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Abstract

Structured knowledge is important for many artificial intelligence (AI) applications. Com-
monsense knowledge (CSK) about properties of concepts and human behaviors (e.g., ele-
phants are big and eat plants, children love visiting zoos, tipping is not a common practice in
Japan) is crucial for robust human-centric AI. However, this kind of knowledge is covered by
a small number of structured knowledge projects. These prior CSK resources have significant
shortcomings:
1. Expressiveness: They are restricted in their expressiveness to subject-predicate-object

(SPO) triples with simple concepts for S and monolithic strings for P and O.
2. Lacking cultural contextualization: They lack knowledge about human traits and behav-

iors conditioned on cultural contexts, which is crucial for situative AI.
3. Assertion quality: They suffer from either low precision or limited coverage due to im-

perfect sources of knowledge extraction (noisy web crawls), or approaches with limited
scalability (crowdsourcing). In addition, very few have paid attention to the saliency of
assertions.

In this dissertation, we develop methods for the automatic acquisition of semantically refined
CSK at large scale and overcome these limitations. We tackle the CSK acquisition problem
by collecting and organizing knowledge via the following entry points: (1) concepts (in the
Ascent++ project), (2) cultures (in the Candle project), and (3) both concepts and cul-
tures (in the Mango project).
1. Concept-centric extraction and organization: We introduce an expressive CSK model for

everyday concepts, with: (i) refined subjects, including subgroups and aspects of primary
subjects, (ii) semantic facets for assertions, and (iii) scores for typicality and saliency.
Given a set of everyday concepts (e.g., elephant, bicycle), we propose Ascent++, an
automated method for extracting high-quality CSK assertions from large-scale web con-
tents. Ascent++ consists of various new techniques for aggregation and cleaning. The
resulting CSK resource consists of 2M assertions for 10K important concepts, surpassing
prior resources on both coverage and precision.

2. Culture-centric extraction and organization: Given a set of cultural groups (e.g., Japanese,
Buddhist), we propose the Candle method for extracting culture-aware commonsense
knowledge (CCSK) from a large web corpus. This method includes judicious techniques
for classification-based filtering and scoring of interestingness, which results in a large-
scale CCSK resource of 60K assertions covering 386 cultural groups, which has a signif-
icantly better quality compared to other resources of similar kind.
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3. Combining concepts and cultures: We propose Mango, a methodology for efficiently
distilling CCSK assertions from large language models (LLMs). Our method includes (i)
prompt construction for large sets of concepts and cultures, and (ii) clustering assertions
into topically and culturally coherent groups. Running the Mango method with GPT-3.5
as underlying LLM yields a CCSK resource of unprecedented coverage (167K assertions
covering 30K concepts and 11K cultures) with even higher quality than Candle. In an
extrinsic evaluation for intercultural dialogues, we show that the injection of Mango as-
sertions significantly improves the specificity and cultural sensitivity of LLM responses.

Each of the constructed CSK collections is released for further research, with a web-based
knowledge base browser, along with downloadable code and data.
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Zusammenfassung

Strukturiertes Wissen ist wichtig für viele Anwendungen der Künstlichen Intelligenz (KI).
Allgemeinwissen („commonsense knowledge“ – CSK) über Eigenschaften von Konzepten
und menschlichem Verhalten (z. B. Elefanten sind groß und fressen Pflanzen; Kinder lieben
es, Zoos zu besuchen; Trinkgeldgeben ist in Japan unüblich) ist entscheidend für robuste,
menschenzentrierte KI. Diese Art von Wissen wird jedoch nur von einer kleinen Anzahl
von strukturierten Wissensprojekten abgedeckt. Diese bestehenden CSK-Ressourcen weisen
erhebliche Mängel auf:
1. Ausdrucksstärke: Ihre Ausdrucksmöglichkeiten sind auf Subjekt-Prädikat-Objekt (SPO)

Tripel mit einfachen Konzepten für S und monolithischen Strings für P und O be-
schränkt.

2. Fehlende kulturelle Kontextualisierung: Sie verfügen nicht über Wissen über menschliche
Eigenschaften und Verhaltensweisen, die durch kulturelle Kontexte bedingt sind, was
für situationale KI entscheidend ist.

3. Qualität der Aussagen: Sie leiden entweder unter niedriger Präzision oder begrenzter
Abdeckung aufgrund imperfekter Quellen zur Wissensextraktion (fehlerbehafte Web-
Crawls) oder Ansätzen mit begrenzter Skalierbarkeit (Crowdsourcing). Darüber hinaus
haben nur wenige die Prägnanz von Aussagen berücksichtigt.

In dieser Dissertation entwickeln wir Methoden zur automatischen Gewinnung von seman-
tisch verfeinertem CSK in großem Maßstab und überwinden diese Einschränkungen. Wir
gehen das Problem der CSK-Gewinnung an, indem wir Wissen über die folgenden Einstiegs-
punkte sammeln und organisieren: (1) Konzepte (im Projekt Ascent++), (2) Kulturen (im
Projekt Candle) und (3) sowohl Konzepte als auch Kulturen (im Projekt Mango).
1. Konzept-zentrierte Extraktion und Organisation: Wir führen ein ausdrucksstarkes CSK-

Modell für Alltagskonzepte ein, mit: (i) verfeinerten Subjekten, einschließlich Unter-
gruppen und Aspekten von Hauptsubjekten, (ii) semantischen Facetten für Aussagen
und (iii) numerischen Indikatoren für Typikalität und Prägnanz. Für eine Reihe von
Alltagskonzepten (z. B. elephant, bicycle) schlagen wir Ascent++ vor, eine automa-
tisierte Methode zur Extraktion hochwertiger CSK-Aussagen aus groß angelegten Web-
inhalten. Ascent++ besteht aus verschiedenen neuen Techniken zur Aggregation und
Bereinigung. Die resultierende CSK-Ressource umfasst 2 Millionen Aussagen für 10.000
wichtige Konzepte und übertrifft frühere Ressourcen sowohl in Bezug auf Abdeckung
als auch Präzision.

2. Kultur-zentrierte Extraktion und Organisation: Für eine Reihe kultureller Gruppen
(z. B. Japanese, Buddhist) schlagen wir die Candle-Methode zur Extraktion von kul-
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turbezogenem Allgemeinwissen („culture-aware commonsense knowledge“ – CCSK) aus
einem großen Web-Korpus vor. Diese Methode umfasst durchdachte Techniken zur klas-
sifikationsbasierten Filterung und Bewertung der Interessantheit, was zu einer groß an-
gelegten CCSK-Ressource mit 60.000 Aussagen für 386 kulturelle Gruppen führt, die
eine signifikant bessere Qualität aufweist als andere ähnliche Ressourcen.

3. Kombination von Konzepten und Kulturen: Wir schlagen Mango vor, eine Methodik
zur effizienten Destillation von CCSK-Aussagen aus großen Sprachmodellen („large lan-
guage models“ – LLMs). Unsere Methode umfasst (i) die Konstruktion von Prompts
für große Mengen an Konzepten und Kulturen und (ii) die Clusterung von Aussagen
in thematisch und kulturell kohärente Gruppen. Die Ausführung der Mango-Methode
mit GPT-3.5 als zugrundeliegendem LLM ergibt eine CCSK-Ressource von beispiello-
ser Abdeckung (167.000 Aussagen, die 30.000 Konzepte und 11.000 Kulturen abdecken)
mit noch höherer Qualität als Candle. In einer extrinsischen Studie für interkulturelle
Dialoge zeigen wir, dass die Einbeziehung von Mango-Aussagen die Spezifität und kul-
turelle Sensibilität der LLM-Antworten signifikant verbessert.

Jede der erstellten CSK-Sammlungen wird für weitere Forschungsarbeiten veröffentlicht, mit
einem webbasierten Wissensdatenbank-Browser sowie herunterladbarem Code und Daten.
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1
INTRODUCTION

1.1  Motivation

Structured knowledge, often stored in knowledge graphs (KGs), a.k.a. knowledge bases (KBs)
(Hogan et al. 2021, Weikum et al. 2021), is a key asset for many artificial intelligence (AI)
applications, including search, question answering, and conversational bots. KBs cover en-
cyclopedic knowledge about named entities such as singers, songs, cities, sports teams, etc.
However, even large-scale KBs deployed in practice hardly touch on the dimension of com-
monsense knowledge (CSK): properties of everyday concepts (e.g., elephants are big and eat
plants, buses carry passengers and drive on roads), behaviors and emotions of humans (e.g.,
children love visiting zoos, children enter buses to go to school), and more. Such knowledge
can benefit a wide range of AI applications as it enables systems to reason about the world
in a more human-like way.

An important property of CSK is that, unlike encyclopedic knowledge which should hold
universally (e.g., “The Lion King” was either produced by Disney, or it was not), the plausi-
bility of CSK can vary depending on the context. For instance, elephants drinking milk only
holds for baby elephants; tipping is customary in the USA, but it can be considered rude in
Japan. This crucial aspect of CSK is often overlooked in prior CSK acquisition efforts.

Large language models (LLMs), such as the GPT models (Radford et al. 2019, Brown
et al. 2020, Ouyang et al. 2022, OpenAI 2023), are machine learning models that learn to
predict the next token given a sequence of previous tokens. LLMs are trained on corpora
consisting of trillions of tokens and have shown impressive performances on various natural
language processing (NLP) tasks that they were not directly trained for. Through the train-
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Chapter 1: Introduction

ing process, these models have encoded a vast amount of knowledge in their parameters
(Petroni et al. 2019, West et al. 2022), however, they still struggle with tasks that require
rich world knowledge, where external knowledge sources can fill gaps. A recent study (Mallen
et al. 2023) has measured the effectiveness of parametric and non-parametric memories when
using LLMs for knowledge-intensive tasks (mostly on encyclopedic knowledge). They found
that LLMs can be benefited from explicit knowledge retrieved from external sources by us-
ing retrieval-augmented generation (RAG) techniques (Guu et al. 2020, Lewis et al. 2020),
especially for long-tail entities. While large-scale and systematic studies for CSK-augmented
LLMs are still lacking, we anticipate similar effects as in Mallen et al.’s study on encyclopedic
knowledge.

Let us consider two short exchanges between a human and the GPT-3.5 chatbot¹ in
Figure 1.1.

¹Executed at https://platform.openai.com/playground/chat?models=gpt-3.5-turbo in May 2024

• In Exchange 1, the bot totally missed the fact that unlike adult elephants, baby ele-
phants do drink milk. Instead, it concluded that the user might have been mistaken
with a different type of animal, or they have had a misleading perception.

• In Exchange 2, the bot complimented the user as they were giving a generous tip at
a restaurant in Japan, where tipping is actually considered rude, unlike in many other
parts of the world. The bot was not aware of local etiquette in this example.

These issues can be mitigated by providing the bot with explicit knowledge from external
CSK resources (see Figure 1.2). Hence, having a KB of such information along with those
powerful LLMs can be particularly beneficial in situations requiring commonsense reason-
ing. As opposed to learning-only approaches, an essential advantage of a materialized CSK
resource is that it is scrutable, meaning that humans can manually inspect its assertions in
order to add or remove contents when necessary, which is important for debugging complex
downstream use cases and is highly relevant in applications where errors are costly.

This dissertation aims to advance the automatic acquisition of semantically-refined and
culturally-contextualized CSK assertions via: (1) extraction from large-scale web contents,
and (2) knowledge distillation from LLMs. In our extrinsic evaluations, the resulting CSK
resources will be shown to benefit AI systems in various downstream applications.

1.2  Prior Work and Its Limitations

Large KBs like DBpedia (Auer et al. 2007), Wikidata (Vrandečić and Krötzsch 2014), or
YAGO (Suchanek et al. 2007) focus on encyclopedic knowledge of named entities like people,
organizations or places and are sparse on commonsense relations of general concepts. For
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1.2 Prior Work and Its Limitations

Exchange 1

User

I just saw an elephant drinking milk.

GPT-3.5

It’s highly unlikely for an elephant to drink milk as they are lactose
intolerant and their digestive system is not able to process milk in the
same way as humans do. Elephants primarily drink water to stay
hydrated and sustain their large bodies. If you saw something similar
to an elephant drinking milk, it might have been a different type of
animal or a misleading perception.

Exchange 2

User

I just had a great dinner in Tokyo with my friend. The bill is 8,000
yen. I’ll leave 10,000 yen then!

GPT-3.5

That’s generous of you! Leaving a 2,000 yen tip is a nice gesture to
show your appreciation for the great dinner and service. Your friend
and the restaurant staff will surely appreciate it!

Figure 1.1: Human-bot exchanges without explicit CSK.

example, from the Wikidata knowledge graph, Ilievski et al. (2020) identified 106K edges
between 71K nodes that express commonsense relations. Whereas, 68% of these edges are
InstanceOf and SubclassOf relations, which concern taxonomical information. This set con-
stitutes a tiny fraction of Wikidata, which consists of more than 100M nodes and 17B edges.

Notable projects that compiled large sets of CSK include ConceptNet (Speer et al. 2017),
WebChild (Tandon et al. 2014a), TupleKB (Dalvi Mishra et al. 2017), Quasimodo (Romero et
al. 2019), ATOMIC (Sap et al. 2019a), TransOMCS (Zhang et al. 2020a), and ATOMIC-10x
(West et al. 2022). In terms of knowledge representation, they all use subject-predicate-ob-
ject triples, which have limited expressiveness (Section 1.2.1). Furthermore, these resources
also lack cultural contextualization for assertions (Section 1.2.2), and suffer from either low
precision or limited coverage (Section 1.2.3).
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Exchange 1++

User

I just saw an elephant drinking milk.

GPT-3.5 + CSK*

It’s highly unlikely that you saw an adult elephant drinking milk, as
they are lactose intolerant and lack the enzyme needed to digest
lactose after weaning. Baby elephants, on the other hand, do drink
their mother’s milk until they are weaned.

* Baby elephants drink milk. [Inserted in system message]

Exchange 2++

User

I just had a great dinner in Tokyo with my friend. The bill is 8,000
yen. I’ll leave 10,000 yen then!

GPT-3.5 + CSK*

In Japan, tipping is not expected or required, and leaving extra money
can sometimes be seen as rude. When paying the bill, it is generally
best to simply pay the amount on the bill without leaving additional
money as a tip. If you had a great dining experience, it would be more
appreciated to show your appreciation by thanking the restaurant staff
or chef directly.

* In Japan, tipping can be considered rude. [Inserted in system message]

Figure 1.2: Human-bot exchanges with explicit CSK.

1.2.1  Limited Expressiveness

Most prior commonsense knowledge bases (CSKBs) are restricted in their expressiveness to
subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for
P and O.

Expressiveness for Subjects.  Prior CSKBs are typically centered on simple concepts repre-
sented by single nouns (e.g., bus, car, elephant, trunk). This is problematic because it misses
semantic refinements (e.g., diesel bus vs. electric bus), which can lead to different prop-
erties (e.g., polluting vs. ecofriendly).

4



1.2 Prior Work and Its Limitations

In addition, it leads to challenges in word-sense disambiguation, for instance, elephant
trunk vs. car trunk. Even when multi-word phrases are considered, semantic relations among
concepts are often not captured. Lexical resources like WordNet (Miller 1995) or Wiktionary
(https://www.wiktionary.org/) also have limited coverage for multi-word concepts. With
these limitations, word-sense disambiguation does not work robustly, as prior attempts like
WebChild and TupleKB showed mixed results.

Expressiveness for Predicates and Objects.  Most prior CSKBs treat predicates and objects
as monolithic strings. For example, let us consider the following triples:

• 𝐴1: <bus; is used for; transporting people>
• 𝐴2: <bus; is used for; bringing children to school>
• 𝐴3: <bus; carries; passengers>
• 𝐴4: <bus; drops; visitors at the zoo on the weekend>.

This approach misses the equivalence between assertions 𝐴1 and 𝐴3 and does not capture
the semantic refinement from 𝐴1 to 𝐴2. Moreover, the spatial facets of 𝐴2 and 𝐴4 (i.e.,
“to school”, and “at the zoo”), and the temporal facet in 𝐴4 (i.e., “on the weekend”) are
cluttered into unrelated strings.

Alternatively, some projects such as ConceptNet and WebChild restrict predicates to a
small set of pre-defined relations (e.g., AtLocation, HasTaste, HasPart), and objects to concise
phrases. However, it comes at the cost of much lower coverage.

1.2.2  Lacking Cultural Contextualization

Mainstream KGs do not cover culture-aware commonsense knowledge (CCSK) at all, and
major CSK collections like ConceptNet contain only very few culturally contextualized as-
sertions. As these resources focus solely on “universal CSK” which is agreed upon by almost
all people, their assertions are viewed as “globally true”.

To the best of our knowledge, the only prior works with data that have specifically
addressed the socio-cultural dimension are the projects Quasimodo (Romero et al. 2019),
StereoKG (Deshpande et al. 2022), and the work of Acharya et al. (2021). The latter merely
contains a few hundred assertions from crowdsourcing, StereoKG uses a specialized way of
automatically extracting stereotypes from QA forums and is still small in size, and Quasi-
modo covers a wide mix of general CSK and a small fraction of culturally relevant assertions.

5
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Chapter 1: Introduction

1.2.3  Assertion Quality

Most prior CSKBs have prioritized either precision (i.e., the validity of the assertions) or
coverage, but not both.

Some major CSKBs such as ConceptNet and TupleKB prioritize precision but have fairly
limited coverage. On the other hand, some others have broader coverage but include many
noisy if not implausible assertions, for example, WebChild, Quasimodo, and TransOMCS,
which rely on knowledge extraction from web contents.

Moreover, the saliency of assertions, i.e., the degree to which statements are common
knowledge, is considered by only a few projects like ConceptNet and ATOMIC, which rely
on crowdsourcing knowledge acquisition and have limited coverage.

1.3  Challenges

While popular CSK resources (e.g., ConceptNet, ATOMIC) rely on human annotation, which
has limited scalability, we opt for designing methods to acquire CSK automatically at scale.
For better coverage of CSK, we leverage large-scale web texts and LLMs as the sources
of CSK acquisition. Each approach represents a set of particular challenges, and there are
shared challenges for knowledge organization.

1.3.1  Challenges of CSK Extraction from Web Texts

Large web crawls can be a rich source of CSK. However, the extraction of CSK from web
texts poses several challenges:

1. Sparsity of CSK in texts. CSK is implicitly agreed upon by humans when they commu-
nicate. Such knowledge is often not explicitly written in texts either, as people assume
that the knowledge is possessed by all (human) readers.

2. Noisy and inaccurate information. Besides the valuable knowledge presented in web
contents, we also have to deal with noisy and inaccurate information written by web
users.

3. Biases and stereotypes. Along with incorrect information, web texts also contain bi-
ased or stereotypical perspectives. Such contents should be eliminated in the extraction
process so as not to reinforce stereotypes and offensive materials in downstream appli-
cations.

6
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1.3.2  Challenges of CSK Distillation from LLMs

As LLMs are trained on large corpora of trillions of tokens, they implicitly encode a vast
amount of knowledge in their parameters, and distilling knowledge from LLMs has shown
promising results (Petroni et al. 2019, West et al. 2022). Although it is quite straightforward
to generate knowledge using LLMs, this approach comes with the following challenges:

1. Hallucinations. Making up information, or hallucinating, is a well-known issue of LLMs
(Bang et al. 2023, Zhang et al. 2023). Detecting and eliminating such information re-
mains a particularly challenging task.

2. Biases and stereotypes. As LLMs are trained on web contents, its output can also reflect
the biases and stereotypes presented in the training data.

3. Political correctness. To overcome the issue of biases and stereotypes in training data,
LLMs are usually finetuned on smaller datasets to align with human preference. We
have observed that such models tend to generate overly generic statements if the prompt
contains socio-cultural groups. This can be problematic given our goal of acquiring
salient culture-aware knowledge.

1.3.3  Challenges of CSK Organization

Organizing the collected CSK assertions (either from text extraction or LLM distillation)
poses challenges of knowledge consolidation and ranking.

1. CSK consolidation. A single CSK assertion can be expressed in different ways. For
instance, “tipping is not customary in Japan” and “tipping is not a common practice
in Japan” convey the same meaning. Consolidating such assertions is crucial for down-
stream applications, as well as for eliminating redundancy in the output.

2. Ranking of CSK assertions. Unlike encyclopedic knowledge, CSK can be subjective and
context-dependent. Ranking the significance of CSK assertions poses a challenging task.

1.4  Contributions

This dissertation tackle the problem of acquiring CSK with refined semantics at scale. In
order to overcome the limitations of prior work and to address the challenges of automated
CSK acquisition, we design expressive knowledge models with contextualized assertions, and
propose acquisition methods to populate these models with high-precision and high-cover-
age CSK.

7
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First, we address the expressiveness issues by introducing an advanced knowledge model
for CSK about everyday concepts in the Ascent++ project (Chapter 3). Then, culture-
aware CSK is acquired in the two projects Candle (Chapter 4) and Mango (Chapter 5),
addressing the issue of lacking cultural contextualization for CSK assertions. Our methods
consist of both simple techniques based on hand-crafted rules and dictionaries, traditional
machine learning models (such as logistic regression, linear regression) based on simple fea-
tures, as well as high-performance models based on fine-tuning LLMs. All of the methods
strive for reconciling both high precision and wide coverage with salient assertions.

Ascent++, Candle, and Mango acquire refined CSK assertions from different entry
points (concepts, cultures, or both). In each project:

1. We propose a methodology for large-scale CSK acquisition from its respective entry
points.

2. We implement the method and produce a CSK resource that outperforms prior re-
sources of similar kind in both intrinsic and extrinsic evaluations.

We summarize the main contributions of these projects in Table 1.1.

Lessons Learned.  There are lessons learned across three main projects:

1. Achieving high precision and wide coverage with automated CSK acquisition is possible.
We show that it is feasible to achieve high precision and wide coverage with automated
CSKB construction if given sufficient thoughts about knowledge organization, source
selection, and method design.

2. CSKBs are beneficial for downstream applications. In each project, we show that the
resulting CSKB can benefit AI systems in various downstream applications, and that
the quality of the CSKB is crucial for the performance of these applications.

3. Standard data models are limitedly useful for CSK. Standard data models like SPO
triples have been used in most prior CSKBs, but they are limited in their expressiveness
for CSK. We show that CSKBs using more expressive models with advanced semantics
and contextualized assertions can outperform those using standard data models in both
intrinsic and extrinsic evaluations.

4. Clustering is important for frequency signals, and dealing with the heterogeneity of
natural language. As we collect CSK assertions from large web crawls and LLMs, du-
plicates and near-duplicates are common. While untreated redundancy is undesirable,
we show that clustering assertions into coherent groups can help to identify frequency
signals, which are useful for ranking and filtering.
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Chapter 1: Introduction

1.5  Publications

The contributions of this dissertation are reflected in the following publications:

1. (Nguyen et al. 2023a) Tuan-Phong Nguyen, Simon Razniewski, Julien Romero, and
Gerhard Weikum. “Refined Commonsense Knowledge from Large-Scale Web Contents.”
In: IEEE Transactions on Knowledge and Data Engineering, TKDE 2023.

2. (Nguyen et al. 2023b) Tuan-Phong Nguyen, Simon Razniewski, Aparna Varde, and
Gerhard Weikum. “Extracting Cultural Commonsense Knowledge at Scale.” In: Pro-
ceedings of the ACM Web Conference, WWW 2023.

3. (Nguyen et al. 2024) Tuan-Phong Nguyen, Simon Razniewski, and Gerhard Weikum.
“Cultural Commonsense Knowledge for Intercultural Dialogues.” In: Proceedings of the
ACM International Conference on Information and Knowledge Management, CIKM
2024.

Other Publications.  Besides the publications contributing to this dissertation, the author
contributed to the following related papers:

• (Nguyen et al. 2021a) Tuan-Phong Nguyen, Simon Razniewski, and Gerhard Weikum.
“Advanced Semantics for Commonsense Knowledge Extraction.” In: Proceedings of the
Web Conference, WWW 2021.

• (Nguyen et al. 2021b) Tuan-Phong Nguyen, Simon Razniewski, and Gerhard Weikum.
“Inside ASCENT: Exploring a Deep Commonsense Knowledge Base and its Usage in
Question Answering.” In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, ACL Demos 2022.

• (Nguyen and Razniewski 2022) Tuan-Phong Nguyen and Simon Razniewski. “Materi-
alized Knowledge Bases from Commonsense Transformers.” In: Proceedings of the First
Workshop on Commonsense Representation and Reasoning, CSRR 2022.

• (Singhania et al. 2022) Sneha Singhania, Tuan-Phong Nguyen, and Simon Razniewski.
“LM-KBC: Knowledge base construction from pre-trained language models.” In: The
Semantic Web Challenge on Knowledge Base Construction from Pre-trained Language
Models, LM-KBC 2022.

• (Arnaout et al. 2023) Hiba Arnaout, Tuan-Phong Nguyen, Simon Razniewski, and Ger-
hard Weikum. “UnCommonSense in Action! Informative Negations for Commonsense
Knowledge Bases.” In: Proceedings of the 16th ACM International Conference on Web
Search and Data Mining, WSDM Demos 2023.

All resources and demonstrations along with related commonsense projects are available at
https://www.mpi-inf.mpg.de/commonsense.
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1.6 Outline

1.6  Outline

Chapter 2 gives background on commonsense knowledge, and reviews prior work on common-
sense knowledge acquisition and applications of commonsense knowledge in AI. Chapter 3,
Chapter 4, and Chapter 5 present our main projects Ascent++, Candle, and Mango,
respectively. We conclude the dissertation in Chapter 6 with discussion on what we achieved
from the projects, limitations of the proposed methods, and future research opportunities.
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2
BACKGROUND AND RELATED WORK

In this chapter, we discuss the notion of commonsense knowledge and its characteristics
(Section 2.1), prior work on commonsense knowledge acquisition (Section 2.2), and applica-
tions of commonsense knowledge in various areas of AI (Section 2.3).

2.1  Commonsense Knowledge

In our daily life, we constantly use common sense to make judgments and decisions about
the world around us. This kind of knowledge is often implicit when people communicate
with each other, because it is assumed to be known by most humans. For example, when
someone says “I am going to the store to buy some milk”, their partner would not ask if it
is their neighborhood grocery store or the hardware store next door. In another example,
when going to a Chinese restaurant, one would not be surprised that food is eaten using
chopsticks and spoons, not forks and knives.

In artificial intelligence (AI), commonsense knowledge (CSK) usually refers to knowledge
about general concepts (e.g., elephants, bicycles, laptops) and activities (e.g., feeding dogs,
fixing laptops, going to the zoo), rather than details about named entities (e.g., Germany,
Kylian Mbappé, Max Planck Society), which is often referred to as encyclopedic knowledge.
Some example assertions of commonsense and encyclopedic knowledge are:

Commonsense knowledge

Elephants eat plants.
Bicycles have two wheels.
Feeding dogs requires dog foods.

Encyclopedic knowledge

Berlin is the capital of Germany.
Kylian Mbappé plays for Real Madrid.
Max Planck Society was founded in 1911.

13



Chapter 2: Background and Related Work

Both commonsense and encyclopedic knowledge are foundational cornerstones for AI appli-
cations (Davis and Marcus 2015, Chen et al. 2020), but they have significantly different char-
acteristics. While encyclopedic knowledge is well established, and it can be structured into a
well-defined ontology with canonical relations (e.g., CapitalOf, PlaysForTeam, FoundedInYear),
there is no universally accepted definition for CSK. “Common sense” is at best a vague term
for humans and for AI.

Nevertheless, there are characteristics of CSK in AI that have been commonly pointed
out in prior studies:

• CSK is common. CSK is fundamentally shared by large groups of people. A piece of
knowledge only known to a few people is not considered common sense. For example,
the fact that elephants have trunks is CSK, while the fact that elephants have 40,000
muscles in their trunks is expert knowledge.

• CSK is context-dependent. The correctness of a CSK assertion can vary between differ-
ent cultures, times, locations, or social situations (Anacleto et al. 2006, Shwartz 2022).
For instance, the statement “one should tip the waiter” is true in the United States,
but not in Japan.

• CSK does not concern individual entities. CSK does not describe facts about individ-
ual entities (e.g., Berlin is the capital of Germany), but rather general concepts and
activities (e.g., a country typically has a capital city).

• CSK covers a wide range of topics. CSK has a broad scope, covering a wide range of
topics and facets, from physical properties of objects (Speer et al. 2017) to social norms
(Forbes et al. 2020) and cultural practices (Acharya et al. 2021).

In this dissertation, we view CSK as basic knowledge of broad scope about general concepts
and activities that is possessed by large groups of people, which is often implicit in human
communication and varies within contexts. This understanding of CSK aligns with theories
of common sense in sociology, anthropology, and psychology (Schütz 1944, Geertz 1983,
McRae et al. 2005, Devereux et al. 2014, Tomasello 2014).

2.2  Prior Work on Commonsense Knowledge Acquisition

Commonsense knowledge is broad and diverse, covering a wide range of topics and facets.
The acquisition of CSK has a long tradition in AI (Lenat 1995, Singh et al. 2002, Liu and
Singh 2004, Gordon et al. 2010) with different focuses and methodologies. We provide a
summary of notable CSK acquisition projects in Table 2.1.

In Section 2.2.1, we analyze these prominent projects by two dimensions, acquisition ap-
proach and knowledge representation, before detailing each project further in Section 2.2.2.
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2.2 Prior Work on Commonsense Knowledge Acquisition

In Section 2.2.3, we discuss other related projects that have also contributed to the theme
of CSK acquisition, including projects that focus on specialized CSK domains or expressive
knowledge representations. Finally, in Section 2.2.4, we summarize the key points of the
discussed projects.

