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Abstract
We give a complete classification of symplectic birational involutions of manifolds of OG10
type. We approach this classification with three techniques—via involutions of the Leech
lattice, via involutions of cubic fourfolds, and finally lattice enumeration via a modified
Kneser’s neighbour algorithm. The classification consists of three involutions with an explicit
geometric realisation via cubic fourfolds, and three exceptional involutions which cannot be
obtained by any known construction.

Keywords Hyperkähler manifolds · Cubic fourfold · Symplectic involutions · Birational
transformations

Mathematics Subject Classification 14J42 · 14E07 · 14J70 · 14J50

1 Introduction

The classification of symplectic automorphisms of irreducible holomorphic symplectic man-
ifolds has been widely studied. In his celebrated paper [34], Mukai classified symplectic
automorphisms of a K3 surface. This was further streamlined by Kondō [21], who related
automorphisms of K3 surfaces to automorphisms of the Niemeier lattices. In recent years,
there has been intense work on classifying symplectic automorphisms of higher dimensional
irreducible holomorphic symplectic manifolds. Using a similar approach to Kondō, Mon-
gardi obtained a classification of prime order symplectic automorphisms of manifolds of
K3[n] type [31, 32]. Similar results were obtained by Huybrechts [17]. A classification of
symplectic automorphisms of manifolds of OG6 type was obtained in [15]. In contrast, man-
ifolds of OG10 type admit no regular symplectic automorphisms, as shown recently in [14].
For a K3 surface, the group of automorphisms and the group of birational transformations
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Table 1 Classification of birational involutions of manifolds of OG10 type

�+ �− rank(�−) Action on A� Geo.

(1) U3 ⊕ D3
4(−1) E6(−2) 6 Nontrivial Yes

(2) U3 ⊕ A2(−1) ⊕ E8(−2) E8(−2) 8 Trivial Yes

(3) U2 ⊕ A1 ⊕ A1(−1) ⊕ E8(−2) M(−1) 10 Nontrivial Yes

(4) U2(2) ⊕ A1 ⊕ A1(−1) ⊕ E6(−2) D+
12(−2) 12 Trivial No

(5) 〈2〉3 ⊕ 〈−2〉9 G12 12 Nontrivial No

(6) 〈2〉3 ⊕ 〈−2〉5 G16 16 Nontrivial No

coincide; in higher dimensions this is no longer the case. One can consider instead the group
of symplectic birational transformations of an irreducible holomorphic symplectic manifold.

In this paper, we investigate symplectic birational involutions of manifolds deformation
equivalent toO’Grady’s ten dimensional exceptional example (OG10 type) [38]. Our interest
is motivated by our desire to study the fixed loci; each irreducible component inherits an
induced holomorphic symplectic structure. In the case of involutions, the associated moduli
space of OG10 manifolds with an involution of a given type is a type IV period domain. In
this way we obtain variations of Hodge structures of K3 type. This does not occur for higher
order cyclic groups (see [23, 49]).

Let X be a manifold of OG10 type, and let f ∈ Bir(X) be a symplectic birational
involution. We obtain an induced involution on the second cohomology � := H2(X , Z),

determining two lattices�+, �−, the invariant and the coinvariant lattices respectively. Vice
versa, specifying such lattices (subject to certain lattice theoretic conditions) determines a
symplectic birational transformation of some manifold of OG10 type via the Global Torelli
Theorem (Theorem 2.4). Our main theorem is a classification of symplectic birational invo-
lutions of manifolds of OG10 type. We classify them by distinguishing their induced action
on the discriminant group A� := �∗/�. In the column labelled Geo. of Table 1, we indicate
whether we can geometrically realise the involution via known constructions of OG10 type
manifolds.

Theorem 1.1 Let X be a manifold of OG10 type, f ∈ Bir(X) a symplectic birational
involution. Then the induced action ι on � := H2(X , Z) is determined by one of the cases (1)–
(6) below.

Here M is the unique index two overlattice of D9(2) ⊕ 〈24〉 (see [27] for an explicit
description).

Moreover, each involution of � listed above is unique up to conjugacy in O(�), and there
exists a manifold of OG10 type with a birational involution inducing such an isometry.

The proof of Theorem 1.1 is divided into three cases (Theorems 3.1 , 4.1, and 6.1). First, in
Theorem3.1, we classify symplectic birational involutions acting trivially on the discriminant
group by using the same techniques of [17, 32]; we relate these involutions to involutions of
the Leech lattice. This recovers the Nikulin type involution with coinvariant lattice E8(−2),
and more interestingly, we obtain an involution with coinvariant lattice D+

12(−2) that cannot
be realised in the case of K3 surfaces. Thus we obtain the involutions labelled (2) and (4) in
Table 1.

Secondly, in Theorem4.1, we classify symplectic birational involutions acting nontrivially
on the discriminant group whose coinvariant lattice has rank(�−) < 12. In this case, we

123



Classification of symplectic birational involutions… Page 3 of 26 65

reduce the classification to the classification of involutions of cubic fourfolds.More precisely,
under the rank assumption such an involution induces an involution on a smaller lattice, which
can be identified with the primitive middle cohomology of some cubic fourfold via the Torelli
theorem of Voisin [47]. The coinvariant lattice �− can then be identified with the invariant
lattice of an antisymplectic involution of the cubic fourfold, which have been classified (see
[23, 27]). The only possibilities are the involutions labelled (1) and (3) in Table 1.

Thirdly, in Theorem 6.1, we classify symplectic birational involutions that act nontrivially
on the discriminant group, with rank(�−) ≥ 12. With this hypothesis, it is fairly easy to
identify the possible lattices �+; however, the corresponding lattices �− are not unique in
their genera. There are 12 possible genera for �−; we first enumerate the possible lattices in
each genus, and then exclude all but two possibilities, obtaining the involutions labelled (5)
and (6) in Table 1. The results of this enumeration are displayed in Table 2. We accomplish
this enumeration using a modification of Kneser’s neighbour method [20]; this is computer
aided (seeAppendixA formore details). Our enumeration results can be found in the database
[29].

In all three cases, we obtain involutions ι of the lattice � acting as in cases (1)–(6). We
conclude that there exists amanifold X of type OG10with a birational involution f ∈ Bir(X)

inducing ι using a corollary of the Torelli Theorem (Theorem 2.4). However, we are able to
geometrically realise the involutions in cases (1)–(3) through known constructions, using the
construction of [24]. More precisely, using the observation of Saccà [42, §3.1] (see also [23]),
an involution of a cubic fourfold induces a birational transformation of the corresponding
compactified intermediate Jacobian X , a manifold of OG10 type by [24, 42], giving a
geometric realisation of the involutions in cases (1)–(3).

Table 2 Genus enumeration and geometric cases of Theorem 6.1

Case genus N with roots without roots, geometric cases
but with (−6, 3)

(1) II(0,18)2
+6
II 3+1 430 430 0 None

(2) II(0,14)2
−8
II 3+1 21 21 0 None

II(0,12)2
−12
2 3+1 5 4 0 1: G12

II(0,13)2
−11
1 3+1 23 22 1 None

II(0,14)2
−10
0 3+1 70 70 0 None

II(0,15)2
−9
7 3+1 211 211 0 None

(3) II(0,16)2
−8
6 3+1 617 616 0 1: G16

II(0,17)2
−7
5 3+1 1291 1291 0 None

II(0,18)2
−6
4 3+1 2524 2524 0 None

II(0,19)2
−5
3 3+1 3682 3682 0 None

II(0,20)2
−4
2 3+1 3375 3375 0 None

II(0,21)2
−3
1 3+1 1316 1316 0 None
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Outline

We recall the relevant definitions and previous results in Sect. 2. In Sect. 3 we consider sym-
plectic birational involutions acting trivially on the discriminant group of � (Theorem 3.1),
and obtain the involutions (2) and (4). In Sect. 4, we obtain a classification of symplec-
tic birational involutions that act nontrivially on the discriminant group of � and satisfy
rank(�−) < 12 (Theorem 4.1), and obtain the involutions (1) and (3). In Sect. 5 we geo-
metrically realise the involutions (1)–(3) via the construction of [24]. In Sect. 6, we obtain
a classification of symplectic birational involutions acting nontrivially on the discriminant
group of � but have rank(�−) ≥ 12 (Theorem 6.1), and obtain the involutions (5) and (6).
This concludes the proof of Theorem 1.1. Details of the enumeration algorithm required for
the proof of Theorem 6.1 can be found in Appendix A.

