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How elevated liver stiffness relates to atrial fibrillation in the
general population remains to be clarified. We hypothesized
that systemic inflammation against a background of liver
fibrosis produced from metabolic dysfunction-associated
steatotic liver disease (MASLD), is involved in the pathophysi-
ology of atrial fibrillation. Using large-scale targeted prote-
omics, we found that CXCL10 is related to both liver fibrosis, as
defined by the fibrosis-4 index, and to atrial fibrillation. These
results can aid evidence-based drug development for patients
with atrial fibrillation and MASLD-related liver fibrosis.
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Background & Aims: Elevated liver stiffness has been associated with atrial fibrillation (AFib) in the general population. The
mechanism underlying this association is unclear.

Methods: Participants were recruited from the general population and prospectively enrolled with follow-up for 5 years. The
fibrosis-4 (FIB-4) index was used as a surrogate marker for liver fibrosis. Proteomics analysis was performed using the 92-target
Olink inflammation panel. Validation was performed using the NAFLD fibrosis score (NFS), aspartate aminotransferase to platelet
index (APRI), and repeat confirmation proteomics.

Results: A sample of 11,509 participants with a mean age of 54.0 ± 11.1 years, 51.3% women, and a median FIB-4 index of 0.85
(0.65/1.12), was used. The FIB-4 index was predictive for prevalent (FIB-4 index adjusted odds ratio (aOR) per SD: 1.100 with 95%
CI 1.011-1.196; p = 0.026), but not incident AFib (log[FIB-4 index]) adjusted hazard ratio: 1.125 with 95% CI 0.943-1.342, p = 0.19).
Elastic net regularized regression identified CCL20, DNER, and CXCL10 for prevalent AFib, and AXIN1, CXCL10, and Flt3L for the
log(FIB-4 index) (per SD) as most important in common regulated proteins. The relationship between the FIB-4 index, the identified
proteins, and AFib was relevant and reproduced at the 5-year follow-up for CXCL10 after adjusting for confounders (log[FIB-4
index] per SD - CXCL10 [per SD] adjusted b 0.160 with 95% CI 0.127-0.194, p <0.0001; CXCL10 [per SD] - AFib aOR 1.455 with
95% CI 1.217-1.741, p <0.0001), reproduced using the NFS and APRI, and corresponding to increased serum levels.

Conclusions: CXCL10 is linked to liver fibrosis, as determined by the FIB-4 index, and to prevalent AFib.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Metabolic dysfunction-associated steatotic liver disease
(MASLD) is often associated with cardiovascular disease,
including coronary artery disease, congestive heart failure, and
atrial fibrillation (AFib), resulting in a high mortality rate.1 Liver
fibrosis with resulting stiffening that is associated with the more
advanced stages of MASLD has been indicated as a relevant
cue to prompt cardiovascular risk assessment and further in-
vestigations, including N-terminal pro–B-type natriuretic pep-
tide (NT-proBNP) determination and electrocardiography.2 AFib
is the most common cardiac arrhythmia affecting approxi-
mately 60 million persons and its prevalence is increasing in
parallel with MASLD.3–5 The lifetime risk for AFib is 33% and
largely depends on modifiable cardiovascular risk factors,
including arterial hypertension, type 2 diabetes mellitus, alcohol
consumption, and a sedentary lifestyle.4

AFib increases the risk of incident heart failure6 and cardio-
vascular accidents7 and is consequently an important condition
to be treated. The treatment of AFib is, apart from cardiovascular
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risk management, currently based on anticoagulation therapy
with vitamin K antagonists or direct-acting anticoagulants, and
rate and rhythm control using pharmacological treatment or
ablation. Life-threatening side effects including excessive
bleeding andarrhythmias are hence inherent to current treatment
modalities.8 Mechanism-based strategies in current drug
development for AFib focus on repairing the protein quality
control system, DNA damage, and mitochondrial function, as
well as dampening inflammatory responses.3,9

Patients with AFib often experience multiple comorbidities
based on the presence of shared risk factors, including those
involved in MASLD. Considering the lack of both safe and
effective therapies for AFib, it is relevant to investigate the
interrelationship between these two conditions.3 Recent evi-
dence indicates that liver stiffness when determined by
vibration-controlled transient elastography (VCTE) rather than
liver steatosis itself, is related to prevalent AFib in the general
population.10 The link between liver stiffness and AFib remains
undetermined, but could lie in mechanisms involving metabolic
inflammation.11 Metabolic inflammation arising from MASLD
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Table 1. Baseline characteristics of the study participants stratified by the fibrosis-4 index.

