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Abstract
Given a d-tuple T of commuting contractions on Hilbert space and a polynomial p
in d-variables, we seek upper bounds for the norm of the operator p(T ). Results of
von Neumann and Andô show that if d = 1 or d = 2, the upper bound ‖p(T )‖ ≤
‖p‖∞, holds, where the supremum norm is taken over the polydisc D

d . We show
that for d = 3, there exists a universal constant C such that ‖p(T )‖ ≤ C‖p‖∞
for every homogeneous polynomial p. We also show that for general d and arbitrary
polynomials, the norm ‖p(T )‖ is dominated by a certain Besov-type norm of p.

Mathematics Subject Classification Primary 47A13; Secondary 47A30, 47A60

1 Introduction

A famous inequality of von Neumann [42] shows that if T is a contraction on a Hilbert
space H, then

‖p(T )‖ ≤ sup
z∈D

|p(z)|

for every polynomial p ∈ C[z]. This inequality is the basis of an important connection
between operator theory and complex analysis; see for instance [1, 38]. Andô [2]
extended von Neumann’s inequality to two variables. His inequality shows that if
T = (T1, T2) is a pair of commuting contractions on Hilbert space, then

‖p(T )‖ ≤ sup
z∈D2

|p(z)|

for all polynomials p ∈ C[z1, z2]. However, the corresponding inequality for three or
more commuting contractions is false, as examples of Kaijser–Varopoulos [40] and
Crabb–Davie [6] show. More background information can be found in the books [28,
32] and in [3].
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5236 M. Hartz

Even though the counterexamples to von Neumann’s inequality in three variables
were discovered in the seventies, many questions surrounding this phenomenon were
only answered recently or remain open. For instance, the smallest dimension of a
Hilbert space on which there exist counterexamples in three variables was only deter-
mined a few years ago: there exist counterexamples in dimension four due to Holbrook
[17], whereas Knese showed that the inequality holds in dimension three or less [21];
this relies on a result in complex geometry due to Kosiński [22]. See also [5] for a
related counterexample in dimension three.

Remarkably, it is still not known if von Neumann’s inequality for three commuting
contractions holds up to a constant; see for instance [28, Chapter 5] and [32, Chapter
1] for a detailed discussion of this problem. Part of the difficulty comes from the
lack of a convenient model for tuples of commuting contractions, unlike in the setting
of operator tuples associated with the Euclidean ball; see [14]. See also [23] for a
non-commutative approach.

To study whether von Neumann’s inequality holds up to a constant, one defines
C(d, n) ∈ [1,∞) to be the smallest constant such that

‖p(T )‖ ≤ C(d, n) sup
z∈Dd

|p(z)|

holds for every homogeneous polynomial p ∈ C[z1, . . . , zd ] of degree n and every
d-tuple T of commuting contractions onHilbert space. By vonNeumann’s andAndô’s
inequalities, C(1, n) = C(2, n) = 1 for all n ∈ N. Dixon [7] showed that for n ≥ 2,

C(d, n) ≤ GC(3d)(n−2)/2(2e)n, (1)

where GC is the complex Grothendieck constant, which satisfies GC < 3
2 ; see [12].

He also proved that for fixed n as d → ∞, this estimate is not too far from optimal.
Explicitly, up to a constant depending on n, he established a lower bound for C(d, n)

of the form d
1
2 �(n−1)/2	. See also [11] for some recent work on determining the value

of limd→∞ C(d, 2). However, as Dixon already remarked, the asymptotic behavior
of C(d, n) as d → ∞ does not directly bear on the question of whether von Neu-
mann’s inequality for d commuting contractions holds up to a constant. Indeed, for
this question, the behavior of C(d, n) for fixed d as n → ∞ is relevant.

For fixed d, Dixon’s upper bound (1) is exponential in the degree n. However, it
is easy to obtain upper bounds for C(d, n) that are polynomial in n. For instance, if
p(z) = ∑

α p̂(α)zα is homogeneous of degree n, then for any d-tuple of commuting
contractions, the Cauchy–Schwarz inequality shows that

‖p(T )‖ ≤
∑

α

| p̂(α)| ≤
(
d + n − 1

d − 1

)1/2( ∑

α

| p̂(α)|2
)1/2

≤
(
d + n − 1

d − 1

)1/2

sup
z∈Dd

|p(z)|.
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On von Neumann’s inequality on the polydisc 5237

Here, the binomial coefficient is the dimension of the space of homogeneous polynomi-
als in d variables of degree n. This gives the upper bound C(d, n) �d (n + 1)(d−1)/2.
Here and in the sequel, we write f �d g to mean that there exists a constant C
depending only on d such that f ≤ Cg.

Our first main result gives an upper bound that is polylogarithmic in the degree n
and in particular yields that C(3, n) is uniformly bounded in n.

Theorem 1.1 Let d ≥ 3. Then for all n ≥ 1,

C(d, n) �d (log(n + 1))d−3.

In particular, supn C(3, n) < ∞.

This result will be proved in Corollary 3.5. The proof yields the crude explicit
upper bound C(3, n) ≤ 121, see Remark 3.6, but no attempt was made to optimize
the numerical bound.

It is important to keep in mind that supn C(3, n) < ∞ does not imply that von
Neumann’s inequality for three commuting contractions holds up to a constant, as
C(3, n) is only defined using homogeneous polynomials. Nonetheless, the known
counterexamples to von Neumann’s inequality in three variables all use homogeneous
polynomials, and show in particular that C(3, 2) > 1. (The best known lower abound

appears to be C(3, 2) ≥ 1
3

√
35+13

√
13

6 ≈ 1.23; see [9, Proposition 6.1].)
In [32, Chapter 4], Pisier gives an exposition of work of Daher, which studies von

Neumann’s inequality for tuples of commuting N × N matrices; see [32, Corollary
4.21]. In particular, modifying arguments of Bourgain [4], this work shows that von
Neumann’s inequality holds up to a factor of (log(N + 1))d in this context. Such
modifications of Bourgain’s arguments can also be used to establish the upper bound
C(d, n) �d (log(n + 1))d .

Given a not necessarily homogeneous polynomial p ∈ C[z1, . . . , zd ], the Schur–
Agler norm of p is defined to be

‖p‖SA = sup{‖p(T )‖},

where the supremum is taken over all d-tuples T of commuting contractions onHilbert
space. It is natural to seek function theoretic upper bounds for the Schur–Agler norm.
To this end, recall that if f : Dd → C is holomorphic, the radial derivative of f is
(R f )(z) = ∑d

j=1 z j
∂ f
∂z j

(z). Let also write fr (z) = f (r z) and use ‖ · ‖∞ to denote the

supremum norm on D
d . We now have the following Besov-type upper bound for the

Schur–Agler norm.

Theorem 1.2 Let d ≥ 3. Then for all p ∈ C[z1, . . . , zd ],

‖p‖SA �d |p(0)| +
∫ 1

0
‖(Rp)r‖∞

(
log

( 1

1 − r

))d−3
dr .

This result will be proved in Corollary 3.7.
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5238 M. Hartz

The idea to use Besov norms in the context of functional calculi already appeared
in the seminal work of Peller [30] on polynomially bounded operators. Indeed, this
article takes inspiration from Peller’s work and subsequent works, for instance of Vitse
[41] and Schwenninger [35].

Our methods also yield some results about the Schur–Agler norm with constant 1.
It was shown by Knese [20] that for certain rational inner functions f : D3 → C,
one can find a monomial q such that ‖q f ‖SA = ‖ f ‖∞. (See the disussion preceding
Corollary 3.7 for the definition of Schur–Agler norm of a holomorphic function.)
We will show an asymptotic version of Knese’s theorem for polynomials. Grinshpan,
Kaliuzhnyi-Verbovetskyi and Woerdeman proved that there exist polynomials p ∈
C[z1, z2, z3] such that ‖z3 p‖SA < ‖p‖SA; see [10, Theorem 2.3]. They also asked
if for every polynomial p satisfying ‖p‖∞ < ‖p‖SA, there exists a monomial q
such that ‖qp‖SA < ‖p‖SA; see [10, Problem 2.4]. The following result answers this
question in the affirmative; it also gives another proof of the existence of a polynomial
p ∈ C[z1, z2, z3] with ‖z3 p‖SA < ‖p‖SA.