Notations

Throughout, all lattices are assumed to be integral and even unless stated otherwise. Let L
be a lattice and ι ∈ O(L) an isometry of order 2. We denote by L+ and L− the invariant and
coinvariant lattices defined by ι respectively. For any lattice L, we denote by L(n) the lattice
with the bilinear form scaled by n ∈ Z�=0. The discriminant group of a lattice is denoted
by AL = L∗/L. We denote by divL(v) = max{λ ∈ Z | v · L ⊂ λZ} the divisibility of
an element v ∈ L. We assume all ADE lattices are positive definite. We denote by L the
Leech lattice, which is the unique even negative definite unimodular lattice without roots. A
2-elementary lattice L is determined by its signature, and the invariants δL and l(AL). Here
δL ∈ {0, 1} with δL = 0 if and only if qAL takes values in Z/2Z, and l(AL) is the minimum
number of generators of AL .

2 Preliminaries

In this section we collect preliminary results. In Sect. 2.1 we recall the definition of manifolds
of OG10 type. In Sect. 2.2, we recall a criteria for when an isometry of the lattice� is induced
by a birational involution, based on the Torelli theorem. In Sect. 2.3 we give further necessary
conditions on the existence of induced isometry depending on the action on the discriminant
group of �. We recall the relevant results on cubic fourfolds and the construction of [24, 42]
in Sect. 2.4.

2.1 Manifolds ofOG10 type

An irreducible holomorphic symplectic manifold is a simply connected, compact, Kähler
manifold X such that H0(X ,�2

X ) is generated by a nondegenerate holomorphic 2-form σ.

Let X be an irreducible holomorphic symplectic manifold that is deformation equivalent to
O’Grady’s 10-dimensional exceptional example [38]. Then we say X is a manifold of OG10
type.

It follows from the definition of irreducible holomorphic symplectic manifolds that
H2(X , Z) is a torsion-free Z-module; equipped with the Beauville–Bogomolov–Fujiki form
qX it becomes a lattice. By [41], for X a manifold of OG10 type there is an isometry
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(H2(X , Z), qX ) ∼= �, where

� := U 3 ⊕ E8(−1)2 ⊕ A2(−1).

A marking is a choice of an isometry η : H2(X , Z) → �. The purpose of this paper is to
classify symplectic birational involutions of manifolds X of OG10 type, in terms of their
action on H2(X , Z) ∼= �. We always assume that a manifold of OG10 type has a fixed
marking η throughout.

2.2 Torelli theorem

We denote by Bir(X) the group of birational transformations of X respectively. For an
irreducible holomorphic symplectic manifold X , a birational transformation f ∈ Bir(X) is
well defined in codimension one. We thus obtain an isometry f ∗ : H2(X , Z) → H2(X , Z).

Definition 2.1 We say a birational transformation f ∈ Bir(X) is symplectic if the induced
action f ∗ : H2(X , C) → H2(X , C) acts trivially on σ.

Assume now that X is a manifold of OG10 type, and consider the associated orthogonal
representation

η∗ : Bir(X) → O(�); f �→ η ◦ ( f ∗)−1 ◦ η−1.

Note that η∗ is injective by [35, Theorem 3.1].

Definition 2.2 An isometry g ∈ O(�) is induced by a birational transformation if there
exists a manifold X of OG10 type and f ∈ Bir(X) such that η∗( f ) = g.

A birational transformation of X preserves the birational Kähler cone BK(X). This in
turn imposes restrictions on which involutions of the lattice � are induced by birational
involutions of such a manifold X . The structure of the birational Kähler cone for a manifold
of OG10 type is now fully understood [30].

In particular, the walls of BK(X) are defined by the hyperplanes D⊥ ⊂ C(X), where D
is a stably prime exceptional divisor [26, §5], and C(X) denotes the connected component
of the positive cone of X containing a Kähler class. We define the following set of vectors:

W pex
OG10 := {v ∈ � : v2 = −2} ∪ {v ∈ � : v2 = −6, div�(v) = 3}.

Proposition 2.3 [30, Proposition 3.1] Let (X , η) be a marked manifold of OG10 type. Then
D ∈ Pic(X) effective is stably prime exceptional if and only if η(D) ∈ W pex

OG10.

It follows that BK(X) is contained in an exceptional chamber; that is, a component of

C(X)\
⋃

v∈W pex
OG10

v⊥

(see [30, Theorem 3.2]). Using this description, we can rephrase the Global Torelli theorem
(due to Huybrechts, Markman and Verbitsky) in a way that is more suited for the study
of symplectic birational transformations of X . This provides us with criteria for when an
isometry g ∈ O(�) is induced.

Theorem 2.4 [15, Theorems 2.15 and 2.17] An involution g ∈ O(�) is induced by a sym-
plectic birational transformation if and only if �− is negative definite and

�− ∩ W pex
OG10 = ∅.
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Proof Although stated for manifolds of OG6 type, the proof of [15, Theorems 2.15 and 2.17]
apply verbatim in the case of OG10 manifolds. ��
Remark 2.5 All birational symplectic transformations of a manifold of OG10 type are
nonregular—indeed, by [14], a manifold of OG10 type has no nontrivial symplectic auto-
morphisms of finite order.

2.3 Discriminant action

In order to classify symplectic birational involutions of manifolds of OG10 type, we consider
two cases corresponding to the induced action of ι ∈ O(�) on the discriminant group

A� := �∗/� ∼= Z/3Z.

It follows that an involution acts by ι|A� = ±idA�.

Remark 2.6 Note that A� = AA2(−1); let A2(−1) be generated by α1, α2 where α2
i = −2,

and α1 · α2 = 1. Then AA2(−1) ∼= Z/3Z is generated by

γ :=
[
2α1 + α2

3

]

and qA2(−1)(γ ) = − 2
3 + 2Z.

Proposition 2.7 Let X be a manifold of OG10 type, let f ∈ Bir(X) be a symplectic birational
involution, and let ι = η∗( f ) ∈ O(�) the induced isometry of f . Then �− is a negative
definite lattice of rank r ≤ 21, with �− ∩ W pex

OG10 = ∅, and the following hold:
(1) If ι acts trivially on A�, then �− is a 2-elementary, negative definite lattice whose genus

is determined by the invariants (r , l(A�−), δ�−).

(2) If ι acts by −id on A�, then �+ is a 2-elementary lattice with signature (3, 21 − r).

Proof The negative definiteness and the claim that �− ∩ W pex
OG10 = ∅ follows from Theo-

rem 2.4. Claim (1) follows by [15, Lemma 2.8]; for claim (2) consider ι′ := −ι; it follows
that �+ is 2-elementary. ��

2.4 Cubic fourfolds

Cubic fourfolds lead to irreducible holomorphic symplectic manifolds through various con-
structions, and one can study birational transformations induced by automorphisms of the
cubic. This was first studied by Camere [6] in her work on symplectic involutions of the Fano
variety of lines, an irreducible holomorphic symplectic variety [3].

We use this idea for manifolds of OG10 type. Let V ⊂ P
5 be a smooth cubic fourfold, and

let πU : JU → U ⊂ (P5)∨ be the Donagi–Markman fibration; i.e the family of intermediate
Jacobians of the smooth hyperplane sections of V . The total space JU has a holomorphic
symplectic form, by [10]. The main result of [24] is the construction, for a general V , of
a smooth projective irreducible holomorphic symplectic compactification JV of JU , with a
Lagrangian fibration π : JV → (P5)∨ extending πU . It was shown that JV is an irreducible
holomorphic symplectic manifold of OG10 type. This result was extended to every smooth
cubic fourfold [42], to obtain the following theorem.
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Theorem 2.8 [24, 42] Let V ⊂ P
5 be a smooth cubic fourfold, and let πU : JU → U ⊂

(P5)∨ be the Donagi–Markman fibration. Then there exists a smooth projective irreducible
symplectic compactification JV of JU of OG10 type with a morphism π : JV → (P5)∨
extending πU .

We note that the same result holds for the irreducible holomorphic symplectic compacti-
fication J T

V of the nontrivial JU -torsor J T
U → U of [48].

Recall that the primitive cohomology H4(V , Z)prim admits a Hodge structure of K3-type
(up to a Tate twist). In particular, as a lattice

H4(V , Z)prim ∼= U 2 ⊕ E2
8 ⊕ A2.

We define the lattice of primitive algebraic cycles

A(V )prim := H2,2(X) ∩ H4(X , Z)prim .

The main result of [27] (see also [23]) is a classification of involutions of a smooth cubic
fourfold in terms of the sublattice A(V )prim .

Theorem 2.9 [27, Theorem 1.1] Let V ⊂ P
5 be a general cubic fourfold with φi an involution

of V fixing a linear subspace of P
5 of codimension i . Then either:

(1) i = 1, φ1 is antisymplectic and A(V )prim ∼= E6(2);
(2) i = 2, φ2 is symplectic and A(V )prim ∼= E8(2);
(3) i = 3, φ3 is antisymplectic and A(V )prim ∼= M .

Here M is the unique rank 10 even lattice obtained as an index 2 overlattice of D9(2)⊕〈24〉.