Variable Whole sample
(N = 11,509)

Fibrosis-4 index <1.3
(n = 9,795)

Fibrosis-4 index >−1.3
(n = 1,714)

p value

Demographics
Sex (female) 51.3% (5,902) 53.5% (5,242) 38.5% (660) <0.0001
Age, yr 54.0 ± 11.1 52.1 ± 10.5 64.8 ± 7.6 <0.0001
BMI, kg/m2 26.6 (23.8/30.1) 26.5 (23.7/30.0) 27.3 (24.6/30.7) <0.0001
Weight, kg 79.5 ± 16.7 79.2 ± 16.8 80.9 ± 16.1 0.00014
Height, m 1.70 ± 0.10 1.70 ± 0.10 1.70 ± 0.09 0.28
Waist, cm 94.1 ± 13.9 93.6 ± 13.9 97.3 ± 13.9 <0.0001
Protein data available 49.9% (5,741) 48.5% (4,750) 57.8% (991) <0.0001

Cardiovascular risk factors
Dyslipidaemia 34.1% (3,920) 32.2% (3,146) 45.2% (774) <0.0001
Arterial hypertension 47.1% (5,416) 43.7% (4,274) 66.6% (1,142) <0.0001
Smoking 19.2% (2,201) 20.7% (2,021) 10.5% (180) <0.0001
Obesity 25.5% (2,932) 25.0% (2,443) 28.5% (489) 0.0020
Family history of myocardial infarction/stroke 22.5% (2,587) 22.7% (2,223) 21.2% (364) 0.19
Diabetes mellitus 8.9% (1,022) 7.7% (749) 15.9% (273) <0.0001

Comorbidities
Metabolic syndrome 21.9% (2,519) 20.7% (2,023) 28.9% (496) <0.0001
Hyperuricemia 6.2% (717) 5.4% (530) 10.9% (187) <0.0001
Coronary artery disease 4.0% (458) 3.0% (289) 10.2% (169) <0.0001
Myocardial infarction 3.0% (339) 2.2% (216) 7.2% (123) <0.0001
Peripheral artery disease 3.3% (371) 2.9% (280) 5.4% (91) <0.0001
Atrial fibrillation 2.4% (275) 1.7% (168) 6.4% (107) <0.0001
Congestive heart failure 1.3% (154) 1.0% (94) 3.5% (60) <0.0001
Chronic kidney disease 1.0% (117) 1.0% (100) 1.0% (17) 1.00

Liver parameters
Fatty liver index 45.98 ± 30.47 44.90 ± 30.49 52.14 ± 29.58 <0.0001
Fatty liver index >−60 36.1% (4,146) 34.8% (3407) 43.1% (739) <0.0001
Fibrosis-4 index 0.85 (0.65/1.12) 0.78 (0.62/0.98) 1.55 (1.40/1.80) <0.0001
NAFLD fibrosis score -2.59 ± 1.30 -2.87 ± 1.15 -1.04 ± 0.97 <0.0001
AST to platelet index 0.28 (0.23/0.35) 0.27 (0.22/0.32) 0.43 (0.36/0.54) <0.0001
Alanine aminotransferase, U/L 32.0 (26.0/42.0) 32.0 (26.0/41.0) 34.0 (28.0/44.0) <0.0001
Aspartate aminotransferase, U/L 25.00 (21.00/29.00) 24.00 (21.00/28.00) 29.00 (25.00/36.00) <0.0001
Gamma-glutamyltransferase, U/L 23.00 (16.00/35.00) 23.00 (16.00/34.00) 26.00 (18.00/42.00) <0.0001