2.2.1  Overview

From Table 2.1, it can be seen that prominent acquisition approaches are manual knowledge
engineering, information extraction from texts, and generative methods using large language
models. Most projects represent knowledge in the form of subject-predicate-object triples,
and lack contextualization for assertions.

Acquisition Approach.  Early projects on CSK acquisition, such as Cyc (Lenat 1995) and
Open Mind Common Sense (OMCS) (Singh et al. 2002), were based on manual knowledge
engineering, where human experts or volunteers entered assertions into the systems. This
approach was later revived in the ATOMIC project (Sap et al. 2019a). While this approach
ensures assertions with high precision, it does not scale well, hence the coverage of these
resources is limited.

With the advances in information extraction (IE), more recent projects have focused on
extracting CSK from large text corpora, such as WebChild (Tandon et al. 2014a), TupleKB
(Dalvi Mishra et al. 2017), Quasimodo (Romero et al. 2019), and ASER (Zhang et al. 2020b).
The advantage of this approach over manual KB construction is that it can capture a much
larger amount of knowledge at a lower cost, however, the quality of the extracted assertions
is often lower than that of hand-crafted ones.

Large language models (LLMs), which are trained on a vast amount of data and latently
encode world knowledge into their parameters, have been used to generate CSK assertions,
e.g., in the projects COMET (Bosselut et al. 2019) and ATOMIC-10x (West et al. 2022).
These methods can create a large number of assertions without abundant engineering ef-
forts, but need to face the issue of hallucination, where the models generate incorrect or
nonsensical assertions. Another important downside of these methods is that the generated
assertions are not traceable to specific sources, making it difficult to verify the correctness
of the assertions.

Knowledge Representation.  Most prominent CSK acquisition methods (10 out of 13 meth-
ods listed in Table 2.1) represent knowledge in the logical form of subject-predicate-object
(SPO) triples, following the established knowledge representation in encyclopedic knowledge
graphs. Predicates in these triples can either be pre-specified, such as in ConceptNet, We-
bChild, and ATOMIC, or in free-form, such as in Quasimodo. Subjects are usually simple

15



Chapter 2: Background and Related Work

Table 2.1: Notable CSK acquisition projects sorted by first publication date.

Project Approach Source Domain Representation Context

Cyc
(Lenat 1995)

Manual
Experts

(ontologists)
Broad

Formal
language

Micro-theories
(assumptions)

OMCS
(Singh et al.

2002)
Manual

14K
volunteers

Broad
Short

sentences
N/A

ConceptNet
(Liu and Singh

2004)

Semi-
automated

OMCS,
WordNet,

etc.
Broad

Triples
(fixed predicates)

N/A

WebChild
(Tandon et al.

2014a)
Extractive

Texts, scripts,
image tags

Narrow
refined

relations

Triples
(fixed predicates)

N/A

TupleKB
(Dalvi Mishra et

al. 2017)
Extractive

Web texts
(via search

APIs)

Elementary
science

Triples
(fixed predicates)

N/A

Quasimodo
(Romero et al.

2019)
Extractive

Query logs
& QA forums

Broad
Triples

(free predicates)
N/A

ATOMIC
(Sap et al.

2019a)
Manual

MTurk
workers

Event-
centric

Triples
(fixed predicates)

N/A

COMET
(Bosselut et al.

2019)
Generative

Finetuned
LMs

Broad
Triples

(fixed predicates)
N/A

GenericsKB
(Bhakthavatsalam

et al. 2020)
Extractive

Cleaned
sets of

web texts
Broad

Generic
sentences

Surrounding
sentences

ASER
(Zhang et al.

2020b)
Extractive Web texts

Event-
centric

Triples
(fixed predicates)

N/A

TransOMCS
(Zhang et al.

2020a)
Extractive ASER Broad

Triples
(fixed predicates)

N/A

CSKG
(Ilievski et al.

2021)

Data
integrating

7 CSK
resources

Broad
Triples

(fixed predicates)
N/A

ATOMIC-10x
(West et al.

2022)
Generative

General
LLMs

Broad
Triples

(fixed predicates)
N/A
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2.2 Prior Work on Commonsense Knowledge Acquisition

concepts, and objects are often monolithic strings. These relational triples are stored in a
graph, which can be used by graph-based reasoning methods, but they are often limited
in expressiveness. In contrast, OMCS (in its native form, i.e., inputs from volunteers) and
GenericsKB store knowledge in the form of short natural-language sentences, which can
capture more complex knowledge and can be directly used by LLMs.

Most methods are limited to capturing knowledge that is assumed to hold universally
(i.e., assertions are not contextualized). The only methods that consider collecting context
of CSK are Cyc and GenericsKB. However, the latter only captures surrounding sentences
of the extracted statements without any further semantic annotations, while the former does
not provide a publicly accessible dataset or system.

2.2.2  Prominent CSK Acquisition Projects

In this subsection, we review 13 prominent CSK acquisition projects listed in Table 2.1.

Cyc.  The Cyc project, starting in the 1980s up until the 2000s, was the first to construct a
large knowledge base (KB) that captures commonsense knowledge, based on hand-crafting
assertions by a team of ontology experts and knowledge engineers (Lenat 1995, Panton et
al. 2006).

The Cyc KB is codified in a syntax language called CycL, a higher-order logic language
which can theoretically capture any natural-language statement. The KB is organized into
micro-theories, which are sets of specific assumptions shared by a group of assertions. While
many succeeding CSK acquisition projects followed the triple-based knowledge model, Cyc
has been clearly ahead of its time in terms of the expressiveness of its knowledge represen-
tation. However, there have been reports criticizing its usability due to the complexity and
understandability of its syntax (see, e.g., (Conesa et al. 2008)).

According to their white paper (Cycorp 2021), the Cyc KB includes more than 40K
predicates, more than 1.5M concepts, and more than 25M assertions. The average number
of assertions entered by an expert is 25 assertions per hour. However, it is unclear how much
CSK is covered by this KB, as it also includes domain-specific knowledge and knowledge
about individual instances.

A non-commercial version of Cyc, called OpenCyc (Cycorp n.d.), had a much smaller
size. The last version of OpenCyc (v4.0) was released in 2012. However, this project has
been discontinued without any research licenses available. For these reasons, we could not
compare Cyc or OpenCyc with our methods.

OMCS.  Open Mind Common Sense (OMCS) (Singh et al. 2002) is a project that aimed to
collect commonsense knowledge in the form of English statements from the general public, in
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contrast to Cyc, which was based on expert knowledge and restricted by formal languages.
This crowdsourcing approach was made possible by the increasing number of Internet users
and collaborative projects on the web in the early 2000s. Compared to Cyc, which costed
several tens of millions of dollars and took more than 15 years to build, OMCS’s approach
was less expensive and acquired knowledge faster, although it comes with the cost of losing
expressiveness in the knowledge representation and the quality of the assertions. On the
other hand, by crowdsourcing to a large number of contributors (more than 14,000 volun-
teers), it created frequency signals for consolidating assertions (more than a million English
statements were entered by volunteers, resulting in more than 100,000 consolidated asser-
tions). There were two carefully designed user interfaces used by OMCS, namely OMCS-1
and OMCS-2.

The first version, OMCS-1, asked users to enter free-form English sentences that describe
CSK given a short simple story. For instance, when prompted with “Bob had a cold. Bob
went to the doctor”, users would enter “Bob was sick” or “The doctor helped Bob feel better”.
The collected statements were also used to extract CSK triples based on simple syntactic
hand-crafted patterns.

The second version, OMCS-2, was designed to collect more structured knowledge by
asking users to enter the missing subject or predicate or object of a CSK triple given a
predefined template. For example, given the template “A ? can have a ?”, users would enter
“A mother can have a baby” or “A dog can have a tail”. OMCS-2 also included a peer-review
mechanism between contributors to ensure the quality of the collected assertions.

The CSK assertions in OMCS were then integrated into the ConceptNet knowledge
graph (Liu and Singh 2004), which has been one of the most widely used CSK resources.

ConceptNet.  ConceptNet (Liu and Singh 2004, Havasi et al. 2007, Speer and Havasi 2013,
Speer et al. 2017) combined CSK collected by human crowdsourcing and knowledge from
existing resources such as WordNet (Miller 1995), OMCS (Singh et al. 2002), DBpedia
(Auer et al. 2007), OpenCyc (Cycorp n.d.), and Wiktionary. This KB uses a triple-based
data model, and it contains highly salient information for a few pre-specified predicates
(e.g., IsA, PartOf, UsedFor, CapableOf, LocationOf, plus lexical relations such as HasSynonymy,
HasEtymology, HasDerivedTerm, etc.).

ConceptNet has gone through several versions, each expanded the KB with more data
from other resources.

• The original release of ConceptNet (Liu and Singh 2004) was built as a graph by pars-
ing the OMCS assertions based on hand-crafted lexico-syntactic patterns, rule-based
normalization, and relaxation rules to increase coverage (e.g., <apple; IsA; red fruit>
and <apple; IsA; red round object> imply <apple; HasProperty; red>).
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2.2 Prior Work on Commonsense Knowledge Acquisition

• ConceptNet 3 (Havasi et al. 2007) introduced a significant reorganization of Concept-
Net with a more principled data model, including defining concepts, predicates and
relations (e.g., for the CapableOf relation, the head concept should be a noun phrase,
and the tail concept should be a verb phrase). Furthermore, the authors collected more
data using Open Mind Commons (Speer 2007), an update of the original OMCS inter-
faces which aimed to discover new connections between existing nodes in the knowledge
graph. This version also introduced assertion scores based on crowdsourcing inputs, as
well as assertion polarity (representing negation) based on extraction patterns.

• ConceptNet 5.2 (Speer and Havasi 2013) extended the knowledge graph with more
data from other resources, including OMCS’s sister projects in other languages, Word-
Net 3.0, DBpedia (Auer et al. 2007), “games with a purpose” (Ahn et al. 2006) and
relational statements mined from Wikipedia using ReVerb (Etzioni et al. 2008) - an
open information extraction (OpenIE) system. It also introduced multilingual data by
translating assertions into different languages.

• The latest release, ConceptNet 5.5 (Speer et al. 2017), further expanded the knowledge
graph with more data from Wiktionary, a collaborative project to produce free-content
multilingual dictionaries, and OpenCyc, the open version of the Cyc KB. Excluding
the lexical relations, the English part of ConceptNet 5.5 contains more than 1.6 million
CSK assertions.

A simple yet well-defined knowledge model and high-quality assertions have contributed to
the popularity of ConceptNet in many applications. However, it has limited coverage on
many concepts, and its ranking of assertions, which is based on the number of crowdsourcing
inputs, is very sparse and unable to discriminate salient properties against atypical or exotic
ones (e.g., listing tree, garden, and the bible as locations of snake, with similar scores).
ConceptNet does not properly disambiguate concepts, leading to incorrect assertion chains
like <elephant; HasPart; trunk> and <trunk; LocationOf; spare tire>. Furthermore, the dis-
tinction between CSK and encyclopedic knowledge in ConceptNet 5.5 has become unclear,
as it has included relations extracted from Wikipedia and DBpedia, for example, geo-knowl-
edge relations like <Berlin; PartOf; Germany>.

WebChild.  WebChild (Tandon et al. 2014b, 2014a, 2015a, 2015b, 2016, 2017) was one of the
first attempts to automatically extract CSK at a large scale, based on information extraction
from texts. WebChild’s knowledge representation is based on SPO triples, similar to Con-
ceptNet but with more refined relations and disambiguated concepts mapped to WordNet
senses. WebChild’s knowledge extraction pipelines used pattern-based OpenIE and semantic
parsing techniques on web texts (e.g., Wikipedia dump), image tags, and movie scripts. Con-
cept sense disambiguation was based on judiciously designed integer linear programming.
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Chapter 2: Background and Related Work

The final WebChild 2.0 KB (Tandon et al. 2017), which contains more than 18 million
CSK assertions covering over 2 million concepts and activities, is composed of results from
several sub-projects:

• Tandon et al. (2014a) expanded the HasProperty relation in ConceptNet with more
specific properties, namely HasShape, HasTaste, and EvokesEmotion. Assertions were ex-
tracted from the Google Web 1T N-Gram Dataset (Brants and Franz 2006).

• Tandon et al. (2014b) extracted comparative commonsense knowledge (e.g., <steel;
sharper than; wood>, <car; faster than; bicycle>) using pattern-based OpenIE on
web texts.

• Tandon et al. (2015a) and Tandon et al. (2015b) extracted activity-centric CSK from
movie scripts, i.e., annotating activities with their (typical) participants, location, time,
etc., and linking them to previous or next activities. For example, the activity climbing
up a mountain is annotated with the participating agents climber and rope, the location
mountain, the times daylight and holiday, and is linked to the previous activity packing
a backpack and the next activity drinking water.

• Tandon et al. (2016) mined refined part-whole commonsense relations, namely
PhysicalPartOf, MemberOf, and SubstanceOf, from web texts and image tags, refining the
general PartOf predicate in ConceptNet.

Although WebChild’s relations are more refined than ConceptNet’s and it comes with dis-
ambiguated concepts, the KB suffers from quality issues due to the noisy nature of web texts
(see (Romero et al. 2019) and (Nguyen et al. 2021a) for comparisons of intrinsic quality
between CSK resources). In addition, it has a limited scope due to the specific focuses.

TupleKB.  TupleKB (Dalvi Mishra et al. 2017) aimed to extract triples of elementary sci-
ence knowledge from web texts. The TupleKB construction pipeline used a fixed domain
vocabulary (i.e., elementary science concepts), their corresponding types (e.g., animal, plant,
body part, etc.), and commercial search APIs with handcrafted queries to retrieve relevant
sentences. It then used OpenIE to extract triples from the retrieved sentences. Next, a subset
of the extracted triples was verified by Amazon MTurk workers for their plausibility. Finally,
these annotated samples were used to train a regression model to score the remaining triples.

TupleKB construction also consisted of a step for canonical schema induction, which
grouped semantically similar relations into a canonical, generalized relation, for example,
it maps: <(type:animal); munch on; (type:animal)>, <(type:animal); chew; (type:animal)>,
and <(type:animal); consume; (type:animal)> to a canonical form: <(type:animal); eat;
(type:animal)>. The canonical schema induction step was based on integer linear program-
ming with carefully designed constraints.
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TupleKB contains more than 340K triples restricted to elementary science knowledge
and the triple-based knowledge model.

Quasimodo.  Quasimodo (Romero et al. 2019) extracted CSK from query logs (via Google
and Bing search engines) and post titles from question-answering forums (e.g., Quora, Red-
dit). The Quasimodo KB is based on SPO triples for knowledge representation, similar to
ConceptNet and others, but it drops the pre-specified predicates and uses free-form predi-
cates, which allows it to capture CSK at a broader scope.

The motivation behind the use of Internet users’ questions as the knowledge source in
Quasimodo is twofold: (1) these questions implicitly convey knowledge (e.g., when someone
asks Google “why do dogs bark?”, the question implies that dogs bark), and (2) these ques-
tions are a good source of salient knowledge, as they are often about things that many people
care about.

Based on those observations, the authors utilized a set of handcrafted patterns, to col-
lect candidate queries using search engines’ auto-complete feature. These patterns were con-
structed by concatenating a question word (“why” or “how”) with one of the verbs “is”, “do”,
“are”, “does”, “can”, “can’t” followed by a subject of interest (e.g., “cats”). For example,
given the initial query “why do cats”, the method collected the auto-complete suggestions
“why do cats purr”, “why do cats like boxes”, etc. A similar pattern-based approach was used
to collect relevant questions from question-answering forums.

Given the collected human-written questions, Quasimodo used OpenIE to extract triple
candidates, which would go through a corroboration step for verifying their plausibility. The
corroboration step was based on collecting occurrences of the triple candidates from various
sources, such as Wikipedia, Google Books, and image tags from Flickr. These evidences were
then used to train a regression model for ranking the triple candidates.

The Quasimodo KB v4.3 contains 6.2 million CSK assertions covering 148K concepts.
It offers a more diverse set of CSK compared to prior resources such as ConceptNet and
TupleKB, however, due to noise, biases and emotion-driven queries in the search engine logs
and QA forums, many of the extracted triples are incorrect or nonsensical, e.g., <elephant;
be; the best>, or <musician; be; aged>.

ATOMIC.  In the ATOMIC project (Sap et al. 2019a), the authors focused on collecting
CSK about if-then relations, for example, if PersonX pays PersonY a compliment, then
PersonY will likely feel happy. Although some activity-centric relations are present in pre-
vious resources such as ConceptNet (e.g., Causes, HasSubEvent, MotivatedByGoal relations),
ATOMIC was the first to systematically collect such relations at a large scale. ATOMIC also
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uses a triple-based knowledge representation with a fixed set of nine predicates (e.g., xNeed,
xIntent, xWant).

ATOMIC knowledge was collected through a crowdsourcing framework with Amazon
MTurk workers. First, the authors collected a set of 24K events from various sources such as
books, Google n-grams, and Wiktionary, followed by post-processing steps for disambigua-
tion and normalization. Then, given an event (e.g., “PersonX pays PersonY a compliment”),
MTurk workers were asked to write possible causes or effects of the event (e.g., “PersonY
will likely feel happy”).

The ATOMIC knowledge base contains 877K if-then assertions. This KB was used to
train a generative model, namely COMET (Bosselut et al. 2019), to generate new CSK
triples. A later version of the KB, called ATOMIC20

20 (Hwang et al. 2021), was created by
extending the original ATOMIC KB with more data from ConceptNet as well as by collecting
more crowdsourcing inputs. ATOMIC20

20 contains 1.3M assertions spanning three genres of
CSK, namely social-interaction, event-centered, and physical-entity knowledge. It was subse-
quently extended to a much larger KB called ATOMIC-10x (West et al. 2022) by judiciously
prompting large language models.

COMET.  COMET (Bosselut et al. 2019) was the first notable work to finetune a language
model (LM) in order to generate new CSK triples. The COMET model was based on the
GPT-2 architecture (Radford et al. 2019), and it was finetuned on ConceptNet and ATOMIC
data. GPT-2 is a transformer-based causal language model that predicts the next token
in a sequence given the previous tokens. The finetuning process was done by training the
model to predict the object tokens given the subject and predicate tokens in a CSK triple.
For example, given the subject going to mall and the predicate xIntent, the model should
predict object buying clothes among others.

Although the model achieved promising results, its generated triples are often of lower
quality compared to the training resources (Nguyen and Razniewski 2022). In addition, the
generated triples are not traceable to their sources, in contrast to the extractive methods.

GenericsKB.  GenericsKB (Bhakthavatsalam et al. 2020) dropped attempts at structuring
assertions and instead focused on collecting generic sentences on a per-subject basis, for
example, “Dogs bark”, or “Trees remove carbon dioxide from the atmosphere”. This KB
was created by extracting generic statements from three corpora, namely the Waterloo
corpus of 280GB of plain English text crawled from educational domains in 2001, filtered
SimpleWikipedia (https://simple.wikipedia.org) pages, and the ARC corpus of 14M general
sentences (Clark et al. 2018). GenericsKB’s extraction method was based on handcrafted
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patterns for cleaning, lexico-syntactic rules for selecting generic sentences, and a BERT-
based classifier for filtering out irrelevant sentences.

The GenericsKB contains more than 3.4M generic sentences. A smaller version of Gener-
icsKB that contains more than 1M statements, called GenericsKB-Best, was created by se-
lecting the top-scoring generic sentences combined with sentences synthesized from WordNet
and ConceptNet assertions.

ASER.  ASER (Zhang et al. 2020b) is another knowledge graph (KG) extracted automati-
cally from web texts, however, it focuses on events and relations between them. For example,
in the ASER graph, the event “I am hungry” is connected to the event “I have lunch” by the
relation Result. The authors defined 15 relation types for the KG, such as Result, Reason,
Condition, etc.

This KG was constructed by extracting pairs of events using dependency patterns on
several text sources, such as Yelp, New York Times, Wikipedia, and Reddit. The relations
between the events were then automatically predicted by using a bootstrap-based method
that leveraged seed training instances inferred from a manually labeled corpus (the Penn
Discourse TreeBank 2.0 (Prasad et al. 2008)).

The resulting KB contains 194M events and 64M unique edges among them. Although it
provides a rich source of event-centric CSK, ASER suffers from high noise and redundancy.

TransOMCS.  The TransOMCS project (Zhang et al. 2020a) was an attempt to distill com-
monsense knowledge from ASER, mapping to canonical relations in ConceptNet. First, the
authors matched ConceptNet triples with equivalent assertions in the ASER graph to learn
extraction patterns, and then used these patterns to extract more triples from ASER. The
extracted triples were ranked by a classifier based on BERT embeddings, graph-attention
embeddings and frequency features, which was trained on 1,000 examples annotated by
MTurk workers.

The TransOMCS knowledge base contains more than 18M triples. Although being one
of the largest CSK resources in terms of the number of assertions, studies have shown that
TransOMCS has a high level of noise and redundancy (see e.g., (Hwang et al. 2021)).

CSKG.  The CSKG project (Ilievski et al. 2021) aimed to integrate seven existing CSK
resources into a single knowledge graph, whereas ConceptNet and ATOMIC were the main
sources that made up the majority of the integrated commonsense knowledge graph (called
CSKG) - approximately 87% of the nodes and 70% of the edges came from these two KBs.
CSKG has a canonical set of relations, and provides a higher coverage of CSK compared to
individual resources (6M edges and 2.2M nodes). However, as the sources are all based on
manual labor, the coverage of CSKG is still limited compared to automated methods.
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ATOMIC-10x.  ATOMIC-10x (West et al. 2022) consists of 6.4M CSK triples collected by
prompting GPT-3 (Brown et al. 2020) with judiciously designed prompts with in-context
examples selected from ATOMIC20

20 (Hwang et al. 2021).

The generation process consisted of two steps: (1) event generation, where GPT-3 was
asked to generate a new event given a set of example events picked from ATOMIC20

20, and (2)
relation generation, where the LLM was used to generate tail events given a head event and
a relation, with examples provided in the prompt. The generated triples were then filtered
by a RoBERTa classifier (Liu et al. 2019) finetuned on a small set of labeled data.

ATOMIC-10x was shown to have a higher quality compared to ATOMIC20
20, and is ten

times larger in size (6.4M vs. 0.64M triples for the six predicates: HinderedBy, xNeed, xWant,
xIntent, xReact, xAttr, and xEffect), hence the suffix “10x”.

Generating knowledge from LLMs has the advantage of being able to capture a wider
range of CSK, but it also faces the issue of hallucination, and provides no traceability to
sources of the generated knowledge, which is crucial for debugging and verification, especially
in safety-critical applications.

2.2.3  Other Related Work

There are other projects that have contributed to the acquisition of CSK but were not cov-
ered in the subsection above. These are projects that focus on special CSK domains, such as
cultural and social knowledge, and projects of related fields, such as expressive knowledge
representation and extraction.

Cultural CSK Acquisition.  There are only few works on culture-aware knowledge: (Anacleto
et al. 2006), (Acharya et al. 2021), (Shwartz 2022), StereoKG (Deshpande et al. 2022),
NormsKB (Fung et al. 2023), (CH-Wang et al. 2023), and GD-COMET (Bhatia and Shwartz
2023). These methods are based on extraction from text (Deshpande et al. 2022, Shwartz
2022), norm discovery from multi-lingual conversations (Fung et al. 2023), or fine-tuning
LLMs on cultural knowledge bases (Bhatia and Shwartz 2023). On the other hand, CH-
Wang et al. (2023) aligned social situations from an English knowledge base (Forbes et al.
2020) and Chinese QA forums to mine 3,069 social norms for these two cultures. All of these
prior works are very limited in scope and scale; some even suffer from high noise. In addition,
many of them do not release their resources publicly.

Our projects Candle (Chapter 4) and Mango (Chapter 5) aim to acquire culture-aware
CSK with high precision and wide coverage with publicly accessible resources.
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Social CSK Acquisition.  The Social-Chem-101 (Forbes et al. 2020) dataset, built by crowd-
sourcing annotations, consists of 292K rule-of-thumb assertions around social situations (e.g.,
“It is rude to interrupt someone”) via crowdsourcing.

Another social CSK resource is NormBank (Ziems et al. 2023), which contains 155K
situational social norms. Situations were generated by an LLM, including a setting (e.g.,
cafe, classroom), a person’s behavior (e.g., drinking hot coffee) and the person’s role (e.g.,
barista, customer) and attributes (e.g., child, adult). These situations were then annotated
by humans to indicate if the behavior followed social norms (labeled as expected, okay, or
unexpected).

Taxonomy and Meronymy Induction.  There has been great attention in NLP and web min-
ing to the organization of concepts in terms of subclass and part-whole relationships, termed
hypernymy and meronymy, which are also considered commonsense relations. Notable works
include (Etzioni et al. 2004, Girju et al. 2006, Pantel and Pennacchiotti 2006, Snow et al.
2006, Pasca and Durme 2008, Ponzetto and Strube 2011, Wu et al. 2012, Hertling and Paul-
heim 2017). A widely used resource, the manually curated WordNet lexicon (Miller 1995),
organizes over 100K synonym sets to capture these relationships, though it contains rela-
tively few entries for meronymy.

Recent approaches for large-scale taxonomy induction from web data include WebIsADB
(Seitner et al. 2016, Hertling and Paulheim 2017), which builds upon Hearst patterns and
other techniques, and the industrial GIANT ontology (Liu et al. 2020), which utilizes neural
learning from user-action logs and additional sources.

Large-scale meronymy induction has been tackled by Tandon et al. (2016) and Bhak-
thavatsalam et al. (2020) using pre-defined and automatically learned patterns, targeting
specific relations like PhysicalPartOf, MemberOf, and SubstanceOf.

Our Ascent++ methodology (Chapter 3) will incorporate both kinds of relations by
extracting knowledge about salient subgroups and aspects of subjects. Unlike conventional
taxonomies and part-whole datasets, our subgroups include many multi-word phrases: com-
posite noun phrases (e.g., forest elephant, elephant keeper) and adjectival and verbal
phrases (e.g., male elephant, working elephant). The aspects in our approach cover further
refinements of subjects that do not fit into taxonomy or meronymy (e.g., elephant's diet,
elephant habitat).

Expressive Knowledge Representation and Extraction.  Most prior works on CSK acquisition
rely on the traditional triple-based data model as knowledge representation, which comes
with expressiveness issues. Although expressive knowledge representations that capture se-
mantic frames (Hogan et al. 2021) or modal logics such as always, often, rarely, and never
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(Gabbay 2003) have been around for decades, research on populating these refined models
has been limited. Notable exceptions include small-scale projects like Knext (Schubert 2002)
and OntoSenticNet (Dragoni et al. 2018), which focuses on affective valence annotations.

Few studies on contextualizing CSK assertions include (Zhang et al. 2017), which scored
natural language sentences on an ordinal scale ranging from very likely to impossible;
(Chen et al. 2020), which gave assertions probabilistic scores; and the Dice project (Chalier
et al. 2020) which ranked assertions by four dimensions: plausibility, typicality, remarkabil-
ity, and saliency.

In the task of semantic role labeling (SRL), sentences are mapped onto frames (often
corresponding to specific types of events), with respective slots (e.g., agent, participant, in-
strument) filled with values extracted from the input text (Palmer et al. 2010, Clarke et al.
2012, Stanovsky et al. 2018). Facet-based open information extraction (Cetto et al. 2018,
Prasojo et al. 2018), built on this paradigm, extract tuples with qualifying semantic facets
such as time, location, and mode. Our Ascent++ methodology (Chapter 3) will extent
this approach in various ways geared for the case of CSK. Specifically, we focus on facets
specifically relevant to CSK, refine subjects by subgroups and aspects, and strive to reconcile
both high precision and wide coverage for CSK extraction.

Commonsense Benchmarks.  A different kind of commonsense dataset is commonsense rea-
soning benchmarks, which often have smaller sizes and are used to evaluate the commonsense
reasoning abilities of models in specific tasks. Some text-based benchmarks are CommonGen
(Lin et al. 2020), CommonsenseQA (Talmor et al. 2019), CommonsenseQA 2.0 (Talmor et
al. 2021), HellaSwag (Zellers et al. 2019), NumerSense (Lin et al. 2020), PIQA (Bisk et
al. 2020), RiddleSense (Lin et al. 2021), Social IQa (Sap et al. 2019b), SWAG (Zellers et
al. 2018), Winograd Schema Challenge (Levesque et al. 2012), and Winogrande (Sakaguchi
et al. 2021). Notable image-based benchmarks include Adversarial VQA (Li et al. 2021),
COFAR (Gatti et al. 2022), KB-VQA (Wang et al. 2017), VCR (Zellers et al. 2019), Visual
Genome (Krishna et al. 2017), and WinoGAVil (Bitton et al. 2022). We refer readers to the
survey of more than 100 commonsense reasoning benchmarks by Davis (2023).

In terms of culture-aware NLP, there have been a few datasets used for benchmarking
commonsense reasoning abilities of models in cultures beyond the Western world. These
include MaRVL (Liu et al. 2021), GD-VCR (Yin et al. 2021), GeoMLAMA (Yin et al. 2022),
CALI (Huang and Yang 2023), FORK (Palta and Rudinger 2023), CultureAtlas (Fung et al.
2024), and CulturalTeaming (Chiu et al. 2024).
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2.2.4  Summary

Notable CSK acquisition efforts have been made over the past few decades, with different
focuses and methodologies. The early projects, such as Cyc and OMCS, relied on manual
knowledge engineering, while recent projects, such as WebChild and Quasimodo, have fo-
cused on extracting CSK from large text corpora. Most recently, large language models have
been used to generate CSK assertions, as in COMET and ATOMIC-10x. These projects
mostly use a triple-based knowledge representation, with significant limitations in expres-
siveness. In addition, these prominent resources do not capture culture-aware commonsense
knowledge. The few projects focusing on cultural CSK, on the other hand, suffer from low
coverage or high noise.