Theorem 1.3 Let d ≥ 3 and let p ∈ C[z1, . . . , zd ]. Then

lim
m→∞ ‖(z3 · . . . · zd)m p‖SA = ‖p‖∞.

This result will be proved in Theorem 3.2.
On our way to establishing Theorems 1.1 and 1.2, we first study a version of the

one-variable von Neumann inequality, but for polynomials with operator coefficients
satisfying a commutativity hypothesis; see Section 2 for precise details. The idea to use
one-variable polynomials with operator coefficients to study the scalar von Neumann
inequality in several variables already appears inwork of Daher; see [32, Chapter 4]. In
Theorem 2.8, which may be of independent interest, we establish fairly precise upper
and lower bounds for von Neumann’s inequality with operator coefficients. However,
we will see in Propositions 3.9 and 3.10 that the operators yielding logarithmic lower
bounds in von Neumann’s inequality with operator coefficients satisfy von Neumann’s
inequality for d-tuples up to a constant.

The remainder of this article is organized as follows. Section2 contains the material
on von Neumann’s inequality with operator coefficients. Section3 deals with von
Neumann’s inequality on the polydisc. Moreover, in the appendix, we collect a few
basic facts about analytic Besov spaces.

2 Polynomials with operator coefficients

In this section, we consider operator-valued polynomials of the form

p(z) =
n∑

k=m

Akz
k,
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On von Neumann’s inequality on the polydisc 5239

where each Ak ∈ B(H).We call such polynomials (m, n)-band-limited.Given another
operator T ∈ B(H), we “evaluate” the polynomial at T as follows:

p(T ) =
n∑

k=m

AkT
k .

Notice that the product is not the tensor product, but composition of operators. (Using
the tensor product, one obtains von Neumann’s inequality with constant 1 by Sz.-
Nagy’s dilation theorem.)

We are mostly concerned with the case when each Ak commutes with T . Equiv-
alently, p(z) commutes with Ak for all z ∈ D. We seek bounds on ‖p(T )‖ in terms
of supz∈D ‖p(z)‖. In the case m = 0, this problem was already studied by Daher and
Pisier; see [32, Chapter 4]. To get a feeling for the problem, we first consider the easier
case without any assumption on commutation.

Throughout, we will use T to denote the unit circle, and we write

∫

T

f (z)
|dz|
2π

=
∫ 2π

0
f (eit )

dt

2π
.

Proposition 2.1 Let p(z) = ∑n
k=m Akzk be a polynomial with operator coefficients

and let ‖T ‖ ≤ 1. Then

∥
∥
∥

n∑

k=m

AkT
k
∥
∥
∥ ≤ √

n − m + 1 sup
z∈D

‖p(z)‖.

Moreover, the factor
√
n − m + 1 is best possible in the sense that for all 1 ≤ m ≤ n,

there exists a non-zero choice of Am, . . . , An and T such that equality holds.

Proof We may normalize so that supz∈D ‖p(z)‖ = 1. Then

I ≥
∫

T

p(z)p(z)∗ |dz|
2π

=
n∑

k=m

Ak A
∗
k .

Hence the row
[
Am · · · An

]
is a contraction. Then

n∑

k=m

AkT
k = [

Am · · · An
]

⎡

⎢
⎢
⎢
⎣

Tm

Tm+1

...

T n

⎤

⎥
⎥
⎥
⎦

.

The column has norm at most
√
n − m + 1, from which the upper bound follows.
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5240 M. Hartz

To see that equality may hold, let Ak = E1,k+1 (matrix units on �2) and let T be
the unilateral shift. Then

n∑

k=m

AkT
ke1 =

n∑

k=m

E1,k+1ek+1 = (n − m + 1)e1,

hence ‖∑n
k=m AkT k‖ ≥ n − m + 1, but p(z)p(z)∗ = ∑n

k=m E1,1|z|2k , so that
‖p‖∞ = √

n − m + 1. 
�

Remark 2.2 The proof of the upper bound in fact applies to power bounded operators.

Recall that T is said to doubly commute with A if T commutes with A and A∗. In
the doubly commuting case, one obtains the inequality with constant 1. It appears that
this was first shown by Arveson and Parrott (unpublished) and Mlak [25].

Proposition 2.3 Let p(z) = ∑n
k=0 Akzk be a polynomial with operator coefficients

and let T ∈ B(H) with ‖T ‖ ≤ 1. If T doubly commutes with each Ak, then

∥
∥
∥

n∑

k=0

AkT
k
∥
∥
∥ ≤ sup

z∈D
‖p(z)‖.

Proof We use a small modification of a proof of von Neumann’s inequality due to
Heinz; see [15] and also [28, Exercise 2.15]. We may assume that ‖T ‖ < 1. For
z ∈ D, consider the Poisson-type kernel

P(z, T ) = (1 − zT ∗)−1 + (1 − zT )−1 − I .

A simple computation shows that P(z, T ) ≥ 0 for all z ∈ D and that

n∑

k=0

AkT
k =

∫

T

p(z)P(z, T )
|dz|
2π

=
∫

T

P(z, T )1/2 p(z)P(z, T )1/2
|dz|
2π

,

where the second equality follows from the doubly commuting assumption. Now, the
map

� : C(T, B(H)) → B(H), f �→
∫

T

P(z, T )1/2 f (z)P(z, T )1/2
|dz|
2π

is unital and completely positive, hence completely contractive; see for instance [28,
Proposition 3.2]. In particular, ‖p(T )‖ = ‖�(p)‖ ≤ ‖p‖∞. 
�

Todealwith the singly commuting case,we require the following routine application
of the Cauchy–Schwarz inequality.
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On von Neumann’s inequality on the polydisc 5241

Lemma 2.4 Let X be a compact Hausdorff space, letμ be a Borel probability measure
on X and let K , L : X → B(H) and let f : X → B(H) be norm continuous. Then

∥
∥
∥
∥

∫

X
K (x) f (x)L(x) dμ(x)

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫

X
K (x)K (x)∗ dμ(x)

∥
∥
∥
∥

1/2 ∥
∥
∥
∥

∫

X
L(x)∗L(x) dμ(x)

∥
∥
∥
∥

1/2

sup
x∈X

‖ f (x)‖.

Proof Let ξ, η ∈ H be unit vectors and assume without loss of generality that
supx∈X ‖ f (x)‖ = 1. Applying the Cauchy–Schwarz inequality to the positive
semi-definite sesquilinear form on C(X ,H) defined by

(g, h) �→
∫

X
〈g(x), h(x)〉 dμ(x),

we find that

∣
∣
∣
∣

∫

X
〈K (x) f (x)L(x)ξ, η〉dμ(x)

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫

X
〈 f (x)L(x)ξ, K (x)∗η〉dμ(x)

∣
∣
∣
∣

2

≤
∫

X
〈 f (x)∗ f (x)L(x)ξ, L(x)ξ 〉 dμ(x)

∫

X
〈K (x)∗η, K (x)∗η〉 dμ(x).

Since supx∈X ‖ f (x)‖ = 1, we have f (x)∗ f (x) ≤ I for all x ∈ X , so the first factor
can be estimated by

∫

X
〈 f (x)∗ f (x)L(x)ξ, L(x)ξ 〉 dμ(x) ≤

∫

X
〈L(x)ξ, L(x)ξ 〉dμ(x)

≤
∥
∥
∥
∥

∫

X
L(x)∗L(x)dμ(x)

∥
∥
∥
∥ .

A similar estimate holds for the second factor, thus

∣
∣
∣
∣

∫

X
〈K (x) f (x)L(x)ξ, η〉dμ(x)

∣
∣
∣
∣

2

≤
∥
∥
∥
∥

∫

X
L(x)∗L(x)dμ(x)

∥
∥
∥
∥

∥
∥
∥
∥

∫

X
K (x)K (x)∗dμ(x)

∥
∥
∥
∥ .

