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Abstract

Abstract

Nowadays, to counteract global warming, reduce air pollution, and traffic congestion in our
cities, worldwide government policies are promoting light electric vehicles as viable means
of transportation. Among them, electric bicycles may also be helpful to encourage phys-
ical activity at reduced effort levels compared to standard cycling or for rehabilitation pur-
poses. Nevertheless, high costs make them not affordable to a large part of the population.
To reduce prices and simplify the vehicle mechanical design, electrical assistance control
strategies that avoid the installation of expensive torque sensors have received particular
attention in the last decade. These strategies are based on the pedaling torque estimation
employing unknown system input or disturbance estimation approaches. This work lies in
this field and proposes a state observation approach based on Kalman filtering to estimate
the cycling torque and provide electrical assistance accordingly. In particular, two different
pedaling torque models are analyzed highlighting the necessity of an improved mathematical
description to enhance the system performances. The proposed approaches based on the
bicycle longitudinal dynamics model and in-vehicle measurements are later validated in a
realistic riding environment characterized by variable slopes and curves. From this analysis,
it emerges that a pedaling effort reduction similar to the one obtainable when employing a
torque sensor is achievable especially when an enhanced pedaling modeling is considered.

Kurzzusammenfassung

Um der globalen Erwärmung entgegenzuwirken, die Luftverschmutzung zu reduzieren und
die Verkehrsstaus in unseren Städten zu verringern, fördern die Regierungen weltweit die
Nutzung von leichten Elektrofahrzeugen als praktikables Transportmittel. Elektrofahrräder
können auch dazu beitragen, die körperliche Aktivität bei geringerer Anstrengung im Vergle-
ich zum normalen Radfahren zu fördern oder zu Rehabilitationszwecken eingesetzt werden.
Aufgrund der hohen Kosten sind sie jedoch für einen großen Teil der Bevölkerung nicht er-
schwinglich. Um die Preise zu senken und die mechanische Konstruktion des Fahrzeugs
zu vereinfachen, wurde in der letzten Dekade besonderes Augenmerk auf Strategien zur
Regelung der elektrischen Unterstützung gelegt, die den Einbau von teuren Drehmomentsen-
soren vermeiden. Diese Strategien basieren auf der Schätzung des Pedaldrehmoments
unter Verwendung von Ansätzen zur Schätzung unbekannter Eingangsgrößen oder Störun-
gen. Die vorliegende Arbeit ist in diesem Bereich angesiedelt und schlägt einen Ansatz zur
Zustandsbeobachtung auf der Grundlage der Kalman-Filterung vor, um das Drehmoment
beim Radfahren zu schätzen und eine entsprechende elektrische Unterstützung anzubieten.
Insbesondere werden zwei verschiedene Modelle des Pedaldrehmoments analysiert, wobei
die Notwendigkeit einer besseren mathematischen Beschreibung des Pedaldrehmoments
zur Verbesserung der Systemleistung hervorgehoben wird. Die vorgeschlagenen Ansätze,
die auf dem Modell der Fahrradlängsdynamik und fahrzeuginternen Messungen basieren,
werden dann in einer realistischen Fahrumgebung mit variablen Steigungen und Kurven va-
lidiert. Aus dieser Analyse geht hervor, dass eine ähnliche Reduzierung der Pedalleistung
bei der Verwendung eines Pedaldrehmomentsensors erreicht werden kann, insbesondere
wenn eine verbesserte Pedaliermodellierung berücksichtigt wird.
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Abbreviations
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Introduction

1 Introduction

The invention of the first bicycle is attributed to the German Baron Karl von Dreis from
Mannheim in 1817. This vehicle was the first two-wheeled vehicle that allowed the rider
to keep balance thanks to a steerable front wheel. From this initial invention, which was
forbidden in many countries due to its riskiness in 1821, bicycles have progressively evolved
into safer and more efficient vehicles. Pedals were added to the front wheel and higher
speeds were achieved thanks to the advent of tension-spoked wheels in the late 1860s.
About twenty years later, safety and riding comfort were enhanced when inventions in the
field of pneumatic tires and chain drives made bicycles with wheels of the same diameter
possible. [1]

At the same time, progress in the electrical machines field brought the idea of electrifying
a bicycle to increase its reachable speed and reduce riding efforts. The first inventions in
the electric bicycle field took place in the USA in 1895 when Odgen Bolton patented the first
electric bicycle [2]. It was a vehicle with a 10 V battery and a six-pole hub brushed Direct
Current (DC) motor mounted on the back wheel. One year later, Charles Theryc created
the first bicycle planetary-gear DC motor [3] and in 1899, John Schnepf invented the first
friction drive where the motor power was transmitted to the back wheel through a concentric
roller [4]. For almost a century, the provided motor assistance was independent on pedaling,
until in 1982 the German Egon Gelhard developed the first electric bicycle in which the rider
is helped by the electrical traction of the engine only when pedaling [5]. However, only in
1993 this kind of bicycle began gaining notoriety thanks to the Japanese company Yamaha
commercially spreading the vehicles with the name of Pedal-Assist System (PAS). These
bicycles, relying on torque and speed sensors, were capable of electrically assisting the
rider with a human power amplification of 200 % up to 15 km

h and a gradual reduction to 0 %
at 24 km

h . Later on, these bicycles were named Pedal Electric Cycles (Pedelecs) [1]. In the
1990s, many sensors and control strategies for electric bicycles were developed as well as
new kinds of more durable batteries. In 2005, with the boom of lithium batteries, a reduction
of weight and increased electrical autonomy was achieved. Therefore, the innovations in the
battery field caused a sudden growth in the electric bicycle market. In 2009, more than 21
million electric bicycles were circulating in China outnumbering cars (9.4 million). Later in
2015, worldwide electric bicycle sales amounted to 40 million, 90 % of them in China [5]. In
the last decade, easy-to-install kits that allow the conversion of standard bicycles into electric
bicycles started gaining popularity contributing to an increase in this booming market. The
first all-in-wheel conversion kit was patented by researchers of the Massachusetts Institute
of Technology in 2015 and named Copenhagen Wheel [6]. This spoked-wheel integrates a
motor, a battery, the controller, and the necessary sensors. Thanks to the ongoing green
revolution, the electric bicycle market is rapidly growing. In 2021, the worldwide market
reached 25 billion USD with an expected annual growth rate of circa 10% between 2021 and
2028 [7].

There is a wide range of assets associated with the popularization of electric bicycles.
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1.1 Electric bicycle sensorless control

Several studies have shown the physical and psychological benefits of electric cycling on
health [8]. Since the efforts required by cycling might not always be sustainable for the
elderly or people with physical problems, electric bicycles could be employed to encourage
exercise and to rehabilitate [9,10]. Electric bicycle employment can encourage long-distance
commuting, decrease traffic congestion, and improve the air quality in our cities. Switching
to bicycles can save insurance, registration, licenses, and parking costs. As shown in [11],
riding an electric bicycle reduces the energy cost per distance traveled compared to other
means of transportation. Worldwide government policies support the circulation of light elec-
tric vehicles such as electric bicycles and scooters to reduce fuel consumption, air pollution,
and global warming [12]. However, the population acceptance of electric bicycles is lim-
ited by safety, vehicle weight, battery autonomy, and weather dependence concerns. Other
factors that discourage the adoption of electric bicycles are the short-term reliability of the
electronics, the difficulties in reparation of proprietary electronic systems, and the short life
of the batteries that degrade even when not used. Furthermore, the cost of electric bicycles
can represent a barrier to accessing them by part of the population.

The price of electric bicycles depends on their design since electrical assistance can be
provided in different ways according to the type of motor, sensors, and controller mounted on
them. However, there are limitations on the maximum power and speed at which the bicycle
can be electrically powered that vary from country to country. For example, in the EU, “pedal
cycles with pedal assistance which are equipped with an auxiliary electric motor having a
maximum continuous rated power of less than or equal to 250 W, where the output of the
motor is cut off when the cyclist stops pedalling and is otherwise progressively reduced and
finally cut off before the vehicle speed reaches 25 km

h ” do not need approval and thus a plate
number [13]. In the USA, the regulations are less strict but differ between the federal states.
Moreover, there can be limits on the maximum vehicle weight, like in China, where the limit
is 40 kg, or on the allowed kind of assistance, like in Japan and the EU, which admit only
pedelecs. Therefore, torque and cadence sensors are installed to control the motor power
and verify that the electrical assistance respects the regulations.

These sensors cannot be always easily mounted on a bicycle. Their installation often
requires a proper design of the bicycle frame depending on their space requirement and
working principles. Moreover, they are typically mounted on parts of the bicycle where the
pedaling force, vibrations, and external shocks are directly applied. Consequently, these
sensors must be designed to be robust to mechanical stress determining the increase in their
cost. High-quality sensors can cost around 10 - 15 % of the overall cost of an electric bicycle.
Therefore, in recent years, research in the field of sensorless control for electric bicycles
has been conducted with the focus on providing motor electrical assistance without relying
on sensor measurements reducing the cost of an electric bicycle without losing assistance
capability and decreasing the riding safety.

1.1 Electric bicycle sensorless control

The term sensorless or torque-sensorless control in the electric bicycle field refers mainly to
pedelec control strategies that provide electrical assistance without employing a torque sen-
sor to measure the pedaling input. However, it has to be remarked that this definition refers
only to the removal of torque-sensing elements. Low-cost sensors such as current, rotor

10



1.1 Electric bicycle sensorless control

position, speed sensors, or Inertial Measurement Units (IMUs) are still required to estimate
the human input and electrically aid the cyclist. The main purpose of electrical assistance in
electric bicycles is to reduce cycling efforts. This means that a rejection or reduction of the
effect of external disturbances acting on the bicycle dynamics such as gravity and friction and
an amplification of the cycling torque must be achieved. To amplify the human input avoiding
the employment of an expensive torque sensor, pedaling torque estimation techniques are
required. The assumption on which these methods are based consists of considering human
cycling as an unknown input or disturbance acting on the system that needs to be extracted
from the total disturbance acting on the vehicle dynamics. Following, a historical overview of
disturbance estimation approaches is provided. Then, the problem of unknown input estima-
tion is particularized to the case of electric vehicles and specifically to the pedaling torque in
electric bicycles.

1.1.1 Unknown input or disturbance observation

The first attempts to estimate unknown or unmeasured inputs can be dated back to 1970
when Bryson and Luenberger [14] proposed a state observer able to estimate an unknown
bias error augmenting the state of the system with a zero-order model of the disturbance,
i.e. considering the derivative of the disturbance equal to zero. Three years later, this con-
cept was extended in the work of Meditch and Hostetter [15] that proposed Unknown Input
Observers (UIOs) to estimate unknown non-constant inputs whose variations are slow rel-
ative to the natural response of the observer. In the same years, Johnson proposed an
optimal robust controller, called Disturbance Accommodation Controller (DAC), that allows
set-point regulation in the presence of a broad class of realistic external disturbances [16].
In particular, the author described the external disturbance employing a differential equation,
the so-called disturbance state modeling, showing that the effectiveness of DACs is depen-
dent on how well the disturbances are described by the employed model. Nevertheless,
due to the mathematical complexity of the DAC, the practical significance of these results
was not noticed in those years [17]. In 1983, Ohnishi first proposed the Disturbance OB-
server (DOB) to estimate external disturbances using a reduced-order observer and optimal
control to suppress plant uncertainties [18]. The great advantage of this approach consists
in shifting the disturbance analysis from the time to the frequency domain. This allows a
simple description of the disturbance estimation dynamics as the bandwidth of a Low-Pass
Filter (LPF). Later, the same author formalized the 2-degrees-of-freedom structure of the
DOB in the Laplace domain [19, 20]. Nevertheless, as shown in [17, 21, 22], a DOB can be
expressed in the Laplace domain or with a state-space representation. In fact, since there
exist infinite state variable realizations of a transfer function, the first is a generalization of the
second. For the sake of clarity, although conceptually identical, disturbance estimation meth-
ods expressed in the Laplace domain will be referred to as DOBs whereas approaches that
employ state-space representations will be called UIOs in this thesis. In the first works on
DOBs, the method was applied to the field of brushed DC motors [18, 23] and multi-degree
of freedom manipulators control [19] to estimate and compensate the effects of external
load forces. These works show how the compensation of the estimated external disturbance
obtained with a DOB improves the dynamic performances of feedback control loops even
in the presence of model parametric variations. Later, Murakami proposed a DOB-based
technique that allows force or torque estimation employing simultaneously two DOBs. One
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1.1 Electric bicycle sensorless control

of them achieves the robustness of the feedback control loop like a classical DOB and the
other, the so-called Reaction Force Observer (RFO), estimates the contact forces avoiding
the employment of force sensors [24]. Nevertheless, the RFO has a model-based control
structure that deteriorates the force estimation accuracy when external disturbances such
as gravity, friction, and model parametric variations are not correctly identified [25]. In the
early 2000s, disturbance estimation approaches were applied to electrical-assisted vehicles
such as electric wheelchairs [26, 27] and electric bicycles [28, 29] to estimate and compen-
sate environmental disturbances affecting the vehicle dynamics such as friction and gravity.
In other works, disturbances are estimated in steer-by-wire systems [30] or in self-sustaining
control of bicycles [31,32].

1.1.2 Pedaling torque estimation state of the art

In the last decade, disturbance estimation approaches were applied in the electric bicycle
field to estimate the pedaling torque and provide electrical assistance accordingly. In all
methods known in the literature, the extraction of the pedaling torque from the total distur-
bance torque acting on the bicycle dynamics requires the employment of a pre-measured or
estimated dynamic model of the vehicle whose accuracy affects the correctness of the hu-
man input estimation. Moreover, models of different complexity may be employed to describe
the pedaling torque. Therefore, in the following, a classification of the torque-sensorless ap-
proaches based on the employed disturbance modeling is proposed. Figure 1.1 contains a
timeline of electric bicycle senorless control strategies based on this classification. Two main
categories can be defined:

• Constant pedaling torque model;

• Periodic pedaling torque model.

Constant pedaling torque model:
Methods that employ a constant pedaling torque model can be further divided depending on
the utilized estimation method in DOBs, RFOs, and UIOs. Among DOB-based estimation ap-
proaches, the work of Sankaranarayanan and Ravichandran [33] estimates the human input
using only one DOB. However, this simple structure allows the pedaling torque estimation
solely when the environmental forces are negligible. More complexity is introduced by Kawa-
jiri et al. [34], who proposed a pedaling torque estimation for a dual motors power-assisted
bicycle. This work employs two DOBs to estimate external disturbances on the front and
rear wheels combined with a Recursive Least Squares (RLS) algorithm that evaluates the
ratio between the reaction forces on the front and rear wheels to extract the applied pedaling
torque. However, this method employs two motors, two rotary encoders, and an accelerom-
eter increasing system complexity and costs. Li et al. [35] proposed an estimation strategy,
still not experimentally validated, that determines the human torque by analyzing the dynam-
ics of the crankset mechanism relying on IMU measurements to extract the angular speed
of the rotating parts of the system. Additionally, a DOB estimates and compensates for
environmental disturbance forces acting on the vehicle dynamics.

RFO-based estimation methods such as the work of Cheon and Nam [36] implement an
inner DOB to estimate and reject the total external disturbance acting on the motor, whereas
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[41] [36]

[42]

[44] [37]

[43]

[45]

[35]

[40]

Year

Reference

20
14
20
15

20
17
20
18

20
16

20
20

20
19

20
21

Torque-sensorless
control

Reaction Force
Observer (RFO)

Disturbance 
OBserver (DOB)

Constant pedaling
torque model

Periodic pedaling
torque model

Unknown Input
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Figure 1.1: Classification and timeline of electric bicycles torque-sensorless control strate-
gies.

the outer one, called RFO, estimates the pedaling torque thanks to its lower bandwidth tuned
according to pedaling torque frequency considerations. Then, the estimated torque is used
to generate the speed reference for a feedback control loop in a model impedance control.
Although the method minimizes the speed tracking error, the accuracy of the pedaling torque
estimation is guaranteed purely when the environmental components are known or negligi-
ble. Likewise, in Padmagirisan et al. [37], the method proposed in [33] is enhanced with a
Band-Pass Filter (BPF) that allows the extraction of the human contribution from the total
disturbance torque. Nevertheless, the work lacks a pedaling torque estimation validation in
realistic scenarios. A similar approach that employs a BPF as RFO to extract the pedaling
torque from the total disturbance torque is proposed by Li et al. in [38]. Differently from [37],
this work utilizes another mathematical formulation and bandwidth of the RFO.

The estimation of the pedaling torque relying on UIOs has been already investigated by
the author of this thesis in [39] where the pedaling torque is extracted from the motor load
torque estimated with a Kalman Filter (KF) under laboratory riding conditions. Misgeld et
al. [40] estimate the pedaling torque by combining an Unscented Kalman Filter (UKF) with
the road slope information obtained from an adaptive orthogonal filter that takes as input the
three-dimensional accelerations and angular velocities measured with an IMU. Nevertheless,
the experimental results of both UIO-based works show that they can only approximately
estimate the average value of the pedaling torque.

Periodic pedaling torque model:
As previously stated, utilizing a more detailed disturbance modeling can improve the accu-
racy of the estimation. Hence the idea of exploiting the pseudo-periodicity of the pedaling
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torque to extract it from the total estimated environmental torque obtained either with a DOB
or an UIO. This approach was first applied to electric bicycle sensorless control in the work
of Fujimoto et al. [41] that employs a pedaling torque estimator based on Fourier analysis
of the total disturbance torque given by a DOB. However, in the proposed approach, the
torque cannot be estimated in real-time during the first pedaling cycle since the output of
the DOB in the previous cycle is used to perform a Fourier analysis and extract the pedaling
torque. Moreover, the work neglects the effect of gravity on vehicle dynamics. Therefore,
other works of the same authors [42, 43] consider the environmental conditions employing
a RLS with multiple forgetting factors to estimate the external disturbances online. In [44],
the authors propose methods to improve the estimation during the first pedaling cycle. Nev-
ertheless, all these works based on the Fourier analysis estimate only the pedaling torque
approximately with a significant performance degradation when the estimated torque is em-
ployed to provide the electrical assistance.

Hatada et al. [45] considers the periodicity of the pedaling torque to distinguish it from
the environmental disturbance components. Here, the periodic DOB for varying frequency
first proposed by Narikiyo et al. in [46] is applied to the case of electric bicycles. The basic
idea of this work is to model the disturbance as the sum of a sine with variable frequency
plus a bias. The proposed periodic disturbance estimation relies on a state augmentation
of a Luenberger observer plus an online pedaling frequency estimation obtained with an
adaptive notch filter. Thus, this method can be considered an UIO that employs a periodic
pedaling torque model.

1.2 Contributions of the work

Although several torque-sensorless approaches for pedelecs have been proposed in the last
decade, there are still extensive improvement prospects. As seen in the previous section, the
pedaling torque estimation problem has been addressed in the literature relying on DOBs,
RFOs, or UIOs. Among them, this work focuses on UIO utilization, namely on state obser-
vation approaches. Following, the contributions of this work are reported:

• Electric bicycle design analysis: The comprehension of the torque-sensorless ped-
elec system requires knowledge of the components, sensor technologies, and control
strategies commonly utilized in standard electric bicycles. In this work, a thorough
analysis is presented. Moreover, a novel classification of control strategies commonly
used in electric bicycles is proposed. These control strategies are typically classified
based on the sensor used to measure the human input and provide electrical assis-
tance. However, this gives only general information for the final user and does not
provide sufficient information for the control system designer. Therefore, to address
this problem, a classification based on the control strategy optimization focus is here
proposed.

• Bicycle longitudinal dynamics generalization: The generation of the sensorless
electrical assistance is based on the analysis of the bicycle longitudinal dynamics.
However, in the majority of the works, the employed mathematical model depends
on the design characteristics of the specific employed motor assembly and loses its
validity in the case of other system configurations. Thus, in this work, a mathematical
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generalization of the vehicle dynamic model valid for mid-drive, hub, and friction motor
electric bicycle assemblies is proposed.

• Variable environmental and riding conditions: The majority of the literature limits
the analysis to specific environmental and riding conditions. Many works neglect in-
deed the effects of variable inclines on the offered electrical assistance. The effects of
system parametric variations including variable mass and friction conditions are also
often ignored. Furthermore, the impact of variable wind conditions and bumps is also
usually disregarded. Additionally, propulsive human forces not applied at the ped-
als are never considered. In this work, all the aforementioned components are taken
into account in bicycle modeling. Moreover, their impact on the vehicle motion is dis-
cussed through a sensitivity analysis to derive a simplified mathematical model that
allows torque-sensorless assistance. Afterwards, the validity of these assumptions is
extensively analyzed using simulations and experimental results performed in a real
scenario.

• Pedaling torque model complexity analysis: A comparison of the pedaling torque
estimation and electrical assistance performances obtained when relying on a con-
stant or periodic pedaling torque modeling is still missing in the literature. Indeed,
the advantages and disadvantages of increasing the unknown input or disturbance
model complexity have still not been discussed in this field. Therefore, in this work, two
pedaling torque estimation methods, named Pedaling Torque Observers (PTOs), that
rely either on a Constant (CPTO) or a Sinusoidal (SPTO) human input description are
mathematically formalized and compared.

• UIO selection and tuning: Differently from DOB approaches, the tuning of UIOs is
usually more complex and requires deeper control theory knowledge. While the for-
mer can be easily tuned by selecting the bandwidth of a LPF based on considerations
on the typical cycling frequency, in UIOs a more complex pole placement is often re-
quired, like in [45] where a complicated tuning of a Luenberger observer is described.
Moreover, as discussed in [40], to handle the bicycle dynamic model nonlinearities, the
employment of a nonlinear state observation approach is necessary. Among the pos-
sible approaches, an Extended Kalman Filter (EKF) has been selected in this work be-
cause of its capacity to easily handle nonlinear systems through a linearization around
the nominal state trajectory. Since in the case of non-severe nonlinear systems, like
the one under investigation, the linearization error can be considered negligible, the
employment of an EKF represents a simple and comprehensible solution to the prob-
lem. Moreover, this work provides intelligible guidelines on the selection of the filter
covariance matrices, based on the confidence on the model and the measurements,
to maximize the estimation performances.

• Simplified road slope estimation: Among the environmental components that act on
the vehicle dynamics, the effects of variable road slopes are known to have the high-
est impact [11]. Therefore, to obtain acceptable torque-sensorless assistance perfor-
mances in a variable sloped environment, an estimation of the road angle is necessary.
This is typically achieved by relying on inertial measurements and complex estimation
algorithms. The importance of accomplish an online low-cost and low-computational-
effort road slope estimation is pointed out in this work. In particular, here the problem
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is addressed by utilizing a KF based on the wheel speed and a reduced set of inertial
measurements obtained with a low-cost IMU.

• Electrical assistance analysis: Many works do not present a clear comparison of
the electrical assistance performance obtained with torque-sensorless and sensored
techniques. The analysis is usually limited to the minimization of the pedaling torque
estimation error using torque sensors to perform the validation. In many cases, a met-
ric to evaluate the quality of the received electrical assistance is missing. Additionally,
the cycling feeling in torque-sensorless pedelecs, expressed in terms of experienced
assistance delays, received undesired aid, or global safety sensation has never been
investigated. Therefore, this work proposes a method to evaluate the generated torque-
sensorless electrical assistance performance based on the delivered pedaling power
and energy reduction. Moreover, for the first time in this field, user-dependent quan-
tities are evaluated through a survey. In each condition, the assistance obtained with
and without pedaling torque sensor are compared.

1.3 Structure of the work

In this section, the structure of the work and the content of each chapter is explained in
detail.

To get a full understanding of torque-sensorless control, a general description of the elec-
tric bicycle system components is given in Chapter 2. In particular, functionality and se-
lection criteria are analyzed to evaluate their influence on the global system performances
and costs. Furthermore, a deep analysis of the technologies used in the commercial torque
sensors employed to control electric bicycles is provided. This clarifies the importance of
switching to torque-sensorless solutions to reduce the final cost of the system. Moreover, a
novel classification of the main strategies known in the literature employed to control elec-
tric bicycles is proposed in this work. Such a working framework provides the necessary
background and guidelines to the electric bicycle system designer and specifically to the
developer of torque-sensorless control methods.

Among the possible models employable to mathematically describe the motion of a bicy-
cle, the necessity of limiting the analysis to the longitudinal one is pointed out in Chapter 3.
Then, the force components that characterize the vehicle longitudinal dynamics are deeply
analyzed by considering the typical electromechanical configurations of the system. More-
over, a mathematical description of the human forces interacting when riding a bicycle is
given. Finally, a sensitivity analysis that provides a complete understanding of the impact of
the various components operating on the bicycle longitudinal dynamics at different vehicle
speed levels is also presented.

In Chapter 4, after a brief introduction to state observation theory, the PTOs expressed
in the form of EKFs are described. Firstly, the assumed modeling simplifications, based
on the indications provided by the sensitivity analysis, are derived. Then, the mathematical
framework on which the PTOs are based is presented and deeply analyzed. Particular focus
is given to inputs and measurements of the state observers since their accuracy is funda-
mental for improving the quality of the torque estimation. In particular, the importance of an
accurate online road slope estimation is highlighted. A KF is here proposed as a possible
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low-cost approach to accomplish this purpose. Then, a method to compensate for slope
estimation errors caused by modeling simplifications while cornering is also presented. Af-
terwards, the effectiveness of the PTOs is evaluated in simulation to provide guidelines on
the KF tuning and point out the impact of modeling simplifications and parametric variations
on the pedaling torque estimation.

An experimental validation of the proposed torque-sensorless control for pedelecs is pre-
sented in Chapter 5. After describing and motivating the choices made in the design phase
of the pedelec prototype utilized in this analysis, the proposed road slope estimation ap-
proach performances are validated with outdoor tests. Here, a particular focus is given to
the tuning of the KF and the estimation error in the presence of vehicle accelerations and
rapid road angle variations. Then, the proposed PTOs are analyzed. In particular, the tuning
of the algorithms and the torque estimation performances are evaluated in different scenar-
ios. Afterwards, the torque-sensorless control performances expressed in terms of delivered
power and energy reduction are compared to the ones achieved when using a torque sensor
on a defined testing track. Finally, a user-oriented analysis carried out utilizing a survey is
presented. The latter gives indications about the riding feeling of the proposed sensorless
control approaches compared to the sensor-based one.

Conclusions that summarize the results obtained in this work are drawn in Chapter 6.
Eventually, the outlooks on possible system and performance improvements of the proposed
torque-sensorless approaches are presented.

The appendix to this work provides a detailed description of the IMU calibration and mount-
ing offset correction processes as well as the electronics utilized in the developed pedelec
prototype. Also, the reader can found the questionnaire used in the performed torque-
sensorless control survey.
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Electric bicycles

2 Electric bicycles

The understanding of electric bicycle sensorless control requires a deep analysis of the
design characteristics of the mechatronic system. In the following, the functionality of the
single components that make up an electric bicycle and their design criteria are evaluated to
analyze their impact on the system performance, reliability, safety, maintenance, and costs.
Afterwards, the sensors employed to measure the human input are analyzed to highlight
assets and drawbacks of the different torque sensor technologies in the electric bicycle field.
Then, the control strategies commonly employed to provide electrical assistance in electric
bicycles are thoroughly analyzed. In particular, this thesis proposes a novel classification of
pedelec control strategies based on the control system focus.

2.1 Design

The parts that constitute an electric bicycle can appear in different configurations. Each con-
figuration has its assets and drawbacks that will be discussed in this section. The elements
that compose the electric bicycle system are divided into battery, electric motor, sensors,
controller, and the bicycle itself. The battery transforms chemical energy into electrical en-
ergy. Afterwards, the motor turns this energy into mechanical energy to assist the bicycle
motion. Then, sensors like throttle, cadence, torque, and brake sensors measure human
inputs. Eventually, the outputs of the sensors are sent to the controller that commands and
supervises the entire system. Figure 2.1 contains a generic representation of the above
mentioned elements. It has to be remarked, that these elements can be located also in
different positions within the bicycle respect to the ones reported in the figure.

Electric bicycle costs can vary considerably depending on the technology, the quality, and
the brand of the single components. The most expensive part of the system is typically the
battery. Its cost amounts to around 25 % of the overall price. The cost of the motor and
the sensors is circa 15 % while the controller value amounts to circa 10 % of the total. The
remaining costs are related to the mechanical parts of the bicycle (frame, drivetrain, wheels,
tires, etc.). Therefore, removing sensors may decrease the final cost of the product. It is
thus worth analyzing techniques that allow bicycle electrical assistance without relying on
expensive sensors.

As stated in [47], the design of an electric bicycle is divided into three domains: the sys-
tem, the mechanical, and the electrical domain. The system design domain relates to the
choice of the electric vehicle topology, the type of electrical assistance, and the possibility of
recuperating energy while braking. The mechanical domain concerns the motor positioning
and its assembly, whereas the electrical domain includes choices about the type of energy
storage source, motor, and control strategies. Figure 2.2 provides a synthetic representation
of the mentioned design domains that are discussed later in this section.
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Figure 2.1: Generic representation of the elements that make up an electric bicycle.

2.1.1 System domain

• Topology: Considering the system domain, an electric bicycle can be designed fol-
lowing a serial or a parallel topology. Serial electric bicycles are characterized by the
absence of a mechanical drivetrain. In these vehicles, human and electric power are
coupled in the electrical domain. The pedals are connected directly to a generator
electrically coupled with a battery and a motor. An example of a series electric bicycle
is the Italian SeNZA [48]. The parallel topology is the most common configuration and
is thus the one investigated in this work. In such vehicles, human and motor powers
are combined in the mechanical domain. The human power is transmitted to the wheel
through the pedals and the drivetrain while the electrical assistance of the motor is
summed to it. [7]

• Electrical assistance: Another important choice in the design of the electric bicycle
system is the selection of the electrical assistance strategy. Electric bicycles can be
divided into power-on-demand and pedelecs depending on their control approach. In
power-on-demand bicycles, the rider requires electrical assistance through a throttle
that regulates the motor power by pressing a lever or twisting a grip mounted on the
handlebar. Although it represents the easiest and cheapest way to control an elec-
tric bicycle, this configuration presents several drawbacks. Riders might tire or feel
pain when pressing or twisting the throttle, especially in long-distance travel. In power-
on-demand bicycles, the rider is not rewarded with electrical assistance when pedal-
ing. Therefore, these bicycles do not encourage physical activity. On the other hand,
pedelecs provide electrical assistance only when the bicycle is pedaled rewarding the
rider with motor propulsion that depends on the control strategy and the desired as-
sistance level. To measure the human power input, sensors, such as cadence and
torque sensors, are installed increasing the complexity and the costs of the system.
The choice of the electrical assistance type depends on the preferences and demands
of the user while riding. As previously stated, torque-sensorless approaches aim at re-
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Figure 2.2: Design domains classification used for the project of electric bicycles based on
the one proposed in [47].
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moving sensing elements in pedelecs. For this reason, this work will limit the analysis
only to bicycles that use this kind of electrical aid.