3 Trivial action on the discriminant group

Throughout, we let X be a manifold of OG10 type, and � ∼= H2(X , Z). We prove the
following:

Theorem 3.1 Let X be a manifold of OG10 type, and f ∈ Bir(X) be a symplectic birational
involution. Suppose that ι := η∗( f ) acts trivially on the discriminant group A�. Then one
of the following holds:
(1) �− ∼= E8(−2) and �+ ∼= U 3 ⊕ E8(−2) ⊕ A2(−1); or
(2) �− ∼= D+

12(−2) and �+ ∼= U 2(2) ⊕ A1 ⊕ A1(−1) ⊕ E6(−2).

Moreover, each involution of � listed above is unique up to conjugacy in O(�), and there
exists a manifold of OG10 type with a birational involution inducing such an isometry.

The strategy to prove Theorem 3.1 is as follows: we first consider arithmetic involutions
ι ∈ O(�) such that ι acts trivially on A�, and �− is negative definite. In Sect. 3.1 we
use techniques of Kondō and Mongardi to embed the coinvariant lattice �− into the Leech
lattice L. We extend the involution ι to one of the Leech lattice L, and use the classification
of involutions [16] to obtain three candidates. In Sect. 3.2 we prove Theorem 3.1 by case-
by-case analysis. More precisely, we show that only E8(−2) and D+

12(−2) are realised as
coinvariant lattices �− for an involution of �. We then show �− ∩ W pex

OG10 = ∅, and
conclude by Theorem 2.4 that such an involution ι is induced by a geometric symplectic
birational involution f ∈ Bir(X) of a manifold X of OG10 type. This completes the proof
of Theorem 3.1, and cases (2) and (4) of Theorem 1.1.
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3.1 The Leech lattice

We reduce the classification of involutions ι ∈ O(�) acting trivially on A� to a classification
of involutions of the Leech lattice L.

Proposition 3.2 Let ι ∈ O(�) be an involution acting trivially on A� such that �− is
negative definite and such that �− ∩ W pex

OG10 = ∅. Then there exists a primitive embedding
of �− into the Leech lattice L. Further, there exists an involution of the Leech lattice L such
that L− ∼= �−.

Proof By assumption, we know that �− is negative definite, it contains no vectors v such
that v2 = −2 and it has rank at most 21 (since � has real signature (3, 21)). Since �− is the
coinvariant lattice of ι, which acts trivially on A�, we also know that �− is 2-elementary,
the isometry ι|�− = −id�− fixes no nontrivial vectors in �− and it acts trivially on A�− .

Moreover

gcd(|A�|, |A�−|) = 1

so a direct application of [36, Proposition 1.15.1] gives us that

rank�− + l(A�−) ≤ rank�− + l(A�+) ≤ rank�− + rank�+ = rank� = 24.

Hence under these conditions, similar results as in [28, Corollary 4.19] hold; meaning that
there exists a primitive embedding j : �− ↪→ L, and −id�− extends to an involution of L

so that L− = j(�−) (up to replacing O#(��−) by 〈−id�−〉 in the proof of [28, Corollary
4.19]). ��

The nontrivial involutions ι ∈ O(L) are classified:

Proposition 3.3 [16, Table 1] There exist exactly three conjugacy classes of nontrivial invo-
lutions of the Leech lattice L. They are classified by specifying their invariant/coinvariant
lattices:
(1) L− ∼= E8(−2) and L+ ∼= BW16;
(2) L− ∼= D+

12(−2) and L+ ∼= D+
12(−2); or

(3) L− ∼= BW16 and L+ ∼= E8(−2).

We have three possible candidates for �− as above. It remains to be seen whether there
exists an involution ι ∈ O(�)whose coinvariant lattice is the given candidate. We show such
an involution exists provided there exists a primitive embedding of each candidate into �.

Lemma 3.4 Let M be a 2-elementary lattice with a primitive embedding M ↪→ L into a
lattice L and let

N := (M)⊥L . Then there exists an involution ι ∈ O(L) such that the coinvariant lattice
L− = M and the invariant lattice L+ = N .

Proof By assumption we have that

M ⊕ N ↪→ L ↪→ L ⊗ Q ∼= (M ⊕ N ) ⊗ Q.

We can define ιQ : LQ → LQ by ι(x) = −x for x ∈ M, and ι(x) = x for x ∈ N . We
want to show that ιQ is defined over L. By assumption L/(M ⊕ N ) ∼= (Z/2Z)a, and thus
for all x ∈ L, we have that 2x ∈ M ⊕ N . Let x ∈ L. By above, we can write x = x−+x+

2 ,

with x− ∈ M, x+ ∈ N . Thus ιQ(x) = x mod M ⊕ N , and [ιQ(x)] = [x] in L/(M ⊕ N );
thus ιQ(x) ∈ L. ��
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It remains to be seen whether a primitive embedding exists in each of the cases in Propo-
sition 3.3. We require the following lemma:

Lemma 3.5 Let M be a 2-elementary, negative definite lattice of rank r with invariants
(r , a, δ), where a = l(AM ). Then there exists a primitive embedding M ↪→ � if and only if
there exists a lattice N of signature (3, 21 − r) satisfying the following properties:
(1) AN ∼= (Z/2Z)a ⊕ Z/3Z;
(2) qN |(Z/2Z)a ∼= −qM ;
(3) qN |Z/3Z ∼= q�.

We say δ := δN = 0 or 1 if and only if δM = 0 or 1. In this case, N ∼= (M)⊥�

Proof This follows immediately from [36, Prop 1.15.1]. ��

Theorem 3.6 Let M ∈ {E8(−2), D+
12(−2), BW16}. There exists an involution of � with

�− ∼= M if and only if M = E8(−2) or D+
12(−2). Moreover, such involution is unique up

to conjugacy in O(�).

Proof We show the existence of a primitive embedding into � in the case of M =
E8(−2), D+

12(−2), and prove the nonexistence of such an embedding in the case of
M = BW16.

First, consider the involution of � defined by interchanging the two copies of E8(−1),
and identity elsewhere. Then �− ∼= E8(−2) and thus E8(−2) embeds primitively into �

(see [33, §5] for more details).
Next, we show that D+

12(−2) embeds primitively into � by applying Lemma 3.5. Recall
that the lattice D+

12(−2) is an even, 2-elementary lattice with signature (0, 12), a = 12 and
δ = 1. We need to check whether or not the genus g of even lattices determined by the
signature pair (3, 9) and qA2(−1) ⊕ (−qD+

12(−2)) is empty. We use the function is_genus on
Hecke [13], and obtain that g is not empty and in particular, it contains the lattice

N := U 2(2) ⊕ A1 ⊕ A1(−1) ⊕ E6(−2).

The latter can be shown by computing the genus symbol of a grammatrix associated to N and
comparing it to the symbol of g (the genus symbol, in the convention of Conway and Sloane,
uniquely determines a genus, see [8, Chapter 15, §7] for more details). This is implemented
for instance on Hecke [13, genus].

Finally, we show that the Barnes–Wall lattice BW16 does not embed primitively into �.

Recall that BW16 is an even 2-elementary lattice of signature (0, 16), a = 8 and δ = 0.
By Lemma 3.5, a primitive embedding BW16 ↪→ � exists if and only if there exists an
even lattice N of signature (3, 5) and discriminant group AN ∼= (Z/2Z)8 ⊕ Z/3Z such that
qN |(Z/2Z)8 takes values in Z/2Z and qN |Z/3Z = qA2(−1). Similarly to the D+

12(−2) case, one
uses the function is_genus to determine that the genus of even lattices with invariants (3, 5)
and qN = qA2(−1) ⊕ (−qBW16) is empty and so we do not have a primitive embedding of
BW16 into �.

To conclude, we note that Lemma 3.5 tells us that the genus of the complement of
M = E8(−2), D+

12(−2) in � is uniquely determined. Moreover, according to [36, The-
orem 1.14.2], such a genus consists of a unique isometry class, and for any representative N
of such isometry class, we have that O(N ) → O(AN ) is surjective. Hence, by [36, Corollary
1.5.2], any two involutions of � with �+ ∼= N and �− ∼= M are conjugate in O(�). ��
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3.2 Proof of Theorem 3.1

We have exhibited involutions ι ∈ O(�) acting trivially on A� with�− isomorphic to either
E8(−2) or D+

12(−2). In order to conclude that both involutions are induced by symplectic
birational involutions of a manifold X of OG10 type we must show that neither contain
vectors v with v2 = −2, or v2 = −6 and div�(v) = 3.

Lemma 3.7 Let ι ∈ O(�) be an involution and suppose that �− contains a vector v with
v2 = −6 and div�(v) = 3. Then A�− contains an element of order 3.