The assertion now follows by taking the supremum over all unit vectors ξ, η ∈ H. 
�
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5242 M. Hartz

We now turn to the simply commuting case. Given natural numbers 0 ≤ m ≤ n,
let K (m, n) be the smallest constant such that

∥
∥
∥

n∑

k=m

AkT
k
∥
∥
∥ ≤ K (m, n) sup

z∈D

∥
∥
∥

n∑

k=m

Akz
k
∥
∥
∥

holds for all operators Am, . . . , An ∈ B(H) and all T ∈ B(H) satisfying ‖T ‖ ≤ 1
and T Ak = AkT for all k = m,m + 1, . . . , n. The arguments of Daher and Pisier
show that K (0, n) � log(n + 1) + 1; see [32, Chapter 4]. Here, we write f � g to
mean f � g and g � f . We will obtain fairly sharp estimates for K (m, n) in general.

Let H2 denote the classical Hardy space on the disc and let Han ⊂ H2 be the space
of symbols of bounded Hankel operators H2 → H2. Thus, if b ∈ Han, then we obtain
a bounded Hankel operator Hb : H2 → H2 satisfying

〈Hb f g〉H2 = 〈 f g, b〉H2

for all polynomials f , g. We equip Han with the norm ‖b‖Han = ‖Hb‖. Nehari’s
theorem ([26], see also [31, Theorem 1.1]) shows that Han ∼= L∞/H∞

0 is the dual
space of H1 with respect to the Cauchy pairing. It is known that Han can be identified
with BMOA, but we do not require this. More background on Hankel operators can
be found in [31].

Given a function h ∈ H1, we write h(z) = ∑∞
k=0 ĥ(k)zk for the Taylor series of h.

Proposition 2.5 We have

K (m, n) = inf{‖h‖H1 : ĥ(k) = 1 for m ≤ k ≤ n}
= sup{|q(1)| : ‖q‖Han ≤ 1 and supp q̂ ⊂ [m, n]}.

Proof The second equality follows from duality. Indeed, let

M = {h ∈ H1 : ĥ(k) = 0 for m ≤ k ≤ n}.

Then the annihilator of M in Han is {q ∈ Han : supp q̂ ⊂ [m, n]}. So if f ∈ H1 is
any function with f̂ (k) = 1 for m ≤ k ≤ n, then by the Hahn–Banach theorem,

inf{‖h‖H1 : ĥ(k) = 1 for m ≤ k ≤ n} = dist( f , M)

= sup{|〈 f , q〉| : ‖q‖Han ≤ 1 and supp q̂ ⊂ [m, n]}
= sup{|q(1)| : ‖q‖Han ≤ 1 and supp q̂ ⊂ [m, n]}.

Next, we prove that K (m, n) is bounded above by the infimum. To this end, we
use a factorization argument, which already appears in [32, Proposition 4.16] and [43,
III.F.18]; see also [13] for extensions to semigroups on Banach spaces. Let p(z) =∑n

k=m Akzk be an operator-valued polynomial with supz∈D ‖p(z)‖ ≤ 1 and let T ∈
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On von Neumann’s inequality on the polydisc 5243

B(H) be a contraction that commutes with all Ak . Let h ∈ H1 satisfy ĥ(k) = 1 for
m ≤ k ≤ n. We have to show that

‖p(T )‖ ≤ ‖h‖H1 . (2)

By replacing T with rT for r < 1, we may assume that σ(T ) ⊂ D. There exist
f , g ∈ H2 so that h = f g and ‖ f ‖H2‖g‖H2 = ‖h‖H1 . Thus, by the commutation
hypothesis,

p(T ) =
∫

T

p(z)h(zT )
|dz|
2π

=
∫

T

f (zT )p(z)g(zT )
|dz|
2π

.

By Lemma 2.4, it follows that

‖p(T )‖ ≤
∥
∥
∥

∫

T

f (zT ) f (zT )∗ |dz|
2π

∥
∥
∥
1/2∥∥

∥

∫

T

g(zT )∗g(zT )
|dz|
2π

∥
∥
∥
1/2

.

Using orthogonality, we find that

∫

T

f (zT ) f (zT )∗ |dz|
2π

=
∞∑

k=0

| f̂ (k)|2T k(T ∗)k,

hence ∥
∥
∥

∫

T

f (zT ) f (zT )∗ |dz|
2π

∥
∥
∥
1/2 ≤ ‖ f ‖H2 .

Similarly,
∥
∥
∥

∫

T

g(zT )∗g(zT )
|dz|
2π

∥
∥
∥
1/2 ≤ ‖g‖H2 .

Since ‖ f ‖H2‖g‖H2 = ‖h‖H1 , the upper bound (2) follows.
Finally, we show that K (m, n) is bounded below by the supremum. To this end,

we use Foguel–Hankel operators; see [28, Chapter 10] for background. For q ∈ Han,
let Hq : H2 → H2 be the Hankel operator satisfying 〈Hq f , g〉 = 〈 f g, q〉 for
polynomials f , g. Let ζ denote the independent variable onD, and letMζ : H2 → H2

be the shift. Then
HqMζ = M∗

ζ
Hq . (3)

Let

T =
[
Mζ 0
0 M∗

ζ

]

∈ B(H2 ⊕ H2).

If q ∈ Han with supp q̂ ⊂ [m, n], define

Ak =
[

0 0
Hq̂(k)ζ k 0

]

.
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5244 M. Hartz

Then (3) shows that T commutes with each Ak . Let p(z) = ∑n
k=m Akzk . Then

‖p(z)‖ =
∥
∥
∥

n∑

k=m

q̂(k)(ζ z)k
∥
∥
∥
Han

≤ ‖q‖Han

for all z ∈ T by rotation invariance of Han, and hence for all z ∈ D by the maximum
principle. So if ‖q‖Han ≤ 1, then

K (m, n) ≥
∥
∥
∥

n∑

k=m

AkT
k
∥
∥
∥ =

∥
∥
∥

n∑

k=m

Hq̂(k)ζ k Mζ k

∥
∥
∥ = ‖Hq(1)‖ = |q(1)|.

This proves the lower bound for K (m, n). 
�
Remark 2.6 (a) The proof of the upper bound for K (m, n) in fact worksmore generally
for power bounded operators T . Thus, using the result of Proposition 2.5, we find that
if T is power bounded and Ak are operators commuting with T , then

∥
∥
∥

n∑

k=m

AkT
k
∥
∥
∥ ≤ sup

n
‖T n‖2K (m, n) sup

z∈D

∥
∥
∥

n∑

k=m

Akz
k
∥
∥
∥.

So in contrast to the scalar von Neumann inequality, contractions do not yield a
qualitatively better estimate than power bounded operators.

(b) In the context of the classical inequalities of von Neumann and Andô, it is
natural to consider matrices of polynomials because of the connections to dilation
theory, see for instance [28, Chapter 7] and [32, Chapter 4]. In the present setting, one
can similarly consider r ×r matrices [pi j ], where each entry pi j is an operator-valued
polynomial of the form

pi j (z) =
n∑

k=m

A(i j)
k zk,

and each A(i j)
k ∈ B(H). Such a matrix can be evaluated entry-wise at an operator

T that commutes with all coefficients A(i j)
k . Considering such matrices of arbitrary

size r , one defines a completely bounded version Kcb(m, n) of the constant K (m, n).
However, this setting is actually not more general, and we have Kcb(m, n) = K (m, n).
Indeed, given an r × r matrix [pi j ] as above and a contraction T ∈ B(H) commuting

with all coefficients A(i j)
k , let Ei j ∈ Mr (C) be the usual matrix units and define

q(z) =
r∑

i, j=1

n∑

k=m

(A(i j)
k ⊗ Ei j )z

k .

Then q is a polynomial with coefficients in B(H) ⊗ Mr (C), which we identify with
B(Hr ), and supz∈D ‖q(z)‖ = supz∈D ‖[pi j (z)]‖. The contraction T ⊗ I commutes
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On von Neumann’s inequality on the polydisc 5245

with the coefficients of q, and

‖[pi j (T )]‖ = ‖q(T ⊗ I )‖.