• Energy recovery: Another feature that belongs to the system design domain is re-
generative braking. Bicycles that integrate this operating mode require electric brakes
to sense the brake input of the rider. Electric brakes are standard bicycle brakes that,
when actuated, generate an electrical output that is sent to the controller to activate
the regenerative mode. In this status, the motor operates as a generator producing a
braking electromagnetic torque and energy that can be used to recharge the battery.
Regenerative braking has a potential benefit of circa 10 % depending on the individ-
ual behavior of the rider and the considered track [49]. Where the potential benefit
is defined as the percentage of recovered energy compared to the total input energy
(battery plus rider) on a specific track. Furthermore, electric braking reduces the wear
of mechanical brakes because they are less stressed in braking operations. However,
including regenerative braking requires a non-freewheeling motor and a controller that
allows the bidirectional energy flow between the battery and the motor increasing the
complexity of the system. Since this work focuses on the sensorless electrical assis-
tance capability rather than the vehicle electrical autonomy, the possibility of recovering
energy will not be considered to reduce the system complexity.

2.1.2 Mechanical domain

• Motor location: In the mechanical design of an electric bicycle, the first important
aspect regards the selection of the motor location. As depicted in Figure 2.3, motors
can be mounted in the front or rear wheels, or the middle of the bicycle. Front-wheel
motors offer an easier installation because there is no need to check the compatibility
between the motor and the drivetrain. Since they can be easily assembled and dis-
assembled, they also simplify maintenance. Furthermore, they have the advantage of
providing a better weight distribution of the bicycle. However, bicycles with front-wheel
motors have less traction especially when high-power motors are mounted because, in
combination with a light front wheel weight, they can cause wheels to slip. On the other
hand, back-wheel motors allow better traction at the cost of bicycle weight unbalance
and a more complex installation and maintenance. Electric bicycles with dual motors
overcome the issues related to the two previous configurations like the one described
in [50], but the costs, weight, and control system complexity increase in this configura-
tion. Motors mounted in the middle directly connected to the drivetrain solve problems
related to weight unbalance.

• Motor assembly: Another aspect that belongs to the mechanical domain is the selec-
tion of the motor assembly. Motors can be mid-drive, hub, or friction type. Mid-drive
motors are typically the most performing ones because they multiply the drivetrain
power and thus take advantage of the existing gears. However, they are more expen-
sive and require a bicycle frame designed to integrate them. This means that they can-
not be easily adapted to electric bicycle conversion kits. Moreover, they increase the
wear of the bicycle chain that is not designed to handle the combined electro-human
power. Hub motors are mounted into the wheel and can be of two types: direct-drive or
geared. In the first configuration, the motor is directly connected to the wheel axle while
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in the second the motor connects to the axle through a planetary gear. Direct-drive hub
motors are heavy and have a large diameter to provide sufficient power without a me-
chanical transmission between the motor and the wheel. These motors are silent and
hardly subjected to overheating thanks to their dimensions, allow regenerative braking,
and rarely damage the mechanical transmission. Nevertheless, this configuration is
more suitable to assist the bicycle at high speed than producing high torque at low ve-
locity. Therefore, direct drive motors are typically not suggested for hill climbing. On the
other hand, geared hubs are light and tiny motors that rotate at high speeds connected
to planetary gears with the function of multiplying the torque and reducing the output
speed. This configuration is typically recommended for hill climbing and has less fric-
tion when electric power is not applied because they integrate an internal freewheel
mechanism. However, these motors are usually louder than direct-drive motors, have
more complex maintenance, tend to overheat, and do not allow regenerative braking
due to the freewheel clutch. The less-performing motor assembly is the friction one.
In this configuration, the motor transmits the power directly to the tire using a friction
connection. The assets of this assembly consist of the reduced cost and its lightweight.
However, this configuration is less efficient due to the friction losses and tends to wear
out rapidly the tire.

(a) Front. (b) Rear.

(c) Middle. (d) Dual.

Figure 2.3: Different motor position configurations in electric bicycles.

Other aspects of the mechanical design domain of an electric bicycle are related to the
frame design which has to consider the positioning of the battery, the sensors, and the
electronics as well as the drivetrain and tire selection. For sake of brevity, the author does
not discuss these aspects here since their analysis goes beyond the purpose of this work.
The interested reader can refer to reference books for the design of standard and electric
bicycles [1, 51]. The considerations made in this section will be used to derive a generic
expression of the driving forces that account for all the typical motor assemblies and locations
in Chapter 3 and to select the mechanical characteristics of the electric bicycle prototype
used to perform the experimental validation of the proposed torque-sensorless approaches
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in Chapter 5.

2.1.3 Electrical domain

• Energy storage type: The first important aspect to consider in the electric bicycle
electrical design is the selection of the energy storage source. In these vehicles, the
most common energy storage type is the battery or battery pack constituted by the
connection of several low-voltage cells that determine the output voltage and the ca-
pacity of the pack expressed in Wh or Ah. Many kinds of batteries are employed in
electric bicycle applications characterized by different chemical compositions. Each
electrochemistry affects the energy content, the service life, the cost, and the charge-
discharge characteristic of the battery [51]. Nowadays, the most common batteries
for electric bicycles are the Lithium-Ion (Li-Ion) packs characterized by high energy
density, fast recharge time, no memory effect, and a longer lifetime than the other
technologies. However, lithium cells are sensitive to temperature and can be dam-
aged when overcharged or rapidly discharged [7]. Thus, cell-by-cell monitoring is nec-
essary. This is performed by employing a Battery Management System (BMS) that
controls the battery charge and discharge to prevent overloading, overheating, and
explosions [52]. Recently, energy sources, such as hydrogen fuel cells [53–55] and
supercapacitors [56,57], have been analyzed as alternative energy storage for electric
bicycles. Although promising, these technologies are still not popular among commer-
cial electric bicycle applications. Since they are nowadays the standard energy storage
type employed in electric bicycles, this work will consider only Li-Ion battery packs with
integrated BMS. More information about energy storage sources as well as battery
charging technologies can be found in [51].

• Motor type: Another fundamental aspect of the electrical design of electric bicycles is
the choice of motor. In the past, brushed DC motors were the standard for electric bicy-
cles thanks to their easy control and low cost. However, these motors are heavy, have
a large diameter due to the presence of the brushes-commutator system, and require
periodic maintenance because the brushes wear out rapidly. Thanks to the availability
of rare-earth permanent magnets and solid-state variable-frequency power supplies,
these motors have been replaced by brushless motors with permanent magnets that
can be either BrushLess-DCs (BLDCs) [58–61] or Permanent Magnets Synchronous
Motors (PMSMs) [62–65]. Both types are three-phase synchronous motors with a dif-
ferent induced Back-ElectroMotive Force (BEMF) distribution. In fact, BLDCs have a
trapezoidal induced BEMF distribution and PMSMs have a sinusoidal one. Brushless
motors are typically more expensive than brushed DC motors due to the presence
of permanent magnets, except in the case of permanent-magnet-excited brushed DC
motors. However, they are more reliable, have a higher power density, and can be
easily controlled. Nevertheless, BLDCs exhibit a high torque ripple not suitable for
high-performance applications. Thus, these motors are replaced in high-quality electric
bicycles by PMSMs characterized by a lower torque ripple. Other Alternating Current
(AC) motors are rarely used in electric bicycle applications. An application of Induction
Motors (IMs) in electrical bicycles is shown in [66]. Although IMs are more reliable and
cheaper than brushless motors, they are characterized by low power density and effi-
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ciency. Therefore, their application in light electric vehicles is not so popular. Switched
Reluctance Motors (SRMs) could also be employed in electric bicycles [67,68] exploit-
ing their good fault tolerance, low cost, and easy sensorless control. Nonetheless,
they have the disadvantage of a lower efficiency and power density, are noisier, and
have a larger ripple than brushless motors. As shown in [69, 70], Synchronous Reluc-
tance Machines (SynRMs) might also be used for electric bicycle applications. These
motors are cheaper than PMSMs because they do not employ permanent magnets to
produce the rotor magnetic flux but they are rarely employed due to their lower power
density and more complex control than other brushless motors. Although several mo-
tor technologies can be implemented, in the following, only brushless motors will be
considered since they are nowadays the standard for electric bicycles.

• Motor control strategy: The choice of the motor control strategy depends on the
position-sensing technique and the power conversion strategy. Brushless motors in
electric bicycle applications are typically powered by a three-phase inverter constituted
by three pairs of power semiconductors arranged in a bridge configuration and con-
trolled with a Pulse Width Modulation (PWM). Figure 2.4 contains a schematic repre-
sentation of a three-phase power inverter used to control a brushless motor. In partic-
ular, this figure represents the case in which Metal-Oxide-Semiconductor Field-Effect
Transistors (MOSFETs) are employed to power a three-phase star-connected brush-
less motor. In the figure, UDC is the DC bus voltage, Si with i ∈ [1; 6] are the MOSFETs,
{a, b, c} are the terminals of the three-phase brushless motor, and Li with i ∈ {a, b, c} are
the phase inductances. BLDCs are typically controlled using an electronic commuta-
tion in which a continuous current with a duration of 120 electrical degrees is supplied
to the machine. Since the rotor position information is needed only at the commutation
points [71], low-cost Hall effect position sensors can be employed to control the ma-
chine. On the other hand, PMSMs require continuous rotor position feedback to supply
the motor with sinusoidal voltages and currents [71]. Thus, rotor position information
given by an encoder or a resolver is required. In this way, it is possible to control the
machine either with a scalar or a more performing vectorial control, also known as
Field Oriented Control (FOC). Furthermore, brushless motors can also be controlled
by relying on sensorless techniques. These techniques, typically based either on the
estimation of the BEMFs or on the exploitation of the machine anisotropy, save costs
and space at the price of reduced dynamic performances [71]. To achieve high-quality
motor dynamic performance and reduce the torque ripple, this thesis will focus on the
utilization of PMSMs controlled with a FOC that rely on the rotor position information
given by an encoder.
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Control Electronics

Brushless MotorThree-phase InverterBattery

Figure 2.4: Schematic representation of a three-phase power inverter used to control brush-
less motors.

2.2 Pedaling torque sensors

Electric bicycle sensors are used to evaluate the human power input and provide the motor
electrical assistance according to the chosen control strategy and the local regulations. In
the case of pedelecs, cadence and/or torque sensors are required. Among them, the follow-
ing analysis focuses on pedaling torque sensors since sensorless control approaches aim
mainly at their removal.

Pedaling torque sensors can be located in different positions within the bicycle and can
exploit several physical effects. In the following, a classification based on the measured
physical quantity is proposed. Assets and drawbacks of each configuration are summarized
in Table 2.1. As depicted in Figure 2.5, torque sensors can measure the torque across
the bottom bracket spindle, the reaction force on the bottom bracket, the chain tension, the
reaction force on the rear dropout, the rear axle deflection torque, or the forces on the pedals
or crankarms.

• Bottom bracket spindle torque: Sensors measuring the torque across the bottom
bracket spindle commonly exploit piezoresistive, optical, or magnetic principles. In
piezoresistive sensors, such as [72, 73], one or more strain gauges are glued on the
spindle. Whenever a pedaling torque is applied, a strain on the spindle generates a
variation of resistance in the gauges measured with Wheatstone bridge circuitry and
analogically amplified. Although this technology is very accurate, the installation of
strain gauges requires particular care. Moreover, a slip-ring or wireless communica-
tion is required to transfer power and data to the rotating axis where the piezoresistive
sensing elements are installed determining an increase in costs and complexity. Alter-
natively, the torque on the spindle can be measured optically, like in the sensor [74],
by evaluating the phase shift of a light beam when passing through radially slotted
disks mounted on both sides of the bottom bracket that are aligned when no torque
is applied. The accuracy of these sensors is comparable to the piezoresistive ones.
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Figure 2.5: Pedaling torque sensor classification based on the position of the sensing device
within the electric bicycle.

Nevertheless, optical sensors are susceptible to contamination of the lenses and re-
quire thus periodic cleaning. The great advantage of these sensors is that they do not
need electronics on the rotating part. Bottom bracket spindle torque sensors can also
exploit magnetic properties such as magnetostriction to evaluate the applied torque.
In these sensors, such as [75], the axle presents a magnetized magnetostrictive ferro-
magnetic material that changes its magnetic properties with an applied strain. Although
they do not require electronics on the rotating part, complex magnetization and calibra-
tion of the ferromagnetic material are necessary. Moreover, their accuracy is typically
worse than optical and piezoresistive bottom bracket spindle torque sensors. As stated
in [76], the main drawback of measuring the bottom bracket spindle torque is that it
allows sensing only the force that the rider applies on the left pedal because the right
pedal effort is applied directly to the chainring without passing through the spindle. To
overcome this issue and measure the global applied pedaling torque, some sensors,
like [73], couple the bottom bracket spindle with the front chainring employing a spider.
Although accurate in measuring the pedaling torque, all the sensors seen up to this
point are characterized by high costs and complexity.

• Bottom bracket spindle deflection force: When pedaling, a backward pull on the
right side of the bottom bracket is generated. This force can be measured by evalu-
ating the backward deflection of the spindle using a magnet and an inexpensive Hall
effect sensor, as done in [77]. Although this technology is cheaper than the previously
mentioned ones, it has the drawback that the torque is not measured directly. Thus,
the performance of the control system may be altered by errors in the measurement
of the human input. Besides, these sensors require particular care in the mounting
process because an alignment in the direction of the chain tension is necessary for
correct operation.
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2.2 Pedaling torque sensors

• Front chain tension: Another possibility to sense the human torque is to measure the
tension of the front chain introducing additional idler pulleys in the drivetrain exploiting
either piezoresistive [78] or hall effect [79] principles. In this approach, knowing the
measured chain tension and the chainring radius allows the indirect calculation of the
pedaling torque.

• Rear dropout reaction force: Other sensors, like [80,81], derive the torque measuring
the rear dropout forward reaction force caused by the pulling of the chain through a
strain gauge load cell. When the radius of the rear sprocket is known, they allow an
indirect calculation of the pedaling torque. Although these sensors are simple and
inexpensive, their installation requires customization of the bicycle frame.

• Rear axle forward deflection torque: The pedaling torque may be also measured
from the rear axle forward deflection obtained with a sensor mounted in the motor
hub [82]. When pedaling, the torque is transmitted from the chain to the rear sprocket
and from the latter to the rotor via a torsional spring. The connection with the spring
causes a phase shift between the sprocket and the rotor when a torque is applied that
can be measured using Hall effect sensors.

• Pedals/Crankarms forces: A different approach to sensing the torque consists of
measuring the forces acting on the pedals or the crank arms using piezoresistive or
piezoelectric [83] sensors. In literature, many examples of piezoresitive sensors that
evaluate the forces acting on the pedals [84–86] or on the crank arms [87–89] can
be found. However, evaluating the pedaling torque from the forces applied on the
pedals or crank arms is not trivial because not all the force components contribute
to torque generation. Therefore, many sensing elements are installed to evaluate the
single contributions. Since these forces are measured in a rotating frame, the sensors
require a wireless data transfer and customized pedals or crank arms designed to
protect and power the electronics increasing system complexity and costs. For the
above-mentioned reasons, such sensors are rather employed as cycling power meters
to analyze the pedaling performances than to sense the human input in electric bicycle
control systems.

From the considerations made in this section, it emerges that depending on the mounting
position and the exploited physical principle, pedaling torque sensors may increase the costs
of an electric bicycle when high-quality sensors are utilized. The employment of cheaper
sensing technologies based on indirect measurements of the human input might reduce the
costs but increases the bicycle mechanical design complexity. Additionally, their utilization
might degrade the overall control performance of the system. Therefore, it is worth analyzing
torque-sensorless control approaches to avoid the installation of such sensors.
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2.2 Pedaling torque sensors

Measured quantity Physical principle Advantages Disadvantages

Bottom bracket Piezoresistive [72,73] High accuracy Expensive
spindle torque Rotating frame

Complex installation

Optical [74] High accuracy Expensive
No rotating frame Lenses contamination

Magnetostrictive [75] No rotating frame Expensive
Magnetization process
Calibration process

Bottom bracket Hall effect [77] Cheap Indirect measurement
spindle deflection Complex installation
force

Front chain Piezoresistive [78] Cheap Indirect measurement
tension Hall effect [79] Drivetrain modification

Rear dropout Piezoresistive [80,81] Cheap Indirect measurement
reaction force Frame modification

Rear axle forward Hall effect [82] Cheap Indirect measurement
defelection torque Motor modification

Pedals/Crankarms Piezoresistive High accuracy Rotating frame
forces [84–89] Many sensing elements

Crankset modification
Expensive

Piezoelectric [83] High accuracy Rotating frame
Crankset modification
Expensive

Table 2.1: Pedaling torque sensors classification based on the measured quantity and the
exploited physical principle.

29



2.3 Control strategies

2.3 Control strategies

This section analyzes the different control strategies used to power-assist an electric bicycle.
In its simplest form, a controller is an on-off switch that provides a constant voltage to the
motor. Thus, when no pedaling torque is applied, the vehicle speed depends only on the
motor characteristics and environmental load. An upgrade to this control approach is to use
a rheostat to control the motor current providing different levels of assistance. Although this
method is simple, it wastes battery energy. Therefore, modern controllers reduce energy
losses by relying on a PWM. Power-on-demand bicycle controllers generate the correspond-
ing assistance level depending on the throttle signal. Differently from this, pedelec controllers
combine the measurements of cadence and/or torque sensors to produce electrical assis-
tance. In its basic form, the pedelec controller is just an on/off switch that turns on the power
assistance when a cadence or a torque sensor senses a human input. In its more complex
forms, a pedelec controller can combine many inputs: pedaling cadence and torque, mo-
tor speed and torque, road slope, bicycle acceleration, cyclist heart rate, etc. to provide a
desired relationship between human and motor power. [1]

Focusing on pedelec control strategies, a commonly used classification is based on the
sensors that measure the human power input. Two categories are typically distinguished
namely cadence-sensor-based and torque-sensor-based control strategies. However, the
definition of the best approach is not straightforward since it depends mainly on the prefer-
ences of the cyclist and demands while cycling. Moreover, as said before, the control strate-
gies can also rely on both sensors. When considering strategies that employ either cadence
or torque information, cadence-sensor-based pedelecs are claimed to be more suitable for
cyclists that ride an electric bicycle to minimize the effort without interest in physical train-
ing. Whereas, torque-sensor-based pedelecs seem to suit better people that do not want to
lose the training aspect while riding an electric bicycle. The commonly used classification
previously proposed gives only general information for the final user of the bicycle and does
not provide sufficient information to the controller designer. Following, the author discusses
a classification based on the optimization focus. However, it is necessary to remark that a
control strategy can belong to more than one category and thus a clear distinction cannot
always be done. As illustrated in Figure 2.6, the author has classified the control strategies
into four main categories, namely power-, speed-, cyclist-, and energy-oriented control ap-
proaches. Table 2.2 contains a summary and a comparison of the analyzed pedelec control
strategies.

Pedelec
Control Strategies

Power-oriented Speed-oriented Cyclist-oriented Energy-oriented

Figure 2.6: Pedelec control strategies classification based on the optimization focus.
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• Power-oriented control strategies: To power-oriented strategies belong elementary
control approaches such as the previously mentioned on/off switching and fixed-gain
ones. In fixed-gained approaches, the motor power or torque is set as a fixed percent-
age of the pedaling input. This is typically done by the user that selects the desired
level of assistance and thus determines the system performance [90]. Moreover, to
respect the legislation, the assistance ratio can be reduced with the increasing bicy-
cle speed. Other approaches that belong to power-oriented strategies are Real-Time
Power Mapping (RTPM) strategies, such as the one proposed in [90]. In RTPM strate-
gies, the rider chooses a desired total target power which is then ensured by the con-
trol system. In other words, the sum of the human and motor contributions is set to
a desired level. The main asset of power-oriented strategies is the simplicity of their
implementation. Nevertheless, such methods do not consider the environmental load
that affects the final vehicle speed. Actually, there can be situations in which the com-
bined human and motor power may not be sufficient to overcome the external load.
For this reason, [28] exploits a DOB that estimates and compensates for the environ-
mental disturbance torque. In this work, the motor assistance is composed of a term
proportional to the cyclist input plus the estimated environmental load given by a DOB.
Moreover, the works [29,91,92] address the robust estimation of external disturbances
using DOBs. Another drawback of power-oriented techniques is that they amplify the
ripple of the pedaling torque and thus the vehicle speed fluctuations leading to dan-
gerous situations, especially with high amplification gain on a flat or downhill road. To
avoid speed fluctuations, Torque Filling (TF) approaches can be implemented [90,93].
The idea behind TF strategies is to ensure that the total torque is constant across the
whole pedal cycle and compensate for the fluctuating profile of the pedaling torque with
the motor action. In this way, the control action eliminates the torque ripple related to
the torque amplification and the consequent speed fluctuation.

• Speed-oriented control strategies: In speed-oriented strategies, the control system
or the rider select a target bicycle speed. The motor provides the power accordingly
to track the speed reference. Therefore, in these approaches, the desired speed pro-
file can be followed independently from the environmental conditions. The work [94]
proposes a bicycle speed trajectory tracking. In particular, this work implements a feed-
forward controller obtained from the vehicle mathematical model along with a standard
feedback Proportional-Integral-Derivative (PID) controller. Whereas, in [95], a state
feedback optimal control which is robust to disturbances and model uncertainties tracks
the desired speed. The works [96,97] express the bicycle speed control in terms of opti-
mization of H∞ performances. In other works, Fuzzy Logic Controllers (FLCs) [98–100]
allow to track the target speed generating an electrical assistance that depends on
several inputs using a linguistic approach. In [101], an adaptive FLC adjusts online
the fuzzy parameters to guarantee better riding comfort and safety. Moreover, the
work [102] compares the velocity tracking performances between standard PID, Fuzzy
PID, and Hybrid Fuzzy-PID controllers. Although FLC strategies allow to provide the
electrical assistance in a more readable way similar to human reasoning, their imple-
mentation on microcontrollers is generally computationally heavier than standard tra-
jectory tracking control strategies. The pedaling torque profile introduces oscillations
in the bicycle speed even in a speed-oriented control. The reduction of speed fluctu-
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ation in bicycle speed control has been addressed in literature relying on Repetitive
Controllers (RCs) [103, 104]. A RC exploits the periodic nature of the pedaling torque
to reduce the speed fluctuations rejecting periodic disturbances. Furthermore, another
possible approach to reduce speed fluctuations analyzed in [105] uses an adaptive
notch filter. The experimental results show that the proposed adaptive notch filter re-
duces the velocity oscillations more than a standard RC.

• Cyclist-oriented control strategies: Cyclist-oriented control strategies focus on keep-
ing a physiological variable at a constant level independently from the environmental
load encountered while cycling. Some works [106,107] measure the oxygen uptake or
ventilation rate to evaluate the effort while cycling and provide electrical assistance ac-
cordingly. Nevertheless, these strategies require complex hardware that can be used
only in laboratory experiments. According to Fick principle, oxygen consumption can
be related to heart rate. Therefore, as stated in [90], many works [108, 109] use heart
rate dynamic models to predict the heart rate of the cyclist at particular environmental
conditions and apply power assistance to keep the heart rate and thus the physical
effort at desired target values. However, controlling the heart rate of the cyclist is not
trivial since its dynamics can differ from one person to the other and can be dependent
on variables that are not necessarily related to physical activity. Other works [110,111]
focus on providing the power assistance granting the comfort of ride using Reinforce-
ment Learning (RL) approaches. In these works, the RL agent applies different levels
of assistance and gets a reward for trying to solve the comfort of ride problem. After a
trial-and-error period, the RL agent learns to provide electrical assistance to enhance
the comfort of ride.

• Energy-oriented control strategies: Energy-oriented control strategies aim at effi-
ciently managing the energy flows within the electric bicycle system. In particular, they
address the issue of extending the battery range limiting its discharge, and recovering
energy when braking or during high-efficiency pedaling. For example, in [112], the en-
ergy is recovered when the cyclist is most efficient and returned during low-efficiency
pedaling with the objective of keeping the State of Charge (SoC) of the battery constant
and thus increasing the battery autonomy. Another work [113] aims at reducing energy
consumption by imposing a desired battery discharge rate and thus regulating its SoC.
In other works [114,115], the energy management optimization in electric bicycles has
been formulated using FLCs.

As previously shown, several control strategies of different complexity may be employed to
electrical assist pedelecs. With some modifications, many of these approaches can be also
applied to torque-sensorless systems to achieve specific desired control targets. Among
the possible applicable control strategies, this thesis will focus on the power-oriented ones
because they reduce the mechatronic system complexity and allow easier analysis of the
torque-sensorless performance. In particular, a simple fixed-gain strategy is utilized later in
this work.
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Mathematical modeling of bicycle dynamics

3 Mathematical modeling of bicycle
dynamics

A bicycle can be mathematically described with models of different complexity depending
on the purpose of the analysis. A detailed bicycle model may be elaborate because the
system has many degrees of freedom and intricate geometry. Thus, when modeling a bi-
cycle, it is fundamental to choose the modeled components, the tire-road interaction, and
the complexity of the rider [116]. Bicycles are statically unstable, but when controlled by the
human steering action and thanks to mechanical design aspects such as the front fork offset
stabilizing effect, they may be stabilized. In the design of electric bicycles, the mathemat-
ical model is used to evaluate the combined human-motor power needed for hill-climbing
and overcoming the wind and rolling resistances [51]. Since the rider performs the vehicle
stabilization, the vehicle dynamics analysis can be reduced to the one in the longitudinal
direction [104]. The following sections express the bicycle longitudinal dynamics mathemat-
ically. In particular, they analyze the propulsive and resisting forces acting on the bicycle
dynamics and their parametric variability. In such a way a generic mathematical expression
of the vehicle longitudinal dynamics is derived. Eventually, this chapter contains a sensitivity
analysis of the resisting forces to evaluate the variability of the power needed to overcome
them in different realistic scenarios. The former provides indications that will be utilized in
Chapter 4 to simplify the proposed mathematical model for the pedaling torque estimation.

3.1 Bicycle longitudinal dynamics

The pedaling purpose is to apply a driving force that equals the total forces resisting forward
motion to maintain a constant speed [1]. When the driving force exceeds or is smaller than
the resisting ones, a bicycle acceleration or deceleration is caused. This section analyses the
bicycle longitudinal dynamics in the specific case of an electric bicycle with parallel topology.
It is assumed that the bicycle moves only along the longitudinal direction x, the rider has
a fixed position and orientation, the mass of the system is concentrated at its mass center,
and the leaning of the vehicle is neglected. Under these hypotheses, the bicycle longitudinal
dynamics, graphically represented in Figure 3.1, can be expressed with the equation:

Fd − Fg − Fr − Fa − Fb − FB = FI , (3.1)

where Fd, Fg, Fr, Fa, Fb, FB and FI are the driving, the gravity, the rolling friction, the aero-
dynamic drag, the bump, the braking and the inertia forces, respectively. In the following
sections, the terms that compose equation (3.1) are analyzed in details.
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3.1 Bicycle longitudinal dynamics

Figure 3.1: Bicycle longitudinal dynamics including the effects of driving and resisting forces.

3.1.1 Driving forces

The propulsive power in an electric bicycle is generated by the combined action of the cyclist
and the motor:

Fd = Fh + Fm, (3.2)

where Fh and Fm are the human and motor force contributions to the longitudinal dynamics.
In the case of a standard bicycle, where no electrical assistance is available (Fm = 0 N),
equation (3.2) reduces to Fd = Fh. In a bicycle, the majority of human power is generated by
applying a force to the pedals Fp that is converted in a torque Tpc by the crankset mechanism,
whose cogwheel rotates at an angular speed ωc. This torque is then transmitted to the rear-
wheel Tpw through a chain transmission. In drivetrains with a freewheel mechanism, the
torque is transmitted only in forward pedaling. On the contrary, in backward pedaling, the
wheel is disengaged from the drivetrain and free to rotate at a different speed from the rear
cogwheel. Therefore, under the hypotheses of engaged drivetrain and no wheel-slipping,
the angular speed at the rear-cogwheel ωw equals the angular speed of the wheel ω. Figure
3.2 reports a schematized representation of a bicycle drivetrain. In this figure, rc and rw
represent the radii of the front- and back-cogwheels of the drivetrain and r the radius of the
rear wheel.

Under these hypotheses, a relation between the delivered pedaling power at the crankset
Ppc = Tpcωc and the one transmitted to the rear-cogwheel Ppw = Tpwωw = Tpwω can be
defined:

Tpwω = ηdTpcωc, (3.3)

where ηd represents the efficiency of the chain-transmission whose value is typically in the
range ηd ∈ [0.85; 0.97] [1]. Neglecting the power losses in equation (3.3), the drivetrain gear
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3.1 Bicycle longitudinal dynamics

Figure 3.2: Schematic representation of a bicycle drivetrain in case of forward pedaling and
no wheel-slipping.

ratio τd can be expressed as follows:

τd =
ω

ωc
=

Tpc

Tpw
. (3.4)

Alternatively, this gear ratio can be expressed as the ratio of the number of teeth or the ratio
of the radii of the front and rear cogwheels:

τd =
zc

zw
= rc

rw
. (3.5)

It has to be remarked that, in bicycle drivetrains, the gear ratio is typically meant to reflect how
many times the rear wheel turns for each complete turn of the pedals, namely as the ratio
of the output to the input angular speeds. Hereafter, to simplify the mathematical modeling,
this assumption will be applied to all analyzed gear ratios. From equations (3.3) and (3.4)
the pedaling torque transmitted to the rear-wheel can be expressed as:

Tpw = ηd
Tpc

τd
. (3.6)

Thus, the human force contribution to the longitudinal motion results:

Fh =
Tpw

r
= ηd

Tpc

rτd
. (3.7)

In case of an electric bicycle, the motor contributes to propel the vehicle. This contribution
depends on the considered motor assembly leading to different expressions of the driving
force.