Other laboratory measurements
Cholesterol, mg/dl 219.4 ± 40.4 220.2 ± 40.2 215.1 ± 41.7 <0.0001
High-density lipoprotein, mg/dl 56.7 ± 15.4 56.8 ± 15.3 56.3 ± 16.1 0.24
Low-density lipoprotein, mg/dl 138.6 ± 35.2 139.3 ± 34.9 134.5 ± 36.7 <0.0001
Triglycerides, mg/dl 104.0 (77.0/145.0) 103.4 (77.0/145.0) 105.0 (79.0/150.0) 0.058
C-reactive protein, mg/L 1.50 (0.52/3.10) 1.50 (0.50/3.10) 1.60 (0.68/3.01) 0.23
Fibrinogen, mg/dl 321.00 (278.00/375.00) 320.00 (277.00/373.00) 332.00 (288.00/386.58) <0.0001
Glucose, mg/L 91.0 (85.0/97.2) 90.0 (85.0/97.0) 94.0 (88.0/102.0) <0.0001
HbA1c, % 5.50 (5.20/5.80) 5.50 (5.20/5.80) 5.60 (5.30/6.00) <0.0001

Data presented as mean ± SD (Gaussian-distributed data), median with IQR (non-Gaussian distributed data), or as relative and absolute frequencies (categorical data); a two-sided t-
test was used for comparing two Gaussian-distributed continuous variables, a Wilcoxon rank sum test for non-Gaussian distributed variables, and a chi-square for categorical data;
p values <0.05 were considered significant.

Inflammation in liver fibrosis and atrial fibrillation
leads to hepatic fibrosis over time and is the main cause of liver
stiffening.2,11,12 In this context, liver-derived inflammatory fac-
tors could contribute to, or even trigger AFib.13,14 Several non-
invasive tests (NITs) for advanced hepatic fibrosis have been
developed in recent years, among which the fibrosis-4 (FIB-4)
index has shown utility in the general population.15

In the present study, we investigated circulating inflamma-
tory factors by proteomics analysis and explored targets
related to both liver fibrosis, determined by the FIB-4 index, and
AFib in a large population-based cohort to better understand
the relationship between liver stiffening and AFib and to ulti-
mately provide novel avenues for drug development.

Patients and methods

Study description

The Gutenberg Health Study is a prospective population-
based observational cohort study underway in the Rhine-
JHEP Reports, October
Main Region in Germany. The study has been approved by
the local ethics committee and the local and federal data
safety commissioners. Written informed consent was ob-
tained from all study participants. The study protocol was in
agreement with the ethical guidelines of the Declaration
of Helsinki.16

Individuals between 35- and 74-years old from Mainz and
the Mainz-Bingen district were invited to enrol to the study. The
study sample consisted of 15,010 participants at baseline,
enrolled between 2012 and 2017. After 5 years, data was ob-
tained from 12,423 participants.
Exclusion criteria

Participants with cancer, participants consuming alcohol in
amounts >−20 g/day for women and >−30 g/day for men,17 and
participants without available FIB-4 index data were excluded
from the study sample.
2024. vol. 6 j 101171 2
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Definitions of diseases and risk factors

Liver fibrosis was determined using the FIB-4 index according
to Sterling et al.18 Two clinically relevant categories were used:
FIB-4 index <1.3 (low risk for advanced fibrosis) and >−1.3
(indeterminant and high risk for advanced fibrosis). The fatty
liver index (FLI) was determined according to Bedogni et al.19

and was used a measure of hepatic steatosis with a cut-off
of >−60. Definitions of diseases and risk factors used
throughout the text can be found in the supplemental material.
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Proteomics analysis for circulating inflammatory proteins

Blood plasma was collected in ethylenediaminetetraacetic
acid tubes and analysed with proximity extension assay
technology (Olink Proteomics, Uppsala, Sweden) using the
Inflammation panel consisting of 92 targets (full list available in
Table S1). Briefly, antibody pairs containing unique DNA se-
quences hybridize upon binding of the specific protein,
resulting in proximity extension and amplification by real-
time PCR.
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Inflammation in liver fibrosis and atrial fibrillation
Validation of results

The NAFLD fibrosis score (NFS), determined according to
Angulo et al.20 and the AST to platelet index (APRI), determined
according toWai et al.21 using aspartate aminotransferase (AST)
cut-offs of 35U/L and31U/L formenandwomen, respectively,22

were used to validate results obtained with the FIB-4 index.
Validation of the proteomics results was performed by running a
repeated Olink inflammation analysis at the 5-year follow-up.