The quality of the extracted assertions varies across projects, with manual methods often
producing higher-quality assertions but at a lower scale, and automated methods producing
a larger number of assertions but often suffering from lower precision. Among the automated
methods, those based on large language models often lead to CSK of a wider coverage and
sometimes higher quality compared to extractive methods, but they also face the issue of
hallucination and lack of traceability to knowledge sources.

Our work in this dissertation strives for reconciling both high precision and high recall of
CSK acquisition, based on new techniques for information extraction from large web crawls,
LLM prompting, assertion clustering and consolidation. We also introduce expressive knowl-
edge models that capture advanced semantic facets and cultural contextualization for CSK
assertions.

2.3  Applications of Commonsense Knowledge

Although AI has beaten humans in expert-level games like Chess and Go (e.g., IMB’s Deep
Blue and Google’s AlphaGo systems), tasks that require common sense, which humans find
trivial, remain challenging for such advanced systems. State-of-the-art AI bots like ChatGPT,
despite implicitly possessing commonsense knowledge, continue to be brittle in commonsense
reasoning tasks. Building a general AI with common sense remains a complex and long-term
challenge, which requires not only compiling large sets of commonsense knowledge, but also
developing reasoning mechanisms that can effectively utilize this knowledge (Brachman and
Levesque 2022).

Nevertheless, materialized CSK resources have been used in many smaller applications
across major areas of AI, including natural language processing, computer vision, and ro-
botics. In the following subsections, we briefly discuss some of the recent efforts on CSK-
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enhanced AI applications, which usually involve deep learning models integrated with CSK
resources to improve their robustness and generalizability. For more dated applications in
the eras before deep learning, we refer readers to surveys by Lieberman et al. (2004) and
Tandon (2016).

2.3.1  Natural Language Processing

Deep neural networks (DNNs), including large language models (LLMs), have marked a sig-
nificant advancement in natural language processing (NLP) in the last decade. DNNs rely on
learning latent representations of texts from large corpora, showing superior performance in
various NLP tasks. However, the downside of these models is that they lack interpretability
compared to traditional NLP approaches based on explicit lexical and syntactic features.

In particular, LLMs, whose goal is to predict the next token in a sequence given the
previous tokens, are trained on corpora of trillion-token scale. LLMs have been achieving
the highest scores on multiple NLP benchmarks including ones aimed at commonsense rea-
soning. For example, GPT-4 (OpenAI 2023) performs on par with humans on the HellaSwag
benchmark (Zellers et al. 2019), which tests commonsense inference via the task of sentence
completion. However, doing well on such benchmarks does not mean these models “have
common sense”. As pointed out by Davis (2023), existing commonsense reasoning bench-
marks are often flawed and unreliable as they consist of erroneous test samples, and still
many aspects of commonsense reasoning have not been addressed. Indeed, we have seen that
state-of-the-art LLMs can be easily attacked by simple adversarial examples despite having
nearly perfect scores on several commonsense benchmarks.

In spite of relying on learning-only approaches, there have been works that utilized
commonsense resources, such as ConceptNet (Speer et al. 2017) and ATOMIC (Sap et al.
2019a), to improve commonsense reasoning ability of NLP models in specific tasks. Using
such resources provides better interpretability and scrutability to the systems.

The applications of CSK in NLP include:
• question answering (Lin et al. 2019, Talmor et al. 2019, Chen et al. 2020, Lv et al. 2020,

Wang et al. 2020, Bosselut et al. 2021),
• sentiment analysis (Ofek et al. 2016, Dragoni et al. 2018, Ma et al. 2018),
• emotion detection (Ghosal et al. 2020, Li et al. 2021, 2022, Yang et al. 2023),
• dialogue and response generation (Zhou et al. 2018, Zhou et al. 2022, Wu et al. 2020,

2020, Zhang et al. 2020c, Varshney et al. 2022, Cai et al. 2023, Kim et al. 2023, Li et
al. 2023),

28



2.3 Applications of Commonsense Knowledge

• and others such as stance detection (Liu et al. 2021), title-to-essay generation (Yang
et al. 2019), sarcasm generation (Chakrabarty et al. 2020), sarcasm detection (Li et al.
2021), intent detection (Siddique et al. 2021), sentence ordering (Ghosal et al. 2021),
and fake news detection (Gao et al. 2023), to name a few.

Let us consider an example for the task of dialogue response generation:
• Context: John, an American, is visiting his friend Kenji, who lives in Tokyo. They are

paying their bill for dinner at a restaurant.
• Ongoing dialogue:

‣ John: That’s a great meal, Kenji. I really liked the sushi.
‣ Kenji: My pleasure, John. I’m glad you enjoyed it.
‣ John: Let me see the bill. It is 8,000 yen. I’m gonna leave 10,000 yen.

In this scenario, a dialogue system that is aware of common sense in Japan, i.e., tipping is not
customary and can be considered rude, should generate a response for Kenji that indicates
John’s intention to leave a tip is unnecessary, instead of a generic response like “Thank you,
John.”, or “That’s a very generous tip. Thanks, John!”.

We summarize the four popular approaches to incorporate CSK in these NLP applica-
tions:

• Retrieval-augmented generation (RAG): This approach is used with LLMs, where the
model is explicitly prompted with the task and relevant CSK assertions retrieved from
external resources to support its commonsense reasoning, e.g., (Chen et al. 2020, Kim
et al. 2023).

• Embeddings integration: CSK assertions or subgraphs are encoded as embeddings, which
are integrated with other input embeddings of the model to improve its performance,
e.g., (Liu et al. 2021).

• Fine-tuning with CSK: DNNs are trained on CSK resources to improve their common-
sense reasoning abilities, e.g., (Ghosal et al. 2020).

• Reasoning over CSKGs: This approach is often used by question-answering systems,
where the model reasons over a CSKG to answer questions, e.g., (Lin et al. 2019, Lv et
al. 2020). It can also be used to identify relevant evidence for other classification tasks,
e.g,. (Siddique et al. 2021).

2.3.2  Computer Vision

With the advancement of NLP models and their promising performance on natural language
understanding and generation, there have been efforts to integrate these models to solve

29



Chapter 2: Background and Related Work

computer vision tasks that require semantic understanding of objects and their relations and
interactions in images or videos.

One of the most important tasks in visual understanding and reasoning is scene graph
generation (SGG), where the goal is to construct a graph that represents the objects in the
input image and their relationships. The scene graph, which provides rich semantic infor-
mation of an image, can be used to answer questions about the image (Zhang et al. 2022),
generate image captions (Yang et al. 2019), support image retrieval (Gatti et al. 2022), image
generation (Gu et al. 2019, Fu et al. 2024), visual story telling (Chen et al. 2021), and more.
SGG methods often consist of two main components: object detection and localization, and
relationship prediction. The latter is where CSK resources can be beneficial, as they provide
prior knowledge about the relationships between objects, instead of relying solely on limited
training data. For example, the fact that dog has head and tail is CSK that most humans
possess and would constantly use if they were to manually sketch a scene graph of a given
photo of a dog catching a frisbee. However, such knowledge is sparse in SGG training data
like Visual Genome (Krishna et al. 2017), making it challenging for models to learn such
relationships from data alone. Integrating an external CSK resource into such situations can
boost the generalizability and robustness of these models.

A popular approach is to integrate CSK graph embeddings into SGG models to enhance
their commonsense reasoning (Gu et al. 2019, Guo et al. 2020, Kan et al. 2021, Khan et al.
2022, Zhang et al. 2022). On the other hand, Zareian et al. (2020) uses graph-based neural
networks (GNNs) to bridge a scene graph proposal generated by a simple model and a CSK
graph of detected objects gathered from external sources.

Another approach to visual question answering (VQA) that does not rely on scene graph
generation is (Ravi et al. 2023), which proposes to search for relevant CSK assertions (from
external sources) given names of objects in the input image and the input question. These
assertions are then encoded and integrated into a transformers-based model to improve the
performance of VQA.

2.3.3  Robotics

In robotics, CSK has been used to help robots perform tasks in dynamic or unknown envi-
ronments, and to optimize their efficiency. That is inspired by the fact that humans usually
adapt to new situations using their commonsense knowledge. For example, when a robot is
asked to find a cup, it should head to the kitchen and search in the cupboard or cabinet,
like how humans would typically do, instead of immediately looking for it in the bathroom.
This example is a simple case of the object localization task, where the robot needs to find
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the location of an object as per request. Recent works (e.g., (Daruna et al. 2019, Zhang et
al. 2019, Chernova et al. 2020)) have integrated CSK resources such as ConceptNet (Speer
et al. 2017) and LabelMe (Russell et al. 2008), via graph embeddings or as prior knowledge
in a probabilistic model, leading to improved performance in this task.

Similarly, CSK resources are used in a wide range of other robotics applications, such
as object recognition (Pratama et al. 2014, Kümpel et al. 2020, Chiatti et al. 2022), object
delivery (Al-Moadhen et al. 2015, Zhang and Stone 2015, Wang et al. 2019), pick and place
(Al-Moadhen et al. 2013, Javia and Cimiano 2016, Mitrevski et al. 2021), warehousing (Ayari
et al. 2015, Pradeepani et al. 2022), cooking (Nyga and Beetz 2012, Agostini et al. 2015),
to name a few. Interested readers are referred to the survey by Töberg et al. (2024) for a
comprehensive review of recent CSK applications in robotics.

In this dissertation, we develop methods to produce CSK resources of high quality and
high coverage. Importantly, we will show that our CSK resources can be used to boost the
performance of AI models in various extrinsic use cases, such as question answering and
dialogue generation, and outperform other resources as evaluated by human annotators.
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3
CONCEPT-CENTRIC EXTRACTION AND

ORGANIZATION

In this chapter, we acquire commonsense knowledge (CSK) for the first type of entry points:
everyday concepts (e.g., elephant, bicycle, beer).

To address the expressiveness limitation of the triple-based data model in prior common-
sense knowledge bases (CSKBs), we introduce an expressive knowledge model that captures
composite concepts with subgroups and aspects, as well as refines assertions with semantic
facets expressing temporal and spatial validity and further qualifiers. Our proposed method,
called Ascent++, combines open information extraction (OpenIE) with judicious cleaning
and ranking by typicality and saliency scores to extract high-precision CSK assertions from
general web contents. As knowledge source, we tap into the large-scale crawl C4 for high
coverage of CSK. The evaluation with human judgments shows the superior quality of the
KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent++.

The project website is hosted at https://ascentpp.mpi-inf.mpg.de, including download-
able code and data.
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3.1  Introduction

Motivation.  Mainstream KBs such as DBpedia (Auer et al. 2007), Wikidata (Vrandečić and
Krötzsch 2014), and YAGO (Suchanek et al. 2007) have their main focus on encyclopedic
knowledge of named entities (e.g., Berlin is the capital of Germany) and are sparse on knowl-
edge of general concepts (e.g., a country typically has a capital city). On the other hand,
there have been projects concentrating on CSK, notably ConceptNet (Speer et al. 2017),
TupleKB (Dalvi Mishra et al. 2017), WebChild (Tandon et al. 2014a), Quasimodo (Romero
et al. 2019), ATOMIC (Sap et al. 2019a), TransOMCS (Zhang et al. 2020a) and ATOM-
IC-10x (West et al. 2022). However, they all use subject-predicate-object (SPO) triples to
represent CSK, which have significant shortcomings in expressiveness.

• Expressiveness for S: Prior works on CSK acquisition have a strong focus on single-
noun concepts such as car, elephant, trunk. A major disadvantage of this approach is
that it misses refined concepts which may have different properties, e.g., diesel cars are
polluting, but electric cars are ecofriendly. Furthermore, ineffective disambiguation of
concepts (e.g., elephant trunk vs. car trunk) can lead to incorrect assertion chains like
<elephant; HasPart; trunk> and <trunk; LocationOf; spare tire>.

• Expressiveness for P and O: Since predicates and objects are treated as monolithic
strings, it creates redundancies and cannot capture semantic relations between asser-
tions. For example, these two assertions are equivalent but both present in ConceptNet:
<bus; CapableOf; carry passengers>, <bus; UsedFor; transportation>. Furthermore,
useful facets concerning spatial and temporal information are often cluttered into un-
related strings, e.g., <bus; carries; visitors to the zoo on the weekend>.

Assertion quality is another issue of prior CSKBs, as some of them prioritize precision but
have limited coverage (e.g., ConceptNet (Speer et al. 2017), TupleKB (Dalvi Mishra et al.
2017)), while others such as WebChild (Tandon et al. 2014a), Quasimodo (Romero et al.
2019) and TransOMCS (Zhang et al. 2020a) have better coverage but contain many noisy
assertions, as they are based on automated knowledge extraction from web contents and lack
appropriate consolidation.

The saliency of assertions (i.e., the degree to which statements are common knowledge)
has been often overlooked by prior works. For example, in ConceptNet, tree, garden, and
the bible are all listed as locations of snake, with similar scores. This makes it difficult for
downstream applications to pull out relevant assertions from the KB.

Our goal is to overcome these limitations of prior works while retaining their positive
characteristics. In particular, we aim to reconcile high precision with wide coverage and
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saliency. Like TupleKB (Dalvi Mishra et al. 2017) and Quasimodo (Romero et al. 2019), we
desire to acquire open assertions (as opposed to pre-specified predicates only in ConceptNet
(Speer et al. 2017)) but strive for more expressive representations by refining subjects and
capturing semantic facets of assertions.

Besides, we also provide a canonicalized version of the resulting CSKB in the Concept-
Net schema, arguably the most widely used CSK resource with canonical predicates such
as CapableOf, HasProperty, UsedFor, HasPart, AtLocation, etc., thus enabling direct use in
applications relying on this fixed schema (e.g., (Lin et al. 2019)).

Approach.  We present a methodology, called Ascent++ (advanced semantics for common-
sense knowledge extraction), for acquiring CSK assertions about everyday concepts with
refined semantics from large-scale web contents. Our method operates in two phases: (i)
scalable extraction from a large web corpus, and (ii) aggregation and consolidation.

In the first phase, Ascent++ processes the C4 crawl (Raffel et al. 2020), a collection of
365 million English web pages. We extract OpenIE-style tuples by using carefully designed
dependency-parse-based rules, taking into account assertions for subgroups and aspects of
target subjects. The extractor uses cues from prepositional phrases and adverbs to detect
semantic facets and uses supervised classification for eight facet types.

In the second phase, on a per-subject basis, Ascent++ identifies relevant web pages
based on embedding similarity to reference Wikipedia articles, this way being able to distin-
guish homonyms like bus (public transport) versus bus (network topology). Assertions are
iteratively grouped and organized using embedding-based similarity. OpenIE-style assertions
are canonicalized into the established ConceptNet schema. Finally, a supervised machine
learning model ranks the resulting statements by saliency and typicality scores.

We ran Ascent++ on the C4 crawl for 10,000 salient concepts from ConceptNet as
target subjects. To evaluate the intrinsic quality of the resulting CSKB, we obtained human
judgments for a large sample. Our CSKB significantly improves over automatically-built
state-of-the-art CSK collections in terms of precision and relative recall.

In addition, we performed an extrinsic evaluation in which commonsense knowledge was
used to support language models in question answering tasks. Using three different settings
and six different CSKBs, Ascent++ significantly outperformed language models without
this commonsense background knowledge in two of the three settings, and was best or second
best among all six CSKBs in all three cases.
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Contributions.  This project’s key contributions are:

1. Knowledge model (Section 3.2): We introduce an expressive model for commonsense
knowledge with advanced semantics, subgroups and aspects of subjects and faceted
assertions as first-class citizens, and scores for typicality and saliency.

2. Methodology (Section 3.3): We propose an automated method for populating the model
with high-quality CSK assertions by large-scale web content extraction and various
techniques for aggregation and cleaning.

3. Resource (Section 3.4): We construct and publicly release a high-quality CSKB with 2
million assertions for 10,000 important concepts.

The evaluation with human judgments shows that the Ascent++ assertions are of signifi-
cantly higher quality than those from prior works (Section 3.5). An extrinsic evaluation for
QA-support tasks underlines the benefits of Ascent++ (Section 3.6). Code and data can
be accessed at https://ascentpp.mpi-inf.mpg.de.

3.2  Knowledge Representation

In the traditional triple-based data model, subjects and objects are linked via predicates.
Most prior CSKBs follow this model, typically with single nouns as subjects, free-form or
pre-specified phrases as predicates, and words or phrases as objects. Typical examples from
ConceptNet (Speer et al. 2017) are <bus; AtLocation; road> and <bus; UsedFor; get to work>.
Few projects, such as WebChild (Tandon et al. 2014a) and TupleKB (Dalvi Mishra et al.
2017), have attempted to refine these assertions by employing word sense disambiguation
(Navigli 2009), in order to distinguish terms such as buses on the road from computer buses.
Similarly, a few other projects (Gordon and Schubert 2010, Zhang et al. 2017, Romero et
al. 2019, Chalier et al. 2020) have tried to identify salient assertions against correct ones
that are unspecific (e.g., buses used for getting to a place), atypical (e.g., buses used for
showcasing local artists’ work), or even misleading (e.g., buses used for getting time to read).

We extend this prevalent paradigm in three significant ways: adding refined subjects
(Section 3.2.1), refining triples with semantic facets (Section 3.2.2), and quantitative scor-
ing for typicality and saliency (Section 3.2.3). Finally, in Section 3.2.4, we formally define
advanced commonsense assertions that we aim to acquire in this work.

3.2.1  Expressive Subjects

The acquisition of commonsense knowledge usually starts by collecting assertions for single-
noun subjects. This approach has two main limitations: (1) it does not distinguish different
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3.2 Knowledge Representation

meanings of the same word, and (2) it misses out on refined concepts and variants of word
senses. Although word sense disambiguation (WSD) has been used to address the first issue
in a few projects such as WebChild (Tandon et al. 2014a) and TupleKB (Dalvi Mishra et al.
2017), they were inherently limited because their underlying word-sense lexicons (WordNet
and Wiktionary) mainly focus on single nouns. For example, phrases like tourist bus or
newborn elephant are not present.

Our approach to rectify this problem is twofold:

1. When discovering source documents for a target subject, we compare the documents
with its reference Wikipedia article, and we only retain documents with high similarity.
This way, we can disentangle different senses, for example, of bus as in public transport
and network topology themes.

2. During the knowledge extraction phase, we also consider multi-word phrases as can-
didates for refined subjects. This allows us to acquire IsA-like refinements, creating
subgroups of broader subjects such as school bus, city bus, circus elephant, or elephant
cow; and other kinds of relevant aspects such as bus' route, bus capacity, elephant tusk,
or elephant habitat. In the following, we will elaborate on the notions of subgroups and
aspects.

Subgroups.  Our notion of subgroups, which can be thought of as an inverse IsA relation,
goes beyond traditional taxonomies by better coverage of multi-word composites (e.g., circus
elephant, school bus), enabling us to better represent specialized assertions such as <circus
elephants; catch; balls> and <school bus; transports; students>.

Aspects.  Our notion of aspects includes part-whole relations (such as PartOf, MemberOf,
SubstanceOf) (Girju et al. 2006, Tandon et al. 2016, Shwartz and Waterson 2018, Bhaktha-
vatsalam et al. 2020), as well as additional aspects that go beyond hypernymy and meronymy
(e.g., bus accident, elephant habitat). Unlike single nouns, these compound phrases are
rarely ambiguous, providing crisp concepts without requiring explicit WSD.

3.2.2  Semantic Facets

The validity of CSK assertions often depends on specific temporal and spatial contexts. For
instance, elephants scare away lions only in Africa, or elephants bathe in rivers only during
the daytime. In addition, assertions often become crisper when framed with causes, effects,
or instruments, for example, children ride the bus … to go to school, or circus elephants catch
balls … using their trunks.

We integrate such information into our expressive model by contextualizing SPO triples
with semantic facets based on ideas from research on semantic role labeling (SRL) (Palmer et
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al. 2010, Clarke et al. 2012, Stanovsky et al. 2018). Initially, SRL was developed to annotate
hand-crafted frames (e.g., purchase) with values for frame-specific roles (e.g., buyer, goods,
price, etc.).

We start with 35 labels proposed in prior study (Prasojo et al. 2018), which combines
13 labels from the Illinois Curator SRL (Clarke et al. 2012), and 22 additional labels crafted
by analyzing semantic roles of prepositions in Wiktionary. Because many of these labels are
very special, we consolidate them into eight widely useful roles that are CSK-relevant.

• Labels that qualify the validity of assertions: DEGREE, LOCATION, TEMPORAL, OTHER-QUALITY.
• Labels that capture other dimensions: CAUSE, MANNER, PURPOSE, TRANSITIVE-OBJECT.

3.2.3  Quantitative Scoring

Prior works typically quantify the quality of assertions by a single numeric score. ConceptNet
(Speer et al. 2017), for instance, scores its assertions essentially by the number of annotators
that stated them (in most cases, 1). TupleKB (Dalvi Mishra et al. 2017) employs a super-
vised model that predicts a [0, 1] score capturing statement plausibility. With Ascent++,
we want to empower downstream users to remain flexible in how to rank and use the data.
We thus propose a scoring mechanism along two dimensions:

Saliency.  This score captures how spontaneous an assertion comes to the human mind. For
example, elephants being used for tourist rides is quite salient, while elephants sleeping at
night is less so. Saliency is important to understand which statements matter to humans
(e.g., in conversational agents).

Typicality.  This dimension captures the degree to which an assertion applies to individual
instances of a concept, on a per-subject basis. For example, most elephants sleep in most
nights, whereas only few elephants give tourists a ride. Typicality is important to understand
which utterances make sense (e.g., in question answering).

Typicality and saliency are thus orthogonal dimensions, allowing to capture finer proper-
ties of commonsense assertions than just frequency or plausibility. Further dimensions could
be considered (Chalier et al. 2020), though we found plausibility not to be a dimension of
high discriminative utility (implausible statements should rather not even enter CSKBs).

3.2.4  Advanced Modeling for Commonsense Knowledge

Given those design considerations, we propose the following knowledge model for common-
sense knowledge of everyday concepts.
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Let 𝐶0 be a set of primary concepts of interest, which could be manually defined or taken
from a dictionary. Subjects for assertions include all 𝑐0 ∈ 𝐶0 and judiciously selected multi-
word phrases containing some 𝑐0. Subjects are interrelated by subgroup and aspect relations:
each 𝑐0 can be refined by a set of subgroup subjects denoted 𝑠𝑔(𝑐0) and by a set of aspect
subjects denoted 𝑎𝑠𝑝(𝑐0). The overall set of subjects is 𝐶 ≔ 𝐶0 ∪ 𝑠𝑔𝐶0

∪ 𝑎𝑠𝑝𝐶0
.

A commonsense assertion for subject 𝑠 ∈ 𝐶 is a sextuple ⟨𝑠, 𝑝, 𝑜, 𝐹 , 𝜋, 𝜃⟩ with single-noun
or noun-phrase subject 𝑠, short phrases for predicate 𝑝 and object 𝑜, a set 𝐹  of semantic
facets, and two [0, 1] scores: 𝜋 for saliency and 𝜃 for typicality. Each facet (𝑘, 𝑣) ∈ 𝐹  is a
key-value pair with one of eight possible keys 𝑘 and a short phrase as 𝑣. Note that a single
assertion can have multiple key-value pairs with the same key (e.g., different spatial phrases).

For example, given the primary concept 𝑐0 = elephant, its subgroups include adult
elephant, newborn elephant, elephant cow, etc.; its aspects include elephant trunk, elephant
diet, elephant ear, etc. Some example assertions (without scores) are:

• <elephant; sucks; water; PURPOSE:{drink; spray on its body}>,
• <newborn elephant; is; blind>,
• <elephant trunk; is; sensitive; DEGREE:extremely>.

3.3  Methodology

We propose the Ascent++ methodology to populate the advanced knowledge model by
extracting CSK assertions from large-scale web contents.

3.3.1  Architecture Overview

3.3.1.1  Design Considerations

Three major design points of CSK acquisition are: (1) the choice of knowledge sources, (2)
the choice of the extraction techniques, and (3) the choice of cleaning or consolidating the
extracted candidate assertions.

Sources.  Popular sources in prior works on automated CSK acquisition include:
• Carefully selected high-quality texts: These sources include book n-grams (Tandon et

al. 2014a), concept definitions in encyclopedic sources, and school text corpora about
science (Clark et al. 2018). However, these sources cover only a limited scope of CSK,
and surprisingly high noise and bias are also found in seemingly clean texts like book
n-grams (Gordon and Durme 2013).
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• Relevant web pages retrieved by search engines: Retrieving relevant web pages were
used by Dalvi Mishra et al. (2017) and Nguyen et al. (2021a). However, the manual
query formulations in (Dalvi Mishra et al. 2017) required non-negligible effort. On the
other hand, the simple query templates that incorporate hypernyms in (Nguyen et al.
2021a) led to limited coverage for many subjects where named instances are generally
more prominent than the general concepts (e.g., laptop, university).

• Questions asked by web users: Romero et al. (2019) tapped into query auto-completion
from search engines and questions posted on question-answering forums. Although these
sources gave access to highly salient assertions, they also present heavily biased and
sensational contents (e.g., search-engine auto-completion for “elephants eat” suggesting
“… plastic” and “… poop”).

In Ascent++, we opt for directly using a huge corpus as an extraction source for wide
coverage, and devise techniques for quality assurance. ASER (Zhang et al. 2020b) and Tran-
sOMCS (Zhang et al. 2020a) also used large-scale web contents as sources, however, these
approaches are recall-oriented and lack appropriate consolidation.

Extraction Techniques.  Prior works have employed various extraction techniques such as
co-occurrence- and pattern-based methods (e.g., (Elazar et al. 2019)), OpenIE (e.g., (Dalvi
Mishra et al. 2017), (Romero et al. 2019), (Nguyen et al. 2021a)), and supervised learning for
classification and sequence tagging. While co-occurrence is fairly effective for a limited set
of well-defined predicates using distant seeds, supervised extractors are constrained by the
need for training data specific to each predicate. Therefore, more recent approaches prefer
OpenIE techniques, which our extractors also adopt.

Knowledge Consolidation.  Early approaches retained all assertions from the ingest process,
for example, crowdsourcing in ConceptNet (Speer and Havasi 2013). However, recent projects
have employed supervised classifiers or rankers for cleaning (Dalvi Mishra et al. 2017, Zhang
et al. 2017, Romero et al. 2019, Chalier et al. 2020), and also limited forms of clustering
(Dalvi Mishra et al. 2017, Romero et al. 2019) to reduce semantic redundancy.

In Ascent++, we leverage language models (Reimers and Gurevych 2019) to cluster
assertions of identical meanings and reinforce the frequency signals of those assertions. Fur-
thermore, after clustering, we do a mapping from our open-schema CSKB to the well-estab-
lished ConceptNet schema as it is favorable to many researchers (e.g., (Lin et al. 2019, Feng
et al. 2020, Hwang et al. 2021)). Finally, a heuristic-based cleaning approach is applied to
eliminate other remaining noise in the resulting KB.
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Figure 3.1: Architecture of the Ascent++ system.

3.3.1.2  Approach

The Ascent++ methodology operates in two phases (see Figure 3.1):

1. Corpus processing:

1.a. NLP pipeline: Running NLP pipeline for the input corpus to get NLP features
of all sentences, particularly part-of-speech tags and dependency trees.

1.b. Faceted OpenIE: Running a faceted OpenIE system to get assertions from the
processed sentences.

2. Aggregation and consolidation: Each subject is processed separately in this phase.

2.a. Filtering: Performing a series of document and assertion filtering to get relevant
and high-quality assertions for a given primary concept.

2.b. Clustering of retained assertions based on sentence embeddings.

2.c. Mapping from open assertions into ConceptNet schema.

2.d. Cleaning based on heuristics and a dictionary of unwanted patterns in assertions.

2.e. Ranking of assertions: Annotating assertions with complementary scores for typ-
icality and saliency.

Both phases treat each document or subject independently and thus can be highly paral-
lelized (see Section 3.4.3). Since commonsense knowledge evolves rather slowly compared to
encyclopedic knowledge where new entities and relations emerge on a daily basis, computing
a large CSKB is a one-time endeavor with long-term value. Nonetheless, whenever new or
updated inputs need to be processed, Phase 1 can be run incrementally on the new inputs
only. Only steps 2b and 2e require re-loading previous statements (on a per-subject basis).
Re-running these steps takes about half a day for a corpus like the C4 crawl (Raffel et al.
2020). Table 3.2 gives detailed run-times (see Section 3.4.3).

41



Chapter 3: Concept-Centric Extraction and Organization

In the following, we discuss steps 1a-b and 2a-2e in separate subsections.

3.3.2  Phase 1a: NLP Pipeline

The NLP pipeline consists of fundamental operations, including sentence splitting, tokeniza-
tion, lemmatization, part-of-speech tagging, dependency parsing, and named entity recogni-
tion. Our extractors will use all of these basic NLP features to output faceted OpenIE tuples.

3.3.3  Phase 1b: Faceted OpenIE

Our method leverages an open information extraction (OpenIE) system developed earlier in
the Ascent project (Nguyen et al. 2021a), which we refer to as AscentOpenIE.

AscentOpenIE was built upon StuffIE (Prasojo et al. 2018), a rule-based OpenIE ex-
tractor used for extracting triples and semantic facets from English sentences. The core idea
of the approach is to consider each verb as a candidate predicate and then identify subjects,
objects, and facets via grammatical relations, so-called dependency paths. The elaboration
below uses the Universal Dependencies style format (Marneffe et al. 2021).