Mid-drive motor assembly:
In case of mid-drive motors, both the pedaling and motor torques are applied to the crankset.
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3.1 Bicycle longitudinal dynamics

In particular, the motor can be directly connected to the crankset or connected to it through
a gearbox that multiplies the motor torque. In case of geared motors, the relation between
the motor power Pm = Tmωm and the motor power transmitted to the crankset Pmc = Tmcωc
results:

Tmcωc = ηgTmωm, (3.8)

where Tm is the motor torque, Tmc is the motor torque transmitted to the crankset, ωm is the
motor mechanical speed, and ηg is the efficiency of the gearbox. Geared transmission are
typically characterized by high efficiency ηg ∈ [0.94; 0.98]. Neglecting the power losses in
equation (3.8), the gear ratio of the gearbox τg results:

τg =
ωc

ωm
= Tm

Tmc
. (3.9)

Depending on the internal configuration of the gearbox, the transmission ratio can be related
to the number of teeth of the cogwheels. In geared motors, planetary gears are typically
employed because they provide higher torque at the same dimension compared to ordinary
gears. From equations (3.8) and (3.9), the expression of the motor torque applied to the
crankset results:

Tmc = ηg
Tm

τg
. (3.10)

In case no gearbox is inserted between the motor and the crankset, the transmission ratio
and its efficiency result τg = ηg = 1 and thus Tmc = Tm and ωc = ωm. Considering the bicycle
drivetrain, a relation between the total input power at the crankset PΣc = TΣcωc and the total
output power at the rear-wheel PΣw = TΣwω can be defined:

TΣwω = ηdTΣcωc, (3.11)

where TΣc is the total torque at the crankset and TΣw is the total torque transmitted to the
wheel. These two torques can be decomposed in contributions related to the motor and the
human pedaling:

TΣc = Tpc + Tmc TΣw = Tpw + Tmw, (3.12)

where Tmw is the motor torque transmitted to the rear-wheel. Therefore, equation (3.11)
becomes:

(Tpw + Tmw)ω = ηd (Tpc + Tmc)ωc. (3.13)

Using the superposition principle, the contributions of the pedaling and motor power can be
considered separately. Considering only the effect of the motor torque on the drivetrain, the
transmitted motor torque to the rear-cogwheel results:

Tmw = ηd
Tmc

τd
. (3.14)
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Thus, the motor force contribution results:

Fm =
Tmw

r
= ηd

Tmc

rτd
= ηdηg

Tm

rτdτg
. (3.15)

Figure 3.3 presents the power flow block diagram of a mid-drive motor assembly.

Eelctric Motor

Crankset

Gearbox

Drivetrain

Figure 3.3: Power flow block diagram of a mid-drive motor assembly.

Hub motor assembly:
In case of hub motor assembly, the motor is not connected to the crankset. Therefore, the
motor force contribution is independent from the drivetrain. In case of geared hub motors,
the torque transmitted to the wheel results:

Tmw = ηg
Tm

τg
. (3.16)

Thus, the motor force contribution results:

Fm =
Tmw

r
= ηg

Tm

rτg
. (3.17)

In case of a dircet-drive motor, where no gearbox is present (τg = ηg = 1) between the motor
and the wheel Tm = Tmw, the force contribution results:

Fm =
Tm

r
. (3.18)

It has to be remarked that the motor force contribution of a hub motor assembly does not
depend on its mounting position in the bicycle system, namely in the front or rear wheel.
Figure 3.4 shows the power flow block diagram of a hub motor assembly mounted in the rear
wheel.
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Eelctric Motor

Crankset

Gearbox

Drivetrain

Figure 3.4: Power flow block diagram of a hub motor assembly mounted in the rear wheel.

Friction motor assembly:
In case of a friction motor assembly, the power is transmitted from the motor to the front or
rear wheel with a friction drive. Figure 3.5 reports a schematized representation of bicycle
friction drive where r f represents the radius of the motor friction-wheel. The relation between
the motor power Pm = Tmωm and the power transmitted to the wheel Pmw = Tmwω can be
expressed as:

Tmwω = η f Tmωm, (3.19)

where η f is the efficiency of the friction transmission. Neglecting power losses, the friction
drive transmission ratio τf can be expressed as:

τf =
ω

ωm
= Tm

Tmw
. (3.20)

In case of adherence between the two friction-wheels, equation (3.20) can be related to the
geometry of the friction-wheels:

τf =
r f

r
. (3.21)

From equations (3.19) and (3.20), the expression of the motor torque transmitted to the wheel
can be expressed as:

Tmw = η f
Tm

τf
. (3.22)

Therefore, the motor force contribution in a friction motor assembly results:

Fm =
Tmw

r
= η f

Tm

rτf
. (3.23)
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Figure 3.5: Friction motor assembly.

Figure 3.6 shows a block diagram of the power flow in a friction motor assembly. Table
3.1 reports a summary of the obtained driving forces expressions in electric bicycles with
different motor assemblies. It can be seen that the motor force contribution can be expressed
with a generic expression valid for the three motor assemblies:

Fm = ηm
Tm

rτm
, (3.24)

where ηm = ∏ ηi is the global motor mechanical transmission efficiency, τm = ∏ τi its trans-
mission ratio, and i the generic involved mechanical transmission. In the following sections,
the pedalling torque Tp and the motor torque Tm are analyzed in details.

Eelctric Motor

Crankset

Friction Drive

Drivetrain

Figure 3.6: Power flow block diagram of a friction motor assembly.
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Motor assembly type Human force contribution Fh Motor force contribution Fm

Mid-drive ηdηg
Tm

rτdτg

Hub ηd
Tpc
rτd

ηg
Tm
rτg

Friction η f
Tm
rτf

Table 3.1: Driving forces expressions in different electric bicycle motor assemblies.

3.1.2 Pedaling torque

The pedaling torque applied to the crankset Tpc has a time-variant profile that depends on
the geometry of the crankset, the intensity, and the direction of the applied pedaling forces.
This torque is the sum of the contributions of the left Tl

pc and right pedals Tr
pc:

Tpc = Tl
pc + Tr

pc. (3.25)

These torque contributions are generated by the pedaling force applied on the left Fl
p and

right Fr
p pedals. However, these forces do not contribute entirely to the torque generation.

They can be decomposed in a tangential component to the pedal motion Fi
pT

and a radial
one Fi

pR
, where i ∈ {l, r}. Among them, the tangential component is the one responsible for

torque generation and it is also called effective component while the radial force is referred
to as ineffective component. The single torque contribution can be written as:

Ti
pc = Fi

pT
lc, (3.26)

where lc is the length of the crank arm. Therefore, the single torque contribution depends
on the intensity and direction of the applied pedaling force and the crankset angle θc. Fig-
ure 3.7 represents the single pedal torque contribution during one crank revolution. During
the first half period (I and II quarters) a propulsive torque is applied Ti

pc > 0. Thus, the first
half period represents a propulsive phase also called downstroke phase. In particular, a
typical pedaling torque profile increases in the I quarter and decreases in the II one. Dur-
ing the second half period (III and IV quarters), the torque contribution may be negative
because non-professional cyclists do not lift the leg while pushing the pedal with the other
one [117]. Indeed, the weight of the passive leg generates a negative torque contribution
Ti

pc < 0 when the slight tendency to lift the resting pedal does not overcome the weight of
the leg. Therefore, the second half period represents a recovery phase also called upstroke
phase. Figure 3.8 contains the typical profile over one crank revolution of the single pedal
tangential and radial force components whose values are inspired by the ones shown in [1].

Considering the global effect, each pedal alternates a propulsive or a recovery phase. In
other words, when one leg pushes on a pedal, the other recovers. In this way, the cyclist
generates a quasi-periodic pedaling torque profile similar to a sinusoidal signal with an offset
[43,45,105]. Figure 3.9 represents a typical pedaling torque profile over one crank revolution
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inspired by the one shown in [118]. Defining θc = 0 rad when the pedal is in the vertical
position or at the Top Dead Center (TDC), the pedaling profile shows two maximums when
the pedals are close to the horizontal position, where θc ≃ π

2 rad and θc ≃ 3π
2 rad. This torque

peak typically occurs during the transition of each pedal from the I to the II quarter. On
the contrary, close to the TDC and the Bottom Dead Center (BDC), where θc = π rad, the
pedaling torque presents its minimum values.

Figure 3.7: Single pedal contribution Ti
pc to the pedaling torque Tpc over one crank revolution.

Figure 3.8: Typical single pedal tangential Fi
pT

and radial Fi
pR

force components over one
crank revolution.
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Figure 3.9: Typical pedaling torque profile Tpc over one crank revolution.

Pedaling torque profiles are variable depending on the riding conditions, the cyclist ped-
aling style, inter-subject variability, and the mechanical configuration of the bicycle. Envi-
ronmental conditions affect the final torque profile because they influence the magnitude of
force needed to accelerate the vehicle to the desired speed. As shown in [118], the pedaling
torque profile varies with the cycling cadence and the environmental conditions. Besides, a
cyclist can turn the pedals with any variety of pedaling styles determining different pedaling
torque profiles. For example, the upright cycling torque profile differs from the one obtained
in standing-up pedaling. Moreover, the cyclist capability of propelling a bike varies depend-
ing on the fitness level, age, and sex. Furthermore, asymmetries between the two legs are
quite common for most cyclists generating a difference between the two torque maximums
over a crank revolution. Other factors that influence the pedaling torque profile are related to
the mechanics of the bicycle. Indeed, the saddle height, its inclination, and the length of the
crankarms affect the average and peak pedaling torque over one crank revolution [1,119].

Nevertheless, pedaling is not the only human propulsion source in a bicycle. Cyclists
exploit muscles other than the legs to propel the vehicle generating driving forces indicated
with Fe

h in this work. Tilting the bicycle away from the pedal in downstroke allows the rider
to perform substantial arm work easily. Besides, pulling the torso forward, from the saddle
toward the handlebar, during the pedaling downstroke permits to use of the arms powerfully
especially when starting. Moreover, standing while pedaling allows for an increase in the
short-term applied power because it adds work produced by other muscles. [1]
Thus, the global expression of the human force contribution results:

Fh = ηd
Tpc

rτd
+ Fe

h . (3.27)

3.1.3 Motor torque

The motor torque Tm depends on the type of motor used to propel the bicycle. As stated in
chapter 2, many kinds of motors can be employed in an electric bicycle. In the following, the
analysis is limited to three-phase brushless motors since they are nowadays the standard for
electric bicycle applications. In Figure 3.10, a schematic representation of a brushless motor
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is reported. Different coordinate systems can be defined to model the machine, namely
phase abc-, stator αβ-, and rotor dq- reference frames. The phase coordinate system is
related to the physics of the machine and constituted of three axes with 2π

3 rad phase shift.
Quantities expressed in this coordinate system can be transformed into the stator frame,
where the α-axis is aligned to the a one and the β-axis is orthogonal to it. The rotor frame
is defined with the d-axis aligned to the permanent magnet axis and the q- one orthogonal
to it. This coordinate system rotates synchronously with the rotor ωdq = ωe, where ωe is the
electrical angular speed of the rotor.

Figure 3.10: Schematic representation of a brushless motor.

The number of pole pairs of the machine np defines the relation between electrical and
mechanical quantities:

θm =
θe

np
ωm =

ωe

np
, (3.28)

where θm and θe are the mechanical and electrical positions.
Furthermore, Uabc = [Ua Ub Uc]T and iabc = [ia ib ic]T are the voltage and current vec-
tors in the phase reference frame, R is the phase resistance, and eabc = [ea eb ec]T = dΨabc

dt
are the induced electromotive forces equal to the derivative of the magnetic flux linked with
each phase Ψabc = [Ψa Ψb Ψc]T. These fluxes are generated by the combined effects
of the permanent magnets, self-induction, and mutual-induction. For the sake of brevity,
the equations of brushless motors are not derived in this work. For further information on
brushless motor models, the interested reader can refer to [120]. Using the Clarke and Park
transformations, a vector in the phase reference system can be transformed in the stator
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or rotor frames, respectively. In the case of PMSMs, the motor or electromagnetic torque
expressed in the rotor reference frame assumes the following expression:

Tm =
3
2

npΨPMiq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
synchronous torque

+ 3
2

np (Ld − Lq) idiq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reluctance torque

, (3.29)

where ΨPM is the permanent magnet flux linkage, Ld and Lq are the inductance expressed
in the rotor reference frame, while id and iq are the currents in the same coordinate system.
Equation (3.29) is constituted by a component related to the interaction of the permanent
magnet and the q-axis current called synchronous torque and a term related to the reluctance
variation called reluctance torque. In the case of isotropic machines, such as PMSMs with
superficially mounted magnets, Ld ≃ Lq and thus equation (3.29) can be written as:

Tm = KTiq, (3.30)

where KT = 3
2 npΨPM is the torque constant of the motor. Moreover, in the FOC of PMSMs, the

machine is typically controlled with a current reference i∗d = 0 A, and thus expression (3.30)
stands even in case anisotropies are present. For the sake of brevity, the analysis will be
limited to PMSMs since they are the kind of motor employed in the experimental validation of
the proposed torque-sensorless control in Chapter 4. The interested reader can find further
information about BLDCs in [120].

3.1.4 Gravity force

Gravity affects the bicycle longitudinal dynamics in the presence of a road slope. In particular,
its component in the longitudinal direction of motion Fg has a resisting effect in uphill riding
Fg < 0 and a propulsive effect in downhill riding Fg > 0. The gravity force expression can be
written as follows:

Fg = mg sin (β) , (3.31)

where m is the total mass of the vehicle equal to the sum of the masses of the bicycle, the
cyclist, and the carried cargo, g = 9.80665 m

s2 is the gravitational acceleration on earth, and
β is the road slope angle. Figure 3.11 shows the bicycle gravity force in case of uphill and
downhill riding, where the weight mg is applied to the Center of Gravity (CoG) of the system
and N is the normal to the surface weight force component.

The steepness, slope, gradient, or grade of the road can be defined either as an angle β
or as a ratio of elevation increase or rise h per unit distance traveled horizontally or run d and
typically expressed as a percentage β%:

β% =
h
d
⋅ 100. (3.32)

The road slope angle can be obtained from equation (3.32) as follows:

β = arctan(
β%

100
) . (3.33)
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(a) Uphill riding: Fg < 0. (b) Downhill riding: Fg > 0.

Figure 3.11: Gravity force Fg in bicycle longitudinal dynamics.

Small inclines around β% = 0.1% can be barely sensed by a cyclist. Modest hills have a
grade ranging between β% ∈ [3; 6]%. Slopes β% ≥ 12% are considered hard to ascend with
a bicycle. Some roads can have short stretches whose steepness reaches β% ∈ [20; 25]%.
Moreover, the slope on rough terrain can be β% ≥ 25%. The steepest listed road in the world
is in Harlech, Wales, with a grade of β% = 37.5%. [1]

3.1.5 Rolling friction force

The rolling friction force Fr is the force required to roll a loaded wheel at a constant speed.
This friction force is commonly defined as follows:

Fr = µN = µmg cos (β) , (3.34)

where µ is the rolling friction coefficient. Equation (3.34) represents a commonly accepted
empirical approximation. Nonetheless, no proof of its validity and its independence from the
vehicle speed exists. The rolling friction can be caused by the tire resistance when conform-
ing to a harder road or by the ground resistance encountered when the tires sink into softer
ground. Tire rolling resistance is the most commonly encountered and is caused by the en-
ergy losses in the deformation and rubbing of the rolling tires on the road. This deformation
has a hysteretic behavior that strongly depends on the tire material, its geometry, frequency
of deformation, inflation pressure, and temperature. Concerning ground rolling, the resist-
ing force is caused by the additional work needed to press the tires into the surface. The
rolling friction coefficient µ ranges from 0.002 in high-quality racing tires with high pressure to
circa 0.01 in tires of utility bicycles with low pressure [1]. The rolling friction coefficient is not
constant with the tire speed, temperature, and pressure. Indeed, its value increases slightly
with increasing velocity. However, higher speeds increase the tire temperature and hence its
pressure. An increment in temperature and pressure reduces the rolling friction coefficient
balancing the effect of velocity. Other sources of rolling friction in bicycles are related to the
bearings and mounting imperfections of the wheels. The impact of bearings on rolling friction
is negligible compared to the effect of the wheels unless they are mounted too tightly. More-
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over, imperfect wheels, a misaligned mounting, or an uneven tire can considerably increase
the rolling resistance.

3.1.6 Aerodynamic drag force

The aerodynamic drag force Fa is the resisting force caused by the motion of the bicycle
relative to air. This resisting force is composed of two main components: the pressure drag
and the skin-friction drag. The first is caused by pushing and accelerating aside the air
directly ahead of the rider. The second is generated by the fluid friction on the object surface
moving through the air. However, in bicycles without fairings, the skin-friction drag can be
considered negligible compared to the pressure one. Evaluating the work done by the cyclist
to accelerate and push aside a mass of air directly ahead of the cyclist, the resisting force
can be expressed as:

Fa = sgn (vax)
1
2

ρCd Av2
ax , (3.35)

where ρ is the density of air, Cd is the drag coefficient, A is the frontal area of the cyclist plus
the bicycle, and vax is the relative air velocity along the longitudinal direction of motion. In re-
ality, the frontal area does not encounter all air evenly. Thus, the drag coefficient represents
a correction term employed to account for the imperfection of the formula in a real scenario.
The effective encountered area commonly used to model this imperfection is the drag area
Ad = Cd A. When the skin-friction is negligible, the drag coefficient Cd is almost constant
with velocity. Nevertheless, the drag coefficient, the frontal area, and hence the drag area
vary with the rider dimensions, position while riding, bicycle shape, and dressed clothes. For
instance, riding a bicycle in the upright position, in the so-called touring position (with the
hands on a dropped handlebar), or a crouched position changes the drag area consider-
ably. For the aforementioned reasons, racing bicycles are typically optimized to reduce this
area compared to commuting bicycles. Moreover, professional cyclists wear tight clothes to
minimize the drag area. Table 3.2 reports typical values of drag coefficients taken from [1].

Rider and bicycle Drag coefficient Cd Frontal area A in m2 Drag area Ad in m2

Upright position,
commuting bicycle 1.15 0.55 0.63

Touring position,
road bicycle 1 0.4 0.4

Crouched position,
tight clothes,
racing bicycle

0.88 0.36 0.32

Table 3.2: Typical values of drag coefficients in bicycles [1].

Another parameter that affects the aerodynamic drag force is the density of air whose
value is not constant and varies with temperature, humidity, and altitude. In the case of dry
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air, the expression of air density is obtained from the ideal gas law:

ρ =
p

RsΘ
. (3.36)

where p is the absolute pressure expressed in Pa, Rs = 287.05 J
kgK is the specific gas constant

for dry air, and Θ is the absolute temperature expressed in K. Thus, the air density decreases
with the increasing air temperature and increases with the increasing atmospheric pressure.
The value of dry air density at room temperature of Θ = 20 ○C at the sea level is ρ = 1.2 kg

m3 .
The air density also decreases with increasing humidity because the molar mass of water
vapor is smaller than the one of dry air. Furthermore, in the troposphere, an increasing
altitude reduces the air temperature and atmospheric pressure leading to a decrease in the
air density.

The aerodynamic drag force also depends on the apparent wind va and particularly on its
component along the longitudinal direction vax . This speed equals the bicycle ground speed v
when the wind is neglected: vax = v. In the presence of wind, it increases in case of headwind
vwx > 0 leading to an increase in the aerodynamic drag and decreases in case of tailwind
vwx < 0 causing a decrease of the drag force or a sailing force when ∣vwx ∣ > ∣v∣. Figure 3.12
contains two examples of airspeed va calculation in case of head and tailwind speed vw
and ground speed of the bicycle v. For simplicity in the representation, the wind has been
considered acting in the horizontal plane x − y and expressed in the wind reference frame
where a headwind is considered with a positive sign. It can be seen that the component of the
airspeed along the longitudinal direction can be expressed as the sum of the ground speed
of the bicycle plus the projection of the real wind speed along the longitudinal direction:

vax = v + vwx . (3.37)

It has to be remarked, that equation (3.37) is valid even when considering a three-dimensional
wind speed vector.

(a) Headwind: vax > v. (b) Tailwind: vax < v.

Figure 3.12: Air velocity va in the presence of wind vw and bicycle speed v in the horizontal
plane.

3.1.7 Bump force

The presence of bumps on the road affects the motion of the bicycle. In the case of reduced
bumpiness, bump losses are commonly treated as rolling friction even if the energy losses do
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not occur in the wheels. Small bump losses dissipate in the frame, suspensions, and cyclist
body. On the other hand, large bumps can cause a system center of mass variation that may
lead to a change of the vehicle motion direction and significant energy losses. In bicycles,
the rider mass absorbs, intentionally or not, a considerable amount of vibrations leading to
energy losses. In particular, according to [121], energy absorption correlates with discomfort
perception. Thus, an improvement in the perceived comfort while riding reduces the energy
losses related to bumps. The speed losses caused by bumps can be minimized by the tires,
suspensions, and intentional movements of the rider. However, an analytic expression to
describe the bump losses does not exist. Since most roads are reasonably smooth and the
effect of bump losses is not predictable or quantifiable, they will be covered by the rolling
friction in the mathematical formulation reported in this work.

3.1.8 Braking force

The purpose of braking is to reduce the bicycle speed and thus its kinetic energy. This en-
ergy can be dissipated as heat into the environment or converted into electrical energy in
the case of regenerative braking. When braking a bicycle, a resisting force FB is applied.
In standard bicycles, the braking force is caused by friction in contact surfaces that occur in
the brake-wheel and wheel-road contacts. Breaking forces are produced when the contact
surfaces slip between each other, namely in kinetic friction conditions. The ratio between the
normal force that presses the two surfaces F fN and the frictional resistance to motion F fP is

called kinetic friction coefficient µ f =
F fP
F fN

. This coefficient depends on the contact material
type, lubrication, and temperature. There exist many technologies of friction bicycle brakes
that can be classified into five types: plunger, drum, coaster, disk, and rim brakes. Among
them, the rim brakes are the most worldwide spread type. In this kind of brake, a rubber pad
is forced against the surface of the wheel rim generating a braking torque. In addition, the
wheel-road contact can generate a braking force in case of wheel-slipping. In this situation,
the wheel-road kinetic friction coefficient depends on the tire type of rubber, the road rough-
ness and wetness, and the contact surface temperature. Since the braking force depends on
the particular braking system and wheel-road interaction, a generic mathematical expression
of the braking force cannot be derived. Nevertheless, neglecting the wheels-slipping effect
and assuming to know the total torque applied on the front and rear wheels by the brakes
TB, the braking force can be expressed as:

FB =
TB

r
. (3.38)

3.1.9 Global considerations

When the driving forces differ from the resisting ones, a variation of kinetic energy and hence
an acceleration or deceleration of the bicycle is caused. This force of acceleration or inertia
force FI is expressed as follows:

FI = ma, (3.39)
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where a is the bicycle acceleration in the longitudinal direction. The caused variation of
kinetic energy is equal to the product of the inertia force times the distance over which it is
applied. Thus, this energy variation will be very high when starting the bicycle or braking it
and will be zero in steady-state conditions where a = 0 m

s2 . From the consideration previously
made about the driving and resisting forces, equation (3.1) can be expressed in its extended
form:

ηd
Tpc

rτd
+ Fe

h + ηm
Tm

rτm
−mg sin (β)− µmg cos (β)− sgn (vax)

1
2

ρAdv2
ax −

TB

r
= ma. (3.40)

3.2 Resisting forces sensitivity analysis

In this section, the effect of parametric variations on the required propulsive power needed
to overcome the resisting forces is analyzed through a sensitivity analysis. In particular, the
latter evaluates the power applied by the cyclist and the motor at given speeds in differ-
ent realistic environmental scenarios. This analysis allows the evaluation of the parametric
variability influence on the longitudinal dynamics (3.40) and of the error relevance when con-
sidering a typical value of each parameter instead of the actual value in the mathematical
modeling. Based on the considerations made in this section, a simplified vehicle dynamic
model is derived and utilized in the proposed pedaling torque estimators in Chapter 4.

In the following, the time-variant parameters of equation (3.40), namely the road grade
β%, the system mass m, the rolling friction coefficient µ, the drag area Ad, the air density
ρ, and the wind speed vwx , are discussed. Parameters such as the wheel radius r, the
drivetrain transmission ratio τd, and the one of the motor τm are not analyzed since they
are constant or known by design. Moreover, the drivetrain ηd and motor efficiencies ηm
are here neglected because their typical value is close to 1. Additionally, the analysis is
performed considering a gravity acceleration g = 9.80665 m

s2 . Depending on the analyzed
parameter, the power variation is evaluated by varying the parameter of interest and fixing
the others to typical values within their variability range. Table 3.3 reports the chosen fixed
parameter values and the analyzed parametric variability range employed in this sensitivity
analysis. Although, as stated in Section 3.1.4, steeper road grade may be experienced while
riding, the analysis is here limited to the typical range of variation β% ∈ [0; 10] %. Negative
inclines are not considered here since they generate a propulsive force independently from
the speed level, as clear from equation (3.31). A typical total system mass variability range
m ∈ [60; 140] kg (including the bicycle, the cyclist, and the cargo) has been considered.
Based on the considerations of Section 3.1.5, the typical variability range of the rolling friction
coefficient µ ∈ [0.002; 0.01] has been evaluated. Similarly, the common drag area range
Ad ∈ [0.32; 0.4]m2, defined in Table 3.2, has been taken into account. An air density variability
range ρ ∈ [1.14; 1.3] kg

m3 has been analyzed considering values of dry air density at sea level
in the typical cycling temperature range Θ ∈ [0; 35] ○C. The effect of an increasing altitude or
humidity level is here neglected since it causes a reduction of the air density leading to similar
results to a temperature variation. Furthermore, wind levels in the range vwx ∈ [−10; 10] km

h
are examined. It is necessary to remark that values outside the above-defined ranges can
rarely occur during cycling and therefore are not covered in this analysis. Following, the
selection criteria of the fixed values are discussed. The average road slope β% = 5 % within
the defined variability range has been picked. Whereas, a common system mass value
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m = 100 kg equal to the sum of a cyclist 70 kg, an electric bicycle 30 kg, and no cargo has
been chosen. A rolling friction coefficient fixed value µ = 0.005 representing an intermediate
case between racing and commuting tires has been selected. Moreover, a fixed drag area
value Ad = 0.4 m2 corresponding to a cyclist in a touring position riding a road bike has
been picked as an intermediate value between commuting and race cycling. Additionally, a
typical air density ρ (20○C) = 1.2 kg

m3 is taken into account. Ultimately, the absence of wind
vwx = 0 km

h has been considered as a commonly experienced riding condition and selected
as fixed value in the sensitivity analysis.

Parameter Fixed value Variability range

Road slope β% in % 5 [0; 10]

System Mass m in kg 100 [60; 140]

Rolling friction coefficient µ 0.005 [0.002; 0.01]

Drag area Ad in m2 0.4 [0.32; 0.63]

Air density ρ in kg
m3 1.2 [1.14; 1.30]

Wind speed vwx in km
h 0 [−10; 10]

Table 3.3: Parametric values employed in the sensitivity analysis and their typical variability
range.

The following analysis, illustrated in Figure 3.13, compares the power required to over-
come the single resisting forces within the typical cycling speed range v ∈ [0; 30] km

h , namely
the gravity Pg = Fgv, the rolling friction Pr = Frv, and the aerodynamic drag Pa = Fav. It has to
be remarked that sailing effects are not shown in the presence of tailwinds in Figure 3.13(f).
As one can notice, the power needed to overcome the gravity force depends only on the
slope and on the system mass. In particular, from Figures 3.13(a) and 3.13(b) it can be seen
that slope variations have a higher influence than mass value modifications. Furthermore,
Figure 3.13(a) shows that in level ground riding β% = 0 %, the gravity does not influence
the vehicle motion at all. As clear from equation (3.34), the power required to overcome the
rolling friction depends also on the rolling friction coefficient. Figure 3.13(a) shows that the
influence of the road slope on this resisting component is negligible since this term depends
on the cosine of the slope angle. Whereas, in Figures 3.13(b) and 3.13(c) one can notice
that variations of system mass and rolling friction coefficient influence the rolling resistance
considerably. In particular, typical rolling friction coefficient variations have a higher impact
than changes in system mass. Contrary to the previously seen resisting forces, the aero-
dynamics depends on the drag area, the air density, and the wind speed. It can be noticed
that the presence of wind has the highest impact on the power needed to overcome the
aerodynamic resistance, followed by variations of the drag area whose influence is signifi-
cant, especially in the high-speed range. Figure 3.13(e) shows that the effects of air density
variations are negligible compared to the other parametric variations and noticeable only at
high speeds. Considering the resisting components simultaneously, it can be seen that, in
the absence of wind and slope, at speeds lower than circa v < 15 km

h , the rolling resistance is
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the dominant resisting component. While at speeds higher than circa v > 15 km
h , the majority

of propulsive power is used to overcome the aerodynamic resistance. However, it has to be
remarked that this speed threshold value can slightly vary depending on the chosen fixed
parameters. Moreover, in the presence of a noticeable road grade, the propulsive power is
employed primarily to overcome the effect of gravity.

Afterwards, the typical variability of the total power required to overcome the resisting
forces PR = Pg + Pr + Pa is analyzed in Figure 3.14. It has to be remarked that in this figure,
the total power required to overcome the resisting forces when the system presents the
fixed parameters of Table 3.3 is reported in black. Moreover, for the sake of a more clear
graphical representation, the effect of the parametric variation has been divided into two
subfigures. Figure 3.14(a) represents the effect of road grade, vehicle mass, and rolling
friction coefficient variations on the total required power, while Figure 3.14(b) analyses the
same effect caused by variations of the drag area, air density, and wind speed. It can be
seen that a variation in road grade has the largest impact on the total required power. A
mass variation has a significant influence on the longitudinal dynamics. However, its impact
is smaller than the one of a slope variation. At high speeds, the presence of wind can
affect considerably the longitudinal dynamics with an impact comparable to a mass variation.
Besides, as stated before, variations of the rolling friction coefficient have a bigger impact
on the total required power at low speeds while variations of the drag area influence the
dynamics more at high velocities. Furthermore, it can be seen that the effect of air density
variations is negligible compared to variations of the other parameters. Eventually, one can
conclude that all parametric variations have a bigger impact on bicycle dynamics at high
speeds.
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(a) Road grade β% variation. (b) Mass m variation.

(c) Rolling friction coefficient µ variation. (d) Drag area Ad variation.

(e) Air density ρ variation. (f) Wind speed vwx variation.

Figure 3.13: Parametric variability of the propulsive power required to overcome the single
resisting forces (gravity Pg, rolling Pr, and aerodynamic Pa resistances) at differ-
ent speed levels v.
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(a) Effect of road grade β%, mass m, and rolling friction coefficient µ variations.

(b) Effect of drag area Ad, air density ρ, and wind speed vwx variations.

Figure 3.14: Range of parametric variability of the total power required to overcome the re-
sisting forces PR at different speed levels v.
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4 Pedaling torque estimation

In this chapter, two UIO-based pedaling torque estimation techniques for pedelecs, named
PTOs, are proposed and described in detail. Firstly, the state-space observation fundamen-
tals applied to the case of linear and nonlinear systems and specifically the Kalman filtering
theory are recalled. Afterwards, a state variables representation of the system that contains
the bicycle longitudinal dynamics and the pedaling torque modeling is derived from the con-
siderations made in Chapter 3. Simplifying assumptions are made on the bicycle longitudinal
dynamics equation (3.40) to achieve a system description that allows a sufficiently accurate
torque-sensorless pedaling torque estimation in the low-speed range with a reduced system
complexity and number of employed sensors. To accomplish this purpose, two PTOs rely-
ing on different pedaling torque models are considered and compared, namely a constant
(CPTO) and a sinusoidal one (SPTO). The two proposed nonlinear state-space represen-
tations are expressed as EKFs and rely on motor torque, road slope, and bicycle speed
measurements. However, these quantities are indirectly measured and can be affected by
errors that might deteriorate the pedaling torque estimation quality. Thus, this chapter ana-
lyzes the measurement process and possible sources of errors. Among them, the road grade
has particular importance, since, as shown in Section 3.2, its variation can significantly af-
fect the bicycle dynamics. After analyzing the road slope estimation techniques known in the
literature, an UIO in the form of a KF that estimates the road slope without increasing system
complexity and costs is proposed. Besides, a method to correct the road grade estimation
error caused by the bicycle cornering is investigated. Eventually, the chapter contains simu-
lations of the proposed PTOs that allow the evaluation of the KF tuning impact on the state
estimation and the analysis of the employed modeling simplifications assets and drawbacks.

