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Abstract

I propose the SCL(EQ) calculus that lifts SCL for first-order logic to first-order
logic with equality. SCL(EQ) learns non-redundant clauses only. It builds a trail
of annotated ground literals, representing the model assumption for non-ground
input clauses. The trail includes propagations (inferred literals) and decisions
(guessed literals). When a clause is false under the model assumption, SCL(EQ)
derives a new non-ground clause via paramodulation. The new clause is non-
redundant under a dynamic ordering, which, along with a maximum term, limits
ground literals and ensures termination. I prove SCL(EQ) to be sound and
refutationally complete.

SCL(EQ) may use congruence closure (CC) to identify propagations and
conflicts efficiently. However, exhaustive propagation of unit clauses already
causes a worst case exponential blowup in ground instances. To address this,
I propose CC(X ), a generalization of CC with variables. It creates an explicit
representation of constrained congruence classes of the whole ground input space
smaller than the maximum term. I prove CC(X ) sound and complete, implement
it, and evaluate its performance against state-of-the-art CC. Joint work with
Yasmine Briefs integrates Knuth-Bendix ordering into CC(X ).
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Zusammenfassung

Ich schlage den SCL(EQ) Kalkül vor, der SCL für die Prädikatenlogik erster Ord-
nung auf die Prädikatenlogik erster Ordnung mit Gleichheit erweitert. SCL(EQ)
lernt ausschließlich nicht-redundante Klauseln. Es erstellt eine Folge annotierter
Grundliterale, die die Modellannahme für nicht-grund Eingangsklauseln repräsen-
tiert. Sie umfasst Propagationen (abgeleitete Literale) und Entscheidungen (ger-
atene Literale). Wenn eine Klausel unter der Modellannahme falsch ist, leitet
SCL(EQ) eine neue nicht-grund Klausel mittels Paramodulation ab. Die neue
Klausel ist nicht redundant gemäß einer dynamischen Ordnung, die zusammen
mit einem maximalen Term Grundliterale begrenzt und die Terminierung sich-
erstellt. Ich beweise, dass SCL(EQ) korrekt und widerspruchsvollständig ist.

SCL(EQ) kann zur effizienten Identifikation von Propagationen und Kon-
flikten den Kongruenzabschluss (CC) verwenden. Die vollständige Propagation
von Einheitsklauseln bewirkt bereits im schlimmsten Fall ein exponentielles
Anwachsen der Grundinstanzen. Um dies zu adressieren, schlage ich CC(X) vor,
eine Verallgemeinerung von CC mit Variablen. CC(X) erstellt eine explizite
Repräsentation eingeschränkter Kongruenzklassen des gesamten Grundeingaber-
aums, die kleiner als der maximale Term ist. Ich beweise, dass CC(X) korrekt
und vollständig ist, implementiere es und evaluiere seine Leistung im Vergleich
zu modernen CC-Methoden. In Zusammenarbeit mit Yasmine Briefs wird die
Knuth-Bendix-Ordnung in CC(X) integriert.
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Introduction

Equational logic is widely used in almost all aspects of formal reasoning about
systems. Significant research has focused on the development of sound and com-
plete calculi for first-order logic with equality [PZ00, BFP07, BW09, BPT12,
BG94, KS10]. Among these, the Superposition calculus [BG94, HW07, Wei01]
is considered to be state-of-the art. It employs ordering restrictions to guide
paramodulation inferences [RW69] and utilizes an abstract redundancy frame-
work to enable clause simplification and deletion techniques such as rewriting and
subsumption [BG94]. However, the Superposition calculus generates a large num-
ber of redundant clauses. Infact, modern theorem provers [KV13,KS10,BBB+22]
dedicate substantial computational effort to identifying and eliminating such
redundancies. While the completeness proof for Superposition offers a “se-
mantic” mechanism to derive only non-redundant clauses, this approach re-
lies on an underlying ground model assumption that is not computable in
general [Teu18]. More specifically, it necessitates the ordered enumeration of
infinitely many ground instances of the clause set, which is infeasible in prac-
tice. Many other complete calculi for first-order logic with equality have been
proposed in the past [BT05, BPT12, BW09, BFP07, PZ00, Kor13, KS10]. How-
ever, none of these approaches are able to incrementally learn new clauses that
are non-redundant according to the current model assumption. For other log-
ics there exist such algorithms, e.g. Conflict Driven Clause Learning (CDCL)
[SS96,JS96,MMZ+01,BHvMW09,Wei15] in propositional logic or Simple Clause
Learning (SCL) [AW15,FW19,BFW21,BSW23], Model Evolution (ME) with
lemma learning [BT03,BFT06] and SGGS [BP15] in first-order logic.

This thesis overcomes the aforementioned issues by (1) presenting Simple
Clause Learning for First-Order Logic with Equality (SCL(EQ)) [LW23], a calcu-
lus that provides an effective way of generating ground model assumptions that
then guarantee non-redundant inferences on the original clauses with variables,
and (2) providing first steps towards an efficient implementation with my new
calculus Non-Ground Congruence Closure (CC(X )) [LW24], that is a generaliza-
tion of the congruence closure algorithm [NO80,DST80,Sho84] for non-ground
equations.

The SCL(EQ) calculus is designed to learn only non-redundant clauses. The
underlying ordering is determined by the sequence of ground literals in the
model assumption and, consequently, evolves dynamically during the execution
of the calculus. Since it incorporates a standard rewrite ordering, this means
that both rewriting and redundancy notions that are based on literal subset
relations are permitted to dynamically simplify or eliminate clauses. Since newly
generated clauses are guaranteed to be non-redundant, redundancy tests are
only required backwards. Moreover, the ordering is generated automatically
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from the structure of the clause set, rather than being fixed in advance as in
the case of Superposition. The calculus adjusts its ordering dynamically to
align with the most effective strategy for making progress, analogous to CDCL.
As in CDCL and other SCL-based approaches, SCL(EQ) constructs a model
assumption through decisions and propagations. A decision guesses a ground
literal to be true, while propagation derives the truth of a ground literal from
clauses that would otherwise be false. Unlike CDCL in propositional logic, where
the number of propositional variables is finite, first-order logic can involve infinite
propagation sequences [FW19]. To overcome this issue, SCL(EQ) restricts model
assumptions to a finite number of ground literals at any point in time, effectively
limiting the scope to a finite set of ground instances of the clause set. With this
restriction, the calculus either discovers a refutation or reaches a stuck state,
where the current model assumption satisfies all considered ground instances. In
such a case, one can either try to generalize the model assumption for the entire
clause set or use the information from the stuck state to increase the number
of considered ground literals and resume the search for a refutation. SCL(EQ)
does not require exhaustive propagation; it only prohibits the decision of the
complement of a literal that could otherwise be propagated.

For completeness, SCL(EQ) requires exhaustive propagation of units before
it allows for the first decision. As a result, it needs to propagate all smaller
instances of a non-ground equation. This necessitates the development of a gen-
eralized congruence closure algorithm with support for variables and constraints,
because ground instantiation of all units already leads to a worst-case exponen-
tial blow up. CC(X ) is a novel calculus designed to handle non-ground equations
by maintaining a set of classes, similar to standard congruence closure. Each
class, referred to as a constrained class, consists of a set of constrained terms.
A constraint is defined as a conjunction of inequations bounded by a specified
maximum term. This constraint limits the ground instances of a constrained
term to those less than or equal to the maximum term. Initially, the set of
constrained classes includes one class for each input equation and a single-term
constrained class for each occurring non-variable symbol. The purpose of non-
ground congruence closure is to compute a solution that covers the entire ground
input space, bounded by the maximum term. This process relies on two primary
rules, Merge and Deduction, to construct the congruence classes: Merge creates
a new class by unifying two terms in different classes and applying this unifier
to the Union of these two classes. Deduction creates a new class by simultane-
ously unifying the arguments of two terms with the same top symbol in different
classes with terms in the same class. Termination is guaranteed by a definition of
subsumption between two classes and the fact that all terms are constrained by
a maximum term. I have implemented CC(X ) on the basis of the SPASS work-
bench infrastructure [BFSW19,WDF+09]. The algorithm outperforms classical
ground congruence closure if grounding gets too expensive. In collaboration with
Yasmine Briefs [BLW23] we show on a early version of CC(X ) that a Knuth-
Bendix Ordering (KBO) [KB70] fulfills the requirement of SCL(EQ) on effective
algorithms for a term order.

The following two Sections provide an overview of the two calculi on a more
formal level.
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SCL(EQ): SCL for First-Order Logic
with Equality

In this Chapter, I describe the SCL(EQ) calculus and illustrate its rules and
states by means of an example. Moreover, I compare the run of SCL(EQ) to
Superposition.

SCL(EQ) operates on a set of non-ground first-order clauses consisting of
equational literals. Consider the following three clauses.

C1 := h(x) ≈ g(x) ∨ c ≈ d C2 := f(x) ≈ g(x) ∨ a ≈ b
C3 := f(x) 6≈ h(x) ∨ f(x) 6≈ g(x)

and a KBO [KB70] with unique weight 1, and precedence d ≺ c ≺ b ≺ a ≺
g ≺ h ≺ f . An application of the Superposition calculus would result in a
Superposition Left [BG94] inference between C2 and C3:

C ′4 := h(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ a ≈ b.

SCL(EQ) is a set of deduction rules applied to a six-tuple (Γ;N ;U ;β; k;D)
as we will see in more detail in Section 2.2.1. Γ is a sequence of ground equations
and inequations, also called a trail. I refer to the equations and inequations as
literals. The literals in the trail are annotated by a level and a closure, i.e. a
clause C and a grounding substitution σ, denoted by C·σ. N is the set of input
clauses, in our example N = {C1, C2, C3}. Note that any set of formulas can be
transformed into an equisatisfiable set of clauses and SCL(EQ) only operates
on sets of clauses. β is the maximum term that restricts the number of ground
instances of the set of input clauses to a finite number. This already gives a
hint of the requirement for the term order, namely the number of ground terms,
literals and clauses smaller than or equal to β has to be finite. U is the set of
clauses that were learned during the deduction process. k is the level which
will be explained in more detail later. In principle, SCL(EQ) can be in two
states. Either Γ does not contradict N ∪ U , i.e. assuming that Γ holds, there
is no clause in N ∪ U that is false. Or there is a clause in N ∪ U that is false
under the assumption of Γ. These two states are represented by D. D is either
>, which means that the calculus did not yet find a clause in N that is false
under the assumption of Γ, or D is a closure. In this case D is called the conflict
clause initially from N ∪ U , that is false under the assumption of Γ. A special
clause that D may contain is the empty clause, also represented as ⊥. In this
case SCL(EQ) terminates with the result that the set N of input clauses is
unsatisfiable.

Initially, the state is (ε;N ; ∅;β; 0;>), meaning that there is no literal in the
sequence of equations, no clause was learned yet and there is no conflicting
clause. In our example this is the initial state for some sufficiently large β and
N = {C1, C2, C3}. The applicable rules when there is no conflict clause are
Propagate, Decide and Conflict as we will see in Section 2.2.1.

1. Propagate adds a ground literal (equation or inequation) to the sequence
Γ if there exists a clause C = {L1, ..., Ln} in N ∪ U and a grounding
substitution σ such that w.l.o.g. L1σ is satisfiable under Γ and L2σ, ..., Lnσ
are all unsatisfiable under Γ. The added literal is the normal form of L1σ
with respect to the convergent rewrite system of Γ, denoted by L1σ↓conv(Γ).
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Propagations are annotated with the current level and a closure resulting
from the corresponding paramodulation steps between the closure C·σ
and the closures annotated to the literals involved in the deduction of the
normal form of L1σ (see Definition 2.2.16).

2. Decide adds a ground literal Lσ to the sequence Γ without any such restric-
tions, except that (C∨L) has to occur as a clause in N∪U . Let (Cnew∨K)δ
be the clause resulting from the application of multiple paramodulation
steps to (C∨L)σ such that Kδ = Lσ↓conv(Γ) and k the current level. Then,
Decide adds the literal Kδ to the trail, annotated by (K ∨ comp(K))· δ
and the level k + 1. Note, that the application of Decide is restricted by
the definition of a regular run (Def. 2.3.5), i.e. Propagate has precedence
in many cases.

3. Conflict replaces D by a closure C·σ, where C ∈ N ∪ U , if there exists a
substitution σ such that Cσ is false under Γ. Conflict always has prece-
dence over Decide and Propagate, i.e. whenever there is a conflicting clause,
Conflict has to be applied immediately (cf. Def. 2.3.5).

With these rules we could now start to build our trail Γ in the example above
with two decisions

Γ := [h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) 6≈g(x))·σ]

where σ := {x 7→ a}. Now, with respect to Γ clause C3 is false with grounding
σ, and rule Conflict is applicable. This adds the closure C3·σ as conflict clause.

For the conflict resolution the rules Skip, Explore-Refutation, Factorize, Equality-
Resolution and Backtrack are applicable as we will see in Section 2.2.1. The idea
of conflict resolution is to create a clause from the conflicting clause that would
have made the last decision impossible. In contrast to DPLL [DLL62b, DP60]
style algorithms, where the last decision is always flipped, this can lead to a
clause that would result in a conflict multiple decisions in advance, allowing us
to skip multiple decisions at once.

1. The rules Factorize and Equality-Resolution simplify the conflicting closure
D·σ. If there exist {L,L′} ⊆ D such that Lσ = L′σ, then Factorize
creates the new conflicting clause (D \ {L′})µ·σ, where µ = mgu(L,L′),
the most general unifier of L and L′. If there exist {s 6≈ s′} ⊆ D such
that sσ = s′σ, then Equality-Resolution creates the new conflicting clause
(D \ {s 6≈ s′})µ·σ, where µ = mgu(s, s′).

2. The rule Skip is used to remove the rightmost literal on the trail if it is
not involved into the actual conflict of the conflicting closure. This is the
case if the closure is still false in the remaining trail.

3. Explore-Refutation is applicable if the last literal L on the trail Γ, L is the
defining literal of a literal L′ in Dσ that is maximal in Dσ, i.e. L′ is false
in Γ, L but not false in Γ. The rule now creates a refutation of L′ meaning
that it uses literals from Γ, L to infer ⊥ from L′. To deduce the new clause
for the closure D·σ, paramodulation is applied with the annotated clauses
of all involved literals of the refutation in the trail (Definition 2.2.17).
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f(a) 6≈ h(a) f(a) ≈ g(a)

g(a) 6≈ h(a)h(a) ≈ g(a)

g(a) 6≈ g(a)

Figure 1: Ground refutation of the example. Green literals are from the trail,
orange literal is the literal we want to refute.

4. Backtrack is applicable if the conflict clause reaches a level that is smaller
than the current level for all but one literal by prior applications of Explore-
Refutation. The rule than adds the new clause to the set of learned clauses
and jumps back to the point on the trail where this new clause is again
not conflicting with Γ for any possible substitution. The newly learned
clause is non-redundant according to my trail induced ordering as defined
in 2.2.9.

To come back to our example the maximal literal in C3σ is (f(x) 6≈ h(x))σ
and a rewrite refutation for this literal consists of two paramodulation steps first
with the annotated clause of the second literal in the trail, which results in

(g(x) 6≈ h(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x))·σ

Then, with the annotated clause of the first literal in the trail to get

(g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ

where for the refutation justification clauses and all otherwise inferred clauses
I use the grounding σ for guidance, but operate on the clauses with variables.
Figure 1 shows the ground refutation of the literal of the conflicting clause.
Figure 2 shows the corresponding non-ground refutation as shown above with
paramodulation steps.

The respective ground clause is smaller than (f(x) 6≈ h(x))σ, false with
respect to Γ and becomes our new conflict clause by an application of Explore-
Refutation. It is simplified by Equality-Resolution and Factorize, resulting in the
finally learned clause

C4 := h(x) 6≈ g(x) ∨ f(x) 6≈ g(x)

which is then used to apply rule Backtrack to the trail. Observe, that C4 is
strictly stronger than C ′4 the clause inferred by Superposition and that C4 cannot
be inferred by Superposition. Thus, SCL(EQ) can infer stronger clauses than
Superposition for this example.

In Section 2.3, I prove SCL(EQ) to be sound (Theorem 2.3.4) and refutation
complete (Theorem 2.3.17). For soundness (Definition 2.3.1) I have to prove that

1. Γ is always consistent,

2. propagated and decided literals Lσ have to be undefined and irreducible
and in the annotated clause (C ∨ L)·σ, C has to be false according to the
preceding literals in the trail and (C ∨ L)σ has to be smaller than β,
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f(x) 6≈ h(x) ∨ f(x) 6≈ g(x) f(x) ≈ g(x) ∨ f(x) 6≈ g(x)

g(x) 6≈ h(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x)h(x) ≈ g(x) ∨ h(x) 6≈ g(x)

g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ h(x) 6≈ g(x)

Figure 2: Non-ground refutation of the example with corresponding paramodu-
lation steps as done by the Explore-Refutation rule. Clauses with green literals
are annotated clauses from the trail, the orange literal is in the clause that we
want to refute.

3. the set of learned clauses U has to follow from the set of input clauses N ,

4. if there is a conflict clause C·σ, then Cσ is false in Γ and C follows from
N .

The proof is by structural induction on the state (Γ;N ;U ;β; k;D) starting
from the initial state. The proof is straightforward by checking if the state
remains sound after application of the different rules.

For completeness I first have to give a definition of a regular run. A run is
a sequence of applications of the SCL(EQ) rules (Definition 2.3.3). The run is
called regular (Definition 2.3.5) if the following restrictions are applied:

1. The rules Conflict and Factorize have precedence over all other rules,

2. On level 0, Propagate has precedence over Decide,

3. If a literal L is propagatable, then comp(L) may not be added by Decide,

4. If the application of Decide with new trail literal L immediately results in
a conflict with conflict closure D·σ, then Backtrack is only applicable if
comp(L) ∈ Dσ.

5. During conflict resolution Skip is applied at least once except if the conflict
is an immediate result of Decide.

Now I show that under the assumption of a regular run and a large enough
β such that the set of all ground instances < β of an input set of clauses N is
unsatisfiable, SCL(EQ) will terminate by deriving ⊥. The proof is done step-by-
step by first showing that any SCL(EQ) run terminates under the assumption
that β is never increased in Lemma 2.3.15. Either the algorithm gets stuck,
which means that no rule of the calculus is applicable anymore, or D = ⊥,
which means that the input set is unsatisfiable. In Lemma 2.3.11, I show that
stuck states never occur during conflict resolution and only if all occuring literals
< β are defined in Γ. Furthermore, I show that conflict resolution will always
result in an application of Backtrack (Lemma 2.3.12). This shows that SCL(EQ)
will terminate by deriving ⊥, since otherwise Propagate or Decide would be
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applicable, which cannot be the case since then all literals would be defined in Γ
and no conflict exists, which contradicts the assumption that N is unsatisfiable.

CC(X ): Non-Ground Congruence Closure

In this Section I provide a more detailed description of my CC(X ) calculus,
again illustrated by an example. CC(X ) takes as input non-ground equations
and builds non-ground congruence classes, similar to ground congruence closure.
As an example, consider the terms g(x) ≈ h(x), h(y) ≈ f(y) and a ≈ b and
a maxterm β = f(a). Furthermore, assume an ordering that orders the terms
by the number of symbols they contain (see Definition 3.4.5). As described in
Section 3.2, CC(X ) operates on a set of constrained classes Π = {A1, ..., An}
(Definition 3.2.3). A constraint class A is defined as a set of constraint terms
of the form Γ ‖ s, where Γ is a constraint and s is a term. Constraints are of
the form t1 � β, ..., tn � β. The constraint Γ restricts the number of ground
instances of a term s to those instances sσ such that Γσ evaluates to true. For
readability I simply write {g(x) ‖ g(x)} instead of {g(x) � β ‖ g(x)} omitting
� β within the constraint and use the notation {Γ ‖ s1, . . . , sn} to denote that
the constraint Γ holds for all terms s1, ..., sn. Initially, the set of classes consists
of one constrained class for each input equation and, for technical reasons, one
single term constrained class for each occurring non-variable symbol.

For our example equations CC(X ) would initially create the classes:

{{g(x) ‖ g(x)}, {h(x) ‖ h(x)}, {f(x) ‖ f(x)}, {a ‖ a},
{b ‖ b}, {a, b ‖ a, b}, {g(x), h(x) ‖ g(x), h(x)},

{h(y), f(y) ‖ h(y), f(y)}}
For a constraint class A it is important to distinguish between separating

and free variables as properly defined in Definition 3.2.3. Separating variables
occur in every term of the class, whereas free variables are all the remaining
variables.

In Definition 3.2.5, I create a mapping from constraint congruence classes to
its corresponding ground classes. Intutitively speaking, we first create different
classes for all possible instantiations of the separating variables. Then, for each
resulting class we create one class for all possible instantiations of the free
variables. I use the terminology gnd(A) to denote the set of ground classes for a
constraint class A. Figure 3 shows the process on an example constraint class.

The rules are dependant on the concept of a normal class which is a class
where every term with free variables is duplicated with all free variables re-
placed by fresh variables (Definition 3.2.7). For example, let A = {f(x), g(y) ‖
f(x), g(y)} be a class. Then the normal class is norm(A) = {f(x), g(y), f(x′), g(y′) ‖
f(x), g(y), f(x′), g(y′)}.

The Merge rule now takes two classes from Π that contain two unifiable
terms, creates their corresponding normal classes, build the unifier and unions
the classes with the unifier applied. Figure 4 shows an example of the application
of the Merge rule on two classes.

In the example, CC(X ) can now merge the classes {g(x), h(x) ‖ g(x), h(x)}
and {h(y), f(y) ‖ h(y), f(y)} by unifying h(x) with h(y). So we get

A1 = {g(x), h(x), f(x) ‖ g(x), h(x), f(x)}
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A = {f(x, y), g(x, z) ‖ f(x, y), g(x, z)}

{f(a, y), g(a, z) ‖ f(a, y), g(a, z)} {f(b, y), g(b, z) ‖ f(b, y), g(b, z)} ...

{f(a, a), g(a, a), f(a, b), g(a, b),
f(a, b), g(a, a), f(a, a), g(a, b),
...}

{f(b, a), g(b, a), f(b, b), g(b, b),
f(b, b), g(b, a), f(b, a), g(b, b),
...}

...

gnd(A)

{x → a} {x → b}

init
free
vars

init
sep.
vars

Figure 3: Illustration of the mapping from constrained congruence classes to
ground congruence classes on an example

A =
{f(x, y), g(h(x), z) ‖ f(x, y), g(h(x), z)}

B =
{h(u, u), g(u, a) ‖ h(u, u), g(u, a)}

{h(u, u), g(u, a) ‖ h(u, u), g(u, a)}{f(x, y), g(h(x), z), f(x, y′), g(h(x), z′) ‖
f(x, y), g(h(x), z), f(x, y′), g(h(x), z′)}

{f(x, y), g(h(x), a), f(x, y′), g(h(x), z′) ‖
f(x, y), g(h(x), a), f(x, y′), g(h(x), z′)}

{h(h(x), h(x)), g(h(x), a) ‖
h(h(x), h(x)), g(h(x), a)}

{f(x, y), g(h(x), a), f(x, y′), g(h(x), z′), h(h(x), h(x)) ‖
f(x, y), g(h(x), a), f(x, y′), g(h(x), z′), h(h(x), h(x))}

⋃
norm(A) norm(B)

norm(A)µ norm(B)µ

Figure 4: Illustration of the Merge rule on example classes A and B, where
µ = mgu(g(h(x), z), g(u, a)) = {u→ h(x), z → a}
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{Γ ‖ f(x, f ′(a)), ...} {∆ ‖ f(y, f ′(b)), ...}

{Γ′ ‖ h(z), g(z)}{Γ,∆ ‖ f(x, f ′(a)), f(y, f ′(b))}

x→ h(z)

{Γ′′ ‖ f ′(u), f ′(v)}

u→ a

{(Γ,∆,Γ′,Γ′′)µ ‖ f(h(z), f ′(a)), f(g(z), f ′(b))}

y → g(z)

v → b

Figure 5: Illustration of the Deduction rule on example classes. Green classes
are classes from the current Π, the orange class is the new class created by the
rule. µ = {u→ a, v → b, x→ h(z), y → g(z)} is the simultaneous mgu.

The Deduction rule takes two terms from two different classes with the same
top level function symbol. Then, for each argument, it tries to find a class such
that the arguments are simultaneously unifiable with two terms in that class.
The new class then consists of the two terms with the unifier applied and the
constraints of all involved classes. Figure 5 shows an example of the application
of the Deduction rule.

In our example, we can apply Deduction followed by two merges to A1 by
creating a variable disjoint copy {g(y), h(y), f(y) ‖ g(y), h(y), f(y)} and unifying
the arguments, e.g., of f(x) and f(y) with a and b and merging the resulting f(a)
and f(b) with the new class to create A2 = {g(a), h(a), f(a), g(b), h(b), f(b) ‖
g(a), h(a), f(a), g(b), h(b), f(b)}.

For termination it is crucial to have a proper definition of subsumption.
Since I defined a mapping from constraint congruence classes to ground classes,
a possible definition is by means of those ground classes, which are sets of
ground terms. A ground class B subsumes another ground class A iff A ⊆ B.
Consequently, a set of ground classes B subsumes a set of ground classes A if for
all A ∈ A there exists a B ∈ B such that A ⊆ B. Thus, a constrained class B
subsumes another constrained class A iff gnd(B) subsumes gnd(A) (Definition
3.2.8). The class A2 subsumes the class A1 by the above definition. Also the
classes involved in the very first application of Merge to create A1 are subsumed
by A1. Now the algorithm terminates, since the maxterm β restricts the creation
of any new class. The resulting class set is:

{{a, b ‖ a, b}, {g(a), h(a), f(a), g(b), h(b), f(b) ‖ g(a), h(a), f(a), g(b), h(b), f(b)}}
In Section 3.3, I prove CC(X ) to be sound (Lemma 3.3.4), complete (Lemma

3.3.6) and terminating (Lemma 3.3.5). Termination is shown by proving that
there exist only finitely many constraint classes that are not subsumed by an-
other class. This is the case, since there are only finitely many possible ground
congruence classes. Soundness is shown by structural induction on the state. I
show that a Merge step follows by transitivity of equality and a Deduction step
follows by congruence of equality. Finally, I prove completeness by structural

9



induction on the inference system of equational logic [BN98] (see Section 1.1.2).
I show that any rule of the inference system can be simulated by a rule of our
congruence closure algorithm.

As described in Section 3.4, for the implementation of CC(X ) I made use of
the standard procedure to work through the classes, namely by maintaining a
worked-off and a usable queue. worked-off contains all classes where the rules
have already been applied to, whereas usable contains all classes where the rules
have not yet been applied to.

The ordering that was chosen for the constraints is the symbol count or-
der (Definition 3.4.5) as used in the example, where s ≺ t iff the number of
symbols in s is smaller than the number of symbols in t. It turns out that the
constraints together with the symbol count order reduce to linear arithmetic
constraints (Lemma 3.4.7). Thus, I made use of the SPASS linear arithmetic
solver [BFSW19] for constraint solving. I added several more optimisations to
the presented algorithm which I will briefly present below.

Firstly, it is necessary to generalize the subsumption check defined for ground
classes to non-ground classes, as the above check is infeasible in practice. I define
subsumption by matching (Definition 3.4.2), which first fixes a matcher for the
separating variables. Then it checks for each term in the subsumed class whether
there is a term and a matcher for the free variables in the subsuming class so
that this term matches the term in the subsumed class. I show that subsumption
by matching implies subsumption (Lemma 3.4.4), but not vice-versa.

In our example, the class {g(x), h(x), f(x) ‖ g(x), h(x), f(x)} actually is not
subsumed by matching by the last class. But we have seen that it is subsumed
in the ground case.

In the implementation I also have to take care of the constraints. There are
cases where variables only occur within constraints but not within the constrained
terms of a class. This leads to ever-increasing constraints that the LIA solver
can no longer solve although the additional constraints do not cause a further
restriction to the constrained term. The solution is to map all the variables
that only occur in the constraints to exactly one fresh variable (Lemma 3.4.9).
Now we can remove duplicate constraints, preserving their informative value but
drastically reducing their size.

Another important optimization is Condensation. This new rule reduces the
size of a class by matching one term in a class to another and checking if the
result subsumes the original class. If this is the case, we can remove the larger
class. Condensation is an expensive operation, but very important to keep the
size of the classes small.

Finally, I make use of bit vectors, path indexes and discrimination trees
[McC92] to reduce the number of subsumption checks by filtering out classes.
For example, a class A cannot subsume a class B if B contains a term t where
no term in A can match t.

In Section 3.5, the evaluation shows that CC(X ) can outperform CC if
grounding gets infeasible. I observed that CC is faster than CC(X ) if the set of
ground instances is small. However, as β increases, the tide turns further and
further in favour of CC(X ). For a very large β, CC(X ) can at least solve 299 of
2900 problems whereas CC can solve only 102. It is also interesting to see that
the number of classes in CC(X ) is almost always way smaller than the number
of classes in CC.

In joint work with Yasmine Briefs [BLW23], we also showed that constraints in
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CC(X ) can be effectively computed with her new algorithm for KBO constraints,
as described in Section 3.6. In Section 3.6.1, I show that the constraint solver is
very fast for an early version of CC(X ), and calculates solutions for the constraints
in a reasonable amount of time.

Contribution and Structure

This dissertation makes the following key contributions:

1. In Chapter 2, I present SCL(EQ), the first approach to conflict-driven
clause learning in first-order logic with equality. SCL(EQ) ensures learning
of non-redundant clauses only, according to my newly defined trail induced
ordering (Definition 2.2.9). I prove SCL(EQ) sound (Theorem 2.3.4) and
refutationally complete (Theorem 2.3.17).

