the latter. How to pre-
serve guarantees for such score-based approaches, as well as for the ones that
consider a mixture of observational and interventional data (Yang et al., 2018;
Squires et al., 2020; Brouillard et al., 2020) is an engaging line of future work.

5.10 Conclusion

We proposed to perform privacy-preserving federated causal discovery by dis-
tributed min-max regret optimization. To do so we proposed, Peri, an ap-
proach that can be instantiated using Ges in a score-agnostic fashion. We
have designed Peri such that clients only need to communicate local regret
values, instead of model parameters, to the server, through which we ensured
the privacy of sensitive local data. We instantiated our proposed framework
using AIC, BIC and MDL scores. Through extensive experiments, we showed
that Peri beats the state of the art by a clear margin and reliably discovers
causal networks without ever looking at local data or local causal structures
and requires orders of magnitude lower communication cost.



Chapter 6

Conclusion

In this thesis, we focused on developing sound causal discovery algorithms that
can be applied to practical scenarios because of their mild assumptions. We
specified common scenarios that may occur in practice, and subsequently pro-
posed causal discovery methods applicable to them. Specifically, these included
discovering fully oriented causal networks, discovering causal networks under
unknown interventions, online causal discovery, as well as privacy preserving
causal discovery. Each of these practical aspects constituted a sub-quest of our
overarching goal. In the following sections, we summarize our contributions
with respect to each of the above-mentioned practical scenarios as well as pro-
vide an outlook of limitations that still exist and where the road leads from
here.

6.1 Summary of Contributions

The first practical aspect that we addressed was discovering fully oriented
causal networks i.e. going beyond Markov equivalence classes. Existing meth-
ods, to this end, needed limiting assumptions that hampered their performance
in practice. We defined our causal model to consist of non-linear functions with
additive Gaussian noise, defined a lossless MDL encoding to compress data un-
der this model, and proved that this score identifies the correct fully oriented
causal network in the limit. We then tackled this problem using the algo-
rithmic model of causality using the algorithmic Markov condition (AMC) as
introduced by Janzing and Schölkopf (2010a). As AMC depends on measur-
ing Kolmogorov complexity, it is not directly computable. We can, however,
approximate it from above using the Minimum Description Length (MDL)
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principle (Grünwald, 2007). Keeping true to our goal of practically applica-
ble causal discovery, we proposed a practical Globe algorithm that greedily
searches for fully oriented causal networks and runs in time polynomial to the
number of nodes. To avoid assumptions on the functional form, we modeled
the causal relationships using non-parametric regression splines. We showed
through extensive experiments that our proposed method works well in prac-
tice and beats the state-of-the-art in discovering fully oriented networks, even
though the theoretical guarantees entailed by our proposed score were limited
to causal trees in case of greedy search.

While it worked well in practice, it is not a silver bullet and we identify
room for further advancements from here on. One such avenue is to improve
the search strategy: our experiments indicated that the nature of Globe can
cause it to get stuck in local optima. While exhaustive search is infeasible
due to NP-hardness of the problem, continuous-optimization-based approaches
like NoTears (Zheng et al., 2018b), or iterative sink/source selection ap-
proaches (Peters et al., 2014) offer promises as alternate search approaches.
Globe assumes causal sufficiency, i.e., there are no unobserved confounders
and, whenever this assumption is broken, could lead to incorrect results. Re-
cent work from Kaltenpoth and Vreeken (2019, 2023a,b) establishes important
identifiability results towards causal discovery with hidden confounding. This
opens up interesting avenues of research for practical causal discovery where
we can relax the sufficiency assumption for certain scenarios. We could for
example do this by using a different score, whose correctness does not depend
on assuming causal sufficiency, within Globe.

Next, we considered the case where potentially non i.i.d. data over the same
set ofvariables may come from multiple, different sources. As each of these
datasets may have non-identical distributions and could contain (unknown)
interventions, it is not possible to stack such data together without violating the
i.i.d. assumption required by existing approaches. To this end, we considered a
setting where we learn both the underlying causal network resp. interventions
from such data. We turned to the algorithmic model of causation for the
second time, and built on Globe to develop a theoretically sound MDL score
for jointly discovering the causal model and local interventions. Moreover, we
provided a practical, highly parallelizable algorithm, Orion, to optimize this
score. Unlike existing work, we explicitly avoided assuming prior knowledge of
which datasets were observational or interventional and made no assumptions
about the functional form of causal relationships. Through extensive evaluation
we showed that Orion predicts both structurally and causally better networks
than the state-of-the-art in multi environment setting.