4.1 State observation theory

This section briefly introduces the reader to the theory of state observation and the particular
case of Kalman filtering. Firstly, linear and nonlinear state-space models in continuous and
discrete time domains are introduced. Then, linear systems observation made through the
Luenberger observer is presented. After, the analysis focuses on the observability of linear
and nonlinear systems. Later on, Kalman filtering is introduced. In particular, the KF and EKF
algorithms and their application to discrete-time linear and nonlinear systems are discussed
in detail.

4.1.1 State-space models and observability

As seen in Section 1.1, the pedaling torque Tpc can be estimated employing disturbance
estimation approaches that, when using state observers, are referred as UIOs. A state
observer is a system that estimates the internal state of another system x̂ from its input u and
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measured output y. It is typically digital-implemented and thus expressed in the discrete-time
domain. Figure 4.1 contains a schematic representation of a discrete-time state observer
where k ∈Z is the discrete time variable.

System

State 
Observer

Figure 4.1: Schematic representation of a discrete-time state observer.

A continuous-time-invariant linear system can be expressed with a state-space representa-
tion:

dx (t)
dt

= Ax (t)+Bu (t)

y (t) = Cx (t)
, (4.1)

where x (t) ∈ Rn is the state-space vector composed of n state variables, u (t) ∈ Rm is the
input vector composed of m input signals, y (t) ∈ Rp is the output vector composed of the
p measurements of the system, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix,
C ∈ Rp×n is the output matrix, and t ∈ R is the continuous time variable. It has to be remarked
that models with input-output feedthrough are neglected in this work. The more general form
of a continuous-time state-space model valid for a nonlinear system can be written as:

dx (t)
dt

= f (x (t) , u (t))

y (t) = h (x (t))
, (4.2)

where f (⋅, ⋅) and h (⋅) are nonlinear functions. The digital implementation of a state observer
requires the discretization of continuous-time state-space representation and a proper sam-
pling time Ts selection according to the Nyquist-Shannon sampling theorem. The discretized
version of the state-space model (4.1) can be written as:

x (k + 1) = Fx (k)+Gu (k)
y (k) = Hx (k)

, (4.3)

where F = eATs is the discretized state matrix, G = ∫
Ts

0 eAτdτB is the discretized input matrix,
and H = C is the discretized output matrix. Due to heavy matrix exponentials and integrals
calculations, the exact discretization may be complex to calculate. However, when selecting
a sufficiently small sampling time, the discrete model can be simplified and easily calculated
introducing a negligible approximation error. Methods like the forward Euler, the backward
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Euler, and the Tustin one can be employed. For the simplicity of its approximation, the
forward Euler method will be employed in this work. This method leads to the following
expressions of the discretized matrices: F ≃ I+TsA, G ≃ TsB, and H = C, where I represents
the identity matrix. Nevertheless, particular attention must be paid in the selection of the
sampling time since in the forward Euler approximation a too large value may result in an
unstable discretized system. In the generic case of a nonlinear system, the discretized
state-space model can be written as:

x (k + 1) = fd (x (k) , u (k))
y (k) = hd (x (k))

, (4.4)

where fd (⋅, ⋅) and hd (⋅) are nonlinear functions.
Considering a linear system, the continuous-time state observer, also called Luenberger

observer, that allows the estimation of the system (4.1) state has the following expression:

dx̂ (t)
dt

= [A −KC] x̂ (t)+Bu (t)+Ky (t) , (4.5)

where x̂ (t) is the estimated state vector and K ∈ Rn×p is the Luenberger observer gain
matrix [122]. Discretizing equation (4.5), the discretized version of the Luenberger observer
can be obtained:

x̂ (k + 1) = [F − TsKH] x̂ (k)+Gu (k)+ TsKy (k) . (4.6)

The system internal state estimation is possible only if the system is completely observable.
In particular, “a discrete-time system is observable if for any initial state x (ki) and some final
time k f , the initial state can be uniquely determined by the knowledge of the input u (k), and
output y (k) for k ∈ [ki, k f ]” [123]. If the system is observable, the initial state and thus all
states between the initial and the final times can be determined. To test the observability of
the system, one possible approach consists in defining the observability matrix O:

O = [H HF ... HFn−1]T . (4.7)

The system results completely observable when the observability matrix of the system has
full rank (rank (O) = n).

In the case of nonlinear systems, the generic discrete-time Luenberger observer can be
expressed as:

x̂ (k + 1) = fd (x̂ (k) , u (k))+K [y (k)− hd (x̂ (k))] . (4.8)

When considering nonlinear systems, the observability is much more complex to formal-
ize [123]. A common approach used in nonlinear systems observation consists in linearizing
the system around a reference trajectory and employing the linearized system to estimate
the state. As stated in [124], the observability of a linearized system implies the local ob-
servability of the original nonlinear one, namely that a neighborhood of the initial state such
that the system is completely observable exists.
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4.1.2 Kalman filtering

The system internal state observation can rely on different kinds of state observers, as shown
in [22]. Among them, the KF has been selected in this work due to its optimal estimation ca-
pability in the presence of noise and its comprehensible tuning based on the selection of the
covariance matrices. Moreover, it allows to easily handle with nonlinear systems by employ-
ing the extended form of the algorithm. The KF digital implementation requires a representa-
tion of the system in the discretized linear system state-space model form (4.3). Compared
to the Luenberger observer, a KF models the noise and uncertainties affecting the process
and the measurements employing the following linear stochastic difference equations:

x (k) = Fx (k − 1)+Gu (k − 1)+w (k − 1)
y (k) = Hx (k)+ ν (k)

, (4.9)

where w ∈ Rn represents disturbances and unmodelled dynamics acting on the system
and ν ∈ Rp represents the noise acting on the measurements. In the KF, the stochastic
processes w and ν are white and Gaussian. Thus, they are zero-mean E [w] = E [ν] = 0,
uncorrelated E [νwT] = 0, and have known covariance matrices Q = E [wwT] and R =
E [ννT] respectively, where E [⋅] represents the statistic expected value operator and 0 the
null matrix. Defining the estimation error vector ε (k) = x (k)− x̂ (k) ∈ Rn, the estimation error
covariance matrix P (k) ∈ Rn×n is expressed as:

P (k) = E [ε (k) εT (k)] . (4.10)

In the KF algorithm, the state estimate x̂ (k) and the estimation error covariance matrix
P (k) are propagated at each time instant k. This algorithm splits up into prediction and
update tasks. At each time instant k during the prediction phase, the a priori state estima-
tion x̂− (k) and the estimation error covariance matrix P− (k) are calculated based on the
previous knowledge of the process. During the update phase, the KF gain K (k) is calcu-
lated and used to evaluate the a posteriori state estimation x̂+ (k) and the estimation error
covariance matrix P+ (k) exploiting the measurement information. In the following, the KF
algorithm steps are described in detail. Firstly, the algorithm is initialized considering the
expected values of the state estimate and the estimation error covariance matrix:

x̂+ (0) = E [x (0)]
P+ (0) = E [ε (0) εT (0)]

. (4.11)

Then, at each k ≥ 1, the prediction task takes place:

P− (k) = FP+ (k − 1)FT +Q, (4.12)

x̂− (k) = Fx̂+ (k − 1)+Gu (k − 1) . (4.13)
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After that, the update phase begins:

K (k) = P− (k)HT [HP− (k)HT +R]−1
, (4.14)

x̂+ (k) = x̂− (k)+K (k) [y (k)−Hx̂− (k)] , (4.15)

P+ (k) = [I −K (k)H]P− (k) . (4.16)

Under the KF hypotheses, the error covariance matrix is minimized at each step, namely the
mean squared estimation error. Moreover, the KF is the best linear state observer that mini-
mizes this matrix when the stochastic process acting on the system is white and Gaussian.
Nevertheless, the KF optimality can be exploited with some modifications to the observer
structure to estimate the system state even when the before-mentioned hypotheses are not
fulfilled. [123]

In the case of nonlinear dynamical systems, the EKF can be employed to estimate the
system state. In this approach, the nonlinear discrete-time system is linearized around a
nominal state trajectory, employing the KF state estimate as a nominal trajectory. In other
words, the nonlinear system is linearized around the state estimate obtained from the KF
applied to the linearized system. The EKF estimates the state of a nonlinear discrete-time
system described by the following stochastic difference equations:

x (k) = fd (x (k − 1) , u (k − 1) , w (k − 1))
y (k) = hd (x (k) , ν (k))

. (4.17)

The EKF algorithm initialization is performed as for the KF with equations (4.11). Then, for
each k ≥ 1, firstly the partial derivative or Jacobian matrices JF and JL are calculated as
follows:

JF (k − 1) =
∂ fd (x (k − 1) , u (k − 1) , w (k − 1))

∂x
∣
x̂+(k−1)

JL (k − 1) =
∂ fd (x (k − 1) , u (k − 1) , w (k − 1))

∂w
∣
x̂+(k−1)

. (4.18)

Then, the prediction phase takes place:

P− (k) = JF (k − 1)P+ (k − 1) JT
F (k − 1)+ JL (k − 1)QJT

L (k − 1) , (4.19)

x̂− (k) = fd (x̂+ (k − 1) , u (k − 1) , 0) . (4.20)
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After that, the Jacobians JH and JM are calculated:

JH (k) =
∂hd (x (k) , ν (k))

∂x
∣
x̂−(k)

JM (k) =
∂hd (x (k) , ν (k))

∂ν
∣
x̂−(k)

. (4.21)

Finally, the update phase begins:

K (k) = P− (k) JT
H (k) [JH (k)P− (k) JT

H (k)+ JM (k)RJT
M (k)]

−1
, (4.22)

x̂+ (k) = x̂− (k)+K (k) [y (k)− hd (x̂− (k) , 0)] , (4.23)

P+ (k) = [I −K (k) JH (k)]P− (k) . (4.24)

Since the EKF is based on the linearization of the system (4.17), the matrix P does not
exactly represent the estimation error covariance matrix. Nevertheless, in the case of non-
severe nonlinear systems, like in the system under investigation, the linearization error is
negligible. Thus, this matrix can be approximated to the estimation error covariance matrix.
A schematic representation of the KF and EKF algorithms is reported in Figure 4.2. [123]

Initial estimate

Prediction phase Update phase

Figure 4.2: Block diagram of the KF including the EKF algorithm for nonlinear systems.
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4.2 Pedaling torque observers

In this section, a state variables representation of the system is derived from equation (3.40)
to obtain a model that can be used in a state observer structure to estimate the state of the
system and particularly the pedaling torque Tpc. Firstly, the simplifying modeling hypotheses
are expressed and discussed. Then, a state-space model is derived when a constant and
a sinusoidal pedaling torque model is considered. Afterwards, the obtained models are
expressed in the form of EKFs and their observability is proven.

4.2.1 Modeling hypotheses

Based on the considerations of Section 3.2 and the ones reported in [125], an analysis of the
impact of parametric variations on the bicycle dynamics and their time variability allows us
to make simplifying assumptions on the modeling equations. Table 4.1 contains the results
of this qualitative analysis. It has to be remarked that the impact of parametric variations
has been evaluated in the lower bicycle speed range v ∈ [0; 15] km

h because more accuracy
in the estimation of the pedaling torque is required at low speeds during the acceleration
phases where the cyclist typically requires the highest electrical assistance rather than at
high speeds where motor assistance can be dangerous or not admitted by the local legisla-
tion.

Parameter Impact Time variability

Mass m Large Very slow

Road slope β Very large Fast

Rolling friction coefficient µ Medium Medium

Air density ρ Very small Very slow

Drag Area Ad Medium Fast

Wind speed vwx Medium Very fast

Table 4.1: Parametric variability impact on the bicycle longitudinal dynamics.

The system mass m, the rolling friction coefficient µ, the drag area Ad, the air density ρ,
and the wind speed vwx are considered time-invariant in this work. The system mass does
not vary much once the cyclist starts pedaling and can thus be considered constant and
equal to its initial value. In the case of the rolling friction coefficient, even if it can vary while
riding depending on the factors analyzed in Section 3.1.5, its value is less time-variable and
has a smaller impact than the road angle. The drag area may vary fast due to a change
in the cyclist posture while riding but its influence on the longitudinal dynamics is small at
low speeds. The air density, which depends on the air temperature, pressure, and humidity,
varies slowly compared to the bicycle dynamics and has a negligible effect in the low-speed
range. The air is rarely still and the wind can change direction unpredictably and rapidly
within a few seconds [1]. Additionally, its longitudinal component can vary depending on
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changes in riding direction and the influence of other vehicles on the road. However, the
wind effect on the longitudinal dynamics is also typically small in the low-speed range. Thus,
the wind speed is considered vwx = 0 m

s2 , i.e. vax = v. Furthermore, for all the aforementioned
parameters, an online measurement can hardly be performed without increasing the system
complexity with additional sensors.

On the contrary, variations of the road slope occur very often while riding and have the
highest impact on the longitudinal dynamics compared to the other parameters. Indeed, the
road is rarely level or constant in slope. Moreover, slopes that seem to be smooth can vary
in roughness [1]. Thus, the road slope angle β (t) requires to be estimated during cycling.
Additionally, in the system modeling other simplifying assumptions are made:

• Braking torques TB and human propulsive forces not generated by pedaling Fe
h are not

considered.

• Power losses in the mechanical transmissions are neglected ηd = ηm = 1.

• The model is derived under the assumption of no wheel-slipping and engaged drive-
train.

• The gear ratios of the mechanical transmissions τd and τm are considered constant.
Thus, gear variations are neglected.

4.2.2 State-space models

Under the hypotheses mentioned in section 4.2.1, equation (3.40) can be written as:

Tpc (t)
rτd

+ Tm (t)
rτm

−mg sin (β (t))− µmg cos (β (t))− 1
2

ρAdv2 (t) = m
dv (t)

dt
, (4.25)

where the bicycle acceleration is expressed as the derivative of the bicycle speed a (t) =
dv(t)

dt . For the sake of a more compact mathematical representation, the effect of rolling
resistance can be seen as the one of an apparent road slope with an apparent rise hµ and
run dµ:

µ =
hµ

dµ
. (4.26)

Thus, it introduces an apparent slope angle:

βµ = arctan (µ) . (4.27)

Substituting (4.27) in (4.25) and applying trigonometric considerations, one obtains:

Tpc (t)
rτd

+ Tm (t)
rτm

−
mg

cos (βµ)
sin (β (t)+ βµ)−

1
2

ρAdv2 (t) = m
dv (t)

dt
. (4.28)

64



4.2 Pedaling torque observers

Since within the range of possible realistic values of µ defined in section 3.1.5, µ ≃ βµ and
cos (βµ) ≃ 1, equation (4.28) can be written as:

Tpc (t)
rτd

+ Tm (t)
rτm

−mgα (t)− 1
2

ρAdv2 (t) = m
dv (t)

dt
, (4.29)

where α (t) = sin (β (t)+ µ). Assuming that all other quantities are known or measurable, the
pedaling torque can be considered an external unknown disturbance that can be estimated
employing an UIO. In the following, two different state variable representations that may be
employed for pedaling torque estimation purposes are proposed. The first state-space model
expresses the pedaling torque as a constant. In this case, a simple UIO may be employed
to estimate the unknown disturbance as proposed in [15]. The second state variables repre-
sentation employs a simplified sinusoidal model of the pedaling torque. In these conditions,
an UIO with a similar structure to the one proposed in [45] can be applied to estimate the
system state. Hereinafter, the UIO that estimates the pedaling torque relying on a constant
model will be referred to as CPTO, whereas the one that utilizes a sinusoidal model will be
called SPTO.

Constant pedaling torque model (CPTO):
According to the UIO theory [15], unknown non-constant inputs whose variations are slow
relative to the natural response of the observer can be estimated by enhancing the sys-
tem state. In particular, external disturbances can be considered constant compared to the
system dynamics. In other words, the unknown disturbance bandwidth is assumed to be
smaller than the natural response of the observer. In the case of pedaling torque estimation,
the system (4.29) can be enhanced by the equation:

dTpc (t)
dt

= 0. (4.30)

From equations (4.29) and (4.30), a continuous-time state-space system representation can
be derived. Defining the system state x (t) = [v (t) Tpc (t)]

T
, the system input u (t) =

[Tm (t) α (t)]T, and the system outputs or measurements y (t) = v (t), the following nonlin-
ear state-space model is obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv(t)
dt = −

ρAd
2m v2 (t)+ 1

mrτd
Tpc (t)+ 1

mrτm
Tm (t)− gα (t)

dTpc(t)
dt = 0

, (4.31)

y (t) = v (t) . (4.32)

Sinusoidal pedaling torque model (SPTO):
As stated in section 3.1.2, the pedaling torque has a pseudo-sinusoidal profile with an offset.
In particular, since the pedaling torque profile has two maximums per crank revolution, it may
be expressed as the sum of a continuous component or offset Tpc0 plus a 2nd harmonic of
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the crank angle θc with amplitude Tpc2 . Thus, a simplified expression of the pedaling torque
results:

Tpc (t) = Tpc0 − Tpc2 cos [2θc (t)+ θc (0)] , (4.33)

where θc (0) is the initial value of the crankset angle that depends on the initial position of
the pedals when starting pedaling. Equation (4.33) can be included in the state variables
representation enhancing the state of the system to:

x (t) = [v (t) ξ0 (t) ξc
2 (t) ξs

2 (t)]
T , (4.34)

where ξ0 (t) = Tpc0 , ξc
2 (t) = −Tpc2 cos [2θc (t)+ θc (0)], and ξs

2 (t) = Tpc2 sin [2θc (t)+ θc (0)].
Thus, the pedaling torque can be seen as the sum of two state variables:

Tpc (t) = ξ0 (t)+ ξc
2 (t) . (4.35)

The UIO theory can be applied for the estimation of the continuous component of the pedal-
ing torque:

dξ0 (t)
dt

= 0. (4.36)

From equation (3.4) and expressing the angular speed of the wheel as a function of the
bicycle speed ω (t) = v(t)

r , the derivatives of ξc
2 (t) and ξs

2 (t) can be expressed as:

dξc
2 (t)
dt

= 2ωc (t)Tpc2 sin [2θc (t)+ θc (0)] =
2

rτd
v (t) ξs

2 (t) , (4.37)

dξs
2 (t)
dt

= 2ωc (t)Tpc2 cos [2θc (t)+ θc (0)] = −
2

rτd
v (t) ξc

2 (t) . (4.38)

Therefore, the following nonlinear continuous-time state-space model is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(t)
dt = −

ρAd
2m v2 (t)+ 1

mrτd
ξ0 (t)+ 1

mrτd
ξc

2 (t)+
1

mrτm
Tm (t)− gα (t)

dξ0(t)
dt = 0

dξc
2(t)
dt = 2

rτd
v (t) ξs

2 (t)

dξs
2(t)
dt = − 2

rτd
v (t) ξc

2 (t)

, (4.39)

y (t) = v (t) . (4.40)
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4.2.3 Kalman filtering

This section presents the UIOs employed for the pedaling torque estimation in this work
expressed in the form of EKFs. In particular, the UIOs formulation in the cases of a constant
and sinusoidal pedaling torque model is derived.

Constant pedaling torque model (CPTO):
When considering a constant pedaling torque model, discretizing equations (4.31)-(4.32)
with the sampling time Ts and expressing them in the form (4.17) one obtains:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v (k) = [1−
ρAdTs

2m
v (k − 1)] v (k − 1)+ Ts

mrτd
Tpc (k − 1)+ Ts

mrτm
Tm (k − 1)

− gTsα (k − 1)+wv (k − 1)

Tpc (k) = Tpc (k − 1)+wTpc (k − 1)

, (4.41)

y (k) = v (k)+ νv (k) , (4.42)

where the white and Gaussian noises on the process w (k) = [wv (k) wTpc (k)]
T

and the
measurements ν (k) = νv (k) are considered. These stochastic processes can be described
by the covariance matrices:

Q = [
σ2

wv 0
0 σ2

wTpc

] , R = σ2
νv , (4.43)

where σ2
wv , σ2

wTpc
, and σ2

νv are the variances of the noises wv, wTpc , and νv respectively. In the
absence of previous knowledge of the system state, a practical choice for the EKF algorithm
initialization is:

x̂+ (0) = 0 ∈ R2×1, P+ (0) = I ∈ R2×2. (4.44)

At each step k ≥ 1, the EKF algorithm shown in section 4.1.2 is performed. In particular, the
following Jacobian matrices are calculated according to equations (4.18) and (4.21):

JF (k − 1) = [1−
ρAdTs

m v̂+ (k − 1) Ts
mrτd

0 1
] , JL = I ∈ R2×2, (4.45)

JH = [1 0] , JM = 1. (4.46)
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Sinusoidal pedaling torque model (SPTO):
When considering the simplified sinusoidal pedalling torque model, discretizing equations
(4.39)-(4.40) with the sampling time Ts and expressing them in the form (4.17) one obtains:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v (k) = [1−
ρAdTs

2m
v (k − 1)] v (k − 1)+ Ts

mrτd
ξ0 (k − 1)+ Ts

mrτd
ξc

2 (k − 1)

+ Ts

mrτm
Tm (k − 1)− gTsα (k − 1)+wv (k − 1)

ξ0 (k) = ξ0 (k − 1)+wξ0 (k − 1)

ξc
2 (k) = ξc

2 (k − 1)+ 2Ts
rτd

v (k − 1) ξs
2 (k − 1)+wξc

2
(k − 1)

ξs
2 (k) = ξs

2 (k − 1)− 2Ts
rτd

v (k − 1) ξc
2 (k − 1)+wξs

2
(k − 1)

, (4.47)

y (k) = v (k)+ νv (k) , (4.48)

where the white and Gaussian noises on the process w (k) = [wv (k) wξ0 (k) wξc
2
(k) wξs

2
(k)]T

and the measurements ν (k) = νv (k) are considered. These stochastic processes can be de-
scribed by the covariance matrices:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
wv 0 0 0
0 σ2

wξ0
0 0

0 0 σ2
wξc

2
0

0 0 0 σ2
wξs

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R = σ2
νv , (4.49)

where σ2
wξ0

, σ2
wξc

2
, and σ2

wξs
2

are the variances of the noises wξ0 , wξc
2
, and wξs

2
respectively. As

previously shown, a practical initialization of the EKF algorithm is:

x̂+ (0) = 0 ∈ R4×1, P+ (0) = I ∈ R4×4. (4.50)

At each step k ≥ 1, the EKF algorithm shown in section 4.1.2 is performed. In particular, the
Jacobian matrices are calculated according to equations (4.18) and (4.21):

JF (k − 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ρAdTs
m v̂+ (k − 1) Ts

rmτd

Ts
rmτd

0
0 1 0 0

2Ts
rτd

ξ̂s+
2 (k − 1) 0 1 2Ts

rτd
v̂+ (k − 1)

− 2Ts
rτd

ξ̂c+
2 (k − 1) 0 −2Ts

rτd
v̂+ (k − 1) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.51)

JL = I ∈ R4×4, (4.52)
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JH = [1 0 0 0] , JM = 1. (4.53)

Therefore, at each iteration of the algorithm, the pedaling torque is obtained as:

T̂pc (k) = ξ̂0 (k)+ ξ̂c
2 (k) . (4.54)

4.2.4 System observability proof

To estimate the system state with a state observer, the system must be completely observ-
able. As stated in section 4.1, the observability of a linearized system implies the local ob-
servability of the nonlinear one. When using an EKF, the observability of a linear time-variant
system must be proofed at each step k because the Jacobian matrices are time-variant. As
stated in [126], to verify the observability of a linear time-variant system, the observability
matrix Ov must have full rank for each initial state ki ∈ [0;+∞):

Ov (ki) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

JH (ki)
JH (ki + 1) JF (ki)

⋮
JH (ki + n − 1) JF (ki + n − 2) ...JF (ki)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (4.55)

Constant pedaling torque model (CPTO):
In the case of the CPTO, the observability matrix (4.55) becomes:

Ov (ki) = [
JH

JHJF (ki)
] = [

1 0
1− ρAdTs

m v̂+ (ki) Ts
mrτd

] . (4.56)

Its determinant results:

∣Ov (ki)∣ =
Ts

mrτd
≠ 0. (4.57)

The linearized system results completely observable and thus the nonlinear one local ob-
servable in a neighborhood of x (ki) since rank[Ov (ki)] = n = 2 ∀ki ∈ [0;+∞).

Sinusoidal pedaling torque model (SPTO):
In the case of the SPTO, the obsevability matrix (4.55) becomes:

Ov (ki) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

JH
JHJF (ki)

JHJF (ki + 1) JF (ki)
JHJF (ki + 2) JF (ki + 1) JF (ki)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (4.58)

The expression of the observability matrix can be obtained by substituting the expressions of
the Jacobians (4.45) and (4.46). However, for the sake of a compact mathematical represen-
tation, the complete expression of the observability matrix is not reported here. Nevertheless,
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its determinant is evaluated:

∣Ov (ki)∣ =
8T6

s v̂+2 (ki) v̂+ (ki + 1)
m3r6τ6

d
. (4.59)

The determinant of the observability matrix results ∣Ov (ki)∣ ≠ 0 when v̂+ (ki) ≠ 0 and v̂+ (ki + 1) ≠
0. Therefore, in this case, the linearized system results completely observable and the non-
linear one local observable in a neighborhood of x (ki) since rank[Ov (ki)] = n = 4 ∀ki ∈
[0;+∞). This result indicates that the SPTO can correctly estimate the system state only
when the bicycle moves v ≠ 0 m

s . This result agrees with the expectations since the em-
ployed model describes the pedaling torque profile only in non-static conditions.

4.3 Pedaling torque observers inputs and measurements

In the previously proposed PTOs, the motor torque, the road slope, and the bicycle speed
have been considered known measurable inputs and outputs of the system. This section an-
alyzes their measurement process and the measurement error effect on the pedaling torque
estimation and motor control.

4.3.1 Motor torque

As stated in section 3.1.3, the motor torque Tm is measured indirectly using equation (3.30)
in the case of PMSMs. Correct motor torque measurements can be obtained when the
permanent magnet flux linkage ΨPM is accurately known. Besides, high-performance motor
torque control needs correct knowledge of the machine electrical parameters that may be
identified through offline or online approaches. For further information about offline and
online parameter identification techniques for synchronous machines, the interested reader
can refer to [127]. Good current measurement accuracy is also fundamental because errors
can lead to distorted currents and cause torque ripple when controlling the motor. A further
source of error in the motor torque measurement is related to the electrical rotor position.
Indeed, low-resolution position sensors or sensorless techniques can determine errors in
the coordinate transformation and propagate to the measured torque.

4.3.2 Road slope

In vehicle applications, the road slope cannot be measured directly but is typically estimated
by combining the measurements provided by different types of sensors including IMUs,
wheel position or speed sensors, Global Navigation Satellite System (GNSS) receivers,
force or torque sensors, and air pressure sensors. Some methods exploit external signals,
such as GNSS information, to estimate the road angle. In particular, they employ the three-
dimensional vehicle speed and altitude information provided by GNSS receivers [128, 129].
However, the estimation accuracy is limited by losses in satellite connections depending on
the signal reception environment. Moreover, their reliability varies with the horizontal vehi-
cle speed degrading in the low-speed range [130]. To overcome the problems related to
the quality of the received GNSS signal, other methods employ in-vehicle sensors to esti-
mate the road angle. These methods can be classified into different categories depending
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on the utilized sensors. Some approaches exploit the vehicle longitudinal dynamic model
combined with force and wheel acceleration measurements to extract the road angle infor-
mation [131–135]. The accuracy of the estimation is dependent on knowledge of the model
parameters that vary with the driving conditions. Furthermore, the estimation degrades in
non-modeled driving scenarios such as braking and gear-shifting. Other approaches exploit
measurements provided by IMUs and wheel position or speed sensors to estimate the road
slope [40, 136–139]. Combining the information given by the sensors, the gravity accelera-
tion measured by the IMU can be isolated from the vehicle acceleration and used to estimate
the road slope even in dynamic conditions. However, these methods require strong low-pass
filtering of the acceleration signals to remove the measurement noise introduced by vibra-
tions and differentiation. Besides, since the IMUs are mounted on the vehicle, the road angle
estimation may contain an error due to the pitch motion of the vehicle caused by accelera-
tions and bumps [130]. Also, low-cost Micro-ElectroMechanical System (MEMS) IMUs are
characterized by measurement drift caused by temperature variations and mechanical stress
that can affect the angle estimation. Atmospheric pressure sensors can also be employed
to estimate the road slope [140]. These methods exploit the relation between altitude and
air pressure to extract the slope information. Nevertheless, they are characterized by limited
accuracy and dependency on the meteorological conditions. As explained before, each road
grade estimation approach has limitations under different operating conditions. To overcome
these problems, sensor fusion approaches, that combine the estimation obtained with var-
ious methods, are often utilized [130, 141]. Although these methods provide reliable road
grade information, they increase the complexity and costs of the entire system.

In this work, the intent of reducing costs and keeping the road slope estimation inde-
pendent from GNSS signals reception and meteorological conditions has led to excluding
GNSS-based, atmospheric pressure-based, and sensor fusion approaches. Furthermore,
as stated in [137], model dynamics-based estimation methods require the measurement of
the input torque to be observable. Therefore, these methods cannot be employed to esti-
mate the road slope in this work, because a simultaneous estimation of the input torque is
required. Based on the considerations above, methods that employ low-cost MEMS IMU
measurements are considered. Among them, complex estimation algorithms that exploit
6-axes IMU measurements and a vehicle three-dimensional kinematic modeling can be uti-
lized to extract the road slope information [137, 139]. However, as shown in [137], these
approaches are based on the simplifying assumption that the accelerations are measured
at the vehicle center of gravity inducing errors in the estimation. Since they achieve a com-
parable estimation accuracy reducing the computational complexity, methods based only on
the vehicle longitudinal kinematic model are considered in this work. In these estimation ap-
proaches, 1-axis acceleration measurements might be sufficient to estimate the road slope.
However, it is not always possible to mount the sensing device perfectly aligned with the
longitudinal direction of motion. Thus, these simplified methods also require a 6-axes IMU to
compensate for the mounting angles of the device and mitigate the effect of errors introduced
by the vehicle model simplification.

Static road slope estimation:
IMU measurement-based road slope estimation algorithms require a correct transformation
of the IMU acceleration and angular speed measurements in the vehicle or body reference
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frame. Therefore, a calibration procedure and compensation for the mounting offset of the
device are necessary. For the sake of brevity, detailed information about these two processes
are reported in the appendix (Section 7.1).