Proof Let v ∈ �− be such that v2 = −6 and div�(v) = 3. Then 3 divides the divisibility of
v in �−. We can write div�−(v) = 3k for some positive integer k. Then [v∗] = [

v
3k

]
defines

a nonzero element of A�−; in particular, kv∗ is a nontrivial element of order 3. ��
Proof of Theorem 3.1 The discriminant group of both E8(−2) and D+

12(−2) contains no ele-
ments of order three; by Lemma 3.7 primitive vectors v ∈ �− with v2 = −6 and div�(v) = 3
cannot exist. The maximal norm of both lattices is −4, and so they do not contain any roots.
Thus in both cases �− is a negative definite lattice with �− ∩ W pex

OG10 = ∅; we have
also shown these are the only possible negative definite coinvariant lattices for an involution
ι ∈ O(�) acting trivially on the discriminant group A�. By Theorem 2.4 each such invo-
lutions is induced by a symplectic birational involution of a manifold of OG10 type. The
classification of the corresponding invariant lattices follow from the proof of Theorem 3.6.

Remark 3.8 In fact, the lattice D+
12(−2) embeds primitively into the Mukai lattice of a K3

surface, and so one also obtains a symplectic birational involution of a manifold of K3[2]
type with this coinvariant lattice (see [17], or [5, §7.5] for a different description).

4 Nontrivial action on discriminant, rank < 12

It remains to be seenwhether there exist birational involutions ofmanifolds of OG10 type that
act nontrivially on the discriminant group. In this section,we prove that this is indeed possible,
and classify such involutions whose coinvariant lattice has small rank. More precisely, we
prove the following:

Theorem 4.1 Let X be a manifold of OG10 type, and f ∈ Bir(X) a symplectic birational
involution, such that the induced action ι := η∗( f ) is nontrivial on the discriminant group
A�. Assume further that

rank�− < 12.

Then one of the following holds:
(1) �− ∼= E6(−2) and �+ ∼= U 3 ⊕ D3

4(−1); or
(2) �− ∼= M(−1) and �+ ∼= U 2 ⊕ A1 ⊕ A1(−1) ⊕ E8(−2),

where M is the unique rank 10 lattice obtained as an index 2 overlattice of D9(2) ⊕ 〈24〉.
Moreover, each involution of � listed above is unique up to conjugacy in O(�), and there

exists a manifold of OG10 type with a birational involution inducing such an isometry.

We prove Theorem 4.1 as follows: in Sect. 4.1 we use Nikulin’s classification of 2-
elementary lattices to develop a criterion for the invariant lattice �+ to split a U summand,
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i.e. �+ = U ⊕ � for some lattice �. This is always satisfied under the assumption that
rank(�−) < 12. The latter allows us to classify such involutions in Sect. 4.2 by utilising
Theorem 2.9, on the classification of involutions of a cubic fourfold [23, 25, 27]. In particular,
in the case of nontrivial action on A�, the lattice �− occurs as an invariant lattice for an
antisymplectic involution on a cubic fourfold, leading to the possibilities above. Finally, we
show that Theorem 2.4 applies, completing the proof of Theorem 4.1, and cases (1) and (3)
of Theorem 1.1.

4.1 Splitting a U summand

Assume that f ∈ Bir(X) is a symplectic birational involution of a manifold X of OG10 type,
such that ι := η∗( f ) ∈ O(�) is an involution that acts by −id on A�. By Proposition 2.7,
�− is negative definite of rank 1 ≤ r ≤ 21, and �+ is a 2-elementary lattice of signature
(3, 21−r). In order to proveTheorem4.1,wefirst useNikulin’s classification of 2-elementary
lattices. We state the result only in the case that we require here.

Lemma 4.2 ([37, Theorems 4.3.1], [11, Theorem 1.5.2]) Let N be a 2-elementary lattice of
signature (3, 21− r), AN ∼= (Z/2Z)a and invariant δ := δN . Then N is unique in its genus,
and the following hold:
(1) a ≤ min{24 − r , r},
(2) a ≡ r mod 2,
(3) r ≡ 2 mod 4 if δ = 0,
(4) δ = 0, r ≡ 2 mod 8 if a = 0,
(5) r ≡ 3 mod 8 if a = 1,
(6) δ = 0 if a = 2, r ≡ 6 mod 8,
(7) r ≡ 2 mod 8 if δ = 0, a = 24 − r .

Applying the above lemma, we establish a numerical criteria for�+ to split aU summand.

Lemma 4.3 Let r = rank�−, a, δ as above. Then �+ splits of a U summand if and only if:
(1) r ≤ 20, and a ≤ 22 − r;
(2) If a = 22 − r and δ = 0, then r ≡ 2 mod 8.

Proof Assume �+ splits of a U summand, i.e �+ ∼= N ⊕ U . Applying Nikulin’s classifi-
cation of 2-elementary lattices to the lattice N with invariants ((2, 20− r), a, δ), we see the
above conditions are necessary for the existence of such a lattice N . Conversely, assume the
conditions in the theorem hold. Then again by the classification, there exists a 2-elementary
lattice N with invariants ((2, 20− r), a, δ). Then N ⊕U has the same invariants as �+, and
thus are in the same genus. Since �+ is indefinite, it is unique and the claim holds. ��

4.2 Proof of Theorem 4.1

The following lemma provides us with a simple way to determine when there exists a vector
v ∈ �− with v2 = −6 and div�(v) = 3, which is necessary for the proof of Theorem 4.1.

Lemma 4.4 Let L be a lattice such that AL ∼= Z/3Z and let ι ∈ O(L) be an involution acting
nontrivially on AL . Then for a vector v ∈ L− we have

divL(v) = 3 ⇐⇒ divL−(v) ∈ 3Z.
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Proof Let us denote M := L+ and N := L−. One implication is already clear from
Lemma 3.7. Now let v ∈ N primitive be such that divN (v) ∈ 3Z and let w ∈ L. Since
ι has order 2, we know that 2L ⊆ M ⊕ N . Thus there exist wM ∈ M and wN ∈ N such
that w = wM +wN

2 . Now, since M and N are in orthogonal direct sum in L, (v,wM ) = 0 and
moreover, (v,wN ) ∈ 3Z. But now, v ∈ N ⊆ L with L integral, so we have that

(
v,

wM + wN

2

)
= 1

2
(v,wN )

is an integer. Hence, (v,wN ) ∈ 2Z ∩ 3Z = 6Z, and we deduce that (v,w) ∈ 3Z. Hence,
since we chose w ∈ L arbitrary, we conclude that divL(v) = 3. ��

Weprove Theorem 4.1 by first proving that under the rank assumption,�+ splits aU sum-
mand, and then utilising the classification of involutions of a cubic fourfold in Theorem 2.9.
Finally, we apply Lemma 4.4 to conclude such an involution is induced geometrically.

Proof of Theorem 4.1 Let f ∈ Bir(X) be as in the assumptions of the statement, and denote
by ι := η∗( f ) ∈ O(�) the induced involution on �. We claim the conditions of Lemma 4.3
are satisfied—indeed, since r := rank(�−) < 12, and by assumption a ≤ r ≤ 22 − r we
only need to exclude the case a = r = 11 and δ = 0. For the 2-elementary lattice �+ with
invariants ((3, 21 − r), 22 − r , 0) to exist, by Lemma 4.2 (3) we see that r ≡ 2 mod 4, a
contradiction. It follows that conditions of Lemma 4.3 are always satisfied, and that there
exists a 2-elementary lattice � such that �+ ∼= � ⊕ U .

Let U1 := U be such that �+ = � ⊕ U1 ↪→ �. Denote by L = (U1)
⊥
�(−1); then L is an

even, indefinite lattice with signature (20, 2) and discriminant group AL ∼= Z/3Z ∼= AA2 .

By [36, Cor. 1.13.3], L is unique up to isometry; thus we see that

L ∼= U 2 ⊕ E2
8 ⊕ A2.

Since ι acts as the identity on � ⊕ U1, ι restricts to an isometry of L with

L+ ∼= �(−1) and L− ∼= �−(−1).

Note that �− is negative definite of rank r ≤ 20, and � has signature (2, 20 − r). We can
choose a polarized Hodge structure H of weight 4 on the lattice L, of type (0, 1, 20, 1, 0),
such that

H2,2 ∩ L = �−(−1).

Notice this implies H3,1 ⊂ L+. By assumption, �− ∩W pex
OG10 = ∅; in particular, according

to Lemma 4.4, we know that �− contains no vectors v such that v2 = −2 or v2 = −6
and div�−(v) = 3. This condition assures that the Hodge structure H defines a point in the
image of the period map for smooth cubic fourfolds by [22, Theorem 1.1]. It follows that
there exists a smooth cubic fourfold V and a marking γ : H4(V , Z)prim → L such that
γ (A(V )prim) = �−(−1). For simplicity, in what follows, we identify H4(V , Z)prim with
L via the marking γ.