• Subjects must be connected to the candidate predicate through subject-related depen-
dency edges (nsubj, nsubjpass, and csubj) or the adjectival clause edge (acl).

• For objects, the respective edges include direct object (dobj), indirect object (iobj), and
nominal modifier (nmod).

• Semantic facets are identified through the following complements to the selected verb:
adverbial modifiers (advmod), prepositional and clausal complements (ccomp). The
facets are then labeled by a fine-tuned language model.

AscentOpenIE also extended the original set of rules in StuffIE to better deal with con-
juncts and adverb facets, as well as leveraged coreference resolution to resolve pronouns.
That helped to identify significantly more assertions and facets, and improve the conciseness
of the output tuples. For example, given the sentence “elephants use their trunks to pick
up objects and drink water”, the system can extract two assertions: <elephants; use; their
trunks; PURPOSE:pick up objects> and <elephants; use; their trunks; PURPOSE:drink water>.

We run AscentOpenIE on all sentences in the input corpus, producing general OpenIE
tuples, which will be processed in Phase 2, where we collect and consolidate CSK assertions
for a target subject.
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3.3.4  Phase 2a: Filtering

Using a general web corpus as an extraction source implies the presence of substantially
irrelevant content. In this step, we introduce techniques to filter out irrelevant documents (a
document is a web page from the input corpus in our case), and potentially noisy OpenIE
assertions.

Document Filtering.  Given a subject 𝑠, one might first collect all OpenIE tuples whose
subject is equal 𝑠 as candidate assertions, and then apply ranking or filtering techniques
afterward. Similar approaches have been used in Quasimodo (Romero et al. 2019) and Tu-
pleKB (Dalvi Mishra et al. 2017). Nevertheless, such post-hoc filtering misses out on broader
context from the original documents. In Ascent++, we thus employ some filters first, at
the document level, to decide which documents to use for candidate extraction at all.

We only extract statements for a primary subject 𝑐0 and its subgroups and aspects from
a document 𝑑 if it passes the following filters:

1. Document 𝑑 is only used if it contains between 3 and 40 OpenIE tuples with subject 𝑐0.
The rationale for filters in either direction is that if 𝑐0 occurs too rarely, 𝑑 is more likely
off-topic. On the other hand, if 𝑐0 occurs too often, then 𝑑 may be a noisy document
such as a machine-created shopping catalog or simply a crawling error.

2. Then, we compute the cosine similarity between the embeddings of 𝑑 and the Wikipedia
article of the subject 𝑐0. Document 𝑑 will be retained only if the similarity is higher than
0.6 (chosen based on tuning on withheld data). This way, we can deal with ambiguous
subject terms like bus, which can be either a vehicle or a network topology.

Assertion Filtering.  After document filtering, we collect all OpenIE tuples whose subjects
are either 𝑐0 or its subgroups or aspects from the retained documents. The refined subjects,
which include multi-word composites and relevant aspects of 𝑐0, are identified using a set
of lexico-syntactic heuristics adopted from Ascent (see Section 3.4.2). Finally, by counting
the extracted triples, we only retain those with a frequency of at least 3, as assertions with
less occurrences are either noise or unlikely commonsense knowledge.

3.3.5  Phase 2b: Clustering

Natural language is rich in paraphrases. For example, “elephant eats plants” can also be
expressed as “elephant feeds on plants” or “elephant consumes plants”. Identifying and clus-
tering such assertions is necessary to avoid redundancies, and to get better frequency signals
for individual assertions.
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Triple Clustering.  For triple clustering, we use the hierarchical agglomerative clustering
(HAC) algorithm along with LM-based embeddings to group semantically similar triples.
Specifically, we use SentenceBert (Reimers and Gurevych 2019) to compute embeddings of
CSK triples. First, given a triple, we concatenate its subject, predicate, and object. Next, we
feed the whole string to SentenceBert to get its contextualized embeddings. Then, for each
pair of triples, we compute the Euclidean distance between their normalized embeddings.
These distances will be used as input for the HAC algorithm.

Facet Clustering.  For facet clustering, we use average word2vec embeddings (Mikolov et al.
2013) and the HAC algorithm. Although more advanced language models such as Phrase-
BERT (Wang et al. 2021) could be used instead of word2vec, we found that, for such a
limited number of candidate facets (usually less than 10 facets per assertion), word2vec em-
beddings already provide good performance.

The set of chosen hyper-parameters for the clustering algorithms will be presented in
Section 3.4.4.

3.3.6  Phase 2c: ConceptNet Mapping

Motivation.  There are two main schools for knowledge representation in CSKBs: those re-
lying on open predicates, and those using a fixed set of predefined predicates. Each has its
strengths and challenges regarding expressiveness, redundancy, and usability. To bridge the
two, we provide the Ascent++ KB in two variants: with open assertions and with canon-
icalized predicates. OpenIE supplies the former; the module presented in this subsection
normalizes open assertions into fixed relations.

Our fixed schema of choice is the established ConceptNet schema (Speer et al. 2017), from
which we use the following 19 relations: AtLocation, CapableOf, Causes, CreatedBy, DefinedAs,
Desires, HasA, HasPrerequisite, HasProperty, HasSubevent, IsA, MadeOf, MotivatedByGoal,
PartOf, ReceivesAction, RelatedTo, SimilarTo, SymbolOf and UsedFor.

Mapping open triples to a fixed schema raises several challenges. In the most straightfor-
ward case, the subject and object from the open assertion can remain unchanged, and we only
need to pick one of the fixed relations. For example, <elephant; lives in; the wild> can be
mapped to <elephant; AtLocation; the wild>. In some cases, part of the relation and object
can be moved, e.g., <elephant; is; a part of a herd> can be mapped to <elephant; PartOf;
herd>. In other cases, part or all of the predicate is in the object, like in <circus elephant;
catches; balls> that can be mapped to <circus elephant; CapableOf; catch balls>.
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Our normalization method consists of two steps: (i) first, we use a multi-class classifier
to predict a fixed predicate for each open triple; (ii) second, we use a list of crafted rules to
modify the object so that the new triple preserves the meaning of the original triple.

Supervised Classifier and Rule-Based Disambiguation.  For the classification model, we fine-
tune a RoBERTa model (Liu et al. 2019) to predict one of the ConceptNet predicates given
an input in the following format: “[CLS] S [SEP] P O”, whereas S, P, and O are the sub-
ject, predicate, and object of the open triple. The contextualized embeddings of the [CLS]
token will be fed to a fully connected layer to get the prediction. The training data for this
model is constructed from ConceptNet triples. Specifically, for each ConceptNet predicate,
we manually compiled a set of one to six open predicates with similar meanings. For instance,
UsedFor is aligned with “be used for”, meanwhile CapableOf is aligned with “be capable of”,
“be able to”, “can”, “could”, and an empty string. This way, we can automatically generate
approximately 1.2M training examples.

Due to the nature of ConceptNet, the generated data is highly biased towards a few top
predicates. The three most popular predicates are IsA (27.92%), AtLocation (20.24%) and
CapableOf (13.76%). Meanwhile, the three least popular ones are MadeOf (0.20%), CreatedBy
(0.06%) and SymbolOf (12 samples, less than 0.001%). This imbalance affects the predictions.
The most important difficult case is distinguishing the three predicates IsA, HasProperty,
and ReceivesAction, which can all be expressed with the open predicate word “be”. In the
ConceptNet-based training data, the IsA relation (27.92% of the data) is dominant over the
other two, HasProperty (3.07%) and ReceivesAction (2.20%). Therefore, the LM occasionally
classifies open triples whose predicate is “be” incorrectly as IsA relations. For this particu-
lar case, we have a post-processing step to adjust the predicted predicate: we only assign
HasProperty to objects which are adjective phrases, ReceivesAction to objects which are verb
phrases in passive form, and the rest are assigned to IsA. The IsA relation still contains con-
siderable noise. Hence, later in the cleaning phase (see Section 3.3.7), we introduce heuristics
to get high-quality assertions of this type.

An alternative could be to re-balance the training data by under-sampling the frequent
classes or adopting a loss function that gives different weights to different classes. While such
generic techniques could be considered, our experience is mirrored in related projects on
creating and curating high-quality KBs, where injecting a modest amount of expert knowl-
edge is often the most effective solution (Bhakthavatsalam et al. 2020, Pellissier Tanon et
al. 2020). More advanced methods for relation alignment also exist (Soderland et al. 2013,
Galárraga et al. 2014, Putri et al. 2019, Zhang et al. 2019). However, given that Concept-
Net itself is imbalanced and has its peculiarities, our customized mapping is far superior to
generic alignment methods.
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Processing Objects.  Once we get a predicted fixed-schema predicate, we have to produce
an object for the normalized triple.

The most common case where the object needs modifications is when the predicted
predicate is CapableOf. In this case, if the open predicate is neither “be capable of”, “be able
to”, “can” nor “could”, the new object will be the concatenation of the original predicate and
object. For example, <elephant; can; lift a tree> is mapped into <elephant; CapableOf;
lift a tree>, meanwhile <elephant; carry; tree trunk> is mapped to <elephant; CapableOf;
carry tree trunk>.

In some cases, a part of the original object must be cut out as it overlaps with the Con-
ceptNet predicate. Those predicates include PartOf and SymbolOf. Open triples corresponding
to those predicates usually look like <elephant; be; part of a herd> or <elephant; be; symbol
of strength> which should be canonicalized into <elephant; PartOf; herd> and <elephant;
SymbolOf; strength>, respectively.

Other rules deal with other predicates, including Desires, HasProperty, IsA,
ReceivesAction, and UsedFor. These rules remove redundant words such as “to” and “be”
from objects. We preserve the original object if a triple does not fall into one of those rules.

3.3.7  Phase 2d: Cleaning

Noise can come from various sources, including OpenIE errors, too specific or general state-
ments, nonsensical assertions, schema normalization errors, etc. Unlike supervised classifiers
employed in other projects, our cleaning module is rule-based and thus highly scrutable.
Ascent++’s cleaning module consists of the following heuristics:

1. First, we verbalize the triples, and use an autoregressive model, namely GPT-2 (Radford
et al. 2019), to compute their perplexity. Only triples with medium-to-low perplexity
will be retained (in our experiments, we retained triples with perplexity less than 500).

2. The IsA triples produced by OpenIE are rich but rather noisy. Extracting IsA relations
is a well-established research theme in entity typing and taxonomy construction and
has already reached high-quality results. For each subject, we take the set of its IsA
relations in ConceptNet and extract all head nouns of the objects. For example, from
the ConceptNet triple <elephant; IsA; placental mammal>, we take out the object phrase
“placental mammal” and extract its head noun “mammal”. We only retain the IsA as-
sertions whose objects contain one of the trustworthy head nouns extracted from Con-
ceptNet. This way, we not only get high-precision assertions but also better recall than
ConceptNet. If a subject does not occur in ConceptNet, we remove all of its extracted
IsA assertions, as in our observation, there are usually more noisy IsA assertions than
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valuable ones in the original extraction set. Note that, while ConceptNet is our source
of choice here, any other existing resources that provide high-quality IsA relations can
be used, for example, WordNet (Miller 1995) or BabelNet (Navigli and Ponzetto 2012).

3. Then, we manually constructed a dictionary of unwanted objects based on heuristics.
For example, we removed URLs, pronouns, numbers, only-stopwords phrases, too gen-
eral/specific phrases such as “make sure” or “this case”, and vague predicate-object
pairs (e.g., <SubjectX; MadeOf; part>, or <SubjectX; HasProperty; available>). We also
eliminated ethnicity- and religion-related assertions to avoid potentially critical biases
(Mehrabi et al. 2021). Chapter 4 and Chapter 5 will focus on collecting such culture-
aware knowledge.

4. Finally, we only keep the 1,000 most frequent assertions per subject. For each assertion,
we only keep its three most frequent facets. Cutting the tail this way improves the
precision significantly but only minorly affects recall (see Section 3.5.3).

These filters are a pragmatic technique, and alternatives are conceivable. Some parts require
manual work by a knowledge engineer. This holds particularly for the domain-specific dic-
tionary filter. However, the dictionary is small (200 entries), and a knowledge engineer can
easily construct it within a day (at much lower energy consumption and carbon footprint
than trying to automate everything computationally).

3.3.8  Phase 2e: Ranking

Existing resources mainly provide unidimensional rankings of their assertions by either fre-
quency (e.g., ConceptNet (Speer et al. 2017), Ascent (Nguyen et al. 2021a)) or supervised
models trained to predict plausibility/typicality (e.g., TupleKB (Dalvi Mishra et al. 2017),
Quasimodo (Romero et al. 2019), TransOMCS (Zhang et al. 2020a)). However, these two
dimensions are quite different, and we consider it important to differentiate their semantics.

• Typicality states that an assertion holds for most instances of a concept. For example,
elephants using their trunks is typical, whereas elephants drinking milk holds only for
baby elephants.

• Saliency refers to the human perspective of whether an assertion is associated with a
concept by most humans more or less on first thought. For example, elephants having
trunks is salient, whereas elephants passing by zebras is not.

In Ascent++, we make both dimensions first-class citizens of the CSKB and annotate each
assertion with scores for both.
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Saliency Ranking.  For saliency, we rely on the reporting frequency of the assertions, which
approximates very well how prominent an assertion is. We transform raw frequencies to a
normalized log-scaled frequency as follows:

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝑠𝑝𝑜) =
log(𝑐𝑜𝑢𝑛𝑡(𝑠𝑝𝑜)) − log(𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡(𝑠))

log(𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡(𝑠)) − log(𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡(𝑠)) (3.1)

Whereas 𝑐𝑜𝑢𝑛𝑡(𝑠𝑝𝑜) is the raw frequency of the triple 𝑠𝑝𝑜, 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡(𝑠) is the minimal
frequency of a triple whose subject is 𝑠, and 𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡(𝑠) is the maximal one.

Typicality Ranking.  Typicality is the most challenging dimension. Although reporting fre-
quency correlates with typicality moderately, reporting bias in texts (Gordon and Durme
2013) means that sensational statements may be grossly overreported and commonalities
underrepresented. Our qualitative facets (see Section 3.2) give us a unique handle to obtain
further insights into typicality.

We use a linear regression model on three features:

• Modifier score. This feature is based on adverbs and quantifiers in facets and in sub-
jects. Specifically, we assign each frequency-related modifier a specific numeric score (see
Table 3.1), then average all scores in each assertion cluster. We consider two types of
modifiers: adverbs (e.g., “always”, “often”, “sometimes”) that occur in semantic facets,
and subject quantifiers (e.g., “all”, “few” or “some”). We assign a default score of 0.5
to assertions without any modifiers.

• Neutrality. We use a sentiment analysis model (Barbieri et al. 2020) to compute the
probability of a source sentence being positive, neutral, or negative. For each assertion,
we consider the average polarity over all of its source sentences as its polarity. The value
of this neutrality feature for an assertion is 1.0 if it is classified as neutral. Otherwise,
a value of zero reflects a polarized assertion.

• Normalized frequency. The value for this feature is computed as in Equation (3.1).

3.4  Implementation

In this section, we present the implementation of Ascent++, which includes the choice of
input corpus, input subjects, and hyperparameters, the processing time of each module, and
the size of the resulting CSKB.

3.4.1  Input Corpus

Choosing the input text corpus is essential because large text corpora, especially those
scraped from the web, often come with a large portion of noise and irrelevant contents. Our
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Table 3.1: Frequency modifiers and their scores.

Frequency adverbs Subject quantifiers Score
always all, every 1.0
typically, mostly, mainly most 0.9
usually, normally, regularly, frequently, commonly 0.8

many 0.7
often 0.6

some 0.5
sometimes 0.4
occasionally few 0.3

0.2
hardy, rarely 0.1

no, none 0.0

input corpus of choice is the Colossal Clean Crawled Corpus (C4), created to train the T5
model (Raffel et al. 2020).

C4 was created by intensively cleaning the Common Crawl’s web crawl corpus. The
filtering process included deduplication, English-language text detection, removing pages
containing source code, offensive language, or pages with too few contents and lines, remov-
ing lines that did not end with a terminal punctuation mark, etc. That resulted in a large
corpus of 750GB of text comprising reasonably clean and natural English text.

The version we use, C4.en, consists of 365M English articles. Each comes with its text,
URL, and crawling timestamp. This amount of text enabled us to collect CSK of significantly
better coverage than the manually-built ConceptNet and any other automated CSK resource
when limiting to top-100 assertions per subject (see Section 3.5.2). Our judicious rule-based
approaches for extraction, filtering, cleaning, and unsupervised ranking helped to produce
CSK assertions of higher saliency than any other automated CSK resource while maintaining
a very high precision (see Section 3.5.1).

3.4.2  Input Subjects

We executed the Ascent++ pipeline for 10K popular concept-centric subjects taken from
ConceptNet, which we treated as primary concepts. For each primary concept, we took its
top-10 most frequent aspects and subgroups previously extracted by Ascent (Nguyen et al.
2021a) as high-quality fine-grained subjects. These subjects were collected from top-ranked
web pages retrieved by the Bing Search API by using the following heuristics.
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Heuristics for Extracting Refined Subjects.  Given a primary concept 𝑐0, the following
heuristics were used to extract its subgroups and aspects:

• Subgroups could be sub-species (in the case of animals), different types of the primary
concept, or refer to the primary concept in different states, e.g., African elephant,
newborn elephant, male elephant, working elephant. All noun chunks ending with 𝑐0 or
any of its WordNet lemmas were collected as potential candidates. Then, these terms
were clustered based on word2vec embeddings, and only the most frequent term of each
cluster was selected. In addition, WordNet was leveraged to distinguish antonyms, with
which the latent representations typically struggle, in order to avoid antonyms being
merged into the same cluster.

• Aspects were extracted from noun chunks collected from two sources: (i) possessive
noun chunks, for example, “elephant’s diet” and “their diet” (with a resolution to 𝑐0 =
“elephant”); and (ii) objects of OpenIE tuples whose subjects are equal 𝑐0 or any of
its WordNet lemmas, and 𝑝 is one of the following verb phrases: “have”, “contain”, “be
assembled of”, “be composed of”.

Finally, the extracted subgroups and aspects were normalized and cleaned in order to avoid
spurious extractions or overly specific terms.

Table 3.2: Processing time and output size of each step in Ascent++.

# Step Processing time Output
1a NLP pipeline 1.5 days 365M processed documents
1b Faceted OpenIE 20 hours 8B OpenIE tuples
2a Filtering 2 hours 165M tuples (15M unique triples)
2b Clustering 10 hours 7.5M clusters
2c ConceptNet mapping 30 minutes 7.5M canonicalized assertions
2d Cleaning 10 minutes 2M assertions
2e Ranking 2 hours 2M ranked assertions
- Total ~ 3 days -

3.4.3  Processing Time and Output Size

In Table 3.2, we provide details on each step’s processing time and outputs in the pipeline.

The corpus processing phase (Phase 1) is executed once, independent of any choice of
subjects. We used spaCy (https://spacy.io/), a popular Python-based NLP library, as our
NLP pipeline. First, we ran spaCy on 365M C4 documents in parallel, on a cluster of 6,400
CPU cores (AMD EPYC 7702 64-core processors), which took 1.5 days to complete. Then,
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it took 20 hours for AscentOpenIE to digest all 356M processed documents. The result of
this step was a set of 8B OpenIE assertions.

The filtering process took two hours and resulted in 165M tuples for the selected sub-
jects, which accounted for 15M unique triples.

The clustering process, including precomputing embeddings and running the HAC al-
gorithm, took ten hours. Embeddings were computed on a cluster of 150 NVIDIA Quadro
RTX 8000 GPUs. The HAC algorithm led to 7.5M clustered assertions. The average size of
a cluster is two assertions.

The ConceptNet mapping module took around 30 minutes. The rule-based cleaning step
was the lightest component, taking less than ten minutes on a personal laptop. It resulted
in 2M assertions in the final Ascent++ CSKB, whose size is reported in Table 3.3. There
are about 10K subgroups and 5.8K aspects for 8K primary subjects in the KB. We collected
1.6M assertions for primary subjects, 80K assertions for subgroups, and 323K assertions for
aspects. The total number of semantic facets is 2.3M. Hence, each assertion has more than
one facet on average.

Finally, the ranking module took less than two hours to complete.

In summary, running the Ascent++ pipeline on the C4 corpus took approximately
three days with our computing resources.

Table 3.3: Size statistics of the Ascent++ KB.

Subject type #Subjects #Assertions #Facets
Primary subject 8,067 1,651,455 1,975,385
Subgroup subject 10,191 80,176 62,581
Aspect subject 5,843 323,257 312,004
All 24,101 2,054,888 2,349,970

3.4.4  Hyperparameters

For triple clustering, we use the SentenceBert paraphrase-mpnet-base-v2 model to compute
embeddings of the verbalized triples. The embeddings are normalized before being fed to the
HAC algorithm, for which we used the Ward’s linkage (Ward 1963). We only merged two
clusters when their Euclidean distance was less than 0.5. For facet clustering, this distance
threshold was set at 1.0. These thresholds were chosen based on manual tuning on a small
set of validation data points.
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For ConceptNet mapping, we fine-tuned the RoBERTa-base model (Liu et al. 2019) for
three epochs using the AdamW optimizer (Loshchilov and Hutter 2019) with a batch size of
64 samples, a learning rate of 5𝑒−5, and a weight decay of 0.001.

For typicality scoring, we trained a regression model on 500 manually-annotated exam-
ples. The resulting formula is:

typicality = 0.324 × ms + 0.428 × fr + 0.088 × nt (3.2)

whereas ms is modifier score, fr is frequency, and nt is neutrality score (cf. Section 3.3.8).

Experiment Overview

The evaluation of Ascent++ is centered on three research questions:
• RQ1: Is the CSKB of higher quality than existing resources? (Section 3.5)
• RQ2: Does (structured) CSK help in extrinsic use cases? (Section 3.6)
• RQ3: What are the quality and extrinsic value of facets? (Section 3.7)

3.5  Intrinsic Evaluation

To investigate RQ1, we instantiate quality with the standard notions of precision and recall,
splitting precision further up into the dimensions of typicality and saliency, measuring this
way the degree of truth and the degree of relevance of assertions (see Section 3.2.3 and also
(Romero et al. 2019)).

Evaluation Metrics.  We employ three evaluation metrics:

1. typicality (Section 3.5.1),

2. saliency (Section 3.5.1),

3. relative recall (Section 3.5.2).

Knowledge base construction is typically evaluated by precision and recall. Following earlier
work (Romero et al. 2019), we split precision into two dimensions: typicality (the degree of
truth) and saliency (how readily a statement is available to a human). These two dimen-
sions are generally independent, as salient statements need not be typical, and vice versa.
Furthermore, as the absolute recall is difficult to establish (e.g., there is no way to obtain a
complete set of all assertions for what elephants are capable of doing), we use a relative recall
metric, measuring the fraction of statements from a human-built resource that are captured
in the respective CSKB.
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Compared Resources.  We compare Ascent++ with six prominent resources:

1. ConceptNet (Speer and Havasi 2013),
2. TransOMCS (Zhang et al. 2020a),
3. TupleKB (Dalvi Mishra et al. 2017),
4. Quasimodo (Romero et al. 2019),
5. Ascent (Nguyen et al. 2021a) (the earlier version of Ascent++, see below),
6. COMET-ATOMIC20

20 (Hwang et al. 2021) (with a caveat, see below).

Ascent (Nguyen et al. 2021a) was the predecessor of Ascent++. These two share the same
OpenIE system (cf. Section 3.3.3). However, the key difference is that Ascent extracted
CSK from a small set of top-ranked results retrieved by a search engine, while Ascent++
directly tapped into a huge web crawl. Besides the comparison of seven resources, we will
present a head-to-head comparison between Ascent++ and Ascent in Section 3.5.3, where
Ascent++ shows superior quality compared to its predecessor.

The ATOMIC (Sap et al. 2019a), ATOMIC-10x (West et al. 2022), and ASER (Zhang
et al. 2020b) projects do not qualify for comparison as they do not contain concept-centric
assertions.

ATOMIC20
20 (Hwang et al. 2021) has a portion for physical commonsense relations, but

most of those assertions come directly from ConceptNet (except for the ObjectUse relation for
which more human-annotated data was collected). Therefore, we do not include ATOMIC20

20

directly in this evaluation. Instead, we compare other CSKBs with a generative model trained
on that resource, the COMET-ATOMIC20

20 model (Hwang et al. 2021).

WebChild (Tandon et al. 2017) targeted special commonsense relations including
comparative, part-whole relations, and fine-grained object properties (HasShape, HasSize,
HasColor relations), which is generally of narrower scope compared to our competing re-
sources. Comparisons of CSK resources in other studies (Romero et al. 2019, Nguyen et al.
2021a) reported that WebChild was inferior to Ascent and Quasimodo in assertion quality
and in the extrinsic use case of question answering. We did not include this resource in our
evaluation to limit our cost for crowdsourced assessments.

3.5.1  Precision: Typicality and Saliency

Evaluation Scheme.  Unlike the precision of encyclopedic knowledge (“The Lion King” was
either produced by Disney or not), the precision of CSK is generally not a binary concept,
calling for more refined evaluation metrics. Hence, we assessed the typicality and saliency of
triples, following the Quasimodo project (Romero et al. 2019).
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Given a CSK triple, we asked annotators on Amazon MTurk to rate the triple along a 4-
point Likert scale on each of the two dimensions. We present the crowdsourcing questions and
answer options in Table 3.4. The crowdsourcing templates are inspired by those introduced
in COMET-ATOMIC20

20 (Hwang et al. 2021). We performed two separate MTurk tasks on
the two dimensions. For each task, we randomly sampled 500 triples among 200 prominent
subjects in four common domains: animal, occupation, engineering, and geography. For the
saliency task, the sampling pool was restricted to the top-10 assertions per subject.

Table 3.4: Crowdsourcing questions for assertion quality evaluation.

Dimension Question and answer options
Is this a correct assertion about <subject>?

Typicality
1. Always/Often - the knowledge assertion presented is always or often true
2. Sometimes/Likely - it is sometimes or likely true
3. Farfetched/Never - it is false or farfetched at best
4. Invalid - it is invalid or makes no sense
Imagine you have 2 minutes time to explain a kid about <subject>, would you
mention the following information?

Saliency
1. Absolutely - the information is very interesting/important for that concept
2. Probably - it is quite good to know
3. Maybe not - it is not interesting or too obvious/uninteresting/boring
4. Definitely not - it is completely irrelevant/unimportant/wrong or makes no

sense

Each MTurk task contained five CSK triples and was assigned to three different workers.
Following Hwang et al. (2021), we also used human-readable language forms for triples in
the fixed-schema CSKBs (i.e., ConceptNet, TransOMCS, and COMET). For Ascent++, we
used the open triples as the prompt display. Triples that received the first two labels for a di-
mension (see Table 3.4) are marked as typical/salient. The final judgment for a triple is based
on a majority vote over the choices provided by its three annotators. Annotation quality was
ensured by requiring the MTurk annotators to be Master workers with an all-time approval
rate of over 90% (this rate is provided by the platform). The inter-rater agreement on the
three labels measured by Fleiss’ 𝜅 (Fleiss and Cohen 1973) is 0.33 (i.e., fair agreement).
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Results.  We report the precision evaluation results in the left part of Table 3.5.

• Comparison with extractive methods: Among CSKBs constructed using extractive meth-
ods (TransOMCS (Zhang et al. 2020a), TupleKB (Dalvi Mishra et al. 2017), Quasimodo
(Romero et al. 2019), Ascent (Nguyen et al. 2021a), and Ascent++), Ascent++
yields the most salient statements by a large margin (9 percentage points over its pre-
decessor, and more than 13 percentage points over all others).

For typicality, the new Ascent++ resource outperforms all but the domain-specific
TupleKB (10 percentage points over the others). TupleKB still wins by 4 percentage
points, yet produces unsalient statements (-32 percentage points) and for the science
domain only, based on high-quality textbooks, with no obvious way to scale beyond
(see also recall evaluation, where Ascent++ has 4x more recall than TupleKB). For
example, while the top assertions for elephant in Ascent++ include <elephant; IsA;
social animal> and <elephant; HasProperty; intelligent>, those in TupleKB include
<elephant; HasPart; skin cell> and <elephant; HasPart; cell membrane>.

• Comparison with a generative method: We compared Ascent++ KB with a genera-
tive CSKB construction method, COMET (Bosselut et al. 2019), specifically the latest
COMET-ATOMIC20

20 model (Hwang et al. 2021). COMET is an autoregressive language
model fine-tuned on existing CSK resources and can be used to predict possible objects
of given subject-predicate pairs. Since COMET does not come with a materialized re-
source, we had to generate assertions ourselves. As there is no obvious stop criterion, we
only evaluated the precision of top assertions but could not evaluate COMET’s recall.
We used the provided BART model, which was trained on the ATOMIC20

20 dataset (H-
wang et al. 2021), which includes ConceptNet assertions and crowdsourced assertions
about events and social interactions. For each pair of subject and predicate, we asked
COMET to predict top-5 objects. We used the same sampling processes and MTurk
templates described above for typicality and saliency evaluation.

The evaluation results of COMET are included in Table 3.5. Ascent++ clearly
performs better than this generative model, even though both have seen comparable
amounts of texts. Some examples of the top assertions in Ascent++ and the ones
generated by COMET-ATOMIC20

20 are shown in Table 3.6. Although COMET has the
flexibility of generating objects to any given subject-predicate pair, it makes many in-
correct predictions and produces notable redundancies. On the other hand, Ascent++,
which collected OpenIE assertions from several sources and aggregated them through
various steps such as filtering, clustering, and cleaning, produced more correct and
complementary assertions.
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Table 3.6: Top-5 assertions of selected subject-predicate pairs.