After reporting the measurements from the sensor (xs − ys − zs) to the bicycle reference
frame (x − y − z), the road angle can be calculated from the measured accelerations in static
conditions. Limiting the analysis to the only longitudinal motion of the bicycle, in the presence
of a road slope β ≠ 0 deg and absence of a longitudinal acceleration a = 0 m

s2 and leaning of
the bicycle φ = 0 deg, the road slope angle can be calculated as:

β = arctan( asx

asz

) = arctan(
gx

gz
) , (4.60)

where as = [asx asy asz]
T

are the measured accelerations and g = [gx gy gz]
T

are the
gravity accelerations components expressed in the vehicle reference frame. Figure 4.3 con-
tains an example of the IMU-measured acceleration components under the aforementioned
hypotheses. For the sake of simplicity in the graphical representation, the roll φs and yaw ψs
IMU mounting angles have been considered φs = ψs = 0 deg, whereas a pitch mounting off-
set γs ≠ 0 deg is present. It has to be remarked that a gravitational field component aligned
along an accelerometer axis is read with a negative sign by the MEMS accelerometer. Thus,
in Figure 4.3, the gravity acceleration components are reported in opposite direction.

Figure 4.3: Measured acceleration components as = g in the presence of a road slope (β ≠
0 deg) , no longitudinal acceleration (a = 0 m

s2 ), and no leaning (φ = 0 deg).

Dynamic road slope estimation:
When the vehicle accelerates or decelerates a ≠ 0 m

s2 , equation (4.60) is no longer a valid ex-
pression for the computation of the road slope angle because the accelerometer measures
the overall acceleration as = g + a. Figure 4.4 contains an example of the IMU-measured ac-
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celeration components in the presence of a road slope and longitudinal acceleration when no
leaning is considered. It has to be remarked that, contrarily to gravitational field components,
an acceleration component aligned along an accelerometer axis is read with a positive sign
by the MEMS accelerometer.

Figure 4.4: Measured acceleration components as = g + a in the presence of a road slope
(β ≠ 0 deg), longitudinal acceleration (a ≠ 0 m

s2 ), and no leaning (φ = 0 deg).

In these conditions, algebraic or closed-loop methods may be used to compute the road
slope angle from acceleration measurements while riding the bicycle. In the following, two
algebraic and one closed-loop methods are analyzed.

Algebraic method I:
The first method exploits the equivalence between the components along the z-axis asz (t) =
gz (t):

asz (t) = gz (t) = g cos [β (t)] . (4.61)

Thus, the road grade can be estimated as:

β̂ (t) = arccos( asz (t)
g
) . (4.62)

Nevertheless, this method employs the arccosine function which has a low sensibility for
small angles, like in the range of interest β ∈ [−10; 10] deg, and does not allow to distinguish
between positive and negative angles. Moreover, it would fail in the presence of bicycle
leaning since this approach exploits the acceleration component asz that varies when the
vehicle bends.
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Algebraic method II:
The second algebraic method employs the measured longitudinal acceleration a (t) obtained
differentiating the longitudinal speed of the vehicle to extract the road angle information. The
measured acceleration in the longitudinal direction asx (t) = a (t)+ gx (t) can be written as:

asx (t) = a (t)+ gx (t) = a (t)+ g sin [β (t)] . (4.63)

Therefore, the road slope can be computed as:

β̂ (t) = arcsin( asx (t)− a (t)
g

) . (4.64)

This method requires the computation of the longitudinal acceleration of the bicycle as the
derivative of its speed. Thus, it is heavily affected by the accelerometer measurement noise
and the one caused by the differentiation of the vehicle speed [137]. Moreover, in a real
scenario, the accelerometer measures also the vibrations caused by bumps while riding the
bicycle. Therefore, it is necessary to strongly low-pass filter the measurements to remove
the effect of high-frequency noise and vibrations introducing time delays in the measured
signals that may result in an inaccurate slope estimation.

Closed-loop method:
Closed-loop methods based on state observers are commonly preferred to algebraic ones
because they grant a higher high-frequency disturbance rejection capability on the mea-
sured acceleration components. This means that, compared to algebraic methods, in closed-
looped approaches, the acceleration signals can be filtered with a higher bandwidth reduc-
ing the introduced time delays on the slope estimation at the same performance level. In
particular, this work proposes a state observer that models the bicycle longitudinal acceler-
ation a (t) and the gravity longitudinal component gx (t) as constants, namely with a lower
bandwidth than the one of the state observer. Also, the system modeling assumes that
the variation of these two quantities can be considered slower than the one of the vehicle
speed v (t). This simplification can be employed in an UIO structure to estimate the sys-
tem state relying on measurements of the vehicle speed and the longitudinal acceleration
reported in the bicycle frame measured with the accelerometer asx (t) . Defining the state
x (t) = [a (t) v (t) gx (t)]T and output y (t) = [v (t) asx (t)]

T vectors, a continuous-time
linear state-space model can be derived:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da(t)
dt = 0

dv(t)
dt = a (t)

dgx(t)
dt = 0

, (4.65)
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y1 (t) = v (t)

y2 (t) = asx (t) = a (t)+ gx (t)
. (4.66)

Discretizing with the sampling time Ts, one obtains the following discrete-time state-space
model expressed in terms of matrices in the form (4.3):

⎡⎢⎢⎢⎢⎢⎣

a (k + 1)
v (k + 1)
gx (k + 1)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
Ts 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a (k)
v (k)
gx (k)

⎤⎥⎥⎥⎥⎥⎦
, (4.67)

[y1 (k)
y2 (k)

] = [0 1 0
1 0 1

]
⎡⎢⎢⎢⎢⎢⎣

a (k)
v (k)
gx (k)

⎤⎥⎥⎥⎥⎥⎦
. (4.68)

From (4.7), the observability matrix can be derived:

O =
⎡⎢⎢⎢⎢⎢⎣

H
HF
HF2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
Ts 1 0
1 0 1

2Ts 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.69)

It can be seen that the system is completely observable since rank (O) = n = 3. Therefore, a
state observer can be employed to estimate the system state. In particular, a KF has been
considered in this work. The system (4.67)-(4.68) can be expressed in the form (4.9):

⎡⎢⎢⎢⎢⎢⎣

a (k)
v (k)
gx (k)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
Ts 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a (k − 1)
v (k − 1)
gx (k − 1)

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

wa (k − 1)
wv (k − 1)
wgx (k − 1)

⎤⎥⎥⎥⎥⎥⎦
, (4.70)

[y1 (k)
y2 (k)

] = [0 1 0
1 0 1

]
⎡⎢⎢⎢⎢⎢⎣

a (k)
v (k)
gx (k)

⎤⎥⎥⎥⎥⎥⎦
+ [ νv (k)

νasx (k)
] , (4.71)

where the white and Gaussian noises on the process w (k) = [wa (k) wv (k) wgx (k)]
T

and on the measurements ν (k) = [νv (k) νasx (k)]
T

are considered. These stochastic pro-
cesses can be described by the covariance matrices:

Q =
⎡⎢⎢⎢⎢⎢⎣

σ2
wa 0 0
0 σ2

wv 0
0 0 σ2

wgx

⎤⎥⎥⎥⎥⎥⎦
, R = [

σ2
νv 0
0 σ2

νasx

] , (4.72)
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where σ2
wa , σ2

wv , σ2
wgx

, σ2
νv , and σ2

νasx
are the variances of the noises wa, wv, wgx , νv, and νasx

respectively. As previously shown, a practical initialization of the KF algorithm is:

x̂+ (0) = 0 ∈ R3×1, P+ (0) = I ∈ R3×3. (4.73)

At each k ≥ 1, the KF filter algorithm is performed as shown in section 4.1.2. Furthermore, at
each step, the state estimate can be employed to evaluate the road angle using the expres-
sion:

β̂ (k) = arcsin(
ĝx (k)

g
) . (4.74)

Estimation methods based only on the longitudinal motion of the vehicle are limited by model-
ing simplifications. Indeed, the proposed model neglects the effect of cornering while riding
which introduces centrifugal acceleration components that can affect the estimation accu-
racy. Therefore, in the next paragraph, the employment of angular speed measurements
provided by the IMU gyroscope is used to mitigate the effects of cornering on the road slope
estimation.

Curve effect correction:
Modeling a bicycle in a curve requires the employment of a two-dimensional model that con-
siders the steering effect of the front wheel. Cornering introduces a centrifugal acceleration
component asR that is measured by the accelerometer. This component can cause errors
in the slope estimation depending on the mounting position of the IMU on the bicycle. Fig-
ure 4.5 contains a schematic two-dimensional representation of a bicycle during cornering
with the IMU, reported in orange, mounted onto the bicycle frame. The bicycle cornering is
generated by the rotation of the handlebar by an angle δ, called steering angle, relative to the
longitudinal direction of motion x. Neglecting the slip angles of the tires, the instantaneous
center of rotation O of the bicycle corresponds to the intersection between the straight lines
perpendicular to the orientation of the two wheels, as reported in Figure 4.5. Thus, the front
wheel travels the trajectory imposed by the steering angle with radius Γ f , the rear wheel
the concentric trajectory of radius Γr, and the IMU the intermediate trajectory of radius Γs.
One can notice that, after the mounting offset correction, the longitudinal direction of the
accelerometer always corresponds to the direction of the bicycle frame and can differ from
the instantaneous trajectory depending on the mounting position of the accelerometer within
the bicycle. Therefore, the centrifugal acceleration, which is perpendicular to the instanta-
neous trajectory, could be not perpendicular to the longitudinal direction of the accelerometer
affecting the measurement with a negative offset that propagates onto the estimated road
slope. To avoid this error, the IMU should be mounted into the wheels where the longitudinal
direction of the accelerometer would correspond to the instantaneous trajectory. However,
this is not a good practical solution because the accelerations measured at the wheels are
more affected by vibrations since they are in direct contact with the uneven surface of the
road. Hence, a stronger low-pass filtering of the measured acceleration would be required.
The reduction of the cornering effect on the road angle estimation when the IMU is mounted
on the bicycle frame is performed in this work considering a method taken from [137]. The
idea is to weigh the confidence on the estimated road angle depending on the cornering state
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Figure 4.5: Effect of cornering on the measured acceleration as.

of the vehicle. This is done by employing a time-variable LPF whose bandwidth changes
depending on the aggressiveness of the curve. In particular, the slope estimation is filtered
with a lower bandwidth while riding in more aggressive curves. As shown in [137], the
angular rate ωsz measured with the IMU can be used to quantify the curve aggressiveness.
In particular, the following index is considered:

Λ = Gωsz (s) ∣ωsz ∣, (4.75)

where Gωsz (s) is a LPF expressed in the Laplace s-domain and the absolute value of the
angular speed is considered to treat left and right-hand turns equally. The index (4.75) is
employed to calculate the cutoff frequency fcβ

of an additional LPF Gβ (s) that filters the
slope estimation:

fcβ
=

f max
cβ

c (Λ −Λth)
with fcβ

∈ [ f max
cβ

; f min
cβ
] , (4.76)

where Λth is a threshold for the index Λ used to trigger the filter bandwidth variation and c is
a coefficient used to tune the rapidity of this variation.

77



4.4 Pedaling torque observers simulation

4.3.3 Bicycle speed

The proposed pedaling torque and road slope estimation algorithms are based on the knowl-
edge of the vehicle speed v. However, this quantity is not directly measured with a sensor
but is obtained from rotor position measurements. In particular, the vehicle speed can be
calculated from the electrical rotor position as follows:

v = ωmr = ωer
np

, (4.77)

where the electrical angular speed is obtained evaluating the derivative of the measured
electrical rotor position ωe = dθe

dt . However, as previously stated, differentiating results in
high-frequency noise amplification. Therefore, a low pass filtering of the signals is necessary
to reduce the noise resulting in a delayed vehicle speed measurement. The introduced
delay may propagate onto the estimation algorithms affecting their accuracy and thus the
responsiveness of the motor control. This means that a trade-off filter bandwidth must be
chosen depending on the characteristics of the used rotor position measurements and the
desired control system performance.

4.4 Pedaling torque observers simulation

In this section, the proposed PTOs employed for the pedaling torque estimation are simu-
lated to analyze the effects of the KF tuning, modeling errors, and parametric variations on
the estimated pedaling torque. The simulations are performed in MATLAB environment with
a fixed simulation step Tsim = 10 µs. Moreover, the state observers are digitally implemented
with a sampling frequency of fs = 500 Hz and thus a sampling period of Ts = 2 ms. In all simu-
lations, the bicycle is modeled under the hypotheses of Section 4.2.1. In particular, a bicycle
with 28” wheels and no provided electrical assistance Tm = 0 Nm is considered. Besides, the
simulations are performed in a flat road scenario β = 0 deg and thus considering α = sin (µ).
Table 4.2 contains the bicycle model fixed parameter values employed as standard values in
all simulations.
Figure 4.6 contains a schematic representation of the simulated bicycle longitudinal dynam-
ics. As one can see, the cycling is simulated with a bicycle speed feedback control loop. In
particular, a reference speed of v∗ = 20 km

h is tracked employing a PI controller. The controller
is tuned to generate realistic pedaling torque and bicycle acceleration profiles. The output of
the PI controller yPI is the input of the pedaling torque generator that produces a simulated
pedaling torque Tpc in the form (4.33). In particular, the following pedaling torque expression
is employed in the simulations:

Tpc (t) =
3
4

yPI (t)−
1
2

yPI (t) cos [2θc (t)] , (4.78)

where an initial crank angle θc (0) = 0 rad is considered. A pedaling torque model with a
continuous component higher than the 2nd harmonic ∣Tpc0 ∣ > ∣Tpc2 ∣ is employed to obtain a
positive pedaling torque profile Tpc ≥ 0 Nm. Figure 4.7 contains the simulated pedaling torque
and bicycle speed profiles obtained under the above-mentioned conditions.

In the following simulation results, a comparison between the simulated pedaling torque
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Parameter Value

Road slope β 0 deg

Mass m 100 kg

Gravity acceleration g 9.80665 m
s2

Rolling friction coefficient µ 0.005

Drag area Ad 0.4 m2

Air density ρ 1.2 kg
m3

Wind speed vwx 0 km
h

Drivetrain transmission ratio τd 2.8

Wheel radius r 0.3556 m

Table 4.2: Fixed parameter values employed in the PTO simulations.

and the estimated one T̂pc obtained using the proposed methods is presented. Moreover, the
estimation error εTpc = Tpc − T̂pc is analyzed in each scenario to provide information regarding
the accuracy of the estimation. In addition, to evaluate the dependency of the pedaling
torque estimation error on the vehicle speed, in each scenario the simulated bicycle velocity
is reported. The quality of the estimation is evaluated using the Root Mean Square Error
(RMSE). It has to be remarked that the calculated RMSE is reported at the back wheel since
the transmitted torque value Tpw is the one typically employed to generate the electrical
assistance. The RMSE is an index that calculates the square root of the average squared
estimation errors over a finite number of samples. Compared to other metrics employed
to evaluate the accuracy of predictive models, the RMSE is quite sensitive to outliers, i.e.
errors with a large absolute value. Thus, the RMSE penalizes more models characterized
by significant deviations from the true values [142]. Following, the expression of the RMSE
is reported:

RMSE =

¿
ÁÁÀ∑n

i=1 (χi − χ̂i)2

n
, (4.79)

where χi is the actual or measured value, χ̂i is the estimated value, and n represents the
number of considered observations.

4.4.1 Effect of Kalman filter tuning

This section analyzes the effects of the KF tuning on the pedaling torque estimation con-
sidering the two proposed PTOs. When implementing a KF in real applications, the system
model may be not perfectly known as well as its covariance matrices. Moreover, the noises
that affect the process and the measurements can be not pure white, zero mean, and un-
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Pedaling
torque

generator

Bicycle 
longitudinal

dynamics

Figure 4.6: Schematic representation of the simulated bicycle longitudinal dynamics.

correlated. Under these conditions, a KF might not work even if it is correctly implemented.
The models proposed in the previous sections for the pedaling torque estimation are based
on simplified pedaling torque models and thus intrinsically contain a modeling error that can
lead to a wrong pedaling torque estimation when the KFs are not correctly tuned. A practical
strategy employed to compensate for modeling errors in a KF consists of adding fictitious
process noise to the uncertain equations [123]. In this way, the filter has less confidence in
its model and places more emphasis on the measurements to improve the state estimation.
This can be done by increasing the variance of the noise on the process compared to the
one of the noise on the measurements. In such a way, the Kalman gain converges to a larger
steady-state value making the filter more responsive to the measurements. In this applica-
tion, the modeling simplifications of the proposed state observers may be compensated by
adding fictitious noise on the process, namely by increasing the noise variance correspond-
ing to the pedaling torque model equations. In this way, the filter emphasizes the bicycle
longitudinal dynamics model and the vehicle speed measurement to estimate the pedaling
torque.

Constant pedaling torque model (CPTO):
In the case of the CPTO, the variances σ2

wv = 10−2 m2

s2 and σ2
νv = 10−3 m2

s2 have been selected
to emphasize the bicycle longitudinal model and the speed measurement compared to the
pedaling torque model. Also, a variance σ2

wv > σ2
νv has been chosen to give more confidence

to the measured speed rather than the bicycle longitudinal dynamics that can be affected
by modeling errors and parametric variations that may reduce the estimation accuracy. Fig-
ure 4.8 contains the simulation results obtained considering the covariance matrices:

Q = [
10−2 0

0 σ2
wTpc

] , R = 10−3, (4.80)
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Figure 4.7: Simulated pedaling torque Tpc and bicycle speed v profiles.

with σ2
wTpc

∈ {103, 105} N2m2. As one can see, the filter correctly estimates the pedaling
torque average value Tpc0 in both conditions. Nevertheless, the estimation presents a non-
null instantaneous estimation error that oscillates around the pedaling torque average value.
In the two considered cases, the RMSE reported at the back wheel has been calculated
resulting in 4.51 Nm in the case σ2

wTpc
= 103 N2m2 and 1.11 Nm in the case σ2

wTpc
= 105 N2m2.

Thus, a RMSE reduction of circa 75% is obtained in the second case. As one can notice, the
pedaling torque estimation improves when increasing the covariance σ2

wTpc
because the filter

becomes more responsive to the measured speed and the bicycle longitudinal dynamics
model.

Sinusoidal pedaling torque model (SPTO):
Even in the case of the SPTO, the fictitious noise addition on the pedaling torque equations
can compensate for the modeling errors and improve the pedaling torque estimation. In the
following, the covariances σ2

wv and σ2
νv are selected analogously to the CPTO. Figure 4.9

contains the simulation results obtained when considering the covariance matrices:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10−2 0 0 0
0 σ2

wξ
0 0

0 0 σ2
wξ

0
0 0 0 σ2

wξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R = 10−3, (4.81)
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Figure 4.8: Simulated effect of the KF tuning on the pedaling torque estimation using the
CPTO. From top to bottom: Pedaling torque estimation T̂pc; corresponding ped-
aling torque estimation error εTpc and bicycle speed v.

with σ2
wξ
= σ2

wξ0
= σ2

wξc
2
= σ2

wξs
2
∈ {103, 105} N2m2. Also in this case, the pedaling torque average

value can be correctly estimated and the estimate presents a reduced oscillation around the
true value compared to the CPTO. It can be seen that higher values of σ2

wξ
increase the

convergence rapidity and thus improve the pedaling torque estimation. In both conditions,
the RMSE reported at the back wheel has been calculated resulting in 1.32 Nm in the case
σ2

wξ
= 103 N2m2 and 0.29 Nm in the case σ2

wξ
= 105 N2m2. Therefore, a RMSE reduction of

circa 78% is obtained when increasing σ2
wξ

. Comparing the obtained results with the ones
of the CPTO, one can notice the similarity between the effect of increasing σ2

wTpc
and σ2

wξ

on the estimation error reduction. Table 4.3 contains the pedaling torque RMSEs reported
at the back wheel analyzed in the previously considered scenarios. One can notice that
the employment of a sinusoidal model improves the estimation of circa 71% and 74% for
σ2

wTpc
= σ2

wξ
= 103 N2m2 and σ2

wTpc
= σ2

wξ
= 105 N2m2, respectively.
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Figure 4.9: Simulated effect of the KF tuning on the pedaling torque estimation using the
SPTO. From top to bottom: Pedaling torque estimation T̂pc; corresponding ped-
aling torque estimation error εTpc and bicycle speed v.

RMSE in Nm

PTO σ2
wTpc
= σ2

wξ
= 103N2m2 σ2

wTpc
= σ2

wξ
= 105N2m2

CPTO 4.51 1.11

SPTO 1.32 0.29

Table 4.3: Simulated effect of KF tuning on the pedaling torque RMSE reported at the back
wheel (evaluated considering Tpw).

Measurement noise effect:
The previous results indicate that indefinitely increasing the filter variance σ2

wTpc
= σ2

wξ
would

result in a more accurate pedaling torque estimation. However, in a realistic scenario, the
noise affects the measured signals employed as inputs and outputs of the PTOs. In these
conditions, the selection range of the covariance matrix values is limited depending on the
noise level of the measurements. To analyze this effect, a measured speed with an additional
normal distributed noise of variance σ2

v = 10−8 m2

s2 has been considered in the performed
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simulations. Figure 4.10 and 4.11 contain the results of this analysis in the case a CPTO
and a SPTO are employed, respectively. As one can see, for increasing variance levels
σ2

wTpc
= σ2

wξ
, the pedaling torque estimation is more affected by the measurement noise and

might be not suitable to generate references for the motor torque control. Thus, in practical
applications, where noise and errors affect the measurements, infinitely high variance values
σ2

wTpc
= σ2

wξ
cannot be chosen because the PTOs would rely too much on noisy measurements

degrading the pedaling torque estimation. Also, it can be noticed that, at the same variance
level, the SPTO estimation worsens more in the presence of measurement noise compared
to the CPTO one.

Based on the considerations above, in a realistic scenario, where smaller variance values
need to be employed, the CPTO only allows approximately the estimation of the average ped-
aling torque and not its instantaneous value. Whereas, a SPTO, although more responsive
to torque variations, might be more susceptible to measurement noise and errors. There-
fore, in the following simulations only the state observers tuned with σ2

wTpc
= σ2

wξ
= 103 N2m2

will be considered. Moreover, it has to be remarked that to evaluate the effect of modeling
errors and parametric variations on the estimation independently from measurement noise,
the latter will be neglected in the subsequent simulations.

Figure 4.10: Simulated effect of the speed measurement noise on the CPTO tuning. From
top to bottom: Pedaling torque estimation T̂pc; corresponding pedaling torque
estimation error εTpc and bicycle speed v.
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Figure 4.11: Simulated effect of the speed measurement noise on the SPTO tuning. From
top to bottom: Pedaling torque estimation T̂pc; corresponding pedaling torque
estimation error εTpc and bicycle speed v.

4.4.2 Effect of modeling simplifications

This section analyzes the effects of model simplifications on the pedaling torque estima-
tion. In particular, unmodelled pedaling torque high-order harmonics, neglected mechanical
transmission losses, unmodelled external forces, and wind acting on the bicycle longitudinal
dynamics are evaluated.

Pedaling torque high-order harmonics:
As stated in Section 3.1.2, pedaling torque profiles can be highly variable and challenging to
describe mathematically. Indeed, equation (4.33) represents a simplified model of the ped-
aling torque profile. Cycling torques are not perfectly sinusoidal because they are affected
by high-order harmonics that depend on the specific applied pedaling pattern. Figure 4.12
shows the simulation results obtained considering the effect of pedaling torque high-order
harmonics when considering the two proposed PTOs. In this simulation, it has been as-
sumed that the pedaling torque presents a small 4th harmonic component ∣Tpc4 ∣ < ∣Tpc2 ∣ and
can be described by the following expression:

Tpc (t) =
3
4

yPI (t)−
1
2

yPI (t) cos [2θc (t)]−
1
8

yPI (t) cos [4θc (t)] . (4.82)

85



4.4 Pedaling torque observers simulation

Under these hypotheses, the RMSE reported to the back wheel has been evaluated resulting
in 4.64 Nm in the case of the CPTO, and 1.55 Nm in the case of the SPTO. Therefore, even in
the presence of pedaling torque high-order harmonics, the sinusoidal model performs better
than the constant one with an RMSE reduction of circa 66%. Furthermore, comparing the
obtained results with the ones of Table 4.3, one can notice that the presence of high-order
harmonics worsens the RMSE of the CPTO of circa 2% and the one of the SPTO of about
16%. Due to the better pedaling torque estimation obtainable when employing a sinusoidal
pedaling torque model, in the following simulations, only the latter is taken into account.

Figure 4.12: Simulated effect of pedaling torque high-order harmonics on the pedaling torque
estimation obtained with the two proposed PTOs. From top to bottom: Pedaling
torque estimation T̂pc using CPTO and SPTO; corresponding pedaling torque
estimation error εTpc and bicycle speed v.

Mechanical transmission losses:
Electric bicycle mechanical transmissions are typically characterized by high efficiency with
values close to 1. The highest power losses are caused by the bicycle drivetrain chain trans-
mission. Thus, the simulation analysis is performed considering a drivetrain transmission
with the worst case efficiency ηd = 0.85 defined in Section 3.1.1. The obtained results are
reported in Figure 4.13. Compared to Figure 4.9, it can be seen that neglecting the drivetrain
efficiency introduces an offset in the pedaling torque estimation. Under these hypotheses,
the RMSE reported at the back wheel has been calculated resulting in 2.65 Nm. Thus,

86



4.4 Pedaling torque observers simulation

its value worsens of circa 101% compared to the case ηd = 1. Nevertheless, it has to be
remarked that the calculated value represents a worst case. In the case unworn and lubri-
cated chains are employed (ηd ≃ 0.97), the effect of the unmodelled mechanical transmission
efficiency can be neglected without affecting the pedaling torque estimation considerably.

Figure 4.13: Simulated effect of unmodelled drivetrain transmission efficiency ηd on the ped-
aling torque estimated using the SPTO. From top to bottom: Pedaling torque
estimation T̂pc; corresponding pedaling torque estimation error εTpc and bicycle
speed v.

External forces:
This paragraph analyzes the effect of unmodelled external forces acting on the longitudinal
dynamics such as human forces not generated through the crankset mechanism Fe

h and
braking forces FB. In the performed simulation, it has been assumed that a propulsive human
force Fe

h = 100 Nm is applied in t ∈ [0; 8] s, a pedaling force Fp acts in t ∈ [8; 17] s, and the
vehicle is braked by a force FB = −100 Nm in t ∈ [17; 25] s. It has to be remarked that, to obtain
a more realistic profile of the applied forces, a first order LPF with a cut frequency fcF = 0.8 Hz
has been employed. The obtained simulation results are reported in Figure 4.14. As one
can see, the state observer tracks after a short transient all the applied external forces and
cannot distinguish between unmodelled forces and the pedaling one. Therefore, one can
conclude that the PTOs consider all the unmodelled forces acting on the vehicle longitudinal
dynamics as pedaling force.
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Figure 4.14: Simulated effect of unmodelled external forces (Fe
h and FB) on the pedaling

torque estimated using the SPTO. From top to bottom: Pedaling torque estima-
tion T̂pc; corresponding pedaling torque estimation error εTpc and bicycle speed
v.

Wind effect:
Following, the effect of the wind on the pedaling torque estimation is evaluated. In particular,
a headwind vwx = 10 km

h and a tailwind vwx = −10 km
h are analyzed in Figure 4.15 and 4.16,

respectively, because their presence modifies the simulated pedaling torque profile. As one
can see, in the presence of a headwind, the cyclist applies a higher torque to reach the
desired speed target. The state observer, which does not consider the wind in its model,
interprets the lower acceleration due to the resisting effect of the wind as a lower applied
pedaling torque. One can notice that the introduced estimation offset increases with the
speed where the aerodynamics has a higher impact on the vehicle dynamics. Similarly,
in the presence of a tailwind, the cyclist applies a smaller torque and the state observer
interprets the propelling effect of the wind and the higher acceleration as a higher applied
torque. Also in this case, the introduced estimation offset increases with the speed. The
RMSE reported at the back wheel has been calculated resulting in 2.66 Nm in the case
of headwind and 2.1 Nm in the presence of tailwind. Thus, the RMSE worsens by circa
102% and 59% respectively compared to the no wind situation. One can notice that the
estimation is not affected equally by headwinds and tailwinds. Indeed, contrarily to tailwinds,
a headwind always increases the apparent wind determining a higher aerodynamic drag
independently of its intensity. This causes a bigger error in the pedaling torque estimation
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compared to a tailwind of the same intensity. From this analysis, one can conclude that the
presence of wind affects the pedaling torque estimation at high speed and in the presence
of strong headwinds even at low speed. Nevertheless, thanks to the high-variable wind
direction and intensity strong headwinds occur rarely. Therefore, the effect of wind can be
typically neglected in the PTO model.

Figure 4.15: Simulated effect of a headwind vwx > 0km
h on the pedaling torque estimation

obtained using the SPTO. From top to bottom: Pedaling torque estimation T̂pc;
corresponding pedaling torque estimation error εTpc and bicycle speed v.

4.4.3 Effect of parametric variations

In this section, the effect of bicycle mass m, drag area Ad, air density ρ, and rolling friction
coefficient µ variations are evaluated within the worst case range defined in Section 3.2.
Moreover, this section analyses also the effects of road slope estimation errors on the ped-
aling torque estimation accuracy.

Model parametric variations:
Following, the simulation results obtained in the presence of model parametric variations are
analyzed. As one can see in Figure 4.17, worst-case errors in the mass value consider-
ably affect the pedaling torque estimation, especially in the low-speed range, introducing a
significant offset in the estimated pedaling torque. Nevertheless, this error decreases with
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Figure 4.16: Simulated effect of a tailwind vwx < 0km
h on the pedaling torque estimation ob-

tained using the SPTO. From top to bottom: Pedaling torque estimation T̂pc;
corresponding pedaling torque estimation error εTpc and bicycle speed v.

the speed, and results comparable to the effect of the other parametric variations at high
speeds. The RMSE reported at the back wheel has been calculated resulting in 5.12 Nm
in the case the filter considers a wrong system mass m = 60 kg and 4.93 Nm in the case
m = 140 kg. Thus, an error in the mass value knowledge worsens the RMSE of circa 288%
in the worst-case scenario compared to a perfect knowledge of the system mass. On the
contrary, Figure 4.18 shows that the drag area variation affects the estimation, especially at
high speeds where the aerodynamics is not negligible while it has a small effect on the esti-
mation in the low-speed range. The RMSE reported at the back wheel has been calculated
resulting in 1.33 Nm in the case the assumed drag area is Ad = 0.32 m2 and 1.7 Nm when
Ad = 0.63 m2. Therefore, the worst-case error on the knowledge of the drag area worsens the
RMSE of circa 29% compared to a perfect knowledge of this value. Compared to the other
parametric variations, as illustrated in Figure 4.19, an air density variation results negligible in
the entire speed range. Also for air density variations, the RMSE reported at the back wheel
has been calculated resulting in 1.32 Nm in the case the assumed air density is ρ = 1.14 kg

m3

and 1.35 Nm in the case ρ = 1.3 kg
m3 . Thus, the worst-case error on the air density knowl-

edge worsens the estimation of circa 2% compared to a perfect knowledge of this value.
Contrary to drag area variations, Figure 4.20 shows that rolling friction coefficient changes
affect the estimation also in the low-speed range. Furthermore, one can notice that the intro-
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duced offset is constant and not speed-dependent. The RMSE reported at the back wheel
has been calculated resulting in 1.7 Nm in the case the assumed rolling friction coefficient
is µ = 0.002 and 2.13 Nm when µ = 0.01. Therefore, the worst-case error in the knowledge
of the rolling friction coefficient worsens the estimation of circa 61% compared to a perfect
knowledge of this value. The results obtained concerning the worst-case RMSEs reported at
the back wheel and the respective increment compared to a perfect knowledge of the system
parameters are summarized in Table 4.4. It has to be remarked that the worst case RMSE
increments here reported are expressed to the assumed real values of Table 4.2. Higher
errors are expected in the case extreme values of the parametric range are considered.