Statistical analyses

Continuous normally distributed data are presented as mean ±
SD and continuous skewed data were presented as median
with IQR. Discrete data are described using absolute and
relative frequencies. Multivariate logistic regression were used
to investigate the relationship between NITs for liver fibrosis
and AFib. Cox competing risk analysis was used to adjust for
potential confounders in the longitudinal analysis. Multivariate
logistic and linear regression for the cross-sectional analyses,
and Cox competing risk analysis for longitudinal analyses, were
used to investigate the relationships between the NITs for liver
fibrosis, AFib, and systemic proteins with adjustments for po-
tential confounders. Elastic net regularized regression models
with 10-fold cross-validation were employed to select the most
relevant in common modulated inflammatory mediators, with
adjustment for age and sex. For that purpose, the k ratio was
used as a scale-invariant measure of predictive robustness to
rank proteins according to their relevance. Analyses were
performed using R (www.R-project.org, v.4.2.1) and graphs
were prepared using GraphPad Prism (v.8.4.3).

Results

Baseline characteristics of the study participants

Of the 15,010 enrolled participants, 3501 participants were
excluded resulting in a study sample of 11,509 individuals
(Fig. S1). The study participants had a mean age of 54.0 ± 11.1
years and consisted of 51.3% women (Table 1). The median
FIB-4 index was 0.85 (0.65/1.12) and 36.1% had hepatic
steatosis as determined by a fatty liver index >−60. Cardiovas-
cular risk factors were more often present in participants with a
FIB-4 index >−1.3 compared with persons with a FIB-4 index
<1.3, including dyslipidaemia (45.2% vs. 32.2%), arterial hy-
pertension (66.6% vs. 43.7%), obesity (28.5% vs. 25.0%), and
diabetes mellitus (15.9% vs. 7.7%). Consequently, participants
with a FIB-index >−1.3 presented with the metabolic syndrome
more frequently than participants with a FIB-4 index <1.3
(28.9% vs. 20.7%). In addition, AFib was present in 6.4% of the
persons with a FIB-4 index >−1.3 compared with 1.7% in par-
ticipants with a FIB-index <1.3. Other cardiovascular diseases
were also more prevalent in participants with a FIB-4 index >−1.3
compared with those having a FIB-4 index <1.3, among which
were congestive heart failure (3.5% vs. 1.0%), coronary artery
disease (10.2% vs. 3.0%), and peripheral artery disease (5.4%
vs. 2.9%). On the contrary, participants with a FIB-4 index <1.3
were more often smokers compared with participants with a
FIB-4 index >−1.3 (20.7% vs. 10.5%).