Let ηV ∈ H4(V , Z) be the square of the hyperplane class. We wish to extend ι|L to an
isometry of H4(V , Z)fixing ηV .Wehave that L⊕〈ηV 〉 ⊂ H4(V , Z) is an index 3 overlattice;
in order to extend with the identity on 〈ηV 〉, ι|L must act trivially on AL ∼= Z/3Z ∼= A〈ηV 〉
[36, Corollary 1.5.2]. By assumption, ι|L acts by −id on AL . Set σ := −ι|L ; notice now that
for the action of σ on H4(V , Z)prim we have:

(H4(V , Z)prim)− = L+ ∼= �(−1), and (H4(V , Z)prim)+ = L− ∼= �−(−1).
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Now σ ⊕ id〈ηV 〉 defines an isometry of H4(V , Z) fixing ηV ; let us denote this by σV .

Thus σV ∈ AutH S(V , ηV ), and by the strong version of the Global Torelli theorem for
cubic fourfolds [50, Prop 1.3], there exists a unique automorphism φ ∈ Aut(V ) such that
σV = φ∗. Notice that σV acts nontrivially on H3,1; the involution φ is antisymplectic for the
cubic fourfold V , and by Theorem 2.9:

�− ∼= (H4(V , Z)prim(−1))+ =
{

E6(−2),

M(−1).

Finally, we prove existence of an OG10 manifold X admitting such an involution. In
both cases above, �− is negative definite. Since �−(−1) appears as an invariant lattice for
an involution of a smooth cubic fourfold (Theorem 2.9), it follows that �− ∩ W pex

OG10 = ∅

(Lemma 4.4). Hence by Theorem 2.4, the involution is induced geometrically by a symplectic
birational transformation f ∈ Bir(X) for somemanifold X of OG10 type. Furtherwe see that
such an involution ι necessarily acts by−id on the discriminant group A�; if ι acted trivially,
then �− would be 2-elementary, a contradiction by Proposition 2.7. The determination of
�+ in both cases follows.

Let us conclude by remarking that, as in the proof of Theorem 3.6, for both involutions of
the statement of Theorem 4.1 the lattice �+ is unique in its genus and O(�+) → O(A�+)

is surjective. Hence, again according to [36, Corollary 1.5.2], any involution of � with
(�+,�−) as in the statement of Theorem 4.1 is unique up to conjugacy in O(�).

Remark 4.5 It follows that if f ∈ Bir(X) is a symplectic birational involution with �+ =
U ⊕ � for some lattice �, then rank(�−) < 12. Indeed, one applies the same argument as
in Theorem 4.1 to obtain an involution of a cubic fourfold (see also Theorem 5.1). Thus to
conclude the proof of Theorem 1.1, it suffices to classify involutions with rank(�−) ≥ 12,
nontrivial action on A� and the assumption that�+ does not split aU summand.We complete
this classification in Sect. 6.

5 Geometrical realisations via cubic fourfold

In this section, we provide a geometrical realisation of the involutions (1)–(3) of Theorem 1.1,
Table 1. All of these examples are obtained via involutions of some cubic fourfolds—we show
that such involutions produce induced symplectic birational involutions of the associated
compactified intermediate Jacobian.

Theorem 5.1 Let X be an irreducible holomorphic symplectic manifold of OG10 type. Let
f ∈ Bir(X) be a symplectic birational involution of X , and suppose that H2(X , Z)+ ∼= �⊕U
for some lattice �. Then there exists a smooth cubic fourfold V with an involution φ whose
action is determined by f . In particular, one of the following holds:

H2(X , Z)− ∼=

⎧
⎪⎨

⎪⎩

E6(−2),

E8(−2),

M(−1).

Conversely, an involution φ of a smooth cubic fourfold V induces a symplectic birational
involution f on the compactified associated Intermediate Jacobian JV , that leaves a copy
of U invariant and whose action is determined by φ.
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Proof Denote by ι := η∗( f ) ∈ O(�) the induced involution on �. The existence of such a
smooth cubic fourfold in the case of nontrivial action on the discriminant group is contained in
the proof of Theorem 4.1. Thus we can assume ι acts trivially on the discriminant group A�.

The argument follows identically to that of Theorem 4.1 to obtain a smooth cubic fourfold
V with an involution ι of H4(V , Z)prim . We extend it to an involution of H4(V , Z) with the
identity on 〈ηV 〉, where ηV is the square of the hyperplane class. Again, the strong version
of the Global Torelli theorem for cubic fourfolds [50, Prop 1.3] implies that there exists a
unique φ ∈ Aut(V ) such that ι ⊕ id〈ηV 〉 = φ∗, with φ symplectic. By Theorem 2.9:

(H4(V , Z)prim)− ∼= E8(2)

(see also [25, Theorem 1.2 (1)]). Thus necessarily �− ∼= E8(−2).
Conversely, suppose we have an involution φ ∈ Aut(V ) of a smooth cubic fourfold

V ⊂ P
5; let σ be the induced involution on H4(V , Z)prim . By ([24], [42, Theorem 1.6]),

we can associate to V an irreducible holomorphic symplectic manifold JV of OG10 type,
with a Lagrangian fibration π : JV → P

5 that compactifies the intermediate Jacobian
fibration of V . Note that the compactification JV is not unique; the cubic fourfold V is a
special cubic fourfold containing either a plane or a cubic scroll [27], and so may have many
birational compactifications, as discussed in [42]. Let � denote the relative theta-divisor of
JV ; then the sublattice 〈�,π∗O(1)〉 is isomorphic to the hyperbolic lattice U [42, Lemma
3.5, communicated by K. Hulek, R. Laza].

To obtain an involution of JV , we follow [42, Sect. 3.1]. The automorphism φ ∈ Aut(V )

acts on the universal family of hyperplane sections of V , and thus on the Donagi–Markman
fibration JU → U , where U ⊂ (P5)∗ parametrises smooth hyperplane sections of V [42,
Section 3.1]. We thus obtain in this way a birational transformation f : JV ��� JV , that
leaves the sublattice 〈�,π∗O(1)〉 ∼= U invariant. If φ ∈ Aut(V ) is symplectic (i.e acts
trivially on H3,1(V )), then the induced birational involution f ∈ Bir(JV ) is symplectic, by
[42, Lemma 3.2]. If not, there exists a regular antisymplectic involution τ ∈ Aut(JV ) given
geometrically by sending x �→ −x on the smooth fibers of JV → P

5. Further this involution
τ commutes with the induced antisymplectic involution f ∈ Bir(JV ). It follows that τ ◦ f is
a nontrivial symplectic birational involution ofJV . Set f̃ := f if f is symplectic, f̃ := τ ◦ f
otherwise. Note that f̃ leaves 〈�,π∗O(1)〉 invariant in both cases. ��
Remark 5.2 Fix the notation of the last paragraph of the proof of Theorem 5.1. If φ and thus f
is antisymplectic, then the symplectic birational involution f̃ acts by−id on the discriminant
group of �.

6 Nontrivial action on discriminant, rank≥ 12

As noted in Remark 4.5, it remains to classify symplectic birational involutions ofmanifold of
OG10 type that act nontrivially on A�, with rank(�−) ≥ 12 and the additional assumption
that �+ does not split a U summand. The main aim of this section is to prove the following
result:

Theorem 6.1 Let X be a manifold of OG10 type, and f ∈ Bir(X) a symplectic birational
involution such that the induced action η∗( f ) is nontrivial on the discriminant group A�.

Assume further that

rank�− ≥ 12.

Then one of the following holds:
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(1) �− ∼= G12 and �+ ∼= 〈2〉3 ⊕ 〈−2〉9; or
(2) �− ∼= G16 and �+ ∼= 〈2〉3 ⊕ 〈−2〉5.
Here, G12 and G16 are the lattices listed in the last column of Table 2.

Moreover, each involution of � listed above is unique up to conjugacy in O(�), and there
exists a manifold of OG10 type with a birational involution inducing such an isometry.

We prove Theorem 6.1 as follows: in Sect. 6.1 we classify the possible genera of the
coinvariant lattice �− for an involution ι ∈ O(�) with nontrivial action on A�, and such
that �− has rank at least 12, is negative definite and the lattice �+ does not split a U
summand. We obtain 12 possible genera for the lattice �−. For each genera, we enumerate
representatives for all the isometry classes of lattices in this genus. We outline the process
in Sect. 6.2 (more details are contained in Appendix A). We then investigate whether each
candidate coinvariant lattice occurs for a symplectic birational involution of a manifold of
OG10 type. By Theorem 2.4 and Lemma 4.4, this is equivalent to verifying whether the
potential coinvariant lattice �− contains no vectors v such that v2 = −2, or v2 = −6 with
div�−(v) ∈ 3Z.

Our results of this enumeration and analysis are summarised in Table 2 in Sect. 6.3; for
more explicit details see the database [29].

6.1 Genus of the remaining possible cases

We classify the possible genera of the coinvariant lattice�− for an involution ι ∈ O(�)with
nontrivial action on A�, such that �− is negative definite, and such that �+ does not split a
U summand.