Figure 4.17: Simulated effect of a mass m variation on the pedaling torque estimation ob-
tained using the SPTO. From top to bottom: Pedaling torque estimation T̂pc;
corresponding pedaling torque estimation error εTpc and bicycle speed v.
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Figure 4.18: Simulated effect of a drag area Ad variation on the pedaling torque estimation
obtained using the SPTO. From top to bottom: Pedaling torque estimation T̂pc;
corresponding pedaling torque estimation error εTpc and bicycle speed v.

Road slope estimation error:
The effects of a road slope estimation error εβ on the pedaling torque estimation are reported
in Figure 4.21. In particular, the errors εβ = 0.1 deg and εβ = 1 deg are analyzed in simulation.
As one can see, road slope estimation errors affect the pedaling torque estimation gener-
ating offsets even when tiny road slope estimation errors comparable to barely perceivable
slopes occur. Moreover, one can notice that the effect of a road slope estimation error is not
speed-dependent. In both cases, the RMSE reported at the back wheel has been calculated
resulting in 1.43 Nm in the case a road grade estimation error of 0.1 deg occurs and 6.09 Nm
in the case the estimated slope differs of 1 deg from its real value. Considering these two
cases, the RMSE worsens by circa 8% and 361% respectively. This analysis clarifies that the
road slope estimation error minimization is fundamental to achieve accurate pedaling torque
estimates. Indeed, narrow road estimation errors below 1 deg introduce a pedaling torque
estimation error comparable to the one caused by a considerable mass identification error.

4.4.4 Considerations

The performed simulation analysis allows us to understand the assets and drawbacks of the
proposed pedaling torque estimation approaches. It has been shown that the PTOs estimate
the pedaling torque by exploiting the bicycle longitudinal dynamic model, the measured bi-
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Figure 4.19: Simulated effect of air density ρ variation on the pedaling torque estimation
obtained using the SPTO. From top to bottom: Pedaling torque estimation T̂pc;
corresponding pedaling torque estimation error εTpc and bicycle speed v.

cycle speed, the motor torque, and the estimated road slope. The simulation results point
out that model parametric variations and model simplifications can affect the pedaling torque
estimation accuracy. Therefore, accurate parameter knowledge and measurements are fun-
damental for estimation error minimization. The addition of fictitious process noise in the KF
model has been employed to compensate for the simplified pedaling torque modeling. It has
been shown that the sinusoidal pedaling torque model exploitation allows for improved esti-
mation compared to a constant one. Nevertheless, the SPTO estimation is more susceptible
than the one of the CPTO to the presence of measurement noise and errors.

The modeling hypothesis of Section 4.2.1 can be accepted without influencing the estima-
tion accuracy considerably. In particular, typical high-order pedaling torque harmonics do not
alter the estimation accuracy remarkably when employing a SPTO. Moreover, in the case of
unworn and lubricated transmissions, also drivetrain losses can be neglected without affect-
ing the estimation considerably. Also, the simulations show that neglecting the effect of the
wind does not significantly influence the pedaling torque estimation except in the rare case
of a strong headwind. Nonetheless, it has been shown that the proposed methods cannot
distinguish between the pedaling torque and external forces acting on the vehicle dynamics
not generated through the crankset such as braking forces or thrust forces applied by the
cyclist without employing the pedals.

The effect of parametric variations is speed-dependent and can impact significantly on
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Figure 4.20: Simulated effect of rolling friction coefficient µ variation on the pedaling torque
estimation obtained using the SPTO. From top to bottom: Pedaling torque es-
timation T̂pc; corresponding pedaling torque estimation error εTpc and bicycle
speed v.

the estimation especially when combined variations occur concurrently. The simulation re-
sults confirm that in the low-speed range, the estimation accuracy depends mainly on the
knowledge of the system mass and the road grade. Since the mass is typically a constant
parameter while riding, the pedaling torque estimation quality is strongly related to the road
slope estimation accuracy. Moreover, it has been shown that errors in the knowledge of the
drag area and rolling friction coefficient affect the estimation less than the mass and road
slope. Thus, these parameters can be considered constant without influencing the estima-
tion and the provided electrical assistance remarkably. In addition, the simulations showed
that the effect of air density variations is entirely negligible on the pedaling torque estimation
accuracy.
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Parameter Worst-case RMSE in Nm Worst-case RMSE increment

Mass m 5.12 288%

Drag area Ad 1.7 29%

Air density ρ 1.35 2%

Rolling friction coefficient µ 2.13 61%

Table 4.4: Worst-case RMSE reported at the back wheel (evaluated considering Tpw) in the
presence of parametric variations and its increment compared to the RMSE ob-
tained with perfect knowledge of the parameters when using the SPTO.

Figure 4.21: Simulated effect of road slope estimation errorεβ on the pedaling torque estima-
tion obtained using the SPTO. From top to bottom: Pedaling torque estimation
T̂pc; corresponding pedaling torque estimation error εTpc and bicycle speed v.
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Experimental results

5 Experimental results

In this chapter, the previously proposed PTOs are experimentally validated. Tests are per-
formed in realistic riding conditions to analyze the torque estimation error and the cycling ef-
fort reduction in a variable sloped environment. In particular, the experiments are performed
on a pedelec prototype programmed to generate electrical aid utilizing a simple fixed-gain
control strategy.

Firstly, a description of the implemented torque-sensorless control method and the design
choices made in the prototype development phase is provided. After that, the proposed algo-
rithm employed to estimate the road angle is analyzed performing outdoor tests. A particular
focus is placed on the selection of the tuning parameters and the angle estimation error
analysis in the presence of vehicle accelerations, variable slopes, and curves. Then, the
PTOs tuning is analyzed in the absence of road grade variations and electrical assistance.
Afterwards, the effect of road angle estimation errors and motor control on the pedaling
torque estimation is evaluated under noteworthy riding conditions, namely during the start-
ing phase and uphill riding. Then, the cycling performances obtained with the proposed
torque-sensorless approaches, expressed in terms of cycling power and energy reduction,
are compared with the ones achieved when employing a torque sensor. Eventually, a quali-
tative analysis of the proposed electrical assistance methods is performed by letting several
people test the prototype and answer a survey.

5.1 Bicycle prototype

This section describes the bicycle prototype that has been developed to perform the experi-
mental validation in this work. Firstly, a generic system description that provides an overview
of the proposed torque-sensorless control strategy implementation in the pedelc prototype
is given. Then, mechanical and electrical design characteristics of the bicycle prototype are
discussed.

5.1.1 System description

Figure 5.1 contains a schematic representation of the system functionalities. As one can
see, the sensorless pedaling torque estimation is achieved by substituting the torque sensor
with current sensors, a rotor position sensor, and a six-axes IMU. In particular, the measured
currents iabc and the electrical rotor position θe are employed to control the motor torque Tm
to the desired value T∗m relying on a FOC. By differentiating the position sensor measure-
ment, the vehicle longitudinal speed v is obtained. The latter together with the longitudinal
acceleration measurement provided by the IMU asx are the inputs of a road slope observer
that estimates the road angle β̂. To compensate for cornering effects on the road slope es-
timation, the measured angular speed ωsz given by the IMU is also employed. Afterwards,
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the applied motor torque, the measured bicycle speed, and the estimated road angle are
provided to the PTO to estimate the pedaling torque T̂pc. The obtained estimation can be
employed to control the motor torque to the desired reference generated according to the
chosen pedelec control strategy. It has to be remarked that a pedaling torque sensor is
anyway installed in the designed prototype for validation purposes.

Since the focus of this work is to analyze the accuracy of the pedaling torque estimation
and to prove that the estimated signal can be used to assist the bicycle motion and reduce cy-
cling efforts, a simple power-oriented fixed-gain control strategy has been chosen among the
possible electrical assistance strategies. To reduce system complexity, regenerative braking
has also not been implemented in the prototype.

Current
Sensors

Position 
Sensor

IMU

PMSM Torque
Control

Road
Slope

Observer

Pedaling
Torque

Observer

Desired 
Control 
Strategy

Figure 5.1: Schematic representation of the proposed pedelec torque-sensorless assis-
tance.

5.1.2 Mechanical design

The main objective of the prototype mechanical design was to create an easy-to-access
and -maintain system that simplifies testing procedures. Figure 5.2 contains a picture of
the pedelec prototype employed for testing the proposed sensorless control approach. The
considered bicycle has a standard diamond frame and mounts 28” tires and a drivetrain with
a fixed and known gear ratio τd = 2.8. The electrical assistance is provided through a hub
direct-drive motor mounted on the back wheel. The choice of mounting the motor on the
pedelec rear wheel reduces the possibility of the wheel slipping at the cost of increased
weight unbalance between the wheels. The battery and the control electronics are placed
inside a rear bicycle basket increasing the system compactness and reducing power losses
because the cable length is minimized. Nonetheless, the installation of the motor, battery,
and control electronics in the rear part of the bicycle determines an increment of the weight
unbalance and thus worsens the rideability of the vehicle. A hub motor has been chosen
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since it can be easily mounted on the bicycle without the need to modify the frame as in
the case of many mid-drive solutions. Friction drives have been discarded due to the high
power losses and tire wear that they cause. A direct-drive motor has been preferred to a
geared one to simplify the system modeling. Indeed, these motors do not contain internal
mechanical transmissions that are often not accessible and have gear ratios that are not
explicitly declared by manufacturers. Moreover, thanks to their large dimensions, direct-drive
motors offer the possibility of integrating the control electronics inside the motor hub. This
feature could be exploited for future developments of the bicycle prototype. Additionally, the
absence of a freewheeling mechanism would allow for the implementation of regenerative
braking in further developments of the system.

Emergency Button IMU Control Electronics

BatteryTorque Sensor

Monitor

Encoder Motor

Figure 5.2: Designed pedelec prototype for the torque-sensorless control validation.

5.1.3 Electrical design

A hub direct-drive motor HS3540 produced by Crystalyte Europe is employed to provide
electrical assistance in the designed prototype. The considered motor is a PMSM with su-
perficially mounted magnets whose main characteristics are reported in [143]. A PMSM has
been preferred to a BLDC motor because it offers the possibility of employing FOC to con-
trol the motor torque and thus achieve better dynamical performances and reduced torque
ripple. Among the possible energy storage sources employable in a pedelec, a Li-Ion bat-
tery has been selected due to the high energy density and lifetime that characterize these
batteries compared to other technologies. In particular, the Maratron SilverFish XH259 24 V
battery pack has been utilized. The chosen battery has a maximum output voltage of 25.9 V
and a capacity of 12 Ah. It can be noticed that for safety reasons in the prototype testing
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phase, the minimum battery voltage applicable to the motor has been chosen. For the sake
of brevity, further details about the designed control electronics and the employed sensors
are provided in the appendix (Section 7.2).

The achievement of a highly efficient motor torque control requires a correct knowledge
of the motor electrical parameters. However, their value is often not provided by manufac-
turers that rather give information regarding the rated quantities (power, speed, voltage, and
current), the weight, and the dimensions of the motor. Since motor parameters are not pro-
vided in the specific manufacturer datasheet, in this work an offline parametric identification
has been performed. Table 5.1 contains the electrical motor parameters of the designed
pedelec prototype obtained by performing an offline identification based on LCR-meter mea-
surements and the guidelines provided in [144].

Motor parameter Value

Number of pole pairs np 23

Rated DC voltage ŨDC 48 V

Rated DC current ĩDC 45 A

Rated power P̃ 2 kW

Rated torque T̃m 80 Nm

Rated mechanical speed ω̃m 25 rad
s

Phase resistance R 105 mΩ

Inductance d-axis Ld 207 µH

Inductance q-axis Lq 252 µH

Permanent magnet flux linkage ΨPM 0.028 Vs

Torque constant KT 0.966 Nm
A

Table 5.1: Identified motor electrical parameters of the HS3540 hub direct-drive motor uti-
lized in the designed pedelec prototype.

5.2 Road slope estimation

This section analyses the experimental results obtained with the proposed road slope esti-
mation approaches under different riding conditions. In each scenario, the algebraic method
(4.64) and the suggested KF are compared with the reference road angle measured with a
digital inclinometer. In particular, the confidence interval at 95% CI95% of the performed static
angle measurements is evaluated employing the following formula:

CI95% = χ̄ ± κ
σχ√

n
, (5.1)
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where χ̄ is the measurement sample average value, σχ is its standard deviation, n is the num-
ber of considered observations, and κ is the critical value of the assumed standard normal
distribution equal to κ = 1.96 in the case a confidence interval of 95% is evaluated. Consid-
ering the confidence interval allows to account for the measurement errors caused by local
surface irregularities and the device uncertainty by expressing the confidence on the mea-
sured angle mean value. It has to be remarked that the algebraic method (4.62) has been
neglected in this analysis due to its ineffectiveness in practical applications where bicycle
leaning is not negligible. The estimation algorithms are implemented on the microcontroller
with a sampling frequency of fs = 500 Hz. Besides, the wheel speed and IMU measurements
are low-pass filtered with a bandwidth of fcv = fcas = fcωs = 1 Hz to reduce the effects of
vibrations and differentiation.

In the following, the tuning of the proposed KF is first discussed. After selecting the KF pa-
rameters, the road angle estimation is compared with the algebraic method in a level ground
and a variable-sloped scenario. Finally, the proposed method to reduce the estimation error
caused by cornering is experimentally analyzed.

5.2.1 Kalman filter tuning

In this section, the tuning of the KF employed for the road slope estimation is discussed
and experimentally verified in different scenarios. Due to the modeling errors on which the
proposed algorithm is based, tuning the filter means selecting the covariance matrices to
weigh the confidence in the model and the measurements. In this case, more emphasis
can be given to the measurements v and asx to compensate for the modeling simplifications.
Therefore, the measurement equation variances must be chosen smaller than the ones of
the process σ2

w >> σ2
ν . Besides, the model is based on the simplifying assumption that the

acceleration and the slope angle are constant in time. Thus, to obtain a reliable state estima-
tion, the confidence in each model equation must be weighted by choosing the elements of
the covariance matrix Q. Since a and gx are coupled through the measured asx , a variance

ratio ζσ2
w
= σ2

wa
σ2

wgx
representative of the variability of the states a and gx , i.e. of the mistrust on

the respective equation, must be selected.
Based on the previous analysis, the experiments have been performed considering the

following values for the covariance matrices (4.72):

Q =
⎡⎢⎢⎢⎢⎢⎣

σ2
wa 0 0
0 1 0
0 0 σ2

wgx

⎤⎥⎥⎥⎥⎥⎦
R = [10−2 0

0 10−2] , (5.2)

where increasing values for the ratio ζσ2
w

have been evaluated considering σ2
wgx
= 1 m2

s4 . Fig-
ure 5.3 reports the road slope estimation results obtained with the proposed KF when pedal-
ing on an almost flat road. In this scenario, the measured reference evaluated on the entire
route presents a CI95% = 0.16 ± 0.17 deg. The calculated reference is reported in the figure
with black dashed lines. Figure 5.4 contains the same analysis performed when riding on a
variable sloped environment. In addition, the two figures enclose the bicycle longitudinal ac-
celeration in each scenario that allows an analysis of the road angle estimation dependency
on the vehicle acceleration. To evaluate the estimated road slope accuracy, the obtained
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results are related to the traveled distance x in Figure 5.5. This allows to compare the esti-
mated angle with the slope reference statically calculated employing the digital inclinometer.
The reference slope has been evaluated at several points along the track at circa 2 m dis-
tance between each other. For each measurement point, the confidence interval at 95% of
the sample is reported with a black line in Figure 5.5. As one can see, for small values of
the ratio ζσ2

w
, the estimated road slope is too sensitive to the bicycle acceleration but reacts

faster to angle variations. Increasing the ratio, the filter estimate reduces its sensitivity to
the acceleration at the cost of a less reactive road angle estimation. Table 5.2 contains the
RMSE calculated considering the differently tuned KFs in each scenario. For increasing val-
ues of ζσ2

w
, the RMSE decreases by circa 86% in the flat ground experiment and of the 22%

in the variable sloped ground one. Based on the experimental results, higher ratios seem
to be more suitable to obtain an insensitive to the vehicle acceleration grade estimation at
variable slope levels. A good solution is represented by the filter with ζσ2

w
= 100 (highlighted

in Table 5.2) that will be employed in the next experiments in this work.

Figure 5.3: KF road slope estimation β̂ dependency on the covariance matrices tuning
(ζσ2

w
∈ {1; 10; 100; 1000}) in flat ground test (β ≃ 0 deg). The measured road slope

reference confidence interval is reported with black dashed lines. From top to
bottom: road slope estimation β̂ and bicycle longitudinal acceleration a.
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RMSE in deg

ζσ2
w

Ground condition 1 10 100 1000

Flat ground 0.745 0.171 0.107 0.104

Variable sloped ground 0.5759 0.4476 0.4459 0.4462

Table 5.2: KF road slope estimation β̂ RMSE dependency on the covariance matrices tuning
in different scenarios.

Figure 5.4: KF road slope estimation β̂ dependency on the covariance matrices tuning (ζσ2 ∈
{1; 10; 100; 1000}) in a variable sloped ground test (β ≠ 0 deg). From top to bottom:
road slope estimation β̂ and bicycle longitudinal acceleration a.
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Figure 5.5: Road slope estimation β̂ error analysis (related to the traveled distance x) for dif-
ferent KF covariance matrices tuning (ζσ2

w
∈ {1; 10; 100; 1000}) in a variable sloped

ground test (β ≠ 0 deg). The measured road slope reference and its confidence
interval is reported in black.

5.2.2 Level ground riding

In this section, the road slope estimations obtained with the algebraic method and the KF
are compared in the case of level ground riding. Figure 5.6 contains the estimation results
obtained on an almost flat road. In this scenario, the road angle has been measured with
static measurements of an inclinometer resulting in a CI95% = 0.25± 0.16 deg. One can notice
that the angle estimation obtained with the algebraic method is more noisy than the one
obtained with the proposed KF. To obtain a low noise slope estimation with the algebraic
method, the difference between a and asx should be precisely equal to gx. However, even in
the absence of road slope gx = 0 m

s2 , the acceleration signals are not the same due to the
effect of measurement errors, differentiating, and filtering. As one can see, a smoother angle
estimation less sensitive to acceleration variations is obtained by employing the proposed KF.
For each algorithm, the RMSE has been calculated resulting in 0.434 deg for the algebraic
method and 0.084 deg for the KF. Thus, a reduction of the RMSE of circa 80% is obtained by
employing the KF in level ground riding.
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Figure 5.6: Road slope estimation β̂ in level ground riding (β ≃ 0 deg). From top to bottom:
road slope estimation β̂ and measured longitudinal accelerations (obtained from
the wheel speed a and from IMU measurements asx ).

5.2.3 Variable sloped environment

Following, the road slope estimations obtained in a sloped environment with the algebraic
method and the proposed KF are analyzed. Figure 5.7 contains the experimental results
achieved when riding uphill and downhill the same sloped road of Figures 5.4 and 5.5. One
can notice that, in the presence of a non-null road angle, a difference between a and asx that
corresponds to gx is noticeable. To evaluate the estimated road slope accuracy, the obtained
estimation results are related to the traveled distance x in Figure 5.8. As one can notice both
methods follow approximately the calculated slope reference. The KF estimation results are
smoother but slower than the one obtained with the algebraic method. The RMSE has been
calculated in both cases resulting in 0.92 deg when using the algebraic method and 0.729 deg
employing the KF. Thus, a reduction of the RMSE of circa 20% is obtained when estimating
the road grade using the proposed KF in a sloped environment. The reduction of the RMSE
improvement compared to level ground riding is explainable by the filtering effect of the KF
that introduces a time delay on the estimation in the presence of variable road slopes. One
can notice that at circa 50 m a considerable estimation error of circa 5 deg is present. This
error is caused by the U-turn performed while turning back to ride downhill the same route.
This considerable angle error would propagate onto the pedaling torque estimation affecting
the control system performances. Thus, the cornering effect error must be mitigated to obtain
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reliable control performances when riding in a curve.

U-Turn

Figure 5.7: Road slope estimation β̂ in a variable sloped environment (β ≠ 0 deg). From
top to bottom: road slope estimation β̂ and measured longitudinal accelerations
(obtained from the wheel speed a and from IMU measurements asx ).

5.2.4 Riding in a curve

In this section, the negative effect of riding in a curve on the slope estimation and the method
used to reduce it are analyzed. Table 5.3 contains the tuning parameters employed to com-
pensate for the cornering effect using the proposed approach. These parameters have been
experimentally chosen minimizing the estimation error when considering curves of different
aggressiveness. Figure 5.9 contains the estimation results when riding in a curve on an
almost flat ground. In this scenario, the measured road angle calculated with the digital incli-
nometer presents a CI95% = 0.18± 0.09 deg over the entire track. This measured reference is
reported with dashed black lines in the figure. Moreover, in the experiment, the curve occurs
during approximately the interval t ∈ [6.5; 11] s. One can notice that thanks to the employed
correction method the error introduced by the cornering effect can be reduced. In partic-
ular, the RMSEs have been calculated during the cornering interval resulting in 0.924 deg
for the algebraic method, 0.565 deg for the KF, and 0.321 deg for the KF with the cornering
compensation method. Thus, an RMSE improvement of circa 43% is obtained when employ-
ing the proposed curve correction approach compared to the non-compensated estimation.
However, it has to be remarked that the obtained results are strictly dependent on the ag-
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U-Turn

Figure 5.8: Road slope estimation β̂ error analysis (related to the traveled distance x) in a
variable sloped environment (β ≠ 0 deg).

gressiveness of the considered curve. Indeed, a worse RMSE improvement is expected
when riding in hairpin- or U-turns.

Tuning parameter Value

Λth 0.1 rad
s

c 75

f min
cβ

0.005 Hz

f max
cβ

3 Hz

Table 5.3: Parameters employed in the proposed curve effect compensation method.
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Curve

Figure 5.9: Road slope estimation β̂ cornering effect compensation. From top to bottom:
road slope estimation β̂ and measured longitudinal accelerations (obtained from
the wheel speed a and from IMU measurements asx ).

5.3 Torque-sensorless control

In this section, the proposed pedaling torque estimation algorithms are analyzed and ex-
perimentally validated in a realistic riding environment. The PTOs are implemented on a
microcontroller with a sampling frequency of fs = 500 Hz. Even in this case, a low pass filter
corner frequency of fcv = 1 Hz has been utilized to filter the measured bicycle speed. Before
performing each experiment, the cyclist mass has been measured with a digital scale and its
value updated in the microcontroller firmware. Moreover, the pedaling torque estimation has
been performed defining in the PTO models the rolling friction coefficient to its worst case
value µ = 0.01 to account for bump losses, and the drag area to the typical upright cycling
value Ad = 0.63 m2.

Initially, the tuning of the PTOs is analyzed in an indoor scenario without motor assistance
assuming the road to be perfectly level β = 0 deg, namely without performing an online angle
estimation. Under these conditions, the PTOs tuning that optimizes the torque estimation
performances has been selected and employed in the subsequent experiments.

Afterwards, tests are performed on a predefined track, that covers a distance of about
200 m, characterized by sections with a variable slope, curves, and straight-level ground.
Figure 5.10 illustrates the track employed for the performance analysis, while Figure 5.11
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reports the estimated road slope obtained with the proposed KF over the considered track.
As one can notice, the estimated slope in the level ground segment is not perfectly flat
but contained in the range β ∈ [−0.5; 0.5] deg. The track is characterized by rapid grade
changes during the curves, which, in the grade estimation, sum up with cornering effect
errors. Moreover, all experiments have been performed riding the bicycle at an average
cruise speed of circa v ∈ [10; 15] km

h . Additionally, all the test rides have been performed in
low wind speed weather conditions vw ∈ [0; 10] km

h .
Under these hypotheses, the torque estimation capabilities of the proposed PTOs are

evaluated in two noteworthy riding conditions, namely during the starting phase and when
riding uphill. These experiments allow the analysis of the online slope estimation and motor
assistance effects on the quality of the estimated pedaling torque.

After that, the riding performances are analyzed by evaluating the pedaling power in the
same remarkable conditions. Here, the performances are compared with the ones obtained
by employing a commercial torque sensor to generate the assistance and without motor
aid. In particular, the maximum and average pedaling power reduction are evaluated in
the aforementioned conditions. Also, for each assistance approach, the cycling energy is
computed and compared to the total delivered energy (motor plus pedaling) to indicate the
global effort reduction in the performed riding task.

Eventually, to take into account the preference and riding feeling variability between differ-
ent users, a qualitative analysis of the implemented assistance approaches is executed. In
particular, several people were surveyed by asking question about the perceived assistance
characteristics and letting them compare the proposed assistance methods.

5.3.1 Pedaling torque observers tuning

As discussed in Section 4.4.1, tuning a KF in the presence of modeling simplifications means
selecting the covariance matrices to weigh the confidence between the model and the mea-
surement equations employed by the filter. In particular, it has been shown in simulation that
the measurements and the bicycle longitudinal model can be trusted more than the pedaling
torque model selecting the values of the covariance matrices. In the following, the pedaling
torque estimation is evaluated for different tuning of the proposed algorithms when riding on
a flat ground. It has to be remarked that in these experiments, to exclude from the analysis
errors introduced by the slope estimation, the latter is not performed assuming the terrain to
be perfectly flat β = 0 deg. Similarly, to exclude errors caused by the motor torque control,
the analysis is performed without electrical assistance. Furthermore, the following tests are
performed indoors to exclude the effect of wind on the pedaling torque estimation. Under
these conditions, the Normalized Root Mean Square Error (NRMSE) of the pedaling torque
has been calculated to evaluate the quality of the estimation. In particular, to allow a com-
parison of the obtained results in different riding conditions, the RMSE has been normalized
considering the average value of the measured pedaling torque T̄p:

NRMSE = RMSE
T̄p

⋅ 100. (5.3)

Besides, the respective CI95% have been evaluated over three experiments performed un-
der similar conditions. In the executed trials the following covariance matrices have been
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Legend:
Level ground
Downhill
Uphill
Start point

Figure 5.10: Selected track for the torque-sensorless control performance analysis. (Google
©)

selected to assess the CPTO pedaling torque estimation performances:

Q = [
10−2 0

0 σ2
wTpc

] , R = 10−3. (5.4)

Similarly, the same analysis is performed by tuning the SPTO with the following covariance
matrices:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10−2 0 0 0
0 σ2

wξ
0 0

0 0 σ2
wξ

0
0 0 0 σ2

wξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R = 10−3. (5.5)

For both PTOs values of σ2
wTpc
= σ2

wξ
∈ {10, 100, 500, 1000} N2m2 have been utilized. It has to

be remarked that the variances have been evaluated for values σ2
wTpc
= σ2

wξ
≤ 103 N2m2 since

simulations have shown that for higher values, despite the fact the estimation becomes more
reactive to torque variations, undesired oscillations appear on the estimated pedaling torque
due to errors caused by noise and differentiation of the measured rotor position that affect
the highly trusted speed measurement. Besides, values of σ2

wTpc
= σ2

wξ
≤ 10 N2m2, has also

been excluded from the analysis because they do not allow to obtain a sufficiently reactive
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UphillLevel Ground

Curve

Curve

Downhill

Figure 5.11: Estimated road slope β̂ with the proposed KF over the testing track.

torque estimation. As an example, the extreme cases σ2
wTpc
= σ2

wξ
= 1 N2m2 and σ2

wTpc
= σ2

wξ
=

104 N2m2 are illustrated in Figure 5.12. The experiments confirm the considerations above
when variance values beyond the testing range are utilized. Also, it can be noticed that
for high values of variance, the speed measurement errors affect more the SPTO than the
CPTO causing bigger oscillations on the estimated pedaling torque.

Figure 5.13 and Figure 5.14 contain an example of the results obtained employing the
different analyzed tunings of the CPTO and the SPTO, respectively. As one can see when
employing a simple constant pedaling torque model high values of the variance σ2

wTpc
need

to be selected to compensate for the modeling simplification. Moreover, the state estimation
results are too slow compared to the pedaling torque dynamics at narrow variance values.
For increasing values of σ2

wTpc
, the estimation gets more reactive to torque variations, es-

pecially in the starting acceleration phase. Nevertheless, even for high values of σ2
wTpc

, the
estimation results are delayed and damped compared to the pedaling torque peaks. As
shown in Figure 5.14, employing a pedaling torque sinusoidal model allows to improve the
estimation even for small values of σ2

wξ
. Moreover, increasing variance values permit the es-

timation improvement and the pedaling torque estimation delay reduction. Table 5.4 contains
the NRMSE of the pedaling torque for the considered tunings of the PTOs. As one can no-
tice, for both models the NRMSE decreases for increasing values of the the pedaling torque
model variance. However, for values σ2

wξ
> 500 N2m2, the estimation of the SPTO starts

deteriorating because of the oscillations caused by the highly trusted speed measurement
errors. Moreover, it can be seen that the SPTO reduces the NRMSE by about 10 − 20 %
compared to the CPTO at the same level of variance. Based on this analysis, it is clear that
the employment of a sinusoidal model improves the pedaling torque estimation. To minimize
the NRMSE, the effect of the speed measurement noise, and obtain a sufficiently reactive
torque estimation, σ2

wTpc
= σ2

wξ
= 500 N2m2 has been selected as optimal variance value and
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highlighted in Table 5.4. This variance value will be utilized to tune the PTOs in the later
experiments of this work.

Figure 5.12: Pedaling torque estimation T̂pc obtained with PTO covariance values beyond
the considered tuning range (σ2

w ∉ [10; 1000] N2m2) when riding indoor (no road
slope β = 0 deg and no wind vwx = 0 km

h ) without motor assistance (Tm = 0 Nm).

NRMSE in %

PTO σ2
wTpc
= σ2

wξ
in N2m2

10 100 500 1000

CPTO 86.32± 5.8 73.56± 3.08 68.91± 0.7 68.13± 3.25

SPTO 74.7± 5.6 51.09± 5.49 49.87± 4.5 52.11± 3.7

Table 5.4: Confidence interval at 95% of the estimated pedaling torque T̂pc NRMSE evaluated
for different PTO tuning values when riding indoor (no road slope β = 0 deg and
no wind vwx = 0 km

h ) without motor assistance (Tm = 0 Nm).
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Figure 5.13: Pedaling torque estimation T̂pc for different tuning of the CPTO (σ2
wTpc

∈
{10; 100; 500; 1000} N2m2) when riding indoor (no road slope β = 0 deg and no
wind vwx = 0 km

h ) without motor assistance (Tm = 0 Nm).