Again, there is still room for further development. In addition to exploring
different search strategies and handling sufficiency violations like with Globe,
we can work on enhancing our proposed score to incorporate other types of in-
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terventions such as stochastic or edge-introducing interventions. There exists
work that establishes theoretical results on when such interventions are iden-
tifiable (Correa and Bareinboim, 2020a,b) and a few recent methods that can
identify mechanism change interventions (Jaber et al., 2020; Mameche et al.,
2022, 2023). Causal discovery for edge introducing interventions, however, is
still an open line of work. As a starting point, we could consider defining an
encoding scheme that assumes that interventions occur with low probability
and thus treat only the most "frequent" edges as part of the true causal graph.
Verifying whether such a score retains soundness guarantees is an interesting
line of future work. On one hand, developing approaches for edge introducing
interventions while maintaining identifiability guarantees is challenging in that
it necessitates redefining our definition of a "true" underlying causal network.
On the other hand, it can move us one step forward in modeling real world
causal relationships better.

The above problem setups required that we had static, fully-specified data
sets, all generated by the same underlying causal network. In practice data of-
ten arrives in batches over time. Not only does this mean that we need to learn
and update our causal hypothesis over time, but each episode likely contains
samples from a specific time period, or worse, from a different causal network.
This became our next quest, and to achieve this, we proposed an approach
that could avoid learning the causal model from scratch upon the arrival of
each episode, and could instead learn it in an online fashion. We proposed a
consistent strategy to continually update the causal hypothesis, using distri-
bution matching and an information-theoretic perspective of causality. To the
best of our knowledge, our method Continent is the first causal discovery ap-
proach that can learn causal networks in an online fashion. Using Continent,
we could address a novel experimental setting where different causal networks
underlie episodic data and we predicted, for a new incoming episode, which
causal network it is generated from without explicitly having to learn a net-
work over the incoming episode.

While online learning of causal networks is a step forward, there remain
some practical limitations: while in theory we would never "merge" two datasets
with different underlying causal networks, in practice this happens quite often.
These wrong merges, consequently, mislead the search process. While not
trivial, including steps to identify and rectify incorrect episode merges is an
interesting line of future work. Moreover, we saw that we can recast our search
problem as learning from (pre-specified) missing data, where our guarantees
only hold for missing completely at random (MCAR) or missing at random
(MAR) types of missingness in data. Going forward we could investigate a
more general setup where data is missing not at random (MNAR) and there-
fore, episodic selection bias may exist even in the limit. Causal inference (Mo-
han et al., 2013) and causal discovery (Tu et al., 2019; Ma and Zhang, 2021;
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Gao et al., 2022; Kitson et al., 2023) from missing data has recently been an
active field of research and these results point us in an interesting direction on
how to build causal discovery methods for online learning by extending such
approaches.

Orthogonal to the setting of online learning was the privacy consideration
that lies at the heart of many real world applications such as healthcare. In
such settings we could neither pool data, nor expect it to arrive over time. This
introduced its own set of additional challenges and constraints. To develop a
causal discovery algorithm for privacy sensitive scenarios, we focused on how
we can discover the global causal network without ever sharing any data, model
parameters, or even local causal networks— using regrets. We developed a gen-
eral framework that can be instantiated using any score-based causal discovery
approach, and a consistent score therein, all while optimizing over worst-case
regret. Crucially, we showed that using the Laplace mechanism on the shared
regrets guarantees ϵ-differential privacy. To keep true to our goal of practi-
cal causal discovery, we showed that our method discovers causal networks of
higher quality than the baseline on both synthetic and real-world data, even in
stochastic communication setting, for as many as 100 distributed environments
— while requiring orders of magnitude less communication.

Regret-based causal discovery in itself promises to be a powerful notion
and opens up avenues for us to harness it further. Going forward we could
investigate how we can extend this to learning not just the causal structures
but also the model parameters such that we can also learn the underlying SCM
across different domains. Naturally, this will have its own set of additional
challenges such as assuming that each site has the same network resp. SCM,
as well as the consideration on how to maintain privacy guarantees once model
parameter communication starts to happen. Furthermore, we could investigate
how to extend our approach to discovering causal networks in a setting where
unknown interventions exist within each private site.

6.2 Future Research Directions

In this work, we made efforts to develop practically applicable causal discovery
approaches. While we have taken steps forwards, a number of questions and
practical issues remain wide open. In the following, we highlight some of these
existing questions and discuss directions we could take.