2. In Chapter 3, I present first steps towards an efficient implementation with
the help of my new calculus CC(X ) that is a generalization of the con-
gruence closure algorithm. I prove CC(X ) sound (Lemma 3.3.4), complete
(Lemma 3.3.6) and terminating (Lemma 3.3.5). I provide an implemenation
that incorporates multiple optimizations as described in Section 3.4. The
evaluation in Section 3.5 shows that CC(X ) outperforms standard congru-
ence closure if grounding gets infeasible. In Section 3.6, with joint work
with Yasmine Briefs [BLW23], I show that KBO fulfills the requirement of
SCL(EQ) on effective algorithms for a term order.

The work is composed from the following papers:

– Hendrik Leidinger and Christoph Weidenbach. SCL(EQ): SCL for first-
order logic with equality. In Jasmin Blanchette, Laura Kovács, and Dirk
Pattinson, editors, Automated Reasoning - 11th International Joint Confer-
ence, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume
13385 of Lecture Notes in Computer Science, pages 228–247. Springer, 2022

– Hendrik Leidinger and Christoph Weidenbach. SCL(EQ): SCL for first-
order logic with equality. Journal of Automated Reasoning, 67(3):22, 2023

– Hendrik Leidinger and Christoph Weidenbach. Non-ground congruence
closure. arXiv preprint arXiv:2412.10066, 2024

– Yasmine Briefs, Hendrik Leidinger, and Christoph Weidenbach. KBO con-
straint solving revisited. In Uli Sattler and Martin Suda, editors, Frontiers
of Combining Systems, volume 14279 of Lecture Notes in Computer Science,
pages 81–98, Cham, 2023. Springer Nature Switzerland

This thesis largely consists of the contents of these papers, but is extended
by more detailed background information, related work and evaluation sections
as well as examples that aid understanding. Furthermore, the text has been
adapted to create a consistent storyline.

The remainder of this dissertation is now structured as follows. In Chapter
1, I provide all the necessary background knowledge required to understand this
dissertation. Chapter 2 presents SCL(EQ) in full detail, including a detailed
description of related work and all proofs for the correctness of the calculus.
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In Chapter 3, I present CC(X ) and its implementation, again accompanied by
related work, proofs for soundness and completeness and a detailed evaluation of
the implementation. Finally I conclude in Chapter 4 and outline opportunities
for future work.
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Chapter 1

Preliminaries

1.1 Fundamentals

In this Section, I present the basics of automated reasoning that are necessary to
understand this thesis, namely first-order logic, equational logic and orderings.

1.1.1 First-Order Logic

I will start with the specification of the syntax and semantics of first-order logic.

Syntax

I first need to define a tuple Σ = (Ω,Π), which is the signature of my language.
Ω is a finite set of tuples of the form f/n, where f is a function symbol and n is
the arity of f , also denoted by arity(f). Π is the finite set of tuples of predicate
symbols of the form P/n, where P is the predicate and n its arity. I use P,Q,R
for predicate symbols, f, g, h for function symbols of arity at least 1 and a, b, c, d
for function symbols of arity 0, also called constants. By X , I denote an infinite
set of variables. x, y, z, u, v denote variables from X . I assume that Σ contains
at least one constant symbol. A term is either a variable x or a function, where
the arguments are again terms. More formally:

Definition 1.1.1 (Term). Let Σ = (Ω,Π) be a signature. A term t is recursively
defined as follows:

t := f(s1, ..., sn), where f ∈ Ω, arity(f) = n and s1, ..., sn are terms,
t := x for some x ∈ X .

For example, let Ω = {f/2, g/1, a/0} andX = {x, y, ...}. Then f(x, a), g(f(a, a))
and f(g(x), g(y)) are all terms. I use s, t, l, r to denote terms. The set of all terms
is denoted by T (Σ,X ). The set of all ground terms is denoted by T (Σ, ∅) or just
T (Σ). The set of variables occuring in a term t (in a set of terms T ) is denoted
by vars(t) (respectively vars(T )). The term t is called ground if vars(t) = ∅.
The number of occurences of a variable x in t is denoted by #(x, t).

Since equality is a particularly important function, especially in this thesis,
I will treat it separately instead of representing it as a simple symbol in Π:
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Definition 1.1.2. Let s, t be terms from T (Σ,X ). Then s ≈ t is an equation
over Σ. I use s 6≈ t as a shortcut for ¬(s ≈ t) and write s # t to denote a literal
that is either s ≈ t or s 6≈ t.

A literal is a positive or negative predicate or equation. I use symbols L,K,H
to denote (equational) literals. The function comp computes the complement of
a literal.

Definition 1.1.3 (Formulas). A formula ψ is inductively defined as follows

ψ := >,
ψ := ⊥,
ψ := P (t1, ..., tn) for terms {t1, ..., tn} ⊆ T (Σ,X ) and P ∈ Π,
ψ := s ≈ t for {s, t} ⊆ T (Σ,X ),
ψ := ¬φ for a formula φ,
ψ := φ ◦ χ for formulas φ, χ and ◦ ∈ {∧,∨,→,↔},
ψ := ∀x.φ for a formula φ,
ψ := ∃x.φ for a formula φ,

For a signature Σ = {{f/1, g/1, h/1, a/0}, {P/2, Q/1}} a valid formula would
be ∀x.∃y.P (f(a), a) ∧ f(x) ≈ g(h(y)) ∨Q(a). The set of all formulas is denoted
by F (Σ,X ).

Definition 1.1.4 (Conjunctive Normal Form). A formula ψ is in Conjunctive
Normal Form (CNF) iff ψ is of the form ∀x1, ..., xn.

∧
0≤i≤m(

∨
0≤j≤l Li,j), where

the Li,j ’s are literals.

Any first-order formula can be transformed into an equisatisfiable formula
in CNF. This thesis only operates on formulas that are in Conjunctive Normal
Form. A clause is a disjunction of literals and can be represented as a set of
literals. I use symbols C,D to denote clauses, write {C1, ..., Cn} for a CNF
formula C1 ∧ ... ∧ Cn and use N to denote such sets of clauses.

Note, that any signature Σ = (Ω,Π) with |Ω| > 1 can be turned into a
signature Σ′ = (Ω′, ∅), where Ω′ = Ω∪{fP | P ∈ Π, fP fresh}∪{true}. Replacing
all occurences of a predicate P (t1, ..., tn) in a formula by fP (t1, ..., tn) ≈ true
we get a semantically equivalent formula. In this thesis the signature is always
assumed to have only one predicate symbol ≈.

Substitutions are a very important function in first-order logic. They replace
variables in X with terms in T (Σ,X )

Definition 1.1.5 (Substitutions). A substitution σ is a mapping X → T (Σ,X ).
Its finite domain is defined as dom(σ) := {x | xσ 6= x}, and its codomain is
defined as cdom(σ) := {t | xσ = t, x ∈ dom(σ)}. We recursively extend its
application to terms and formulas as follows:

>σ := >,
⊥σ := ⊥,
f(t1, ..., tn)σ := f(t1σ, ..., tnσ),
P (t1, ..., tn)σ := P (t1σ, ..., tnσ),
(s ≈ t)σ := sσ ≈ tσ,
(¬ψ)σ := ¬(ψσ),
(ψ ◦ φ)σ := ψσ ◦ φσ,
(Qx.ψ)σ := Qz.(ψσ[x 7→ z]), where Q ∈ {∀,∃}, z fresh
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where ◦ ∈ {∧,∨,→,↔}.
A substitution σ is called ground if cdom(σ) is ground. A substitution σ is

called grounding for some term t (formula ψ) if tσ (ψσ) is ground.

I use symbols σ, τ, δ, µ to denote substitutions. The function gnd computes
the set of all ground instances of a term or formula.

As an example, assume σ = {x→ a, y → g(z)}. Then f(x, y)σ = f(a, g(z)).
Closures are denoted by C·σ and L·σ for a clause C, a literal L and a grounding
substitution σ. A closure does not apply the substitution to the clause or the
literal, but is more of a storage of the combination consisting of the clause and
the substitution for possible later applications. Special forms of substitution are
matchers and most general unifiers, which are defined as follows:

Definition 1.1.6 (Matchers and Unifiers). Let σ be a substitution and s, t terms.
The substitution σ is called a matcher from s to t if sσ = t. The substitution
σ is called a unifier of s and t if sσ = tσ. The substitution σ is called the most
general unifier (mgu) of s and t if it is a unifier and for all other unifiers µ of s
and t it holds that it can be represented as µ = σµ′, where µ′ is a substitution.

I assume that mgus do not introduce fresh variables and that they are idem-
potent. While substitutions can replace variables with terms, they are not able
to replace subterms of a term with other terms. Therefore, I need one operator
to get subterms of terms and one to replace subterms in a term by other terms.
To achieve this, I first need a definition of term positions.

Definition 1.1.7. The set of positions of a term, equation or formula is induc-
tively defined as follows:

pos(x) := {ε}
pos(ψ) := {ε} if ψ ∈ {>,⊥}
pos(¬ψ) := {ε} ∪ {1p | p ∈ pos(ψ)}
pos(ψ ◦ φ) := {ε} ∪ {1p | p ∈ pos(ψ)} ∪ {2p | p ∈ pos(φ)}
pos(s ≈ t) := {ε} ∪ {1p | p ∈ pos(s)} ∪ {2p | p ∈ pos(t)}
pos(f(t1, ..., tn)) := {ε} ∪

⋃n
i=0{ip | p ∈ pos(ti)}

pos(P (t1, ..., tn)) := {ε} ∪
⋃n
i=0{ip | p ∈ pos(ti)}

pos(Qx.ψ) := {ε} ∪ {1p | p ∈ pos(ψ)}, where Q ∈ {∀,∃}

where ◦ ∈ {∧,∨,→,↔}.

Any subterm (subformula) of a term (formula) can now be obtained using
the | operator, which returns the subterm (subformula) of a formula or term at
some position.

Definition 1.1.8. The subterm t|p (subformula ψ|p) of a term t (formula ψ) at
position p is recursively defined as

t|ε := t,
ψ|ε := ψ,
¬ψ|1p := ψ|p,
s1 ≈ s2|ip := si|p, i ∈ {1, 2},
ψ1 ◦ ψ2|ip := ψi|p, i ∈ {1, 2},
f(s1, ..., sn)|ip := si|p, i ∈ {1, ...n},
P (s1, ..., sn)|ip := si|p, i ∈ {1, ...n},
Qx.ψ|1p := ψ|p, Q ∈ {∀,∃}
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where ◦ ∈ {∧,∨,→,↔}.

Analogously, I can replace any subterm or subformula with the [] operator,
which replaces a subterm (subformula) of a term or formula by another term
(formula) at some position.

Definition 1.1.9. The replacement of a formula or term is inductively defined
as follows

t[s]ε := s,
ψ[φ]ε := φ,
¬ψ[φ]1p := ψ[φ]p,
¬ψ[s]1p := ψ[s]p,
s1 ≈ s2[s]ip := si[s]p, i ∈ {1, 2},
ψ1 ◦ ψ2[s]ip := ψi[s]p, i ∈ {1, 2},
ψ1 ◦ ψ2[φ]ip := ψi[φ]p, i ∈ {1, 2},
f(s1, ..., sn)[s]ip := si[s]p, i ∈ {1, ...n},
P (s1, ..., sn)[s]ip := si[s]p, i ∈ {1, ...n},
Qx.ψ[φ]1p := ψ[φ]p, Q ∈ {∀,∃}
Qx.ψ[s]1p := ψ[s]p, Q ∈ {∀,∃}

where ◦ ∈ {∧,∨,→,↔}.

For example, the term f(a, g(x)) has the positions {ε, 1, 2, 21}, f(a, g(x))|21 =
x and f(a, g(x))[b]2 denotes the term f(a, b).

Another important operator that can be defined by positions is the size of
a term, which corresponds to the number of its symbols. It turns out that the
number of symbols is exactly the number of positions of t.

Definition 1.1.10. The size |t| of a term t or |ψ| of a formula ψ is defined as
|pos(t)| and |pos(ψ)|, respectively.

Semantics

The semantics of first-order logic are defined by a Σ-Algebra.

Definition 1.1.11 (Σ-Algebra). Let Σ = (Ω,Π) be a signature. The Σ-Algebra
A is defined as a triple

(UA, {fA : UnA → UA | f ∈ Ω, arity(f) = n}, {PA ⊆ UmA | P ∈ Π, arity(P ) = m})

where UA is called the universe of A and is non-empty.

Definition 1.1.12 (Variable Assignment). A variable assignment over a Σ-
Algebra A is a map β : X → UA.

Now I can define the value of a term and the truth value of a formula with
a given Σ-Algebra A and a variable assignment β.

Definition 1.1.13 (Value of a Term). Let A be a Σ-Algebra and β a variable
assignment. The function A(β) : T (Σ,X )→ UA is recursively defined as follows:

A(β)(x) = β(x),
A(β)(f(t1, ..., tn)) = fA(A(β)(t1), ...,A(β)(tn))
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Definition 1.1.14 (Truth Value of a Formula). Let A be a Σ-Algebra, β a
variable assignment. The function A(β) : F (Σ,X )→ {0, 1} is recursively defined
as follows:

A(β)(>) := 1,
A(β)(⊥) := 0,
A(β)(P (s1, ..., sn)) := if (A(β)(s1), ...,A(β)(sn)) ∈ PA then 1 else 0,
A(β)(s ≈ t) := if A(β)(s) = A(β)(t) then 1 else 0,
A(β)(¬ψ) := 1−A(β)(ψ),
A(β)(ψ ∧ φ) := min(A(β)(ψ),A(β)(φ)),
A(β)(ψ ∨ φ) := max(A(β)(ψ),A(β)(φ)),
A(β)(ψ → φ) := max(1−A(β)(ψ),A(β)(φ)),
A(β)(ψ ↔ φ) := if A(β)(ψ) = A(β)(φ) then 1 else 0,
A(β)(∀x.ψ) := mina∈UA{A(β[x 7→ a])(ψ)},
A(β)(∃x.ψ) := maxa∈UA{A(β[x 7→ a])(ψ)},

A formula ψ is called satisfiable by A under β if A(β)(ψ) = 1

Definition 1.1.15 (Entailment). Let ψ, φ be two formulas. If for all Σ-Algebras
A and all variable assignments β it holds that if A(β)(ψ) = 1, then A(β)(φ) = 1
then ψ entails φ. It is written ψ |= φ.

1.1.2 Equational Logic

As already mentioned, equality occupies a special status in first-order logic.
Naively, one could add equality as a symbol in Π and add the equality axioms
to the set of input clauses. In practice, however, this turns out to be extremely
inefficient. In the past, therefore, a more efficient way was found, namely to
represent the equations as a term rewrite system. This Section focuses on such
term rewrite systems to solve the equational problems.

Term Rewrite Systems

Rewrite systems are defined as follows:

Definition 1.1.16 (Rewrite System). A rewrite system is a tuple (M,→), where
M is a set of elements and → ⊆M ×M is a binary relation.

Definition 1.1.17. Let (M,→) be a rewrite system. Then

→0 := {(a, a) | a ∈M}
→i+1 :=→i ◦ →
→∗ :=

⋃
i≥0 →i

← := {(b, c) | (c, b) ∈→}
↔ :=→ ∪ ←
↔∗ := (↔)∗

Assume thatM = {a, b, c} and→ = {a→ b, b→ c, c→ a}. Then→0 = {a→
a, b→ b, c→ c}, →1 = {a→ b, b→ c, c→ a}, →2 = {a→ c, b→ a, c→ b}.

Definition 1.1.18. Let (M,→) be a rewrite system. An element a ∈ M is
called reducible if a→ b for some b ∈M , otherwise a is called in normal form.
An element b is called a normal form of a, denoted a↓ = b, iff a →∗ b and b is
in normal form. Two elements {b, c} ⊆M are called joinable, denoted b ↓ c, iff
there exists an a ∈M such that b→∗ a and c→∗ a.
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Definition 1.1.19. Let (M,→) be a rewrite system. → is called

1. locally confluent if a→ b and a→ c implies b ↓ c.

2. confluent if a→∗ b and a→∗ c implies b ↓ c.

3. terminating if there exists no infinite descending chain a0 → a1 → ...

4. convergent if it is confluent and terminating.

Definition 1.1.20 (Rewrite Rule). A rewrite rule is a equation s ≈ t such that
vars(t) ⊆ vars(s) and s is not a variable. A term rewrite system (TRS) is a set
of rewrite rules.

Definition 1.1.21 (Rewrite Relation). Let E be a set of equations. The rewrite
relation→E⊆ T (Σ,X )×T (Σ,X ) is defined as s→E t iff there exists a l ≈ r ∈ E,
p ∈ pos(s) and a matcher σ such that s|p = lσ and t = s[rσ]p.

A TRS R is terminating, confluent, convergent, if the rewrite relation →R is
terminating, confluent, convergent.

Definition 1.1.22 (Term Normal Form). Let E be a TRS and →E be the
corresponding rewrite relation. We write s = t↓E if s is the normal form of t in
the rewrite relation →E . We write s#t = (s′#t′)↓E if s is the normal form s′

and t is the normal form of t′.

Definition 1.1.23 (Reducibility and Irreducibility). Let R be a set of rewrite
rules. A term t is called irreducible by R if no rule in R rewrites t. Otherwise
it is called reducible. A literal, clause is called irreducible if all of its terms are
irreducible, and reducible otherwise. A substitution σ is called irreducible if any
t ∈ cdom(σ) is irreducible, otherwise this substitution is called reducible.

E-Algebras

Let E be a set of equations over T (Ω,X ) where all variables are implicitly univer-
sally quantified. The well-known inference system of equational logic comprises
the following rules [BN98]

Reflexivity E ⇒EQ E ∪ {t ≈ t}
provided t is a term.

Symmetry E ∪ {t ≈ t′} ⇒EQ E ∪ {t ≈ t′, t′ ≈ t}

Transitivity E ∪ {t ≈ t′, t′ ≈ t′′} ⇒EQ E ∪ {t ≈ t′, t′ ≈ t′′, t ≈ t′′}

Congruence E ∪ {t1 ≈ t′1, ..., tn ≈ t′n} ⇒EQ E ∪ {t1 ≈ t′1, ..., tn ≈
t′n, f(t1, ..., tn) ≈ f(t′1, ..., t

′
n)}

Instance E ∪ {t ≈ t′} ⇒EQ E ∪ {t ≈ t, tσ ≈ t′σ}
provided σ is a substitution.

and by Bikhoff’s theorem [BN98] we get:
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Theorem 1.1.24 (Bikhoff’s theorem [BN98]). Let E be a set of equations, Σ
a signature and X a countably inifinite set of variables. Then for all {s, t} ⊆
T (Σ,X ) the following properties are equivalent:

1. s↔∗E t,

2. E ⇒∗EQ {s ≈ t} ∪ E′ is derivable,

3. E |= ∀x1, .., xn.s ≈ t.

where ⇒∗EQ denotes multiple applications of ⇒EQ.

1.1.3 Orderings

One question that arises with term rewrite systems is in which direction a term
should be rewritten. Ideally, a term should become smaller and smaller until it
has reached its normal form. However, the question is when a term is actually
smaller than another term. At this point, orderings come into play that can at
least partially answer this question. The first step is to define various orderings.

Definition 1.1.25 (Orderings). Let M be a set. A partial ordering � ⊆M×M
on a set M is a reflexive, antisymmetric and transitive binary relation on M .
A total ordering is a partial ordering that is total. A strict partial ordering
≺ ⊆M ×M is a transitive and irreflexive binary relation on M .

Definition 1.1.26. Let ≺,� be orderings. Then � = {(b, a) | a ≺ b}, � =
{(b, a) | a � b}

As already mentioned, ideally I want a term rewrite system to make a term
smaller and smaller up to a fixed point. For an ordering this means that it has
to be well-founded.

Definition 1.1.27 (Well-Foundedness). Let M be a set. A strict ordering ≺ ⊆
M ×M is well-founded if there is no infinite descending chain a0 � a1 � ... with
ai ∈M .

Furthermore, I need the following two properties of a rewrite system.

Definition 1.1.28. A binary relation A ⊆ T (Σ,X )×T (Σ,X ) is compatible with
Σ-operations if s A t implies f(t1, ..., s, ..., tn) A f(t1, ..., t, ..., tn) for all f ∈ Ω
and {s, t, t1, ..., tn} ⊆ T (Σ,X )

Definition 1.1.29 (Substitution Stable Relation). A binary relation A ⊆
T (Σ,X ) × T (Σ,X ) is stable under substitutions if s A t implies sσ A tσ for
all {s, t} ⊆ T (Σ,X ) and substitutions σ.

Definition 1.1.30 (Rewrite Relation, Rewrite Ordering). A binary relation
A ⊆ T (Σ,X )×T (Σ,X ) is a rewrite relation if it is compatible with Σ-operations
and stable under substitutions. A rewrite ordering is an ordering that is a rewrite
relation.

Definition 1.1.31 (Reduction Ordering). A well-founded rewrite ordering is
called a reduction ordering.
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Definition 1.1.32 (Lexicographic Ordering). Let (M1,≺1), ..., (Mn,≺n) be
strict orderings. The lexicographic ordering ≺lex is defined as (m1, ...,mn) ≺
(m′1, ...,m

′
n) iff m1 = m′1, ...,mi = m′i and mi+1 ≺i+1 m

′
i+1 for some 0 ≤ i ≤ n.

Definition 1.1.33 (Multisets). Let M be a set. A multiset S of M is a mapping
S : M → N.

Definition 1.1.34 (Multiset Ordering). Let (M,≺) be a strict ordering. The
multiset ordering ≺mul to multisets over M is defined by S1 ≺mul S2 iff S1 6= S2

and ∀m ∈M.[S2(m) < S1(m)→ ∃m′ ∈M.(m′ ≺ m ∧ S1(m′) < S2(m′))]

Let ≺ be a well-founded, total, strict ordering on ground literals, which is
lifted to clauses and clause sets by its respective multiset extension. I overload
≺ for literals, clauses, clause sets if the meaning is clear from the context. The
ordering is lifted to the non-ground case via instantiation: I define C ≺ D if
for all grounding substitutions σ it holds that Cσ ≺ Dσ. Then, I define � as
the reflexive closure of ≺ and N�C := {D | D ∈ N and D � C} and use the
standard Superposition style notion of redundancy [BG94].

Definition 1.1.35 (Clause Redundancy [BG94]). A ground clause C is redun-
dant with respect to a set N of ground clauses and an ordering ≺ if N�C |= C.
A clause C is redundant with respect to a clause set N and an ordering ≺ if for
all C ′ ∈ gnd(C), C ′ is redundant with respect to gnd(N).

The Knuth-Bendix Ordering

The ordering that is used extensively in this thesis is the Knuth-Bendix Ordering
(KBO) [KB70] as defined in the following.

Definition 1.1.36 (KBO Weight Function). Let Σ = (Ω,Π) be a signature and
X a set of variables. We define the KBO Weight Function wkbo : Ω ∪X → R+

such that

1. wkbo(x) = w0 ∈ R+ for all variables x ∈ X ,

2. wkbo(c) ≥ w0 for all constants c ∈ Ω and

3. wkbo(f(t1, ..., tn)) = wkbo(f) + Σ1≤i≤nwkbo(ti).

Definition 1.1.37 (Knuth-Bendix Ordering [KB70]). Let Σ = (Ω,Π) be a finite
signature,wkbo a KBO Weight Function and ≺ be a strict partial ordering on Ω.
Then s �kbo t iff

1. #(x, s) ≥ #(x, t) for all variables x and wkbo(s) > wkbo(t), or

2. #(x, s) ≥ #(x, t) for all variables x, wkbo(s) = wkbo(t) and

(a) s = f(s1, .., sn), t = g(t1, ..., tm) and f � g, or

(b) s = f(s1, .., sn), t = f(t1, ..., tn) and (s1, ..., sn)(�kbo)lex(t1, ..., tn).

As an example consider a signature Σ = (Ω,Π), where Ω = {f, g, h}. Further
assume a weight funtion such that

wkbo(f) = 2, wkbo(g) = wkbo(h) = wkbo(x) = 1 for all x ∈ X

and an ordering on Ω such that f � g � h � a. Then f(x, y) �kbo g(x, y) by
the first condition, g(x, y) �kbo h(x, y) by condition 2a and f(f(x, y), z) �kbo
f(x, f(y, z)) by condition 2b.
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1.2 Basic Calculi

This Section presents basic calculi. The new calculi presented in this dissertation
are strongly inspired by these basic calculi and try to extend or improve them.

1.2.1 CDCL

CDCL (Conflict Driven Clause Learning) [SS96, JS96, MMZ+01, BHvMW09,
Wei15] is a SAT solver for propositional clauses. The signature in propositional
logic is always of the form Σ = (∅,Π), where for all P ∈ Π it holds arity(P ) = 0.
Formulas are built without quantifiers and equations. Propositional logic is a
decidable fragment of first-order logic.

In a refined and verified version of CDCL as described in [BFLW18] a state
in CDCL is a quintuple (M ;N ;U ; k;D), where M is a sequence of annotated
literals, N is the set of input clauses, U is the set of learned clauses, k a level
and D a conflict clause. Initially the state is (ε;N ; ∅; 0;>). The rules of CDCL
are as follows:

Propagate(M ;N ;U ; k;>) ⇒CDCL (MLC∨L;N ;U ; k;>)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M ;N ;U ; k;>) ⇒CDCL (MLk+1;N ;U ; k + 1;>)

provided L is undefined in M

Conflict (M ;N ;U ; k;>) ⇒CDCL (M ;N ;U ; k;D)

provided D ∈ (N ∪ U) and M |= ¬D

Skip (MLC∨L;N ;U ; k;D) ⇒CDCL (M ;N ;U ; k;D)

provided D 6∈ {>,⊥}, and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D ∨ comp(L)) ⇒CDCL (M ;N ;U ; k;D ∨ C)

provided D is of level k

Backtrack (M1K
i+1M2;N ;U ; k;D ∨ L) ⇒CDCL (M1L

D∨L;N ;U ∪ {D ∨
L}; i;>)

provided L is of level k and D is of level i

Restart (M ;N ;U ; k;>) ⇒CDCL (ε;N ;U ; 0;>)

provided M 6|= N

Forget (M ;N ;U ∪ {C}; k;>) ⇒CDCL (M ;N ;U ; k;>)

provided M 6|= N

A literal L is of level i if Li or comp(L)i occurs in the trail M . A literal L is
also of level i if LC or comp(L)C occurs in M and its preceding literal in M is
of level i. If there is no preceding literal, then it is of level 0.

CDCL can terminate in different states depending on the input set N . The
state (M ;N ;U ; k;⊥) indicates that the input clause set is unsatisfiable. The
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state (M ;N ;U ; k;>) indicates that the input clause set is satisifiable and M is
a model of N if no rule is applicable anymore.

As an example consider three clauses

P ∨Q, ¬Q ∨R and ¬R ∨ ¬Q

A run of CDCL could now for example decide Q. So Q1 is added to the trail.
Then, the first clause gets true. Since the second clause has only one undefined
literal R and all the other literals are false in M (namely ¬Q), we have to apply
Propagate to add R¬Q∨R to the trail. This leads to a conflict with the third
clause, so we have to apply the same-named rule Conflict. Since both literals
in the conflict clause are of level 1 we can not apply Backtrack. Also, Skip is
not applicable since comp(¬R) is the last literal on the trail. Thus we have to
apply Resolve. This rule creates the new clause ¬Q on which we can now apply
Backtrack. Now, we have to Propagate ¬Q¬Q and PP∨Q to get the final solution
to the input clause set.

1.2.2 Superposition

Ganzinger et al [BG94] describe the Superposition calculus upon which many of
today’s approaches are based. It can be seen as an integration of classical term
rewriting into the resolution calculus. Given a reduction order � on terms which
is extended to an ordering on literals and clauses as described in Section 1.1.3,
the basic Superposition rules are as follows:

Superposition (N ∪ {D ∨ t ≈ t′, C ∨ s[u] # s′}) ⇒SUP (N ∪ {D ∨ t ≈
t′, C ∨ s[u] # s′} ∪ {(D ∨ C ∨ s[t′] # s′)σ})

provided σ = mgu(t, u) and u is not a variable, tσ 6� t′σ, sσ 6� s′σ, (t ≈ t′)σ
strictly maximal in (D ∨ t ≈ t′)σ, (s ≈ s′)σ maximal in (C ∨ s # s′)σ and
(C ∨ s # s′)σ 6� (D ∨ t ≈ t′)σ

Equality-
Resolution

(N ∪ {C ∨ s 6≈ s′}) ⇒SUP (N ∪ {C ∨ s 6≈ s′} ∪ {Cσ})

where σ is the mgu of s, s′, (s 6≈ s′)σ maximal in (C ∨ s 6≈ s′)σ

Equality-
Factoring

(N ∪ {C ∨ s′ ≈ t′ ∨ s ≈ t}) ⇒SUP (N ∪ {C ∨ s′ ≈ t′ ∨ s ≈
t} ∪ {(C ∨ t 6≈ t′ ∨ s ≈ t′)σ})

where σ is the mgu of s, s′, s′σ 6� t′σ, sσ 6� tσ, (s ≈ t)σ maximal in (C ∨ s′ ≈
t′ ∨ s ≈ t)σ

Now let N be a set of clauses. A run is a sequence N0, N1, ..., Nn such that
N = N0 and Ni+1 = Ni ∪ {C}, where C is a new clause generated by apply-
ing one of the above rules to clauses in Ni. For completeness it is shown that
ifNn is saturated up to redundancy then ⊥ ∈ Nn if and only ifN is unsatisifiable.
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f(a)
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f(b)
h(a)

f(a) g(a) a b f(b) h(a)

Merge

f(a)
f(b)
h(a)
g(a)

Deduct

Figure 1.1: Steps of the congruence closure algorithm for example 1.2.1. Green
classes represent the final result. Red classes are classes that no longer exist in
the final result.