Proposition 6.2 Let ι ∈ O(�) acting nontrivially on A� such that �− is negative definite.
Assume that �+ does not split a U summand. Let r := rank�−. Then one of the following
holds:
(1) �+ ∼= U (2)3 and r = 18;
(2) �+ ∼= U (2)3 ⊕ D4 and r = 14; or
(3) �+ ∼= 〈2〉3 ⊕ 〈−2〉21−r and r ≥ 12.

Proof For ease of notation, let M := �+. Since M does not split a U summand, the first part
of the proof of Theorem 4.1 gives that r ≥ 12. Assume first that r �= 21: by Proposition 2.7,
M is a 2-elementary lattice of signature (3, 21 − r). It is therefore uniquely determined,
up to isometry, by the invariants (r , a, δ) (Lemma 4.2). There are two cases to consider by
Lemma 4.3: either 22 − r < a, or a = 22 − r , δ = 0 and r �≡ 2 mod 8.

Case 1: Assume that 22 − r < a; we necessarily have that 22 − r < a ≤ 24 − r . Since
M is 2-elementary, we have that a ≡ r mod 2; we can exclude the case a = 23 − r . Thus
a = 24 − r = rank M . The lattice N := M(1/2) is well defined [27, Lemma A.7]. Further,
AN = {1}, and so N is unimodular.

Assume that δ = 0; this implies that N is an even unimodular lattice (see for example [27,
Lemma A.9]). By Milnor’s theorem on unimodular forms (see [36, Thm 0.2.1] for a precise
statement), N exists if and only if

3 + r − 21 ≡ 0 mod 8;
r ≡ 2 mod 8.

Since r ≥ 12, we have that r = 18. Thus N has signature (3, 3), and hence N ∼= U 3. Thus
M ∼= U (2)3.
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Now assume that δ = 1. It follows that N is an odd indefinite unimodular lattice (see
for example [27, Lemma A.8]). By Milnor’s theorem again, N exists and is isomorphic to
〈1〉3 ⊕ 〈−1〉21−r , thus

M ∼= 〈2〉3 ⊕ 〈−2〉21−r .

Case 2: Assume that a = 22− r , with δ = 0 and r �= 2 mod 8. Note again that r ≥ 12;
if r ≤ 11, since 22 − r = a ≤ r ≤ 22 − r , we must have that r = 11. But since δ = 0, for
M to exist r ≡ 2 mod 4, a contradiction.

So r ≥ 12, and since r ≡ 2 mod 4, r ∈ {14, 18}. By assumption, r �= 2 mod 8, thus
r = 14.Hence M has signature (3, 7)with a = 8 and δ = 0.Consider the latticeU (2)3⊕D4;
it has the same signature and invariants. Since indefinite 2-elementary lattices are unique up
to isometry, we necessarily have M ∼= U (2)3 ⊕ D4.

Finally, assume that r = 21. In this case, M has signature (3, 0). Since a ≡ r mod 2,
we have a = 1, 3. By Lemma 4.2, Item (3), the case a = 1 cannot occur; thus a = 3. Again,
the lattice N := M(1/2) is well defined. Further, AN = {1}, so N is unimodular. Since there
are no even unimodular lattices of rank 3, by Milnor’s result, we must have that δ = 1 and
N is an odd unimodular lattice. Thus N ∼= 〈1〉3, and M ∼= 〈2〉3. ��

We now list the possible genera of �− for the involutions above.

Corollary 6.3 Let ι ∈ O(�) acting nontrivially on A� such that �− is negative definite.
Assume that �+ does not split a U summand. Let r := rank�−. Then the discriminant
group is A�− = Z/3Z ⊕ (Z/2Z)a, and q�−|Z/3Z = qA2(−1). Let δ = 0 if the quadratic
form of �+ takes values in Z/2Z, δ = 1 otherwise. Further, the invariants (r , a, δ) are as
follows:
(1) (r , a, δ) = (18, 6, 0)
(2) (r , a, δ) = (14, 8, 0)
(3) (r , a, δ) = (r , 24 − r , 1) for 12 ≤ r ≤ 21.

Proof This follows immediately from Proposition 6.2. ��
In order to conclude our classification of symplectic birational involutions for manifolds

of OG10 type, it remains to be seen whether an involution ι ∈ O(�) as in Proposition 6.2
is induced by a symplectic birational involution. By Theorem 2.4 and Lemma 4.4, we need
to determine whether �− contains any vector v such that v2 = −2, or v2 = −6 with
div�−(v) ∈ 3Z. One possible strategy is to classify the possibilities for the lattices �−.

Unfortunately, these lattices are not unique in their respective genus, and have both large
rank and discriminant (the methods of Conway–Sloane have not been extended [7]). We
undertake this enumeration in the next Sect. 6.2, but first we illustrate this difficulty with two
examples.

Example 6.4 Consider �+ ∼= U (2)3. Then �− has rank 18, and discriminant group

A�− ∼= Z/3Z × (Z/2Z)6,

and q�−|Z/3Z = qA2(−1). There are two easily identifiable possibilities for �−:

A2(−1) ⊕ K ;
A2(−1) ⊕ E8(−1) ⊕ N ,

where K is the Kummer lattice and N is the Nikulin lattice (see [33] for a description of these
lattices). Both of these embed into the lattice � and are orthogonal to U (2)3. Although both
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examples contain vectors of square −2 and thus cannot be realised by a geometric birational
involution, there may be other lattices in the same genus without vectors of square −2, or of
square −6 and divisibility 3.

Example 6.5 Consider �+ ∼= U (2)3 ⊕ D4(−1). Then �− has rank 14, and discriminant
group

A�− ∼= Z/3Z × (Z/2Z)8.

Thus �− is in the same genera as the lattice A2(−1) ⊕ N ⊕ D4(−1). Again this example
contains (−2)-vectors.

6.2 The enumeration

By Corollary 6.3, we have 12 possible genera to enumerate. This process is computer aided;
we use a modified version of Kneser’s neighbour method, first described in [19]. Details
about the application of this method for quadratic lattices over totally real number fields
and its algorithmic implementation can be found in [43, §2]. The main idea is that for each
genus g of integral definite lattices and for some suitable prime number p, there exists a so-
called p-neighbour graph [43, Page 742], which we denote here by Knep(g), whose nodes
represent the isometry classes of lattices in g. Two nodes of Knep(g) are connected by an
edge if for respective representatives L, L ′ of the corresponding isometry classes, L and L ′
are p-neighbours [20, (28.2)]. The enumeration of the isometry classes in g can be done
by walking through Knep(g) and iteratively computing representatives for all the nodes. We
refer to Appendix A for more details on Kneser’s algorithm and its modified implementation.

We represent each isometry class of lattices obtained by the previous enumeration by
their Gram matrix, which are available in the files [29]. Each of them represent a coinvariant
lattice �− for an involution ι ∈ O(�). It remains to verify whether they are induced from a
geometric involution or not.

Let L be one of the lattices enumerated; L is the coinvariant lattice for an involution
ι ∈ O(�). We verify whether L is induced by a geometric involution by verifying if L
contains any vector v such that v2 = −2, or v2 = −6 with divL(v) ∈ 3Z.

To check whether L contains vectors of square −2 or −6, one can use the method
short_vectors on Hecke [13], which allows us to compute all vectors in L of a given square.
For each such vector v ∈ L such that v2 = −6, computing the positive generator d of the
Z-ideal (v, L) is a simple routine which goes back to standard linear algebra (see also [13,
divisibility]).

Finally, if L contains no vector v such that v2 = −2, or v2 = −6 with divL(v) = 3, then
by Theorem 2.4 and Lemma 4.4, we know that the involution ι is induced, and L is isometric
to the coinvariant lattice associated to a symplectic birational involution on an irreducible
symplectic manifold of OG10 type.

6.3 Proof of Theorem 6.1

We give in Table 2 the results of our enumeration and the analysis outlined above. For each
possible genus, we give the number N of isometry classes of lattices it contains. In the column
with roots we record the number of classes that have a representative with (−2)-vectors.
In the column without roots, but with (−6, 3) we record how many classes have a
representative L without any (−2)-vectors but with at least one vector v ∈ L such that
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65 Page 18 of 26 L. Marquand, S. Muller

v2 = −6 and divL(v) ∈ 3Z. Finally, the last column geometric cases presents all possible
isometry classes that are induced by a symplectic birational involution of a manifold X of
OG10 type, and thus are isometric to H2(X , Z)−.

Proof of Theorem 6.1 Let f ∈ Bir(X) satisfy the assumptions of Theorem 6.1 and let ι :=
η∗( f ) ∈ O(�). Then, according to Proposition 6.2, Corollary 6.3 and Table 2, we know that
the pair (�+,�−) is as wanted. Similarly, by [36, Proposition 1.15.1], and the verification
from Sect. 6.2, we know that any involution of � with (�+,�−) as in the statement of
Theorem 6.1 is induced.