An important, looming practical assumption that remains to be addressed
is that of causal sufficiency. Neither does this assumption usually hold in prac-
tice nor is it trivial to verify. Yet, we need it so that the edges in a learned DAG
can be interpreted to carry a causal meaning. In practice, this assumption can
be very tricky to handle. One of our proposed approaches, Continent, re-
laxes this assumption slightly in that it does not require selection variables to
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be explicitly observed provided that they are all sink nodes. The latter, how-
ever, is only a specific case. There exist approaches to directly check whether
selection bias may be present in data (Kaltenpoth and Vreeken, 2023c), as well
as to identify if a set of given variables cause a target variable, or if all the
variables are jointly confounded (Kaltenpoth and Vreeken, 2019). Recent work
from Kaltenpoth and Vreeken (2023a,b) extends this idea further to establish
results on assumptions under which we can simultaneously recover confounders
and learn a causal network from given observational data. This line of work is a
useful launchpad when it comes to developing practically applicable approaches
that relax sufficiency assumption. A regret-based algorithm, for example, where
we develop a "confounder-aware" score and optimize over worst-case regret is an
interesting future direction. Another aspect that can be investigated is using
this confounder knowledge to learn causal networks under partial observability,
i.e. where different datasets have a partial variable overlap. Then, knowledge of
confounders can be consolidated with existing variables to draw inference over
the causal structure governing the full set of variables. Investigating whether
we can do the same for multiple datasets with unknown interventions, could
prove to be a more challenging yet intriguing line of future work.

The methods that we developed in this work are designed to work with
continuous-valued data. Extending these to discrete data is straightforward
(just use an equivalent MDL score for discrete type data) and may even allow
for stronger theoretical guarantees (Budhathoki and Vreeken, 2017). Doing
the same for mixed type data, however, is far from simple. In theory, one
could develop a sound MDL score to encode variables based on their type. In
practice, this might not work An evidence for this was also shown by Marx
and Vreeken (2018) where the scale of MDL score could be disparate between
continuous and discrete type values. This was due to encoding of "noise" re-
quiring elevated number of bits for continuous valued variables as compared
to their discrete counterparts. To the best of our knowledge, this remains an
open research question and it is possible that the solution to such a prob-
lem lies in investigating existing methods inspired from kernalized conditional
independence tests (Fukumizu et al., 2007; Zhang et al., 2014). One such
score-based method using kernel regression has been proposed by Huang et al.
(2018). While their method can still only give us partially oriented causal net-
works, the authors note that under their kernelized regression framework the
true causal network within the underlying Markov equivalence class frequently
ranks higher in terms of "likelihood-score" than its counter-parts. This hints
that we may be able define MDL scores based on kernel regression, for mixed
type data, to circumvent score disparity across different data types, while still
being able to learn a fully oriented causal DAGs.

Among other practical problems that discrete optimization discovery algo-
rithms like Globe and Ges suffer from, is the super exponential growth of
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search space with increasing number of variables. It is well known that exhaus-
tive search is NP-hard (Chickering et al., 2004). To have practical, scalable im-
plementations, existing methods employ either edge-greedy (Chickering, 2002;
Bühlmann et al., 2014; Mian et al., 2021), or node-greedy (Peters et al., 2014;
Squires et al., 2020) search. This comes at the cost of undermined theoretical
guarantees, as greedy algorithms are not guaranteed to find the global optimum
of an objective unless we place convexity assumptions on the objective plane.
Recent work by Zheng et al. (2018b) gives us an alternate way to solve this
partly by reformulating the structure learning problem as a purely continuous
optimization problem over real matrices, completely avoiding the combinatorial
constraint. While this helps with scalability, work needs to be done to prove
causal consistency of methods using such approaches. Even though a number
of methods exploit this result (Yu et al., 2019b; Kyono et al., 2021), they lack
correctness guarantees, as they wrongly assume the acyclicity constraint alone
to imply causality. This gives us an engaging research area to explore, where we
could investigate developing methods based on continuous optimization while
maintaining consistency guarantees. An ambitious (maybe even wishful) but
exciting direction of work would be to marry approaches that investigate be-
havior of loss surfaces with approaches for continuous optimization structure
learning to see if we can find conditions under which we can find that causal
structure which achieves global optimum, using continuous optimization.

In addition to the directions proposed above, several other aspects have a
potential for investigation. Causal discovery for time series, for example, poses
unique challenges and needs specialized algorithms. Unlike i.i.d. data, tem-
poral data involve a time aspect, making traditional i.i.d. causality definitions
philosophically incompatible with those for time series. Causal discovery ap-
proaches for time series (Chu et al., 2008; Papana et al., 2016; Nauta et al.,
2019; Runge, 2020; Assaad et al., 2022) have been an active area of research
lately and could give us challenging new practical problems to investigate. We
could say the same can for causal discovery from missing data (Tu et al., 2019;
Ma and Zhang, 2021; Gao et al., 2022; Kitson et al., 2023). For missing data, in
particular, finding causally consistent data imputations can be an interesting
practical application and is an intriguing line of future work.