This shows that Kcb(m, n) = K (m, n).

With the help of the last result, we can now get quantitative estimates for K (m, n).
One might build a function h in Proposition 2.5 with the help of de la Vallée-Poussin
kernels and use known L1-estimates of de la Vallée-Poussin kernels; see [24, 36, 37].
Unfortunately, these estimates do not appear to be completely sufficient for our needs.

Remark 2.7 Here are some simple ways to get quantitative estimates on K (m, n).
These are already sufficient for our main applications.

(1) Form = 0, we may use as in [32, Corollary 4.17] the function h(z) = ∑n
k=0 z

k =
1−zn+1

1−z . This function is a shifted version of the Dirichlet kernel, so ‖h‖H1 is
comparable to log(n + 1) + 1. Thus,

K (0, n) � log(n + 1) + 1.

(2) For general n ≥ m ≥ 0, we can use the shifted Fejér-type kernels Wj whose
Fourier coefficients are the triangular-shaped function supported in (2 j−1, 2 j+1)

with peak at 2 j ; see the appendix for more information. Let h = ∑b
j=a W j . Then

ĥ(k) = 1 for 2a ≤ k ≤ 2b (and ĥ(k) = 1 for 0 ≤ k ≤ 2b in case a = 0) and
‖h‖H1 ≤ 3

2 (b − a + 1). (A slightly different function h with these properties
was already contructed by Haase; see [13, Lemma A.2].) By Proposition 2.5, this
yields

K (m, n) � 1 + log
( n + 1

m + 1

)
.

(3) Let

f (z) = 1

m + 1

m∑

k=0

zk, g(z) =
n∑

k=0

zk

and h = f g. Then ĥ(k) = 1 for m ≤ k ≤ n, and

‖h‖2H1 ≤ ‖ f ‖2H2‖g‖2H2 = n + 1

m + 1
.

This yields

K (m, n) ≤
(
n + 1

m + 1

)1/2

.

Observe that estimate (2) is better than estimate (3) when the ratio n+1
m+1 is large,

while estimate (3) is better when n+1
m+1 is close to 1 because of the implied constants in

estimate (2). Even though the estimates in Remark 2.7 are sufficient for our applica-
tions, it seems worthwhile to determine the behavior of K (m, n) more precisely and
in particular establish an estimate for K (m, n) that is good in both regimes. This is
done in the following result.
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Theorem 2.8 We have

max
(
1,

1

π
log

( n + 2

m + 1

))
≤ K (m, n) ≤ 1

π
log

( n + 1

m + 1

)
+ min

( n + 1

m + 1
, 2

)
.

Proof Upper bound: We use Proposition 2.5 and construct a function h ∈ H1 with
ĥ(k) = 1 for m ≤ k ≤ n whose norm is dominated by the right-hand side in the
statement of the theorem. The construction below already appears in work of Haase,
see the proof of [13, Lemma A.2]. But in order to obtain the stated bound, we need to
estimate somewhat more carefully.

Define holomorphic functions on the disc by

f (z) =
m−1∑

j=0

j + 1

m + 1
z j +

∞∑

j=m

z j = d

dz

( 1 − zm+1

(m + 1)(1 − z)

)
+ zm

1 − z

= 1 − zm+1

(m + 1)(1 − z)2

and

u(z) = (1 − zm+1)1/2

(m + 1)1/2(1 − z)

and

g(z) =
n∑

j=0

û( j)z j .

Finally, we set h = g2. Since g agrees with u to order n and u2 = f , we see that h
agrees with f to order n. In particular, ĥ(k) = 1 for m ≤ k ≤ n.

It remains to estimate ‖h‖H1 . To this end, notice that

‖h‖H1 = ‖g‖2H2 =
n∑

j=0

|̂u( j)|2. (4)

To compute the Taylor coefficients of u, we use the binomial series to obtain

(m + 1)
1
2 u(z) =

( ∞∑

k=0

(−1)k
( 1

2
k

)

zk(m+1)

) ( ∞∑

k=0

zk
)

.

Expanding the product and writing l = � j/(m + 1)	, we see that for all j ≥ 0, the
Taylor coefficients are given by

(m + 1)1/2û( j) =
l∑

ν=0

(−1)ν
( 1

2
ν

)

= (−1)l
(− 1

2
l

)

. (5)
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Here, the last identity can be seen by expanding both sides of (1 − z)−1/2 = (1−z)1/2

1−z
into a binomial series and comparing coefficients. Expanding the binomial coefficient(−1/2

l

)
and rearranging (5) yields

û( j) = (m + 1)−1/24−l
(
2l

l

)

, where l = � j/(m + 1)	. (6)

In words, the Taylor coefficients of u are given by the sequence on the right, and each
element is repeated m + 1 times.

Now, write (n + 1) = k(m + 1) + r with natural numbers k, r with r < m + 1
(hence k = �(n + 1)/(m + 1)	). Thus, from (4) and (6), we find that

‖h‖H1 =
k−1∑

l=0

(

4−l
(
2l

l

))2

+ r

m + 1

(

4−k
(
2k

k

))2

.

To estimate the central binomial coefficients, we use Stirling’s formula in the form

√
2πnn+ 1

2 e−ne
1

12n+1 ≤ n! ≤ √
2πnn+ 1

2 e−ne
1

12n ,

see for example [34], to obtain the estimate

4−l
(
2l

l

)

≤ 1√
πl

for l ≥ 1. Thus,

‖h‖H1 ≤ 1 +
k−1∑

l=1

1

πl
+ r

π(m + 1)k
. (7)

Comparing the sum with an integral, we find that

k−1∑

l=1

1

l
≤ log(k) + min(k − 1, 1)

for k ≥ 1. Moreover, recalling that (n + 1) = k(m + 1) + r , we see that

r

(m + 1)k
=

n+1
m+1 − � n+1

m+1	
� n+1
m+1	

≤ min
( n + 1

m + 1
− 1, 1

)
.

It therefore follows from (7) that

‖h‖H1 ≤ 1 + 1

π
log

( n + 1

m + 1

)
+ 2

π
min

( n + 1

m + 1
− 1, 1

)
.

The stated upper bound follows from this inequality.
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Lower bound: The lower bound K (m, n) ≥ 1 is trivial. Let

q(z) =
n∑

k=m

1

k + 1
zk .

Then

q(1) =
n∑

k=m

1

k + 1
≥

∫ n+1

m

1

t + 1
dt = log

(
n + 2

m + 1

)

.

To estimate ‖q‖Han, observe that with respect to the standard bases of H2 and H2, the
Hankel operator Hq is the Hankel matrix corresponding to the sequence (q̂(k))∞k=0.
Since q has non-negative Taylor coefficients, it follows that ‖q‖Han is bounded above
by the norm of the Hilbert matrix, which is equal to π . Thus, the lower bound follows
from Proposition 2.5. 
�

As a consequence, we obtain a Besov-type functional calculus. Background on
Besov spaces can be found in the appendix. If f : D → B(H) is an operator-valued
holomorphic function, define

‖ f ‖B0∞,1
= ‖ f (0)‖ +

∫ 1

0
‖ f ′

r‖∞ dr .

Here, f ′
r (z) = f ′(r z) and ‖g‖∞ = supz∈D ‖g(z)‖.

Corollary 2.9 Let f : D → B(H) be an operator-valued analytic function with Taylor
series

f (z) =
∞∑

k=0

Akz
k .

Let T ∈ B(H) be a contraction that commutes with each Ak. If ‖ f ‖B0∞,1 < ∞, then

f (T ) = lim
r↗1

f (rT ) = lim
r↗1

∞∑

n=0

Akr
kT k

exists, and
‖ f (T )‖ � ‖ f ‖B0∞,1

.