Subject - Predicate Ascent++ COMET-ATOMIC20
20

elephant - CapableOf

● perform trick
● eat grass
● eat fruit
● become agitated
● give ride

● climb tree
● walk on land
● climb tree trunk
● walk on tree
● eat elephant

beer - MadeOf/MadeUpOf

● hop
● water
● barley
● yeast
● grain

● beer
● alcohol
● drunk
● drinking
● drink

laptop - UsedFor/ObjectUse

● work
● gaming
● office work
● email
● social media

● browse the internet
● use as a coaster
● play games on
● use as a weapon
● browse the web

3.5.2  Relative Recall

Ground Truth.  Evaluating recall requires a notion of ground truth. We use a relative recall
notion w.r.t. the statements contained in the CSLB property norm dataset (Devereux et al.
2014), which consists of short human-written sentences about salient properties of general
concepts. There are 22.6K sentences expressing properties of 638 concepts in the dataset.
The CSLB dataset could also be considered a CSK resource. However, due to its limited size,
we did not include it in the comparisons with other CSKBs. Instead, we used it as ground
truth for evaluating relative recall and the mask prediction task (see Section 3.6).

Assertion Matching.  Since there are always different expressions of a CSK assertion in nat-
ural language, we allow soft matching between assertions in CSK resources and sentences
in the ground-truth CSLB dataset. Specifically, for each CSLB sentence, we find the most
similar assertion in the target CSK resource based on the cosine similarity between their
embeddings (computed by SentenceBert (Reimers and Gurevych 2019)). That assertion will
be considered a true positive w.r.t the given CSLB fact only if their cosine similarity is
greater than or equal to a predefined threshold 𝜏 . When 𝜏 = 1.0, only exact-match assertions
are considered true positives. When lowering 𝜏 , we can match, e.g., “elephant eats grass”
and “elephant feeds on grasses”.
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Results.  The relative recall evaluation results are shown in the right part of Table 3.5, where
we once show relative recall using the top-100 assertions per subject and once all. We report
results at three cosine similarity thresholds: 𝜏 = 0.96, 𝜏 = 0.98 and 𝜏 = 1.0.

We find that Ascent++ yields the highest relative recall among all automated resources
of the same size (columns under “Top-100 assertions/subject” in Table 3.5), outperforming
the next best KB, Quasimodo, by 14-15% in relative recall. The gap to the manually built
ConceptNet is even larger, where Ascent++ achieves two to five times higher relative recall,
depending on the similarity threshold.

Considering all statements from each resource, Quasimodo and TransOMCS appear to
have a slight edge; yet this is only due to the precision-oriented thresholding of Ascent++
(2M assertions vs. 18.5M for TransOMCS and 6.3M for Quasimodo). Without the clean-
ing phase (see Section 3.3.7), the unfiltered Ascent++ variant (which we denote as
Ascent++large in Table 3.5) would be the size-wise better point of comparison: with a size of
7.5M assertions. This resource achieves better relative recall scores than Quasimodo at 𝜏 =
0.96, and TransOMCS at all three selected similarity thresholds. Moreover, Ascent++large

still outperforms both TransOMCS and Quasimodo in terms of typicality.

In Section 3.5.3, we will show that when increasing the size of Ascent++ to reach that
of Ascent, we still achieve competitive typicality scores. This gives us the flexibility to tune
for either precision or recall, by adjusting the cleaning phase.

These results confirm that large-scale extraction from web crawls can significantly out-
perform the recall of resources built from smaller, specifically selected document collections
(Ascent, TupleKB) without sacrificing precision. Furthermore, the significant gains in pre-
cision over TransOMCS and Quasimodo come at a much lower decrease in recall.

3.5.3  Ascent++ versus Ascent

The Ascent++ method presented in this chapter substantially extended a prior work,
Ascent (Nguyen et al. 2021a). These two pipelines leverage the same OpenIE system. How-
ever, Ascent operated solely on top-ranked query results from a search engine, whereas
Ascent++ processes a massive web crawl, involving new techniques for scalability and qual-
ity control in the presence of very noisy web contents. Besides, our data model has extended
the one in Ascent to include a new dimension of typicality scores. We also improved our
techniques for canonicalizing assertions with enhanced clustering techniques.

In the following, we make a head-to-head quality comparison between the two resources.

Quality Comparison.  To compare Ascent++ and Ascent, in addition to saliency@10 and
typicality (all assertions) for the 200 common subjects, as well as the relative recall previously
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presented in Table 3.5, we perform three more evaluations: typicality@10, typicality (random
assertions) and saliency (random assertions), whose results are presented in Table 3.7.

Table 3.7: Quality comparison between Ascent and Ascent++.

Resource #s #spo
Typicality

@10
Typicality
(Random)

Saliency
(Random)

Ascentfiltered 500 86K 87.6% 65.6% 40.6%
Ascent++filtered 500 86K 93.6% 82.0% 44.6%

For typicality@10, we perform the same sampling process as for saliency@10; the only
difference is that Ascent++ assertions are now sorted by typicality score instead of saliency
score.

For typicality (random) and saliency (random), a fair comparison must consider the
different sizes of the two resources. Thus, we randomly sampled 500 subjects from both re-
sources. For these 500 subjects, Ascent has 86,054 CSK assertions. For Ascent++ to have
a similar number of assertions, we increased the limit for the maximal number of assertions
per subject in Ascent++ (i.e., the last filter of the pipeline, see Section 3.3.7) from 1,000 to
7,250. That resulted in 86,065 CSK assertions in Ascent++ for the 500 random subjects.
Now that the two resources have comparable sizes, we randomly picked up 500 triples from
each resource and used them for the two crowd-sourcing evaluations, measuring typicality
(random) and saliency (random).

The results in Table 3.7 show that Ascent++ clearly outperforms the prior Ascent
KB by a large margin regarding the typicality of both top-ranked statements and randomly
sampled ones. Although the saliency scores of random samples drop significantly compared
to those of the top-10 statements (see Table 3.5), Ascent++ still outperforms Ascent
by 4 percentage points. Combined with the results in Table 3.5, the new Ascent++ KB
consistently shows better quality than its predecessor Ascent KB, on both precision and
relative recall.

3.5.4  Precision of ConceptNet Mapping

To evaluate the ConceptNet mapping module, we manually annotated 100 random samples
from the final Ascent++ KB. For each sample, we marked it as a correct mapping if the
fixed-schema triple preserved the meaning of the original triple. We obtained a precision
of 96%.

59



Chapter 3: Concept-Centric Extraction and Organization

3.6  Extrinsic Evaluation

3.6.1  Setup

To answer RQ2, we conduct a comprehensive evaluation of the contribution of commonsense
knowledge to question answering (QA) via three different setups, all based on the idea of
priming pre-trained language models (LMs) with context (Guu et al. 2020, Lewis et al. 2020,
Petroni et al. 2020).

1. In masked prediction, we ask language models to predict single tokens in generic sen-
tences (Petroni et al. 2019).

2. In generative QA, we provide questions and let autoregressive LMs generate arbitrary
answer sentences (Lewis et al. 2020).

3. In span prediction, LMs select the best answers from provided CSKB content (Lan et
al. 2020).

We illustrate all settings in Table 3.8. In every setting, LMs are provided with a context in
the form of assertions taken from competitor CSKBs. These setups are motivated by the
observation that priming language models with context can significantly influence their pre-
dictions. Previous works on language model priming mainly focused on evaluating retrieval
strategies. In contrast, our comprehensive test suite focuses on the impact of utilizing dif-
ferent CSK resources while leaving the retrieval component constant.

Masked prediction comes with the advantage of allowing automated evaluation, although
automated evaluation may unfairly discount sensible alternative answers. Also, masked pre-
diction is limited to single tokens. Autoregressive LM-based generations circumvent this re-
striction, although they necessitate human annotations and can be prone to evasive answers.
They are thus well complemented by extractive answering schemes, limiting the language
models’ abstraction abilities but providing the cleanest way to evaluate the context alone.

Base Models.  Following standard usage, we use RoBERTa-large (Liu et al. 2019) for masked
prediction, GPT-3 (Brown et al. 2020) for the generative setup, and ALBERT-xxlarge (Lan
et al. 2020), fine-tuned on SQuAD 2.0 (Rajpurkar et al. 2018), for span prediction.

Context Retrieval.  Using the SentenceBert model msmarco-distilbert-base-v3, we compute
embeddings of the given query and all verbalized triples in the CSKBs. Then we use cosine
similarity to select the top-5 most similar triples to the query as context.
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Table 3.8: Examples of three QA settings in the extrinsic evaluation.

Setting Input Sample output

Masked prediction
Elephants eat [MASK]. [SEP] Elephants eat
roots, grasses, fruit, and bark, and they eat a
lot of these things.

everything (15.52%),
trees (15.32%), plants
(11.26%)

Generative QA

Context: Elephants eat roots, grasses, fruit,
and bark, and they eat a lot of these things.
Question: What do elephants eat?
Answer:

Elephants eat a
variety of different
foods.

Span prediction

question="What do elephants eat?"
context="Elephants eat roots, grasses, fruit,
and bark, and they eat a lot of these things."

start=14, end=46,
answer="roots,
grasses, fruit, and
bark"

Models used (top to bottom): RoBERTa, GPT-3, and ALBERT.

Task Construction.  Previous work has generated masked sentences based on templates from
ConceptNet triples (Petroni et al. 2019). However, the resulting sentences are often unnat-
ural, following the idiosyncrasies of the ConceptNet data model.

We leveraged a new dataset of natural commonsense sentences for masked prediction that
is based on an independent human-annotated dataset, the aforementioned CSLB dataset
(Devereux et al. 2014), and consists of 19.6K masked sentences processed by Nguyen et
al. (2021a).

For the generative and extractive settings, we used the Google Search auto-completion
functionality to collect commonsense questions about popular subjects by feeding the API
with six prefixes: “what/when/where are/do <subject> …”. That process returned 8,098
auto-completed queries for 200 popular subjects.

Next, we drew samples from the query set, then manually removed jokes and other noise
(e.g., “where do cows go for entertainment”), obtaining 100 questions for evaluation.

Evaluation Scheme.  For commonsense topics, questions often have multiple valid answers.
Additionally, given that answers in our generative and extractive QA settings are very open,
creating an automated evaluation is difficult. Therefore, we use human judgments for evalu-
ating all settings except masked prediction. Specifically, given a question and set of answers,
we ask human annotators to assess each answer based on two dimensions, correctness, and
informativeness, each on a 4-point Likert scale from 0 (lowest) to 3 (highest) (see Table 3.9
for the question templates given to the annotators).
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Table 3.9: Questions for the human evaluation of context-augmented QA.

Dimension Question and answer options
How often does this answer hold true?

Correctness
3 - Always/Often | The answer is always or often true.
2 - Sometimes/Likely | It is sometimes or likely true.
1 - Farfetched/Never | It is false or farfetched at best.
0 - Invalid | It is invalid or makes no sense.
How informative is the answer?

Informativeness
3 - Highly | It provides very useful knowledge w.r.t the question.
2 - Moderately | It is moderately useful.
1 - Slightly | It is slightly useful.
0 - Not at all | It is too general or makes no sense.

These are used for the human evaluation of Generative QA and Span Prediction tasks.

• Correctness indicates whether an answer holds true.
• Informativeness reflects that the information conveyed by an answer is helpful.

An answer could be correct and uninformative at the same time. For example, given the
question “What do elephants use their trunk for?”, the answers “For breathing” and “To suck
up water” are both correct and informative. However, “To do things” is a correct answer but
not informative at all. On the other hand, if an answer is incorrect, it should automatically
be uninformative. Three annotators evaluate each question in Amazon MTurk.

We use the mean precision at 𝑘 (𝑃@𝑘) metric for evaluating masked prediction, following
Petroni et al. (2019).

3.6.2  Results

The extrinsic evaluation results are shown in Table 3.10.

• For masked prediction, all CSKBs contribute useful contexts that substantially improve
the quality of LM responses. Ascent++, along with the only manually-constructed
KB, ConceptNet, statistically significantly outperforms all other KBs at every thresh-
old 𝑘 (all p-values of paired Student’s t-test below 0.05).

• For generative QA, markedly, we find that GPT-3 performs on average better without
any context. However, in combination with Ascent++, it still performs better than
with any other CSKB. More research is needed to design methods to pull relevant
context from CSKBs and decide when to use it in LM-based QA and when to rely on
the LM’s knowledge alone.
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Table 3.10: Results of context-augmented QA evaluation.

Masked Prediction Generative QA Span Prediction
Context

P@1 P@5 P@10 Corr Info Corr Info
No context 8.10 17.16 21.37 2.47 2.01 - -
ConceptNet 14.41 27.08 32.16 2.22 1.70 1.74 1.52
TransOMCS 7.08 15.42 19.99 1.32 0.86 0.99 0.85
TupleKB 11.61 24.76 30.36 2.22 1.51 1.70 1.38
Quasimodo 12.11 22.75 27.71 2.03 1.51 1.75 1.44
Ascent 11.95 24.70 29.70 2.25 1.76 1.88 1.60
Ascent++ 13.30 27.03 32.90 2.32 1.71 1.94 1.63

Metrics: P@k - mean precision at 𝑘 (%), Corr - correctness ([0..3]), Info - informativeness
([0..3]).

• For span prediction, where answers come directly from retrieved contexts, Ascent++
also outperforms all other competitors. Ascent++ obtained statistically significant
gains over Quasimodo, TupleKB, and TransOMCS on both metrics, and over Concept-
Net on correctness. This indicates that our Ascent++ assertions have high quality
compared to others.

3.7  Evaluation of Semantic Facets

To answer RQ3, we evaluate semantic facets both intrinsically and extrinsically.

3.7.1  Intrinsic Evaluation of Semantic Facets

As there are no existing CSKBs coming with semantic facets, we provide comparisons with
a strong LM baseline, GPT-2 (Radford et al. 2019). First, we randomly drew 300 assertions
along with their top-1 facets from our KB. Next, we translated each statement into a sen-
tence prefix and ask GPT-2 to fill in the remaining words to complete the sentence. For
example, given the quadruple <elephant; uses; their trunks; PURPOSE:to suck up water>, the
sentence prefix would be “Elephants use their trunk to”. For that, GPT-2′s continuation is
“to move around.” Then, each sentence prefix along with the two answers (from Ascent++
and GPT-2) were shown to a human annotator (without knowing the source of the answers)
who annotated if each answer was correct/incorrect and informative/uninformative, follow-
ing similar metrics used for the QA evaluation in Section 3.6. The results are reported in
Table 3.11. Ascent++ achieves 70.1% correctness and 54.15% informativeness, both signif-
icantly better than the values for the GPT-2 model.
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Table 3.11: Assessment of Ascent++ facets and LM-generated facets.

Source Correctness (%) Informativeness (%)
GPT-2 61.79 48.84
Ascent++ 70.10 54.15

Table 3.12: Extrinsic evaluation of semantic facets.

Masked Prediction Generative QA Span PredictionAscent++
assertions P@1 Corr Info Corr Info
Without facets 13.30 2.32 1.71 1.94 1.63
With facets 13.38 2.26 1.79 2.12 1.77

Metrics: P@1 - mean precision at one (%), Corr - correctness ([0..3]), Info - informativeness
([0..3]).

3.7.2  Extrinsic Evaluation of Semantic Facets

We reused the three question answering tasks from Section 3.6. The results of this evalua-
tion are shown in Table 3.12. Expanding the triples with semantic facets gives a consistent
improvement in four out of five evaluation metrics (precision@1 in masked prediction, in-
formativeness in generative QA and span prediction, and correctness in span predication),
with the most prominent effect being observed for span prediction (8.6% and 9.3% relative
improvements over the no-facet context in informativeness and correctness, respectively).

3.8  Summary

In this chapter, we acquired refined commonsense knowledge for the first type of entry
points: everyday concepts. We presented Ascent++, a methodology to extract and semanti-
cally organize refined commonsense knowledge from large-scale web contents. Our expressive
knowledge representation allowed us to identify considerably more informative assertions,
overcoming the limitations of prior works. The techniques for filtering, aggregating, and con-
solidating extracted tuples showed that CSK extraction from broad web content is feasible at
scale, with both high precision and high recall. Intrinsic and extrinsic evaluations confirmed
that the resulting CSKB is a significant advance over existing CSK collections and provides
an edge over recent LM-based approaches. Code, data, and a web interface are accessible at
https://ascentpp.mpi-inf.mpg.de.

64

https://ascentpp.mpi-inf.mpg.de


4
CULTURE-CENTRIC EXTRACTION AND

ORGANIZATION

In this chapter, we acquire commonsense knowledge for the second type of entry points:
cultural groups (e.g., Japanese, Hispanic, Buddhist).

Our proposed method, called Candle, discovers cultural commonsense knowledge
(CCSK), including human traits and behaviors conditioned on cultural contexts, from large-
scale web contents. Considering three domains of cultural groups (geography, religion, oc-
cupation), Candle extracts high-quality CCSK assertions for a number of general cultural
facets (food, drinks, clothing, traditions, rituals, behaviors), and organizes them into co-
herent clusters. Candle includes judicious techniques for classification-based filtering and
scoring of interestingness. The evaluation with human judgements shows the superiority of
the resulting CCSK collection over prior works, and an extrinsic use case demonstrates the
benefits of CCSK for the GPT-3 language model.

The project website is hosted at https://candle.mpi-inf.mpg.de, including downloadable
code and data.
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4.1  Introduction

Motivation.  Major CSK acquisition projects, such as ConceptNet (Speer et al. 2017) and
ATOMIC (Sap et al. 2019a), have compiled large sets of CSK assertions, but are solely
focused on “universal CSK”: assertions that are agreed upon by almost all people and are
thus viewed as “globally true”. In the Ascent++ project (Chapter 3), our attempt to refine
CSK assertions was restricted to general semantic facets such as spatial or temporal condi-
tions, and other dimensions like cause and purpose. What is missing, though, is that CSK
must often be viewed in the context of specific social or cultural groups: the world view of a
European teenager does not necessarily agree with those of an American business person or
a Far-East-Asian middle-aged factory worker.

The work presented in this chapter addresses this gap by automatically compiling CSK
that is conditioned on cultural contexts. We refer to this as cultural commonsense knowledge,
or CCSK for short. Given a set of cultures/cultural groups (or subjects, which will be used
interchangeably), our goal is to acquire CCSK assertions for those subjects that concern
several cultural facets of interest. For example, we collect CCSK assertions such as:

• CULTURAL-GROUP:East Asia, CULTURAL-FACET:food, Tofu is a major ingredient in many

East Asian cuisines, or
• CULTURAL-GROUP:firefighter, CULTURAL-FACET:behavior, Firefighters use ladders to

reach fires.

The value of having a knowledge base with this information lies in making AI applications
more situative and more robust.

Collecting CCSK is a challenging task, especially at scale. The few prior works with data
that have specifically addressed the socio-cultural dimension of CSK are the projects Qua-
simodo (Romero et al. 2019), StereoKG (Deshpande et al. 2022), and the work of Acharya
et al. (2021). The latter, which employed human annotations from Amazon MTurk, only
produced a few hundred assertions. StereoKG used a specialized way of automatically ex-
tracting stereotypes from QA forums; its resulting resource is still small in size and suffers
from high noise. On the other hand, Quasimodo aimed to collect general CSK and its KB
only contains a small fraction of culturally relevant assertions.

Our goal is to collect CCSK of wide coverage while assuring high precision.

Approach.  CCSK is expressed in text form on web pages and social media, but this is often
very noisy and difficult to extract. We devised an end-to-end methodology and system, called
Candle (extracting cultural commonsense knowledge at scale), to automatically extract
and systematically organize a large collection of CCSK assertions. For scale, similarly to
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Ascent++ (Chapter 3), we tap into the C4 web crawl (Raffel et al. 2020), a huge collection
of web pages. This provides an opportunity to construct a sizable CCSK collection, but also
a challenge in terms of scale and noise.

The output of Candle is a set of 1.1M CCSK assertions, organized into 60K coherent
clusters. The set is organized by three domains of interest – geography, religion, occupation
– with a total of 386 instances, referred to as subjects (or cultures/cultural groups). Per sub-
ject, the assertions cover five facets of culture: food, drinks, clothing, rituals, traditions (for
geography and religion subjects) or behaviors (for occupations). In addition, we annotate
each assertion with its salient concepts. Examples for the computed CCSK are shown in
Figure 4.1.

Colored annotations: cultural domains, subjects (cultural groups), cultural facets, concepts.

geography>country Germany drinks

German beer festivals in October are a celebration of beer drinking.
geography>region East Asia food

Tofu is a major ingredient in many East Asian cuisines.
geography>region South Asia traditions

In South Asia, henna is often used in bridal makeup or to celebrate festivals.
occupation lawyer clothing

Lawyers wear suits to look professional.
occupation firefighter behaviors

Firefighters run into burning buildings to save lives.

Figure 4.1:  Example assertions from Candle.

Given a set of cultural subjects and facets, Candle operates in 6 steps. First and sec-
ond, we identify candidate assertions using simple techniques for subject detection (named
entity recognition and string matching), and generic rule-based filtering. Third, we classify
assertions into specific cultural facets, which is challenging because we have several combi-
nations of cultural groups and cultural facets, making it very expensive to create specialized
training data. Instead, we creatively leverage LMs pre-trained on the natural language in-
ference (NLI) task to perform zero-shot classification on our data, with judicious techniques
to enhance the accuracy. Fourth we use state-of-the-art techniques for assertion clustering,
and fifth a simple but effective method to extract concepts in assertions. Lastly, we combine
several features to score the interestingness of assertions, such as frequency, specificity, dis-
tinctiveness. This way, we steer away from overly generic assertions (which LLMs like GPT-3
tend to generate) and favor assertions that set their subjects apart from others.
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Contributions.  The project’s key contributions are:

1. Methodology (Section 4.3): We propose Candle, an end-to-end methodology to extract
high-quality CCSK from very large text corpora. Candle contains new techniques for
judiciously classifying and filtering CCSK-relevant text snippets, and for scoring asser-
tions by their interestingness.

2. Resource (Section 4.4): We construct and publicly release a large collection of CCSK
assertions for 386 subjects covering three domains (geography, religion, occupation)
and several facets (food, drinks, clothing, traditions, rituals, behaviors).

The evaluation with human judgments shows that the assertions in Candle are of sig-
nificantly higher quality than those from prior works (Section 4.5). An extrinsic use case
demonstrates that our CCSK can improve performance of GPT-3 in question answering
(Section 4.6). Code and data can be accessed at https://candle.mpi-inf.mpg.de.

4.2  Knowledge Representation

Our representation of CCSK is based on the notions of subjects (from three major domains:
geography, religion and occupation) and cultural facets. These are the key labels for CCSK
assertions, which are informative sentences with salient concepts marked up.

Input.  We assume two sets to be given:

• 𝒢: A set of subjects (cultural groups) 𝑔1, …, 𝑔𝑛 from a cultural domain, e.g., based on
geo-locations (China, Middle East, California), religious groups (Christians, Muslims,
Buddhists) or occupations (taxi driver, professor, web developer);

• ℱ: A set of cultural facets 𝐹1, …, 𝐹𝑚, e.g., food, drinks, clothing, traditions, rituals,
behaviors.

Note that the cultural facets need not be mutually exclusive, e.g., food assertions sometimes
overlap with traditions.

Format.  Our objective is to collect a set of CCSK assertions for a given subject and a cul-
tural facet. Existing commonsense resources store assertions in triple format (e.g. (Speer et
al. 2017, Romero et al. 2019)), semantic frames (Ascent++ in Chapter 3) or generic sen-
tences (Bhakthavatsalam et al. 2020). Although the traditional triple-based and frame-based
data models are convenient for structured querying, and well suited for regular assertions like
birth dates, citizenships, etc., they often falls short of capturing nuanced natural-language
assertions, as essential for CSK. Moreover, recent advances in pre-trained LMs have made it
easier to feed downstream tasks with less structured knowledge.
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With Candle, we thus follow the approach of GenericsKB (Bhakthavatsalam et al.
2020), and use natural-language sentences to represent assertions.

In principle, an assertion could comprise even several sentences. The longer the asser-
tions are, however, the harder it is to discern their core. In this work, for higher precision
and simplicity of computations, we only consider single sentences.

Organization.  Since natural language often allows to express similar assertions in many
different ways, and web harvesting naturally leads to discovering similar assertions multiple
times, we employ clustering as an essential component in our approach.

A cluster of CCSK assertions for a subject and a cultural facet contains assertions of
identical meaning, and for presentation purposes, is summarized by a single summary sen-
tence. Each cluster also comes with a score denoting its interestingness.

To further organize assertions, we also identify salient concepts, i.e., important terms
inside assertions, that can be used for concept-centric browsing of assertion sets.

Several examples of CCSK assertions produced by Candle are shown in Figure 4.1.

4.3  Methodology

We propose an end-to-end system, called Candle, to extract and organize CCSK assertions
based on the proposed CCSK representation. Notably, our system does not require annotat-
ing new training data, but only leverages pre-trained models with judicious techniques to
enhance the accuracy. The system takes in three inputs:

• an English text corpus (e.g., a large web crawl);

• a set of subjects (cultural groups);

• a set of facets of culture.

Candle consists of six modules (see Figure 4.2). Throughout the system, step by step, we
reduce a large input corpus (which could contain billions of documents, mostly noisy) into
high-quality clusters of CCSK assertions for the given subjects and facets. Each cluster in
the output is also accompanied by a representative sentence and an interestingness score.
A summary of techniques and models applied in each module is presented in Table 4.1. We
next elaborate on each module.
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Figure 4.2: Architecture of the Candle system.

Table 4.1: Models and techniques used in Candle.

# Module Techniques/models used
1 Cultural group detection String matching, named entity recognition
2 Generic assertion filtering Hand-crafted lexico-syntactic rules
3 Cultural facet classification The bart-large-mnli model

Assertion clustering SentenceBert + HAC
4

Cluster summarization The GPT-3 curie-001 model
5 Concept extraction Common n-gram extraction

Cluster ranking Ad-hoc ranking features
6

Post-filtering Rule-based filtering

4.3.1  Cultural Group Detection

We start the extraction by searching for sentences that contain mentions of the given subjects
(cultural groups). These will be the candidate sentences used in the subsequent modules.
To achieve high recall, we utilize generous techniques such as string matching and named
entity recognition (NER). We will use more advanced filtering techniques in later modules,
to ensure high precision.

For the geography and religion domains, in which subjects are named entities, we use
spaCy’s NER module to detect subjects. Specifically, geo-locations are detected with the
GPE tag (geopolitical entities), and religions are detected with the NORP tag (nationalities
or religious or political groups). For each subject, we also utilize a list of aliases for string
matching, which can be the location’s alternate names (e.g., United States, the U.S., the
States), or demonyms (e.g., Colombians, Chinese, New Yorker), or names for religious ad-
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herents (e.g., Christians, Buddhists, Muslims) - which can be detected with the NORP tag
as well.

For the occupation domain, we simply use exact-phrase matching to detect candidates.
Each occupation subject is enriched with its alternate names and its plural form to enhance
coverage.

4.3.2  Generic Assertion Filtering

CSK aims at covering generic assertions, not episodic or personal experiences. For example,
“Germans like their currywurst” is a generic assertion, but “I visited Germany to eat curry-
wurst” or “This restaurant serves German currywurst” are not.

GenericsKB (Bhakthavatsalam et al. 2020) is arguably the most popular work on auto-
matically identifying generic sentences in texts. GenericsKB used a set of 27 hand-crafted
lexico-syntactic rules to extract high-quality generic sentences from different text corpora
(the ARC corpus, SimpleWikipedia, and the Waterloo crawl of education websites). For
example, the lexical rules look for sentences of short length, starting with a capitalized char-
acter, having no bad first words (e.g., determiners), ending with a period, having no URL-like
snippets, etc. The syntactic rules only accept a sentence if its root (in the dependency tree)
is a verb and not the first word, and if there is a noun before the root verb, etc.

Candle adopts the GenericsKB rules. However, as GenericsKB only deals with general
concepts (e.g., tree, bird, car), some of the rules are not applicable for the cultural subjects,
which can be named entities. Hence, depending on the subjects and facets, we adaptively
modify the rules (by dropping some of them) so that we will not miss out valuable assertions.
For instance, for geography subjects, the has-no-determiners-as-first-word rule will filter out
valuable assertions such as “The Chinese use chopsticks to eat their food” or “The curry-
wurst is a traditional German fast food dish”, and it must be dropped. In another situation,
when exploring CULTURAL-FACET:traditions, the remove-past-tense-verb-roots rule would be
too aggressive as it rejects assertions about past traditions. The rule that rejects sentences
with PERSON entities can be used for the geography and occupation subjects, but must not
be used for religions, because it will filter out sentences about, e.g., Buddha or Jesus Christ.
Full details are in the published code base².

²https://github.com/cultural-csk/candle/blob/main/candle/pipeline/component_generic_sentence_
filter.py
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4.3.3  Cultural Facet Classification

To organize CCSK and filter out irrelevant assertions, we classify candidate sentences into
several facets of culture. Traditional methods for this classification task would require a sub-
stantial amount of annotated data to train a supervised model. The costs of data annotation
are often a critical bottleneck in large-scale settings. In Candle, we aim to minimize the
degree of human supervision by leveraging pre-trained models for zero-shot classification.