To conclude, in this dissertation we made a humble attempt to allow the
power of causal reasoning to become more applicable to more real world appli-
cations. We did so by pointing out practical limitations of existing methods and
proposing novel approaches that could circumvent these limitations. Despite
our efforts, we still have work to do. We hope to further explore the future work
avenues discussed in this chapter in our attempts to continue making causal
discovery practically applicable for an even wider range of applications.







Appendix A

Proofs

A.1 Discovering Fully Oriented Causal Networks

Theorem 2.1 Given a causal model as defined in Eq. (2.2) and corresponding
data Xn drawn iid from joint distribution P . Under Assumptions (1) and (2),
L(Xn,M) asymptotically behaves like BIC.

Proof: [Score Consistency]First note that we can rewrite the encoding of the
residuals L(ϵ) as

c1n log σ̂2 +O(1),

where the additive constant is independent of the model.
Next, we upper bound L(M). From Assumption (1) we get that |H| ∈

O(logn). Per hinge we need to encode the number of multiplicative terms
LN(Tj), the function type per term Tj log |F|, the number of possible assign-
ments from terms to parents log

(|S|+Tj−1
Tj

)
and the parameter vector per hinge

Lp(θ(hj)). Each parameter vector is constant, by Assumption (2). Since the
number of parents are independent of n as they are fixed for a certain net-
work, the number of possible interacting terms Tj is also constant w.r.t. n,
which means that for large n LN(Tj), Tj log |F| (for a finite function class) and
log
(|S|+Tj−1

Tj

)
are also constants. Since we encode for each non-source node a

function where we need to encode each hinge, we get an asymptotic complexity
of

c2 logn+O(1).

In addition, we need to encode the parents and number of hinges for each node,
which adds to the constant term. Combining the above statements, we arrive
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at
c1n log σ̂2 + c2 logn+O(1) .

If we set c1 = 1 and c2 = d
2 , where d is the number of degrees of freedom of the

model, we arrive at the BIC score. □

A.2 Causal Discovery over Multiple Environments

Lemma 3.1 ∀i, k Hi(Xk
i ) ⇐⇒ pak

i = ∅ , and Si(Xk
i ) ⇐⇒ pak

i ⊂ pai

Proof: [Identifiability of Interventions]Assume that we are given the true
causal network G∗ for an SCM as well as the dataset Dk over the same SCM
for which Si(Xi) holds.

First, we prove the direction pak
i ⊂ pa∗

i −→ Si(Xk
i ). Assume that pak

i ⊂ pa∗
i

holds but Si(Xi) does not, then Xi in Dk is calculated as

Xk
i :=

p∑
j=1

fk
j (Sk

j ) , (A.1)

with p = 2|pak
i | and h and S defined according to our causal model in Section 3.2

of the main text, whereas Xi in D∗ is calculated as

X∗
i :=

q∑
j=1

f∗
j (S∗

j ) , (A.2)

with q = 2|pa∗
i |. Under our assumption that the causal model does not change

unless an intervention is performed, equations (A.1) and (A.2) should be equal
and we can therefore write.

p∑
j=1

fk
j (Sk

j ) =
q∑

j=1
f∗

j (S∗
j ) , (A.3)

Without loss of generality, we can re-write r.h.s of the equation. (A.3) as
two summations as follows,

p∑
j=1

fk
j (Sk

j ) =
p∑

j=1
f∗

j (S∗
j ) +

q∑
r=p+1

f∗
r (S∗

r ) , (A.4)

where the summation
∑p

j=1 on both sides of the equation, corresponds to the
same indices of the generating functions as well as the same corresponding
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subset of parents. The summation over r on the r.h.s of eq. (A.4) contains all
the remaining subsets over the power set of pa∗

i . Note that the set of non-linear
functions h, over all possible combinations of parents in the power set P(pai)
of Xi’s parents form a basis and therefore are linearly independent, this implies
that the first summation term on the r.h.s is equal to the summation on the
l.h.s which in turn implies

q∑
r=p+1

f∗
r (S∗

r ) = 0 .

This is possible in one of the two cases: (1) if the basis functions are a linear
combination of each other or (2) if the coefficients associated with each of the
basis functions is 0. The former we have already ruled out, whereas the lat-
ter implies that the coefficients of all the basis f∗

r (S∗
r ) are zero, which implies

that there is no edge incoming to Xi in G∗ for this set of parents, which is a
contradiction.

Next we prove the direction Si(Xk
i ) −→ pak

i ⊂ pa∗
i for Lemma 2. Assume

that Si(Xk
i ) holds, pak

i are the actual set of Xi’s parents in Dk after Si(Xk
i )

but we instead find pa′
i such that pa′

i = pa∗
i .