Relationship between liver fibrosis and atrial fibrillation

The relationships between liver fibrosis determined by the FIB-
4 index and prevalent and incident AFib were investigated
JHEP Reports, October
employing three additive models (model 1: adjusted for age
and sex; model 2: additional adjustment for smoking, arterial
hypertension, diabetes mellitus, obesity, and dyslipidaemia;
model 3: additional adjustment for coronary artery disease
and congestive heart failure) using multivariate logistic
regression and Cox competing risk analysis, respectively. The
FIB-4 index used both as a continuous and a categorical
variable was significantly related to prevalent AFib in all three
models (model 3: FIB-4 index per SD: odds ratio (OR) 1.100
with 95% CI 1.011-1.196, p = 0.026; FIB-4 index categorical
(>−1.3/<1.3): OR 1.363 with 95% CI 1.017-1.826, p = 0.038)
(Fig. 1A). Age, sex, dyslipidaemia, congestive heart failure,
and coronary artery disease were factors that significantly
influenced the relationship between the FIB-4 index and
prevalent AFib (Table S2A and B). The relationship between
liver fibrosis and prevalent Afib was replicated using NFS
(model 3: NFS per SD: OR 1.253 with 95% CI 1.040-1.509, p =
0.017) and APRI (model 3: log[APRI] per SD: OR 1.158 with
95% CI 1.026-1.308, p = 0.018) (Fig. S2). The data on the FIB-
4 index, NFS, and APRI were reproduced through repeated
measurements in the same cohort after 5 years (Fig. S3A and
B; Table S3 shows the study participant characteristics at the
5-year follow-up). Although a FIB-4 index >−1.3 predicted
incident AFib in an unadjusted model (Gray’s test p <0.0001)
(Fig. 1B), it was not the case when confounders were taken
into account (model 3: log[FIB-4 index] per SD: hazard ratio
[HR] 1.125 with 95% CI 0.943-1.342, p = 0.19; FIB-4 index
categorical [>−1.3/<1.3]: HR 1.098 with 95% CI 0.809-1.490,
p = 0.55) (Fig. 1C). Age, sex, and congestive heart failure were
factors that influenced the relationship between the FIB-4 in-
dex and incident AFib (Table S4A and B). Nonetheless, the
FIB-4 index related to log(NT-proBNP) levels per SD (model 3:
b-estimate log[FIB-4 index] per SD: 0.117 with 95% CI 0.095-
0.138, p <0.0001; b-estimate FIB-4 index categorical [>−1.3/
<1.3]: 0.305 with 95% CI 0.256-0.354, p <0.0001) (Fig. 1D and
Table S5A and B), which is an independent marker for prev-
alent and incident AFib,23 which was also reproduced in the
cohort (Fig. S4). Although the FLI was also related to prevalent
AFib (Fig. S5A), it was inversely related to NT-proBNP
levels (Fig. S5B).
Proteomics analysis based on the fibrosis-4 index and atrial
fibrillation

As the FIB-4 index was related to prevalent, but not incident
AFib, we searched for inflammatory mediators connecting liver
fibrosis to prevalent AFib. Fig. 2 shows the relative changes in
the %SD of the overall mean of 92 systemic protein levels
based on the FIB-4 index (>−1.3/<1.3) and AFib. The top three
upregulated proteins in participants with a FIB-4 index of at
least 1.3 were CUB domain containing protein 1 (CDCP1)
(+63.6%), C-X-C motif chemokine ligand (CXCL) 9 (+49.3%),
and CXCL10 (+44.1%), whereas the top three downregulated
proteins were AXIN1 (-43.2%), Sirtuin 2 (SIRT2) (-43.0%), and
STAM binding protein (STAMBP) (-36.3%). The top three
elevated proteins in participants with AFib were CXCL10
(+58.5%), CDCP1 (+56.2%) and fibroblast growth factor 23
(FGF23) (+54.0%) and the top three down-regulated proteins
were delta and notch-like epidermal growth factor-related re-
ceptor (DNER) (-51.0%), IL-2 (-37.4%), and neurturin (NRTN)
(-33.4%) (Fig. S6).
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Fig. 4. Relationship between circulating inflammatory proteins with the Fibrosis-4 Index and atrial fibrillation. (A) Relationship between the log(FIB-4 index) (per
SD) and circulating proteins (symbols represent b-estimates and bars represent 95% CIs). Level of significance: p <0.05 is considered as statistically significant
(multivariate linear regression, t-test) (model 1: n = 5,741; model 2: n = 5,704; model 3: n = 5,601). (B) Relationship between the FIB-4 index (categorical >−1.3 vs. <1.3)
and circulating proteins (symbols represent b-estimates and bars represent 95% CIs). Level of significance: p <0.05 is considered as statistically significant (multi-
variate linear regression, t-test) (model 1: n = 5,741; model 2: n = 5,704; model 3: n = 5,601). (C) Relationship between circulating proteins and atrial fibrillation (symbols
represent odds ratios and bars represent 95% CIs). Level of significance: p <0.05 is considered as statistically significant (multivariate logistic regression, z-test) (model
1: n = 5,672 [172 events]; model 2: n = 5,635 [171 events]; model 3: n = 5,543 [162 events]). Model 1: adjusted for age and sex; model 2: additional adjustment for
smoking, arterial hypertension, diabetes mellitus, obesity, and dyslipidaemia; model 3: additional adjustment for coronary artery disease and congestive heart failure.
AXIN1, Axis inhibition protein 1; CCL20, C-C motif chemokine ligand 20; CXCL10, C-X-C motif chemokine ligand 10; DNER, Delta and Notch-like epidermal growth
factor-related receptor; FIB-4, fibrosis-4; Flt3L: Fms related receptor tyrosine kinase 3 ligand; L, lower; OR, odds ratio; U, upper.
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Fig. 5. Cumulative incidence of atrial fibrillation based on tertiles of proteins. Green line indicates the first tertile, blue line indicates the second tertile, and red line
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Inflammation in liver fibrosis and atrial fibrillation
To find the most relevant and important proteins that could
link liver fibrosis to AFib, Elastic net regularized regression
analyses were performed with adjustments for age and sex
(Fig. 3). As the lower FIB-4 index cut-off of 1.3 performs best in
persons <−65 years,24 and the median age of participants with a
FIB-4 index >−1.3 was 64.8 ± 7.6 years, we used the FIB-4 index
on a continuous scale in the protein selection process. The top-
three in common modulated proteins were selected for both
AFib and log(FIB-4 index) per SD. For AFib, CCL20, DNER, and
CXCL10 were selected and for the FIB-4 index, AXIN1,
CXCL10, and Fms related receptor tyrosine kinase 3 ligand
(Flt3L) were selected, resulting in five unique proteins for further
analysis. AXIN1, CXCL10, and Flt3L also had the highest k
ratios based on a FIB-4 index >−1.3, as common modulated
proteins with AFib (Fig. S7).
CXCL10 was an inflammatory nexus between liver fibrosis
and prevalent atrial fibrillation