A family of pre-trained models that is suitable for our setting is textual entailment,
a.k.a. natural language inference (NLI): given two sentences, does one entail the other (or
are they contradictory or unrelated)? Our approach to adopting such a model for cultural
facet classification is inspired by the zero-shot inference method of Yin et al. (2019). Given
a sentence sent and a facet 𝐹 , we construct the NLI test as follows:

Input: Premise ← sent, Hypothesis ← “This text is about 𝐹”
Output: 𝑃 [sent ∈ 𝐹 ] ← 𝑃[Premise ⇒ Hypothesis]

The probability of Premise entailing Hypothesis will be taken as the probability of sent being
labeled as 𝐹 , denoted as 𝑃 [sent ∈ 𝐹 ]. For example, with the sentence “German October
festivals are a celebration of beer and fun”, the candidate entailments will be “This text is
about drinks”, “… about food”, “… about traditions”, and so on. Multiple of these facets may
yield high scores in these NLI tests.

To enhance precision, we introduce a set of counter-labels for topics that are completely
outside the scope of CCSK, for example, politics or business. A sentence sent will be accepted
as a good candidate for facet 𝐹  if

{
𝑃[sent ∈ 𝐹 ] ≥ 𝜌+  and
𝑃[sent ∈ 𝐹] ≤ 𝜌−  for all counter-labels 𝐹

(4.1)

where 𝜌+ and 𝜌− are hyperparameters in the range [0, 1], giving us the flexibility to tune for
either precision or recall.

In our experiments, we use the BART model (Lewis et al. 2020) finetuned on the
MultiNLI dataset (Williams et al. 2018) for NLI tests. Our crowdsourcing evaluations show
that the zero-shot classifiers with the enhanced techniques achieved high precision (see Sec-
tion 4.5.3).
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4.3.4  Assertion Clustering

The same assertion can be expressed in many ways in natural language. For example, “Fried
rice is a popular Chinese dish” can also be written as “Fried rice is a famous dish from
China” or “One of the most popular Chinese food is fried rice”. Clustering is used to group
such assertions, which reduces redundancies, and allows to obtain frequency signals on as-
sertions.

Clustering.  Following Ascent++, we leverage SentenceBert (Reimers and Gurevych 2019),
to compute vector representations for all assertions, and use the hierarchical agglomerative
clustering (HAC) algorithm for clustering. Clustering is performed on assertions of each
subject-facet pair.

Cluster Summarization.  Since each cluster can have from a few to hundreds of sentences, it
is important to identify what those sentences convey, in a concise way.

One way to compute a representative assertion for a cluster is to compute the centroid
of the cluster, then take its closest assertion as the representative. Yet for natural-language
data, this does not work particularly well.

In Candle, we therefore approach cluster summarization as a generative task by using
GPT-3, specifically the curie-001 model (see Figure 4.3 for an example). Annotator-based
evaluations show that GPT-generated representatives received significantly better scores
than the base sentences in the clusters (see Section 4.5).

Given the following sentences:

(1) The basic color for a Chinese funeral is all white.

(2) In China, white is reserved for funerals.

(3) At a traditional Chinese funeral, guests are expected to wear somber colors.

(4) The Chinese wear white at funerals.

(5) The Chinese color for mourning and funerals is white rather than black.

Summarize them using one short sentence:

In China, white is the traditional color for funerals and mourning.

Figure 4.3: A screenshot of using GPT-3 for cluster summarization.
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4.3.5  Concept Extraction

While the cultural groups are regarded as subjects, concepts are akin to objects of the as-
sertions. Identifying these concepts enables concept-focused browsing (e.g., browsing Japan
assertions only about the Miso soup, etc.).

We postulate that main concepts of an assertion cluster are terms shared by many mem-
bers. To this end, we extract all n-grams (𝑛 = 1..3) of all assertions in a cluster (excluding
subjects themselves, and stop words); and retain the ones that occur in more than 60% of
the assertions. If both a phrase and its sub-phrase appear, we only keep the longer phrase
in the final output. Noun-phrase concepts are normalized by singularization.

4.3.6  Cluster Ranking and Post-Filtering

Ranking commonsense assertions is a crucial task. Unlike encyclopedic knowledge, which is
normally either true or false, precision of CSK is usually not a binary concept, as it gener-
alizes over many groups. With Candle, we aim to pull out the most interesting assertions
for each subject, and avoid overly generic assertions such as “Chinese food is good” or “Fire-
fighters work hard”, which are very common in text.

Extracting and clustering assertions from large corpora gives us an important signal of
an assertion, its frequency. However, ranking based on frequency alone may lead to reporting
bias. As we compile a CCSK collection at large scale, it also enables us to compute the
distinctiveness of an assertion against others in the collection. The notion of these two met-
rics can be thought of as term frequency and inverse document frequency in the established
TF-IDF technique for IR document ranking (Sparck Jones 1988). Besides frequency and
distinctiveness, we score the interestingness of assertion clusters based on two other custom
metrics: specificity (how many objects are mentioned in the assertion?) and facet relevance
(how relevant is the assertion to the cultural facet?).

Frequency.  For each subject-facet pair, we normalize cluster sizes into the range [0, 1], using
min-max normalization.

Distinctiveness.  We compute the IDF of a cluster 𝑐𝑙𝑠 as follows:

𝐼𝐷𝐹(𝑐𝑙𝑠) =
∑𝑐𝑙𝑠′∈𝐶𝐿𝑆 𝑠𝑖𝑧𝑒(𝑐𝑙𝑠′)

∑𝑐𝑙𝑠′∈𝐶𝐿𝑆 𝑠𝑖𝑧𝑒(𝑐𝑙𝑠′) × 𝜎(𝑐𝑙𝑠, 𝑐𝑙𝑠′) (4.2)

where 𝐶𝐿𝑆 is the set of all clusters for a given facet (e.g., food) and domain (e.g., geogra-
phy>country), and
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4.4 Implementation

𝜎(𝑐𝑙𝑠, 𝑐𝑙𝑠′) = {1 if 𝑠𝑖𝑚(𝑐𝑙𝑠, 𝑐𝑙𝑠′) ≥ 𝜃
0 otherwise

(4.3)

Here, 𝑠𝑖𝑚(𝑐𝑙𝑠, 𝑐𝑙𝑠′) is the semantic similarity between the two clusters 𝑐𝑙𝑠 and 𝑐𝑙𝑠′, and 𝜃
is a predefined threshold. In Candle, to reduce computation, we approximate 𝑠𝑖𝑚(𝑐𝑙𝑠, 𝑐𝑙𝑠′)
as the similarity between their summary sentences, which can be computed as the cosine
similarity between their embedding vectors. When computing these embeddings, the subjects
in the sentences are replaced with the same [MASK] tokens so that we only compare the
expressed properties. Then, we normalize the logarithmic IDF values into the range [0, 1] to
get the distinctiveness scores of clusters.

Specificity.  We compute the specificity of an assertion based on the fraction of nouns in
it. Concretely, in Candle, the specificity of a cluster is computed as the specificity of its
summary sentence.

Facet Relevance.  For each facet, we compute the facet relevance of a cluster by taking the
average of the probability scores given to its members by the cultural facet classifier.

Combined Score.  The final interestingness score for cluster 𝑐𝑙𝑠 is the average of the four
feature scores. A higher score means higher interestingness.

Post-Filtering.  Lastly, to eliminate redundancies and noise, and further improve the final
output quality, we employ a few hand-crafted rules:

• At most 500 clusters per subject-facet pair are retained, as further clusters mostly rep-
resent redundancies or noise.

• We remove clusters that have no concepts extracted, or that are based on too few
distinct sentences (more than 2/3 same sentences) or web source domains.

• We remove any cluster if either its summary sentence or many of its member sentences
match a bad pattern. We compile a set of about 200 regular expression patterns, which
were written by a knowledge engineer in one day. For e.g., we reject assertions that
contain “the menu”, “the restaurant” (likely advertisements for specific restaurants),
or animal and plant breeds named after locations, such as “American bison”, “German
Shepherd”, etc.

4.4  Implementation

4.4.1  Input
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Chapter 4: Culture-Centric Extraction and Organization

Corpus.  In Candle, we tap into the broad web as knowledge source, because of its diversity
and coverage, which are important for long-tail subjects. Besides the benefits, the most chal-
lenging problem when processing web contents is the tremendous amount of noise, offensive
materials, incorrect information etc., hence, choosing a corpus that has been chiefly cleaned
is beneficial. We reuse the processed C4 dataset (Raffel et al. 2020) from the Ascent++
project (see Section 3.4.1), which contains 365M English articles, each with text content and
source URL.

Cultural Groups.  We collect CCSK for subjects from three cultural domains: geography (272
subjects), religions (14 subjects) and occupations (100 subjects). For geography, we split into
four sub-domains: countries, continents, geopolitical regions (e.g., Middle East, Southeast
Asia, etc.) and US states, which were collected from the GeoNames database (http://www.
geonames.org/), which also provides alias names. We further enriched these aliases with de-
monyms from Wikipedia (https://en.wikipedia.org/wiki/Demonym).

Cultural Facets.  We consider five cultural facets four each subject: food, drinks, clothing,
rituals, and traditions (for geography/religion) or behaviors (for occupation), selected based
on an article on facets of culture (https://en.wikipedia.org/wiki/Outline_of_culture).

Specially for religion and occupation subjects, we first ask the NLI model (cf. Sec-
tion 4.3.3) to check if the input sentence is “… about religions” or “… about professions” before
categorizing it into one of the five cultural facets. If the sentence is in the general domain
(religions/professions) but it does not fall into one of the predefined facets, we classify its
cultural facet as “Other” (see Table 4.3).

4.4.2  Hyperparameters

Based on tuning on small withheld data, we select the following values for hyperparameters.

For cultural facet classification, we fix 𝜌+ to 0.5 and 𝜌− to 0.3 in Equation (4.1).

For assertion clustering, we use the SentenceBert model all-MiniLM-L6-v2 for comput-
ing sentence embeddings. For the HAC algorithm, we measure point-wise Euclidean distance
of the normalized embeddings. Then, we use the Ward’s linkage (Ward 1963), with the max-
imal distance threshold set to 1.5. In the few cases where input sets are larger, we truncate
them at 50K most frequent sentences per subject-facet pair, since larger inputs only contain
further redundancies, that are not worth the cubic effort of clustering. This concerns only
15 out of 386 subjects.

For cluster summarization, we consider the 500 most populated clusters for each subject-
facet pair with a minimum size of 3 sentences.
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4.4 Implementation

For cluster ranking, we fix 𝜃 in Equation (4.3) to 0.8.

4.4.3  Execution

We executed Candle on a cluster of 6K CPU cores (AMD EPYC 7702) and 40 GPUs (a
mix of NVIDIA RTX 8000, Tesla A100 and A40 GPUs).

Regarding processing time, for the domain country (196 subjects), it took a total of 12
hours to complete the extraction, resulting in 8.4K clusters for the facet food (cf. Table 4.2).
Occupations and religions took 8 and 6 hours each.

Table 4.2: Processing time and output size of each step in Candle.

# Step Time Output/Data size

- Input
1.5 days for NLP

preprocessing
(cf. Section 3.4.1)

C4 corpus: 8B sentences,
196 countries,

705 alternate names

1 Subject detection 2 hours
367M subject matches
300M sentences (-96%)

2 Generic assertion filtering 2 hours 13M generic sentences (-96%)

3 Cultural facet classification 4 hours 769K positive sentences (-94%)

4 Assertion clustering 4 hours 42K clusters (-93%)

5 Concept extraction < 5 minutes 12.4K concepts

6 Cluster ranking and post-filtering < 5 minutes 8.8K clusters (-80%)

- Total ~ 12 hours

For domain geography>country and FACET:food.

Table 4.3: Statistics of the Candle CCSK collection.

Geo-Locations Religions Occupations
Facet

#Assertions #Clusters #Assertions #Clusters #Assertions #Clusters

Food 240,459 12,981 9,750 680 9,837 511

Drinks 95,394 5,923 3,079 218 3,321 227

Clothing 14,170 1,237 1,695 141 4,367 278

Rituals 116,839 8,007 74,651 3,026 22,581 1,253

Traditions 214,931 13,606 68,202 2,798 - -

Behaviors - - - - 25,152 1,495

Other - - 60,483 2,292 159,239 5,461

All 681,793 41,754 217,860 9,155 224,497 9,225
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4.4.4  Result Statistics

We provide statistics of the output in Table 4.3. In total, the resulting collection has 1.1M
CCSK assertions (i.e., base sentences) which form 60K clusters for the given cultural groups
and facets.

Experiment Overview

We perform the following evaluations:

1. A comparison of quality of Candle’s output and existing socio-cultural CSK re-
sources: This analysis will show that our CCSK collection is of significantly higher
quality than existing resources (Section 4.5.1), and even outperforms GPT-3-gen-
erated assertions (Section 4.5.2).

2. Per-domain and per-facet quality of Candle: We break down the Candle CCSK
collection into domains and facets and analyze in details the assertion quality for
each subcollection (Section 4.5.3).

3. Two extrinsic use cases for CCSK: In this evaluation, we perform two downstream
applications, cultural question answering (QA) and GuessTheCountry game,
showing that using CCSK assertions from Candle is beneficial for these tasks and
outperform those generated by GPT-3 (Section 4.6).

4.5  Intrinsic Evaluation

We compare Candle with materialized resources of similar kind (Section 4.5.1) and with
assertions generated by GPT-3 (Section 4.5.2). Then, we break down the collection into
domains and facets to analyze assertion quality for each subcollection (Section 4.5.3).

4.5.1  Comparison with Other Resources

4.5.1.1  Setup

Compared Resources.  We compare Candle with three prominent CSK resources: Quasi-
modo (Romero et al. 2019), AcharyaEtAl (Acharya et al. 2021), StereoKG (Deshpande et
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al. 2022). The former covers broad domains including assertions for countries and religions,
while the others focus on cultural knowledge.

We evaluate two versions of our CCSK collection, one where each base assertion is
retained independently (Candleraw), the other containing only the cluster representatives
(Candlecluster).

Other popular CSK resources such as ConceptNet (Speer et al. 2017), GenericsKB (B-
hakthavatsalam et al. 2020), ATOMIC (Sap et al. 2019a), ASER (Zhang et al. 2020b),
TransOMCS (Zhang et al. 2020a), and Ascent++ (Chapter 3) do not have their focus
on cultural knowledge and contain very little to zero assertions for geography or religion
subjects, hence, they are not qualified for this comparison.

Evaluation Metrics.  Following previous works (Romero et al. 2019, Deshpande et al. 2022),
we analyze assertion quality along several complementary metrics, annotated by Amazon
MTurk crowdsourcing.

• Commonality: This dimension measures whether annotators have heard of the assertion
before.

• Plausibility: This dimension measures whether assertions are considered to be generally
true, a CCSK-softened variant of correctness/precision.

• Distinctiveness: This dimension measures discriminative informativeness of assertions,
i.e., whether the assertion differentiates the subject from others.

Each metric is evaluated on a 3-point Likert scale for negation (0), ambiguity (1) and affir-
mation (2). We present the crowdsourcing questions and answer options in Table 4.4.

The distinctiveness metric is only applicable if the answer to the plausibility question is
either 1 or 2. In case the annotators are not familiar with the assertion, we advise them to
perform a quick search on the web to find out the answers for the plausibility and distinc-
tiveness questions. Additionally, we ask if the annotator would consider the assertion as an
inappropriate or offensive material, measuring offensiveness.

Evaluation Scheme.  For comparability, all resources are compared on 100 random assertions
of the same five country subjects covered in StereoKG (Deshpande et al. 2022), namely
United States, China, India, Germany and France. We note that among all compared re-
sources, AcharyaEtAl (Acharya et al. 2021) only contain two subjects (United States and
India), so for that resource, we only sample from those. For StereoKG, we use their natural-
language assertions. For Quasimodo and AcharyaEtAl, we verbalize their triples using
crafted rules. Each MTurk task consists of five assertions evaluated by three different anno-
tators.
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Table 4.4: Crowdsourcing questions for CCSK evaluation in Candle.

Dimension Question and answer options
Have you heard of the assertion before?

Commonality
0 - Never | No, I have never heard of it.
1 - Sometimes | I have heard of it once or twice.
2 - Often | Yes, I have heard of it many times.
Do you consider the assertion to be true?

Plausibility
0 - No | No, not at all.
1 - Somewhat | Somewhat.
2 - Yes | Yes, absolutely.
Does the assertion set the culture apart from others?

Distinctiveness
0 - No | This assertion applies to many cultures.
1 - Somewhat | This assertion applies to several cultures.
2 - Yes | This assertion is quite unique and applies to only a few or this one
culture.

Details of MTurk Tasks.  Workers are compensated $0.50 per task. We select Master work-
ers with lifetime’s acceptance rate more than 99% (this rate is provided by the platform).
We obtain fair inter-annotator agreements given by Fleiss’ 𝜅 (Fleiss and Cohen 1973): 0.26
for plausibility and 0.25 for distinctiveness. This number for commonality (0.13) is lower
than others because it is an objective question (has the annotator heard of the assertion?).
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4.5.1.2  Results

A summary of comparison with other resources is shown in Table 4.5.

Resource Size and Assertion Length.  Candle outperforms all other resources on the num-
ber of base sentences. When turning to clusters, our resource still has significantly more
assertions than AcharyaEtAl (which was constructed manually at small scale) and
StereoKG (extracted from Reddit/Twitter questions). Quasimodo has comparable size with
Candlecluster for the country and religion domains and has more for the occupation domain.

The OpenIE-based methods, Quasimodo and StereoKG, produce the shortest asser-
tion (32 and 37 characters on average, respectively). The manually-constructed KG
(AcharyaEtAl) has the longest assertions (102 characters). Candle, having average as-
sertion lengths (69 and 73), stands between those two approaches.

Assertion Quality.  In general, Candlecluster considerably outperforms all other baselines on
two of the three metrics (plausibility and distinctiveness). Our resource only comes behind
AcharyaEtAl on the commonality metric (1.15 and 1.22 respectively), which is expected
because AcharyaEtAl only covers a few relations about common rituals (e.g., birthday,
wedding) in two countries, USA and India, and their assertions are naturally known by many
workers on Amazon MTurk, who are mostly from these two countries (Ross et al. 2010).
Importantly, AcharyaEtAl is based on crowdsourcing and only contains a small set of 225
assertions for a few rituals.

Candlecluster even outperforms the manually-constructed KG (AcharyaEtAl) on the
plausibility metric. This could be caused by an annotation task design that was geared to-
wards abnormalities, or lack of annotation quality assurance.

Candle also has the highest scores on the distinctiveness metric, while most of the
assertions in other resources were marked as not distinguishing by the annotators.

Between the two versions of Candle, the cluster representatives consistently outperform
the base sentences on all evaluated metrics. This indicates that still some of the raw sentences
in the collection are noisy, on the other hand, the computed cluster representatives are more
coherent and generally of better quality.

We also measured the offensiveness of each resource, i.e., the percentage of assertions
that were marked as inappropriate or offensive materials by at least one of the human-
annotators. Quasimodo and StereoKG, extracted from raw social media contents, have the
highest number of assertions considered offensive (18% and 13%). Meanwhile, Candle’s
judicious filters only miss a small fraction (1% of final assertions).
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In summary, our Candle CCSK collection has the highest quality by a large margin
compared to other resources. Our resource provides assertions of high plausibility and dis-
tinctiveness. The clustering and cluster summarization steps also help to improve the pre-
sentation quality of the CCSK.

4.5.2  Comparison with LLM Generations

Knowledge extraction directly from pre-trained LMs is recently popular, e.g., the LAMA
probe (Petroni et al. 2019) or ATOMIC-10x (West et al. 2022). There are major pragmatic
challenges to this approach, in particular, that assertions cannot be contextualized with truly
observed surrounding sentences, and that errors cannot be traced back to specific sources.
Nonetheless, it is intrinsically interesting to compare assertion quality between extractive
and generative approaches. In this section, we compare Candle with assertions generated
by GPT-3 (Brown et al. 2020).

Assertion Generation.  We query the GPT-3 model davinci-002 with the following prompt
template: “Please write 20 short sentences about notable <facet> in <subject>.” We run
each prompt ten times and set the randomness (temperature) to 0.7, so as to obtain a larger
resource. We run the query for five facets and 210 subjects (196 countries and 14 religions),
resulting in 188,061 unique sentences. Henceforth we call this dataset GPT3Res (GPT-3
resource), and reuse it in the extrinsic use cases (Section 4.6).

Evaluation Setup.  For each resource, we sample 100 assertions for each of the five facets
(hence, 500 assertions in total) and perform human evaluation on the three metrics: com-
monality, plausibility, and distinctiveness.

Table 4.6: Quality comparison between Candle and GPT3Res.

Quality [0..2]
Resource

Offensiveness
(%)

Length
(#chars)Plausibility Commonality Distinctiveness

GPT3Res 1.26 0.80 0.73 1 81
Candle 1.25 0.89 0.89 1 75

Evaluated on assertions of 196 countries.

Results.  The quality comparison between assertions of Candle and GPT3Res is shown in
Table 4.6. While plausibility scores are the same, and Candle performs better in common-
ality, the difference that stands out is in distinctiveness: GPT3Res performs significantly
worse, reconfirming a known problem of language models, evasiveness and over-generality
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Table 4.7: Example assertions of Candle and GPT3Res.

# Candle GPT3Res

1
The bride usually wears red in a traditional
Chinese wedding.

Chinese people also like to wear modern
clothes such as jeans and t-shirts.

2
The Chinese wear white at funerals because it
is associated with mourning in Chinese culture.

Shoes are also very important in Chinese
culture.

3
The Chinese wear new clothes for the New
Year to symbolize new beginnings.

Chinese people also like to dress their children
in very cute clothes.

4
The costumes in Chinese opera are very
colorful and important.

In China, you will often see little girls wearing
dresses and boys wearing shorts.

5
In ancient China, only the emperor was
allowed to wear the color yellow.

In the winter, people in China wear coats and
scarves to keep warm.

For SUBJECT:China and FACET:clothing.

(Li et al. 2016). We illustrate this with anecdotal evidence in Table 4.7, for SUBJECT:China
and FACET:clothing. None of the listed GPT-3 examples is specific for China.

4.5.3  Per-Domain and Per-Facet Quality Evaluation

We break down the Candle CCSK collection into domains and facets and evaluate the
assertion quality for each of these subcollections and get more insights into the constructed
data.

Per-Domain Quality.  Candle contains three subject domains, namely geography, religion
and occupation. For each domain, we sample 100 assertions and perform crowdsourcing
evaluation with the three metrics: plausibility, commonality and distinctiveness. We present
the evaluation results in Table 4.8. Besides the raw scores (0, 1, 2), we binarize and denote
them as acceptance rates, i.e., a score greater than zero means “accepted”.

Candle achieves a high plausibility score of 1.54 on average. Performance on this metric
is relatively consistent across all domains. Meanwhile, the commonality metric is highest for
the occupation domain and lowest for geography domain.

More than 80% of plausible assertions are annotated as distinctive. Religion and occu-
pation assertions perform significantly better than geography’s on this metric. That could
be caused by several assertions for geography subjects being correct but too generic (e.g.,
“Japanese food is enjoyed by many people”, or “German beer is good”). In fact, religions
and occupations are more distinguishing from one another, while countries or geo-regions
usually have cultural overlaps.
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Table 4.8: Quality of Candle assertions per domain.

Quality [0..2] Acceptance rate (%)
Domain

PLA COM DIS PLA ≥ 1 COM ≥ 1 DIS ≥ 1
Geography 1.52 1.19 1.03 84.00 66.00 61.33
Religion 1.51 1.29 1.22 85.76 74.67 72.00
Occupation 1.59 1.50 1.25 86.67 82.67 73.67
Average 1.54 1.33 1.17 85.44 74.44 69.00

Metrics: PLA - plausibility, COM - commonality, DIS - distinctiveness.

Table 4.9: Quality of Candle assertions per facet.

Quality [0..2]
Cultural
facet

Facet
relevance

Plausibility Commonality Distinctiveness

Food 1.42 1.23 0.94 0.97
Drinks 1.51 1.40 1.14 1.19
Clothing 1.49 1.30 1.04 1.07
Rituals 1.45 1.27 1.06 1.20
Traditions 1.42 1.27 1.02 1.11
Average 1.46 1.29 1.04 1.11

Evaluated on assertions of domain geography>country.

Per-Facet Quality.  We select the assertions for the domain country, and for each facet (food,
drinks, clothing, traditions, rituals), we sample 100 assertions for crowdsourcing evaluation.
Besides commonality, plausibility and distinctiveness, here we introduce one more evaluation
metric, facet relevance, measuring if an assertion conveys information about the cultural
facet of interest:

• Question: Is the assertion about <facet> in <culture>?
• Answer options:

‣ 0: No | No, not at all.
‣ 1: Somewhat | It is partially in the domain of interest.
‣ 2: Yes | Yes, I totally see it is.

Only when the facet-relevance score is greater than zero, the other metrics will be evaluated.
We present the evaluation results in Table 4.9.

It can be seen that Candle maintains good quality on all evaluation metrics. Notably,
scores for the facet relevance metric are consistently high for all facets, suggesting that the
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enhanced techniques for zero-shot classification work well on our data. Interestingly, the facet
drinks outperforms all other facets on three of the four metrics (facet relevance, plausibility
and commonality), especially for plausibility, its score is significantly higher than others.
Assertions for drinks and rituals are also more distinctive than for other facets.

4.6  Extrinsic Evaluation

We present two extrinsic tasks concerning cultural knowledge: cultural question answering
(Section 4.6.1), and GuessTheCountry game (Section 4.6.2).

4.6.1  Cultural Question Answering

Similar to the extrinsic evaluation in Ascent++ (cf. Section 3.6), we employ retrieval-aug-
mented generation (RAG) (Guu et al. 2020, Lewis et al. 2020) to show that CCSK assertions
from resources like Candle can help LLMs perform better in cultural question answering
(QA) tasks.

Dataset.  For questions, we collected cultural knowledge quizzes from multiple websites,
which resulted in 500 multiple-choice questions, each with two to five answer options (only
one of them is correct). An example question is: “What is the appropriate color to wear at
a Hindu funeral?”, with four answer options: “white”, “black”, “gold”, “blue”; the correct
answer is “white”.

Models and Settings.  We use the GPT-3 model davinci-002 as QA agent (with tempera-
ture=0 and max_length=16), and compare its performance in three settings: (1) when only
the questions are given, and when questions and their related contexts retrieved from (2)
Candle or (3) GPT3Res are given to the LLM.

For context retrieval, we use the the SentenceBert model all-mpnet-base-v2, and for each
question, retrieve the top-2 assertions from Candlecluster and GPT3Res based on cosine sim-
ilarity of their computed embeddings. We provide example input and output of this task in
Figure 4.4.

Results.  We measure the precision of the answers and present the results in Table 4.10. It
can be seen that with Candle context, the performance is consistently better than when no
context is given on all facets of culture, and better than GPT3Res context on three out of
four facets. This shows that GPT-3, despite its hundred billions of parameters, still struggles
with question answering tasks that require socio-cultural knowledge, and external resources
such as Candle can help to alleviate this problem.
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Without context ↓

What is the traditionally appropriate color for mourners to wear to a Hindu funeral?

A. White

B. Black

C. Gold

D. Blue

Answer:

B. Black

With a Candle assertion as context ↓

Context: Hindus wear white clothing to indicate mourning, while Christians wear white to weddings.

What is the traditionally appropriate color for mourners to wear to a Hindu funeral?

A. White

B. Black

C. Gold

D. Blue

Answer:

A. White

Figure 4.4: GPT-3 generations in the cultural QA task, without and with CCSK.

Table 4.10: Precision (%) of cultural QA.

Augmented context
Cultural facet #Questions

None GPT3Res Candle
Food & Drinks 88 92.05 94.32 93.18
Behaviors 125 60.80 57.60 63.20
Rituals 135 87.41 85.93 92.59
Traditions 152 72.37 69.74 79.61
All 500 77.00 75.40 81.40

4.6.2  GuessTheCountry

The rule of GuessTheCountry game is as follows: Given five CCSK assertions about a
country, a player has to guess the name of that country.

Dataset.  As input, we select a random set of 100 countries, and take assertions from either
Candle or GPT3Res. The game has five rounds, each is associated with a facet of culture.
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In each round, for each country, we draw the top-5 assertions from each resource (sorted by
interestingness in Candle or by frequency in GPT3Res). All mentions of the countries in
the input sentences are replaced with “[…]”, before being revealed to the player.

Method.  This is a game that requires a player who possesses a wide range of knowledge
across many cultures. Instead of human players, we choose the GPT-3 model davinci-002 as
our player, which has been shown to be excellent at many QA tasks (Brown et al. 2020).
We set temperature=0 and max_length=8. An example of input and output is shown in
Figure 4.5.

CULTURAL-GROUP:Vietnam. CULTURAL-FACET:drinks. Assertions from GPT3Res ↓

Given the following sentences, guess the name of the hidden country?

- Drinking culture in […] is often seen as a way to relax and unwind.

- Drinking culture in […] is often considered to be very healthy, as many of the traditional drinks are made

with natural ingredients.

- Drinking culture in […] is often considered to be very refreshing, as many of the traditional drinks are made

with fresh ingredients.

- There are many bars and nightclubs in […].

- Beer is the most popular type of alcohol in […].

The correct answer is: Germany

CULTURAL-GROUP:Vietnam. CULTURAL-FACET:drinks. Assertions from Candle ↓

Given the following sentences, guess the name of the hidden country?

- […] iced coffee is a delicious, refreshing drink that is perfect for hot summer days.

- […] has a strong coffee culture, with coffee being a very popular drink among locals.

- Snake wine is a popular drink in […] that is made with rice wine and a snake.