1.2.3 Congruence Closure

Congruence Closure [NO80, DST80, Sho84] is an algorithm for deciding the
satisfiability of ground equations. It is well suited as an incremental algorithm
that decides the validity of ground equations and is able to find a small subset
of input equations that serves as a proof, all in time O(n log(n)) [NO07]. In
this thesis, I present the abstract version of congruence closure as described by
Fontaine [Fon04] and based on the algorithm by Nelson and Oppen [NO80]. The
initial state is (Π, E), where Π is a partition of all ground terms, such that every
term is in its own class, and E is the set of ground equations. The algorithm
consists of the following three inference rules.

Delete ({A} ∪Π, E ∪ {s ≈ t}) ⇒CC ({A} ∪Π, E)

provided {s, t} ⊆ A.

Merge ({A,B} ∪Π, E ∪ {s ≈ t}) ⇒CC ({A ∪B} ∪Π, E)

provided s ∈ A, t ∈ B and A 6= B.

Deduction ({A,B}∪Π, E) ⇒CC ({A,B}∪Π, E∪{f(s1, ..., sn) ≈ f(t1, ..., tn)})
provided f(s1, ..., sn) ∈ A, f(t1, ..., tn) ∈ B, A 6= B and for each i, there exists a
Di ∈ {A,B} ∪Π such that {si, ti} ∈ Di and f(s1, ..., sn) ≈ f(t1, ..., tn) 6∈ E.

The algorithm terminates if no rule is applicable anymore. The resulting set
Π represents the set of congruence classes.

Example 1.2.1. Assume for example the set E = {a ≈ b, f(a) ≈ g(a), f(b) ≈
h(a)}. Initially, the algorithm creates classes for each occuring term and subterm.
Then, Merge can be applied three times for the three equations. Since a ≈ b
Deduct is applicable as well for f(a) and f(b). The steps and the final result are
depicted in figure 1.1.
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Chapter 2

SCL(EQ): SCL for
First-Order Logic with
Equality

In this Chapter, I provide a detailed description of my new calculus SCL(EQ)
[LW23] accompanied by comprehensive examples, proofs for soundness and com-
pleteness as well as an extensive description of related work. I start with related
work in Section 2.1. Then, I present my calculus in Section 2.2 and proof sound-
ness and completeness in Sections 2.3 and 2.4. Finally, I conclude and discuss
improvements and future work in Section 2.5. This work was mainly conducted
by me. Christoph Weidenbach was involved in the exchange of ideas and the
final polishing of the paper.

2.1 Related Work

SCL(EQ) is based on the idea of Simple Clause Learning (SCL) by Bromberger
et al. [BSW23]. Similar to my approach, a simple model representation is estab-
lished, namely a sequence of ground literals. The problem state is given by a
six-tuple (Γ;N ;U ;β; k;D), where Γ is the aforementioned sequence of ground
literals,N and U are the sets of initial and learned clauses, β restricts the number
of ground clauses and literals to those smaller than β, k is the current decision
level and D is the current conflict clause, wich is > if there is no conflict. Similar
to CDCL, the rules are now divided into two parts: conflict search and conflict
resolution rules. Conflict search rules propagate and decide ground literals until
a conflicting ground instance of a clause is found. They are defined as a set of
deduction rules as follows:

Propagate (Γ;N ;U ;β; k;>) ⇒SCL (Γ, Lσ(C0∨L)δ·σ;N ;U ;β; k;>)

provided C∨L ∈ (N∪U),C = C0∨C1,C1σ = Lσ∨...∨Lσ,C0σ does not contain
Lσ, δ is the mgu of the literals in C1 and L, (C∨L)σ is ground, (C∨L)σ ≺B {β},
C0σ is false under Γ and Lσ is undefined in Γ

Decide (Γ;N ;U ;β; k;>) ⇒SCL (Γ, Lσk+1;N ;U ;β; k + 1;>)
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provided L ∈ C for a C ∈ (N ∪ U), Lσ is a ground literal undefined in Γ and
Lσ ≺B {β}

Conflict (Γ;N ;U ;β; k;>) ⇒SCL (Γ;N ;U ;β; k;D · σ)

provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

As one can see, the propagated literal Lσ is ground. However the annotated
clause is a closure (C0 ∨ L)δ · σ. Furthermore the conflict clause D · σ is also a
closure. This allows to perform resolution inferences during conflict resolution
on the non-ground clauses. Conflict resolution rules consist of Skip, Factorize,
Resolve and Backtrack. Skip allows to skip literals on the trail that are no
longer dependant on the conflict clause. Factorize allows to remove duplicate
literals from the conflict clause. Resolve performs a resolution step on the conflict
clause and the leading clause on the trail. And finally Backtrack allows a non-
chronological backjump. The rules need to be adapted to non-ground clauses:

Skip (Γ, L;N ;U ;β; k;D · σ) ⇒SCL (Γ;N ;U ;β; k − i;D · σ)

provided comp(L) does not occur in Dσ, if L is a decision literal then i = 1,
otherwise i = 0.

Factorize (Γ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL (Γ;N ;U ;β; k; (D ∨ L)η · σ)

provided Lσ = L′σ, η = mgu(L,L′)

Resolve (Γ, Lδ(C∨L)·δ;N ;U ;β; k; (D∨L′)·σ) ⇒SCL (Γ, Lδ(C∨L)·δ;N ;U ;β; k; (D∨
C)η · σδ)
provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

Backtrack (Γ,K,Γ′, comp(Lσ)k;N ;U ;β; k; (D ∨ L) · σ) ⇒SCL (Γ0;N ;U ∪
{D ∨ L};β; j;>)

provided Dσ is of level i′ < k, and Γ0,K is the minimal trail subsequence such
that there is a grounding substitution τ with (D ∨ L)τ is false in Γ0,K but not
in Γ0, and Γ0 is of level j

The authors show that their approach is sound and complete for full first-
order logic. In SCL and in SCL(EQ) propagations need not to be exhaustively
applied. Both approaches only learn non-redundant clauses, but for the first time
conflicts resulting out of a decision have to be considered in SCL(EQ), due to
the nature of the equality relation.

There have been suggested several approaches to lift the idea of an inference
guiding model assumption from propositional to full first-order logic [FW19,
BFT06, BP15, BFSS15]. However, they do not provide a native treatment of
equality, e.g., via paramodulation or rewriting. Thus, in the following, we solely
concentrate on approaches that are designed specifically for first-order logic with
equality.

Baumgartner et al. [BT03] describe the Model Evolution calculus (ME),
which lifts the DPLL calculus [DLL62a,DP60] to first-order logic. An extension
of ME to first-order logic with equality (MEE) was presented in [BT05], which
was again revised and implemented in [BPT12]. Here I will concentrate on the
latest description of MEE as described in [BPT12]. Similar to my approach, a
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candidate model is constructed until a clause instance contradicts this model
or all instances are satisfied by the model. The candidate model results from
the so-called context, which consists of a finite set of non-ground rewrite literals.
Roughly speaking, a context literal specifies the truth value of all its ground
instances unless a more specific literal specifies the complement. Initially the
context consists of a pseudo literal ¬v, which represents all negative literals.
Literals within a context may be universal or parametric, where universal literals
guarantee all its ground instances to be true. The algorithm now operates on
sequents Λ ` Φ, where Λ is the context and Φ is the set of constrained clauses.
Constrained clauses are of the form C ·Γ, where C is a clause and Γ is a constraint.
Intuitively speaking, constraints can be seen as ground facts that held in the
model when the clause was derived. Constrained clauses, where at least one
constraint does no longer hold in the current model are not considered anymore.
The Superposition and Equality Resolution rule are now adapted to constrained
clauses:

Superposition (Λ∪ {l→ r} ` Φ∪ {s[l′]p # t∨C · Γ}) ⇒SUP (Λ∪ {l→ r} `
Φ ∪ {s[l′]p # t ∨ C · Γ, (s[r]p # t ∨ C · Γ, l→ r)σ})
provided σ = mgu(l, l′), rσ 6� lσ, tσ 6� sσ, l′ not a variable

Equality-
Resolution

Λ ` Φ∪{s 6≈ t∨C ·Γ} ⇒SUP Λ ` Φ∪{s 6≈ t∨C ·Γ, (C ·Γ)σ}

where σ is the mgu of s, t

Additionally, a negative resolution rule is needed to allow inferences with
inequations within the context.

Neg-Res Λ ∪ {¬A} ` Φ ∪ {s ≈ t ∨ C · Γ} ⇒SUP Λ ∪ {¬A} ` Φ ∪ {s ≈
t ∨ C · Γ, (C · Γ, s 6→ t)σ}
where ¬A is ¬v or a negative rewrite literal l 6→ r, σ = mgu(A, s ≈ t) and
tσ 6� sσ.

The main calculus now roughly consists of three rules: Deduce, Split and Close.
Deduce generates new clauses based on the current model assumption using the
aforementioned rules. For the Superposition and Equality Resolution rules the
right premise is from Φ and the left premise from Λ. And for the Neg-Res rule
the premise is from Φ. In case the empty clause is derived in this way, Split is
applied. It basically repairs the trail by adding a literal from the constraint of the
empty clause to the context on one branch and its negation on the other branch.
If the negation of all literals in a constraint of an empty clause are contradictory
with the current model assumption, the branch is closed with the Close rule. If
all branches are closed, the clause set is unsatisfiable. Universal literals also allow
optional rules such as Assert, Compact and more powerful redundancy criteria.
Assert allows to add a literal to the context without branching. Compact allows
to remove superfluous literals from the context. Powerful redundancy criteria
allow to avoid redundant inferences, but also to simplify or delete clauses from
the clause set. The authors show their approach to be sound and complete for
full first-order logic.

Another approach by Baumgartner and Waldmann [BW09] combined the
Superposition calculus with the Model Evolution calculus with equality. In this
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calculus the atoms of the clauses are labeled as ”split atoms” or ”superposition
atoms”. The Superposition part of the calculus then generates a model for the
Superposition atoms while the model evolution part generates a model for the
split atoms. Conversely, this means that if all atoms are labeled as ”split atom”,
the calculus behaves similar to the model evolution calculus. If all atoms are
labeled as ”superposition atom”, it behaves like the Superposition calculus.

In [BFT06] Baumgartner et al. show how to integrate learning into the
original Model Evolution calculus. It would be interesting to see this integration
also in the MEE calculus as this would be very close to my approach.

Baumgartner et al. [BFP07] present another approach to equality based on
hyper tableaux [Bau98]. In general, a hyper tableaux works as follows: Assume
clauses in the form L1, ..., Ln ⇐ K1, ...,Km, where L1, ..., Ln are called the head
literals and K1, ...,Km are called the body literals, and an initial tableaux tree
with only branch >, which is open. Now assume that there is an open branch
B, a clause L1, ..., Ln ⇐ K1, ...,Km, a set K ′1, ...,K

′
m ∈ B and a substitution

σ such that K ′1 = K1σ, ...,K
′
m = Kmσ. Then extend the branch with new

nodes L1σφ, ..., Lnσφ, where φ is a substitution which ensures that vars(Li) ∩
vars(Kj) = ∅ for all i 6= j ≤ n. A branch is closed if it can be extended with
a clause ⇐ K1, ...,Km. If all branches are closed, the clause set is unsatisfiable.
For the handling of equality, the nodes in the hyper tableaux for equality do not
consist of literals but clauses. The reason is that, in contrast to the standard
hyper tableaux calculus, new clauses are generated using (unit) Superposition
inferences which are dependant on the current context given by a branch. The
algorithm allows three types of Superposition inferences, called sup-left and
unit-sup-right and ref. sup-left allows a Superposition inference between a body
literal and a positive unit clause. unit-sup-right allows a Superposition inference
between two positive unit clauses. ref allows an equality resolution of a body
literal.
The algorithm now consists of four derivation rules, which modifiy individual
branches of the tableaux. Extension rules extend the branch in a given tableau:
They consist of the Split and Equality rule. The Split rule branches out on an
instance of a clause that contains only head literals. The Equality rule appends
to the current branch the result of an application of one of the aforementioned
Superposition rules with clauses of the current branch. Apart from these rules
there exist two other rules, namely Del and Simp. Del deletes redundant clauses
by replacing them by a trivial equation. Simp replaces a clause by another
one that is smaller according to the reduction ordering that is used for the
Superposition inferences and is defined in the same way as in the Superposition
calculus. An E-hyper-tableau derivation on a set of clauses C1, ..., Cn is a possibly
infinite sequence of tableaux T1, T2, ...,, where T0 is the tableau that consists of a
single branch of length n with clauses C1, ..., Cn and Ti is the result of applying
a single derivation rule. A branch is closed iff it contains the empty clause. A
tableau is closed iff all its branches are closed. The authors show that their
approach is sound and complete.

Both the hyper tableaux calculus with equality and the model evolution cal-
culus with equality allow only unit Superposition applications, while SCL(EQ)
inferences are guided paramodulation inferences on clauses of arbitrary length.
The model evolution calculus with equality was revised and implemented in
2011 [BPT12] and compares its performance with that of hyper tableaux. Model
evolution performed significantly better, with more problems solved in all rele-
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vant TPTP [Sut17] categories, than the implementation of the hyper tableaux
calculus.

Plaisted et al. [PZ00] present the Ordered Semantic Hyper-Linking (OSHL)
calculus. OSHL is an instantiation based approach that repeatedly chooses
ground instances of a non-ground input clause set such that the current model
does not satisfy the current ground clause set. A further step repairs the current
model such that it satisfies the ground clause set again. The algorithm terminates
if the set of ground clauses contains the empty clause. OSHL supports rewriting
and narrowing, but only with unit clauses. In order to handle non-unit clauses
it makes use of other mechanisms such as Brand’s Transformation [BGV98].

Inst-Gen by Korovin [Kor13] handles equations only axiomatically. However,
in [KS10] Korovin and Sticksel sketched the idea of Inst-Gen-Eq which is de-
scribed in the following. The basic idea of Inst-Gen is to create propositional
instances of first-order clauses by mapping all variable occurences to a constant
⊥. Unsatisfiability of these ground instances implies that the original first-order
clauses are also unsatisfiable. If the ground instances are satisifiable, more in-
stances need to be added to the original clause set. The Inst-Gen rule creates
new First-order clauses which are entailed by the original set. The basic Inst-Gen
rule is as follows:

Inst-Gen (N∪{L∨C,L′∨D}) ⇒SUP (N∪{L∨C,L′∨D, (L∨C)σ, (L′∨D)σ})
where σ is a mgu of L and L′ and σ maps at least one variable to a term.

The rule is somehow similar to the basic Resolution rule, but no actual reso-
lution is performed. This leaves it up to the propositional SAT solver to decide
how to proceed with these new clauses. The authors describe many refinements
to this basic rule and other techniques such as redundancy elimination and literal
selection. The idea of Inst-Gen-Eq is to extract useful instances from a unit Su-
perposition proof of a contradiction of selected literals. The ground abstraction
is then extended by the extracted clauses and an SMT solver then checks the
satisfiability of the resulting set. Consider the following example set N as seen
in [Sti11]:

C1 := h(x) ≈ x ∨ x 6≈ a (2.1)

C2 := f(h(y)) ≈ g(z) (2.2)

C3 := f(a) 6≈ g(u) (2.3)

Now assume that the left literals are selected. Obviously, the ground instantiation
with ⊥ is not unsatisfiable. Thus new instances must be created. We need to
create a unit Superposition refutation of the set of selected literals M :

M ⇒SUP M ∪ {f(x) ≈ g(z)}
⇒SUP M ∪ {f(x) ≈ g(z), g(z) 6≈ g(u)}
⇒SUP M ∪ {f(x) ≈ g(z), g(z) 6≈ g(u),⊥}

Now for each selected literal we can extract the substitutions made for vari-
ables within these literals in the respective branch. Then we get new instances:

h(a) ≈ a ∨ a 6≈ a (2.4)

f(h(a)) ≈ g(z) (2.5)

f(a) 6≈ g(z) (2.6)
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Since the last literal is only a variant of f(a) 6≈ g(u) it can be ignored. The
corresponding ground instances are now:

h(⊥) ≈ ⊥ ∨⊥ 6≈ a

f(h(⊥)) ≈ g(⊥)

f(a) 6≈ g(⊥)

h(a) ≈ a ∨ a 6≈ a
f(h(a)) ≈ g(⊥)

An underlying SMT solver can now show that this set is unsatisfiable. Similar to
the approaches above, Inst-Gen-Eq only allows for unit Superposition inferences
in contrast to SCL(EQ).

On ground equational clauses, the behavior of SCL(EQ) is similar to SMT
(Satisfiability Modulo Theories) [NOT06]. SCL(EQ) rigorously searches for im-
plied equalities and does not explicitely consider the propositional abstraction
that drives SMT. Therefore, SCL(EQ) only learns non-redundant clauses that is
not guaranteed by standard SMT reasoning. On the other hand the level of lazi-
ness in reasoning that is offered by SMT is currently not supported by SCL(EQ).
On equational clauses with variables, SCL(EQ) learns only non-redundant clauses
with variables whereas SMT solely operates on ground instances.

2.2 The Calculus

I start the introduction of the calculus [LW23] by defining the ingredients of
an SCL(EQ) state. First, I extend reduction orderings on terms to literals and
clauses. In the end, I want to ensure that both literals and clauses are comparable
with terms. This is particularly important for the comparison with the maximum
term β. This is achieved by encoding literals and clauses in multisets and taking
the multiset extension of the term order ≺T .

Definition 2.2.1 (Term Ordering). Let ≺T be a reduction ordering on terms,
which is total on ground terms and for all ground terms t there exist only finitely
many ground terms s ≺T t. I extend its application to literals s ≈ t, s 6≈ t by
encoding the terms as multisets {s, t}, {s, s, t, t} and using the multiset extension
≺mul of≺T . I further extend its application to clauses by comparing the multisets
of literals using the multiset extension (≺mul)mul of ≺mul. I overload ≺T by
using ≺T for literals and clauses if it is clear from the context.

For a (multi)set of terms {t1, ..., tn} and a term t, I define {t1, ..., tn} ≺T t if
{t1, ..., tn} ≺T {t}. For a (multi)set of literals {L1, ..., Ln} and a term t, I define
{L1, ..., Ln} ≺T t if {L1, ..., Ln} ≺T {{t}} . Given a ground term β then gnd≺T β
computes the set of all ground instances of a literal, clause, or clause set where
the groundings are smaller than β according to the ordering ≺T .

Now I define the trail, which is the current model assumption of the set of
input clauses. Similar to SCL a trail consists of annotated ground literals. In
contrast to SCL, however, each literal in Γ is annotated with its level and with
a clause. We will see later why this is needed in SCL(EQ). Another distinctive
feature of SCL(EQ) is that a ground literal on the trail has to be irreducible
by the convergent rewrite system resulting from its preceding literals. This is
necessary to learn only non-redundant clauses as we will see later on.
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Definition 2.2.2 (Trail). A trail Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ] is a consistent
sequence of ground equations and inequations where Lj is annotated by a level
ij with ij−1 ≤ ij , and a closure Cj ·σj . I omit the annotations if they are not
needed in a certain context. A ground literal L is true in Γ if Γ |= L. A ground
literal L is false in Γ if Γ |= comp(L). A ground literal L is undefined in Γ if
Γ 6|= L and Γ 6|= comp(L). Otherwise it is defined. For each literal Lj in Γ it holds
that Lj is undefined in [L1, ..., Lj−1] and irreducible by conv({L1, ..., Lj−1}).

The above definition of truth and undefinedness is extended to clauses in
the obvious way. The notions of true, false, undefined can be parameterized by
a ground term β by saying that L is β-undefined in a trail Γ if β ≺T L or L
is undefined. The notions of a β-true, β-false term are restrictions of the above
notions to literals smaller β, respectively. All SCL(EQ) reasoning is layered with
respect to a ground term β.

Given a set (sequence) of ground literals Γ let conv(Γ) be a convergent rewrite
system out of the positive equations in Γ using ≺T .

Next I will define cores. A core is a minimal subsequence of a trail Γ that
makes a literal L true or false. As a consequence, there exists no core for undefined
literals. Since there can be several cores, I also give a description for defining
cores and defining literals. A defining core is a core whose literal that is furthest
to the right in the trail is furthest to the left compared to all other rightmost
literals of the other cores. This literal is called a defining literal because without
this literal L is undefined according to the preceding literals of the defining
literal.

Definition 2.2.3. Let Γ be a trail and L a ground literal such that L is defined
in Γ. By core(Γ;L) I denote a minimal subsequence Γ′ ⊆ Γ such that L is defined
in Γ′. By cores(Γ;L) I denote the set of all cores.

As already mentioned, core(Γ;L) is not necessarily unique. There can be
multiple cores for a given trail Γ and ground literal L.

Definition 2.2.4 (Trail Ordering). Let Γ := [L1, ..., Ln] be a trail. The (partial)
trail ordering ≺Γ is the sequence ordering given by Γ, i.e., (Li ≺Γ Lj if i < j)
for all 1 ≤ i, j ≤ n.

Definition 2.2.5 (Defining Core and Defining Literal). For a trail Γ and a
sequence of literals ∆ ⊆ Γ I write max≺Γ

(∆) for the largest literal in ∆ according
to the trail ordering ≺Γ. Let Γ be a trail and L a ground literal such that L is
defined in Γ. Let ∆ ∈ cores(Γ;L) be a sequence of literals where max≺Γ

(∆) �Γ

max≺Γ(Λ) for all Λ ∈ cores(Γ;L), then maxΓ(L) := max≺Γ(∆) is called the
defining literal and ∆ is called a defining core for L in Γ. If cores(Γ;L) contains
only the empty core, then L has no defining literal and no defining core.

As an example, consider the trail Γ := [L1, L2, L3] and literal L, such that
[L1, L2] |= L and [L2, L3] |= L. Then both [L1, L2] and [L2, L3] are cores, but only
[L1, L2] is a defining core and only L2 is the defining literal. Note that there can
be multiple defining cores but only one defining literal for any defined literal L.
For example, consider a trail Γ := [f(a) ≈ f(b)1:C1·σ1 , a ≈ b2:C2·σ2 , b ≈ c3:C3·σ3 ]
with an ordering ≺T that orders the terms of the equations from left to right, and
a literal g(f(a)) ≈ g(f(c)). Then the defining cores are ∆1 := [a ≈ b, b ≈ c] and
∆2 := [f(a) ≈ f(b), b ≈ c]. The defining literal, however, is in both cases b ≈ c.
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Defined literals that have no defining core and therefore no defining literal are
literals that are trivially false or true. Consider, for example, g(f(a)) ≈ g(f(a)).
This literal is trivially true in Γ. Thus an empty subset of Γ is sufficient to show
that g(f(a)) ≈ g(f(a)) is defined in Γ.

With the help of defining literals, I can now determine the level of literals
and clauses. This is important for finding conflicting clauses and learning from
them, similar to SCL.

Definition 2.2.6 (Literal Level). Let Γ be a trail. A ground literal L ∈ Γ is of
level i if L is annotated with i in Γ. A defined ground literal L 6∈ Γ is of level i
if the defining literal of L is of level i. If L has no defining literal, then L is of
level 0. A ground clause D is of level i if i is the maximum level of a literal in D.

The restriction to minimal subsequences for the defining literal and definition
of a level eventually guarantees that learned clauses are smaller in the trail
ordering. This enables completeness in combination with learning non-redundant
clauses as shown later.

Lemma 2.2.7. Let Γ1 be a trail and K a defined literal that is of level i in Γ1.
Then K is of level i in a trail Γ := Γ1,Γ2.

Definition 2.2.8. Let Γ be a trail and L ∈ Γ a literal. L is called a decision
literal if Γ = Γ0,K

i:C·τ , Li+1:C′·τ ′ ,Γ1. Otherwise L is called a propagated literal.

In other words: L is a decision literal if the level of L is one greater than the
level of the preceeding literal K. In the above example g(f(a)) ≈ g(f(c)) is of
level 3 since the defining literal b ≈ c is annotated with 3. a 6≈ b on the other
hand is of level 2.

I define a well-founded total strict ordering which is induced by the trail and
with which non-redundancy is proven in Section 2.3. Unlike SCL [FW19,BFW21]
I use this ordering for the inference rules as well. In previous SCL calculi, conflict
resolution automatically chooses the greatest literal and resolves with this literal.
In SCL(EQ) this is generalized. Coming back to the running example above,
suppose we have a conflict clause f(b) 6≈ f(c)∨b 6≈ c. The defining literal for both
inequations is b ≈ c. So we could do paramodulation inferences with both literals.
The following ordering makes this non-deterministic choice deterministic.

Definition 2.2.9 (Trail Induced Ordering). Let Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ] be
a trail, β a ground term such that {L1, ..., Ln} ≺T β andMi,j all β-defined ground
literals not contained in Γ ∪ comp(Γ): for a defining literal maxΓ(Mi,j) = Li
and for two literals Mi,j , Mi,k I have j < k if Mi,j ≺T Mi,k. The trail induces a
total well-founded strict order ≺Γ∗ on β-defined ground literals Mk,l,Mm,n, Li,
Lj of level greater than zero, where

1. Mi,j ≺Γ∗ Mk,l if i < k or (i = k and j < l)

2. Li ≺Γ∗ Lj if Li ≺Γ Lj

3. comp(Li) ≺Γ∗ Lj if Li ≺Γ Lj

4. Li ≺Γ∗ comp(Lj) if Li ≺Γ Lj or i = j

5. comp(Li) ≺Γ∗ comp(Lj) if Li ≺Γ Lj
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6. Li ≺Γ∗ Mk,l, comp(Li) ≺Γ∗ Mk,l if i ≤ k

7. Mk,l ≺Γ∗ Li, Mk,l ≺Γ∗ comp(Li) if k < i

and for all β-defined literals L of level zero:

8. ≺Γ∗ :=≺T

9. L ≺Γ∗ K if K is of level greater than zero and K is β-defined

and can eventually be extended to β-undefined ground literals K,H by

10. K ≺Γ∗ H if K ≺T H

11. L ≺Γ∗ H if L is β-defined

The literal ordering ≺Γ∗ is extended to ground clauses by multiset extension
and identified with ≺Γ∗ as well.

Note, that in the above definition, for a given i, I can always put the Mi,j

in an order corresponding to the integers. This is due to the fact that the total
number of ground literals is countable and since there are only finitely many
β-defined literals.

Lemma 2.2.10 (Properties of ≺Γ∗). 1. ≺Γ∗ is well-defined.

2. ≺Γ∗ is a total strict order, i.e. ≺Γ∗ is irreflexive, transitive and total.

3. ≺Γ∗ is a well-founded ordering.

Example 2.2.11. Assume a trail Γ := [a ≈ b1:C0·σ0 , c ≈ d1:C1·σ1 , f(a′) 6≈
f(b′)1:C2·σ2 ], select KBO as the term ordering ≺T where all symbols have weight
one and a ≺ a′ ≺ b ≺ b′ ≺ c ≺ d ≺ f and a ground term β := f(f(a)). According
to the trail induced ordering we have that a ≈ b ≺Γ∗ c ≈ d ≺Γ∗ f(a′) 6≈ f(b′) by
2.2.9.2. Furthermore we have that

a ≈ b ≺Γ∗ a 6≈ b ≺Γ∗ c ≈ d ≺Γ∗ c 6≈ d ≺Γ∗ f(a′) 6≈ f(b′) ≺Γ∗ f(a′) ≈ f(b′)

by 2.2.9.3 and 2.2.9.4. Now for any literal L that is β-defined in Γ and the
defining literal is a ≈ b it holds that a 6≈ b ≺Γ∗ L ≺Γ∗ c ≈ d by 2.2.9.6 and
2.2.9.7. This holds analogously for all literals that are β-defined in Γ and the
defining literal is c ≈ d or f(a′) 6≈ f(b′). Thus we get:

L1 ≺Γ∗ ... ≺Γ∗ a ≈ b ≺Γ∗ a 6≈ b ≺Γ∗ f(a) ≈ f(b) ≺Γ∗ f(a) 6≈ f(b) ≺Γ∗

c ≈ d ≺Γ∗ c 6≈ d ≺Γ∗ f(c) ≈ f(d) ≺Γ∗ f(c) 6≈ f(d) ≺Γ∗

f(a′) 6≈ f(b′) ≺Γ∗ f(a′) ≈ f(b′) ≺Γ∗ a
′ ≈ b′ ≺Γ∗ a

′ 6≈ b′ ≺Γ∗ K1 ≺Γ∗ . . .

where Ki are the β-undefined literals and Lj are the trivially defined literals.

Table 2.1 summarizes the various orders presented so far.
In CDCL or SCL new clauses are learned by applying resolution to the

conflicting clause and the annotated clauses in the trail. In SCL(EQ) this is
generalized again. Here I need paramodulation inferences to learn new clauses.

Definition 2.2.12 (Rewrite Step). A rewrite step is a five-tuple (s#t·σ, s#t ∨
C·σ,R, S, p) and inductively defined as follows. The tuple (s#t·σ, s#t∨C·σ, ε, ε, ε)
is a rewrite step. Given rewrite steps R,S and a position p then (s#t·σ, s#t ∨
C·σ,R, S, p) is a rewrite step. The literal s#t is called the rewrite literal. In case
R,S are not ε, the rewrite literal of R is an equation.
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Table 2.1: Summary of the orderings presented so far.

Order Description

Term order ≺T • well-founded rewrite ordering on terms

• total on ground terms

• for all ground terms t there exist only finitely

many ground terms s ≺T t
Trail order ≺Γ • sequence ordering given by the trail Γ

Trail induced order ≺Γ∗ • extends the sequence ordering to all literals

implicitly defined due to literals of level >0

• uses ≺T for literals of level 0 and undef. literals

• literals of level 0 are smaller and undef. literals

are greater than literals of level >0

Note that R and S in the above definition describe the ”history” of a rewrite
step, i.e., they contain all preceeding rewrite steps.