Multivariate linear and logistic regression analyses were used to
investigate the exact relationships between the FIB-4 index
and the selected proteins, and the selected proteins and AFib,
respectively.
JHEP Reports, October
When adjusted for age, sex, smoking, arterial hypertension,
diabetes mellitus, obesity, dyslipidaemia, coronary artery dis-
ease, and congestive heart failure, the standardized log(FIB-4
index) was significantly related with Flt3L (b-estimate 0.189
with 95% CI 0.155-0.222, p <0.0001), AXIN1 (b-estimate -0.451
with 95% CI -0.485 to -0.418, p <0.0001), CXCL10 (b-estimate
0.160 with 95% CI 0.127-0.194, p <0.0001), DNER (b-estimate
0.040 with 95% CI 0.006-0.074, p = 0.021), and CCL20 (b-
estimate 0.071 with 95% CI 0.036; 0.105, p <0.0001) (Fig. 4A).
When performing the same regression analyses with the FIB-4
index as a categorical variable (>−1.3/<1.3), the relationships
with DNER and CCL20 disappeared (Fig. 4B). The relationship
between log(FIB-4 index) per SD with Flt3L was influenced by
sex, age, and smoking, whereas the relationship with AXIN1
was additionally impacted by arterial hypertension, diabetes
mellitus, obesity, dyslipidaemia, and coronary artery disease.
The relationship with CXCL10 was influenced by sex, age,
smoking, obesity, and dyslipidaemia (Table S6A and B).

Logistic regression analyses with the inflammatory proteins
as independent variables and AFib as the dependent variable
adjusted for the same set of possible confounders as done for
the linear regression analyses with the FIB-4 index showed
significant relationships for FltL3 (OR 1.186 with 95% CI 1.004-
2024. vol. 6 j 101171 8
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1.401, p = 0.044), AXIN1 (OR 0.816 with 95% CI 0.696-0.958,
p = 0.013), CXCL10 (OR 1.455 with 95% CI 1.217-1.741, p
<0.0001), DNER (OR 0.766 with 95% CI 0.649-0.904, p =
0.0017), and CCL20 (OR 1.435 with 95% CI 1.234-1.668, p
<0.0001) (Fig. 4C). Congestive heart failure was the most
important confounder among all investigated proteins in rela-
tion to AFib (Table S7).