Proof Suppose initially that f is holomorphic in a neighborhood of D, so that the
sum

∑∞
k=0 AkT k converges. We use the Fejér-type kernels Wn , see the appendix. Let

pn = f ∗ Wn . Since
∑∞

n=0 Ŵn(k) = 1 for all k and since f is holomorphic in a
neighborhood of D, we may interchange the order of summation to find that

∞∑

n=0

pn(T ) =
∞∑

n=0

∞∑

k=0

AkŴn(k)T
k =

∞∑

k=0

AkT
k = f (T ).
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For n ≥ 1, the polynomial pn is (2n−1, 2n+1)-band-limited, so by Theorem 2.8 (or
simply Remark 2.7 (2)),

‖pn(T )‖ ≤ K (2n−1, 2n+1)‖pn‖∞ � ‖pn‖∞.

Such an estimate also holds for n = 0. It follows that

‖ f (T )‖ ≤
∞∑

n=0

‖pn(T )‖ �
∞∑

n=0

‖ f ∗ Wn‖∞.

By Proposition A.4, the last expression is comparable to ‖ f ‖B0∞,1
.

If f merely satisfies ‖ f ‖B0∞,1
< ∞, then by definition and the dominated conver-

gence theorem, ‖ f − fr‖B0∞,1
→ 0 as r → 1. From this and the first paragraph, it

easily follows that the net ( fr (T )) is Cauchy in B(H), hence limr→1 fr (T ) exists in
B(H) and satisfies the desired norm estimate. 
�

3 von Neumann’s inequality on the polydisc

In this section, we use the results on von Neumann’s inequality with operator coeffi-
cients to study von Neumann’s inequality for commuting contractions. The basic idea
is very simple: we plug in operators successively and use the inequality with operator
coefficients in each step. This approach already appeared in the work of Daher; see
[32, Chapter 4].

As a first application, we establish an upper bound for the Schur–Agler norms of
polynomials that is polylogarithmic in the degree of the polynomial. Supremum norms
of d-variable functions are understood to be taken over the polydisc Dd .

Proposition 3.1 If d ≥ 2 and if p ∈ C[z1, . . . , zd ] is a polynomial of degree n ≥ 1,
then

‖p‖SA �d (log(n + 1))d−2‖p‖∞.

Proof The proof is by induction on d. If d = 2, then Andô’s theorem shows that
‖p‖SA = ‖p‖∞. Let d ≥ 3, and suppose that the result has been shown for d − 1. We
write

p(z) =
n∑

k=0

pk(z1, . . . , zd−1)z
k
d ,

for polynomials pk ∈ C[z1, . . . , zd−1] of degree at most n. Let T be a d-tuple of
commuting contractions. By the inductive hypothesis, we have

‖p(T1, . . . , Td−1, z)‖ �d (log(n + 1))d−3‖p‖∞
for all z ∈ D, so by Theorem 2.8 (or simply Remark 2.7 (1)), we have

‖p(T )‖ ≤ K (0, n) sup
z∈D

‖p(T1, . . . , Td−1, z)‖ �d (log(n + 1))d−2‖p‖∞.


�
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A similar technique as in the last proof can be used to establish Theorem 1.3, which
we restate here.

Theorem 3.2 Let d ≥ 3 and let p ∈ C[z1, . . . , zd ]. Then

lim
m→∞ ‖(z3 · . . . · zd)m p‖SA = ‖p‖∞.

Proof It is clear that

‖(z3 · . . . · zd)m p‖SA ≥ ‖(z3 · . . . · zd)m p‖∞ = ‖p‖∞

for all m ∈ N.
To establish the converse direction, we prove that for all d ≥ 2 and all polynomials

p ∈ C[z1, . . . , zd ] of degree at most n, the estimate

‖(z3 · . . . · zd)m p‖SA ≤ K (m,m + n)d−2‖p‖∞ (8)

holds. Here, the (empty) product on the left is understood as 1 if d = 2. Assuming
this estimate for a moment, we obtain the remaining inequality from Theorem 2.8 (or
simply Part (3) of Remark 2.7), which shows that

lim sup
m→∞

K (m,m + n) ≤ 1.

The proof of (8) is similar to that of Proposition 3.1 and proceeds by induction on
d. The case d = 2 follows from Andô’s theorem. Let d ≥ 3 and suppose that (8) has
been shown for d −1. Let p be a polynomial in d variables of degree at most n, which
we write as

p(z) =
n∑

k=0

pk(z1, . . . , zd−1)z
k
d ,

where each pk ∈ C[z1, . . . , zd−1] has degree at most n. Let T be a d-tuple of
commuting contractions. Then,

‖((z3 · . . . · zd)m p)(T )‖

=
∥
∥
∥(T3 · . . . · Td−1)

m
n∑

k=0

pk(T1, . . . , Td−1)T
k+m
d

∥
∥
∥

≤ K (m,m + n) sup
zd∈D

∥
∥
∥(T3 · . . . · Td−1)

m
n∑

k=0

pk(T1, . . . , Td−1)z
k+m
d

∥
∥
∥.

For each zd ∈ D, the inductive hypothesis implies that

∥
∥
∥(T3 · . . . · Td−1)

m
n∑

k=0

pk(T1, . . . , Td−1)z
k+m
d

∥
∥
∥
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≤ K (m,m + n)d−3 sup
z′∈Dd−1

|zmd p(z′, zd)|

≤ K (m,m + n)d−3‖p‖∞.

Combining both inequalities yields (8) for d. 
�
If p ∈ C[z1, . . . , zd ] is a polynomial, say

p(z) =
∑

α

p̂(α)zα,

then we say that p is (m, n)-band-limited if p̂(α) = 0 whenever |α| < m or |α| >

n. We say that p is (m, n)-band-limited with respect to z j if p̂(α) = 0 whenever
α j < m or α j > n. In other words, if we fix all variables but the j th one, then p is
(m, n)-band-limited as a polynomial in z j .

The following splitting lemma is crucial for establishing the upper bound of the
Schur–Agler norm of homogeneous polynomials.

Lemma 3.3 Let p ∈ C[z1, . . . , zd ] be an (m, n)-band-limited polynomial. Then there
exist polynomials p1, . . . , pd such that

(1) p = ∑d
j=1 p j ,

(2) each p j is (� m
2d 	, n)-band-limited with respect to z j , and

(3) ‖p j‖∞ �d ‖p‖∞ for each j .

Proof We first informally describe the basic idea. If p̂(α) �= 0, then α j ≥ m
d for

some j , as p is (m, n)-band-limited. So we should assign the monomial p̂(α)zα to the
polynomial p j . In this way, one obtains a splitting that satisfies Conditions (1) and (2),
even with m

d in place of m
2d . However, to maintain supremum norm control, we need

to smoothen the cut-off. This will be achieved with the help of de la Vallée-Poussin
kernels.

We now come to the actual proof. By replacing m with � m
2d 	2d, we may assume

that m
2d is an integer. For an integer k ≥ 2, let Vk be the real-valued trigonometric

polynomial of one variable whose non-negative Fourier coefficients are the trapezoid-
shaped function supported in ( m

2d , kn) that is identically one on [md , n] and affine on
[ m
2d , m

d ] and on [n, kn].
If q ∈ C[z1, . . . , zd ] is any polynomial, we write

(q ∗ j Vk)(z) =
∫

T

q(z1, . . . , z j−1, z jw, z j+1, . . . , zd)Vk(w)
|dw|
2π

=
∑

α

q̂(α)V̂k(α j )z
α.

If q has degree at most n, then q ∗ j Vk is ( m
2d , n)-band-limited with respect to z j and

independent of k. Since ‖Vk‖L1 ≤ 3+ k+1
k−1 (see Lemma A.1 in the appendix), we have

‖q ∗ j Vk‖∞ ≤ 4‖q‖∞.
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Recursively, we define p1 = p ∗1 V and

p j = (p − p1 − . . . − p j−1) ∗ j Vk

for j = 2, 3, . . . d. Properties (2) and (3) are then clear. To show Property (1), let
q = p − p1 − . . . − pd−1. A simple induction argument shows that

q̂(α) = p̂(α)

d−1∏

j=1

(1 − V̂k(α j ))

for all multi-indicesα. Thus, ifα is amulti-indexwithαk ≥ m
d for some 1 ≤ k ≤ d−1,

then q̂(α) = 0. On the other hand, q is (m, n)-band limited, so it follows that q̂(α) = 0
if αd < m

d . Consequently,
pd = q ∗d Vk = q,

which gives (1). 
�
The following result will imply both results mentioned in the introduction fairly

easily.