- The […] like to drink beer with ice cubes.

- […] cuisine uses lime juice in many dishes, as well as a pickled lime called chanh muối.

The correct answer is: Vietnam

Figure 4.5:  GPT-3 generations for GuessTheCountry game.

Results.  We measure the precision of the answers and present the results in Table 4.11.
It can be seen that the player got significantly more correct answers when given assertions
from Candle than from GPT3Res (i.e., assertions previously written by the player itself!).
This confirms that assertions in Candle are more informative than GPT3Res assertions.
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Table 4.11: Precision (%) of GuessTheCountry game.

Cultural facet
Resource Average

Food Drinks Clothing Rituals Traditions
GPT3Res 63.0 30.0 44.0 70.0 84.0 58.2
Candle 85.0 74.0 62.0 76.0 80.0 75.4

4.7  Summary

In this chapter, we acquired refined commonsense knowledge for the second type of entry
points: cultures. We presented Candle, an end-to-end methodology for automatically col-
lecting cultural commonsense knowledge (CCSK) from broad web contents at scale. We
executed Candle on several cultural groups and facets and produced CCSK of high qual-
ity. Our experiments showed the superiority of the resulting CCSK collection over existing
resources, which have limited coverage for this kind of knowledge, and also over methods
based on prompting LLMs. This work expands CSKB construction into a domain that has
been largely ignored so far. Code, data, and a web interface are accessible at https://candle.
mpi-inf.mpg.de.

89

https://candle.mpi-inf.mpg.de
https://candle.mpi-inf.mpg.de




5
COMBINING CONCEPTS AND CULTURES

In this chapter, we acquire commonsense knowledge for both types of entry points: concepts
and cultures.

Our proposed method, called Mango, distills high-accuracy, high-recall assertions of
culture-specific knowledge from LLMs. Our LLM prompts are constructed judiciously and
iteratively from the two entry points, covering a wide range of cultural subjects and concepts.
Outputs are consolidated via clustering and generative summarization. Running the Mango
method with GPT-3.5 as underlying LLM yields 167K high-accuracy assertions for 30K
concepts and 11K cultures, surpassing prior resources, including the Candle collection, by
a large margin in quality and size. In an extrinsic evaluation for intercultural dialogues, we
explore augmenting dialogue systems with cultural knowledge assertions. Notably, despite
LLMs inherently possessing cultural knowledge, we find that adding knowledge from Mango
improves the overall quality, specificity, and cultural sensitivity of dialogue responses, as
judged by human annotators. Interestingly, GPT-3.5, the LLM that generates Mango as-
sertions, also benefits from this resource in the extrinsic use case.

The project website is hosted at https://mango.mpi-inf.mpg.de, including downloadable
code and data.
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5.1  Introduction

Motivation and Research Questions.  In the Candle project (Chapter 4), we investigated
the acquisition of cultural commonsense knowledge (CCSK) from large-scale web contents.
Candle extracted knowledge for a given set of cultural groups. The resulting knowledge
base comprises ca. 60K assertions automatically distilled from nearly 1M sentences mined
from the C4 crawl. An important limitation of Candle is that it only considered a handful
of general cultural facets, hence potentially missed many culturally relevant concepts. More-
over, the resource is still insufficient in coverage of cultural groups, as cultures are not just
geo-regions, but should ideally consider also demographic and social traits of the respective
groups (e.g., female teenagers in Korea, French people of North-African descent, etc.).

The work presented in this chapter aims to expand the coverage of cultural groups and
culture-specific assertions, while maintaining or even improving the quality of the assertions.
This poses four research questions:

• RQ1: How can we substantially enlarge the amount of captured assertions, going be-
yond single-sentence retrieval from the web?

• RQ2: How can we systematically capture more and diverse cultural groups?

• RQ3: How can we ensure the specificity of assertions?

• RQ4: How can we avoid stereotypes and limit redundancy due to frequency bias?

Approach.  The methodology devised in this work, called Mango (multi-cultural common-
sense knowledge distillation), addresses these research questions as follows.

• To enlarge the pool of candidates (RQ1), we leverage an LLM, specifically GPT-3.5
(Ouyang et al. 2022), to generate assertions. Unlike Ascent++ and Candle, which
tapped into web crawls, this is an implicit way of tapping the LLM’s pre-training col-
lection. Compared to web retrieval, the scales are similar but the advantage is that
LLM training data involves efforts to remove spam and offensive content. Moreover,
with properly designed prompts, LLMs can inherently incorporate information from
different parts in their training data into coherent sentences, meanwhile single sentences
extracted directly from web texts often need surrounding contexts to be meaningful.

• For high coverage of diverse cultures (RQ2), an important novelty in this method is to
construct prompts for both concepts (incl. human activities) from an existing (cultur-
ally agnostic) CSKB and cultural groups from a large pool of cultures.

• Asking an LLM to generate assertions requires judicious prompting. As we have seen
previously in the comparison between Candle assertions and those generated by
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GPT-3 (Section 4.5.2), using a simple prompt template (“Please write 20 short sen-
tences about notable <facet> in <subject>.”) was insufficient and often led to evasive
and overly generic answers. To ensure the informativeness of assertions (RQ3), our
prompts contain example assertions and detailed instructions to direct the LLM to
generate salient culture-specific knowledge.

• To tame the redundancy of generated candidates (RQ4), our method consists of steps
for assertion consolidation. This is carried out by clustering the pool of assertions into
topically and culturally coherent groups, considering both the key concept in an asser-
tion and the culture to which it refers. Similarly to Candle, the LLM is leveraged again
to generate a concise summary statement for each cluster. This exploits the LLM’s
language skills, but does not rely on actual knowledge by the LLM.

Contributions.  This project’s key contributions are:

1. Methodology (Section 5.3): We propose the Mango methodology for efficiently distilling
CCSK from LLMs, at high precision and recall, from two entry points: concepts and
cultures.

2. Resource (Section 5.4): We construct and publicly release a CCSK collection of 167K
assertions for 30K concepts and 11K cultures by running the Mango method with
GPT-3.5 as underlying LLM.

The evaluation with human judgements shows that the Mango CCSK collection substan-
tially surpasses prior CCSK resources in size and quality (Section 5.5), including Candle. An
extrinsic evaluation for intercultural dialogues shows that the injection of Mango assertions
significantly improves the specificity and cultural sensitivity of LLM responses (Section 5.6).
Code and data can be accessed at https://mango.mpi-inf.mpg.de.

5.2  Knowledge Representation

Given a concept 𝑐 and a culture/cultural group 𝑔, our method generates statements that
represent cultural beliefs, norms, or common practices around the concept 𝑐 that apply to
the cultural group 𝑔. Following Candle (cf. Section 4.2), we opt for using concise natural-
language sentences to represent CCSK. However, instead of using general cultural facets
(e.g., food, drinks, rituals, etc.), in this project, we use more specific concepts (e.g., tipping,
drinking beer, meditation, etc.) in order to acquire more informative assertions.

For example, we collect CCSK assertions such as:
• CULTURAL-GROUP:Japanese, CONCEPT:tipping, Tipping is not customary in Japan, or
• CULTURAL-GROUP:Buddhist, CONCEPT:meditation, Meditation is widely practiced for

spiritual and mental well-being in Buddhist culture.
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5.3  Methodology

We propose Mango, a workflow for distilling and consolidating CCSK using LLMs. The
goal of Mango is to generate CCSK for diverse cultures, covering a wide variety of concepts.
Moreover, by clustering assertions, we obtain ranking signals for the assertions, which can
be useful for downstream applications.

Our workflow consists of two phases, each consisting of two steps:
• Phase 1: Assertion Generation (Section 5.3.1)

‣ Step 1a: Generating CCSK for a given concept.
‣ Step 1b: Generating CCSK involving a given culture.

• Phase 2: Assertion Consolidation (Section 5.3.2)
‣ Step 2a: Clustering CCSK assertions.
‣ Step 2b: Generating cluster representatives.

An overview of the Mango workflow is depicted in Figure 5.1 alongside its examples.

5.3.1  Phase 1: Assertion Generation

People of different cultures may have different perspectives on certain concepts. We are in-
terested in collecting these cultural differences, as they are crucial in situations where cross-
cultural knowledge is required to understand one another, as opposed to “universal CSK”
captured by prominent CSK projects. Our previous project Candle could not capture these
interesting differences directly since it only extracted single sentences from web data that
contain a target culture and express a general cultural facet (e.g., food, drinks, rituals, etc.).

In the present Mango project, we address this issue by asking LLMs to generate pairs
of CCSK assertions that represent different perspectives on the same concept in different
cultures. To this end, one might ask LLMs to generate CCSK for a given pair of concept and
culture (e.g., prompting for perceptions of tipping in Japan). However, the main drawback of
this approach is that it requires concept and culture pairings, which is problematic because
of the large number of possible combinations, and the fact that some combinations may
not make sense. Instead, we propose to use LLMs to generate CCSK for a given concept
or a given cultural group separately. This way we let the model decide which concepts are
relevant for a given cultural group and vice versa, which will reduce the chance of nonsensical
concept-culture combinations, hence reducing costs.

For each prompt, we provide the LLM with five pairs of example assertions randomly
drawn from a set of human-written CCSK assertions. Each example consists of a concept,
and two different perspectives on that concept associated with two or more different cultures.
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Figure 5.1: The Mango distillation workflow and its examples.

Step 1a
Generating CCSK

for a given concept

New cultures

New concepts

Step 1b
Generating CCSK

involving a given culture

Step 2a
CCSK assertions

clustering

Step 2b
Cluster representative

generation

Seed concepts Seed cultures

CCSK

assertions

CCSK clusters

CCSK collection

Phase 1: Assertion Generation Phase 2: Assertion Consolidation

Step 1a: Generating CCSK for a given concept

Input concept: chopsticks
Prompt: You are a helpful assistant that writes culture-specific commonsense assertions. Some examples
assertions are listed below:
* car | Important in US, Germany | Considered luxury item in poorer countries
* <4 more examples…>
Please write assertions for the concept: chopsticks.
Parsed output:

• Concept: chopsticks. Culture: Japan. Statement: Standard eating utensils.
• Concept: chopsticks. Culture: Western countries. Statement: Considered exotic and less commonly used for

everyday meals.

Step 1b: Generating CCSK involving a given culture

Input culture: Japan
Prompt: You are a helpful assistant that writes culture-specific commonsense assertions. Some examples
assertions are listed below:
* rice | Staple food in East Asia | Side dish in European countries
* <4 more examples…>
Please write assertions where one of the cultures is: Japan.
Parsed output:

• Concept: tipping. Culture: Japan. Statement: Not a common practice.
• Concept: tipping. Culture: USA. Statement: Common and expected practice in the service industry.

Step 2a: CCSK assertion clustering

Input: more than 500K CCSK assertions
Sample output cluster:

• Concept: tipping. Culture: Japanese. Statement: Not a common practice. (Frequency: 5)
• Concept: leaving tip. Culture: Japanese culture. Statement: Not a common practice and may even be seen as

rude. (Frequency: 2)
• Concept: tipping at restaurants. Culture: Japan. Statement: Tipping is not commonly practiced and can even

be considered rude as it implies that the service is not already included in the price. (Frequency: 1)
• Concept: tipping service staff. Culture: Japan. Statement: Not a common practice and can even be

considered rude or disrespectful. (Frequency: 1)

Step 2b: Cluster representative generation

Prompt: Please generate a representative sentence for the following assertions: <the sample cluster above>
Output: Concept: tipping. Culture: Japan. Statement: Tipping is not a common practice in Japan and can be
considered rude or impolite. (Frequency: 9)
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We implement our workflow using the gpt-3.5-turbo-1106 model. However, in practice,
other LLMs could be used. We also run each prompt several times at a high temperature
(i.e., high creativity), which can hopefully lead to different output assertions given the same
input.

Step 1a: Generating CCSK for a Given Concept.  Following instructions and example as-
sertions in the prompt, we ask the LLM: “Write culture-specific commonsense assertions for
the concept: <concept>”. For example, given the concept chopsticks, we expect the LLM to
generate assertions like: “Chopsticks | Standard eating utensils in Japan | Considered exotic
and less commonly used for everyday meals in Western countries”.

We seed this step with everyday concepts from ConceptNet (Speer et al. 2017) and cul-
tural concepts from Candle (Chapter 4).

Step 1b: Generating CCSK Involving a Given Culture.  Following instructions and example
assertions in the prompt, we ask the LLM: “Write culture-specific commonsense assertions
where one of the cultures is: <culture>”. For example, given the culture Japan, we expect
the LLM to generate assertions like: “Tipping at restaurants | Not a common practice in
Japan | Common and expected practice in USA”.

Note that the goal is not generating assertions only for the given culture, but we ask
the LLM to generate pairs of assertions that express different perspectives in two or more
cultures. This way we let the LLM come up with a distinctive cultural concept in the given
cultre.

The seed cultures used for this step are taken from Candle, including geo-locations
(countries, continents, geo-regions), and religions.

Iterative Generation.  Step 1a and Step 1b are processed independently, and each step can
generate new cultural groups and concepts, respectively. These new concepts and cultural
groups can be fed back to the corresponding approach in the next iteration.

Output Format.  For convenience, we ask the LLM to structure its responses into JSON ob-
jects with keys “concept”, “culture”, and “assertion”. A sample of full prompts and outputs
is presented in Figure 5.2.

5.3.2  Phase 2: Assertion Consolidation

It is natural that our CCSK generation approaches produce similar assertions that have very
little or zero semantic differences. The repetitions can come from the fact that there exist
concepts with close meanings (e.g., tea, drinking tea, and tea drinking), and terms referring
to the same groups (e.g., East Asia, East Asian cultures, and East Asian countries) in the
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Role Message

System

You are a helpful assistant who writes culture-specific commonsense assertions. You always respond in
JSON format with the following fields:
- “concept”: string
- “commonsense”: list of two objects representing significantly different common sense about the concept
in different cultures:

- “culture”: list of strings
- “assertion”: string

Some examples of culture-specific commonsense assertions are listed below, in the format: * concept |
commonsense assertion in culture 1 | commonsense assertion in culture 2.

* car | Important in US, Germany | Considered luxury item in poorer countries
* pig | Important farm animal in Europe, China | Considered dirty/shunned in Middle East
* bread | Dark/full-grain in Germany | Fluffy/toast-bread in Indonesia
* chopsticks | Standard eating utensils in East Asia | An exception in Europe
* window | Used to keep heat inside in northern countries | Used to keep heat outside in tropical
countries

Example 1: Generating CCSK for a given concept

User Write culture-specific commonsense assertions for the concept: feeding dogs.

Assistant

{
  "concept": "feeding dogs",
  "commonsense": [
    {
      "culture": ["United States", "Europe"],
      "assertion": "Feeding dogs high-quality, specialized pet food is common practice."
    },
    {
      "culture": ["India", "Nepal"],
      "assertion": "Feeding dogs leftovers or homemade food is a common and acceptable practice."
    }
  ]
}

Example 2: Generating CCSK involving a given culture

User Write culture-specific commonsense assertions where one of the cultures is: Vietnam.

Assistant

{
  "concept": "motorbike",
  "commonsense": [
    {
      "culture": ["Vietnam"],
      "assertion": "Common mode of transportation for individuals and families"
    },
    {
      "culture": ["USA"],
      "assertion": "Often used as a recreational vehicle rather than a primary mode of transportation"
    }
  ]
}

Figure 5.2: Examples of prompting GPT-3.5 to generate CCSK assertions.

input. Furthermore, as we run each prompt several times, even at high output randomness
(temperature), repetitions are inevitable.

While untreated redundancy is undesirable, we propose to take advantage of these re-
dundancies in order to rank our assertions. Specifically, by grouping together assertions of
identical meaning, we create frequency signals, which can be useful for downstream applica-
tions that only look for a subset of highest-significance assertions.
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Step 2a: Assertion Clustering.  As we generate hundreds of thousands of assertions in Phase
1, it is prohibitively expensive to run a clustering algorithm on all assertions at once. It would
even be infeasible for algorithms such as the hierarchical agglomerative clustering (HAC)
algorithm to process such a large amount of data points. Instead, we propose a divide-and-
conquer approach to clustering this large set of assertions. Our approach consists of three
substeps:

1. Clustering concepts: The concepts in the assertions generated in Phase 1 are clustered
into groups of semantically similar concepts (e.g., tea, drinking tea, and tea drinking).

2. Clustering cultures: We group together different expressions of the same cultural groups
(e.g., East Asia, East Asian cultures, and East Asian countries).

3. Clustering subsets of assertions: For each pair of concept cluster and culture cluster,
we only cluster the subset of assertions associated with any of the concepts and any of
the cultures in those clusters.

As the sizes of the entire concept and culture sets and the corresponding assertion subsets are
substantially smaller than that of the entire set of generated assertions, standard clustering
algorithms can process them efficiently. In our experiment, we use SentenceBert embeddings
(Reimers and Gurevych 2019) and the HAC algorithm for all three substeps. Nevertheless,
in practice, other text embedding models and clustering algorithms could be used.

An example assertion cluster can be found in Figure 5.1 (row Step 2a: CCSK assertion
clustering), in which the respective concept cluster includes tipping, leaving tip, tipping
at restaurants, tipping service staff, and the culture cluster includes Japan, Japanese,
Japanese culture.

Step 2b: Representative Generation.  For each cluster of CCSK assertions, we generate a
full sentence as the representative of the cluster. We also obtain the frequency of each cluster
by adding up all the frequencies of its member assertions.

For the final output, we store a set of CCSK cluster instances, each containing the fol-
lowing information: concept (the representative concept of the CCSK cluster), culture (the
representative culture of the CCSK cluster), statement (the representative sentence of the
CCSK cluster), similar statements (the set of member assertions), and frequency (the fre-
quency sum of the cluster).

5.4  Implementation

We implement our workflow using the GPT-3.5 model gpt-3.5-turbo-1106. In the assertion
generation phase, we run each prompt five times with a temperature of 1.0 (high creativity).
We summarize the input and output of our implementation in Table 5.1.
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Table 5.1: Input and output of each step in our implementation of Mango.

Step Input Output
1a (2 runs) 31,196 concepts 468,543 assertions
1b (2 runs) 10,796 cultures 115,220 assertions
2a 507,780 filtered assertions 167,396 assertion clusters
2b 167,396 assertion clusters 167,396 full CCSK sentences

5.4.1  Input Concepts and Cultures

We run each step in Phase 1 twice, whereas the first run is fed with seed concepts and
seed cultures from prior datasets, and the second run is fed with new concepts and cultures
generated in the first run.

• Seed concepts: We take 8,357 concepts from Candle, which have more than one asser-
tion, and 16,480 concepts from ConceptNet (Speer et al. 2017), which have more than
three assertions. We clean this set of concepts by filtering out incomprehensible phrases
(which mostly come from Candle) using GPT-3.5, retaining a seed set of 19,940 con-
cepts for the first run of Step 1a.

• Seed cultures: We take 286 groups (272 geo-locations and 14 religions) from Candle
as seed cultures for the first run of Step 1b.

After the first run of Step 1a with the seed concepts, we obtain 10,510 new cultures. After
the first run of Step 1b with the 286 seed cultures, and the second run with the new 10,510
cultures, we obtain 11,256 new concepts, which are used for the second run of Step 1a.

5.4.2  Assertion Filtering

After Phase 1, we obtain 581,563 distinct CCSK assertions. We perform various simple filters
to clean these assertions:

• Removing too long or too short assertions: We restrict the length of assertion to be
between 2 and 25 words.

• Removing assertions that have more than one sentence.
• Removing assertions whose cultures are too general or noisy: We construct a dictionary

of words that a valid culture should not contain. For example, we filter out cultures such
as “Other cultures” (context-dependent), “Non-European countries”, “Some parts of
Asia” (not specific enough), etc. More specifically, if the culture of an assertion contains
any of the following punctuations, words and phrases, it will be rejected: other, general,
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1, 2, (, ), and, ,, some, unknown, parts of, few, /, non-, many, outside, part of, various,
elsewhere, rest of, certain.

After filtering, we obtain 507,780 assertions (i.e., 87% of the original set), 14,298 cultural
groups, and 32,126 concepts.

5.4.3  Clustering

For both concept, culture and assertion clustering, we use the HAC algorithm combined with
the SentenceBert embedding model all-MiniLM-L6-v2. We use point-wise Euclidean distance
of normalized embeddings, the Ward’s linkage (Ward 1963), and the distance threshold set
to 1.5, which are adopted from the Candle method.

We obtain 4,571 concept clusters and 1,610 culture clusters, with the largest candidate
set for assertion clustering containing 463 assertions. Finally, we obtain 167,396 assertion
clusters, where the largest cluster contains 141 assertions. Table 5.2 lists the top cultures
and concepts in our dataset.

Table 5.2: Popular concepts and cultures in the Mango collection.

Concept #Assertions Culture #Assertions
family 372 Countries
tea 352 United States 9,097
hospitality 349 Japan 4,597
personal space 338 India 3,670
marriage 285 Regions
family structure 234 Western countries 5,788
education 228 Eastern countries 1,849
gender roles 200 Middle Eastern countries 1,059
public transportation 193 Religions
music 183 Christianity 142
traditional clothing 180 Islamic countries 121
time 174 Hinduism 106
food 149 Ethnic groups
spicy food 148 Amazonian tribes 143
communication 147 Inuit communities 101
fishing 132 Maori culture 73
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5.4.4  Costs

We ran the Mango method with the gpt-3.5-turbo-1106 model in January 2024. The asser-
tion generation steps costed $71. On average, each thousand generated assertions costed 12
cents. The cluster representative generation costed $41. On average, each thousand cluster
representative generations costed 25 cents.

The LLM’s API had limits at 1M input tokens per minute, and 10K requests per minute.
By making concurrent requests, our workflow could be executed in less than five hours,
including the clustering steps which took less than 30 minutes.

Experiment Overview

We perform intrinsic evaluation with human judgements and show that the Mango
CCSK collection has higher quality than Candle and other resources (Section 5.5).
Our extrinsic use case of intercultural dialogues shows that injecting Mango assertions
into LLM prompts improves their responses on specificity and cultural sensitivity (Sec-
tion 5.6).

5.5  Intrinsic Evaluation

5.5.1  Setup

We evaluate the assertion quality of Mango by comparison to several resources of similar
kind via human annotations.

Compared Resources.  Our baseline resources are Quasimodo (Romero et al. 2019),
StereoKG (Deshpande et al. 2022) and Candle (Chapter 4). For this comparison, we
only consider Quasimodo assertions that contain geo-locations or religions (those present in
Candle) in their subjects or objects. We did not include the manually-built resource by
Acharya et al. (2021) in this evaluation due to cost limits (see Section 4.5 for a comparison
of this resource and others).

For Mango, in addition to the full assertion set (Mangofull), we also evaluate Mangotop,
which contains the top-ranked assertions up to the same size as Candle (i.e., 60K asser-
tions), for compatibility.
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Metrics.  We employ three complementary dimensions (Bhatia and Shwartz 2023) to eval-
uate the intrinsic quality of CCSK resources, which extend the metrics used in Section 4.5
(i.e., plausibility, distinctiveness, offensiveness).

• Cultural relevance measures the assertion’s relevance to the cultural context, and its
plausibility in that cultural context.

• Stereotype avoidance assesses if the assertion avoids reinforcing cultural stereotypes and
presenting offensive materials.

• Linguistic accuracy checks if the assertion is grammatical, meaningful and understand-
able as a standalone sentence.

We also ask annotators to specify how familiar they are with the cultures mentioned in the
assertions (akin to commonality in Section 4.5). The three options for this question are “very
familiar”, “somewhat familiar”, and “not familiar”. In the latter case, our guidelines advise
the annotators to search and inspect additional sources on the Internet.

Evaluation Scheme.  Our evaluation is conducted on the Amazon MTurk platform. Specif-
ically, we ask human annotators on MTurk to evaluate each assertion along the three di-
mensions, each on a 3-point Likert scale: negation (0), ambiguity (1) and affirmation (2).
We present the MTurk questions and answer options in Table 5.3. For each resource, we
randomly sample 300 assertions for evaluation, each assessed by three different workers.

Details of MTurk Tasks.  We estimated each HIT would take 1.5 minutes to complete, hence
an hourly wage of $12. The annotators were required to be Master Workers with a lifetime
approval rate greater than 99% (this rate is provided by the platform). There were totally
33 different workers who participated in this task. We observed the following Krippendorff’s
alpha values for each of the metrics: cultural relevance: 0.33, stereotype avoidance: 0.29,
linguistic accuracy: 0.39.

In these MTurk tasks, 41.8% of the annotators reported being “very familiar” with the
cultures presented in the tasks, 37.4% being “somewhat familiar”, and 20.8% being “not
familiar”.

5.5.2  Results

We report average scores given by the annotators in Table 5.4. It can be seen that Mango
assertions have the highest quality compared to prior resources. Notably, despite being nearly
three times larger than the largest baseline, Mangofull has better quality than all baselines,
on all metrics.
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Table 5.3: Crowdsourcing questions for CCSK evaluation in Mango.

Dimension Question and answer options
Is the assertion meaningful and understandable without further context? Is it
grammatical? Are the vocabulary and idiomatic expressions appropriate in the
mentioned socio-cultural group?Linguistic

accuracy 0 - Never | No, not at all.
1 - Somewhat | I think I understand what it means but not fully sure.
2 - Yes | Yes, absolutely.
Is the assertion factually accurate? Does it reflect the values, customs,
traditions, and societal norms associated with the mentioned socio-cultural
group?Cultural

relevance 0 - No | No, not at all.
1 - Somewhat | Somewhat.
2 - Yes | Yes, absolutely.
Is the assertion neutral? Does it avoid perpetuating stereotypes about the
mentioned socio-cultural group?

Stereotype
avoidance

0 - No | No, it is offensive, prejudiced, or inappropriate.
1 - Somewhat | Somewhat, it is neutral but may perpetuate stereotypes.
2 - Yes | Yes, it is neutral and does not perpetuate stereotypes.

Table 5.4: Results of intrinsic evaluation via human annotations.

Quality [0..2] Size
Resource Cultural

relevance
Stereotype
avoidance

Linguistic
accuracy

#Cultures #Assertions

Extractive
StereoKG 0.79 0.85 1.11 10 4K
Quasimodo 0.85 1.22 1.12 0.4K 131K
Candle 1.42 1.54 1.67 0.4K 60K
Generative
Mangofull 1.53* 1.61* 1.79* 11.1K 167K
Mangotop 1.59* 1.65* 1.82* 8.1K 60K

(*) indicates statistically significant gains over Candle (𝑝 < 0.05 in the Student’s t-test).

Moreover, the top-ranked assertion subset, Mangotop, has the same size as Candle,
but it outperforms this resource on all three metrics by a large margin. This affirms that
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the frequency signals we obtain in the clustering step are helpful for pulling out the most
significant assertions.

5.6  Extrinsic Evaluation

Explicit knowledge has been used to improve LLM performance in downstream tasks such as
social dialogue generation (Kim et al. 2023) and intra-cultural dialogue synthesis (Li et al.
2023). However, other important scenarios, which involve intercultural interactions, remain
under-explored. To address this gap, we introduce two new tasks concerning intercultural
conversations. We will show that explicit CCSK assertions from resources like Mango can
improve LLM responses in dialogue applications requiring cross-cultural knowledge.

5.6.1  Next Utterance Generation

The input of this task includes: (1) a narrative that involves interactions between two people
of different cultures, and (2) their ongoing dialogue. The task is to generate the utterance of
the next speaker. To excel in this task, LLMs need to leverage cultural knowledge such that
the generated responses are natural, consistent, culturally sensitive and specific. We provide
an example of input and output for this task in Figure 5.3.

Input

Narrative

John, an American, is visiting his friend Kenji, who lives in Tokyo. They are paying their bill for dinner at a
restaurant.

Ongoing dialogue

John: That’s a great meal, Kenji. I really liked the sushi.
Kenji: My pleasure, John. I’m glad you enjoyed it.
John: Let me see the bill. It is 8,000 yen. I’m gonna leave 10,000 yen.

Methods

Method 1: Vanilla GPT-3.5 Method 2: GPT-3.5 with explicit CCSK

- Injected CCSK: Tipping is not a common practice
in Japan and can be considered rude or impolite.

Output

Kenji: Thank you, John. You’re too kind. Next time,
dinner is on me. It’s a very generous tip too.

Kenji: Oh, no, John. You don’t need to leave a tip
here in Japan. Just 8,000 yen is fine. Thank you for
offering though.

Figure 5.3: Example input and output for the next utterance generation task.

Input Construction.  First, using GPT-3.5 and a small set of in-context examples, we gen-
erate short narratives involving two people of different cultures, e.g., “Liz from England is
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visiting her friend Qiang in China. They are preparing tea together.” (see in Figure 5.4 for
a sample prompt).

For each narrative, we ask the LLM to generate a possible dialogue between the two
participants in that situation. The first three turns of each generated dialogue are used to
construct test samples.

Role Message

User

You are a narrative generator. Your task is to generate short narratives of less than 5
sentences around a cultural concept that involves two people from two different
cultures. The narrative should lead to an intercultural interaction where cultural
differences play a significant role. You must not include the cultural differences, or
cultural knowledge, or the resolution, or the consequences of the situation in the
narrative.

Some examples:
- Anna, an American, is visiting a remote village in Vietnam where Minh is a local.
Anna asks Minh where she can get food for her dog.
- Erling from Norway is visiting Seoul. He and his new Korean friend, Heungmin, are
picking foods for their dinner at a traditional restaurant.
- Liz and Qiang are two friends, who are currently in England. Qiang is from China
who is visiting the country. Liz is a local. They are preparing tea together.