Multivariate linear regressions with NFS and APRI confirmed
an independent relationship of liver fibrosis with Flt3L, AXIN1,
and CXCL10 (Fig. S8). Identical multivariate linear regressions
using repeated measurements after 5 years validated the re-
lationships between the FIB-4 index, NFS, and APRI, and Flt3L,
AXIN1, and CXCL10 (Fig. S9). In contrast, only CXCL10 was
validated in multivariate logistic regression analysis as a pre-
dictor of prevalent AFib (Fig. S10). Consequently, CXCL10 was
identified as the most important inflammatory protein at the
interface between liver fibrosis and prevalent AFib. Additional
analyses for incident AFib showed that CXCL10 (by tertiles)
adds to the risk of incident AFib in a crude competing risk
analysis (Gray’s test p <0.0001) (Fig. 5), but not when adjusted
for confounders (Table S8).
Discussion
Elevated liver stiffness determined by the VCTE was recently
found to be associated with AFib in the general population (OR
1.09 per kPa, 95% CI 1.03-1.16).10 We hypothesised that liver-
related systemic inflammation against a background of liver
fibrosis induced from MASLD could lay at the basis of incident
and prevalent AFib.

In this large prospective population-based Western-Euro-
pean cohort, we found an independent relationship between
the FIB-4 index and prevalent AFib, which is in line with the
findings of a South-Korean study with 74,946 patients with
MASLD in which an adjusted OR of 2.255 (with 95% CI 1.744-
2.915) for the FIB-4 index (used as categorical variable with
<1.30, 1.3–2.67, and >2.67 cut-off values) and prevalent AFib
was reported.25 The relationship between liver stiffness and the
FIB-4 index and the risk of incident AFib is less clear. A Jap-
anese study including 37,892 unemployed or retired partici-
pants aged >−40 years with a median follow-up period of 5 years
reported an adjusted HR of 1.70 (95% CI 1.29-2.23) of devel-
oping AFib for subjects with a FIB-4 index in the highest
quartile compared with the lowest quartile.26 Although we
found a significant predictive role of the FIB-4 index for incident
AFib in the crude risk analysis, it was not the case when the
analysis was adjusted for age and sex and an additional set of
well-established confounders. In contrast, the relationship be-
tween the FIB-4 index and NT-proBNP levels in the fully-
adjusted model supported the role of liver fibrosis in AFib, as
NT-proBNP is even a better marker for prevalent and incident
AFib than for heart failure in stable outpatients.23

As mechanism-based treatments for AFib and MASLD are
gaining momentum in drug development, and it is well known
that AFib can have its basis in systemic inflammation9,27–29 we
consequently searched for inflammatory proteins that could link
liver fibrosis with prevalent AFib.3

In the current analysis, we identified increased CXCL10
levels as an inflammatory nexus between liver fibrosis and
prevalent AFib. The association of this circulating protein was
preserved after correcting for a broad set of potential
JHEP Reports, October
confounders in multivariate regression models and was repro-
duced at the 5-year follow-up.

CXCL10 can bind onto CXCR3 and is a chemoattractant
produced by both immune and non-immune cells with pleio-
tropic functions including the chemoattraction of activated T-
cells, macrophages, monocytes, and natural killer cells.30

CXCL10 has reported to be elevated in patients experiencing
AFib31 and other cardiovascular diseases including athero-
sclerosis32 and myocardial infarction.33 In the liver, extracellular
vesicles containing CXCL10 are released by hepatocytes
mediated by mixed lineage kinase 3 in response to lipotoxicity,
which in turn function as an attractant for macrophages.34

Hence, CXCL10 has been identified as a crucial protein in the
pathogenesis of MASH, together with other pro-inflammatory
cytokines (monocyte chemoattractant protein 1, IL-1b, and
tumour necrosis factor-a), and mechanisms including lipogen-
esis, and oxidative stress, and also correlating with
lobular inflammation.35