Theorem 3.4 Let d ≥ 3 and let p ∈ C[z1, . . . , zd ] be (m, n)-band limited with n ≥ 1.
Then

‖p‖SA �d

(
log

( n + 1

m + 1

)
+ 1

)
(log(n + 1))d−3‖p‖∞.

Proof By Lemma 3.3, we may split p = ∑d
j=1 p j , where each p j is (� m

2d 	, n)-band-
limited with respect to z j and ‖p j‖∞ �d ‖p‖∞. Write

p j (z) =
n∑

k=� m
2d 	

qkj (z1, . . . , z j−1, z j+1, . . . , zd)z
k
j ,

where each qkj is a polynomial of degree at most n. Let T be a d-tuple of commuting
contractions. By Proposition 3.1, we have

‖p j (T1, . . . , Tj−1, z, Tj+1, . . . , Td)‖ �d (log(n + 1))d−3‖p j‖∞

for all z ∈ D, so by Theorem 2.8 (or simply Remark 2.7 (2)), we have

‖p j (T )‖ �d K
(� m

2d
	, n)

(log(n + 1))d−3‖p j‖∞

�d

(
log

( n + 1

� m
2d 	 + 1

)
+ 1

)
(log(n + 1))d−3‖p j‖∞

�d

(
log

( n + 1

m + 1

)
+ 1

)
(log(n + 1))d−3‖p j‖∞.
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Recalling that ‖p j‖∞ �d ‖p‖∞, and that p = ∑d
j=1 p j , we find that

‖p(T )‖ �d

(
log

( n + 1

m + 1

)
+ 1

)
(log(n + 1))d−3‖p‖∞,

as desired. 
�
The desired upper bound for C(d, n) follows immediately by taking m = n above.

Corollary 3.5 Let d ≥ 3. Then for all n ≥ 1,

C(d, n) �d (log(n + 1))d−3.

In particular, supn C(3, n) < ∞.

Remark 3.6 (a) The proof of Corollary 3.5 does yield a crude explicit estimate for
C(3, n). Let p ∈ C[z1, z2, z3]be ahomogeneous polynomial of degreenwith‖p‖∞ ≤
1. The proof of Lemma 3.3 shows that the splitting p = p1+ p2+ p3 obeys the bounds
‖p1‖∞ ≤ 4, ‖p2‖∞ ≤ (4 + 1)4 = 20 and ‖p3‖∞ ≤ 1 + 4 + 20 = 25. Moreover,
by Remark 2.7 (3), we have K (� n

6 	, n) ≤ √
6. Thus, the proof of Theorem 3.4 yields

C(3, n) ≤ √
6(4 + 20 + 25) = 49

√
6 ≤ 121. Undoubtedly, this estimate can be

significantly improved, but no attempt was made to do so.
(b) Once again, one can define a completely bounded version Ccb(d, n) of the

constant C(d, n) by considering matrices of homogeneous polynomials in place of
ordinary homogeneous polynomials. The arguments above also yield, for each d ≥ 3
and n ≥ 1, the estimate

Ccb(d, n) �d (log(n + 1))d−3.

Indeed, byRemark2.6 (b), the upper bound inTheorem2.8 also holds in the completely
bounded setting, andProposition 3.1 andLemma3.3 extend tomatrices of polynomials
with essentially the same proofs. Hence the argument in Theorem 3.4 extends as well.

The estimate in Theorem 3.4 can be converted into a Besov norm upper bound for
the Schur–Agler norm. If d ≥ 3 and f : Dd → C is holomorphic, let (R f )(z) =∑d

j=1 z j
∂ f
∂z j

be the radial derivative. Let us define

‖ f ‖d = | f (0)| +
∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))d−3
dr .

If f : D
d → C is holomorphic, we define the Schur–Agler norm by ‖ f ‖SA =

sup{‖ f (T )‖}, where the supremum is taken over all commuting d-tuples of strict
contractions, and f (T ) is (for instance) defined with the help of power series. We say
that f belongs to the Schur–Agler algebra if ‖ f ‖SA < ∞.
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Corollary 3.7 Let d ≥ 3. If f : Dd → C is holomorphic and ‖ f ‖d < ∞, then f
belongs to the Schur-Agler algebra and

‖ f ‖SA �d ‖ f ‖d .

Proof We use the decomposition f = ∑∞
n=0 f ∗ Wn , which converges uniformly

on compact subsets of Dd ; see the appendix. Let T be a commuting tuple of strict
contractions. Note that f ∗Wn is (2n−1, 2n+1)-band-limited for n ≥ 1, so by Theorem
3.4, we find that

‖ f (T )‖ ≤
∞∑

n=0

‖( f ∗ Wn)(T )‖ �d

∞∑

n=0

(n + 1)d−3‖( f ∗ Wn)‖∞.

By Corollary A.5, the right-hand side is comparable to ‖ f ‖d , which gives the result.

�

Thebounds in vonNeumann’s inequalitywith operator coefficients used in the proof
of Theorem 3.4 were essentially sharp; see Theorem 2.8. One might therefore try to
establish sharpness of Theorem 3.4 in a similar way. Recall that the lower bound in
von Neumann’s inequality with operator coefficients was achieved by Foguel–Hankel
operators of the form [

Mζ 0
0 M∗

ζ

]

and

[
0 0
H 0

]

,

where Mζ is the unilateral shift on H2 and H : H2 → H2 is a Hankel operator, i.e.
HMζ = M∗

ζ
H . It therefore seems natural to try to construct counterexamples for von

Neumann’s inequality in d-variables using operators of this type. We will show that
some natural operator tuples built in this way in fact satisfy von Neumann’s inequality
with constant 1. We require the following standard lemma.

Lemma 3.8 Let V ∈ B(H) be an isometry, let W ∈ B(K) be a co-isometry, let
H ∈ B(H,K) and let r ∈ [0,∞). Then the operator

[
rV 0
H rW

]

∈ B(H ⊕ K)

is a contraction if and only if r2 + ‖H‖ ≤ 1.

Proof Let T denote the operator in the statement. Since V is an isometry, it is clear
that r ≤ 1 is necessary. If r = 1, then ‖T ‖ ≤ 1 if and only if H = 0. Thus, we may
assume that r ∈ (0, 1). We let I denote the identity operator onH ⊕ K. Observe that
T is a contraction if and only if I − T ∗T ≥ 0. Now,

I − T ∗T =
[
1 − r2 − H∗H −r H∗W

−rW ∗H 1 − r2W ∗W

]

.
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Taking Schur complements, we find that this operator is positive if and only if

1 − r2 − H∗H − r2H∗W (1 − r2W ∗W )−1W ∗H ≥ 0.

Since WW ∗ = 1, the left-hand side equals

1 − r2 − (1 + r2(1 − r2)−1)H∗H = (1 − r2)−1((1 − r2)2 − H∗H).

Thus, ‖T ‖ ≤ 1 if and only if ‖H‖ ≤ 1 − r2. 
�
We can now show the announced result about tuples of Foguel–Hankel type. Recall

that the Hankel operator Hq : H2 → H2 is defined by 〈Hq f , g〉 = 〈 f g, q〉 for
polynomials p, q. Equivalently, Hq f = P

H2(q f ), where the product is taken in L2.
We let Han ⊂ H2 denote the space of symbols of bounded Hankel operators.

Proposition 3.9 Let q1, . . . , qd ∈ Han and let r1, . . . , rd ∈ [0, 1]. For j = 1, . . . , d,
let

Tj =
[
r j Mζ 0
Hqj r j M∗

ζ

]

,

and assume that each Tj is a contraction. Then the Tj commute and for every p ∈
C[z1, . . . , zd ], we have

‖p(T1, . . . , Td)‖ ≤ ‖p‖∞.

Proof The Tj commute because of the relation HqMζ = M∗
ζ
Hq for every q ∈ Han.