We assume two rewrite steps I1 := (L1·σ1, (L1 ∨ C1)·σ1, R1, L1, p1) and
I2 := (L2·σ2, (L2 ∨ C2)·σ2, R2, L2, p2) to be variable disjoint iff L1 ∨ C1 and
L2 ∨ C2 are variable disjoint.

Rewriting is one of the core features of my calculus. The following defini-
tion describes a rewrite inference between two clauses. Note that unlike the
Superposition calculus I allow rewriting below variable level.

Definition 2.2.13 (Rewrite Inference). Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1 ∨
C1·σ1, R1, L1, p1) and I2 := (l2#r2·σ2, l2#r2∨C2·σ2, R2, L2, p2) be two variable
disjoint rewrite steps where r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position
p. I distinguish two cases:

1. if p ∈ pos(l2#r2) and µ := mgu((l2#r2)|p, l1) then (((l2#r2)[r1]p)µ·σ1σ2,
((l2#r2)[r1]p)µ ∨ C1µ ∨ C2µ·σ1σ2, I1, I2, p) is the result of a rewrite infer-
ence.

2. if p 6∈ pos(l2#r2) then let (l2#r2)δ be the most general instance of
l2#r2 such that p ∈ pos((l2#r2)δ), δ introduces only fresh variables and
(l2#r2)δσ2ρ = (l2#r2)σ2 for some minimal ρ. Let µ := mgu((l2#r2)δ|p, l1).
Then
((l2#r2)δ[r1]pµ·σ1σ2ρ, (l2#r2)δ[r1]pµ∨C1µ∨C2δµ·σ1σ2ρ, I1, I2, p) is the
result of a rewrite inference.

Note that case 1 describes rewriting above or at a variable and case 2 describes
rewriting inside a variable.

Example 2.2.14. Consider two rewrite steps

I1 := (x ≈ b ·σ1, x ≈ b ∨ g(x) ≈ c ·σ1, R1, L1, p1)

and
I2 := (f(y) 6≈ f(f(b)) ·σ2, f(y) 6≈ f(f(b)) ·σ2, R2, L2, p2)

where σ1 = {x → a} and σ2 = {y → f(a)}. This is an example where we
have to rewrite below variable level. Since the position p = 111 does not exist
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yet in f(y) ≈ f(f(b)) we first have to create a most general instance with
δ = {y → f(z)}. A minimal ρ would now be ρ = {z → a}. A most general
unifier could be µ = {x→ z}. Now we can create our new rewrite step:

I3 := (f(f(b)) 6≈ f(f(b)) ·σ1σ2ρ, f(f(b)) 6≈ f(f(b)) ∨ g(z) ≈ c ·σ1σ2ρ, I1, I2, p)

Lemma 2.2.15. Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1 ∨ C1·σ1, R1, L1, p1) and I2 :=
(l2#r2·σ2, l2#r2∨C2·σ2, R2, L2, p2) be two variable disjoint rewrite steps where
r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position p. Let I3 := (l3#r3·σ3, l3#r3∨
C3·σ3, I1, I2, p) be the result of a rewrite inference. Then:

1. C3σ3 = (C1 ∨ C2)σ1σ2 and l3#r3σ3 = (l2#r2)σ2[r1σ1]p.

2. (l3#r3)σ3 ≺T (l2#r2)σ2

3. If N |= (l1 ≈ r1 ∨ C1) ∧ (l2#r2 ∨ C2) for some set of clauses N , then
N |= l3#r3 ∨ C3

Now that I have defined rewrite inferences I can use them to define a re-
duction chain application and a refutation, which are sequences of rewrite steps.
Intuitively speaking, a reduction chain application reduces a literal in a clause
with terms in conv(Γ) until it is irreducible. A refutation for a literal L that
is β-false in Γ for a given β, is a sequence of rewrite steps with literals in Γ, L
such that ⊥ is inferred. Refutations for the literals of the conflict clause will be
examined during conflict resolution by the rule Explore-Refutation.

Definition 2.2.16 (Reduction Chain). Let Γ be a trail. A reduction chain
P from Γ is a sequence of rewrite steps [I1, ..., Im] such that for each Ii =
(si#ti·σi, si#ti ∨ Ci·σi, Ij , Ik, pi) either

1. si#t
ni:si#ti∨Ci·σ
i is contained in Γ and Ij = Ik = pi = ε or

2. Ii is the result of a rewriting inference from rewrite steps Ij , Ik out of
[I1, ..., Im] where j, k < i.

Let (l# r)δo:l# r∨C·δ be an annotated ground literal. A reduction chain appli-
cation from Γ to l# r is a reduction chain [I1, ..., Im] from Γ, (l# r)δo:l# r∨C·δ

such that lδ↓conv(Γ) = smσm and rδ↓conv(Γ) = tmσm. I assume reduction chain
applications to be minimal, i.e., if any rewrite step is removed from the sequence
it is no longer a reduction chain application.

Definition 2.2.17 (Refutation). Let Γ be a trail and (l# r)δo:l# r∨C·δ an an-
notated ground literal that is β-false in Γ for a given β. A refutation P from
Γ and l# r is a reduction chain [I1, ..., Im] from Γ, (l# r)δo:l# r∨C·δ such that
(sm#tm)σm = s 6≈ s for some s. I assume refutations to be minimal, i.e., if
any rewrite step Ik, k < m is removed from the refutation, it is no longer a
refutation.

2.2.1 The SCL(EQ) Inference Rules

I can now define the rules of my calculus based on the previous definitions. A
state is a six-tuple (Γ;N ;U ;β; k;D) similar to the SCL calculus, where Γ a
sequence of annotated ground literals, N and U the sets of initial and learned
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clauses, β is a ground term such that for all L ∈ Γ it holds that L ≺T β, k
is the decision level, and D a status that is >, ⊥ or a closure C ·σ. Before I
propagate or decide any literal, I make sure that it is irreducible in the current
trail. Together with the design of ≺Γ∗ this eventually enables rewriting as a
simplification rule.

Propagate

(Γ;N ;U ;β; k;>) ⇒SCL(EQ) (Γ, sm#tmσ
k:(sm#tm∨Cm)·σm
m ;N ;U ;β; k;>)

provided there is a C ∈ (N ∪U), σ grounding for C, C = C0∨C1∨L, Γ |= ¬C0σ,
C1σ = Lσ∨ ...∨Lσ, C1 = L1∨ ...∨Ln, µ = mgu(L1, ..., Ln, L) Lσ is β-undefined
in Γ, (C0 ∨ L)µσ ≺T β, σ is irreducible by conv(Γ), [I1, . . . , Im] is a reduction
chain application from Γ to Lσk:(L∨C0)µ·σ where Im = (sm#tm·σm, sm#tm ∨
Cm·σm, Ij , Ik, pm).

The rule Propagate finds a ground instance of a clause which can be propa-
gated, i.e. it contains (possibly multiple occurences of) a literal that is undefined
and all other literals are false in the trail. The multiple occurences of the un-
defined literal are factored. Then it adds the normal form of this literal to the
trail. The propagating clause is reduced by the corresponding paramodulation
steps. Note that the definition of Propagate also includes the case where Lσ is
irreducible by Γ. In this case L = sm#tm and m = 1. The rule Decide below, is
similar to Propagate, except for the subclause C0 which must be β-undefined or
β-true in Γ, i.e., Propagate cannot be applied and the decision literal is annotated
by a tautology.

Decide
(Γ;N ;U ;β; k;>) ⇒SCL(EQ) (Γ, sm#tmσ

k+1:(sm#tm∨comp(sm#tm))·σm
m ;N ;U ;

β; k + 1;>)

provided there is a C ∈ (N ∪ U), σ grounding for C, C = C0 ∨ L, C0σ is
β-undefined or β-true in Γ, Lσ is β-undefined in Γ, (C0 ∨ L)σ ≺T β, σ is
irreducible by conv(Γ), [I1, . . . , Im] is a reduction chain application from Γ to
Lσk+1:L∨C0·σ where Im = (sm#tm·σm, sm#tm ∨ Cm·σm, Ij , Ik, pm).

Conflict (Γ;N ;U ;β; k;>) ⇒SCL(EQ) (Γ;N ;U ;β; k;D)

provided there is a D′ ∈ (N ∪ U), σ grounding for D′, D′σ is β-false in Γ, σ is
irreducible by conv(Γ), D = ⊥ if D′σ is of level 0 and D = D′·σ otherwise.

For the non-equational case, when a conflict clause is found by an SCL
calculus [FW19,BFW21], the complements of its first-order ground literals are
contained in the trail. For equational literals this is not the case, in general. The
proof showing D to be β-false with respect to Γ is a rewrite proof with respect to
conv(Γ). This proof needs to be analyzed to eventually perform paramodulation
steps on D or to replace D by a ≺Γ∗ smaller β-false clause showing up in the
proof.

Skip (Γ,Kl:C·τ , Lk:C′·τ ′ ;N ;U ;β; k;D ·σ) ⇒SCL(EQ) (Γ,Kl:C·τ ;N ;U ;β; l;D ·σ)

if Dσ is β-false in Γ,Kl:C·τ .

The Explore-Refutation rule is the FOL with Equality counterpart to the
resolve rule in CDCL or SCL. While in CDCL or SCL complementary literals of
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the conflict clause are present on the trail and can directly be used for resolution
steps, this needs a generalization for FOL with Equality. Here, in general, I need
to look at (rewriting) refutations of the conflict clause and pick an appropriate
clause from the refutation as the next conflict clause.

Explore-Refutation
(Γ, L;N ;U ;β; k; (D∨s# t)·σ)) ⇒SCL(EQ) (Γ, L;N ;U ;β; k; (sj#tj∨Cj)·σj)

if (s# t)σ is strictly ≺Γ∗ maximal in (D ∨ s# t)σ, L is the defining literal of
(s# t)σ, [I1, ..., Im] is a refutation from Γ and (s# t)σ, Ij = (sj#tj ·σj , (sj#tj ∨
Cj)·σj , Il, Ik, pj), 1 ≤ j ≤ m, (sj # tj ∨Cj)σj ≺Γ∗ (D ∨ s# t)σ, (sj#tj ∨Cj)σj
is β-false in Γ.

Factorize
(Γ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL(EQ) (Γ;N ;U ;β; k; (D ∨ L)µ · σ)

provided Lσ = L′σ, and µ = mgu(L,L′).

Equality-Resolution
(Γ;N ;U ;β; k; (D ∨ s 6≈ s′)·σ) ⇒SCL(EQ) (Γ;N ;U ;β; k;Dµ ·σ)

provided sσ = s′σ, µ = mgu(s, s′).

For backtracking I have to make sure, that the learned clause is not false in
the resulting trail. It is not sufficient to backtrack to the point where the clause
with the current substitution is no longer false, but where it is no longer false
with all possible substitutions.

Backtrack (Γ,K,Γ′;N ;U ;β; k; (D ∨ L) · σ) ⇒SCL(EQ) (Γ;N ;U ∪ {D ∨
L};β; j − i;>)

provided Dσ is of level i′ where i′ < k, K is of level j and Γ,K the minimal
trail subsequence such that there is a grounding substitution τ with (D ∨ L)τ
β-false in Γ,K but not in Γ; i = 1 if K is a decision literal and i = 0 otherwise.

Grow (Γ;N ;U ;β; k;>) ⇒SCL(EQ) (ε;N ;U ;β′; 0;>)

provided β ≺T β′.

In contrast to Superposition I do not need an equality factoring rule as the
following example illustrates.

Example 2.2.18 (Equality Factoring). Assume clauses:

C1 := b ≈ c ∨ c ≈ d
C2 := a1 ≈ b ∨ a1 ≈ c

...
Cn+1 := an ≈ b ∨ an ≈ c

The completeness proof of Superposition requires that adding a new literal to an
interpretation does not make any smaller literal true. In this example, however,
after adding b ≈ c to the interpretation, we cannot add any further literal, since
it breaks this invariant. So in Superposition we would have to add the following
clauses with the help of the Equality Factoring rule:
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Cn+2 := b 6≈ c ∨ a1 ≈ c
...

C2n+1 := b 6≈ c ∨ an ≈ c

In SCL(EQ) on the other hand we can just decide a literal in each clause to get
a model for this clause set. As we support undefined literals we do not have to
bother with this problem at all. For example if we add b ≈ c to our model, both
literals a1 ≈ b and a1 ≈ c are undefined in our model. Thus we need to decide
one of these literals to add it to our model.

In addition to soundness and completeness of the SCL(EQ) rules their
tractability in practice is an important property for a successful implementa-
tion. In particular, finding propagating literals or detecting a false clause under
some grounding. It turns out that these operations are NP-complete, similar to
first-order subsumption which has been shown to be tractable in practice.

Lemma 2.2.19. Assume that all ground terms t with t ≺T β for any β are
polynomial in the size of β. Then testing Propagate (Conflict) is NP-Complete,
i.e., the problem of checking for a given clause C whether there exists a grounding
substitution σ such that Cσ propagates (is false) is NP-Complete.

In the rest of this Section I provide some examples that compare SCL(EQ)
to Superposition.

Example 2.2.20 (SCL(EQ) vs. Superposition: Saturation). Consider the fol-
lowing clauses:

N := {C1 := c ≈ d ∨D,C2 := a ≈ b ∨ c 6≈ d,C3 := f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)}

where again we assume a KBO with all symbols having weight one, precedence
d ≺ c ≺ b ≺ a ≺ g ≺ f and β := f(f(g(a))). Suppose that we first decide
c ≈ d and then propagate a ≈ b: Γ = [c ≈ d1:c≈d∨c6≈d, a ≈ b1:C2 ]. Now we have a
conflict with C3. Explore-Refutation applied to the conflict clause C3 results in a
paramodulation inference between C3 and C2. Another application of Equality-
Resolution gives us the new conflict clause C4 := c 6≈ d∨g(c) 6≈ g(d). Now we can
Skip the last literal on the trail, which gives us Γ = [c ≈ d1:c≈d∨c6≈d]. Another
application of the Explore-Refutation rule to C4 using the decision justification
clause followed by Equality-Resolution and Factorize gives us C5 := c 6≈ d. Thus
with SCL(EQ) the following clauses remain:

C ′1 = D C5 = c 6≈ d
C3 = f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)

where we derived C ′1 out of C1 by subsumption resolution [Wei01] using C5.
Actually, subsumption resolution is compatible with the general redundancy
notion of SCL(EQ), see Lemma 2.3.7. Now we consider the same example with
Superposition and the very same ordering (Ni is the clause set of the previous
step and N0 the initial clause set N).

N0 ⇒Sup(C2,C3) N1 ∪ {C4 := c 6≈ d ∨ g(c) 6≈ g(d)}
⇒Sup(C1,C4) N2 ∪ {C5 := c 6≈ d ∨D} ⇒Sup(C1,C5) N3 ∪ {C6 := D}

Thus Superposition ends up with the following clauses:
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C2 = a ≈ b ∨ c 6≈ d C3 = f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)
C4 = c 6≈ d ∨ g(c) 6≈ g(d) C6 = D

The Superposition calculus generates more and larger clauses.

Example 2.2.21 (SCL(EQ) vs. Superposition: Refutation). Suppose the fol-
lowing set of clauses: N := {C1 := f(x) 6≈ a∨f(x) ≈ b, C2 := f(f(y)) ≈ y, C3 :=
a 6≈ b} where again we assume a KBO with all symbols having weight one, prece-
dence b ≺ a ≺ f and β := f(f(f(a))). A long refutation by the Superposition
calculus results in the following (Ni is the clause set of the previous step and
N0 the initial clause set N):

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y 6≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C1,C4) N2 ∪ {C5 := a 6≈ b ∨ f(f(y)) ≈ b ∨ y 6≈ a}
⇒Sup(C2,C5) N3 ∪ {C6 := a 6≈ b ∨ b ≈ y ∨ y 6≈ a}
⇒Sup(C2,C4) N4 ∪ {C7 := y ≈ b ∨ y 6≈ a}
⇒EqRes(C7) N5 ∪ {C8 := a ≈ b} ⇒Sup(C3,C8) N6 ∪ {⊥}

The shortest refutation by the Superposition calculus is as follows:

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y 6≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C2,C4) N2 ∪ {C5 := y ≈ b ∨ y 6≈ a}
⇒EqRes(C5) N3 ∪ {C6 := a ≈ b} ⇒Sup(C3,C6) N4 ∪ {⊥}

In SCL(EQ) on the other hand we would always first propagate a 6≈ b, f(f(a)) ≈
a and f(f(b)) ≈ b. As soon as a 6≈ b and f(f(a)) ≈ a are propagated we have a
conflict with C1{x→ f(a)}. So suppose in the worst case we propagate:

Γ := [a 6≈ b0:a 6≈b, f(f(b)) ≈ b0:(f(f(y))≈y){y→b}, f(f(a)) ≈ a0:(f(f(y))≈y){y→a}]

Now we have a conflict with C1{x→ f(a)}. Since there is no decision literal on
the trail, the Conflict rule immediately returns ⊥ and the algorithm terminates.

Example 2.2.22 (Intermediate Results in Refutation). Consider the following
ground clause set N :

C1 := f(a, a) 6≈ f(b, b) ∨ c ≈ d C2 := a ≈ b ∨ f(a, a) ≈ f(b, b)

Suppose that we decide f(a, a) 6≈ f(b, b). Then C2 is false in Γ. The conflict state
is as follows: ([f(a, a) 6≈ f(b, b)1:f(a,a)6≈f(b,b)∨f(a,a)≈f(b,b)];N ; {}; 2;C2). Explore-
Refutation creates the following ground refutation for a ≈ b, since it is greatest
literal in the conflict clause:

I1 := (f(a, a) 6≈ f(b, b), f(a, a) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b), ε, ε, ε)
I2 := (a ≈ b, C2, ε, ε, ε)
I3 := (f(b, a) 6≈ f(b, b), f(b, a) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b),

I2, I1, 11)
I4 := (f(b, b) 6≈ f(b, b), f(b, b) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b)

∨f(a, a) ≈ f(b, b), I3, I1, 12)

As one can see, the intermediate result f(b, a) 6≈ f(b, b) is not false in Γ. Thus
it is no candidate for the new conflict clause. We have to choose I4. The new
state is thus:

([f(a, a) 6≈ f(b, b)1:f(a,a)6≈f(b,b)∨f(a,a)≈f(b,b)];N ; {}; 2;
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f(b, b) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b))

Now we can apply Equality-Resolution and two times Factorize to get the final
clause f(a, a) ≈ f(b, b) with which we can backtrack.

2.3 Correctness

In this Section, I show soundness and refutational completeness of SCL(EQ)
under the assumption of a regular run. I provide the definition of a regular run
and show that for a regular run all learned clauses are non-redundant according
to the trail induced ordering. I start with the definition of a sound state.

Definition 2.3.1. A state (Γ;N ;U ;β; k;D) is sound if the following conditions
hold:

1. Γ is a consistent sequence of annotated literals,

2. for each decomposition Γ = Γ1, Lσ
i:(C∨L)·σ,Γ2 where Lσ is a propagated

literal, we have that Cσ is β-false in Γ1, Lσ is β-undefined in Γ1 and
irreducible by conv(Γ1), N ∪ U |= (C ∨ L) and (C ∨ L)σ ≺T β,

3. for each decomposition Γ = Γ1, Lσ
i:(L∨comp(L))·σ,Γ2 where Lσ is a decision

literal, we have that Lσ is β-undefined in Γ1 and irreducible by conv(Γ1),
N ∪ U |= (L ∨ comp(L)) and (L ∨ comp(L))σ ≺T β,

4. N |= U ,

5. if D = C ·σ, then Cσ is β-false in Γ, N ∪ U |= C,

Lemma 2.3.2. The initial state (ε;N ; ∅;β; 0;>) is sound.

Definition 2.3.3. A run is a sequence of applications of SCL(EQ) rules starting
from the initial state.

Theorem 2.3.4. Assume a state (Γ;N ;U ;β; k;D) resulting from a run. Then
(Γ;N ;U ;β; k;D) is sound.

Next, I give the definition of a regular run. Intuitively speaking, in a regular
run I am always allowed to do decisions except if

1. a literal can be propagated before the first decision and

2. the negation of a literal can be propagated.

To ensure non-redundant learning I enforce at least one application of Skip
during conflict resolution except for the special case of a conflict after a decision.

Definition 2.3.5 (Regular Run). A run is called regular if

1. the rules Conflict and Factorize have precedence over all other rules,

2. If k = 0 in a state (Γ;N ;U ;β; k;D), then Propagate has precedence over
Decide,

3. If an annotated literal Lk:C·σ could be added by an application of Propagate
on Γ in a state (Γ;N ;U ;β; k;D) and C ∈ N ∪U , then the annotated literal
comp(L)k+1:C′·σ′ is not added by Decide on Γ,
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4. during conflict resolution Skip is applied at least once, except if Conflict
is applied immediately after an application of Decide.

5. if Conflict is applied immediately after an application of Decide, then Back-
track is only applied in a state (Γ, L′;N ;U ;β; k;D·σ) if Lσ = comp(L′)
for some L ∈ D.

The following example shows an immediate conflict after a decision.

Example 2.3.6 (Implicit Conflict after Decision). Consider the following clause
set N

C1 := h(x) ≈ g(x) ∨ c ≈ d C2 := f(x) ≈ g(x) ∨ a ≈ b
C3 := f(x) 6≈ h(x) ∨ f(x) 6≈ g(x)

Suppose we apply the rule Decide first to C1 and then to C2 with substitution
σ = {x→ a}. Then we yield a conflict with C3σ, resulting in the following state:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x)6≈g(x))·σ];

N ; {}; 2;C3·σ)

According to ≺Γ∗ , f(a) 6≈ h(a) is the greatest literal in C3σ. Since f(a) ≈ g(a)
is the defining literal of f(a) 6≈ h(a) we can not apply Skip. Factorize is also not
applicable, since f(a) 6≈ h(a) and f(a) 6≈ g(a) are not equal. Thus we must apply
Explore-Refutation to the greatest literal f(a) 6≈ h(a). The rule first creates a
refutation [I1, ..., I5], where:

I1 := ((f(x) 6≈ h(x))·σ,C3·σ, ε, ε, ε)
I2 := ((f(x) ≈ g(x))·σ, (f(x) ≈ g(x) ∨ f(x) 6≈ g(x))·σ, ε, ε, ε)
I3 := ((h(x) ≈ g(x))·σ, (h(x) ≈ g(x) ∨ h(x) 6≈ g(x))·σ, ε, ε, ε)
I4 := ((h(x) 6≈ g(x))·σ, (h(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x))·σ, I2, I1, 1)
I5 := ((g(x) 6≈ g(x))·σ, (g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x)

∨h(x) 6≈ g(x))·σ, I4, I3, 1)

Explore-Refutation can now choose either I4 or I5. Both, (h(x) 6≈ g(x))σ and
(g(x) 6≈ g(x))σ are smaller than (f(x) 6≈ h(x))σ according to ≺Γ∗ and false in Γ.
Suppose we choose I5. Now our new conflict state is:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x)6≈g(x))·σ];

N ; {}; 2; (g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ)

Now we apply Equality-Resolution and Factorize to get the new state

([g(a) ≈ h(a)1:(g(x)≈h(x)∨g(x)6≈h(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x)6≈g(x))·σ];

N ; {}; 2; (f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ)

Now we can backtrack. Note, that this clause is non-redundant according to our
ordering, although conflict was applied immediately after decision.

Now I show that any learned clause in a regular run is non-redundant ac-
cording to the trail induced ordering.
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Lemma 2.3.7 (Non-Redundant Clause Learning). Let N be a clause set. The
clauses learned during a regular run in SCL(EQ) are not redundant with respect
to ≺Γ∗ and N∪U . For the trail only non-redundant clauses need to be considered.

The proof of Lemma 2.3.7 is based on the fact that conflict resolution even-
tually produces a clause smaller then the original conflict clause with respect to
≺Γ∗ . All simplifications, e.g., contextual rewriting, as defined in [BG94,Wei01,
WW08,WW10,Wis12,GKR20], are therefore compatible with Lemma 2.3.7 and
may be applied to the newly learned clause as long as they respect the induced
trail ordering. In detail, let Γ be the trail before the application of rule Back-
track. The newly learned clause can be simplified according to the induced trail
ordering ≺Γ∗ as long as the simplified clause is smaller with respect to ≺Γ∗ .

Another important consequence of Lemma 2.3.7 is that newly learned clauses
need not to be considered for redundancy. Furthermore, the SCL(EQ) calculus al-
ways terminates, Lemma 2.3.15, because there only finitely many non-redundant
clauses with respect to a fixed β.

For dynamic redundancy, I have to consider the fact that the induced trail
ordering changes. At this level, only redundancy criteria and simplifications that
are compatible with all induced trail orderings may be applied. Due to the
construction of the induced trail ordering, it is compatible with ≺T for unit
clauses.

Lemma 2.3.8 (Unit Rewriting). Assume a state (Γ;N ;U ;β; k;D) resulting
from a regular run where the current level k > 0 and a unit clause l ≈ r ∈ N .
Now assume a clause C ∨ L[l′]p ∈ N such that l′ = lµ for some matcher µ. Now
assume some arbitrary grounding substitutions σ′ for C ∨L[l′]p, σ for l ≈ r such
that lσ = l′σ′ and rσ ≺T lσ. Then (C ∨ L[rµσσ′]p)σ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

In addition, any notion that is based on a literal subset relationship is also
compatible with ordering changes. The standard example is subsumption.

Lemma 2.3.9. Let C,D be two clauses. If there exists a substitution σ such
that Cσ ⊂ D, then D is redundant with respect to C and any ≺Γ∗ .

The notion of redundancy, Definition 1.1.35, only supports a strict subset re-
lation for Lemma 2.3.9, similar to the Superposition calculus. However, the newly
generated clauses of SCL(EQ) are the result of paramodulation inferences [RW69].
In a recent contribution to dynamic, abstract redundancy [WTRB20] it is shown
that also the non-strict subset relation in Lemma 2.3.9, i.e., Cσ ⊆ D, preserves
completeness.

If all stuck states, see below Definition 2.3.10, with respect to a fixed β are
visited before increasing β then this provides a simple dynamic fairness strategy.

When unit reduction or any other form of supported rewriting is applied to
clauses smaller than the current β, it can be applied independently from the
current trail. If, however, unit reduction is applied to clauses larger than the
current β then the calculus must do a restart to its initial state, in particular the
trail must be emptied, as for otherwise rewriting may result generating a conflict
that did not exist with respect to the current trail before the rewriting. This is
analogous to a restart in CDCL once a propositional unit clause is derived and
used for simplification. More formally, I add the following new Restart rule to
the calculus to reset the trail to its initial state after a unit reduction.
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Restart (Γ;N ;U ;β; k;>) ⇒SCL(EQ) (ε;N ;U ;β; 0;>)

Next I show refutation completeness of SCL(EQ). To achieve this I first give
a definition of a stuck state. Then I show that stuck states only occur if all
ground literals L ≺T β are β-defined in Γ and not during conflict resolution.
Finally I show that conflict resolution will always result in an application of
Backtrack. This allows us to show termination (without application of Grow)
and refutational completeness.

Definition 2.3.10 (Stuck State). A state (Γ;N ;U ;β; k;D) is called stuck if
D 6= ⊥ and none of the rules of the calculus, except for Grow, is applicable.

Lemma 2.3.11 (Form of Stuck States). If a regular run (without rule Grow)
ends in a stuck state (Γ;N ;U ;β; k;D), then D = > and all ground literals
Lσ ≺T β, where L ∨ C ∈ (N ∪ U) are β-defined in Γ.

Lemma 2.3.12. Suppose a sound state (Γ;N ;U ;β; k;D) resulting from a reg-
ular run where D 6∈ {>,⊥}. If Backtrack is not applicable then any set of
applications of Explore-Refutation, Skip, Factorize, Equality-Resolution will fi-
nally result in a sound state (Γ′;N ;U ;β; k;D′), whereD′ ≺Γ∗ D. Then Backtrack
will be finally applicable.

Corollary 2.3.13 (Satisfiable Clause Sets). Let N be a satisfiable clause set.
Then any regular run without rule Grow will end in a stuck state, for any β.

Thus a stuck state can be seen as an indication for a satisfiable clause
set. Of course, it remains to be investigated whether the clause set is actually
satisfiable. Superposition is one of the strongest approaches to detect satisfia-
bility and constitutes a decision procedure for many decidable first-order frag-
ments [BGW93, GdN99]. Now given a stuck state and some specific ordering
such as KBO, LPO [KB70, KAM80], or some polynomial ordering [DP01], it
is decidable whether the ordering can be instantiated from a stuck state such
that Γ coincides with the Superposition model operator on the ground terms
smaller than β. In this case it can be effectively checked whether the clauses
derived so far are actually saturated by the Superposition calculus with respect
to this specific ordering. In this sense, SCL(EQ) has the same power to decide
satisfiability of first-order clause sets than Superposition.

Definition 2.3.14. A regular run terminates in a state (Γ;N ;U ;β; k;D) if
D = > and no rule is applicable, or D = ⊥.

Lemma 2.3.15. Let N be a set of clauses and β be a ground term. Then any
regular run that never uses Grow terminates.

Lemma 2.3.16. If a regular run reaches the state (Γ;N ;U ;β; k;⊥) then N is
unsatisfiable.

Theorem 2.3.17 (Refutational Completeness). LetN be an unsatisfiable clause
set, and ≺T a desired term ordering. For any ground term β where gnd≺T β(N)
is unsatisfiable, any regular SCL(EQ) run without rule Grow will terminate by
deriving ⊥.
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2.4 Proofs

In this Section, I provide all the proofs of the Lemmas shown in the previous
Sections.