Mechanistically in relation to AFib, myocardial infarction-
associated transcript (MIAT), which is increased in serum
extracellular vesicles of patients with AFib, can bind to miR-
485-5p to decrease its inhibitory effect on CXCL10, resulting
in atrial myocyte fibrosis, inflammation, and oxidative stress in
both in vitro and in vivo experimental models.36 Apart from a
direct action of CXCL10 on the myocardium, CXCL10 can also
promote AFib through its pro-atherogenic properties since
subclinical atherosclerosis is an independent risk factor for
developing AFib.32,37 Consequently, CXCL10 can act through
different mechanisms in the pathophysiology of AFib, which
could at least partly be attributed to underlying liver fibrosis.
Nonetheless, CXCL10 levels decrease after cryoballoon and
radiofrequency balloon ablation, suggesting that CXCL10
secretion is also mediated by AFib itself.38 Furthermore,
CXCL10 levels are also increased in patients with non-fibrotic
MASLD,39 positioning it as a potential prognostic marker and
therapeutic target for progressive MASLD-related cardiovas-
cular disease, including AFib.

Four additional proteins identified as possible connections
between liver fibrosis and AFib in this study were AXIN1, Flt3L,
DNER, and CCL20. While AXIN1 potently negatively correlated
with NITs for liver fibrosis, its relationship with AFib was not
reproduced at the 5-year follow-up period. Nonetheless, the
link between AXIN1 and AFib has been earlier elegantly iden-
tified through exosome sequencing in the serum of patients
with AFib. Circulating exosomal miRNA-124-3p was increased
in the plasma of patients with AFib, whereas AXIN1 appeared to
be its target in a luciferase assay. In addition, miR-124-3p
overexpression in rat myocardial fibroblasts resulted in
reduced levels of AXIN1, whereas b-catenin, collagen 1, and a-
SMA were elevated, suggesting that AXIN1 regulates activation
and proliferation of myocardial fibroblasts through Wnt/b-cat-
enin signaling.40 Although Flt3L levels were related to NITs of
liver fibrosis and decreases following different ablation tech-
niques used to treat Afib,38 its relationship with AFib was
insignificant in the validation study. The relationship of the FIB-
4 index as a continuous variable with DNER and CCL20 was of
minor importance compared with the other proteins that were
identified, whereas the relationship between the FIB-4 index as
a clinically-relevant categorical (>−1.3/<1.3) variable and these
proteins was insignificant. Therefore, CXCL10 is the most
important liver-related factor in MASLD-related liver fibrosis
2024. vol. 6 j 101171 9
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and can maintain a pathogenic environment for AFib, likely a
result of atrial myocyte fibrosis and atherosclerosis.36,37 How-
ever, the exact mechanism of how CXCL10 contributes to AFib
in the setting of liver fibrosis remains to be determined. CXCL10
may be responsible for the recurrence of AFib after ablation, as
liver fibrosis determined by the FIB-4 index has been shown to
be an independent predictor for AFib recurrence after ablation
in a 1-year follow-up study.41

Our study should be interpreted considering several limita-
tions. First, the follow-up period for incident AFib was 5 years
whichmight havebeen too short to define apredictive role of liver
fibrosis in the development of AFib. Secondly, the inflammatory
panel was limited to 92 targets using the Olink assay; thus, other
markers related to liver fibrosis and AFib may have beenmissed.
Thirdly, participantswith chronic viral hepatitis or other causes of
liver fibrosis different from MASLD were not specifically
assessed through testing and thus occult infections could also
JHEP Reports, October 2
have been missed. In contrast, MASLD is by far the most com-
mon cause of liver fibrosis in the Western population42 and
chronic viral hepatitis has a relatively low prevalence at the
general population level in Germany (age-standardized preva-
lence rate [cirrhosis and other chronic liver diseases associated
with to hepatitis] per 100,000: 548.22 for hepatitis C and 284.79
for hepatitis B).43,44 In addition, the sample size of our study, the
application of different parameters for assessing hepatic fibrosis,
and reproduction of the results after a 5-year interval, allowed for
accurate, real-world estimations.

In conclusion, CXCL10 was identified through targeted
proteomics and can be considered a biomarker at the interface
between the risk of advanced liver fibrosis and prevalent AFib in
the general population. Targeting the drivers of hepatic and
cardiac inflammation and fibrosis could allow for evidence-
based drug development for patients with metabolic inflam-
mation, MASLD, and AFib.
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