LetU : L2 → L2, (U f )(ζ ) = ζ f (ζ ) denote the bilateral shift. Lemma 3.8 shows that
‖Hqj ‖ ≤ 1 − r2j for each j . By Nehari’s theorem ([26], see also [31, Theorem 1.1]),

there exist h j ∈ L∞(T) such that ‖h j‖∞ ≤ 1− r2j and such that Hqj f = P
H2(h j f )

for all f ∈ H2. Let Uj : L2 → L2,Uj (g) = h j g. Then

N j =
[
r jU 0
Uj r jU

]

∈ B(L2 ⊕ L2)

are commuting contractions by Lemma 3.8. They dilate T1, . . . , Td in the sense that

p(T1, . . . , Td) = P
H2⊕H2 p(N1, . . . , Nd)

∣
∣
H2⊕H2

for every polynomial p ∈ C[z1, . . . , zd ]. This can for instance be seen by noting that
the equality holds for p = z j and that H2 ⊕ H2 = (H2 ⊕ L2) � (0 ⊕ H2

⊥
) is

semi-invariant under N1, . . . , N j . The entries of N j are multiplication operators on
L2, so

‖p(T1, . . . , Td)‖ ≤ ‖p(N1, . . . , Nd)‖
≤ sup

ζ∈T

∥
∥
∥p

([
r1ζ 0
h1(ζ ) r1ζ

]

, . . . ,

[
rdζ 0
hd(ζ ) rdζ

]) ∥
∥
∥.
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Since von Neumann’s inequality holds for commuting 2 × 2 contractions (see [8] or
[16]), this last quantity is dominated by ‖p‖∞. 
�

Moregenerally, onemight considerHankel operators on the polydisc. The following
result shows in particular that also in this case, von Neumann’s inequality holds, at
least up to a constant.

Proposition 3.10 Let V1, . . . , Vd ∈ B(H) be commuting isometries and let
W1, . . . ,Wd ∈ B(K) be commuting co-isometries. Let H1, . . . , Hd ∈ B(H,K) be
operators satisfying Hi Vj = Wj Hi for i, j = 1, . . . , d. Let r1, . . . , rd ∈ [0, 1] and
assume that the commuting operators

Tj =
[
r j Vj 0
Hj r jW j

]

∈ B(H ⊕ K)

are contractions. Then

‖p(T1, . . . , Td)‖ ≤ (d + 1)‖p‖∞

for all p ∈ C[z1, . . . , zd ].
Proof Let p ∈ C[z1, . . . , zd ]. We claim that

p(T1, . . . , Td) =
[
p(r1V1, . . . , rdVd) 0
∑d

j=1 Hj
∂ p
∂z j

(r1V1, . . . , rdVd) p(r1W1, . . . , rdWd)

]

. (9)

Indeed, a simple induction argument using the intertwining relations HiVj = Wj Hi

shows that this formula holds for all monomials, hence it holds for all polynomials
by linearity. It is a result of Itô [18], see also [28, Theorem 5.1], that commuting
isometries extend to commuting unitaries, hence ‖p(r1V1, . . . , rdVd)‖ ≤ ‖p‖∞ and
similarly ‖p(r1W1, . . . , rdWd)‖ ≤ ‖p‖∞. Applying the same result to ∂ p

∂z j
and then

using the classical Schwarz–Pick lemma, we find that

∥
∥
∥

∂ p

∂z j
(r1V1, . . . , rdVd)

∥
∥
∥ ≤ sup

{∣
∣
∣
∂ p

∂z j
(ζ1, . . . , ζd)

∣
∣
∣ : |ζ j | ≤ r j

}

≤ 1

1 − r2j
‖p‖∞,

provided that r j < 1. Lemma 3.8 shows that ‖Hj‖ ≤ 1 − r2j for each j ; whence

∥
∥
∥

d∑

j=1

Hj
∂ p

∂z j
(r1V1, . . . , rdVd)

∥
∥
∥ ≤ d‖p‖∞.

Since the norms of the diagonal entries of (9) are bounded by ‖p‖∞, the desired
estimate follows from the triangle inequality. 
�
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Appendix: Besov spaces

In this appendix, we collect a few results about Besov spaces of analytic functions.
Results of this type are in principle well known, see for instance [27, Section 3.1],
[30, Section 2] for analytic Besov spaces and [29, 39] for more general Besov spaces.
However, we require vector-valued and weighted versions of the standard results, for
which we do not have a reference. Thus, we provide the proofs.

We will make use of several integral kernels on T. For integers n ≥ 1, the Fejér
kernel Fn is the real-valued trigonometric polynomial whose Fourier coefficients are
the triangular-shaped function supported in (−n, n) that is 1 at 0 and affine on [−n, 0]
and on [0, n]. Explicitly

Fn(z) =
∑

| j |≤n

(
1 − | j |

n

)
z j .

Next, for integers 0 ≤ k < l ≤ m < n, the de la Vallée-Poussin-type kernel Vk,l,m,n

is defined to be the real-valued trigonometric polynomial whose non-negative Fourier
coefficients are the trapezoid-shaped function supported in (k, n) that is identically 1
on [l,m] and affine on [k, l] and [m, n]. Explicitly,

Vk,l,m,n(z) =
∑

k≤| j |<l

| j | − k

l − k
z j +

∑

l≤| j |≤m

z j +
∑

m<| j |≤n

n − | j |
n − m

z j .

Finally, we will also use closely related holomorphic kernelsWn , defined by demand-
ing the Fourier coefficients of Wn are the triangular-shaped function supported in
(2n−1, 2n+1) that takes the value 1 at 2n and is affine on [2n−1, 2n] and [2n, 2n+1].
Explicitly,

Wn(z) =
2n∑

j=2n−1

( j

2n−1 − 1
)
z j +

2n+1
∑

j=2n+1

(
2 − j

2n

)
z j .

We also set W0(z) = 1 + z.
We recall the following standard and well-known estimates for these kernels.

Lemma A.1 For all integers 0 ≤ k < l ≤ m < n, the following estimate holds:

‖Vk,l,m,n‖L1 ≤ n + m

n − m
+ l + k

l − k
.

Moreover, for all integers n ≥ 0,

‖Wn‖L1 ≤ 3

2
.

Proof It is well known that the Fejér kernel satisfies the estimate ‖Fn‖L1 ≤ 1. Let

Gm,n = n

n − m
Fn − m

n − m
Fm .
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Then the Fourier coefficients of Gm,n are the trapezoid-shaped function supported in
(−n, n) that is identically 1 on [−m,m] and affine on [−n,−m] and [m, n]. Thus,

Vk,l,m,n = Gm,n − Gk,l ,

so the estimate for Vk,l,m,n follows from the triangle inequality.
Similarly,Wn = z2

n
F2n−1 + 1

2 z
3·2n−1

F2n−1 for n ≥ 1, which yields the estimate for
Wn ; the case n = 0 is an elementary computation. 
�

Let X be a Banach space. Given a holomorphic function f : D → X , we write
‖ f ‖∞ = supz∈D ‖ f (z)‖X , fr (z) = f (r z) and f ′

r (z) = f ′(r z). We also write the
Taylor series of f as

f (z) =
∞∑

n=0

f̂ (n)zn,

where f̂ (n) ∈ X .
We require the following standard inequalities, which include versions of Bern-

stein’s inequality; see for instance [19, Section I.8] and [33].

Lemma A.2 Let X be a Banach space and let f : D → X be holomorphic. Let n ∈ N

and 0 < r < 1.

(a) If supp f̂ ⊂ [0, n], then ‖ f ‖∞ ≤ r−n‖ fr‖∞ and ‖ f ′‖∞ � n‖ f ‖∞.
(b) If supp f̂ ⊂ [n,∞], then ‖ fr‖∞ ≤ rn‖ f ‖∞ and n‖ f ‖∞ � ‖ f ′‖∞.

Proof By composing f with continuous linear functionals on X , it suffices to consider
the case X = C.