To conclude, similarly to the proof of Theorem 3.6, we observe that according to [36,
Theorem1.14.2], for�+ as in the statement of Theorem6.1we have that O(�+) → O(A�+)

is surjective. Therefore, [36, Corollary 1.5.2] tells us that any involution of�with (�+,�−)

as in the statement of Theorem 6.1 is unique up to conjugacy.

The two lattices admitting a geometric realization fromTable 2 are determined respectively
by the following Gram matrices:

G12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 2 −2 −2 −2 −2 2 −2 2 2 −2 −2
2 −4 2 0 2 0 −2 2 −2 −2 2 2

−2 2 −4 −2 −2 −2 2 −2 2 2 −2 −2
−2 0 −2 −4 −2 −2 0 0 0 0 0 0
−2 2 −2 −2 −4 −2 2 −2 2 2 −2 −2
−2 0 −2 −2 −2 −4 2 −2 2 2 −2 −2
2 −2 2 0 2 2 −4 2 −2 −2 2 2

−2 2 −2 0 −2 −2 2 −6 4 4 −2 −4
2 −2 2 0 2 2 −2 4 −6 −2 4 4
2 −2 2 0 2 2 −2 4 −2 −6 2 2

−2 2 −2 0 −2 −2 2 −2 4 2 −6 −2
−2 2 −2 0 −2 −2 2 −4 4 2 −2 −6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G16 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 2 −2 2 −1 1 2 1 2 1 −2 1 −2 −2 1 −2
2 −4 0 −1 2 −2 0 −2 0 −2 0 −2 1 2 1 1

−2 0 −4 2 1 1 1 −1 2 −1 −1 1 −1 −1 2 −2
2 −1 2 −4 −1 −2 −2 −1 0 1 1 0 2 0 −2 1

−1 2 1 −1 −4 1 −1 2 1 2 1 2 1 −1 −2 0
1 −2 1 −2 1 −4 −1 −2 0 −1 −1 −2 1 1 −1 1
2 0 1 −2 −1 −1 −4 −1 0 0 2 1 2 1 −2 1
1 −2 −1 −1 2 −2 −1 −4 0 −2 −1 −1 1 0 1 0
2 0 2 0 1 0 0 0 −4 −1 0 −1 1 1 −1 2
1 −2 −1 1 2 −1 0 −2 −1 −4 0 −2 0 2 1 0

−2 0 −1 1 1 −1 2 −1 0 0 −4 −1 −1 −1 1 0
1 −2 1 0 2 −2 1 −1 −1 −2 −1 −4 −1 2 1 1

−2 1 −1 2 1 1 2 1 1 0 −1 −1 −4 0 2 −2
−2 2 −1 0 −1 1 1 0 1 2 −1 2 0 −4 0 −1
1 1 2 −2 −2 −1 −2 1 −1 1 1 1 2 0 −4 1

−2 1 −2 1 0 1 1 0 2 0 0 1 −2 −1 1 −4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

They correspond respectively to the 3rd and the 472nd lattices of the respective cases c3r12
and c3r16 of our database, available in [29]. We moreover display in Table 3 the Gram
matrices for 5 representatives of the isometry classes in the genus of G12 (only the nonzero
entries are shown).
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Table 3 Case 3, r =12 Lattices in the isometry class of Corollary 6.3 with (r , a, δ)=(12, 12, 1)

L1
12,12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
−2

−2
−2

−2
−2

−4 −2 −2 −2 −2 −2
−2 −4 −2 −2
−2 −2 −4 −2
−2 −2 −4
−2 −4 −2
−2 −2 −2 −4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L2
12,12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
−2

−4 2 −2 −2 2 −2 2 2 2 2
2 −4 −2 −2

−2 −4 2 −2 2 2 2 2
−2 −4
2 2 −4 2 −2 −2 −2 −2

−2 −2 2 −4 2 2
2 2 −2 2 −4 −2 −2 −2
2 2 −2 2 −2 −4 −2
2 −2 2 −2 −2 −6 −4
2 −2 2 −2 −2 −2 −4 −6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 2 −2 −2 −2 −2 2 −2 2 2 −2 −2
2 −4 2 2 −2 2 −2 −2 2 2

−2 2 −4 −2 −2 −2 2 −2 2 2 −2 −2
−2 −2 −4 −2 −2
−2 2 −2 −2 −4 −2 2 −2 2 2 −2 −2
−2 −2 −2 −2 −4 2 −2 2 2 −2 −2;
2 −2 2 2 2 −4 2 −2 −2 2 2

−2 2 −2 −2 −2 2 −6 4 4 −2 −4
2 −2 2 2 2 −2 4 −6 −2 4 4
2 −2 2 2 2 −2 4 −2 −6 2 2

−2 2 −2 −2 −2 2 −2 4 2 −6 −2
−2 2 −2 −2 −2 2 −4 4 2 −2 −6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L4
12,12 = diag(−2, −2,−2, −2, −2,−2, −2, −2,−2, −2, −2,−6)

L5
12,12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
−4 −2 −2 2 −2 2 −2 2
−2 −4 −2 −2 2
−2 −2 −4 2 −2 2 −2 2
2 2 −4 2 2 −2

−2 −2 −2 2 −4 2 −2 2
2 2 2 2 −4 2 −2

−2 −2 2 −2 2 −4 2
2 2 −2 2 −2 2 −4

−2
−2

−6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

123



65 Page 20 of 26 L. Marquand, S. Muller

Appendix A: Enumeration of definite genera for Z-lattices

The genus of a lattice is the collection of all full rank integral lattices in a given regular
quadratic space which are pairwise locally isometric at each place of Q. We usually refer to
a lattice by its isometry class, and we represent a genus by the isometry classes of the lattices
contained in it. By [20, Satz (21.3)], a genus consists of finitely many isometry classes of
lattices, though the genus itself is infinite. In order to continue the classification of symplectic
birational involutions of manifolds of OG10 type, via Theorem 2.4, we want to enumerate the
following 12 genera given by Corollary 6.3 (the notation follows Conway–Sloane convention
for genus symbols, see [8, Chapter 15]):

(1) g = II(0,18)2
+6
II 3+1;

(2) g = II(0,14)2
−8
II 3+1;

(3) g = II(0,r)2
−(24−r)
δ 3+1 for 12 ≤ r ≤ 21 and δ ≡ 6 − r mod 8.

These are nonempty genera of even negative definite lattices of rank ≥ 12. Let g be one of
the previous genera. In what follows, we explain how one can algorithmically enumerate all
isometry classes in g.

A.1. Kneser’s neighbour algorithm

Throughout, let L be a lattice in the given genus g, let V be the ambient quadratic space
associated to g (L ⊆ V ) and let p be a prime number not dividing det(L).

Definition A.1 ([20, §28], [18, §5]) Let L ′ be a full rank lattice in V . Then L ′ is called a
p-neighbour of L if

L/(L ∩ L ′) ∼= L ′/(L ∩ L ′) ∼= Fp

as Fp-vector spaces.

Let b the underlying nondegenerate symmetric bilinear form of L. We call an element
y ∈ L p-admissible if y ∈ L\pL and b(y, y) ∈ 2p2Z .

Theorem A.2 ([44, §1], [20, §28]) Let y ∈ L be p-admissible and let

L(y) := L y + Z
1

p
y where L y = {x ∈ L | b(x, y) ∈ pZ} . (A.3)

Then L(y) is a p-neighbour of L. Moreover, L(y) ∈ g and any p-neighbour of L lying in g
is of the form L(y) for some p-admissible vector y ∈ L.

We define C(g) to be the set of all the (finitely many) isometry classes of lattices in g,

E p(g) to be the set

E p(g) := {
([L], [L ′]) ∈ C(g)2 | L, L ′ are p-neighbours

}

and, finally, Knep(g) := (C(g), E p(g)) to be the p-neighbour graph of g (see [43, page
742]).

It follows that Knep(g) consists of finitely many nodes given by C(g), and two nodes
[L], [L ′] are connected by an edge if and only if ([L], [L ′]) ∈ E p(g). The number of
connected components of Knep(g) does not depend on p, and each of them is an union of
what are called proper spinor genera of g (see [39, §102] for the notion of spinor genera). One
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can show algorithmically (see [18, Corollary 5.4.10]) that the 12 genera we aim to enumerate
consist of one proper spinor genus, meaning that their respective p-neighbour graphs are
connected, for any prime number p. So in what follows, we assume that genera consists of
only one proper spinor genus.

The neighbour construction (Eq. A.3) offers a practical way to construct representatives
of isometry classes in g and it is the starting point for Kneser’s neighbour algorithm (see
[20, Satz 28.4]). In particular, this algorithm lets us reconstruct C(g) starting from a single
isometry class [L] and any prime number p � det(L).