Lemma 2.2.7 Let Γ1 be a trail and K a defined literal that is of level i in Γ1.
Then K is of level i in a trail Γ := Γ1,Γ2.

Proof. Assume a trail Γ1 and a literal K that is of level i in Γ1. Let Γ := Γ1,Γ2

be a trail. Then we have two cases:

1. K has no defining literal in Γ1. Then cores(Γ1;K) = {[]} contains only
the empty core and K is of level 0 in Γ1. Then cores(Γ;K) = {[]} as well
and thus K is of level 0 in Γ.

2. K has a defining literal L := maxΓ1(K) and L is of level i. Then there exists
a core ∆ ∈ cores(Γ1;K) such that L is the maximum literal in ∆ according
to≺Γ and for all Λ ∈ cores(Γ1;K) it holdsmax≺Γ

(∆) �Γ max≺Γ
(Λ). Thus

∆ is a defining core. Now any Λ ∈ (cores(Γ;K)\cores(Γ1;K)) has a higher
maximum literal according to ≺Γ. Thus ∆ is also a defining core in Γ and
L is the defining literal of K in Γ and thus K is of level i in Γ.

Auxiliary Lemmas for the Proofs of Lemma 2.2.10

Lemma 2.4.1. Let Γ be a trail. Then any literal in Γ occurs exactly once.

Proof. Let Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ]. Now suppose there exist Li, Lj with
i < j and 1 ≤ i, j ≤ n such that Li = Lj . By definition of Γ, Lj is undefined in
[L1, ..., Li, ..., Lj−1]. But obviously Lj is defined in Γ. Contradiction.

Lemma 2.4.2. Let Γ be a trail. If a literal L is of level i, then it is not of level
j 6= i.

Proof. Let Γ be a trail. By Lemma 2.4.1 any literal in Γ is unique. Suppose
there exists a literal L such that L is of level i and of level j. If the core is empty
for L then L is of level 0 by definition. Otherwise there must exist cores ∆,Λ ∈
cores(Γ;L) such that max≺Γ

(∆) �Γ max≺Γ
(Λ′) and max≺Γ

(Λ) �Γ max≺Γ
(Λ′)

for all Λ′ ∈ cores(Γ;L). But then max≺Γ
(Λ) = max≺Γ

(∆). Contradiction.

Lemma 2.4.3. Let L be a ground literal and Γ a trail. If L is defined in Γ then
L has a level.

Proof. Let Γ be a trail. Suppose that L is defined in Γ. Then it either has a
defining literal or it has no defining literal. If it has a defining literal K, then
the level of K is the level of L. Since K ∈ Γ it is annotated by a level. Thus L
has a level. If L does not have a defining literal, then L is of level 0 by definition
of a literal level.

Lemma 2.2.10-1 ≺Γ∗ is well-defined.
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Proof. Suppose a trail Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ] and a term β such that
{L1, ..., Ln} ≺T β. We have to show that the rules 2.2.9.1-2.2.9.11 are pairwise
disjunct. Consider the rules 2.2.9.1-2.2.9.7. These rules are pairwise disjunct, if
the sets {L1, ..., Ln}, {comp(L1), ..., comp(Ln)} and {Mi,j | i ≤ n} are pairwise
disjunct. Obviously, {L1, ..., Ln} ∩ {comp(L1), ..., comp(Ln)} = ∅. Furthermore
({L1, ..., Ln}∪
{comp(L1), ..., comp(Ln)}) ∩ {Mi,j | i ≤ n} = ∅ follows directly from the
definition of a trail induced ordering. 2.2.9.8 and 2.2.9.9 are disjunct since
{L | L is of level 0} and {L | L is of level greater 0} are disjunct by
Lemma 2.4.2. It follows that 2.2.9.1-2.2.9.9 are pairwise disjunct, since all re-
lations in 2.2.9.1-2.2.9.7 contain only β-defined literals of level 1 or higher and
all relations in 2.2.9.8, 2.2.9.9 contain at least one β-defined literal of level 0.
2.2.9.10 and 2.2.9.11 are disjunct since a literal cannot be both β-defined and
β-undefined . It follows that 2.2.9.1-2.2.9.11 are pairwise disjunct, since all rela-
tions in 2.2.9.1-2.2.9.9 contain only β-defined literals and all relations in 2.2.9.10,
2.2.9.11 contain at least one β-undefined literal.

Lemma 2.2.10-2 ≺Γ∗ is a total strict order, i.e. ≺Γ∗ is irreflexive, transitive
and total.

Proof. Suppose a trail Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ] and a term β such that
{L1, ..., Ln} ≺T β.
Irreflexivity. We have to show that there is no ground literal L such that L ≺Γ∗ L.
Suppose two literals L and K such that L ≺Γ∗ K and L = K. Now we have
several cases:

1. Suppose that L,K are β-defined and of level 1 or higher. Then we have
several cases:

(a) L = Mi,j and K = Mk,l. Then by 2.2.9.1 Mi,j ≺Γ∗ Mk,l if i < k or
(i = k and j < l). Thus i 6= k or j 6= l. We show that for Mi,j , Mk,l

with i 6= k or j 6= l it holds Mi,j 6= Mk,l. Assume that Mi,j = Mk,l

and k 6= i or j 6= l. Assume that k = i. Then, by Definition 2.2.9
Mi,j ≺T Mk,l or Mk,l ≺T Mi,j . Thus Mi,j 6= Mk,l since ≺T is a
rewrite ordering. Now assume that k 6= i. Since Mi,j = Mk,l it
holds maxΓ(Mi,j) = maxΓ(Mk,l), since both have the same level by
Lemma 2.4.2. But then k = i. Thus Mi,j 6= Mk,l for k 6= i or j 6= l.
Thus if by 2.2.9.1 Mi,j ≺Γ∗ Mk,l if i < k or (i = k and j < l), then
Mi,j 6= Mk,l.

(b) L = Li and K = Lj . Then by 2.2.9.2 Li ≺Γ∗ Lj if Li ≺Γ Lj . Then
by Lemma 2.4.1 Li 6= Lj .

(c) L = comp(Li) and K = Lj . Then by 2.2.9.3 comp(Li) ≺Γ∗ Lj if
Li ≺Γ Lj . Li 6= Lj by Lemma 2.4.1. L 6= K has to hold since Γ is
consistent.

(d) L = Li and K = comp(Lj). Then by 2.2.9.4 Li ≺Γ∗ comp(Lj) if
Li ≺Γ Lj or i = j. If i 6= j then we can proceed analogous to the
previous step. If i = j then obviously Li 6= comp(Li).

(e) L = comp(Li) and K = comp(Lj). Then by 2.2.9.5 comp(Li) ≺Γ∗

comp(Lj) if Li ≺Γ Lj . By Lemma 2.4.1 Li 6= Lj . Thus comp(Li) 6=
comp(Lj).
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(f) L = Li and K = Mk,l. Then by 2.2.9.6 Li ≺Γ∗ Mk,l, comp(Li) ≺Γ∗

Mk,l if i ≤ k. Mk,l 6= Li and Mk,l 6= comp(Li) follows directly from
the Definition 2.2.9. Thus if Li ≺Γ∗ Mk,l or comp(Li) ≺Γ∗ Mk,l if
i ≤ k by 2.2.9.6, then Li 6= Mk,l and comp(Li) 6= Mk,l.

(g) L = Mk,l andK = Li. Then we can proceed analogous to the previous
step for 2.2.9.7.

2. Suppose that L and K are β-defined and of level zero. Since ≺T is irreflex-
ive, L 6≺T K has to hold. Since ≺Γ∗=≺T for literals of level zero L 6≺Γ∗ K
has to hold too.

3. Suppose that L,K are β-defined and L is of level zero and K is of level
greater than zero. But then L 6= K has to hold by Lemma 2.4.2. Thus
L 6≺Γ∗ K for 2.2.9.9.

4. Suppose that L and K are β-undefined . Then by 2.2.9.10 K ≺Γ∗ H if
K ≺T H. Since ≺T is a rewrite ordering K ≺T H iff K 6= H.

5. Suppose that L is β-defined and K is β-undefined . Then by 2.2.9.11 L ≺Γ∗

K. Then L 6= K has to hold since otherwise L,K would be both β-defined
and β-undefined , contradicting consistency of Γ.

Transitivity. Suppose there exist literals L,K,H such that H ≺Γ∗ K and K ≺Γ∗

L but not H ≺Γ∗ L. We have several cases:

1. Suppose all literals are β-undefined . Then K ≺T L and H ≺T K. Oth-
erwise K ≺Γ∗ L and H ≺Γ∗ K would not hold. Thus also H ≺T L by
transitivity of ≺T . Thus H ≺Γ∗ L by 2.2.9.10.

2. Suppose two literals are β-undefined . If K would be β-defined , then K ≺Γ∗

H by 2.2.9.11 contradicting assumption. If L would be β-defined , then
L ≺Γ∗ K by 2.2.9.11 again contradicting assumption. Thus H has to be
β-defined . Then H ≺Γ∗ L by Definition 2.2.9.11.

3. Suppose one literal is β-undefined . If K would be β-undefined , then L ≺Γ∗

K by Definition 2.2.9.11 contradicting assumption. IfH would be β-undefined ,
then K ≺Γ∗ H by Definition 2.2.9.11 again contradicting assumption. Thus
L has to be β-undefined . Then H ≺Γ∗ L by Definition 2.2.9.11.

4. Suppose all literals are β-defined . Then we have multiple subcases:

(a) Suppose all literals have the same defining literal Li and Li is of level
1 or higher. By 2.2.9.6 Li ≺Γ∗ Mi,j and comp(Li) ≺Γ∗ Mi,j for all
j. By 2.2.9.4 Li ≺Γ∗ comp(Li). Thus Li ≺Γ∗ comp(Li) ≺Γ∗ Mi,j for
all j. Since K ≺Γ∗ L either K = Li and L 6= Li or L = Mi,j and
K = comp(Li) or L = Mi,j and K = Mi,k with k < j.

i. Assume K = Li and L 6= Li. Since K is the smallest literal
with defining literal Li, K = H has to hold. But then K ≺Γ∗ K
contradicting irreflexivity.

ii. Assume L = Mi,j and K = comp(Li). Since H ≺Γ∗ K and all
literals have the same defining literal, H = Li has to hold by
2.2.9.6 and 2.2.9.4. Then, again by 2.2.9.6, H ≺Γ∗ L.
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iii. L = Mi,j and K = Mi,k with k < j. Since H ≺Γ∗ K and all have
the same defining literal either H = Mi,l with l < k by 2.2.9.1,
or H = Li or H = comp(Li) by 2.2.9.6. In both cases H ≺Γ∗ L
holds by 2.2.9.1 and 2.2.9.6.

(b) SupposeH,K,L have at least one different defining literal andmaxΓ(L) =
Li with Li of level 1 or higher. First, we have to show that if Lj =
maxΓ(K ′) ≺Γ maxΓ(L′) = Li and Li is of level 1 or higher, then
K ′ ≺Γ∗ L

′. Suppose that Lj is of level 0. Then K ′ ≺Γ∗ L
′ by 2.2.9.9.

Suppose that L′ = Mi,k and K ′ = Mj,l. Then K ′ ≺Γ∗ L
′ by 2.2.9.1.

Suppose that L′ = Mi,k and K ′ = Lj or K ′ = comp(Lj). Then
K ′ ≺Γ∗ L

′ by 2.2.9.6. Suppose that L′ = Li or L′ = comp(Li) and
K ′ = Lj or K ′ = comp(Lj). Then K ′ ≺Γ∗ L

′ by 2.2.9.2-2.2.9.5. Sup-
pose that L′ = Li or L′ = comp(Li) and K ′ = Mj,l. Then K ′ ≺Γ∗ L

′

by 2.2.9.7.
Now by assumption H ≺Γ∗ K and K ≺Γ∗ L. If maxΓ(K) ≺Γ

maxΓ(H) then K ≺Γ∗ H contradicting assumption. The same holds
for L and K. Thus either maxΓ(H) ≺Γ maxΓ(L) or maxΓ(K) ≺Γ

maxΓ(L). In the first case H ≺Γ∗ L follows from above. In the sec-
ond case maxΓ(H) �Γ maxΓ(K) has to hold. Thus H ≺Γ∗ L follows
again.

(c) Suppose that maxΓ(L) = Li where Li is of level 0. Since K ≺Γ∗ L,
maxΓ(K) = Lj with Lj of level 0 has to hold by 2.2.9.9 and 2.2.9.11.
Now assume that L ≺T K. Then L ≺Γ∗ K by 2.2.9.8 contradicting
assumption. Thus K ≺T L has to hold since K 6= L. Since H ≺Γ∗ K,
maxΓ(H) = Lk with Lk of level 0 has to hold by 2.2.9.9 and 2.2.9.11.
Now assume that K ≺T H. Then K ≺Γ∗ H by 2.2.9.8 contradicting
assumption. Thus H ≺T K has to hold since H 6= K. By transitivity
of ≺T , H ≺T L and thus H ≺Γ∗ L has to hold.

Totality. First we show that any ground literal is either β-defined and has a level
or β-undefined . Since Γ is consistent, a literal is either β-defined or β-undefined .
We just need to show that if a literal is β-defined , it has a level. By Lemma
2.4.3 all defined literals have a level. β-definedness implies definedness. Thus
all β-defined literals have a level. Now assume some arbitrary ground literals
L 6= K. We have several cases:

1. L,K are β-undefined . Since L 6= K we have L ≺T K or K ≺T L by
totality of ≺T on ground literals. Thus by 2.2.9.10 L ≺Γ∗ K or K ≺Γ∗ L.

2. One is β-defined . Then either L ≺Γ∗ K or K ≺Γ∗ L by 2.2.9.11.

3. Both are β-defined . Then we have several subcases:

(a) L is of level zero and K is of level greater than zero or vice versa.
Then by 2.2.9.9 L ≺Γ∗ K or K ≺Γ∗ L has to hold.

(b) maxΓ(L) = Li and maxΓ(K) = Lj and both are of level 1 or higher.

i. L = Mi,k and K = Mj,l. Then either Mi,k ≺Γ∗ Mj,l or Mj,l ≺Γ∗

Mi,k by 2.2.9.1.

ii. L = Mi,k and K = Lj or K = comp(Lj). If i ≥ j then by 2.2.9.6
Lj ≺Γ∗ Mi,k or comp(Lj) ≺Γ∗ Mi,k. If i < j then by 2.2.9.7
Mi,k ≺Γ∗ Lj or Mi,k ≺Γ∗ comp(Lj).
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iii. K = Mi,k and L = Lj or L = comp(Lj). Analogous to previous
step.

iv. L = Li and K = Lj . Then if i < j by 2.2.9.2 Li ≺Γ∗ Lj and
Lj ≺Γ∗ Li otherwise.

v. L = comp(Li) and K = comp(Lj) analogous to previous step for
2.2.9.5.

vi. L = Li and K = comp(Lj). Then if i ≤ j by 2.2.9.4 Li ≺Γ∗

comp(Lj). If j < i by 2.2.9.3 comp(Lj) ≺Γ∗ Li.

vii. L = comp(Li) andK = Lj . Then if i < j by 2.2.9.3 comp(Li) ≺Γ∗

Lj . If j ≤ i by 2.2.9.4 Lj ≺Γ∗ comp(Li).

(c) maxΓ(L) = Li and maxΓ(K) = Lj and both are of level 0. Now
either L ≺T K or K ≺T L. Thus by 2.2.9.8 L ≺Γ∗ K or K ≺Γ∗ L.

Lemma 2.2.10-3 ≺Γ∗ is a well-founded ordering.

Proof. Suppose some arbitrary subset M of all ground literals, a trail Γ :=
[Li1:C1·σ1

1 , ..., Lin:Cn·σn
n ] and a term β such that {L1, ..., Ln} ≺T β. We have to

show that M has a minimal element. We have several cases:

1. L is β-undefined in Γ for all literals L ∈ M . Then ≺Γ∗=≺T . Since ≺T
is well-founded there exists a minimal element in M . Thus there exists a
minimal element in M with regard to ≺Γ∗ .

2. there exists at least one literal in M that is β-defined . Then we have two
cases:

(a) there exists a literal in M that is of level zero. Then let L ∈M be the
literal of level zero, where L ≺T K for all K ∈M with K of level zero.
We show that L is the minimal element. Suppose there exists a literal
L′ ∈M that is smaller than L. Since L is of level zero, L ≺Γ∗ K for
all literals K of level greater than zero by 2.2.9.9 and L ≺Γ∗ H for
all β-undefined literals H by 2.2.9.11. Thus L′ must be of level zero.
But then L′ ≺T L has to hold, contradicting assumption.

(b) There exists no literal in M that is of level zero. Let L ∈ M be the
literal where maxΓ(L) �Γ maxΓ(K) for all K ∈M and

i. L = maxΓ(L) or

ii. L = comp(maxΓ(L)) and maxΓ(L) 6∈M or

iii. L ≺T H for all H ∈ M such that maxΓ(L) = maxΓ(H) and
maxΓ(L) 6∈M and comp(maxΓ(L)) 6∈M .

We show that L is the minimal element. Suppose there exists a literal
L′ ∈M that is smaller than L. We have three cases:

i. maxΓ(L) = L = Li. Since Li ≺T β we have either L′ = Lj with
j < i by 2.2.9.2 or L′ = comp(Lj) with j < i by 2.2.9.3 or L′ =
Mk,l with k < i by 2.2.9.7. In all three cases we have maxΓ(L′) ≺Γ

maxΓ(L) contradicting assumption that the defining literal of L
is minimal in M .
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ii. L = comp(Li) = comp(maxΓ(L)) and maxΓ(L) 6∈ M . Since
Li ≺T β either L′ = Lj with j < i by 2.2.9.4 or L′ = comp(Lj)
with j < i by 2.2.9.5 or L′ = Mk,l with k < i by 2.2.9.7. In
all three cases we have maxΓ(L′) ≺Γ maxΓ(L) contradicting
assumption that the defining literal of L is minimal in M .

iii. L = Mk,l and maxΓ(L) 6∈ M and comp(maxΓ(L)) 6∈ M . Then
either L′ = Mi,j with i < k or (i = k and j < l) by 2.2.9.1 or
L′ = Li orL′ = comp(Li) with i ≤ k. Suppose that L′ = Mi,j and
i < k. Then maxΓ(L′) ≺Γ maxΓ(L) contradicting assumption.
Suppose that L′ = Mi,j and i = k and j < l. Then L′ ≺T
L and maxΓ(L) = maxΓ(L′). For L it holds L ≺T H for all
H ∈M such that maxΓ(L) = maxΓ(H). Contradiction. Suppose
that L′ = Li or L′ = comp(Li) with i = k. Then maxΓ(L) =
Li. By assumption maxΓ(L) 6∈ M and comp(maxΓ(L)) 6∈ M .
Contradiction. Suppose that L′ = Li orL′ = comp(Li) with i < k.
Then we have maxΓ(L′) ≺Γ maxΓ(L) contradicting assumption
that the defining literal of L is minimal in M .

Lemma 2.2.19 Assume that all ground terms t with t ≺T β for any β are
polynomial in the size of β. Then testing Propagate (Conflict) is NP-Complete,
i.e., the problem of checking for a given clause C whether there exists a grounding
substitution σ such that Cσ propagates (is false) is NP-Complete.

Proof. Let Cσ be propagable (false). The problem is in NP because β is constant
and for all t ∈ cdom(σ) it holds that t is polynomial in the size of β. Checking
if Cσ is propagable (false) can be done in polynomial time with congruence
closure [NO80] since σ has polynomial size.

We reduce 3-SAT to testing rule Conflict. Consider a 3-place predicate R, a
unary function g, and a mapping from propositional variables P to first-order vari-
ables xP . Assume a 3-SAT clause set N = {{L0, L1, L2}, ..., {Ln−2, Ln−1, Ln}},
where Li may denote both Pi and ¬Pi. Now we create the clause

{R(t0, t1, t2) 6≈ true, ..., R(tn−2, tn−1, tn 6≈ true)}

where ti := xPi ifLi = Pi and ti := g(xPi) otherwise. Now let Γ := {R(x0, x1, x2) |
xi ∈ {0, 1, g(0), g(1)} such that (x0 ∨ x1 ∨ x2) ↓{g(x)7→(¬x)} is true } be the set
of all R-atoms that evaluate to true if considered as a three literal propositional
clause. Now N is satisfiable if and only if Conflict is applicable to the new clause.
The reduction is analogous for Propagate.

Theorem 2.3.4 Assume a state (Γ;N ;U ;β; k;D) resulting from a run. Then
(Γ;N ;U ;β; k;D) is sound.

Proof. Proof by structural induction on (Γ;N ;U ;β; k;D). Let (Γ;N ;U ;β; k;D) =
(ε,N, ∅, β, 0,>), the initial state. Then it is sound according to Lemma 2.3.2. Now
assume that (Γ;N ;U ;β; k;D) is sound. We need to show that any application
of a rule results in a sound state.
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Propagate: Assume Propagate is applicable. Then there exists C ∈ N ∪ U
such that C = C0 ∨ C1 ∨ L, Lσ is β-undefined in Γ, C1σ = Lσ ∨ ... ∨ Lσ, C1 =
L1 ∨ ... ∨ Ln,µ = mgu(L1, ..., Ln, L) and C0σ is β-false in Γ. Then a reduction
chain application [I1, ..., Im] from Γ to Lσk:(C0∨L)µ·σ is created with Im :=

(sm#tm·σm, sm#tm ∨ Cm·σm, Ij , Ik, pm). Finally sm#tmσ
k:(sm#tm∨Cm)·σm
m is

added to Γ.
By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(Γ). Thus,
(sm#tm)σm must be β-undefined in Γ and irreducible by conv(Γ), since (C0 ∨
L)µσ ≺T β by definition of Propagate.

– 2.3.1.1: Since (sm#tm)σm is β-undefined in Γ, adding (sm#tm)σm does
not make Γ inconsistent. Thus Γ, (sm#tm)σm remains consistent.

– 2.3.1.2: (sm#tm)σm is β-undefined in Γ and irreducible by conv(Γ). It
remains to show that Cmσm is β-false in Γ, N ∪ U |= sm#tm ∨ Cm and
(sm#tm∨Cm)σm ≺T β. By i.h. for all L′σ′l:(L

′∨C′)·σ′ ∈ Γ it holds that C ′σ′

is β-false in Γ, (L′ ∨ C ′)σ′ ≺T β and N ∪ U |= (L′ ∨ C ′). By definition of
Propagate C0σ is β-false in Γ and Cσ ≺T β and N∪U |= C. (C0∨C1∨L)µ
is an instance of C. Thus C |= (C0 ∨ C1 ∨ L)µ. C0µ = Lµ ∨ ... ∨ Lµ
by definition of Propagate. Thus C |= (C1 ∨ L)µ and by this N ∪ U |=
(C1 ∨L)µ. By definition of a reduction chain application Ij either contains
a clause annotation from Γ, Lσk:(C0∨L)·σ or it is a rewriting inference from
smaller rewrite steps for all 1 ≤ j ≤ m. Thus, by Lemma 2.2.15 it follows
by induction that for any rewriting inference Ij := (sj#tj ·σj , sj#tj ∨
Cj ·σj , Ii, Ik, pj) it holds Cjσj is β-false in Γ, N ∪ U |= sj#tj ∨ Cj and
(sj#tj ∨ Cj)σj ≺T β.

– 2.3.1.3 and 2.3.1.4 trivially hold by induction hypothesis.

– 2.3.1.5: trivially holds since D = >.

Decide: Assume Decide is applicable. Then there exists C ∈ N ∪ U such
that C = C0 ∨ L, Lσ is ground and β-undefined in Γ and C0σ is ground and
β-undefined or β-true in Γ. Then a reduction chain application [I1, ..., Im] from Γ
to Lσk+1:(C0∨L)·σ is created with Im := (sm#tm·σm, sm#tm∨Cm·σm, Ij , Ik, pm).

Finally sm#tmσ
k+1:(sm#tm∨comp(sm#tm))·σm
m is added to Γ.

By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(Γ). Thus,
(sm#tm)σm must be β-undefined in Γ and irreducible by conv(Γ), since (C0 ∨
L)σ ≺T β by definition of Decide.

– 2.3.1.1: Since (sm # tm)σm is β-undefined in Γ adding (sm#tm)σm does
not make Γ inconsistent. Thus Γ, (sm#tm)σm remains consistent.

– 2.3.1.3: (sm#tm)σm is β-undefined in Γ and irreducible by conv(Γ). N ∪
U |= (sm#tm) ∨ comp(sm#tm) obviously holds. (sm#tm)σm ≺T β holds
inductively by Lemma 2.2.15 and since Lσ ≺T β.

– 2.3.1.2 and 2.3.1.4 trivially hold by induction hypothesis.

– 2.3.1.5: trivially holds since D = >.
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Conflict: Assume Conflict is applicable. Then there exists a D′σ such that
D′σ is β-false in Γ. Then:

– 2.3.1.1 - 2.3.1.4 trivially hold by induction hypothesis

– 2.3.1.5: D′σ is β-false in Γ by definition of Conflict . Now we have two
cases:

1. D′σ is of level greater than zero. Then N ∪U |= D′ since D′ ∈ N ∪U
by definition of Conflict .

2. D′σ is of level zero. Then we have to show that N ∪ U |= ⊥. For any

literal L
0:(L0∨D0)·σ
0 ∈ Γ it holds N |= L0, since any literal of level 0 is

a propagated literal. By definition of a level, for any K ∈ D′σ there
exists a core core(Γ;K) that contains only literals of level 0. Thus
N ∪ U |= core(Γ;K) and core(Γ;K) |= ¬K for any such K. Then
N ∪ U |= ¬D′σ and N ∪ U |= D′σ and therefore N ∪ U |= ⊥.

Skip: Assume Skip is applicable. Then Γ = Γ′, L and D = D′ ·σ and D′σ is
β-false in Γ′.

– 2.3.1.1: By i.h. Γ is consistent. Thus Γ′ is consistent as well.

– 2.3.1.2- 2.3.1.4: trivially hold by induction hypothesis and since Γ′ is a
prefix of Γ.

– 2.3.1.5: By i.h. D′σ is β-false in Γ and N ∪ U |= D′. By definition of Skip
D′σ is β-false in Γ′.

Explore-Refutation: Assume Explore-Refutation is applicable. Then D =
(D′ ∨ s# t)·σ, (s# t)σ is strictly ≺Γ∗ maximal in (D′ ∨ s# t)σ, [I1, ..., Im] is
a refutation from Γ and (s# t)σ, Ij = (sj#tj ·σj , (sj#tj ∨ Cj)·σj , Il, Ik, pj),
1 ≤ j ≤ m, (sj # tj ∨ Cj)σj ≺Γ∗ (D′ ∨ s# t)σ, (sj#tj ∨ Cj)σj is β-false in Γ.

– 2.3.1.1-2.3.1.4 trivially hold by i.h.

– 2.3.1.5. By definition (Cj ∨ sj # tj)σj is β-false in Γ. By i.h. for all

L′σ′l:(L
′∨C′)·σ′ ∈ Γ it holds that N ∪U |= (L′ ∨C ′). By i.h. N ∪U |= D′ ∨

s# t. By definition of a refutation Ij := (sj#tj ·σj , sj#tj∨Cj ·σj , Ii, Ik, pj)
either contains a clause annotation from Γ, (s# t)σk:(D′∨s# t)·σ or it is a
rewriting inference from smaller rewrite steps for all 1 ≤ j ≤ m. Thus it
follows inductively by Lemma 2.2.15 that N ∪ U |= (sj#tj ∨ Cj).

Factorize: Assume Factorize is applicable. Then D = D′·σ.

– 2.3.1.1 - 2.3.1.4 trivially hold by induction hypothesis.

– 2.3.1.5: By i.h. D′σ is β-false in Γ and N ∪ U |= D′. By the definition
of Factorize D′ = D0 ∨ L ∨ L′ such that Lσ = L′σ and µ = mgu(L,L′).
(D0 ∨ L ∨ L′)µ is an instance of D′. Thus N ∪ U |= (D0 ∨ L ∨ L′)µ. Since
Lµ = L′µ, (D0 ∨ L ∨ L′)µ |= (D0 ∨ L)µ. Thus N ∪ U |= (D0 ∨ L)µ and
(D0 ∨ L)µσ is β-false since (D0 ∨ L)µσ = (D0 ∨ L)σ by definition of an
mgu.
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Equality-Resolution: Assume Equality-Resolution is applicable. Then D =
(D′ ∨ s 6≈ s′)σ and sσ = s′σ, µ = mgu(s, s′). Then

– 2.3.1.1 - 2.3.1.4 trivially hold by induction hypothesis.

– 2.3.1.5: By i.h. (D′∨s 6≈ s′)σ is β-false in Γ and N∪U |= (D′∨s 6≈ s′). D′µ
is an instance of (D′∨s 6≈ s′). Thus (D′∨s 6≈ s′) |= D′µ. Thus N∪U |= D′µ.
D′µσ is β-false since (D′∨s 6≈ s′)σ is β-false andD′µσ = D′σ by definition
of a mgu.

Backtrack: Assume Backtrack is applicable. Then Γ = Γ′,K,Γ′′ and D =
(D′ ∨ L)σ, where Lσ is of level k, and D′σ is of level i.

– 2.3.1.1: By i.h. Γ is consistent. Thus Γ′ ⊆ Γ is consistent.

– 2.3.1.2 - 2.3.1.3: Since Γ′ is a prefix of Γ by i.h. this holds.

– 2.3.1.4: By i.h. N ∪ U |= D′ ∨ L and N |= U . Thus N |= U ∪ {D′ ∨ L}

– 2.3.1.5: trivially holds since D = > after backtracking.