Recall that since we are using regression, our aim for Xi ∈ Dk is to mini-
mize

E


Xi −

q∑
j=1

fj(Sj)

2
 .

Without loss of generality, we can divide the summation term in two parts,
the first part consists of the basis containing only pak

i and the second part
consists of the remaining set of basis.

E


Xi −

p∑
j=1

fj(Sj)−
q∑

r=p+1
fr(Sr)

2
 . (A.5)

Since the true generating mechanism for Xi only comprises of basis in the
first summation term, we are only left with the noise term ϵi associated with
Xi. Hence can further simplify eq. (A.5) to

E

(ϵi − q∑
r=p+1

fr(Sr)

)2
 . (A.6)

The minimum for eq. (A.6) is achieved when
∑q

r=p+1 fr(Sr) = E(ϵi). By our
modelling assumptions, we know that E(ϵi) = 0. Therefore, by the same rea-
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soning used to prove reverse direction, we can conclude that the coefficient
associated with each of the basis functions in

∑q
r=p+1 fr(Sr) is zero. This im-

plies that pa′
i ⊂ pa∗

i , which is a contradiction. □

Lemma 3.3 If Υ is conservative,
⋃d

k=1 Gk = G∗, if Υ is non-conservative,⋃d
k=1 Gk ⊆ G∗.

Proof: [Consistency of Orion under Conservative Interventions]If Υ is con-
servative, ∀Xi ∈ X ∃Dk ∈ D such that pak

i = pa∗
i . We get ∀Xi

⋃d
k=1 pa

k
i =

pa∗
i , which implies that

⋃d
k=1 E(Gk) = E(G∗).

If Υ is non-conservative, ∃Xi ∈ X such that ∀Dk ∈ D pak
i ⊂ pa∗

i . This
implies that ∃Xi s.t.

⋃d
k=1 pa

k
i ⊆ pa∗

i , which implies that
⋃d

k=1 E(Gk) ⊆ E(G∗).
□

Theorem 3.4 Let Y be the set of all non-collider nodes. If ∀Yi, k α
k
i → 0,

L(D,M) will be the lowest for the true fully-oriented causal network.

Theorem 3.5 L(D,M) correctly identifies the collider structures in the un-
derlying causal network.

Proof: [Score Consistency]We can write L(D,M) as

L(D,M) = Lstr(M) +
d∑

k=1

Lmec(Mk|M) +
m∑

i=1
L(ϵki )

= Lstr(M) +
d∑

k=1

m∑
i=1

L(fk
i ) + L(ϵki )

Since Lstr(M) only stores the structure of the global network, which is
independent of the number of samples n, therefore it is constant w.r.t n. Hence
we get

L(D,M) = O(1) +
d∑

k=1

m∑
i=1

LF (fk
i ) + L(ϵki ) .

Next, let us look at the cost of encoding a specific environment, k which is
given as

m∑
i=1

L(fk
i ) + L(ϵki ) .



113 Proofs

Encoding Residuals Note that we can rewrite the encoding of the residuals
L(ϵ) as

bknk log σ̂k
2 +O(1) ,

where the additive constant is independent of the model.

Encoding Functions Next, we upper bound L(f). We get that |H| ∈
O(logn) from our assumptions. Per hinge we need to encode the number of
multiplicative terms LN(Tj), the function type per term Tj log |F|, the number
of possible assignments from terms to parents log

(|S|+Tj−1
Tj

)
and the parameter

vector per hinge Lp(θj). Each parameter vector is constant. Since the num-
ber of parents are independent of nk as they are fixed for a certain network,
the number of possible interacting terms Tj is also constant w.r.t. nk, which
means that for large nk LN(Tj), Tj log |F| (for a finite function class) and
log
(|S|+Tj−1

Tj

)
are also constants. In addition, we need to encode the number of

hinges for each node, which adds to the constant term. Hence, we can rewrite
LF (h) as

ck lognk +O(1) .

Combining the residual and function cost for a specific environment, we arrive
at

bknk log σ̂k
2 + ck lognk +O(1) .

If we set bk = 1 and ck = dk

2 , where dk is the number of degrees of freedom of
the model, we arrive at the BIC score.

Since we compute the same score individually for each environment we can
compute the sum over these scores and arrive at

L(D,M) =
d∑

k=1

bk lognk + ck ∗ nk log (σ2
k) +O(1) .