Please write 3 more narratives:

Assistant

- Maria, a Mexican, is visiting Japan and is shopping in a local market. She meets
Yuki, a Japanese woman, and asks for help in choosing a traditional Japanese outfit
for a festival.
- Pablo, a Spaniard, is traveling in India and meets Rajesh, a local, at a temple. They
both want to participate in a religious ceremony, and Pablo asks Rajesh for guidance
on the proper etiquette.
- Fatima, a Saudi Arabian, is studying in France and meets Pierre, a French student,
at a party. They both want to dance, and Fatima asks Pierre to teach her a
traditional French dance.

Figure 5.4: An example prompt used to generate intercultural narratives.

Methods.  We compare two methods, without and with explicit CCSK assertions in the
prompts (see Figure 5.3).

1. Method 1 (Vanilla LLM) prompts an LLM with the task description, the input narra-
tive, and the dialogue history.

2. Method 2 (LLM with explicit CCSK) alters the prompts of Method 1 by augmenting
relevant CCSK, following the idea of retrieval-augmented generation, a.k.a. RAG (Guu
et al. 2020, Lewis et al. 2020).

For Method 2, we use a simple dense embeddings retrieval approach. First, we compute the
embeddings of all assertions in our dataset using the SentenceBert model all-MiniLM-L6-v2.
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Then, given a narrative, we replace the names of the people with “X” and “Y” in order to
reduce the distractions for the embedding model. For each given narrative, we retrieve the
top-2 most similar CCSK assertions from based on cosine similarity of the embeddings. We
also restrict to assertions with similarity scores better than 0.5. We only consider narratives
that have relevant CCSK assertions retrieved from in our evaluation. Examples of CCSK
retrieval can be seen in Figure 5.5.

Retrieval example 1

Narrative
Carlos from Argentina is visiting Korea. He greets his new Korean friend, Jihoon, by
giving him a friendly pat on the back.

Query
X from Argentina is visiting Korea. He greets his new Korean friend, Y, by giving
him a friendly pat on the back.

Results

(1) In South Korea, beckoning with an open hand or palm facing downwards is
considered polite. (Similarity: 0.5216)
(2) In South Korean culture, it is common to gently pat someone on the shoulder or
back as a sign of encouragement or reassurance. (Similarity: 0.5201)

Retrieval example 2

Narrative
Maria, a woman from Spain, is visiting a Bedouin tribe in Jordan upon an invitation
from her new friend, Ahmed. They are preparing to have dinner under the star-lit
desert sky.

Query
X, a woman from Spain, is visiting a Bedouin tribe in Jordan upon an invitation
from her new friend, Y. They are preparing to have dinner under the star-lit desert
sky.

Results

(1) Bedouins, a Middle Eastern culture, are known for their nomadic lifestyle,
hospitality, and expertise in desert survival. (Similarity: 0.5217)
(2) Desert cultures highly value hospitality and express it through offering food,
drinks, and shelter to guests. (Similarity: 0.5207)

Figure 5.5: Examples of retrieving Mango’s assertions relevant to given narratives.

Models.  We experiment with three different LLMs from some of the most popular model
families: (i) GPT-3.5³, also known as ChatGPT, by OpenAI, (ii) the strongest model of the

³Model name: gpt-3.5-turbo-1106

Mistral family by MistralAI4, and (iii) Google’s largest globally accessible language model
as of January 2024, Bard5.

4Model name: mistral-medium (https://docs.mistral.ai/platform/endpoints/)
5Accessed via https://bard.google.com/

Evaluation Scheme and Metrics.  For each LLM, we randomly draw 100 test samples and
use the two methods to generate 100 pairs of responses. We employ human annotators on
MTurk to evaluate the quality of the generated utterances. Specifically, we show side-by-side
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the outputs of the two methods given the same input narrative, and ask the evaluators to
choose the better one based on the following dimensions:

1. Naturalness: The response does not sound awkward or unnatural.

2. Consistency: The response does not contradict the narrative or previous utterances.

3. Specificity: The response contains specific details rather than vague/generic informa-
tion.

4. Cultural sensitivity: The response shows respect and understanding of the cultures.

5. Overall quality: The overall satisfaction with the response.

Dimensions 1-3 and 5 are established criteria for evaluating dialogues (Mehri et al. 2022,
Kim et al. 2023), dimension 4 is a dimension we introduce in this evaluation, as per our
focus on cross-cultural knowledge.

Each sample is evaluated by three different MTurk workers. To alleviate positional bias,
the orders of the outputs are randomly shuffled before being revealed to the annotators. The
outputs are labeled Response A and Response B. For each evaluation metric, we provide
the annotators with the following option set: “A is Better”, “B is Better”, and “Tie”. The
instruction and layout of our annotation page used for MTurk evaluations are influenced by
the work of Kim et al. (2023).

Details of MTurk Tasks.  For these HITs, we require the workers to be Master Workers who
have a lifetime approval rate of more than 99%. There were 41 different MTurk workers who
participated in this evaluation. Each HIT was compensated $0.20. We estimated each HIT
would take 1 minute to complete, hence an hourly wage of $12. In these MTurk tasks, 40.9%
of the annotators reported being “very familiar” with the presented cultures, 48.2% being
“somewhat familiar”, and 10.9% being “not familiar”.

The y-axis represents the percentage of samples preferred by the human evaluators (the “Tie” cases are
omitted from the plots). The (*) marker indicates results with statistically significant differences (𝑝 <
0.05 in the Wilcoxon T-test).
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Figure 5.6: Results of head-to-head comparison for next utterance generation.
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Results.  The human evaluation results are demonstrated in Figure 5.6. It can be seen that
explicit CCSK assertions help all three LLMs to perform significantly better in this task,
as the overall quality of the generated utterances are preferred by the human annotators
compared to the outputs of the vanilla LLMs. This is attributed by the fact that the CCSK-
enhanced utterances are more specific and culturally sensitive (for all three LLMs), and even
more natural and consistent (for Bard). This shows that even though LLMs inherently pos-
sess cultural knowledge, they often fail to incorporate such knowledge into the generated
utterances, and that explicit CCSK injected in the prompts can mitigate this problem. We
provide some evaluated samples in Figure 5.7.

Table 5.5:  Mango versus Candle in the next utterance generation task.

Metric Candle Mango
Naturalness 30.7% 32.7%
Consistency 28.0% 30.7%
Specificity 37.0% 39.7%
Cultural sensitivity 34.3% 34.3%
Overall quality 46.0% 46.0%

The numbers present the percentage of samples preferred by the human evaluators.

Mango vs. Candle.  Additionally, we also compared using Mango vs. Candle assertions for
augmenting prompts to GPT-3.5. We sample 100 test narratives and use the same retrieval
method for both resources in this comparison. The results are presented in Table 5.5. It
can be seen that human annotators preferred utterances generated with Mango assertions
injected in terms of naturalness, consistency and specificity.

5.6.2  Full Dialogue Generation

In this task, instead of generating a single utterance, we ask LLMs to generate a full dialogue
between the two people in a given narrative. We anticipate that this task is more difficult
both for the LLMs to solve and for humans to evaluate.

We randomly sample 100 test narratives and ask GPT-3.5 to generate dialogues. We use
the same prompting methods and evaluation setup as in the previous task. The evaluation
results can be found in Table 5.6. It can be seen that injecting explicit CCSK in the prompts
does not diminish the natural flow and consistency of the generated dialogues, on the other
hand, it provides more specificity and cultural sensitivity into the intercultural interactions.
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Sample 1

Narrative

Ali from Tunisia is visiting Tokyo for the first time. He and his newly made Japanese friend, Hiroshi, are deciding how to celebrate
Ali’s birthday in one of Tokyo’s iconic districts.

Ongoing dialogue

Ali: Hiroshi, I’m so excited to celebrate my birthday in Tokyo! What do you think we should do?
Hiroshi: Happy birthday, Ali! I think we should start with a traditional Japanese meal at a local izakaya.
Ali: That sounds great! I’ve been wanting to try authentic Japanese cuisine. And then maybe we could check out the vibrant
nightlife in Shibuya?

Vanilla GPT GPT + CCSK

- Injected CCSK:
• In Japan, birthdays are celebrated with symbolic rituals,

special meals, and a focus on traditional ceremonies and gift-
giving.

Hiroshi: Absolutely, Ali! Shibuya is the perfect place to
experience Tokyo’s bustling nightlife. We could start with a few
drinks at a traditional Japanese izakaya and then explore the
neon-lit streets and vibrant energy of Shibuya. It’s going to be
an unforgettable birthday celebration!

Hiroshi: That sounds like a fantastic plan, Ali! But I also
think it would be wonderful to incorporate some Japanese
birthday traditions into our celebration. How about we visit a
shrine to make a prayer for good luck and then participate in
the Omikuji fortune-telling ritual? It’s a special way to mark
your birthday and immerse yourself in Japanese culture. And of
course, we can still enjoy the bustling nightlife in Shibuya
afterwards.

Metric Naturalness Consistency Specificity Cult. sensitivity Overall quality

Annotator 1 GPT + CCSK Tie GPT + CCSK GPT + CCSK GPT + CCSK

Annotator 2 Tie Tie GPT + CCSK Tie GPT + CCSK

Annotator 3 Vanilla GPT GPT + CCSK GPT + CCSK GPT + CCSK GPT + CCSK

Sample 2

Narrative

Fiona, a woman from Scotland, is in Nairobi visiting her online friend Makena. Makena is taking her to a traditional Kenyan hair
salon for the first time.

Ongoing dialogue

Makena: Welcome to the salon, Fiona! Are you excited to try out some Kenyan hair styles?
Fiona: Oh, I am a bit nervous, but also curious to see what kind of styles are popular here. It’s quite different from what I’m used
to in Scotland.
Makena: Don’t worry, you’re going to love it! Kenyan hair stylists are really talented and they have some unique techniques.

Vanilla GPT GPT + CCSK

- Injected CCSK:
• Hairdressing education in Kenya focuses on intricate braiding

and natural hair care techniques for diverse African hair
types and textures.

• In Kenya, elaborate and intricate braided hairstyles are a
significant aspect of cultural identity.

Fiona: That’s good to hear! I can’t wait to see what they can
do. I’ve always admired African hairstyles from afar, so I’m
really looking forward to experiencing it firsthand.

Fiona: That sounds amazing! I’ve always admired the intricate
braided hairstyles I’ve seen here. I’ve never had the chance to
experience it myself, so I’m really looking forward to it.

Metric Naturalness Consistency Specificity Cult. sensitivity Overall quality

Annotator 1 Tie GPT + CCSK GPT + CCSK Tie GPT + CCSK

Annotator 2 GPT + CCSK GPT + CCSK GPT + CCSK GPT + CCSK GPT + CCSK

Annotator 3 GPT + CCSK GPT + CCSK GPT + CCSK GPT + CCSK GPT + CCSK

Figure 5.7: Examples of generated responses and annotations of MTurk workers.

As a result, the annotators prefer the CCSK-enhanced dialogues on overall quality, similar
to the results of the next utterance generation task.
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In these MTurk tasks, 33.7% of the annotators reported being “very familiar” with the
presented cultures, 54.0% being “somewhat familiar”, and 12.3% being “not familiar”.

Table 5.6: Results of the full dialogue generation task.

Metric Without CCSK With CCSK
Natural flow 39.3% 38.7%
Consistency 21.0% 22.7%
Specificity 36.7% 43.0%
Cultural sensitivity 22.7% 28.3%
Overall quality 40.7% 44.7%

The numbers present the percentage of samples preferred by the human evaluators.

5.7  Summary

In this chapter, we acquired refined commonsense knowledge for both types of entry points:
concepts and cultures. We presented Mango, a methodology to distill and consolidate cul-
ture-specific commonsense knowledge from LLMs. We executed the Mango workflow using
GPT-3.5, obtaining a collection of 167K assertions covering 11K cultures and 30K concepts,
which surpasses existing resources, including the Candle collection, in quality and cover-
age by a large margin. In the extrinsic evaluation, we showed that by augmenting explicit
assertions from Mango into prompts, LLMs can perform better in intercultural dialogue
generation tasks as their responses were judged more specific, more culturally sensitive, and
better overall quality by human evaluators. Code, data, and a web interface are accessible
at https://mango.mpi-inf.mpg.de.
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6
DISCUSSION

Commonsense knowledge (CSK) is crucial for human-centric AI. Most prior CSK acquisition
methods have significant shortcomings of expressiveness, as they rely on subject-predicate-
object (SPO) triples. In addition, prominent CSK projects focus only on universal CSK,
overlooking culture-specific CSK conditioned on socio-cultural contexts. This dissertation has
addressed these gaps by introducing expressive knowledge models and developing method-
ologies to automatically acquire refined CSK at high precision and wide coverage, via text
extraction or LLM-based knowledge distillation. In Table 6.1, we provide a summary of
lessons learned and open issues across the three projects contributing to this dissertation.

We detail the lessons learned in Section 6.1, followed by a discussion of the projects’
shortcomings and future research opportunities in Section 6.2. We take an outlook for CSK
acquisition and application amidst the rise of large language models in Section 6.3.

6.1  Lessons Learned

Major lessons learned in the course of this dissertation, which generalize over the individual
projects, are:

1. It is feasible to achieve high precision and wide coverage with automated CSKB con-
struction if given sufficient thoughts about knowledge organization, source selection,
and method design (Section 6.1.1).

2. High-quality CSKBs are beneficial to various downstream applications (Section 6.1.2).
3. CSKBs using more expressive knowledge models outperform those using standard mod-

els intrinsically and extrinsically (Section 6.1.3).
4. Clustering is important for frequency signals, and dealing with the heterogeneity of

natural language (Section 6.1.4).
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Table 6.1: A summary of lessons learned and open issues.

Lessons learned Open issues
Knowledge
representation

• Expressive knowledge models
outperform standard models

• Combining factual and cultural
knowledge into one model

Methodology

• Automated CSKB construction
is feasible with high precision
and wide coverage

• LLM-based distillation produces
assertions of higher quality and
coverage than text extraction

• Clustering is important for
frequency signals and dealing
with heterogeneity

• Source tracing and ranking for
LLM-generated assertions

• Expanding refined subjects and
further cultural groups

• Expanding sources to more
diverse languages, cultures, and
modalities

• Detecting and mitigating biases
and stereotypes

Extrinsic
value

• High-quality CSKBs are
beneficial to various downstream
applications, via using RAG

• Developing better methods for
combining non-parametric and
parametric knowledge

Evaluation
• Evaluating the quality of CSK

resources relies heavily on human
annotations

• Developing more comprehensive
test suites for coverage and
quality evaluation

6.1.1  Advancing Automated CSKB Construction

Previous CSK projects such as (Tandon et al. 2014a), (Romero et al. 2019), and (Zhang et al.
2020a) extracted CSK automatically from web contents, which allowed for high coverage but
also introduced a substantial amount of noise. Studies (e.g., (Hwang et al. 2021), (Nguyen
et al. 2021a)) reported that these resources suffer from high noise.

In the Ascent++ and Candle projects, we showed that it is feasible to extract
high-quality CSK from web sources. The key to success includes the judicious design of
filtering, aggregation, and consolidation techniques in our pipelines. In terms of filtering,
in Ascent++, we employed filters both on the document level and the assertion level to
select high-quality candidates; meanwhile in Candle, we used rule-based generic assertion
filtering and classification-based filtering for culture-specific assertions. In addition, crafted
dictionaries were used by both methods in order to clean the extracted assertions. Finally,
we used advanced semantic clustering techniques to aggregate and consolidate the extracted
assertions, creating frequency signals. These signals were used to rank the assertions, en-
abling downstream applications to select the most significant subset of knowledge for their
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tasks. Evaluations also showed that the top-ranked assertions in our resources consistently
outperformed other assertions, confirming the effectiveness of our ranking models.

6.1.2  Extrinsic Values of CSKBs

Research on augmenting LLMs with commonsense knowledge has been limited, while re-
trieval-augmented generation (RAG) approaches have shown mixed results for tasks requir-
ing rich world knowledge (Mallen et al. 2023). RAG has been used in all of our projects
for question answering (in Ascent++ and Candle), and dialogue generation (in Mango).
We showed that adding relevant CSK assertions from our resources to the prompts of LLMs
significantly improved their performance in these tasks. Moreover, while LLMs also bene-
fited from assertions of other resources, pulling assertions from higher-quality resources like
ours led to better performance. This is an interesting result as LLMs inherently posses such
knowledge, but often fail to use it in downstream tasks. Nevertheless, our extrinsic evalu-
ations were rather simple. More realistic use cases of commonsense knowledge should be
explored in future research.

6.1.3  Values of Expressive Knowledge Models

Standard data models that rely on subject-predicate-object (SPO) triples have been widely
used in CSK projects. Although that enables structured representations and graph-based
reasoning, these models have major limitations in expressiveness. In Ascent++, we intro-
duced an advanced knowledge model for commonsense, which captures more informative
assertions with refined subjects and semantic facets for SPO triples. Our CSKB built on
this model outperformed existing CSK collections both intrinsically and extrinsically, as our
assertions are more informative and specific. In Candle and Mango, where we used nat-
ural-language sentences to capture CCSK, our resulting resources also outperformed existing
resources such as Quasimodo (Romero et al. 2019) and StereoKG (Deshpande et al. 2022),
which are based on SPO triples, in terms of both quality and coverage.

6.1.4  Importance of Clustering

Collecting CSK at scale requires dealing with the heterogeneity of natural language and
redundancy in the extracted assertions. To this end, across all three projects, we used clus-
tering techniques to identify and group assertions of identical meaning. Besides reducing
redundancy, clustering also helped to identify frequency signals. Although frequency can
sometimes be a misleading signal (e.g., sensational content is often repeated many times),
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we showed in the Ascent++ and Candle projects that it is still useful for ranking the
assertions when combined with other signals (e.g., specificity, distinctiveness, relevance).

6.2  Limitations

The limitations of our work come from the knowledge representations, the sources of CSK,
the acquisition methods, and the evaluation settings. In the following, we discuss the main
shortcomings of our methods, and future research opportunities.

6.2.1  Knowledge Representations

Choosing the Right Model.  In Ascent++, we introduced an expressive knowledge model
for commonsense, capturing more informative assertions with refined subjects and semantic
facets for SPO triples. While structured representations like this are useful for many applica-
tions such as graph-based reasoning, they often fail to capture the nuances and complexities
of natural language, especially in the commonsense domain.

In Candle and Mango, we dropped the structured representation, and used natural-
language sentences to capture CCSK. This approach is capable of capturing more nuanced
knowledge, and it can be directly leveraged by LLMs in downstream applications. However,
natural-language assertions introduce redundancy, with differences often limited to small but
important details. For example, “Phở is a popular traditional noodle soup dish in Vietnamese
cuisine” and “Phở is a traditional Vietnamese noodle soup typically eaten for breakfast”
are two assertions which are very similar, having a large overlap in their content but not
identical as the added detail in the second assertion is very valuable (typical eating time).

While each of these representations has its own strengths and weaknesses, choosing the
right representation depends on the applications and the trade-offs between expressiveness
and efficiency, source faithfulness and structure. Applications such as dialogue systems might
benefit more from natural-language assertions, while applications that depend on multi-hop
reasoning might benefit more from structured representations.

Combining CSK Models.  Most prior CSK projects and our first project Ascent++ focused
on acquiring “universal CSK”, while our other projects Candle and Mango aimed at col-
lecting culture-specific CSK. Combining these two types of knowledge in one system could be
an interesting research direction. For example, the combined knowledge base should capture
elephants being animals as universal CSK, and elephants being sacred animals in Thailand,
India, and Sri Lanka as culture-specific CSK. This could be useful for various applications,
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such as dialogue systems, where understanding both universal and culture-specific knowledge
would be helpful to generate appropriate responses.

6.2.2  Sources

Biases and Stereotypes.  As sources, we directly tapped into a huge web crawl in Ascent++
and Candle. This gave us access to a vast amount of information, but also introduced
challenges such as noise, biases, and stereotypes. Our methods for filtering, aggregating,
and consolidating assertions have shown that it is feasible to extract high-quality CSK from
such sources. Nonetheless, the inherent limitation of this approach is that the information
from these sources does not always reflect what is true, but rather what people believe, or
what the (English-speaking) Internet users say. This issue is particularly relevant for cultural
knowledge, where stereotypes and misinformation can be perpetuated. Our other approach
that used LLMs to generate CCSK, Mango, produced higher-quality assertions. However,
as LLMs are also trained on web data, they are not immune to the challenges of biases and
stereotypes.

A possible research direction is to develop models that can detect stereotypes in the
collected assertions. As generative AI is getting increasingly popular, stereotype detection
has become a notable research area. There have been several efforts to develop datasets for
stereotype classification (e.g., (Dinan et al. 2020, Nangia et al. 2020, Nadeem et al. 2021,
Felkner et al. 2023)). Such datasets can be used to train stereotype detection models which
can be helpful for downstream applications to select which assertions should be incorporated
into their systems.

Another possibility is to rank the source websites by their trustworthiness, giving signals
for stereotype detection, besides frequency signals already collected via clustering. However,
this is only applicable to the extraction-based methods, since the LLM-based method does
not provide the source of the assertions. To this end, future research could focus on devel-
oping methods to trace the source of LLM-generated assertions, for example, via web search,
bridging the gap between the two approaches.

Source Expansion.  Another interesting research direction is to acquire knowledge from more
diverse sources, including sources of different languages, cultures, and modalities (e.g., im-
ages, videos), though it has received little attention. For example, (Chen et al. 2013) and
(Xu et al. 2018) are the few works that extracted CSK from images, with focus on specific
relations such as IsA, AtLocation, PartOf, and LocatedNear. This was done by looking at the
position and size of objects in images relative to each other. More recently, Yao et al. (2023)
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used pretrained vision-language models to find commonsense interactions between objects
in images.

Expanding commonsense knowledge extraction into diverse sources could help to miti-
gate the bias in the extracted knowledge, and to provide a more comprehensive view of the
world, not just the English-speaking Internet, as well as to capture CSK that is not expressed
in text and CSK in long-tail cultural groups. A major challenge of this direction is that by
increasing the diversity of sources, the noise and misinformation in the collected assertions
may also increase. Furthermore, using multilingual corpora might not fully solve the problem
of cultural biases, as English is still the dominant language on the web. Nonetheless, this
direction could be promising for future research.

6.2.3  Acquisition Methods

Text Extraction and LLM-Based Knowledge Distillation.  We proposed two approaches for
acquiring CSK: text extraction and knowledge distillation using LLMs. While text extrac-
tion is more transparent and traceable, LLM-based distillation produces assertions of higher
quality and coverage.

Our text extraction methods, Ascent++ and Candle, consist of several modules which
required judicious design and tuning, and they often relied on manual efforts for crafting
rules and heuristics. While those are not the bottleneck for the extraction process, they
might be time consuming and error-prone.

Distilling knowledge from LLMs, on the other hand, is more straightforward, and re-
quires significantly less manual labor. However, CSK distillation from LLMs has its own
limitations. Compared to text extraction, the usage of LLMs for knowledge distillation means
losing the ability to trace assertions to their source, which is an important signal to verify
and rank the assertions. Moreover, specifically to GPT-3.5 which we used in Mango, this
LLM is provided via a commercial API only, hence it cannot be guaranteed that the proposed
pipeline is long-term reproducible. The training process of GPT-3.5 is also undocumented,
so we do not know what corpus it has been trained on, and in particular, whether there
might be systematic gaps or biases in its training corpus (know what you don’t know).

Future research could aim to combine the strengths of both approaches. For example,
one could perform knowledge extraction from texts with the helps from LLMs to reduce
the manual efforts in filtering and cleaning the extracted assertions. Another possibility is
to use LLMs to generate assertions, and then develop methods to trace the source of these
assertions, as discussed above.
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Subject Expansion using LLMs.  Prior work focused on acquiring CSK for simple concepts,
which are usually single nouns. This missed out on knowledge of fine-grained concepts. Our
Ascent++ project tackled this limitation by introducing subgroups and aspects of concepts,
and acquiring CSK assertions for them. These refined subjects were collected using simple
lexico-syntactic heuristics on web texts. However, the coverage of these subgroups and as-
pects is still limited, and there are still noisy extractions.

LLMs could be used to generate more of these fine-grained subjects. We expect that
LLMs can generate more diverse and specific subgroups and aspects, via judicious prompting
and filtering, than using the simple heuristics as in Ascent++. LLMs could also be used
to generate assertions for these subgroups and aspects for potentially better coverage and
precision, but the same limitations of traceability and source verification discussed above
apply.

Similarly for CCSK, one could also aim to expand the domain to more cultural groups,
such as interest groups (e.g., punks, skaters, movie buffs), age-related groups (e.g., babies,
toddlers, kids, teenagers, Gen Y, Gen Z), and other groups beyond geo-based cultures.

The challenge here is that for long-tail cultural groups and concepts, neither the training
data for LLMs nor the web data might have sufficient coverage.

6.2.4  Evaluation Settings

Human Evaluation.  Across the three projects, we conducted human evaluations to assess
the quality of the acquired CSK, as well as the outputs in the extrinsic use cases. Although
human evaluations have been widely used in most CSK projects, they are not without limi-
tations: Besides the cost and time constraints, human evaluations are subject to the quality
of the annotators, and the biases they might have.

The biases in the annotators can be particularly problematic in cross-cultural tasks,
where the annotators need to evaluate assertions from different cultures. For example, in
the Mango project, we recruited annotators from Amazon MTurk to evaluate CCSK asser-
tions and responses of intercultural dialogues. It has been reported by Ross et al. (2010)
that the majority of workers in this platform are from only two cultures (USA and India),
which makes it challenging to recruit truly diverse annotators. Although the majority of the
workers reported being somewhat or very familiar with the cultures, it is not a guarantee
for the quality of the annotations. Conducting evaluations with more culturally diverse an-
notators would further reinforce our results, but it can be challenging due to the cost and
time constraints.
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Coverage Measurement.  In the Ascent++ project, we used relative recall computed
against a small reference set, the CSLB property norm dataset (Devereux et al. 2014) con-
sisting of 22.6K human-written sentences expressing properties of 638 concepts (see Sec-
tion 3.5.2). While this is a common practice in the CSK literature, it is not a perfect measure
of coverage, as the reference set is far from being comprehensive (e.g., it is impossible to
write down all possible things that elephants can do). However, this approach is still useful
for comparing the coverage of CSK resources in a relative manner.

Creating a test suite that covers a wide range of concepts and relations is a challenging
task, and it is even more challenging for culture-specific knowledge. In the Candle and
Mango projects, we used the number of assertions and cultures for comparing coverage of
CCSK resources. Although both Candle and Mango significantly improved upon existing
resources on these metrics, we acknowledge that sizes are only a crude proxy for coverage.
For example, an extreme case would be a resource with many cultures, but each culture has
only a single assertion; or a resource with many assertions, but they are all about a facet
of few cultures. Future research could aim to develop evaluation metrics which can better
capture the quality and coverage of CSK resources.

6.2.5  Ethical Considerations

Adapting AI systems to different cultures is crucial for their successful deployment in diverse
societies. However, classified as discriminating or not, knowledge about cultural groups is
always to some degree imperfect, and even positive biases can disturb some people (e.g.,
“playing football is a Brazilian thing” might be a positive stereotype to many people, but
some Brazilians might not like hearing it because they don’t play football at all).

Collecting CCSK represents a dual-use technology. On the one hand, CCSK can be used
to improve the performance of AI systems (as our evaluations in Chapter 4 and Chapter 5
showed), and to help fighting biases that are present in the training data of those systems.
On the other hand, we may also codify and reinforce biases, as the assertions we collected
can be used by others to train future AI models, perpetuating the biases.

Nevertheless, our data represents the outputs of a research prototype. We recommend
against using our data in production systems without a careful evaluation of benefits (of
having a system that is more culturally adept) and associated challenges and risks (of stereo-
type perpetuation etc.).
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6.3  Outlook

Large language models (LLMs) have revolutionized the field of natural language process-
ing (NLP), and have had significant impacts on many text-based tasks. As these models
continue to grow in size and performance, we expect a shift towards using them for knowl-
edge acquisition, replacing the traditional methods of extracting knowledge from raw or
(semi-)structured texts, and crowdsourcing annotation. In the Mango project, we devel-
oped a relatively simple method for distilling culture-specific knowledge from LLMs. That
resulted in a resource of unprecedented coverage with even higher quality than Candle,
but also required significantly less manual labor, showing the great potential of using LLMs
for knowledge base construction. Although LLM-based knowledge acquisition methods have
their own limitations (discussed in Section 6.2.2 and Section 6.2.3), we expect that future
models will be even more knowledgable, as they see more data and are trained on more
advanced architectures, which will further improve the quality and coverage of the generated
assertions. However, the trade-off between low bias and specificity in model outputs will
likely remain. That is unavoidable because of the biased nature of the training data, and
efforts to mitigate these biases in the fine-tuning process likely lead to a loss in specificity.

On the other hand, despite LLMs being increasingly capable, we have shown that high-
quality CSK resources are crucial to improve their performance in various downstream ap-
plications, such as question answering and dialogue generation, via retrieval-augmented gen-
eration (RAG) approaches. We anticipate that incorporating external knowledge, including
CSK, into LLM prompts will continue to be a major research direction, and it will still be
beneficial even for future models of much larger sizes. The reason for that is, unlike para-
metric knowledge in LLMs, non-parametric knowledge like commonsense knowledge bases
has the advantage of being scrutable and verifiable, which is highly relevant in applications
where errors are costly. These two types of knowledge are complementary, and future research
should focus on how to best combine them, e.g., developing better retrieval methods, and
how to decide when to use non-parametric knowledge and when to use parametric knowledge.
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