Lemma 2.3.8 Assume a state (Γ;N ;U ;β; k;D) resulting from a regular run
where the current level k > 0 and a unit clause l ≈ r ∈ N . Now assume a clause
C∨L[l′]p ∈ N such that l′ = lµ for some matcher µ. Now assume some arbitrary
grounding substitutions σ′ for C ∨ L[l′]p, σ for l ≈ r such that lσ = l′σ′ and
rσ ≺T lσ. Then (C ∨ L[rµσσ′]p)σ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

Proof. Let (Γ;N ;U ;β; k;D) be a state resulting from a regular run where k > 0
and Γ = [L1, ..., Ln]. Now we have two cases:

1. β ≺T (l ≈ r)σ. Since (l ≈ r)σ rewrites L[l′]pσ
′, β ≺T L[l′]pσ

′ has to hold
as well. Thus (l ≈ r)σ is β-undefined in Γ and L[l′]pσ

′ is β-undefined
in Γ. By definition of a trail induced ordering ≺Γ∗ :=≺T for β-undefined
literals. Thus, in case that L[rµ]p)σσ

′ is still undefined, (L[rµ]p)σσ
′ ≺Γ∗

(L[l′]p)σ
′ has to hold since (L[rµ]p)σσ

′ ≺T (L[l′]p)σ
′. Thus, according to

the definition of multiset orderings, (C ∨L[rµ]p)σσ
′ ≺Γ∗ (C ∨L[l′]p)σ

′. In
the case that (L[rµ]p)σσ

′ is defined, (L[rµ]p)σσ
′ ≺Γ∗ (L[l′]p)σ

′ has to hold
as well by Definition 2.2.9.11. Thus, according to the definition of multiset
orderings, (C ∨ L[rµ]p)σσ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

2. (l ≈ r)σ ≺T β. Since propagation is exhaustive for literals of level 0 (cf.
2.3.5.2) (l ≈ r)σ is on the trail or defined and of level 0. Now we have two
cases:

(a) (L[l′]p)σ
′ is of level 1 or higher. Since (L[l′]p)σ

′ is reducible by (l ≈ r)σ,
(L[l′]p)σ

′ 6= Li and (L[l′]p)σ
′ 6= comp(Li) for all Li ∈ Γ. Since

(L[l′]p)σ
′ is of level 1 or higher, rewriting with (l ≈ r)σ does not change

the defining literal of (L[l′]p)σ
′. Thus (L[rµ]p)σσ

′ ≺Γ∗ (L[l′]p)σ
′ has

to hold since (L[rµ]p)σσ
′ ≺T (L[l′]p)σ

′. Thus, according to the defi-
nition of multiset orderings, (C ∨ L[rµ]p)σσ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′
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(b) (L[l′]p)σ
′ is of level 0. First we show that (L[rµ]p)σσ

′ is still of level 0.
Suppose that (L[l′]p)σ

′ = s# s. Then rewriting either the left or right
side of the equation results in (L[rµ]p)σσ

′. Then core(Γ; (l ≈ r)σ)
is also a core for (L[rµ]p)σσ

′ and thus (L[rµ]p)σσ
′ must be of level

0. Now suppose that (L[rµ]p)σσ
′ = s# s. Then it is of level 0 by

definition of a level. Finally suppose that (L[rµ]p)σσ
′ 6= s# s and

(L[l′]p)σ
′ 6= s# s. Then core(Γ; (L[l′]p)σ

′)∪core(Γ; (l ≈ r)σ) is a core
for (L[rµ]p)σσ

′. Thus (L[rµ]p)σσ
′ is of level 0. Since (L[rµ]p)σσ

′ ≺T
(L[l′]p)σ

′, (L[rµ]p)σσ
′ ≺Γ∗ (L[l′]p)σ

′ according to the definition of
≺Γ∗ . Thus, according to the definition of multiset orderings, (C ∨
L[rµ]p)σσ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

Lemma 2.3.9 Let C,D be two clauses. If there exists a substitution σ such
that Cσ ⊂ D, then D is redundant with respect to C and any ≺Γ∗ .

Proof. Let τ be a grounding substitution for D. Since Cσ ⊂ D, Cστ ⊂ Dτ .
Thus, for any L ∈ Cστ it holds L ∈ Dτ and Cστ 6= Dτ . Thus, Cστ ≺Γ∗

Dτ by definition of a multiset extension and Cστ makes Dτ redundant by
Definition 1.1.35.

Auxiliary Lemmas for the Proof of Lemma 2.3.7

Lemma 2.4.4. During a regular run, if (Γ;N ;U ;β; k;>) is the immediate result
of an application of Backtrack, then there exists no clause C ∈ N ∪ U and a
substitution σ such that Cσ is β-false in Γ.

Proof. We prove this by induction. For the induction start assume the state
(Γ′;N ;U ∪ {D};β; i;>) after the first application of Backtrack in a regular run,
where D is the learned clause. Since Backtrack was not applied before, the
previous (first) application of Conflict in a state (Γ,K;N ;U ;β; k;>) was imme-
diately preceded by an application of Propagate orDecide. By the definition of a
regular run there is no clause C ∈ N with substitution σ such that Cσ is β-false
in Γ. Otherwise Conflict would have been applied earlier. By the definition of
Backtrack, there exists no substition τ such that Dτ is β-false in Γ′. Since there
existed such a substitution before the application of Backtrack, Γ′ has to be a
prefix of Γ and Γ 6= Γ′. Thus there exists no clause C ∈ N ∪ U ∪ {D} and a
grounding substitution δ such that Cδ is β-false in Γ′.

For the induction step assume the state (Γ′;N ;U ∪ {D};β; i;>) after nth
application of Backtrack. By i.h. the previous application of Backtrack did not
produce any β-false clause. It follows that the the previous application of Conflict
in a state (Γ,K;N ;U ;β; k;>) was immediately preceded by an application of
Propagate or Decide. By the definition of a regular run there is no clause
C ∈ N ∪U with substitution σ such that Cσ is β-false in Γ. Otherwise Conflict
would have been applied earlier. By the definition of Backtrack, there exists no
substition τ such that Dτ is β-false in Γ′. Since there existed such a substitution
before the application of Backtrack, Γ′ has to be a prefix of Γ and Γ 6= Γ′. Thus
there exists no clause C ∈ N ∪ U ∪ {D} and a grounding substitution δ such
that Cδ is β-false in Γ′.
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Corollary 2.4.5. If Conflict is applied in a regular run, then it is immediately
preceded by an application of Propagate or Decide, except if it is applied to the
initial state.

Lemma 2.4.6. Assume a state (Γ;N ;U ;β; k;D) resulting from a regular run.
Then there exists no clause (C ∨ L) ∈ N ∪ U and a grounding substitution σ
such that (C ∨ L)σ is β-false in Γ, comp(Lσ) is a decision literal of level i in Γ
and Cσ is of level j < i.

Proof. Proof is by induction. Assume the initial state (ε;N ; ∅;β; 0;>). Then any
clause C ∈ N is undefined in Γ. Then this trivially holds.

Now for the induction step assume a state (Γ;N ;U ;β; k;D). Only Propagate,
Decide, Backtrack and Skip change the trail and only Backtrack adds a new
literal to U . By i.h. there exists no clause with the above properties in N ∪ U .

Now assume that Propagate is applied. Then a literal L is added to the trail.
Let C1 ∨ L1, ..., Cn ∨ Ln be the ground clause instances that get β-false in Γ by
the application such that L is the defining literal of L1, ..., Ln. Then Li is of
level k for 1 ≤ i ≤ n. Thus Li 6= comp(K) for the decision literal K ∈ Γ of level
k. Thus C1 ∨ L1, ..., Cn ∨ Ln do not have the above properties.

Now assume that Decide is applied. Then a literal L of level k+1 is added to
the trail. Let C1∨L1, ..., Cn∨Ln be the (ground) clause instances that get β-false
in Γ by the application such that L is the defining literal of L1, ..., Ln. By the
definition of a regular run for all Li with 1 ≤ i ≤ n it holds that Li 6= comp(L)
or there exists another literal Ki ∈ Ci such that Ki is of level k+ 1 and Li 6= Ki,
since otherwise Propagate must be applied. Thus C1 ∨ L1, ..., Cn ∨ Ln do not
have the above properties.

Now assume that Skip is applied. Then there are no new clauses that get
β-false in Γ. Thus this trivially holds.

Now assume that Backtrack is applied. Then a new clause D∨L is added to
U and Γ = Γ′,K,Γ′′ such that there is a grounding substitution τ with (D∨L)τ
β-false in Γ′,K, there is no grounding substitution δ with (D∨L)δ β-false in Γ′.
Γ′ is the trail resulting from the application of Backtrack. By Lemma 2.4.4, after
application of Backtrack there exists no clause C ∈ N ∪ U and a substitution
σ such that Cσ is β-false in Γ′. Thus there exists no clause with the above
properties.

Lemma 2.3.7 Let N be a clause set. The clauses learned during a regular run
in SCL(EQ) are not redundant with respect to ≺Γ∗ and N ∪ U . For the trail
only non-redundant clauses need to be considered.

I first prove that learned clauses are non-redundant and then that only non-
redundant clauses need to be considered, Lemma 2.4.10, below.

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL(EQ) (Γ;N ;U ;β; k;D ·σ)

⇒{Explore-Refutation,Skip,Eq-Res,Factorize}
∗

SCL(EQ) (Γ′;N ;U ;β; l;C ·σ)

⇒Backtrack
SCL(EQ) (Γ′′;N ;U ∪ {C};β; k′;>)

Assume there are clauses in N ′ ⊆ (gnd(N ∪U)�Γ∗Cσ) such that N ′ |= Cσ. Since
N ′ �Γ∗ Cσ and Cσ is β-defined in Γ, there is no β-undefined literal in N ′, as
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all β-undefined literals are greater than all β-defined literals. If Γ |= N ′ then
Γ |= Cσ, a contradiction. Thus there is a C ′ ∈ N ′ with C ′ �Γ∗ Cσ such that C ′

is β-false in Γ. Now we have two cases:

1. Γ′ 6= Γ. Then Γ = Γ′,∆. Thus at least one Skip was applied, so Cσ does
not contain a literal that is β-undefined without the rightmost literal of Γ,
therefore Cσ 6= Dσ. Suppose that this is not the case, so Cσ = Dσ. Then
Dσ is β-false in Γ′. But since Backtrack does not produce any β-false
clauses by Lemma 2.4.4, Conflict could have been applied earlier on Dσ
contradicting a regular run. Since C ′ �Γ∗ Cσ we have that C ′ 6= Dσ as
well. Thus, again since Backtrack does not produce any β-false clauses by
Lemma 2.4.4, at a previous point in the derivation there must have been
a state such that C ′ was β-false under the current trail and Conflict was
applicable but not applied, a contradiction to the definition of a regular
run.

2. Γ′ = Γ, then conflict was applied immediately after an application of
Decide by Corollary 2.4.5 and the definition of a regular run. Thus Γ = ∆,
K(k−1):D′·δ, Lk:D′′·τ . C ′ does not have any β-undefined literals. Suppose
that C ′ has no literals of level k. Then all literals in C ′ are of level i < k.
Since C ′ is β-false in Γ, C ′ is β-false in ∆,K as well, since it does not
have any literals of level k. Thus, again since Backtrack does not produce
any β-false clauses by Lemma 2.4.4, at a previous point in the derivation
there must have been a state such that C ′ was β-false under the current
trail and Conflict was applicable but not applied, a contradiction to the
definition of a regular run.
Since C ′ �Γ∗ Cσ, it may have at most one literal of level k, namely comp(L),
since comp(L) ∈ Cσ by definition of a regular run, since Skip was not ap-
plied, and there exists only L such that L ≺Γ∗ comp(L) and L is of level
k. But L is β-true in Γ. Thus L 6∈ C ′ has to hold.
Now suppose that C ′ has one literal of level k. Thus C ′ = C ′′ ∨ comp(L),
where C ′′ is β-false in ∆,K. But by Lemma 2.4.6 there does not exist such
a clause. Contradiction.

Auxiliary Lemma for the Proof of Lemma 2.4.8

Lemma 2.4.7. Assume a clause L1 ∨ ...∨Lm, a trail Γ resulting from a regular
run starting from the initial state, and a reducible (by conv(Γ)) grounding
substitution σ, such that Liσ is β-false (β-true or β-undefined) in Γ and Liσ ≺T
β for 1 ≤ i ≤ m. Then there exists a substitution σ′ that is irreducible by
conv(Γ) such that Liσ

′ is β-false (β-true or β-undefined) in Γ, Liσ
′ ≺T β and

Liσ↓conv(Γ) = Liσ
′↓conv(Γ).

Proof. Let L1∨...∨Lm be a clause, Γ a trail resulting from a regular run. Let σ :=
{x1 → t1, ..., xn → tn}. Now set σ′ := {x1 → (t1↓conv(Γ)), ..., xn → (tn↓conv(Γ))}.
Obviously σ′ is irreducible by conv(Γ) and Liσ

′ ≺T β for all 1 ≤ i ≤ m. By
definition, conv(Γ) is a confluent and terminating rewrite system. Since Γ is
consistent, tj↓conv(Γ) ≈ tj is β-true in Γ for 1 ≤ j ≤ n. Thus there exists
a chain such that Liσ →conv(Γ) ... →conv(Γ) Liσ

′ and Liσ
′ is β-false (β-true
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or β-undefined) in Γ. Now there also exists a chain Liσ →conv(Γ) ... →conv(Γ)

Liσ↓conv(Γ). By definition of convergence there must exist a chain Liσ
′ →conv(Γ)

...→conv(Γ) Liσ↓conv(Γ). Thus Liσ↓conv(Γ) = Liσ
′↓conv(Γ).

Auxiliary Lemma for the Proof of Lemmas 2.3.11 and 2.3.17

Lemma 2.4.8. Suppose a sound state (Γ;N ;U ;β; k;>) resulting from a regular
run. If there exists a C ∈ N ∪U and a grounding substitution σ such that Cσ is
β-false in Γ, then Conflict is applicable. Otherwise, If there exists a C ∈ N ∪U
and a grounding substitution σ such that Cσ ≺T β and there exists at least one
L ∈ C such that Lσ is β-undefined , then one of the rules Propagate or Decide
is applicable and a β-undefined literal K ∈ D, where D ∈ gnd≺T β(N ∪ U) is
β-defined after application.

Proof. Let (Γ;N ;U ;β; k;>) be a state resulting from a regular run. Suppose
there exists a C ∈ N ∪ U and a grounding σ such that Cσ is β-false in Γ,
then by Lemma 2.4.7 there exists an irreducible substitution σ′ such that Cσ′

is β-false. Thus Conflict is applicable. Now suppose there exists a C ∈ N ∪
U and a grounding substitution σ such that Cσ ≺T β and there exists at
least one L ∈ C such that Lσ is β-undefined . By Lemma 2.4.7 there exists
a irreducible substitution σ′ such that Lσ′ is β-undefined . Now assume that
C = C0 ∨C1 ∨L such that C1σ

′ = Lσ′ ∨ ...∨Lσ′ and C0σ
′ is β-false in Γ. Then

Propagate is applicable. Let C1 = L1, ..., Ln and µ = mgu(L1, ..., Ln, L). Now let
[I1, ..., Im] be the reduction chain application from Γ to Lσ′k:(L∨C0)µ·σ′ . Let Im =
(sm#tm·σm, (sm#tm ∨ Cm)·σm, Ij , Ik, pm). Then Lσ′↓conv(Γ) = sm#tmσm by
definition of a reduction chain application. Thus Lσ′ is β-true in Γ, sm#tmσm.
Since Lσ↓conv(Γ) = Lσ′↓conv(Γ) by Lemma 2.4.7, Lσ is β-true in Γ, sm#tmσm as
well. If C0σ is β-undefined or β-true in Γ then Propagate is not applicable to Cσ′.
If Decide is not applicable by definition of a regular run, then there exists a clause
C ′ ∈ (N∪U) and a substitution δ such that Propagate is applicable. Then we can
apply Propagate by definition of a regular run and a previously undefined literal
gets defined after application as seen above and we are done. Now suppose
that there exists no such clause. Then let [I ′1, ..., I

′
l ] be the reduction chain

application from Γ to Lσ′k+1:C·σ′ and I ′l = (sl#tl·σl, (sl#tl ∨ Cl)·σl, I ′j , I ′k, pl).
Then Lσ′↓conv(Γ) = (sl#tl)σl by definition of a reduction chain application.
Thus Lσ′ is β-true in Γ, (sl#tl)σl. Since Lσ↓conv(Γ) = Lσ′↓conv(Γ) by Lemma

2.4.7, Lσ is β-true in Γ, (sl#tl)σl as well. (sl#tl)σ
k+1:(sl#tl∨comp(sl#tl))·σl
l can

be added to Γ by definition of a regular run and also by definition of Decide since
C ∈ N ∪U , σ′ is grounding for C and irreducible in conv(Γ), Lσ′ is β-undefined
in Γ and Cσ′ ≺T β.

Auxiliary Lemma for the Proof of Lemmas 2.3.11

Lemma 2.4.9. Suppose a sound state (Γ;N ;U ;β; k;D·σ) resulting from a
regular run. Then Dσ is of level 1 or higher.

Proof. Let (Γ;N ;U ;β; k;D·σ) be a state resulting from a regular run. Suppose
thatDσ is not of level 1 or higher, thus Dσ is of level 0. Then Conflict was applied
earlier to a clause that was of level 1 or higher. Thus there must have been an
application of Explore-Refutation on a state (Γ,Γ′, L;N ;U ;β; l;D′·σ′) between
the state after the application of Conflict and the current state resulting in a
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state (Γ,Γ′, Ll:(L∨C)·δ;N ;U ;β; l;D′′·σ′′) such that D′σ′ is of level l and D′′σ′′

is of level 0, since no other rule can reduce the level of D′σ′. Then there exists a
K ∈ D′σ′ such that L is the defining literal of K. Let [I1, ..., Im] be the refutation
of K and Ij = (sj#tj ·σj , (sj#tj ∨Cj)·σj , Ii, Ik, pj) be the step that was chosen
by Explore-Refutation. Then D′′σ′′ = (sj#tj ∨ Cj)σj . Cδ ⊂ Cjσj has to hold
since L is the defining literal of K. Then Cδ must be of level 0 or empty. Note
that Cδ is of level l if L is a decision literal. But then, by the definition of a
regular run, Ll:(L∨C)·δ must have been propagated before the first decision, since
propagation is exhaustive at level 0. Contradiction.

Lemma 2.3.11 If a regular run (without rule Grow) ends in a stuck state
(Γ;N ;U ;β; k;D), then D = > and all ground literals Lσ ≺T β, where L ∨ C ∈
N ∪ U are β-defined in Γ.

Proof. First we prove that stuck states never appear during conflict resolution.
Assume a sound state (Γ;N ;U ;β; k;D ·σ) resulting from a regular run. Now we
show that we can always apply a rule. Suppose that Dσ = (D′ ∨ L ∨ L′)σ such
that Lσ = L′σ. Then we must apply Factorize by the definition of a regular run.
Now suppose that Factorize is not applicable and Γ := Γ′, L and Dσ is false in Γ′.
If Dσ = (D′∨s 6≈ s′)σ such that sσ = s′σ, we can apply Equality-Resolution. So
suppose that Equality-Resolution is not applicable. Then we can apply Skip. Now
suppose that Γ := Γ′, Lk:(L∨C)δ and L is the defining literal of at least one literal
in Dσ, so Skip is not applicable. IfDσ = (D′∨L′)σ whereD′σ is of level i < k and
L′σ is of level k and Skip was applied at least once during this conflict resolution,
then Backtrack is applicable. If Skip was not applied and L = comp(L′σ) and L is
a decision literal, then Backtrack is also applicable. Otherwise, let (s# t)σ ∈ Dσ
such that K ≺Γ∗ (s# t)σ for all K ∈ Dσ. (s# t)σ exists since Factorize is
not applicable. By Lemma 2.4.9, (s# t)σ must be of level 1 or higher. By the
definition of ≺Γ∗ , L must be the defining literal of (s# t)σ since L is of level
1 or higher and any literal in Dσ that has another defining literal is smaller
than (s# t)σ. Now suppose that L is a decision literal and (s# t)σ = comp(L).
Then (s# t)σ is of level k and all other literals K ∈ Dσ are of level i < k, since
(s# t)σ is the smallest β-false literal of level k and Factorize is not applicable.
In this case Explore-Refutation is not applicable since a paramodulation step
with the decision literal does not make the conflict clause smaller. But Backtrack
is applicable in this case even if Skip was not applied earlier by the definition of
a regular run. Thus (s# t)σ 6= comp(L) or L is a propagated literal has to hold.
We show that in this case Explore-Refutation is applicable. Let [I1, ..., Im] be a
refutation of (s# t)σ from Γ, Im = (sm#tm·σm, (sm#tm ∨ Cm)·σm, Ij , Ik, pm).
Since [I1, ..., Im] is a refutation sm#tmσm = s′ 6≈ s′. Furthermore any Ii either
contains a clause annotation from Γ, (s# t)σk:D·σ or it is a rewrite inference
from Ij′ , Ik′ with j′, k′ < i. Thus by Lemma 2.2.15 it inductively follows that
Cmσm = D′σm∨...∨D′σm∨C ′1σm∨...∨C ′nσm, where C ′1σm, ..., C

′
nσm are clauses

from Γ without the leading trail literal and Dσ = D′σm ∨ (s#t)σ. Since L is the
defining literal of (s# t)σ there must exist at least one C ′i such that C ′iσm = Cδ.
If L is a propagated literal, then any literal in C ′iσm is smaller than (s# t)σ, since
they are already false in Γ′. If L is a decision literal, then C ′iσm = comp(L).
Then comp(L) is smaller, since (s# t)σ 6= comp(L) and (s# t)σ 6= L. Thus
comp(L) ≺Γ∗ (s# t)σ. Any other literal in C1σm, ..., C

′
nσm is smaller in ≺Γ∗ ,

since they are already defined in Γ′. Since Factorize is not applicable (s# t)σ
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is also strictly maximal in D′σm. Thus (sm#tm ∨Cm)σm ≺Γ∗ Dσ which makes
Explore-Refutation applicable.
Now by Lemma 2.4.8 it holds that if there exists an β-undefined literal in
gnd≺T β(N∪U), we can always apply at least one of the rules Propagate orDecide
which makes a previously β-undefined literal in gnd≺T β(N ∪ U) β-defined .

Lemma 2.3.12 Suppose a sound state (Γ;N ;U ;β; k;D) resulting from a regular
run whereD 6∈ {>,⊥}. IfBacktrack is not applicable then any set of applications
of Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result in
a sound state (Γ′;N ;U ;β; k;D′), where D′ ≺Γ∗ D. Then Backtrack will be
finally applicable.

Proof. Assume a sound state (Γ;N ;U ;β; k;D ·σ) resulting from a regular run.
Let (s# t)σ ∈ Dσ such that L �Γ∗ (s# t)σ for all L ∈ Dσ. If (s# t)σ occurs
twice in Dσ, then Factorize is applicable. Suppose that it is applied. Then
Dσ = (D′ ∨ (s# t) ∨ L)σ, where Lσ = (s# t)σ. Then µ = mgu(s# t, L) and
the new conflict clause is (D′ ∨ s# t)µσ ≺Γ∗ Dσ. Thus in this case we are
done. If Factorize is not applicable, then the only remaining applicable rules
are Skip, Explore-Refutation and Equality-Resolution. If Γ = Γ′, L,Γ′′ where
L is the defining literal of (s# t)σ, then Skip is applicable |Γ′′| times, since
otherwise (s# t)σ would not be maximal in Dσ. So at some point it is no
longer applicable. Since Dσ is finite, Equality-Resolution can be applied only
finitely often. Thus we finally have to apply Explore-Refutation. Then [I1, ..., Im]
is a refutation of (s# t)σ from Γ, and there exists an 1 ≤ j ≤ m, such that
Ij = (sj#tj ·σj , (sj#tj ∨ Cj)·σj , Il, Ik, pj), (Cj ∨ sj # tj)σj ≺Γ∗ (D′ ∨ s# t)σ.
Otherwise Explore-Refutation would not be applicable, contradicting Lemma
2.3.11. Thus in this case we are done.
Now we show that Backtrack is finally applicable. Since ≺Γ∗ is well-founded
and Γ is finite there must be a state where Explore-Refutation, Skip, Factorize,
Equality-Resolution are no longer applicable. By Lemma 2.4.9 the conflict clause
in this state must be of level 1 or higher, thus ⊥ cannot be inferred. Suppose that
it is always of level i ≥ l for some l. The smallest literal of level l that is false
in Γ is comp(L), where L is the decision literal of level l. Since we can always
reduce if Backtrack is not applicable and since we can always apply a rule by
Lemma 2.3.11, we must finally reach a conflict clause comp(L) ∨ C, where C is
of level j < l. Thus Backtrack is applicable.

Lemma 2.3.15 Let N be a set of clauses and β be a ground term. Then any
regular run that never uses Grow terminates.

Proof. Assume a new ground clause Dσ is learned. By Lemma 2.3.7 all learned
clauses are non-redundant. Thus Dσ is non-redundant. By the definition of a
regular run Factorize has precedence over all other rules. Thus Dσ does not
contain any duplicate literals. By Theorem 2.3.4, Dσ ≺T β has to hold. There
are only finitely many clauses Cσ ≺T β, where Cσ is neither a tautology nor
does it contain any duplicate literals. Thus there are only finitely many clauses
Dσ that can be learned. Thus there are only finitely many literals that can be
decided or propagated.

Lemma 2.3.16 If a regular run reaches the state (Γ;N ;U ;β; k;⊥) then N is
unsatisfiable.
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Proof. By definition of soundness, all learned clauses are consequences of N ∪U ,
Definition 2.3.1.5, and Γ is satisfiable, Definition 2.3.1.1.

Theorem 2.3.17 Let N be an unsatisfiable clause set, and ≺T a desired term
ordering. For any ground term β where gnd≺T β(N) is unsatisfiable, any regular
SCL(EQ) run without rule Grow will terminate by deriving ⊥.

Proof. Since regular runs of SCL(EQ) terminate we just need to prove that it
terminates in a failure state. Assume by contradiction that we terminate in
a state (Γ;N ;U ;β; k;>). If no rule can be applied in Γ then for all s# t ∈
C for some arbitrary C ∈ gnd≺T β(N) it holds that s# t is β-defined in Γ
(otherwise Propagate or Decide woud be applicable, see Lemma 2.4.8) and there
aren’t any clauses in gnd≺T β(N) β-false under Γ (otherwise Conflict would be
applicable, see again Lemma 2.4.8). Thus, for each C ∈ gnd≺T β(N) it holds
that C is β-true in Γ. So we have Γ |= gnd≺T β(N), but by hypothesis there is a
Superposition refutation of N that only uses ground literals from gnd≺T β(N),
so also gnd≺T β(N) is unsatisfiable, a contradiction.

Lemma 2.4.10 (Only Non-Redundant Clauses Building the Trail). Let Γ =

[Li1:C1·σ1
1 , ..., Lin:Cn·σn

n ] be a trail. If L
ij :Cj ·σj
j is a propagated literal and there

exist clauses {D1∨K1, ..., Dm∨Km} with grounding substitutions δ1, ..., δm such
thatN := {(D1∨K1)δ1, ..., (Dm∨Km)δm} ≺Γ∗ Cjσj and {(D1∨K1)δ1, ..., (Dm∨
Km)δm} |= Cjσj , then there exists a (Dk ∨Kk)δk ∈ N such that

[Li1:C1·σ1
1 , ..., L

ij−1:Cj−1·σj−1

j−1 ,K
ij :(Dk∨Kk)·δk
k , ..., Lin:Cn·σn

n ]

is a trail.

Proof. Let N = {(D1 ∨ K1)δ1, ..., (Dm ∨ Km)δm} and L
ij :Cj ·σj
j be as above.

Let Γ′ = [Li1:C1·σ1
1 , ..., L

ij−1:Cj−1·σj−1

j−1 ]. Now suppose that for every literal L ∈
N it holds L ≺Γ∗ Lj . Then every literal in N is defined in Γ′ and Γ′ |= N ,
otherwise Conflict would have been applied to a clause in N . Thus Γ′ |= Cjσj
would have to hold as well. But by definition of a trail Lj is undefined in Γ′.
Thus there must be at least one clause (Dk ∨ Kk)δk ∈ N with Kk = Lj and
Dkδk ≺Γ∗ Lj (otherwise (Dk ∨Kk)δk 6≺Γ∗ Cjσj), such that Γ′ 6|= Dk. Suppose
that Γ′ |= Dk. Then N 6|= Cjσj , since there exists an allocation, namely Γ′,¬Lk
such that Γ′,¬Lk |= N but Γ′,¬Lk 6|= Cjσj . Thus we can replace L

ij :Cj ·σj
j by

K
ij :(Dk∨Kk)·δk
k in Γ.

2.5 Discussion of SCL(EQ)

I presented SCL(EQ), a new sound and complete calculus for reasoning in first-
order logic with equality. I will now discuss some of its aspects.

The SCL(EQ) calculus can be viewed as a generalization of the first-order
without equality SCL calculus [BSW23], where syntactic equality with respect
to trail literals is replaced with equality modulo the presented equational theory.
If standard first-order literals like R(x, y) are represented by equations like
fR(x, y) ≈ true then performing SCL(EQ) on the latter simplifies to classical
SCL reasoning on the first-order literals with a slightly different strategy.
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The trail induced ordering, Definition 2.2.9, is the result of letting the calculus
follow the logical structure of the clause set on the literal level and at the same
time supporting rewriting at the term level. It can already be seen by examples on
ground clauses over (in)equations over constants that this combination requires
a layered approach as suggested by Definition 2.2.9, see Example 2.5.1.