□

A.3 Episodic Causal Discovery

Lemma 4.1 (Consistency of L for a single causal model) For the causal
model in assumption 4.1 and assumption 4.2 with R=1 and data Dn over n
episodes covering each value sk of S, with a consistent scoring criterion L that
decomposes as in Eq. 4.1 then L is consistent,

lim
n→∞

P (Ĝ ∼ G∗) = 1 .
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Proof: [Consistency of L for a single causal model end]In the underlying
causal model in assumption 4.1 with R = 1, we denote the true DAG over
X ∪ {S} as G∗. By consistency of L, we know that when S is observed,

lim
n→∞

P (G∗ ∼ arg min
G

L(X ∪ {S};G)) = 1 .

Using that L is decomposable as in Eq. 4.1, we can write

min
G

L(X ∪ {S};G) = min
G(X,S)

(
L(G(X,S)) +

m∑
j=1

L(Xj | paj(G)) + L(S | X)
)

= min
G(X)

(
L(G(X)) +

m∑
j=1

L(Xj | paj(G))
)

+

min
G(S|X)

(
L(G(S | X)) + L(S | X)

)
= min

G(X)
L(X;G(X))+

min
G(S|X)

L(S;G(S | X))) .

Above, we separated the graph structure G into two subgraphs: G(X) over X,
and G(S | X) which includes the remaining edges towards S. We can do so as S
is a sink node and L is decomposable. Hence, when S is observed, the subgraph
G(X) can be identified with our objective. While this holds by construction of
our causal where we include S as a sink node, when S is unobserved, we only
access a biased X̃ in Dn.

In that case, assume we obtain G̃ = minG(X̃) L(X̃;G) with G̃ / G∗ and
L(X̃; G̃) < L(X;G∗). Then for at least one Xj , paj(G̃) , paj(G∗). We know
however that L(X̃j | ˜paj(G∗)) = L(Xj | paj(G∗)) < L(Xj | paj(G̃)) = L(Xj |
paj(G̃)) under ignorabiliy in Assumption 4.3, which contradicts that G̃ is a
minimizer. Therefore, we also have

lim
n→∞

P (G∗ ∼ arg min
G

L(X;G)) = 1 .

□

Theorem 4.2 (Consistency of L in the episodic setting) For the causal
model in Assumption 4.1 and given data Dn over n episodes as in Assump-
tion 4.2. Under Assumption 4.3, a consistent scoring criterion L that decom-
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poses as in Eq. 4.1 remains consistent,

lim
|Dn|→∞

P (Ĝr ∼ G∗
r) = 1 for all r ∈ {1, . . . , R} .

Proof: [Consistency of L in the episodic setting end]First, in case the context
is known, we can apply Lemma 4.1 in each context. That is, given R as well
as Π(D) = {X1, . . . , XR} into disjoint, non-empty sets Xr ⊆ D such that
∪rX

r = D, then

lim
n→∞

P (G∗ ∼
R∑

r=1
min

Gr(X)
L(Xr, Sr;Gr(X))) = 1 .

Left to show is the case where R and Π(D) are unknown. We compare
• the true model G∗ = {G∗

1, . . . , G
∗
R∗} and subsets Π∗(D) = {X∗1, . . . , X∗R∗},

and
• the estimated model Ĝ = {Ĝ1, . . . , ĜR̂} and subsets Π̂(D) = {X̂1, . . . , X̂R̂}

minimizing Eq. 4.4 with score L(Ĝ).
For contradiction, assume that there is no exact correspondence between the
true and estimated models, more precisely, that for at least one context r with
true model X∗r and G∗

r there is no other r′ so that X̂r′ = X∗r and Ĝr′ ∼ G∗
r.

We can distinguish the following cases,
1. Case X∗r = X̂r′ for some r′ , r: then also Ĝr′ ∼ G∗

r by Lemma 4.1 as
X∗r is a dataset from a single context r, which however contradicts the
above assumption.

2. Case X∗r ⊂ X̂r′ for some r′ , r: Then the set X∗r is wrongly included
under the incorrect model Ĝr′ . Then the decomposition of Eq. 4.4 will
contain a suboptimal likelihood term

L(X∗r | Ĝr′) =
m∑

j=1
L(X∗r

j | par
j(Ĝr′)) .

Using that L is decomposable, we can replace the above term in the de-
composition of L as follows (keeping all other terms the same),
(a) if G∗

r ∈ Ĝ, we can replace L(X∗r | Ĝr′) with L(X∗r | G∗
r).

(b) if the G∗
r < Ĝ, we can replace L(X∗r | Ĝr′) with the full cost

L(X∗r;G∗
r) as the likelihood component dominates over L(G∗

r) in
the limit Mian et al. (2021).