(a) The first inequality follows from the maximum principle, applied to the function
w �→ wn f ( z

w
) on the circle of radius 1

r . The second inequality (with constant 1) is
Bernstein’s inequality. With a worse constant, it also follows from the first inequality,
applied to f ′, and the Schwarz–Pick lemma by choosing r = 1 − 1

n .
(b) Write f = zng. Then ‖ fr‖∞ ≤ rn‖g‖∞ = rn‖ f ‖∞, which is the first inequal-

ity. The second inequality is a special case of the reverse Bernstein inequality. It also
can be seen from the first inequality as follows. Let n ≥ 1, so f (0) = 0. We have

f (z) = f (0) +
∫ 1

0
f ′(r z)z dr ,

so

‖ f ‖∞ ≤
∫ 1

0
‖ f ′

r‖∞ dr ≤ ‖ f ′‖∞
∫ 1

0
rn−1 dr = 1

n
‖ f ′‖∞.


�
We also require the following basic asymptotic relation.

Lemma A.3 Let a ≥ 0. Then for all N ∈ N, N ≥ 1,

N
∫ 1

0
r N

(
log

( 1

1 − r

))a
dr �a (log(N + 1))a .
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Proof Lower bound: By monotonicity, we have

N
∫ 1

0
r N

(
log

( 1

1 − r

))a
dr ≥ N

∫ 1

1− 1
N

r N
(
log

( 1

1 − r

))a
dr

≥
(
1 − 1

N

)N
(log(N ))a

� (log(N ))a .

Upper bound:We break up the domain of integration into two intervals, namely [0, 1−
1
N ] and [1 − 1

N , 1]. For the first integral, we estimate

N
∫ 1− 1

N

0
r N

(
log

( 1

1 − r

))a
dr ≤ N

∫ 1− 1
N

0
r N (log(N ))a dr ≤ (log(N ))a .

For the second integral, we use the substitution s = N (r − 1) + 1 to compute

N
∫ 1

1− 1
N

r N
(
log

( 1

1 − r

))a
dr ≤ N

∫ 1

1− 1
N

(
log

( 1

1 − r

))a
dr

=
∫ 1

0

(
log

( N

1 − s

))a
ds

�a (log(N ))a +
∫ 1

0

(
log

( 1

1 − s

))a
ds.

The second summand is a constant only depending on a, which gives the upper bound.

�

If f : D → X is holomorphic with Taylor series f (z) = ∑∞
k=0 f̂ (k)zn , where

f̂ (k) ∈ X , define

( f ∗ Wn)(z) =
∞∑

k=0

f̂ (k)Ŵn(k)z
k,

which is in fact a finite sum. Since
∑∞

n=0 Ŵn(k) = 1 for all k, it is easy to check that

∞∑

n=0

f ∗ Wn = f ,

where the convergence is uniform on compact subsets of D. We also write (R f )(z) =
z f ′(z).

We can now establish a dyadic description of a Besov-type norm.

Proposition A.4 Let a ≥ 0 and f : D → X be holomorphic. Then

‖ f (0)‖ +
∫ 1

0
‖ f ′

r‖∞
(
log

( 1

1 − r

))a
dr
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� ‖ f (0)‖ +
∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr

�a

∞∑

n=0

(n + 1)a‖ f ∗ Wn‖∞.

Proof Note that ‖(R f )r‖∞ = r‖ f ′
r‖∞, and that ‖ f ′

r‖∞ is increasing in r by the
maximum principle. So the integrals over [0, 1] are comparable to the respective
integrals over [ 12 , 1]. Hence the first two quantities are comparable.

Next, we obtain an upper bound for the second quantity in terms of the third. It is
clear that ‖ f (0)‖ ≤ ‖ f ∗ W0‖∞. By monotone convergence, we have

∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr ≤

∞∑

n=0

∫ 1

0
‖(R f )r ∗ Wn‖∞

(
log

( 1

1 − r

))a
dr .

Applying Lemma A.2 (b) and then (a), we find that for n ≥ 1,

‖(R f )r ∗ Wn‖∞ ≤ r2
n−1‖(R f ) ∗ Wn‖∞ � r2

n−1
2n+1‖ f ∗ Wn‖∞.

Integration and Lemma A.3 yield

∫ 1

0
‖(R f )r ∗ Wn‖∞

(
log

( 1

1 − r

))a
dr

� 2n+1
∫ 1

0
r2

n−1
(
log

( 1

1 − r

))a
dr‖ f ∗ Wn‖∞

�a (n + 1)a‖ f ∗ Wn‖∞,

which is also valid for n = 0. Thus,

∫ 1

0
‖(R f )r‖∞ dr �

∞∑

n=0

(n + 1)a‖ f ∗ Wn‖∞.

For the lower bound, we use the fact that ‖g ∗Wn‖∞ ≤ 3
2‖g‖∞ as ‖Wn‖L1 ≤ 3

2 to
obtain

∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr

≥
∞∑

n=1

∫ 1−2−n−1

1−2−n
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr

�
∞∑

n=1

∫ 1−2−n−1

1−2−n
‖(R f )r ∗ Wn‖∞

(
log

( 1

1 − r

))a
dr .
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Using Lemma A.2 (a) and then (b), we estimate

‖(R f )r ∗ Wn‖∞ ≥ r2
n+1‖(R f ) ∗ Wn‖∞ � r2

n+1
2n−1‖ f ∗ Wn‖∞

for n ≥ 1. It follows that

∫ 1−2−n−1

1−2−n
‖(R f )r ∗ Wn‖∞

(
log

( 1

1 − r

))a
dr

� ‖ f ∗ Wn‖∞2n−1
∫ 1−2−n−1

1−2−n
r2

n+1
(
log

( 1

1 − r

))a
dr

�a ‖ f ∗ Wn‖∞ na .

Here, the last estimate is obtained by bounding below the integrand by a constant.
Hence,

∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr �a

∞∑

n=1

(n + 1)a‖ f ∗ Wn‖∞.

To deal with the summand for n = 0, we use a simple integration and the maximum
principle to see that

‖ f ‖∞ ≤ ‖ f (0)‖ +
∫ 1

0
‖ f ′

r‖∞ dr � ‖ f (0)‖ +
∫ 1

1− 1
e

‖(R f )r‖∞ dr

≤ ‖ f (0)‖ +
∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr .

Since ‖ f ∗ W0‖∞ � ‖ f ‖∞, the result follows. 
�
If f : D

d → C is holomorphic, we let (R f )(z) = ∑d
j=1 z j

∂ f
∂z j

be the radial
derivative. We also set

( f ∗ Wn)(z) =
∑

α

f̂ (α)Wn(|α|)zα.

Corollary A.5 Let a ≥ 0 and f : Dd → C be holomorphic. Then

| f (0)| +
∫ 1

0
‖(R f )r‖∞

(
log

( 1

1 − r

))a
dr �a

∞∑

n=0

(n + 1)a‖ f ∗ Wn‖∞.

Proof Define g : D → C(Td) by

g(w)(z) = f (wz) (z ∈ T
d , w ∈ D).
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It is easy to check that g is weakly holomorphic, hence holomorphic. Thus, it follows
from Proposition A.4 that

‖g(0)‖ +
∫ 1

0
‖(Rg)r‖∞

(
log

( 1

1 − r

))a
dr �a

∞∑

n=0

(n + 1)a‖g ∗ Wn‖∞.

It remains to compute both sides. Clearly, ‖g(0)‖ = | f (0)|. Moreover,

(Rg)(w)(z) = w
d

dw
f (wz) = w

d∑

j=1

z j
∂ f

∂z j
(wz) = (R f )(wz),

so
‖(Rg)r‖∞ = sup

w∈D
sup
z∈Td

|(Rg)(rw)(z)| = sup
z∈Dd

|(R f )(r z)| = ‖(R f )r‖∞.

On the other hand,

g(w)(z) =
∑

α

f̂ (α)(wz)α =
∞∑

k=0

∑

|α|=k

f̂ (α)zαwk

so

(g ∗ Wn)(w)(z) =
∞∑

k=0

∑

|α|=k

f̂ (α)Ŵn(k)(zw)α = ( f ∗ Wn)(zw)

and thus
‖g ∗ Wn‖∞ = ‖ f ∗ Wn‖∞.

This completes the proof. 
�
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