Figure 5.14: Pedaling torque estimation T̂pc for different tuning of the SPTO (σ2
wξ
∈

{10; 100; 500; 1000} N2m2) when riding indoor (no road slope β = 0 deg and no
wind vwx = 0 km

h ) without motor assistance (Tm = 0 Nm).
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5.3.2 Pedaling torque estimation analysis

In this section, the two proposed PTOs, tuned as previously explained, are tested on the
road in the defined track. In particular, two noteworthy sections of the track, where higher
assistance is required, are analyzed:

• riding behavior during the starting phase (first 10 s);

• riding behavior during the uphill portion of the track.

It has to be remarked that due to the presence of wind, variable riding conditions, and fol-
lowed path, also in this case the CI95% of the NRMSE is evaluated over three performed
tests. Differently from the previous analysis, all the following experiments are performed with
an online estimation of the road slope.

Firstly, the experiments are executed in the absence of motor assistance. Afterwards,
the torque estimation capabilities are analyzed when a motor aid based on the estimated
pedaling torque and a simple fixed-gain control strategy is provided:

T∗m = KaT̂pw, (5.6)

where Ka = 1 represents the selected fixed gain used in the performed experiments. Thus, a
motor torque equal to the estimated pedaling torque is set as reference for the FOC accord-
ing to the considerations of Section 3.1.3 (i∗q =

T∗m
KT

A, i∗d = 0 A). It has to be remarked that, due
to the prototype battery limitations and for safety reasons during testing, a maximum current
reference of i∗q = 20 A can be sent to the motor limiting the maximum deliverable motor torque
to circa Tm ≃ 20 Nm. Moreover, in the presence of estimated braking torques, the electrical
assistance is cut off.

Pedaling torque estimation analysis without motor assistance:
Figure 5.15 and 5.16 contain an example of the pedaling torque estimation obtained without
electrical assistance during the starting and uphill sections of the track, respectively. The es-
timation performances without motor assistance expressed in terms of NRMSE are reported
in Table 5.5. Analyzing this index, one can notice that the introduction of the road angle
online estimation barely affects the CPTO estimate in both starting and uphill riding phases
compared to the indoor results. On the other hand, the SPTO estimation visibly degrades
only in the case of uphill riding (circa 5%). Thus, the SPTO results are more susceptible
to the road angle estimation error caused by the delay introduced by the slope estimator in
a variable grade environment. Nonetheless, the NRMSE of the SPTO torque estimation is
circa 10% smaller than the one of the CPTO.

114



5.3 Torque-sensorless control

Figure 5.15: Comparison of the PTOs pedaling torque estimation obtained during the
starting phase of the track with no motor assistance (Tm = 0 Nm). From
top to bottom: pedaling torque estimation T̂pc and estimated road slope β̂.

Figure 5.16: Comparison of the PTOs pedaling torque estimation obtained during the up-
hill section of the track with no motor assistance (Tm = 0 Nm). From top to
bottom: pedaling torque estimation T̂pc and estimated road slope β̂.
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NRMSE in %

PTO Starting Uphill

CPTO 68.86± 7.35 65.96± 4.67

SPTO 50.3± 5.01 54.98± 3.5

Table 5.5: Confidence interval at 95% of the estimated pedaling torque T̂pc NRMSE evalu-
ated during the starting and uphill sections of the track without electrical assis-
tance (Tm = 0 Nm).

Pedaling torque estimation analysis with motor assistance:
Following, the effect of the electrical assistance on the torque estimation performance is an-
alyzed. In particular, to account for the repercussions of the control system inaccuracies
and current limitations on the pedaling estimation, the NRMSE of the delivered motor torque
Tm = T̂pw compared to the measured pedaling torque reported at the back wheel Tpw is
evaluated. Figure 5.17 and 5.18 contain an example of the results obtained when provid-
ing electrical assistance based on the CPTO estimation in the starting and uphill sections,
respectively. Figure 5.19 and 5.20 illustrate whereas the same two riding conditions when
the electrical assistance is based on the SPTO torque estimation. In these figures, it can be
noticed that the current measurement noise propagates onto the applied motor torque. Ta-
ble 5.6 contains the motor torque NRMSE evaluated in the starting and uphill sectors of the
track. Considering the CPTO, the NRMSE degrades circa 5−10% in both sections due to the
effects of the motor assistance compared to the previous results. In the case of the SPTO,
the NRMSE deterioration is even higher amounting to about 10 − 15% in the two analyzed
sectors of the track. Despite its higher susceptibility to errors introduced by the motor assis-
tance, the SPTO provides more accurate estimates with an NRMSE 5− 10% lower than the
CPTO one. Moreover, conversely to the CPTO, the torque estimated with the SPTO keeps a
pseudo-sinusoidal shape with a similar frequency to the measured signal.

NRMSE in %

PTO Starting Uphill

CPTO 72.55± 4.68 74.37± 0.49

SPTO 62.78± 7.58 66.87± 3.38

Table 5.6: Confidence interval at 95% of the motor torque Tm = T̂pw NRMSE evaluated dur-
ing the starting phase and uphill riding.
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Current saturation

Figure 5.17: Electrical assistance Tm = T̂pw based on the CPTO pedaling torque estima-
tion during the starting phase. From top to bottom: pedaling torque estimation
Tm = T̂pw and estimated road slope β̂ employing the proposed KF.

Figure 5.18: Electrical assistance Tm = T̂pw based on the CPTO pedaling torque estima-
tion during the uphill section of the track. From top to bottom: pedaling torque
estimation Tm = T̂pw and estimated road slope β̂.

117



5.3 Torque-sensorless control

Current saturation

Figure 5.19: Electrical assistance Tm = T̂pw based on the SPTO pedaling torque estima-
tion during the starting phase. From top to bottom: pedaling torque estimation
Tm = T̂pw and estimated road slope β̂.

Figure 5.20: Electrical assistance Tm = T̂pw based on the SPTO pedaling torque estima-
tion during the uphill section of the track. From top to bottom: pedaling torque
estimation Tm = T̂pw and estimated road slope β̂.

118



5.3 Torque-sensorless control

5.3.3 Riding performance analysis

In this section, the torque-sensorless riding performances are analyzed and compared to the
ones obtained when employing a pedaling torque sensor to measure the pedaling torque and
apply electrical assistance accordingly. Furthermore, the results obtained without electrical
aid are also considered to evaluate the effort reduction of each electrical assistance type. To
account for experiment variability, in each test, three laps of the defined track are ridden.

Firstly, the analysis focuses on the delivered pedaling power Pp for each kind of assistance
considering the starting and uphill sections of the track. Here, the maximum max (Pp) and
the average pedaling powers P̄p are analyzed. These two quantities indicate the peak level
and the overall intensity of cycling effort on the considered section of the track, respectively.
Also, to quantify the maximum and average pedaling power reduction of each electrical as-
sistance method compared to the case without aid, two indexes have been defined, namely
the Maximum Pedaling Power Reduction (MPPR) and the Average Pedaling Power Reduc-
tion (APPR):

MPPR =
⎡⎢⎢⎢⎣
1−

max (Ppassistance)
max (Ppno assistance)

⎤⎥⎥⎥⎦
⋅ 100, (5.7)

APPR = (1−
P̄passistance

P̄pno assistance

) ⋅ 100. (5.8)

It has to be remarked that to account for experiment variability, the CI95% of the average ped-
aling power and APPR over three experiments performed in similar conditions is calculated.
Whereas, in the case of the maximum pedaling power and MPPR, since we are interested
in evaluating the maximum cycling effort level under the defined conditions, the highest peak
value obtained in the three considered experiments is reported.

Afterwards, an analysis of the global delivered energy EΣ necessary to perform the task is
executed. In particular, the pedaling Ep and motor Em contributions are evaluated for each
electrical assistance type. Their relation gives an indication of the global effort reduction
obtained with each assistance method over the entire riding task. In particular, to quantify
the pedaling effort reduction, the Pedaling Energy Reduction (PER) index has been defined
as:

PER = (1−
Ep

EΣ
) ⋅ 100. (5.9)

This percentage indicates the pedaling energy reduction compared to the total delivered en-
ergy (motor plus cycling) required to perform the experiment when electrical assistance is
applied. Also in this case, to account for experiments variability the CI95% of the aforemen-
tioned quantities has been calculated considering three experiments performed in similar
conditions.

Delivered pedaling power analysis:
Following, the experimental results obtained with the different assistance approaches are
reported and analyzed. It has to be remarked that examples taken from the performed set
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of experiments are illustrated. In each condition, the torques acting on the motorized wheel
are reported, namely the transmitted pedaling torque Tpw, the motor torque Tm, and the
total driving torque TΣ = Tpw + Tm. Additionally, the corresponding bicycle speed v is shown.
Furthermore, the driving power has been calculated. In particular, the delivered pedaling
power Pp, the motor power Pm, and the total applied power PΣ = Pp + Pm are shown. Also, the
corresponding estimated road slope β̂ is reported.

Firstly, the riding performances obtained in the starting phase are presented. Figure 5.21
contains the starting behavior without electrical assistance, while Figure 5.22 the results
obtained with a torque sensor-based electrical assistance. Besides, Figures 5.23 and 5.24
contain the results obtained when employing the estimated pedaling torque given by the
CPTO and SPTO, respectively.

Then, the uphill sector results are presented. Figure 5.25 contains the results obtained
when the bicycle is ridden without motor assistance, whereas, Figure 5.26 illustrates the
results achieved when a sensor is employed to measure the pedaling torque and apply the
electrical assistance. The results obtained when the motor assistance is based on the esti-
mated pedaling torque given by the CPTO and SPTO are reported in Figures 5.27 and 5.28,
respectively.

In Figures 5.22 and 5.26, it can be seen that when providing electrical assistance with
a fixed gain strategy based on the pedaling torque sensor measurements, the motor aid
is an almost perfect amplification of the measured signal, except when the desired torque
exceeds the maximum applicable torque limited by the prototype current saturation. Thus,
the total delivered power is circa equal to PΣ ≃ 2Pp. In the case torque-sensorless assistance
is provided, due to the torque estimation inaccuracy, the motor assistance adds a pseudo-
sinusoidal offset onto the pedaling power. As seen in the previous sections, this offset,
equal to the delivered motor power, results more constant in the case a CPTO is used to
estimate the pedaling torque (Figures 5.23 and 5.27). Whereas, in the case of the SPTO,
the power offset is more reactive to the pedaling signal variations (Figures 5.24 and 5.28).
Nevertheless, the total delivered power obtained with the SPTO does not perfectly coincide
with the one provided utilizing the sensor-based electrical assistance.
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Figure 5.21: Starting behavior without provided electrical assistance (Tm = 0 Nm). From
top to bottom: pedaling torques (measured pedaling torque Tpw, motor torque
Tm, and total delivered torque TΣ = Tpw + Tm) at the back wheel, bicycle speed
v, delivered power (pedaling power Pp, motor power Pm, and total power PΣ =
Pp + Pm), and estimated road slope β̂.
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Figure 5.22: Starting behavior in the case of an electrical assistance based on torque
sensor measurements (Tm = Tpw). From top to bottom: pedaling torques
(measured pedaling torque Tpw, motor torque Tm, and total delivered torque
TΣ = Tpw + Tm) at the back wheel, bicycle speed v, delivered power (pedaling
power Pp, motor power Pm, and total power PΣ = Pp + Pm), and estimated road
slope β̂.
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Figure 5.23: Starting behavior in the case of an electrical assistance based on the CPTO
torque estimation (Tm = T̂pw). From top to bottom: pedaling torques (measured
pedaling torque Tpw, motor torque Tm, and total delivered torque TΣ = Tpw + Tm)
at the back wheel, bicycle speed v, delivered power (pedaling power Pp, motor
power Pm, and total power PΣ = Pp + Pm), and estimated road slope β̂.
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Figure 5.24: Starting behavior in the case of an electrical assistance based on the SPTO
torque estimation (Tm = T̂pw). From top to bottom: pedaling torques (measured
pedaling torque Tpw, motor torque Tm, and total delivered torque TΣ = Tpw + Tm)
at the back wheel, bicycle speed v, delivered power (pedaling power Pp, motor
power Pm, and total power PΣ = Pp + Pm), and estimated road slope β̂.
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Figure 5.25: Uphill riding without provided electrical assistance (Tm = 0 Nm). From top
to bottom: pedaling torques (measured pedaling torque Tpw, motor torque Tm,
and total delivered torque TΣ = Tpw + Tm) at the back wheel, bicycle speed v,
delivered power (pedaling power Pp, motor power Pm, and total power PΣ =
Pp + Pm), and estimated road slope β̂.
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Figure 5.26: Uphill riding in the case of an electrical assistance based on torque sensor
measurements (Tm = Tpw). From top to bottom: pedaling torques (measured
pedaling torque Tpw, motor torque Tm, and total delivered torque TΣ = Tpw + Tm)
at the back wheel, bicycle speed v, delivered power (pedaling power Pp, motor
power Pm, and total power PΣ = Pp + Pm), and estimated road slope β̂.
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Figure 5.27: Uphill riding in the case of an electrical assistance based on the CPTO
torque estimation (Tm = T̂pw). From top to bottom: pedaling torques (measured
pedaling torque Tpw, motor torque Tm, and total delivered torque TΣ = Tpw + Tm)
at the back wheel, bicycle speed v, delivered power (pedaling power Pp, motor
power Pm, and total power PΣ = Pp + Pm), and estimated road slope β̂.
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Figure 5.28: Uphill riding in the case of an electrical assistance based on the SPTO
torque estimation (Tm = T̂pw). From top to bottom: pedaling torques at the back
wheel (measured pedaling torque Tpw, motor torque Tm, and total delivered
torque TΣ = Tpw + Tm), bicycle speed v, delivered power (pedaling power Pp,
motor power Pm, and total power PΣ = Pp + Pm), and estimated road slope β̂.

In the following, a comparison between the torque-sensorless approaches based on the
maximum and average pedaling power is presented. In particular, Table 5.7 contains the
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results achieved during the starting section while Table 5.8 the ones obtained in uphill riding.
It can be seen that in the starting section, a similar APPR has been obtained for the two

PTOs. In both cases, the average power reduction results even about 5% higher than the one
obtained with the pedaling torque sensor. This can be explained by the torque-filling effect
caused by the inaccurate torque estimation of the PTOs. Indeed, the electrical assistance
is provided even at crank angles where low pedaling torque is applied. Moreover, it can be
seen that the MPPR results circa 5% higher in the case of SPTO because it estimates the
torque peaks with more accuracy than the CPTO. In particular, its MPPR is comparable to
the one achieved with the torque sensor. In the uphill sector, the power reductions obtained
with the sensor-based approach result circa 5% higher because, conversely to the starting
phase, no saturation caused by the limitation of the motor torque has been experienced in
this portion of the track. Moreover, one can notice that the APPR slightly worsens of about
1− 2% for both PTOs compared to the results obtained in the starting phase. This reduction
can be mostly explained by the effect of road slope estimation delays in a variable slope
environment and the necessary strong filtering of the speed measurement that reduce the
average estimated pedaling torque even in the presence of the filling effect of the sensorless
approaches. Besides, it can be seen that slope estimation delays and strong speed filtering
also affect the torque peak estimation capability of both PTOs causing a reduction of the
MPPR of circa 10% compared to the value obtained when employing the sensor. In particular,
a MPPR degradation of circa 5% has been achieved when utilizing the SPTO compared to
the results obtained in the starting phase. Whereas, the MPPR obtained with the CPTO
has resulted less dependent on the estimated slope and measured speed since comparable
values have been achieved in both the starting and uphill sectors of the track.

One can conclude that by analyzing the delivered pedaling power, small differences can
be noticed between the sensor and the sensorless approaches, especially in the absence
of rapid slope variations, like in the starting phase. It has also been seen that rapid road
angle changes and the strong speed measurement filtering affect the pedaling power peaks
estimation capability of the PTOs rather than the average delivered power. Indeed, thanks to
the torque filling effect caused by the torque estimation inaccuracy, a similar or higher APPR
has been obtained with both torque-sensorless electrical assistance approaches compared
to the sensor-based one. Moreover, the assistance provided using the SPTO estimation
results more similar to the one of the torque sensor in the starting phase. However, this
resemblance degrades with variable road angles. Whereas, although slightly worse in the
starting phase, the CPTO-based electrical assistance has resulted less dependent on the
road angle estimation inaccuracies. Furthermore, it has to be remarked that other sources
of error like online model parametric variations, inaccuracies of the motor torque control
system, and modeling simplifications can be also responsible for performance degradation
when employing torque-sensorless-based electrical assistance approaches.
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Assistance type max (Pp) in W P̄p in W MPPR in % APPR in %

No assistance 246.34 84.3± 9.95

Sensor 160.61 54.06± 5.23 34.8 35.87± 0.3

CPTO 173.19 51.29± 4.86 29.69 39.15± 0.15

SPTO 161.01 50.9± 6.01 34.63 39.61± 0.17

Table 5.7: Pedaling power analysis in the starting phase of the track with different kind of
electrical assistance.

Assistance type max (Pp) in W P̄p in W MPPR in % APPR in %

No assistance 322.67 147.65± 2.97

Sensor 195.2 88.78± 9.32 39.51 39.87± 0.1

CPTO 226.44 91.98± 5.03 29.82 37.7± 0.06

SPTO 228.21 90.86± 11.92 29.27 38.46± 0.13

Table 5.8: Pedaling power analysis in the uphill section of the track with different kind of
electrical assistance.

Delivered energy analysis:
In the following, the total delivered energy on the entire track is analyzed to evaluate and
compare the global pedaling effort reduction of each electrical assistance strategy. Fig-
ure 5.29 encloses examples of dissipated energy in the four test cases. In particular, each
figure contains the cycling energy Ep, the motor energy Em, and the total one EΣ = Ep + Em
necessary to perform the considered task. One can notice that the total delivered energy
slightly varies in each experiment depending on the applied pedaling torque profile, followed
path, and environmental conditions. However, its final value is always contained in the range
EΣ ∈ [20; 25] kJ. Table 5.9 contains the confidence intervals of the aforementioned quanti-
ties considering three experiments executed in similar conditions. Additionally, the PER is
evaluated for each assistance type and the relative confidence interval is reported. As one
can notice, in the case of a torque sensor based electrical assistance, the energy reduction
amounts to circa the 50% with a very small variability. As expected, this assistance approach
is independent from external riding and environmental conditions. It has to be remarked that
the calculated PER would be exactly equal to 50% in the case of no motor torque satura-
tion. When the CPTO estimation is utilized to provide the electrical aid, the pedaling energy
reduction decreases of about 5%. Besides, this reduction has a higher variability than the
sensor-based approach due to the dependence of the pedaling torque estimation on envi-
ronmental and riding conditions. Employing an SPTO, the pedaling effort reduction is only
circa 3% lower than the one obtained with a torque sensor based assistance. Although the
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PER of the SPTO is higher than the one obtained with the CPTO, one can notice that it is
more variable depending on the environmental conditions.

Therefore, from an energy reduction point of view, the torque-sensorless approaches
slightly increase the total cycling effort compared to the torque sensor-based assistance.
However, the effort reduction capability varies depending on the environmental conditions,
especially in the case a SPTO is employed.

(a) No electrical assistance (Tm = 0 Nm). (b) Torque sensor-based electrical assistance (Tm =

Tpw).

(c) CPTO estimation based electrical assistance
(Tm = T̂pw).

(d) SPTO estimation based electrical assistance
(Tm = T̂pw).

Figure 5.29: Delivered energy on the entire track (pedaling energy Ep, motor energy Em,
total energy EΣ = Ep + Em) with the different electrical assistance approaches.
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Assistance type Ep in kJ Em in kJ EΣ in kJ PER in %

No assistance 22.611± 1.814 22.611± 1.814

Sensor 11.531± 1.577 11.443± 1.627 22.973± 3.204 49.8± 0.16

CPTO 12.775± 0.396 10.379± 0.315 23.154± 0.088 44.828± 1.513

SPTO 12.315± 1.901 10.892± 0.144 23.206± 1.844 47.103± 4.086

Table 5.9: Confidence intervals at 95% of the delivered energy on the entire track with
different electrical assistance approaches.

5.3.4 Qualitative analysis

The pedaling effort reduction expressed in terms of pedaling power or energy devaluation,
cannot be considered as the only index that points out the quality of an electrical assis-
tance strategy. In fact, as stated in [1], riders are mainly interested in usability and good feel
while riding electric bicycles, thus in user-dependent and not numerically definable quanti-
ties. Therefore, the different electrical aid approaches implemented on the pedelec proto-
type have been tested by a sample of 10 people of different sex, age, weight (in the range
[60; 90] kg), height (in the range [170; 190] cm), and cycling experience to derive a qualitative
analysis of the torque-sensorless riding performances. Each participant was asked to ride
the bicycle on the track of Figure 5.10 at a maximum speed of circa 15 km

h and test the three
different electrical assistance types (sensor-based, CPTO-based, and SPTO-based) in an
unknown to the rider randomized order. After performing the required task, the participants
were asked to answer a questionnaire related to the electrical assistance strategies charac-
teristics (reported in the appendix of this work), to create a preference ranking of the tested
aid approaches, and to guess whether the tested assistance method was a sensor-based or
a sensorless control approach. In particular, the following questions were asked the rider:

• “Was the received electrical assistance sufficient?”

• “Was the electrical assistance sufficiently reactive to your pedaling?”

• “Did you experience delays in the delivered electrical assistance?”

• “Do you think that the received electrical assistance is safe enough?”

Figure 5.30 illustrates the survey participant answers to the above-reported questions. As
one can see, the majority of participants thought that the received electrical assistance was
sufficient for the performed task. However, in the case of the CPTO and the sensor-based
approach, the 30% and 20% of persons respectively found the received electrical aid too
weak. Surprisingly, no survey participant believed the SPTO to provide insufficient assis-
tance. Concerning the responsiveness of the delivered motor aid, all participants found as
expected the sensor-based approach to be the most reactive to the applied pedaling torque.
Nevertheless, only the 20% and the 10% of participants believed that the sensorless ap-
proaches, CPTO and SPTO respectively, were not sufficiently responsive. Moreover, the

132



5.3 Torque-sensorless control

riders have also correctly identified the higher responsiveness of the SPTO compared to the
CPTO-based assistance. When asked about the experienced assistance delays, only the
10% of participants felt delays in the sensor-based approach. On the other hand, strong de-
lays were detected in the CPTO-based approach where 70% of people lamented a retarded
motor aid compared to the applied pedaling. In the SPTO approach, the people percentage
that complained about assistance delays drastically decreased to 30% underlining the higher
responsiveness of this approach compared to the CPTO. Nevertheless, many cyclists have
reported delays in receiving assistance with both sensorless approaches especially after
curves or in the presence of rapid slope changes. This behavior can be explained by the
delays and errors introduced by the employed slope estimation approach when fast slope
variations or curves occur. Generally, the majority of survey participants found the tested
assistance methods safe. Only a few of them considered the unexpected assistance boost
received in the presence of rapid road grade variations, when testing the torque-sensorless
methods, not acceptable. Additionally, as expected, no one complained about the sensor-
based approach safety. Furthermore, some participants denounced power boosts delivered
by the sensorless approaches while pushing the bike without being on the saddle. Nev-
ertheless, this behavior was expected and constitutes a known problem of the sensorless
approaches, namely the incapability of distinguishing between propulsive forces generated
at the pedals from other thrust forces applied to the vehicle.

Afterwards, the survey participants were asked to compare the tested assistance meth-
ods. Generally, many cyclists noticed a minimal difference between the proven electrical
aid strategies. In particular, many of them recognized that the CPTO-based assistance re-
acts later compared to the other two and that the SPTO one is a compromise between the
sensor and the CPTO. Moreover, some cyclists claimed the SPTO-based assistance to be
very similar to the one obtained when employing the sensor, i.e. very reactive to the applied
pedaling torque. Furthermore, the participants were asked to create a preference ranking
of the tested methods. Figure 5.31 contains the results of this ranking. In particular, Fig-
ure 5.31(a) illustrates a Formula One style ranking calculated attributing a score depending
on the strategy preference placement for each participant, namely attributing 10 points to a
1st, 5 points to a 2nd, and 0 points to a 3rd placement. Based on this evaluation approach,
the sensor-based assistance (65 points) has resulted in the overall best strategy with only
10 points distance from the SPTO (55 points). Whereas, the CPTO has resulted clearly the
less favorite approach adding up to only 30 points. Figure 5.31(b) shows in which percent-
age each assistance method has reached the 1st placement in the user preference. As one
can notice, the 50% of participants preferred the highly reactive sensor-based approach,
whereas the 30% and 20% favored rather the SPTO or the CPTO respectively. Some cyclists
explicitly stated that they preferred the smoother assistance received with the CPTO-based
control which aided their motion even when they were not pedaling. In particular, they were
satisfied by the torque filling effect and did not like the torque amplification and consequent
speed fluctuations typical of a torque-sensor-based fixed gain control. Thus, these results
confirm how difficult is to establish a ranking between electrical assistance methods since
the results are strongly dependent on the expectations and preferences while riding of each
cyclist.
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(a) (b)

(c) (d)

Figure 5.30: Survey participants opinions about the tested electrical assistance characteris-
tics.

Eventually, each survey participant was asked to guess if they were testing a sensor-based
or a sensorless control. Only the 50% of interviewed were able to detect the sensor among
all the tested assistance approaches. The remaining participants either confused the SPTO-
based control with the sensored one or were not able to correctly answer the question be-
cause they did not know how to recognize a sensor-based approach from a sensorless
one due to probably a lack of electric bicycle riding experience or knowledge about torque-
sensorless pedelec control.
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(a) Electrical assistance strategy ranking. (b) Electrical assistance strategy preference.

Figure 5.31: Survey participants preferences concerning the tested electrical assistance
strategies.

5.3.5 Final considerations

From the previous qualitative analysis, it has emerged that slight differences can be noticed
between the sensor-based and the torque-sensorless approaches. In particular, the SPTO
has resulted more similar to the sensored approach, confirming the numerical results of
Section 5.3.3, since capable of following with higher accuracy the applied pedaling torque
compared to the CPTO method. Moreover, the SPTO has resulted in a good compromise
between the sensor- and CPTO-based assistances. Nevertheless, considering the afore-
mentioned numerical analysis, the pedaling torque estimation and effort reduction capabil-
ity obtained with the SPTO have resulted more dependent on model parametric variations,
modeling simplifications, variable environmental conditions, and model input errors (vehicle
speed, motor torque, and slope estimation) compared to the CPTO. Although capable of pro-
viding a sufficiently strong and reactive assistance level, unwanted delays or power boosts
have been experienced when utilizing sensorless approaches. These effects can be mainly
attributed to the incapability of the slope estimation approach to follow rapidly changing road
grades due to the necessary strong filtering of the vehicle speed input measurement. Fur-
thermore, it has been shown that sensorless control approaches are not able to distinguish
between pedaling forces and other thrust forces applied to the vehicle. Nonetheless, the
majority of cyclists found the torque-sensorless control approaches sufficiently safe to ride.
All in all, an explicit user preference between sensor-based and sensorless control did not
emerge from the survey, especially when comparing the SPTO with the sensor. Moreover,
some participants preferred the CPTO-based control confirming the high user-dependence
of evaluating an electrical assistance. As other evidence of the slight difference between the
analyzed control approaches, half of the survey participants could not recognize the sensor-
based method among the tested control strategies.
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6 Conclusions and outlooks

6.1 Content summary

In this work, a state observation approach that addresses the problem of torque-sensorless
assistance for electric bicycles has been discussed. The unknown input observation has
been applied to extract the delivered pedaling torque from the total disturbance acting on the
system employing the so-called PTOs. In particular, two different approaches to describe
the external human input have been analyzed, namely a constant (CPTO) and a sinusoidal
model (SPTO) of the pedaling torque. Also, the problem of online road grade estimation
has been addressed by employing low-computational efforts KF based on low-cost IMU and
in-vehicle measurements. Simulations and experiments have highlighted the advantage of
using a sinusoidal model to improve the pedaling torque estimation performance. The PTO
estimates have been then employed to electrically aid the vehicle and compared with the
results achieved when employing a torque sensor. The performed outdoor trials have shown
that torque-sensorless control approaches allow, despite the modeling simplifications and
estimation errors, to achieve a comparable pedaling power and energy reduction to the
sensor-based one without considerably affecting the global riding feeling especially when
an SPTO is employed.

6.2 Conclusions

This work has shown that the analysis of the design characteristics of electric bicycles is fun-
damental to understand and develop torque-sensorless assistance strategies. In particular,
a novel classification of electrical assistance approaches, based on the control optimization
focus, has been proposed. This provides useful guidelines to the control system designer
compared to the commonly used user-oriented classification based on the sensors employed
to detect the human input.

Furthermore, this work formalizes a generalized bicycle longitudinal dynamic model. Com-
pared to the literature, here, the commonly employed electric bicycle motor assemblies, i.e.
mid-drive, hub, and friction ones are considered. In particular, a generic expression (3.24) of
the motor force is derived and included in the vehicle dynamic model (3.40).

The effect of variable environmental and riding conditions has been also considered in
the defined bicycle model (3.40). Then, exploiting the results of a sensitivity analysis, a
simplified expression (4.29) has been derived and employed in the PTO models. To consider
the impact of the assumed modeling simplification and parametric variations on the pedaling
torque estimation, the PTOs have been tested in simulation. It has been shown that the
estimators are not able to distinguish the pedaling from other external forces applied to the
vehicle, such as braking or propulsive forces. Additionally, intense headwinds can degrade
the pedaling torque estimation. Moreover, it has been revealed that an accurate pedaling
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torque estimation requires the correct knowledge of the system parameters including mass,
road slope, and friction. Despite these limitations, outdoor tests have demonstrated that even
in the presence of variable environmental conditions, the electrical assistance performance
obtained when relying on torque-sensorless strategies has resulted in a narrow degradation
compared to the one obtained with the sensor.

The problem of pedaling torque estimation has been addressed by employing models of
different complexity to describe the human input in the PTOs. Based on considerations about
the periodic nature of pedaling, the utilization of an enhanced sinusoidal model has been dis-
cussed and mathematically formalized in the PTO structure. Simulations have shown that
the SPTO usage reduces the pedaling torque estimation error in the presence of unmod-
elled high-order harmonics. Indoor tests have revealed that a sinusoidal model improves the
NRMSE at the same model variance level of circa 10 − 20 % compared to a simple pedal-
ing torque constant model. However, an estimation performance degradation has been ob-
served outdoors in the presence of variable sloped environments and motor assistance with
both models. In particular, the SPTO has resulted more susceptible by achieving an NRMSE
degradation circa 5% higher than the CPTO in the same conditions. Nonetheless, the SPTO
estimation accuracy has resulted circa 5 − 10% higher than the one of the CPTO. More-
over, differently from the CPTO, which estimates approximately the pedaling torque mean
value, the SPTO estimate presents a pseudo-sinusoidal shape with a similar frequency to
the applied cycling torque. A higher variability has been detected also in the delivered SPTO
electrical aid, which, although generally performing more similarly to the sensor, has a higher
dependence on environmental and riding conditions.