Example 2.5.1 (Propagate Smaller Equation). Assume a term ordering ≺kbo,
unique weight 1 and with precedence d ≺ c ≺ b ≺ a. Further assume β to be
large enough. Assume the ground clause set N solely built out of constants

C1 := c ≈ d C2 := c 6≈ d ∨ a ≈ b
C3 := a 6≈ b ∨ a ≈ c

and the trail Γ := [c ≈ d0:C1 , a ≈ b0:C2 , b ≈ d0:C3 ]. Now, although the first two
steps propagated equations that are strictly maximal in the ordering in their
respective clauses, the finally propagated equation b ≈ d is smaller in the term
ordering ≺kbo than a ≈ b. Thus the structure of the clause set forces propagation
of a smaller equation in the term ordering. So the more complicated trail ordering
is a result of following the structure of the clause set rather than employing an
a priori fixed ordering.

In contrast to Superposition, SCL(EQ) does also inferences below variable
level. In general, single Superposition inferences below variables are redun-
dant [BG94]. Inferences in SCL(EQ) are guided by a false clause with respect
to a partial model assumption represented by the trail. They are typically not
single Superposition steps, but a sequence of Superposition inferences eventu-
ally resulting in a non-redundant clause changing the partial model assumption.
Therefore, compared to the syntactic style of Superposition-based theorem prov-
ing, in SCL(EQ) reasoning below variables does not result in an explosion in
the number of possibly inferred clauses but also rather in the derivation of more
general clauses, see Example 2.5.2.

Example 2.5.2 (Rewriting below variable level). Assume a term ordering ≺kbo,
unique weight 1 and with precedence d ≺ c ≺ b ≺ a ≺ g ≺ h ≺ f . Further
assume β to be large enough. Assume the clause set N :

C1 := f(x) ≈ h(b) ∨ x 6≈ g(a) C2 := c ≈ d ∨ f(g(b)) 6≈ h(b)
C3 := a ≈ b ∨ f(g(b)) ≈ h(b)

Let σ = {x→ g(a)} be a substitution. C1σ must be propagated: Γ = [f(g(a)) ≈
h(b)0:C1σ]. Now suppose that we decide f(g(b)) 6≈ h(b). Then Γ = [f(g(a)) ≈
h(b)0:C1σ, f(g(b)) 6≈ h(b)1:f(g(b)) 6≈h(b)∨f(g(b))≈h(b)] and C3 is a conflict clause.
Explore-Refutation now creates the following refutation for a ≈ b:

I1 := (f(x) ≈ h(b)·σ,C1·σ, ε, ε, ε)
I2 := (f(g(b)) 6≈ h(b), C2, ε, ε, ε)
I3 := (a ≈ b, C3, ε, ε, ε)
I4 := (f(g(b)) ≈ h(b), f(g(b)) ≈ h(b) ∨ g(a) 6≈ g(a) ∨ f(g(b)) ≈ h(b), I3, I1, ε)
I5 := (h(b) 6≈ h(b), h(b) 6≈ h(b) ∨ g(a) 6≈ g(a) ∨ f(g(b)) ≈ h(b)

∨f(g(b)) ≈ h(b), I4, I2, ε)

Multiple applications of Equality-Resolution and Factorize result in the final
conflict clause C4 := f(g(b)) ≈ h(b) with which we can backtrack. The clause
set resulting from this new clause is:
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C1 = f(x) ≈ h(b) ∨ x 6≈ g(a) C ′2 = c ≈ d
C4 = f(g(b)) ≈ h(b)

where C ′2 is the result of a unit reduction between C4 and C2. Note that the
refutation required rewriting below variable level in step I4. Superposition would
create the following clauses (Equality-Resolution and Factorization steps are
implicitly done):

N ⇒Sup(C2,C3) N1 ∪ {C4 := c ≈ d ∨ a ≈ b}
⇒Sup(C1,C2) N2 ∪ {C5 := c ≈ d ∨ g(a) 6≈ g(b)}
⇒Sup(C4,C5) N3 ∪ {C6 := c ≈ d}

For Superposition the resulting clause set is thus:

C1 = f(x) ≈ h(b) ∨ x 6≈ g(a) C2 = a ≈ b ∨ f(g(b)) ≈ h(b)
C6 = c ≈ d

Currently, the reasoning with solely positive equations is done on and with
respect to the trail. It is well-known that also inferences from this type of
reasoning can be used to speed up the overall reasoning process. The SCL(EQ)
calculus already provides all information for such a type of reasoning, because it
computes the justification clauses for trail reasoning via rewriting inferences. By
an assessment of the quality of these clauses, e.g., their reduction potential with
respect to trail literals, they could also be added, independently from resolving
a conflict.
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Chapter 3

CC(X ): Non-Ground
Congruence Closure

As we have seen in the previous Chapter, SCL(EQ) relies heavily on equational
models to find true and false literals. Congruence closure could be used for
this task. However, for completeness, we require exhaustive propagation of units
which would result in the instantiation of all possible ground instances smaller
than β. In this Chapter, I therefore present CC(X ) [LW24], which is a gener-
alized congruence closure algorithm for terms with variables. This Chapter is
now organized as follows. In Section 3.1, I briefly discuss related work. Sec-
tion 3.2 presents my calculus in detail and in Section 3.3, I prove its correctness.
Section 3.4 describes the details and adjustments I have made for the implemen-
tation. In Section 3.5, I provide the results of my evaluation and in Section 3.6,
I show how KBO can be included as a constraint solver. Finally, in Section 3.7,
I conclude. CC(X ) was mainly developed by me. Christoph Weidenbach was
involved in the exchange of ideas and the final polishing of the paper.

3.1 Related Work

To the best of my knowledge, the only algorithm that is similar to mine is Joe
Hurd’s Congruence Classes with Logic Variables [Hur01]. The algorithm creates
a set of classes, where each class consists of multiple, possibly non-ground terms.
It incrementally finds all matchers between all pairs of classes and applies these
matchers to extend these classes. Therefore, in order to test equality of two terms
they need to be added and the algorithm restarted. The size of terms is not
constrained by the algorithm so it may diverge. The author does not introduce a
notion of redundancy. The semantics of the classes is with respect to an infinite
signature. In contrast, I generate a complete classification of all considered ground
terms, i.e., testing equality of two terms means testing membership in the same
class. Due to a notion of redundancy, my algorithm always terminates as seen
in Lemma 3.3.5. Furthermore we created an implementation (Section 3.4).

Satisfiability modulo theory (SMT) [GHN+04,NOT06] solvers (e.g., [dMB08,
BBB+22,BCBdODF09,Dut14,CGSS13]) make use of congruence closure [NO80,
DST80,Sho84]. For SMT solvers many techniques have been invented to instan-
tiate non-ground input equations [BFR17, RBF18, RTdM14] in order to make
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them applicable to CC. All these techniques do not consider CC on equations
with variables, instead the equations are grounded first. This applies in partic-
ular to [BFR17] where equations are assumed to be ground, but the equality
to be tested may contain variables and the procedure aims at finding further
potentially useful ground instances to the equations.

3.2 The Calculus

I now present my calculus in full detail. I begin with the definition of the ordering.

Definition 3.2.1 (Term Ordering). Let � be a total quasi-ordering on ground
terms where the strict part is well-founded. The ordering is lifted to the non-
ground case via instantiation: I define t � s if for all grounding substitutions
σ it holds tσ � sσ. Given a ground term β then gnd�β computes the set of all
ground instances of a term, equation, or sets thereof where all ground terms are
smaller or equal to β with respect to �. By T�β(Ω, ∅) or just T�β I denote the
set of all ground terms � β.

Definition 3.2.2. A constrained term Γ ‖ s is a term s with a constraint Γ.
The constraint Γ is a conjunction of atoms t � β. A substitution σ is grounding
for a constraint term Γ ‖ s if Γσ and sσ are ground. A ground constraint Γ is
true if for all t � β ∈ Γ it indeed holds t � β, and false otherwise. A constraint
Γ is satisfiable if there exists a grounding σ such that Γσ is true.

The constraint Γ restricts the possible ground instances of the term s to those
instances sσ such that Γσ evaluates to true. If it is clear from the context, I omit
the � β and just write the left-hand side of the inequation. A constraint class
is a set of constraint terms. I distinguish between separating and free variables,
where a separating variable occurs in all terms within the class whereas a free
variable does not.

Definition 3.2.3 (Congruence Class). A congruence class or simply class is a
finite set of constraint terms Γ ‖ s. Let A = {Γ1 ‖ s1, ...,Γn ‖ sn} be a class. The
set of separating variables X of A is defined as X = vars(s1)∩ ...∩vars(sn). The
set of free variables Y of A is defined as Y = (vars(s1) ∪ ... ∪ vars(sn)) \X. A
substitution is grounding for A if it is grounding for all constraint terms Γi ‖ si.

If the terms in a congruence class all have the same constraint then I use
{Γ ‖ s1, ..., sn} as a shorthand for {Γ ‖ s1, ...,Γ ‖ sn}. For example, with
all shorthands we can now write {g(x), h(x) ‖ g(x), h(x)} instead of {g(x) �
β, h(x) � β ‖ g(x), g(x) � β, h(x) � β ‖ h(x)}. In the calculus later on the
constraints of each term within a class are always the same. Variables in a class
can always be renamed.

Definition 3.2.4. Let A = {Γ1 ‖ s1, ...,Γn ‖ sn} be a class and µ a substitution.
I define Aµ as {Γ1µ ‖ s1µ, ...,Γnµ ‖ snµ}. In particular, if µ is grounding for A
I overload its application by Aµ = {sµ | (Γ ‖ s ∈ A and Γµ true)}.

The semantics of a congruence class with variables is defined by creating
a mapping to the corresponding ground classes. It is important to distinguish
between separating and free variables here. Separating variables divide the non-
ground class into several ground classes.
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Definition 3.2.5 (Congruence Class Semantics). Let A be a congruence class.
Let X be the separating variables of A. Then the set gnd′(A) is defined as:⋃

σ ground,
dom(σ)=X

{
{(Γσ ‖ sσ) | (Γ ‖ s) ∈ A and Γσ satisfiable}

}

and the set gnd(A) is defined as:⋃
B∈gnd′(A)

{ ⋃
σ grounding for B

{sσ | (Γ ‖ s) ∈ B and Γσ true}
}

Example 3.2.6. Assume Ω = {g, h, a, b}, a term β = g(a), an ordering such
that only a, b, g(a), g(b), h(a), h(b) � g(a) and classes

A = {g(x), h(x) ‖ g(x), h(x)}, B = {g(x), h(y) ‖ g(x), h(y)}

Then

gnd(A) = {{g(a), h(a)}, {g(b), h(b)}} and gnd(B) = {{g(a), h(a), g(b), h(b)}}

Definition 3.2.7 (Normal Class). Let A be a class. The normal class norm(A)
is defined as {(Γ ∧ Γσ ‖ s) | (Γ ‖ s) ∈ A} ∪ {(Γ ∧ Γσ ‖ sσ) | (Γ ‖ s) ∈ A
and s contains free variables} for a renaming σ on the free variables which are
introducing only fresh variables.

A class can be turned into a normal class by generating exactly one re-
named copy for all constrained terms containing free variables. The motiva-
tion for normal classes is of technical nature. CC(X ) rules always operate
on two terms out of a class. In case of terms with variables the two terms
may be actually instances of the same term from the class. This can only
happen for terms with free variables. By introducing one renamed copy for
such terms, the style of CC(X ) rules is preserved and the rules do not need
to distinguish between free and separated variables. For example, the class
A = {g(x), h(y) ‖ g(x), h(y)} contains all ground terms build with top-symbols
g and h. So for a CC(X ) step picking g(a) and g(b) out of the class the term g(x)
needs to be instantiated with two different constants. By using renamed copies
norm(A) = {g(x), g(x′), h(y), h(y′) ‖ g(x), g(x′), h(y), h(y′)} this technical issue
is removed. Obviously, gnd(A) = gnd(norm(A)), holding for all classes and their
normal counterparts.

Definition 3.2.8 (Subsumption). A class B subsumes another class A if for all
A′ ∈ gnd(A) there exists a B′ ∈ gnd(B) such that A′ ⊆ B′.

The following Definitions and Lemmas prepare termination, Lemma 3.3.5. I
show that I can not create infinitely many classes restricted by β such that each
new class is not subsumed by any existing class, guaranteeing termination.

Definition 3.2.9. Let A = {Γ1 ‖ s1, ...,Γn ‖ sn} be a class and β a ground
term. A is constrained by β (or β-constrained) iff si � β ∈ Γi for all 1 ≤ i ≤ n.

Lemma 3.2.10. Let β be a ground term and A a β-constrained class. Then
gnd(A) ∈ P(T�β), the powerset of T�β .
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Proof. For any B ∈ gnd′(A) there exists a σ such thatB = {(Γσ ‖ sσ) | (Γ ‖ s) ∈
A and Γσ satisfiable}. Thus for any Γσ ‖ sσ ∈ B we have sσ � β ∈ Γσ. Thus B
is β-constrained. For any A′ ∈ gnd(A) we have A′ =

⋃
σ grounding for B{sσ | (Γ ‖

s) ∈ B and Γσ true} for some B ∈ gnd′(A). Thus for any sσ ∈ A′ we have
sσ � β, since B is β-constrained and sσ is ground. Thus A′ ⊆ T�β . Thus
gnd(A) ⊆ P(T�β).

Lemma 3.2.11. Let β be a ground term. There exists no infinite chain of
(possibly non-ground) β-constrained classes A0, A1, ... such that for all i ≥ 0, Ai
is not subsumed by any Aj (0 ≤ j < i).

Proof. Assume there exists such a chain. Let P(T�β) be the powerset of T�β .
Since T�β is finite, P(T�β) is finite as well. There are only 2|T�β | different subsets
in P(T�β). For any Ai in the chain it holds gnd(Ai) ∈ P(T�β) by Lemma 3.2.10.
If there exist indices i 6= j such that gnd(Ai) = gnd(Aj) then Aj subsumes Ai
and vice versa contradicting the assumption. Thus, for any pair of indices i 6= j
in the chain it has to hold gnd(Ai) 6= gnd(Aj) which contradicts the fact that
there are only finitely many different subsets.

Definition 3.2.12. Let A = {Γ1 ‖ s1, ...,Γn ‖ sn} be a class. The set vars(A)
is defined as

⋃
1≤i≤n(

⋃
t∈Γi

vars(t)) ∪ vars(si).

A state of CC(X ) is a finite set of congruence classes. For a state Π =
{A1, ..., An} I define gnd(Π) = gnd(A1)∪ ...∪gnd(An). Let Π be a state. For any
classes {A,B} ⊆ Π with A 6= B, I assume that vars(A) ∩ vars(B) = ∅ at any
time during execution. Now given a set of equations E, where gnd�β(s ≈ t) 6= ∅
for all s ≈ t ∈ E the initial state of CC(X ) is

Π ={{s � β ∧ t � β ‖ s, s � β ∧ t � β ‖ t} | s ≈ t ∈ E} ∪
{{fi(x1i , . . . , xki) � β ‖ fi(x1i , . . . , xki)} | fi ∈ Ω}

In particular, the linear single term classes fi(x1i , . . . , xki) are needed for
rule Deduction to build terms that are not contained in E as a subterm but � β.
I present my algorithm in the form of two abstract rewrite rules:

Merge Π ∪ {A,B} ⇒CC(X ) Π ∪ {A,B, (A′ ∪B′)µ}
provided norm(A) = {Γ1 ‖ s1, ...,Γn ‖ sn}, norm(B) = {∆1 ‖ t1, ...,∆n ‖ tn},
there exist (Γ ‖ s) ∈ A, (∆ ‖ t) ∈ B and µ such that µ = mgu(s, t), A′ =
{Γ1∧Γ∧∆ ‖ s1, ...,Γn∧Γ∧∆ ‖ sn}, B′ = {∆1∧Γ∧∆ ‖ t1, ...,∆n∧Γ∧∆ ‖ tn},
there exists no A′′ ∈ Π ∪ {A,B} such that (A′ ∪B′)µ is subsumed by A′′.

The rule Merge takes as input two classes where a term in the first class is
unifiable with a term in the second class. The result is the union of their normal
classes with the unifier applied. For termination it is crucial to check if there
exists a class that subsumes the newly generated class. Note that the Merge rule
can be seen as a generalization of the Merge rule in ⇒CC.

Deduction Π∪{A,B} ⇒CC(X ) Π∪{A,B, {Γ′ ‖ f(s′1, ..., s
′
n),Γ′ ‖ f(t′1, ..., t

′
n)}µ}

provided Γ ‖ f(s1, ..., sn) ∈ A, ∆ ‖ f(t1, ..., tn) ∈ B, and for each 0 < i ≤ n,
there exists a Di ∈ Π such that Γi ‖ s′i ∈ norm(Di),∆i ‖ t′i ∈ norm(Di), µ is a
simultaneous mgu of f(s′1, ..., s

′
n) = f(s1, ..., sn) and f(t′1, ..., t

′
n) = f(t1, ..., tn),

Γ′ = Γ ∧∆ ∧ Γ1 ∧ ... ∧ Γn ∧∆1 ∧ ... ∧∆n, there exists no A′ ∈ Π ∪ {A,B} such
that {Γ′ ‖ f(s′1, ..., s

′
n),Γ′ ‖ f(t′1, ..., t

′
n)}µ is subsumed by A′.
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The rule Deduction creates a new class if there exist terms with the same top
symbol in two different (copies of) classes such that their arguments are unifiable
with terms that are in the same class. Again Deduction is a generalization of
the Deduction rule from ⇒CC. Note, that in Merge and Deduction A and B
can be identical. In this case I assume the consideration of a renamed copy.
Furthermore, in both rules I inherit all parent constraints for the new class.
Using this invariant, I could also represent each class by a single constraint that
is not dedicated to a term. I do not do so in order to get a nicer representation,
the way constraints are composed depending on the term they belong to. My way
of constraint composition can also result in constraints containing variables that
do not occur in any term of the class anymore. I’ll take care of these constraints
in Section 3.4.

Note that during the creation of new classes, a lot of classes may become
redundant. While these redundant classes affect neither soundness nor complete-
ness getting rid of redundant classes is essential for an efficient implementation.
To this end I introduce a Subsunption rule that has precedence over all other
rules.

Subsumption Π ∪ {A,B} ⇒CC(X ) Π ∪ {B}
provided B subsumes A.

Example 3.2.13. Suppose we have the following equations: g(x) ≈ a, h(y) ≈ a,
g(h(z)) ≈ h(h(z)). Initially, without single term classes, we get

Π = {{g(x), a ‖ g(x), a}, {h(y), a ‖ h(y), a}, {g(h(z)), h(h(z)) ‖ g(h(z)), h(h(z))}}

Merging the last class with the second class we get

{g(h(z)), h(h(z)), h(y), a ‖ g(h(z)), h(h(z)), h(y), a}

We can now merge this new class with the first class to get:

{g(h(z)), h(h(z)), a, h(y), g(x) ‖ g(h(z)), h(h(z)), a, h(y), g(x)}

This class subsumes all other classes, for example in our ordering defined in
Section 3.4. So this would be the final result. Note that this result is independent
of the chosen β. No matter how large β is the result of the calculus is always
the same (assuming that β allows for the initial classes).

Another example where the number of classes is dependant on β is shown
below.

Example 3.2.14. Suppose we have the single equation f(x) ≈ g(x). Initially we
have Π = {{f(x), g(x) ‖ f(x), g(x)}}. Depending on the size of β we get more
and more classes with the Deduction rule, like {f(f(x)), f(g(x)), f(x), g(x) ‖
f(f(x)), f(g(x))} and {g(f(x)), g(g(x)), f(x), g(x) ‖ g(f(x)), g(g(x))}. Which
we can again merge with the first class to get

{f(f(x)), f(g(x)), g(f(x)), g(g(x)), f(x), g(x) ‖

f(f(x)), f(g(x)), g(f(x)), g(g(x))}

Increasing β further we get even larger classes. This is an example where we
gain quite little compared to congruence closure.
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The following example shows that Merge also has to be applied to two
instances of the same class.

Example 3.2.15. Assume initial classes (without single term classes):

Π = {{f(x, y), g(x, y) ‖ f(x, y), g(x, y)},

{f(x, y), g(y, x) ‖ f(x, y), g(y, x)}}

Now we can merge the classes by unifying f(x, y):

{f(x, y), g(x, y), g(y, x) ‖ f(x, y), g(x, y), g(y, x)}

The new class subsumes both initial classes. To get the final result we have to
merge this new class with itself by unifying g(x, y) and g(y, x) to get:

A = {f(x, y), g(x, y), g(y, x), f(y, x) ‖

f(x, y), g(x, y), g(y, x), f(y, x)}

otherwise, e.g. {f(a, b), f(b, a)} 6⊆ A′ for all A′ ∈ gnd(A) for an appropriate set
of function symbols in Ω.

Note, that CC(X ) does not always guarantee less or equally many Congruence
Classes than CC. Consider the following example

Example 3.2.16. Let f(a) ≈ h(a), g(a) ≈ h(a), f(b) ≈ h(b), g(b) ≈ h(b), f(x) ≈
g(x), a ≈ f(a), b ≈ f(b) be some input equations. Further assume that the ground
terms occuring in the input equations are the only ground terms smaller than a
given β. Initially CC(X ) contains a class for the terms in each equation. Note,
that Subsumption is not applicable in this state. Now, multiple Merge opera-
tions are possible, but no matter in which sequence they are applied the result
is always

{{f(a), h(a), g(a), a ‖ f(a), h(a), g(a), a}, {f(b), h(b), g(b), b ‖ f(b), h(b), g(b), b},

{f(x), g(x) ‖ f(x), g(x)}}

Subsumption is not applicable to this set of classes. In ground congruence closure,
however, we only get two classes:

{{f(a), h(a), g(a), a}, {f(b), h(b), g(b), b}}

In the special case of equations with flat terms, where the left-hand side
is variable disjoint to the right-hand side and every variable occurs only once,
CC(X ) terminates even without constraints as I will show in the following
Lemma.

Lemma 3.2.17. LetE be a set of equations of the form f(x1, ..., xn) ≈ g(y1, ..., ym).
Then CC(X ) terminates on E with empty contraints.

Proof. We prove that

1. the terms stay flat, i.e. Deduction is never applicable and if Merge is
applicable, then µ is a renaming and
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2. the number of Merge operations is at most |E| − 1

Since there are no constraints and no separating variables, any subsumption
check reduces to a check if there exists a term in the subsuming class and a
matcher for the free variables for every term in the subsumed class.

Assume that Deduction is applicable. Then there exists a f(x1, ..., xn) in A
and f(y1, ..., yn) in B. Deduction would now create a new class {f(s1, ..., sn),
f(t1, ..., tn)}. But there already exists a class {f(x1, ..., xn), g(y1, ..., ym), ...} with
no constraints. Thus there exists two matchers δ, δ′ such that f(x1, ..., xn)δ =
f(s1, ..., sn) and f(x1, ..., xn)δ′ = f(t1, ..., tn). Thus {f(s1, ..., sn), f(t1, ..., tn)}
is subsumed.

Assume that Merge is applicable to classes A and B. Then there exists a
f(x1, ..., xn) in A and f(y1, ..., yn) in B. Then µ is a renaming. If Merge is
applied to the same class, i.e. if B is a renaming of A, then the resulting class is
obviously subsumed by A. So A and B must be different. Let C be the resulting
class. C subsumes A and B, since for every t ∈ A there exists a t′ ∈ C such that
there exists a matcher δ such that t′δ = t and the constraints are empty, and
analogously for B.

Since Deduction is never applicable and Merge always creates a class that
subsumes the merged classes, the number of Merge operations is at most |E|−1,
since every Merge operation reduces the total number of classes by 1. Thus
CC(X ) terminates with the correct result for empty constraints.

3.3 Correctness

I will now prove termination, soundness and completeness. I start with soundness.

Lemma 3.3.1. Let A be a class. There exists a A′ ∈ gnd(A) s.t. {s, t} ⊆ A′ iff
there exists a substitution σ′ such that {s, t} ⊆ norm(A)σ′.

Proof. Let X be the separating and Y be the free variables of A. Let τ be the
renaming that maps the free variables to fresh variables to create the normal
class.

Assume {s, t} ⊆ A′ for some A′ ∈ gnd(A). There must exist terms {Γ ‖
s′,∆ ‖ t′} ⊆ A and substitutions σ : X → T (Ω, ∅), δ : Y → T (Ω, ∅), δ′ :
Y → T (Ω, ∅) such that s′σδ = s and t′σδ′ = t by Definition 3.2.5. Let δ′ =
{x1 → s1, ..., xn → sn}. Construct δ′′ = {x1τ → s1, ..., xnτ → sn}. Now we can
construct σ′ to be σδδ′′ and we are done, since {Γ′ ‖ s′,∆′ ‖ t′τ} ⊆ norm(A)
and s′σ′ = s and t′τσ′ = t.

Now assume there exists a substitution σ′ such that {Γσ′ ‖ s′σ′,∆σ′ ‖
t′σ′} ⊆ norm(A)σ′ and s′σ′ = s and t′σ′ = t. Define σ : X → T (Ω, ∅) and
δ : (Y ∪ Y τ) → T (Ω, ∅) such that σ′ = σδ. Let τ ′ be the reverse renaming of
τ . Let δ = {x1 → s1, ..., xn → sn, y1 → t1, ..., ym → tm}, where the yi are the
fresh variables introduced by τ . Construct δ′ = {x1 → s1, ..., xn → sn} and δ′′ =
{y1τ

′ → t1, ..., ymτ
′ → tm}. Now there must exist {Γτ ′ ‖ s′τ ′,∆τ ′ ‖ t′τ ′} ⊆ A

such that (s′τ ′σ′δ′ = s or s′τ ′σ′δ′′ = s) and (t′τ ′σ′δ′′ = t or t′τ ′σ′δ′ = t).

Lemma 3.3.2. Let E be a finite set of non-ground equations and β a ground
term. Let A be a class where all constraints are the same,X sep. variables, Y free
variables of A and gnd�β(E) |= sσ ≈ tσ for all {sσ, tσ} ⊆ Aσ and grounding σ.
Then for all Γ ‖ s ∈ A we have gnd�β(E) |= sσδ ≈ sσδ′ for all σ : X → T (Ω, ∅),
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δ : Y → T (Ω, ∅) and δ′ = {y 7→ α | α a smallest term acc. to �, y ∈ Y }, Γσδ
satisfiable.

Proof. Let Y ′ be the free variables of s. Choose y′ ∈ Y ′. There must exist a
Γ ‖ t ∈ A s.t. y′ 6∈ vars(t). By assumption gnd�β(E) |= sσδ ≈ tσδ. Now let
δ′′ be δ but y′ maps to α. Then gnd�β(E) |= sσδ ≈ tσδ′′ since tσδ = tσδ′′,
and by hypothesis gnd�β(E) |= tσδ′′ ≈ sσδ′′. Obviously the constraints are still
satisfiable since we replace by smallest term α. Now we can continue analogously
for sσδ′′ until we reach sσδ′ which shows the Lemma.

Corollary 3.3.3. Let E be a finite set of non-ground equations and β a ground
term. Let A be a class where all constraints are the same, and gnd�β(E) |=
sσ ≈ tσ for all {sσ, tσ} ⊆ Aσ and grounding σ. Then gnd�β(E) |= sσ ≈ tσ for
all {sσ, tσ} ⊆ norm(A)σ and grounding σ.

Proof. Follows from Lemma 3.3.1 and 3.3.2.

Lemma 3.3.4 (⇒CC(X ) is sound). Let E be a finite set of non-ground equations
and β a ground term. For any run of ⇒CC(X ), any state Π in this run and for
all terms s, t and grounding substitution σ such that there exists a class A ∈ Π
such that {Γ ‖ s,∆ ‖ t} ⊆ norm(A), Γσ and ∆σ satisfiable, it holds that
gnd�β(E) |= sσ ≈ tσ .

Proof. We show this for all {Γ ‖ s,∆ ‖ t} ⊆ A. Since constraints are always
the same for each class in a run it follows for all {Γ ‖ s,∆ ‖ t} ⊆ norm(A) by
Corollary 3.3.3. Proof by induction. Initially Π is such that {s, t ‖ s, t} ⊆ Π
for all s ≈ t ∈ E. Now assume a grounding substitution σ such that sσ � β
and tσ � β. Then (s ≈ t)σ ∈ gnd�β(E). The initial {fi(x1, . . . , xki) � β ‖
fi(x1, . . . , xki)} are single term classes. So the assumption holds. Now assume
that the assumption holds for Π and we apply a rule:

1) assume that Subsumption is applied. Then B subsumes A. Thus for all
A′ ∈ gnd(A) there exists a B′ ∈ gnd(B) such that A′ ⊆ B′. Thus we only
remove redundant classes, so the assumption holds by i.h.

2) assume that Merge is applied. Then there exists Γ ‖ s ∈ A,∆ ‖ t ∈ B and
µ = mgu(s, t). We show that gnd�β(E) |= s′µσ ≈ t′µσ for all {Γ′µ ‖ s′µ,∆′µ ‖
t′µ} ⊆ (A′ ∪ B′)µ and grounding σ such that Γ′µσ and ∆′µσ satisfiable. Let
σ′ = µσ. By i.h. gnd�β(E) |= s′σ′ ≈ sσ′ for Γ′′ ‖ s′ ∈ norm(A), since Γ′′ ⊆ Γ′

and Γ ⊆ Γ′, and analogously for t′σ′ ≈ tσ′. Now we have s′σ′ ≈ sµσ = tµσ ≈ t′σ′.
Thus by transitivity of equality it holds gnd�β(E) |= s′µσ ≈ t′µσ.