In both cases, we can replace Ĝ by Ĝ∪{G∗
r} and Π̂(D) by {X̂1, .., X∗r, X̂r′

,

..., X̂R̂} where we separate X∗r and X̂r′ and keep all other parts the
same, resulting in a favorable model, contradicting that it is the mini-
mizer of Eq. 4.4.
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3. Case X ⊂ X̂r′ for some r′ , r and for a set X ⊂ X∗r, X , ∅: This
means that a non-empty subset of X∗r is included under the incorrect
DAG, in which case we can apply the same argument as in case (2).

We can disregard the case X∗r ∩ X̂r′ = ∅ for all r′ as then X∗r is not
covered by the partition.

Thus, R̂ = R∗ and each X̂r = X∗r and Gr ∼ Ĝr (up to permuting the
indices). □

Theorem 4.3 (Consistency of updating using T ) With discrepancy test
T we will never merge a new episode D(i+1) with a set X̂r from an incorrect
context where C(D(i+1)) , C(E) for some E ∈ X̂r.

Proof: [Consistency of updating using T]We need to show that with a merge
protected by T , a merge of D(i+1) with any set X̂r can only occur if C(D(i′)) =
C(D(i+1)) for all i′ ≤ i. For induction on the time step i, consider the following
cases,

1. For the base case is i = 2, assume C(D(1)) , C(D(2)). We need to show
that T never merges D(1), D(2) from C1, C2 From our causal model, we
know there is at least one variable in G∗

1, G
∗
2 s.t.

P (X1
j | pa1

j ) , P (X2
j | pa2

j )

From Cor. 4.5 in Perry et al. (2022), this implies that also for any
conditioning set Z,

P (X1
j | Z1) , P (X2

j | Z2)

that is, we have a distribution shift even when A discovers an incorrect
DAG Ĝ1. Left to show is that it holds also for the biased distributions

P (X1
j | Z1, S = sk) , P (X2

j | Z2, S = sk′)

which holds under detectable selection. Hence, our test T will detect the
difference for Xj given enough data from D(1), D(2) and reject merging.

2. For the induction step, we can assume that C(D(i′)) = C(D(i′′)) for all
i′, i′′, and apply the above pairwise argument to D(i+1) and each D(i′).

□
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Corollary 4.4 (Consistency of Continent ) Given a consistent DAG search
algorithm A and score L, under assumption 4.3 our algorithm is consistent, so
that

lim
|Dn|→∞

P (Ĝr ∼ Gr∗) = 1 for all r ∈ {1 . . . , R}

holds after we obtain n episodes Dn and perform the merge step.

Proof: [Consistency of Continent]Consider the estimated model Ĝ = {Ĝ1,

. . . , ĜR̂} and subsets Π̂(D) = {X̂1, . . . , X̂R̂} that we obtain with Peri at time
step n. By the previous theorem, we know that episodes from different contexts
were not merged incorrectly, X̂r ⊆ X∗r′ for some r′ for each r where R̂ ≤
R, which we write shorthand as Π̂(D) ⊆ Π∗(D). In case R̂ < R, we need
to consider any remaining merges among sets in X̂r. If the assumptions of
Thm. 4.2 hold, then we can use

min
Π(D),Π̂(D)⊆Π(D)

|Π(D)|∑
r=1

min
Gr

L(Xr;Gr) .

The above will be minimized for Π∗(D) and Ĝr ∼ Gr∗ for each r as it considers
a subset of the partitions that Thm. 4.2 considers. Hence minimizing L is a
consistent way to discover the remaining merges. □

A.4 Privacy Preserving Federated Causal Discovery

Theorem 5.2 Let G∗ be the true underlying causal network for all P (Di) and
let n(1) . . . , n(d) → ∞. Further let L be a consistent and decomposable score.
Then

lim
n(1),...,n(d)→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, maxi Ri(G) is consistent when all n(i) →∞.

Proof: [Peri Consistency]Since L is a consistent score, we know that
limn(i)→∞ P (Gi = G∗) = 1 for all i. Thus
P
(
Ĝ = argminG maxi

(
L(Di;G)− L(Di;G∗)

))
= 1, which is clearly mini-

mized when Ĝ ∼ G∗. □
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Theorem 5.3 Let G∗ be the true causal network for all P (Di) and let N B
maxi n

(i) →∞. Further let L be a consistent and decomposable score. Then

lim
N→∞

P
(
Ĝ ⊒ G∗

)
= 1 .

Proof: [Peri Weak Consistency]When all n(i) → ∞, Thm. 5.2 applies.
We therefore consider the case where some n(i) remain bounded. Let I ={
i : n(i) <∞

}
and M = max

{
lim supn(i) : i ∈ I

}
. Then we have

maxG maxi∈I Ri(G) ≤ cM < ∞ for some c > 0. Meanwhile for all i with
n(i) →∞ we have for all G ⊊ G∗ that

aL(Di;G)− L(Di;Gi) ≈ L(Di;G)− L(Di;G∗) ∝ n(i) →∞ .