Differently from the current state of the art, the nonlinear state estimation problem has
been here addressed by employing EKFs. Such a method represents an easier and more
intelligible approach, based on linearizing the system around the nominal state trajectory,
compared to other state observers. Moreover, an observer-tuning strategy to handle model
simplifications based on the confidence on the model and measurement equations is here
described. In particular, to compensate for the pedaling model simplifications, higher trust
is given to the bicycle longitudinal model and the measurements by adding fictitious noise
to the pedaling torque equations in the PTOs. The validity of the approach, first tested in
simulation, has been confirmed by experimental results. Additionally, an operative manner
to select the covariance matrices based on the minimization of the estimation error that
accounts for errors caused by the highly-trusted speed measurements has been discussed.

Among the components that act on the vehicle longitudinal dynamics, the performed sen-
sitivity analysis and simulations have highlighted that gravity has the highest impact. Thus,
the knowledge of the system mass and the road slope is essential to achieve high-quality
pedaling torque estimation performance. While the mass can be considered constant dur-
ing rides, the road angle may vary rapidly and require a real-time estimation. It has been
shown that the road grade estimation problem can be solved using approaches of different
complexity and costs. Among them, for cost reduction sake, it is worth employing low-cost
IMU to address this issue. To improve the performance of standard algebraic estimation
methods, the employment of closed-loop approaches is discussed in this work. In particular,
a simple low-cost and low-computational KF based on the vehicle speed and a reduced set
of inertial measurements is proposed. Guidelines for the covariance matrices selection have
been provided by performing outdoor tests in a variable-sloped environment at different ve-
hicle acceleration levels. The experimental results have shown that the employment of the
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proposed KF improves the road angle RMSE of circa 80% compared to algebraic methods
in a flat ground test. Nevertheless, the performance improvement is reduced to circa 20%
in a sloped environment. These results can be principally explained by the necessary low-
pass filtering of the measurements to account for vibrations and the noise introduced by the
differentiation of the rotor position on the vehicle speed. Additionally, a method that compen-
sates for the modeling error introduced by cornering is here presented. Experiments have
shown that this correction improves the angle estimation. Nevertheless, its effectiveness is
dependent on the aggressiveness of the curve.

In the majority of the literature, the evaluation of torque-sensorless algorithm quality is ex-
pressed in terms of pedaling torque estimation error minimization. Nevertheless, this cannot
be considered as the only index to evaluate the received assistance. In this work, the deliv-
ered pedaling power and energy reduction are analyzed as a possible metric to evaluate the
assistance performances. In particular, the maximum and average power reduction during
the starting phase and uphill riding are calculated as well as the total pedaling energy reduc-
tion on the performed riding task. Moreover, for the first time in the literature, the riding feeling
has been analyzed by surveying people of different sex, age, weight, height, and cycling ex-
perience. The experiments have been executed on a defined track that includes variable
slopes and curves. In each case, sensored and sensorless approaches have been tested
and compared. The results have revealed narrow differences between sensorless and sen-
sored approaches. For instance, from a pedaling energy reduction perspective, the CPTO
and SPTO assistance has resulted only about 5% and 3% worse than the one obtained
with the sensor, respectively. The survey results have shown that the SPTO resembles the
sensor-based assistance more than the CPTO. Nevertheless, some cyclists preferred the
CPTO thanks to its capability of offering electrical aid even when not pedaling. These results
have underlined the difficulty in assessing the best assistance strategy. Moreover, it has
been shown that undesired assistance delays or boosts may be delivered due to road grade
estimation errors or while walking with the bicycle. Despite these problems, the 50% of the
survey participants preferred sensorless approaches to the sensored one. Also, 50% of the
interviewed could not recognize the sensor-based among the tested strategies. Additionally,
the majority of the riders felt safe while cycling with torque-sensorless pedelecs.

6.3 Outlooks

Although the performance degradation is minimal when employing the proposed torque-
sensorless approaches, some improvements are still required to become a valid alternative
to torque-sensors. Nonetheless, when considering possible system enhancements, it is fun-
damental to keep the overall complexity and costs lower than the ones of the sensored sys-
tem to avoid losing the advantage of switching to sensorless approaches. Following, possible
system improvements that may be topics for further research activities are discussed.

Reduction of the dependency on environmental conditions:
At present, unmodeled environmental conditions such as intense headwinds or vibrations
caused by road surface irregularities may affect the torque estimation and the sensorless
electrical assistance performances.
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Although strong headwinds are rare and affect the vehicle dynamics especially in the high-
speed range where low assistance levels are required, their presence might influence the de-
livered assistance even at low speeds depending on their intensity. The control system would
interpret the unmodeled aerodynamic resistance as a reduced applied pedaling. These may
lead to performance degradation during windy days or areas of the world representing a limi-
tation for a possible commercial spread of torque-sensorless control strategies. To overcome
this issue, a viable solution could be the integration of wind measurements, employing a Pitot
tube or an anemometer, and a consequent enhancement of the PTO model to include wind
effects.

As seen in Section 3.1.7, vibrations and bumps caused by road conditions and irregu-
larities cause unmodelled power losses that can affect the system performance. Although
accounted in this work in the rolling friction coefficient, this hypothesis may not subsist when
their intensity is not negligible. Unfortunately, their mathematical modeling is complex due to
their high user and situation dependency. Consequently, their implementation in the PTO is
hardly feasible. Moreover, vibrations affect the accelerations measured with the IMU and the
road grade estimation. Thus, to avoid a strong low pass filtering of inertial measurements
and reduce bump losses, mechanical design expediency must be considered in the assem-
bly of the control electronics and the selection of bicycle tires, frames, and suspensions.

External human forces handling:
As seen in the simulations and the experimental results, external unmodelled forces not gen-
erated by pedaling are not distinguishable by the proposed torque estimators. While braking
forces can be ignored by turning off the electrical assistance or activating electrical brak-
ing in the presence of negative estimated torques, thrust forces are always interpreted as
pedaling torque and generate assistance. In standard operation status, namely when the
rider is on the saddle, this does not represent a problem. However, this leads to dangerous
motor activation when walking with the bicycle. Therefore, to increase the system safety, a
possible solutions is the employment of external switches mounted on the handlebar to turn
on the motor assistance. Alternatively, the activation of the electrical aid only at speeds that
are not compatible with walking utilizing where possible according to the local legislation a
throttle to provide power at low speeds could be considered. A further possibility is the de-
tection of the rider-on-saddle condition based on force sensors or the exploitation of inertial
measurements as proposed in [145].

Online parametric estimation:
At the current implementation state, for system complexity reduction sake, the proposed
sensorless control approaches estimate only the road slope among all system parameters
due to its considerable impact on vehicle dynamics. A system performance improvement
would require an online update of all the parameters considered constant in vehicle dynamics
modeling, including the mass, friction coefficients, and gear ratio.

As stated in Section 4.2.1, system mass variations occur rarely during standard operation.
Moreover, as explained in Section 4.3.2, mass estimation approaches based on vehicle dy-
namics or exciting input injection cannot be successfully used without force measurements.
Thus, to account for cyclist mass variations, possible solutions include using force sensors
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mounted in the saddle or a cycling mass value insertion into a display mounted on the han-
dlebar or a mobile app connected with the control electronics before starting riding.

Although less impacting on the bicycle dynamics compared to mass and road grade, rolling
friction and drag area variations may affect the received assistance. Their online estimation
typically exploits the vehicle longitudinal model. Nevertheless, also in this case, force mea-
surements are required for the parametric estimation. Therefore, a conceivable solution to
the problem would be a periodic online update of the parameters when a vehicle coasting
down state is detected, namely when no forces are applied, as proposed in [146] in the field
of electric scooters.

In this work, the bicycle gear ratio has been considered a fixed and well-known value. This
hypothesis stands for many electric bicycles that utilize a fixed gear ratio like the developed
one, where the motor aid compensates for the missing pedaling power. Nevertheless, many
cyclists like changing gear ratio even when riding electric bicycles. To make possible torque-
sensorless pedelecs with variable gears, a solution could be an online gear ratio estimation
and update into the PTO models utilizing state observation approaches as proposed in [147,
148] or an online pedaling frequency estimation like the one proposed in [45].

PTO measurement improvements:
As shown in the experimental results, the degradation of the torque estimation and motor
aid performances is strongly related to vehicle speed measurement errors introduced by the
necessary filtering used to reduce the noise caused by the differentiation of the measured
rotor position. To address the problem of speed signal improvement, model-based or signal-
processing-based approaches are commonly employed [149]. The first methods are based
on model reference adaptive systems, state observation approaches, or neural networks
[150–152]. However, such methods require a model of the load that is often not totally
known. Thus, they could not be satisfactorily implemented in the case of torque-sensorless
approaches, where PTOs estimate the load torque at the same time. Signal-processing-
based approaches such as first- or high-order approximations, polynomial interpolation, or
numerical integration [153–155] would be therefore preferable.

The velocity filtering also negatively influences the online road slope estimation by caus-
ing delayed delivered assistance in highly-variable sloped environment. To avoid the employ-
ment of the vehicle longitudinal speed in the angle estimation, more computationally complex
methods that involve all the measurements of the 6-axis IMU based on complementary or
Kalman filtering, as examined in [139], could be considered. Thanks to the employment of
gyroscopic measurements, these methods could reduce problems related to vibrations that
affect the measured accelerations.

Position sensorless motor control:
Although a pedaling torque estimation degradation is foreseeable, to further reduce costs
and utilized space in the system, the substitution of the rotary encoder with low-cost Hall
effect sensors or position-sensorless motor control approaches is worth to be investigated.

Since the angle resolution achievable with Hall sensors is too low to be employed in FOC,
either the employment of BLDC motors controlled with electronic commutation or rotor posi-
tion reconstruction approaches, like the ones proposed in [156,157], could be considered.
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6.3 Outlooks

To completely remove position-sensing devices, the employment of sensorless motor con-
trol could be alternatively taken into account. Nevertheless, it is fundamental to achieve
high-quality position information in the whole speed range. Depending on their working prin-
ciples, sensorless approaches are known to work better either at low (anisotropy-based)
or high (BEMF-based) motor speeds. To overcome this issue, the utilization of strategies
that combine the position information obtained with different methods, as the one proposed
in [158], might be viable.

Further system improvements:
Further possible system improvements aim at increasing the commercial appeal of torque-
sensorless systems. More complex bicycle control strategies than the basic fixed-gain ap-
proach could be implemented to improve the smoothness, speed-dependency, and energy-
efficiency of the delivered motor power, as seen in Section 2.3. Moreover, thanks to the
braking torque detection capability of the PTOs, regenerative braking could be implemented
without the necessity of installing electric brakes. This would allow for recovery energy while
braking and increase the battery autonomy.

Thanks to the torque sensor removal, a partial or complete in-motor integration of the
control electronics could be also achieved. In such a way, an in-wheel and easy-to-install
conversion kit that does not require the installation of any additional sensor might be real-
ized. Moreover, the additional development of a mobile app that allows varying the delivered
assistance levels and analysis of cycling performances would further increase the appeal of
the conversion kit.

142



Appendix

7 Appendix

7.1 IMU calibration and mounting offset correction

The IMU calibration procedure consists of the compensation for the zero-g and zero-rate
offsets of the sensor caused by the mechanical stress when mounting the MEMS device
onto a printed circuit board. The zero-g offset correction may be performed aligning the
sensor with the different sensing axes and comparing the output acceleration signals with
the expected values in each of the six possible orientations. For each axis, offset, gain, and
cross-gains are evaluated and used to correct the accelerometer measurements [159]. The
zero-rate correction can also be performed evaluating the measured angular rate when the
device does not move and compensating for it.

After calibrating the device, the IMU measurements expressed in the sensor reference
frame xs − ys − zs must be reported into the bicycle one x − y− z compensating for the mount-
ing offset of the sensing device expressed in terms of the Euler angles roll φs, pitch γs,
and yaw ψs. The angle compensation must be performed in the absence of bicycle longi-
tudinal acceleration a = 0 m

s2 when the device measures only the effect of gravity g. Thus,
the measured accelerations as

s expressed in the sensor reference frame that has a generic
orientation compared to the gravitational field result:

as
s = [as

sx as
sy as

sz]
T
= [gs

x gs
y gs

z]
T

. (7.1)

To calculate the mounting angles, we need to evaluate the accelerometer readings in the
absence of bicycle leaning and road grade. Under these hypotheses, the gravity vector
results parallel to the z-axis of the bicycle reference frame, i.e. the accelerations reported in
the bicycle frame as must result after the coordinate system transformation equal to:

as = [asx asy asz]
T = [0 0 g]T . (7.2)

A reference frame transformation that bounds the two coordinate systems can be defined
by applying three consecutive rotations. In this case, the sequence y, x, and z has been
chosen:

Ry (γs) =
⎡⎢⎢⎢⎢⎢⎣

cos (γs) 0 − sin (γs)
0 1 0

sin (γs) 0 cos (γs)

⎤⎥⎥⎥⎥⎥⎦
, (7.3)

Rx (φs) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos (φs) sin (φs)
0 − sin (φs) cos (φs)

⎤⎥⎥⎥⎥⎥⎦
, (7.4)
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7.1 IMU calibration and mounting offset correction

Rz (ψs) =
⎡⎢⎢⎢⎢⎢⎣

cos (ψs) sin (ψs) 0
− sin (ψs) cos (ψs) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, (7.5)

where Ri (⋅) with i ∈ {x, y, z} represents the generic rotation matrix around the i-axis. Com-
posing the three rotations, one obtains the overall rotation matrix:

Ryxz (γs, φs, ψs) =Ry (γs)Rx (φs)Rz (ψs) =
⎡⎢⎢⎢⎢⎢⎣

cγs cψs − sγs sφs sψs cγs sψs + cψs sγs sφs −cφs sγs

−cφs sψs cφs cψs sφs

cψs sγs + cγs sφs sψs sγs sψs − cγs cψs sφs cγs cφs

⎤⎥⎥⎥⎥⎥⎦
,

(7.6)

where the functions cosine and sine are written as ci and si with i ∈ {γs, φs, ψs} for the sake
of a compact mathematical representation. Therefore, the acceleration as can be expressed
into the sensor frame:

as
s =Ryxz (γs, φs, ψs) as =

⎡⎢⎢⎢⎢⎢⎣

−g cos (φs) sin (γs)
g sin (φs)

g cos (γs) cos (φs)

⎤⎥⎥⎥⎥⎥⎦
. (7.7)

Solving the system of equations (7.7), only two orientation angles γs and φs of the device can
be calculated since the vector as is invariant to rotations around the z-axis which is parallel to
the gravitational field [160]. In particular, the orientation angles can be calculated as follows:

γs = arctan(
−gs

x

gs
z
) , (7.8)

φs = arctan
⎛
⎜
⎝

gs
y√

gs
x

2 + gs
z

2

⎞
⎟
⎠

. (7.9)

To express the measured accelerations into the bicycle frame one can use the following
expression:

as =RT
yxz (γs, φs, ψs) as

s, (7.10)

whereR−1
i (⋅) =R

T
i (⋅) thanks to the orthogonality of the rotation matrices. It can be noticed

that to apply the transformation (7.10) the yaw angle mounting offset ψs needs to be known.
Thanks to the lightness of bicycles, it is possible to evaluate the yaw mounting offset placing
the vehicle straight in the vertical plane, i.e. with the gravity parallel to the x-axis of the
bicycle. Under this hypothesis, after the coordinate transformation, the acceleration in the
bicycle frame must result equal to:

as = [g 0 0]T . (7.11)
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Applying (7.8) and (7.9) in the new position, one obtains the complementary angle to the
pitch mounting angle π

2 − γs and the yaw offset ψs, respectively. Thus, the rotation ma-
trix can be determined and the accelerations can be reported in the bicycle frame us-
ing equation (7.10). Similarly, the angular speeds measured in the sensor frame ωs

s =
[ωs

sx ωs
sy ωs

sz]
T

can be reported into the bicycle one:

ωs =RT
yxz (γs, φs, ψs)ωs

s. (7.12)

7.2 Prototype control electronics description

In this section, the electronic components and sensors employed in the projected pedelec
prototype are described in detail. Figure 7.1 contains a schematic description of the de-
signed control electronics. The system is composed of five electronic boards with differ-
ent functionalities that communicate with each other over a Controller Area Network (CAN)
bus. This communication protocol is typically employed in vehicle applications thanks to
its simplicity, low cost, and robustness to electric disturbances and electromagnetic interfer-
ence. The 24 V battery pack with integrated BMS is connected to the Power Distribution
Unit (PDU) which is the electronic board that supplies all the other boards of the distributed
system with the required voltages. The voltage level reduction is performed employing two
voltage regulators that reduce the battery voltage to 12 V and 5 V respectively. To ensure
safety in case of system failure during the testing phase, the PDU contains a relais that dis-
connects the battery from the system when pressing an emergency button mounted on the
bicycle handlebar as shown in Figure 5.2. Furthermore, since no energy recovery mecha-
nism has been considered in the prototype design, the PDU contains a chopper circuit that
protects the power electronics from overvoltages caused by electrical braking and dissipates
the motor energy over a braking resistor RB. The battery voltage is used to supply the Motor
Control Unit (MCU) which is the electronic board used to control the motor. This board is
composed of three parts, namely the inverter, the control, and the position sensing boards.
The MCU has been divided into different interconnected boards, to add modularity to the
system. The inverter board contains a three-phase inverter and the electronics used to mea-
sure the currents and the voltages necessary to control the motor. The inverter is made of
6 Power-MOSFETs dimensioned for a pedelec application (48 V, 45 A) controlled by a gate
driver. Phase current measurements are performed employing in-line shunt resistors and
current sensor amplifiers. The inverter board is connected to the control one which contains
a STM32H7 microcontroller. The latter performs the current and voltage measurements us-
ing Analog-to-Digital Converters (ADCs) with 12-bit resolution, the rotor position sensing,
and FOC. Moreover, a Universal Serial Bus (USB) connection allows data plotting. The con-
trol boards connect to a position-sensing board that contains the necessary electronics to
connect a rotary encoder to the microcontroller. In particular, the LM10 incremental magnetic
rotary encoder from RLS [161], has been utilized. The considered encoder is composed of
a contactless readhead coupled with a magnetic ring firmly mounted on the motor housing.
The device generates two sinusoidal differential-ended analog quadrature-outputs that al-
low the mechanical rotor position calculation using the arcotangent function. A Raspberry
Pi 4 board allows data collecting, plotting, and streaming using the software ESPlot over a
monitor mounted on the bicycle handlebar and connected with a High Definition Multimedia
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7.2 Prototype control electronics description

Interface (HDMI) cable as shown in Figure 5.2. Moreover, the Raspberry Pi 4 connects to
the Bicycle Supervision Unit (BSU) over USB. This connection supplies the BSU and allows
data streaming. The BSU is a Nucleo-144 Board that mounts a STM32H7 microcontroller.
Its function is to supervise the entire system, run the road slope observer, estimate the pedal-
ing torque with the proposed PTOs, and generate the torque references for the motor control.
Moreover, the BSU connects to a pedaling torque sensor employed for validation purposes.
Among the possible mountable sensors described in Section 2.2, the bottom bracket technol-
ogy has been chosen. In particular, the ERider ERST sensor [73] has been installed since,
compared to other sensors based on the same technology, it allows the measurement of the
complete applied pedaling torque. The IMU Board (IMUB) is firmly mounted to the bicycle
frame and contains a LSM6DSL six-axes IMU connected to a STM32F3 microcontroller over
Serial Peripheral Interface (SPI). Also, this board allows data plotting with a USB connection.
The IMUB sends the IMU measurements while the MCU sends the applied motor torque and
measured motor angular speed to the BSU. The latter processes the received information
and sends the torque reference used by the MCU to control the motors and provide electrical
assistance. Additionally, the system offers the possibility to read CAN messages through a
connection to the bus with an external computer.
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Figure 7.1: Schematic description of the control electronics employed in the developed ped-
elec prototype.
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Torque-sensorless electrical assistance survey

In this survey, you will try and evaluate three different electrical assistance strategies implemented on a pedelec
prototype. In particular, you will test one torque-sensored and two torque-sensorless electrical assistance approa-
ches in an unknown order. At the end of the survey, you will be asked to guess which kind of assistance you tried.

Electrical assistance Code

Testing order code:

Personal information

1. Name:

2. Age:

3. Sex: 2 Female 2 Male

4. Height: cm

5. Measured weight: kg

Cycling experience

6. How often do you ride a bicycle?

2 Never

2 Occasionally

2 Daily

2 Professionally

2 Other:

7. Do you have experience with electric bicycles? 2 Yes 2 No

8. Do you have an electric bicycle? 2 Yes 2 No

9. If not, would you buy one? (Please motivate)

2 No:

2 Yes:

10. How often do you ride electric bicycles?

2 Never

2 Occasionally

2 Daily

2 Other:

11. What kind of electric bicycle have you ridden before?

2 Power-on-demand

2 Pedelec

2 I don’t know



12. What do you expect when riding an electric bicycle? (Please describe your riding performance
expectations)

13. In which context do/would you use an electric bicycle rather than other means of trans-
portation? (Please describe)

Electrical assistance 1

14. Was the received assistance sufficient?

2 No

2 Yes

15. Was the assistance sufficiently reactive to your pedaling?

2 No

2 Yes

16. Did you experience delays in the delivered assistance? (If yes, please explain when)

2 No

2 Yes:

17. Do you think that the received electrical assistance is safe enough? (Please motivate)

2 No:

2 Yes:

Electrical assistance 2

18. Was the received assistance sufficient?

2 No

2 Yes

19. Was the assistance sufficiently reactive to your pedaling?

2 No

2 Yes

20. Did you experience delays in the delivered assistance? (If yes, please explain when)

2 No

2 Yes:

21. Do you think that the received electrical assistance is safe enough? (Please motivate)

2 No:

2 Yes:



Electrical assistance 3

22. Was the received assistance sufficient?

2 No

2 Yes

23. Was the assistance sufficiently reactive to your pedaling?

2 No

2 Yes

24. Did you experience delays in the delivered assistance? (If yes, please explain when)

2 No

2 Yes:

25. Do you think that the received electrical assistance is safe enough? (Please motivate)

2 No:

2 Yes:

Comparison between the assistance methods

26. Did you feel differences between the three assistance methods? (Please describe)

27. Can you guess which assistance method you tested? (Answer with Sensor or Sensorless)

� Electrical Assistance 1:

� Electrical Assistance 2:

� Electrical Assistance 3:

28. Please create a ranking of your favorite assistance methods: (Answer with 1,2,3)

1.

2.

3.



List of symbols

8 List of symbols

General:

x, X Quantities.
x, X Vectors and matrices.

Number sets:

R Real numbers.
Z Integer numbers.

Reference systems:

abc Phase reference frame.
dq Rotor reference frame.
xyz Bicycle reference frame.
xsyszs IMU reference frame.
αβ Stator reference frame.

Accents:

ˆ Estimated quantity.
∼ Rated quantity.
− Average value.

Superscripts:

∗ Control target.
+ KF a posteriori estimate.
− KF a priori estimate.

Quantities:

Note: Some quantities may contain specific subscripts and superscripts whose meaning
is explained in the quantity description.

a Bicycle longitudinal acceleration.
aj

si IMU measured acceleration. Subscript i: axis component {x, y, z}, radial
component R, tangential component T. Superscript j: sensor reference frame s,
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List of symbols

bicycle reference frame no superscript.
A Frontal area of cyclist and bicycle.
Ad Drag area.
A State space representation continuous time state matrix.
B State space representation continuous time input matrix.
c Curve effect compensation coefficient.
Cd Drag coefficient.
CI95% Confidence interval at 95%.
C State space representation continuous time output matrix.
d Distance traveled horizontally or run.
dµ Rolling friction apparent distance traveled horizontally or run.
ei Induced electromotive forces. Subscript i: motor phase {a, b, c}.
E Energy.
Em Motor energy.
Ep Pedaling energy.
EΣ Global delivered energy.
f j
ci LPF cutoff frequency. Subscript i indicates the filtered quantity.

Superscript j: maximum value max, minimum value min.
fs Sampling frequency.
F Force.
Fa Aerodynamic drag force.
Fb Bump force.
Fd Driving forces.
Fg Gravity force.
Fi

h Human forces acting on the bicycle longitudinal dynamics. Superscript i:
external to the crankset e.

Fm Motor force acting on the bicycle longitudinal dynamics.
Fj

pi Pedaling force. Subscript i: radial component R, tangential component T.
Superscript j: left pedal l, right pedal r.

Fr Rolling friction force.
FB Braking force.
FI Inertia force.
F fi Contact surface forces. Subscript i: normal component N, parallel

component P.
F State space representation discrete time state matrix.
gj

i Gravitational acceleration on Earth. Subscript i: axis component {x, y, z}.
Superscript j: sensor reference frame s, bicycle reference frame no superscript.

h Elevation increase or rise.
hµ Rolling friction apparent elevation increase or rise.
G State space representation discrete time input matrix.
H State space representation discrete time output matrix.
ii Current. Subscript i: motor phase {a, b, c}, rotor frame {d, q}, power inverter

DC.
I Identity matrix.
JF EKF Jacobian state-state matrix.
JH EKF Jacobian output-state matrix.
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List of symbols

JL EKF Jacobian state-noise matrix.
JM EKF Jacobian output-noise matrix.
k Discrete time variable.
k j Discrete time instant. Subscript j: initial i, final f .
Ka Electrical assistance fixed gain.
KT Motor torque constant.
K State observer gain.
lc Crankarm length.
Li Motor inductance. Subscript i: motor phase {a, b, c}, rotor frame {d, q}.
m Total system mass.
np Number of pole pairs.
N Normal to the surface weight force component.
O Curve instantaneous center of rotation.
O Observability matrix.
Ov Time-variant system observability matrix.
p Absolute pressure.
P Power.
Pa Power required to overcome the aerodynamic force.
Pg Power required to overcome the gravity force.
Pr Power required to overcome the rolling friction force.
Pmi Motor power. Subscript i: at the crankset c, at the rear cogwheel w.
Ppij Pedaling power. Subscript i: at the crankset c, at the rear cogwheel w.

Subscript j: with electrical assistance assistance, without electrical assistance
no assistance.

PR Total power required to overcome the resisting forces.
PΣi Total power. Subscript i: at the crankset c, at the rear cogwheel w.
P KF estimation error covariance matrix.
Q KF noise on the process covariance matrix.
r Bicycle wheel radius.
rc Crankset radius.
r f Friction wheel radius.
rw Rear cogwheel radius.
R Phase resistance.
Rs Specific gas constant for dry air.
RB Braking resistance.
R KF noise on the measurements covariance matrix.
s Laplace domain variable.
Si Power inverter MOSFET, with i ∈ [1; 6] .
t Continuous time variable.
T Torque.
Tmi Motor torque. Subscript i: at the crankset c, at the rear cogwheel w.
T j

pik
Pedaling torque. Subscript i: at the crankset c, at the rear cogwheel w.
Superscript j: left pedal l, right pedal r. Subscript k: continuous component 0,
second harmonic component 2, fourth harmonic component 4.

Ts Sampling time.
Tsim Fixed simulation step time.
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List of symbols

TB Braking torque.
TΣi Total torque. Subscript i: at the crankset c, at the rear cogwheel w.
u State space representation input.
Ui Voltage. Subscript i: motor phase {a, b, c}, power inverter DC.
v Bicycle longitudinal velocity.
vai Relative air or apparent wind velocity. Subscript i: axis component {x, y, z}.
vwi Wind velocity. Subscript i: axis component {x, y, z}.
wi KF noise on the process. Subscript i indicates the quantity to which is referred.
x State space representation state.
y State space representation measured output.
yPI PI controller output.
zc Crankset number of teeth.
zw Rear cogwheel number of teeth.
α Auxiliary variable including the effect or road slope and rolling friction.
βi Road slope angle. Subscript i: expressed as percentage %.
βµ Rolling friction apparent road slope angle.
γs IMU pitch mounting offset.
Γ f Curve trajectory front wheel radius.
Γr Curve trajectory rear wheel radius.
Γs Curve trajectory IMU radius.
δ Steering angle.
ε i KF estimation error. Subscript i indicates the quantity to which is referred.
ζσ2

w
Variance ratio in the road slope estimation.

ηd Drivetrain transmission efficiency.
η f Friction motor assembly transmission efficiency.
ηg Gearbox transmission efficiency.
ηm Global motor transmission efficiency.
θc Crankset angle.
θe Motor electrical angle.
θm Motor mechanical angle.
Θ Absolute temperature.
κ Critical value of the probability distribution.
Λi Index to quantify the curve aggressiveness. Subscript i: threshold value th.
µ Rolling friction coefficient.
µ f Kinetic friction coefficient.
νi KF noise on the measurement. Subscript i indicates the quantity to which is

referred.
ξ

j
i SPTO augmented state. Subscript i: continuous component 0, second harmonic

component 2. Superscript j: cosine component c, sine component s.
ρ Denisty of air.
τd Drivetrain gear ratio.
τf Friction motor assembly transmission ratio.
τg Gearbox gear ratio.
τm Global motor gear ratio.
φ Bicycle leaning angle.
φs IMU roll mounting offset.
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List of symbols

χ Generic measured value or observation.
ψs IMU yaw mounting offset.
Ψi Magnetic flux linkage. Subscript i: motor phase {a, b, c}, permanent magnet PM.
ω Rear wheel angular speed.
ωc Crankset angular speed.
ωdq Rotor frame angular speed.
ωe Motor electrical angular speed.
ωm Motor mechanical angular speed.
ωw Rear cogwheel angular speed.
ω

j
si IMU measured angular speed. Subscript i: axis component {x, y, z}.

Superscript j: sensor reference frame s, bicycle reference frame no superscript.
0 Zero vector or matrix.

Operators:

ci Cosine of an angle. Subscript i indicates the angle.
E [⋅] Statistic expected value.
f (⋅) State space representation nonlinear continuous time state function.
fd (⋅) State space representation nonlinear discrete time state function.
Gi (s) LPF transfer function. Subscript i indicates the filtered quantity.
h (⋅) State space representation nonlinear continuous time output function.
hd (⋅) State space representation nonlinear discrete time output function.
max (⋅) Maximum value.
Ri (j) Rotation matrix. Subscript i indicates the reference axis. Subscript j indicates

the rotation angle.
si Sine of an angle. Subscript i indicates the angle.
sgn (⋅) Sign function.
[⋅]T Transpose of a vector or matrix.
[⋅]−1 Inverse matrix.
σi Standard deviation. Subscript i indicates the quantity to which is referred.
σ2

i Variance. Subscript i indicates the quantity to which is referred.
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