Remark A.4 Constructing a first representative lattice L of a given genus g is feasible but
nontrivial: we refer to [18, §3.4, §3.5] for more details.

The idea is the following: we start by constructing all the p-neighbouring isometry classes
[L ′] of [L] obtained from the neighbour construction. Then, we iterate this process to all the
new isometry classes obtained until we have exhausted the p-neighbour graph, i.e. we cannot
construct any new isometry class from the ones already obtained. Note that an isometry class
can be reached by several different other ones in Knep(g): one has to compare any new
neighbour lattice to representatives of the isometry classes already computed. The following
result ensures that this process allows us to recover C(g).

Theorem A.5 [44, §1 (ix)] If the genus g consists only of one (proper) spinor genus, rank L ≥
3 and L ⊗Qp is isotropic, then the previous procedure returns representatives of all isometry
classes in g.

However, classical implementations of this algorithm do not exhaust all the edges in the
p-neighbour graph. In fact, for genera of definite lattices, there exists an invariant, called the
mass, which allows us to determine whether or not we have enumerated C(g).

Definition A.6 Let g be a genus of definite lattices. We call the mass of g, which we denote
m(g), the following sum

m(g) :=
∑

[L]∈C(g)

1

#O(L)
. (A.7)

For any [L] ∈ C(g), we call the term w([L]) := 1
#O(L)

the weight of [L] in g.

Thanks to the Smith–Minkowski–Siegel formula (see [7, §2, Eq. (2)]), one can actually
compute the mass of a genus of definite lattices without enumerating its isometry classes.
Therefore, while walking throughKnep(g), one can associate to each visited node the weight
of the corresponding isometry class. Adding the weights of the isometry classes already
found gives us information on which proportion of C(g) we have enumerated. In particular,
if the previous sum agrees with the mass of g, then all the isometry classes in g have been
enumerated.

A.2. Practical implementation

We have explained the needed theory behind the enumeration of the genus g (we refer to
[43] for more details). Let us now make some comments on practical implementation and
possible improvements.

First of all, recall that p is a prime number not dividing det(L) and let n be the rank of L.

We have the following proposition:
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Proposition A.8 [20, Hilfssatz (28.7)] If y, y′ ∈ L are p-admissible and such that [y] =
[y′] ∈ L/pL, then L(y) = L(y′)

Therefore, in practice, one only has to enumerate isotropic lines l in L/pL ∼= F
n
p and

choose any p-admissible lift in L of a representative of l to construct the corresponding
neighbour lattice. The set Lp,n of lines in F

n
p is of cardinality (pn − 1)/(p − 1). In the

context of this paper, where p ≥ 5 and n ≥ 12, enumerating isotropic elements in Lp,n at
each iteration of the neighbours construction is infeasible: for instance, in the case p = 5
and n = 15, L5,15 is of size 7629394531. The whole process of enumerating all the isotropic
lines, looking for p-admissible lifts, constructing the corresponding neighbours, comparing
each new neighbour to the already visited nodes in C(g) and computing the weight of every
new visited node can take, in this case, up to 5 hours. If we do this process multiple times for
different isometry classes, depending on the size ofC(g), already for rank 15 the enumeration
can take several days. Thus, one could use in complement the second part of [20, Hilfssaftz
(28.7)] stating that if y, y′ ∈ L are p-admissible and if there exists φ ∈ O(L) such that
φ(y) = y′, then L(y) and L(y′) are isometric. In other words, walking through Knep(g)

only requires to lift representatives of O(L)-orbits of isotropic elements in Lp,n since two
isotropic lines in a same orbit give rise to isometric neighbour lattices, which correspond to
the same class inC(g).However, still in the context of this paper, even though #O(L) is finite
for a definite lattice L, it turns out that the available algorithms (to our knowledge) to compute
O(L)-orbits in Lp,n require either too much memory space or too much computation time,
because of the high ranks and determinants of the lattices to find.

A.3. Further improvements

Away to bypass the complexitymatters enunciated in the previous section, is to add randomi-
sation. We iteratively proceed as follows: we choose a random isometry class among those
already visited in C(g), a random prime number p not dividing det(L) and we collect a large
sample N � 0 of random elements in Lp,n to construct neighbour lattices in Knep(g) from
the isotropic lines among them. Selecting different prime numbers allow us to enumerate
C(g) by finding neighbour lattices in different neighbour graphs in parallel. This can help if
some lattices are connected by fewer edges in Knep(g) than in Kneq(g) for different primes
p and q.The enumeration of genera using Kneser’s neighbour method has been implemented
on Hecke [13] and we adapt this code with the random search just mentioned.

A final issue one can face with this randomised algorithm is that randomwalks in Knep(g)

can eventually lead to vain iterations. In this case, there might be only a little number of nodes
which have not been visited yet and the probability to find them via random construction of
neighbour lattices is low. This is the case, for instance, for isometry classes of lattices with
relatively small weight: their isometry group has big cardinality and therefore, there are few
edges connecting to the corresponding node in Knep(g) for all small primes p. It is possible,
at this stage, to complete the enumeration of C(g) by hand. To do so, let Cal(g) be the list
of representatives of isometry classes in g which have been already computed, and let

m := m(g) −
∑

[L]∈Cal (g)

w([L]) ∈ Q.

Let q be the biggest prime number dividing the denominator of m. This prime q must divide
the order of the isometry group of a class in C(g)\Cal(g), and thus such isometry class
contains a lattice with at least one isometry of order q. In the paper [4], Brandhorst and
Hofmann have developed methods to compute, given a genus g and a prime number q, pairs
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(L, f ) consisting of a lattice L ∈ g and an isometry f ∈ O(L) of order q. Their algorithms
have been implemented using a combination of Sage [46], GAP [45], Magma [2] and PARI
[1] (see also [9, QuadFormWithIsom] for a more recent and centralized implementation by
the second author). Running such codes, we can find new lattices in g not represented by
any element of Cal(g), and having an isometry of order q. Subtracting the weights of their
respective isometry classes tom,we should eventually be able to clear out q from the divisors
of the denominator of m. If m is still nonzero, we keep going with the next biggest prime q ′
dividing the denominator of m, and so on until m = 0. If m happens to be an integer after
some iteration, we continue with the largest prime number smaller than the one previously
tried.

A.4. Results and verification

Combining both the enumeration by random searches and the construction of lattices with an
isometry of a given order, we enumerate each of the 12 genera mentioned at the beginning of
this Appendix. The lattices we have enumerated are available in the folder “enumeration” in
[29]. In the latter, each genus g is given as a file, and each line of this file corresponds to the
Gram matrix of a representative of an isometry class in g. The different “reading files” made
available allow one to read those genera on Hecke [13], Magma [2], Oscar [9] and Sage [46].

In order to verify our results, we refer to the folder “verification” in [29]. In this folder,
we provide a notebook providing step-by-step Hecke instructions to verify:

• that each genus is correctly enumerated (see below for a brief explanation);
• the number of vectors of square −2, or of square −6 and divisibility at least 3 in each

lattice.

Note that in this folder, the genera are saved differently. Now, each genus g is given by a
folder, and each file in this folder correspond to a representative of an isometry class in g.

In each such file, we remember the Gram matrix of the lattice L as well as the order of its
orthogonal group O(L).

Remark A.9 Generators for the orthogonal groups of definite lattices are effectively com-
putable [40]. However, such computations can be expensive for large rank lattices. In our
enumeration process, which was originally purely written on Hecke, we made use of Magma
for computing orthogonal group and testing isometry of lattices. For one’s convenience, we
have precomputed the order of the orthogonal groups of every lattices in our database using
Magma [2] and stored it.

In order to check whether the genera in [29] are correctly enumerated, one can proceed
in the following way.

Given a list S of lattices, and a genus g, one ensures that S is a complete set of represen-
tatives of isometry classes in g without repetition, by

(1) checking that for all L ∈ S, the genus of L is g;
(2) if one denotes m the mass of g, computing that

∑

L∈S

1

#O(L)
= m;

(3) testing whether lattices in S are pairwise non isometric.
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In order to test whether two given definite lattices in a same genus are isometric, one can
use algorithms of Plesken–Souvignier [40]. This can be challenging for lattices of high rank.
Nonetheless, there is actually a way of making this procedure less challenging, by working
with isometry invariants.

In fact, for instance, two lattices whose orthogonal groups have different order cannot be
isometric. Hence, up to choosing a certain list of isometry invariants which are not hard to
compute, one can definitely speed up step (3) and only call Plesken–Souvignier algorithm
for comparing lattices with similar invariants. In our case, we have used:

• the order of the orthogonal group of the lattice;
• the minimum norm, in absolute value, of a vector in the lattice;
• the kissing number k of the lattices, which is equal to the number of vectors of minimum

(absolute) norm;
• the decomposition of the root sublattice of the lattice (see [12]);
• the numbers of vectors of norm −4, and −6 with divisibility in 3Z.

More details in [29].
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