Hence any smaller G ⊏ G∗ achieves strictly worse minmax regret than any
G ⊒ G∗ as N →∞. □

Corollary 5.4 Let the assumptions of Thm. 5.3 hold and let L be the BIC
score. Then

lim
N→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, the score maxi Ri(G) is consistent when L incorporates a BIC-penalty
for parameters and N →∞.

Proof: [Peri BIC Consistency]When L is the BIC score then for any dataset
i such that n(i) →∞ we have Ri(G) ∝ log(n(i))→∞ when G ⊐ G∗ is too large.
This grows larger than any finite penalty incurred from any of the datasets j
with n(j) ≤ M bounded, so that picking Ĝ ∼ G∗ will be the best choice as
N →∞. □

Lemma 5.5 Assume that Pi(x; θ) is uniformly lower-bounded bounded by r,
i.e., ∀x ∈ X ∀θ ∈ Θ : Pi(x; θ) ≥ r, that ∥θ∥ ≤M for all local model parameters
θ ∈ Θ, and that the score L is partially differentiable with respect to θ. Let X(i)

and X ′(i) be datasets that differ in a single element, i.e. X(i) \ X ′(i) = xk, θ
and θ′ the respective local parameters, and R̂i(G) and R̂′

i(G) the respective
regrets. Assume that ∥θ − θ′∥1 ≤ 2M/n. Then the sensitivity ∆R̂i of the regret
is bounded by

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ ≤ (4M + 1) log r +O

(
logn
n

)
.
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Proof: [Bounds on Regret]Removing a single element from a local dataset
X(i) changes also the local causal model, both in terms of the DAG G(i) and
the local model parameters θ(i). Therefore, the local score changes for two
reasons: (i) the dataset the score is computed on changes, and (ii) the local
causal model changes. That is, the sensitivity is

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ =
∣∣∣L(X(i), G)− L(X(i), G(i))

−L(X ′(i), G) + L(X ′(i), G′(i))
∣∣∣

=
∣∣∣L(X ′(i), G′(i))− L(X(i), G(i))

∣∣∣ .
Thus, it suffices to bound |L(X ′, G′) − L(X,G)| for datasets X and X ′ that
only differ in a single element and corresponding different DAGs G,G′ and
local model parameters θ, θ′. This difference encompasses both the difference in
DAGs and local model parameters. Since the difference in DAGs is determined
by the difference of θ and θ′, we for convenience write L(X,G) = L(X, θ) and
show that the difference |L(X, θ)− L(X ′, θ′)| is bounded. Since

|L(X, θ)− L(X ′, θ′)| ≤ |L(X ′, θ)− L(X, θ)|
+ ∥θ − θ′∥ |L(X, θ′)− L(X, θ)| ,

we can use the linearization of L and get

|L(X, θ)−L(X ′, θ′)| ≤ |L(xk, θ)|︸        ︷︷        ︸
≤log r

+ ∥θ − θ′∥ |L(X, θ)− L(X, θ′)|︸                        ︷︷                        ︸
∝n

+ ∥θ − θ′∥︸      ︷︷      ︸
≤2M/n

|L(θ)− L(θ′)|+O
(

logn
n

)

≤ log r + 2M log r + 2M log r +O
(

logn
n

)
=(4M + 1) log r +O

(
logn
n

)
.

It follows that the sensitivity is bounded by (4M + 1) log r +O (logn/n). Note
that the assumption |θ − θ′| ≤ 2M/n for θ, θ′ optimized on datasets that only
differ in a single element holds for most learning algorithms, e.g., convex em-
pirical risk minimization with finite VC-dimension or Rademacher complex-
ity Von Luxburg and Schölkopf (2011). □
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Proposition 5.6 Assume that each local regret R̂i has sensitivity ≤ Q. Then
Peri with i.i.d. Laplace noise with scale λ = Q/ϵ added to each R̂i is ϵ-
differentially private.

Proof: [Peri Differentiable Privacy]The Laplace mechanism guarantees that
adding noise with mean 0 and scale λ to a function f with sensitivity δf is δf/λ-
differentially private. Since the regret has sensitivity (4M+1) log r+O

(
log n

n

)
,

choosing λ = ϵ−1 ((4M + 1) log r +O (logn/n)) results in a sensitivity of

δR

λ
=

(4M + 1) log r +O
(

log n
n

)
ϵ−1 ((4M + 1) log r +O (logn/n))

= ϵ .

□
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