3) assume that Deduction is applied. By i.h. gnd�β(E) |= s′iσ ≈ t′iσ for all
grounding σ such that Γiσ and ∆iσ are satisfiable and 1 ≤ i ≤ n. Thus, by
congruence of equality, gnd�β(E) |= f(s′1, ..., s

′
n)σ ≈ f(t′1, ..., t

′
n)σ for all σ such

that Γ′σ satisfiable, since Γ′ = Γ ∧ ∆ ∧ Γ1 ∧ ... ∧ Γn ∧ ∆1 ∧ ... ∧ ∆n. Thus
gnd�β(E) |= f(s′1, ..., s

′
n)µσ ≈ f(t′1, ..., t

′
n)µσ for all σ such that Γ′µσ satisfiable,

since f(s′1, ..., s
′
n)µ and f(t′1, ..., t

′
n)µ are instances of f(s′1, ..., s

′
n) and f(t′1, ..., t

′
n).

Lemma 3.3.5 (⇒CC(X ) is Terminating). Let E be a finite set of non-ground
equations and β a ground term. For any run of ⇒CC(X ) we reach a state, where
no rule of ⇒CC(X ) is applicable anymore.
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Proof. By Lemma 3.2.11 there are only finitely many possible β-constrained
classes that are not subsumed. Since all terms are constraint by β in ⇒CC(X )

and Merge and Deduction check if the new class is subsumed by another class,
they can be applied only finitely often. A class removed by Subsumption cannot
be added again by Merge or Deduction since it is subsumed by another class in
Π. Thus ⇒CC(X ) is terminating.

Lemma 3.3.6 (⇒CC(X ) is Complete). Let E be a finite set of non-ground
equations and β a ground term. Let Π be the result of a run of ⇒CC(X ) such
that no rule of⇒CC(X ) is applicable anymore. Then for all {s, t} ⊆ T�β such that
gnd�β(E) |= s ≈ t there exists a class A ∈ Π, {Γ ‖ s′,∆ ‖ t′} ⊆ norm(A) and a
grounding substitution σ such that s′σ = s and t′σ = t and Γσ,∆σ satisfiable.

Proof. We show by induction for any sequence E1 ⇒EQ ... ⇒EQ En of ap-
plications of ⇒EQ with E1 = gnd�β(E) there exists a sequence Π0 ⇒CC(X )

...⇒CC(X ) Πm of applications of⇒CC(X ) rules such that for all s ≈ t ∈ En, where
s � β and t � β, there exists a class A ∈ Πm, Γ ‖ l ∈ norm(A),∆ ‖ r ∈ norm(A)
and a substitution σ such that lσ ≈ rσ = s ≈ t, Γσ,∆σ satisfiable. Initially, this
is true, since {s, t ‖ s, t} ∈ Π0 for all s ≈ t ∈ E. Since reasoning is based on
ground terms only, we can ignore the Instance rule of⇒EQ. Now assume we are
in step i.
1) Reflexivity. Ei ⇒EQ Ei ∪ {t ≈ t}, t = f(s1, . . . , sn) � β. Then t ∈
({fi(x1i , . . . , xki) � β ‖ fi(x1i , . . . , xki)}σ) for σ = {xji 7→ sj | 1 ≤ j ≤ n}.
2) Symmetry. Ei ∪ {t ≈ t′} ⇒EQ Ei ∪ {t ≈ t′, t′ ≈ t}, t, t′ � β. Then by i.h.
there exists a class A ∈ Π such that {lσ, rσ} ⊆ norm(A)σ and (l ≈ r)σ = t ≈ t′
for some substitution σ because norm(A) is normal. But then also (r ≈ l)σ =
t′ ≈ t.
3) Transitivity. Ei = E′i ∪ {s ≈ t ∧ t ≈ s′} ⇒EQ Ei ∪ {s ≈ s′} = Ei+1,
s, s′, t � β. By hypothesis there must exist {A,B} ⊆ Π, {Γ ‖ l,∆ ‖ r} ⊆
norm(A), {Γ′ ‖ l′,∆′ ‖ r′} ⊆ norm(B), a grounding substitution σ, such that
(l ≈ r)σ = s ≈ t and (l′ ≈ r′)σ = t ≈ s′ and Γσ,∆σ,Γ′σ,∆′σ all satisfiable. If
(A′ ∪ B′)µ is subsumed by some C ∈ Π, then we are already done, since there
exists a C ′ ∈ gnd(C) such that {s, s′} ⊆ C ′. Otherwise Merge is applicable
and (A′ ∪ B′)µ added to the state. Then {Γ ∧∆ ∧ Γ′ ‖ l,∆ ∧ Γ′ ‖ r,∆ ∧ Γ′ ‖
l′,∆′ ∧ ∆ ∧ Γ′ ‖ r′}µ ⊆ (A′ ∪ B′)µ by the definition of Merge. Obviously,
(Γ∧∆∧Γ′ ∧∆′)µ is satisfiable since (Γ∧∆∧Γ′ ∧∆′)σ is satisfiable. Thus there
exists a σ′ such that {s, s′} ⊆ (A′ ∪B′)µσ′.
4) Congruence. Ei = E′i ∪ {s1 ≈ t1, ..., sm ≈ tm} ⇒EQ Ei ∪ {f(s1, ..., sm) ≈
f(t1, ..., tm)} = Ei+1, where f(s1, ..., sm), f(t1, ..., tm) � β. By hypothesis there
must exist {A1, ..., Am} ⊆ Π, {Γi ‖ li,∆i ‖ ri} ⊆ norm(Ai) because norm(Ai)
is normal and a grounding substitution σ such that (li ≈ ri)σ = si ≈ ti and
Γiσ,∆iσ satisfiable. Now take two renamed copies of {fi(x1i , . . . , xki) � β ‖
fi(x1i , . . . , xki)} and grounding substitutions σ1, σ2 such that f(x′1, ..., x

′
m)σ1 =

f(s1, ..., sm) and f(y′1, ..., y
′
m)σ2 = f(t1, ..., tm) where the respective constraints

are obviously satisfied. Thus there must exist a simultaneous most general unifier
µ as defined in the Deduction rule. If {Γ′µ ‖ f(l1, ..., lm)µ,Γ′µ ‖ f(r1, ..., rm)µ}
is subsumed by some C ∈ Π, then we are already done, since there exists a
C ′ ∈ gnd(C) such that {f(s1, ..., sm), f(t1, ..., tm)} ⊆ C ′. Otherwise Deduction
is applicable and {Γ′µ ‖ f(l1, ..., lm)µ,Γ′µ ‖ f(r1, ..., rm)µ} added to the state.
Since Γ′σ is satisfiable {f(s1, ..., sm), f(t1, ..., tm)} ⊆ {Γ′µ ‖ f(l1, ..., lm)µ,Γ′µ ‖
f(r1, ..., rm)µ}σ has to hold.
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3.4 Implementation

I have implemented⇒CC(X ) on the basis of the SPASS workbench infrastructure.
I provide pseudo code of the implementation. The pseudo code is intended to
give an idea of the implementation and not to present the concrete details of
the implementation. For example, the use of path index and discrimination tree
is missing.

I make use of the standard procedure to work through the classes, namely a
worked-off and usable queue. Initially the worked-off queue contains all single-
term classes and usable contains the initial classes that are created from the
input equations. In each loop I select a class from the usable queue, perform
all possible Merge and Deduction steps on it and add the class to the worked-
off queue afterwards. Newly created classes are added to the usable queue.
Algorithm 1 shows the initial state and main loop of my implementation. A
CLASS has two sets terms and cstrs, containing the terms and constraints. The
number of separating variables is stored in the field sepvars. I assume that this
value is updated automatically in the pseudo code. There is a first optimisation
option here, namely which classes should be picked from the usable queue first.
My heuristic selects the classes with the fewest terms and the most variables
from the usable queue, or if the number of terms and variables are equal, then
the class with the fewest separating variables. Various benchmarks have shown
that this produces the best results.

Algorithm 2 sketches the implementation of the merge function. Here the
implementation follows the rules, except that subsumption is checked directly
after the new class is created and the code performs all possible merge operations
of the input class. For the subsumption function, an order must be defined first,
hence it will be given later.

Algorithm 1 Main function of the algorithm

function Main(E)
for all s ≈ t ∈ E do

Cnew = new CLASS
Cnew→terms = {s, t}
Cnew→cstrs = {s, t}
us = Push(us, Cnew)

end for
for all f ∈ Ω, arity(f) = n do

Cnew = new CLASS
Cnew→terms = {f(x1, ..., xn)}
Cnew→cstrs = {f(x1, ..., xn)}
wo = Push(wo, C)

end for
while us 6= ∅ do

C = Pop(us)
if Merge(C) && Deduct(C) then

wo = Push(wo, C)
end if

end while
end function
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Algorithm 2 Merge function

function Merge(C0)
for C1 in wo do

for each (t0, t1) ∈ {(t0, t1) | t0 ∈ C0→terms ∧ t1 ∈ C1→terms} do
if unifiable(t0,t1) then

µ = mgu(t0, t1)
Cnew = new CLASS
Cnew→terms = (C0→terms ∪ C1→terms)µ
Cnew→cstrs = (C0→cstrs ∪ C1→cstrs)µ
if SAT(Cnew→cstrs) then

subsumed = FALSE
for C in wo ∪ us ∪ {C0} do

if CheckSubsumption(C, Cnew) then
subsumed = TRUE
break

end if
end for
if subsumed == FALSE then

for C in wo ∪ us ∪ {C0} do
if CheckSubsumption(Cnew, C) then

wo = wo \ {C}
us = us \ {C}
if C == C0 then subsumed = TRUE
end if

end if
end for
us = us ∪ {Cnew}
if subsumed == TRUE then

return FALSE
end if

end if
end if

end if
end for

end for
return TRUE

end function
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Although my implementation is not completely naive, it is not at the level of
actual⇒CC implementations as existing in state-of-the-art SMT solvers [dMB08,
CGSS13, BBB+22] to which I will eventually compare the performance of my
implementation in Section 3.5. In the following, I describe the assumptions and
optimizations that were made for the implementation. I start with a simplification
of the Deduction rule. In the implementation it suffices to use only the single
term classes for A and B in the Deduction rule.

Lemma 3.4.1. Assume a state Π such that Deduction is applicable for some
{A,B} ⊆ Π and Γ ‖ f(s1, ..., sn) ∈ A,∆ ‖ f(t1, ..., tn) ∈ B. Let µ be the
resulting simultaneous mgu and {Γi ‖ s′i,∆i ‖ t′i} ⊆ norm(Di) for all 1 ≤ i ≤
n such that {Γ′ ‖ f(s′1, ..., s

′
n), f(t′1, ..., t

′
n)}µ is the resulting new class. Then

Deduction is applicable for two variable disjoint copies of the single term class
{f(x1, ..., xn) ‖ f(x1, ..., xn)}.

Proof. We build a unifier µ′ = {x1 → s′1, ..., xn → s′n, y1 → t′1, ..., yn → t′n}
for the single term class and the renamed single term class {f(y1, ..., yn) ‖
f(y1, ..., yn)}. Then Γ′′ = f(x1, ..., xn) � β ∧ f(y1, ..., yn) � β ∧ Γ1 ∧ ... ∧ Γn ∧
∆1 ∧ ... ∧∆n. The resulting class is thus {Γ′′ ‖ f(s′1, ..., s

′
n), f(t′1, ..., t

′
n)}µ′.

It is easy to see that the class created by the single term class is always more
general than the other classes that can be created by Deduction. Algorithms 3
and 4 sketch the implementation of my deduction function. I assume that any
function call creates a copy of the input to that function. Note that the constraints
are always verified as soon as possible in the actual implementation. To keep
the pseudocode simple, I only check the satisfiability of the constraints at the
end. There are more optimizations possible here, e.g. we can delete constraints
that do not share a variable with the used terms in the class. I also take care of
this in the actual implementation.

Algorithm 3 Deduction function

function Deduct(C0)
wo = wo ∪ {C0}
for each f ∈ Ω with arity(f) = n and n > 0 do

t0 = f(x1, ..., xn)
t1 = f(y1, ..., yn)
if DeductIntern(t0, t1, 0, arity(f), C0, new CLASS, false) == FALSE

then
wo = wo \ {C0}
return FALSE

end if
end for

end function

A naive implementation of Subsumption, Definition 3.2.8, by ground instanti-
ation results in a practically intractable procedure. Therefore, I lift subsumption
rule to the non-ground level.

Definition 3.4.2 (Subsumption by Matching). Let A,B be classes. Let X be
the separating variables of B and Y the free variables of B. B subsumes A by
matching iff there exists a substitution σ : X → T (Ω, vars(A)) that maps every
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Algorithm 4 Internal Deduction function

function DeductIntern(t0, t1, i, n, C0, Cnew, used)
if i 6= n then

for C ∈ wo do
Cnew→cstrs = Cnew→cstrs ∪ C→cstrs
for {s0, s1} ⊆ C→terms do

t0 = t0[s0]i
t1 = t1[s1]i
if not DeductIntern(t0, t1, i+ 1, n, C0, Cnew, (C == C0 || used))

then
return FALSE

end if
end for
Cnew→cstrs = Cnew→cstrs \ C→cstrs

end for
else if used then

Cnew→terms = {t0, t1}
Cnew→cstrs = Cnew→cstrs ∪ {t0, t1}
if SAT(Cnew→cstrs) then

for C in wo ∪ us do
if CheckSubsumption(C, Cnew) then

return TRUE
end if

end for
subsumed = FALSE
for C in wo ∪ us do

if CheckSubsumption(Cnew, C) then
wo = wo \ {C}
us = us \ {C}
if C == C0 then subsumed = TRUE
end if

end if
end for
us = us ∪ {Cnew}
if subsumed == TRUE then

return FALSE
end if

end if
end if
return TRUE

end function
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variable in X, such that for every Γ ‖ t ∈ A there is a τ : Y → T (Ω, vars(A))
and (∆ ‖ s)σ ∈ Bσ such that t = sστ and ∀δ.(Γδ → ∃δ′.∆στδδ′).

Lemma 3.4.3. Let A,B be classes. If B subsumes A by matching then B
subsumes A′ by matching for all A′ ∈ gnd(A).

Proof. Assume B subsumes A by matching. By assumption there exists a sub-
stitution σ such that for all Γ ‖ t ∈ A there exists a (∆ ‖ s)σ ∈ Bσ and τ such
that t = sστ and ∀δ.(Γδ → ∃δ′.∆στδδ′). σ matches all separating variables of
B to terms containing only separating variables of A. If not, then every t ∈ A
contains a free variable in cdom(σ). But then these are separating variables.
Contradiction.

Let A′ ∈ gnd′(A) and µ : X → T (Ω) be the substitution such that Aµ = A′,
where X are the separating variables of A. Now construct substitution σ′ = σµ.
Then for all (Γ ‖ t)µ ∈ A′ there exists a (∆ ‖ s)σ′ ∈ Bσ′ and τ ′ = τµ such that
tµ = sσ′τ ′ and ∀δ.(Γµδ → ∃δ′.∆σ′τ ′δδ′), since sσ′τ ′ = sσµτµ = sστµ.

Now let A′′ ∈ gnd(A′). We have gnd(A′) = {A′′}. Then there exist grounding
substitutions σ1, ..., σn such that A′′ = A′σ1∪ ...∪A′σn. Now, construct σ′′ = σ′.
Then for all (Γ ‖ t)µσi ∈ A′′ there exists a (∆ ‖ s)σ′′ ∈ Bσ′′ and τ ′′ = τ ′σi such
that tµσi = sσ′′τ ′′ and ∀δ.(Γµσiδ → ∃δ′.∆σ′′τ ′′δδ′), since sσ′′τ ′′ = sσµτµσi =
sστµσi.

Lemma 3.4.4. Let A,B be classes. If B subsumes A by matching then B
subsumes A.

Proof. Assume that B does not subsume A. Then there exists an A′ ∈ gnd′(A)
and an A′′ ∈ gnd(A′) such that there exists no B′ ∈ gnd(B) such that A′′ ⊆ B′.
Now assume that there exists a σ such that for any (Γ ‖ t)τ ′ ∈ A′′,Γ ‖ t ∈ A′
there is a (∆ ‖ s)σ ∈ Bσ and τ with sστ = tτ ′ and ∀δ.(Γτ ′δ → ∃δ′.∆στδδ′).
So there exist τ1, ..., τn such that A′′ ⊆ Bστ1 ∪ ... ∪ Bστn. Obviously, the free
variables of B are also free variables of Bσ. Bσ has no separating variables,
otherwise Bστi would not be ground for all 1 ≤ i ≤ n. Thus gnd(Bσ) = {B′′}
and Bστ1 ∪ ... ∪Bστn ⊆ B′′. Thus, A′′ ⊆ B′′, contradicting assumption. Thus,
by Lemma 3.4.3 B cannot subsume A by matching.

Note that Subsumption by matching does also not guarantee less or equal
classes than ground congruence closure. It allows for even more examples where
this is not the case. For example, consider symbols f, g, a, b, β such that only
a, b, f(a), f(b), g(a), g(b) � β and classes A = {f(x), g(a), g(b) ‖ f(x), g(a), g(b)}
and B = {f(a), f(b), g(x) ‖ f(a), f(b), g(x)}. Then neither A subsumes B nor B
subsumes A by subsumption by matching, although gnd(A) = gnd(B). However,
in Section 3.5 I show that this rarely happens in practice.

It remains to find an appropriate solver for the constraints. Performance is
highly dependent on the underlying order that was chosen for the algorithm. In
my implementation I decided for a simple ordering that counts the number of
symbols of a term.

Definition 3.4.5 (Symbol Count Order). Let s, t be two terms. The Symbol
Count Order � is defined as s � t if size(s) ≤ size(t).
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For example, f(x, g(a)) � g(h(a), h(b)) or x � a. From now on I consider
� to be the above symbol counting order. Recall that the signature is finite,
so the symbol counting order is well-founded. There always exist only finitely
many smaller or syntactically equal ground terms for a given maximum term
t and a finite signature. Solving �-constraints is equivalent to solving linear
integer arithmetic constraints. Note that a constraint Γ is satisfiable iff it is
satisfiable without applying any substitution, because variables and constants
are the smallest terms. With respect to the implication ∀δ.(Γδ → ∃δ′.∆στδδ′),
see Definition 3.4.2, the quantifier alternation can be removed, so ∀δ.(Γδ →
∃δ′.∆στδδ′) holds iff ∀δ.(Γδ → ∆στδ) holds.

Definition 3.4.6 (LIA Constraint Abstraction). Let t � β be a constraint. Let
vars(t) = {x1, ..., xn}. Then lic(t � β) = x1 ≥ 1 ∧ ... ∧ xn ≥ 1 ∧#(x1, t) ∗ x1 +
...+ #(xn, t) ∗xn ≤ size(β)− (size(t)−

∑
1≤i≤n #(xi, t)) is the linear arithmetic

constraint of t � β.

Lemma 3.4.7 (Correctness LIA Constraint Abstraction). Let t � β be a
constraint, vars(t) = {x1, ..., xn}.

1. For any ground substitution σ = {xi 7→ si | 1 ≤ i ≤ n}: if tσ � β is true
then lic(t � β){xi 7→ size(si) | 1 ≤ i ≤ n} is true.

2. For any substitution σ = {xi 7→ ki | 1 ≤ i ≤ n, ki ∈ N}: if lic(t � β)σ is
true then tδ � β is true for all δ = {xi 7→ si | 1 ≤ i ≤ n} where all si are
ground, and size(si) = ki.

Proof. by applying the definitions

Lemma 3.4.8. Let β be a ground term and Γ1 = {s1 � β ∧ ... ∧ sn � β} and
Γ2 = {t1 � β ∧ ... ∧ tm � β} be two constraints. Then ∀σ.(Γ1σ → ∃σ′.Γ2σσ

′) iff
lic(s1 � β) ∧ ... ∧ lic(sn � β)→ lic(t1 � β) ∧ ... ∧ lic(tm � β).

Proof. Follows from Lemma 3.4.7 and the above observation that the quantifier
alternation can be removed.

Thus checking if a �-constraint Γ models a �-constraint Γ′ reduces to a linear
integer arithmetic implication test. I make use of the linear arithmetic solver im-
plemented in SPASS-SATT [BFSW19]. Algorithm 5 shows my implementation
of subsumption. The function BuildLAC(constraints) creates a linear arith-
metic constraint as defined in 3.4.6 and LAImplicationTest(LAC1, LAC0) is
the implemenation of the implication test of the linear arithmetic solver. The
implementation first checks if there is a matcher for the separating variables.
Then it checks if there are matchers for the free variables under the assumption
of the matcher for the separating variables.

Before creating a new class I rename all involved classes and then apply
Merge or Deduct. Especially after application of Deduct the new class may
contain variables in a constraint that do not occur in any of the class terms.
Subsequent merges then continuously increases the number of constraints and
variables. Fortunately, only one extra variable is needed.

Lemma 3.4.9. Let A = {Γ ‖ s1, ..., sn} be a class. Let Y = vars(Γ)\(vars(s1)∪
... ∪ vars(sn)) be the variables occurring in Γ but not in s1, ..., sn. Let σ : Y →
{y′} for some fresh variable y′ ∈ X . Then A subsumes Aσ and Aσ subsumes A.
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Algorithm 5 Subsumption function

function CheckSubsumption(C0, C1)
if C0→sepvars == 0 then

return CheckSubsumptionFreeVars(C0, C1, {})
else

for each (t0, t1) ∈ {(t0, t1) | t0 ∈ C0→terms ∧ t1 ∈ C1→terms} do
if exists σ s.t. t0σ = t1 then

σ = σ \ {x→ t | x→ t ∈ σ and x a free variable}
if CheckSubsumptionFreeVars(C0, C1, σ) then

return TRUE
end if

end if
end for

end if
return FALSE

end function
function CheckSubsumptionFreeVars(C0, C1, σ)

for each t1 ∈ C1→terms do
result = FALSE
for each t0 ∈ C0→terms do

if exists δ s.t. t0σδ = t1 then
LAC0 = BuildLAC({tσδ | t ∈ C0→cstrs})
LAC1 = BuildLAC(C1→cstrs)
if LAImplicationTest(LAC1, LAC0) then

result = TRUE
break

end if
end if

end for
if not result then

return FALSE
end if

end for
return TRUE

end function
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Proof. A constraint is satisfiable with respect to the symbol counting order,
if it is satisfiable by substituting a constant for all variables. Concerning the
semantics of classes, variables only occurring in the constraint do not play a role
as long as the constraint is satisfied. Thus gnd(A) = gnd(Aσ).

I can further reduce the number of constraints by removing terms that have
the same variable occurrences and are smaller or equal to some other term in the
constraint according to �, e.g. f(x) can be removed if f(g(x)) already exists.

To keep the number of constrained terms within classes small, I also need a
new Condensation rule:

Condensation Π ∪ {{Γ1 ‖ s1, ...,Γn ‖ sn}} ⇒CC(X ) Π ∪ {{Γ1 ‖ s1, ...,Γj−1 ‖
sj−1,Γj+1 ‖ sj+1, ...,Γn ‖ sn}δ}
provided there exists indices i, j and a matcher δ such that siδ = sj , {Γ1 ‖
s1, ...,Γj−1 ‖ sj−1,Γj+1 ‖ sj+1, ...,Γn ‖ sn}δ subsumes {Γ1 ‖ s1, ...,Γn ‖ sn}.

For example, the Condensation rule would reduce the class {f(x), f(y), f(z) ‖
f(x), f(y), f(z)} to {f(x), f(y) ‖ f(x), f(y)}. Condensation together with sub-
sumption by matching ensures termination, because the number of separating
variables is bounded. Condensation is an example where I could improve the
performance of my implementation. It can be implemented without additional
memory consumption, however, my current implementation copies the class,
modifies it and then checks subsumption.

To keep the number of full subsumption checks to a minimum, I have also
implemented fast pre-filtering techniques. It turns out that it is more efficient
to first check whether for each term in the instance class there is a term in the
general class that matches this term.

Corollary 3.4.10. Let A,B be two classes. If there exists a Γ ‖ t ∈ A such
that there exists no ∆ ‖ s ∈ B and no matcher δ such that sδ = t, then A is not
subsumed by B.

I use bit vectors to track the number of occurrences of top symbols of terms
within a class to check the above filter. For each symbol I store in one bit whether
there are 0, 1 or more terms in the class that contain this symbol as a top symbol,
where [0]10 = [0]2, [1]10 = [1]2. For two bit vectors V0 of a general and V1 of an
instance class I compute NOT(V0) AND V1, where NOT and AND are bitwise
operators. Note that classes containing a variable term must be excluded from
this check.

Finally I store if merges or subsumption checks on classes have already been
applied. To find candidates for the subsumption rule I maintain an index for each
term in which classes it occurs. General terms are retrieved by a discrimination
tree index, unifiables and instances of a term by a path index [McC92].

3.5 Evaluation

I evaluated my algorithm on all unit equality (UEQ) problems from TPTP-
v8.2.0 [Sut17]. From each problem I created two benchmark problems: one
with all inequations removed and the other by turning inequations into equa-
tions. I choose a fixed nesting depth of 6 and 8 in order to construct β. It is
constructed by nesting all function symbols in one argument up to the chosen
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Table 3.1: UEQ problem results for a nesting depth of 6

Time (sec) #Classes
Problem CC(X ) CC CC(X ) CC
GRP478-1 762 1392 8903 197281
N-BOO057-10 0 timeout 6 timeout
ROB033-1 761 132 891 6383
N-GRP119-1 timeout 2 timeout 6908

depth and filling all other arguments with a constant. E.g., with function symbols
a/0,f/1,g/2,h/1,i/2 and nesting depth 4 I create the term β = i(h(g(f(a), a)), a).
Then the size of all terms is limited to 7 symbols. I compared the performance
of my algorithm to the performance of a CC implementation based on the imple-
mentation in the veriT solver [BCBdODF09]. The resulting benchmark problems
turn out to be challenging for both algorithms.

CC(X ) provides a solution to the entire ground input space smaller β.
Therefore, for the comparison of the two algorithms, I feed all ground terms
smaller β into CC. CC(X ) also provides a solution to the entire ground input
space. I skip all examples where no equation has ground instances � β.

Experiments are performed on a Debian Linux server running AMD EPYC
7702 64-core CPUs with 3.35GHz and a total memory of 2TB. The time limit
for each test is 30 minutes. The results of all runs as well as all input files
and binaries can be found at https://nextcloud.mpi-klsb.mpg.de/index.php/s/
RjcHAQYR97H6ZMy.

For a nesting depth of 6, CC(X ) terminates on 519 and CC on 457 of the 2900
problems. CC(X ) is faster on 474 problems and CC on 172. CC(X ) terminated
on 189 examples where CC timed out, and CC terminated on 127 examples
where CC(X ) timed out. Table 3.1 shows some examples of the results (with
added N- for examples where the inequations are removed).

Figure 3.1 shows the results of all test cases for the runtime and figure 3.2
shows the results of all terminating examples for the number of classes. The
performance of CC(X ) currently drops if there are many different variables.
This is mainly due to the current implementation of the redundancy checks.
Concerning the number of classes, the number of classes generated by CC(X ) is
significantly smaller than the number in CC for almost all examples. Examples
where this does not hold are border cases, i.e., they only contain few equations
or contain only one constant.

For a nesting depth of 8, 299 of 2900 problems terminate in CC(X ) and
102 in CC. CC(X ) is faster in 294 terminating examples and CC in 24. CC(X )
terminated on 216 examples where CC timed out and CC terminated on 19
examples where CC(X ) timed out. Table 3.2 shows again some examples of the
results (with added N- for examples where the inequations are removed).

Figure 3.3 shows the results of all test cases for the runtime and figure 3.4
shows the results of all terminating examples for the number of classes. CC(X ) is
particularly advantageous with a large β, where grounding is no longer feasible.
The number of classes are again significantly smaller than in CC.

Table 3.3 shows the average and median time and number of classes of CC(X )
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Figure 3.1: Comparison of the runtime of CC and CC(X ) for a nesting depth of
6. Dots below the line indicate test cases where CC performs better (i.e. has less
classes or took less time), and above indicate test cases where CC(X ) performs
better.
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Figure 3.2: Comparison of the number of classes of CC and CC(X ) for a nesting
depth of 6.
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Table 3.2: UEQ problem results for a nesting depth of 8

Time (sec) #Classes
Problem CC(X ) CC CC(X ) CC
GRP404-1 4 1388 1273 164857
N-COL012-1 20 538 3077 229794
GRP420-1 28 timeout 8242 timeout
LAT080-1 timeout 248 timeout 18080
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Figure 3.3: Comparison of the runtime of CC and CC(X ) for a nesting depth of
8.
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Figure 3.4: Comparison of the number of classes of CC and CC(X ) for a nesting
depth of 8.

and CC for nesting depth 6 and 8. One can see that CC(X ) is significantly faster
on average and produces only a fraction of the classes of the ground CC. The
difference is even stronger when looking at the median. Here CC(X ) only needs
1 second or less for half of all terminating examples whereas CC needs more
than ten minutes.

3.6 KBO Constraint Solving

For the implementation of SCL(EQ) I need a constraint solver for KBO Con-
straints. First steps towards this where made with joint work with Yasmine
Briefs [BLW23]. The calculus and implementation provided below is work by
Yasmine Briefs whereas the evaluation in a very early version of our congruence

Table 3.3: Average and Median of the test cases.

Average
Time #Classes

Depth CC(X ) CC CC(X ) CC
6 201.2 394.6 2187 44248
8 171.5 659.0 2071 125407

Median
Time #Classes

Depth CC(X ) CC CC(X ) CC
6 0.5 58.6 170 8126
8 0.8 736.8 20 164857
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closure algorithm is done by me. Christoph Weidenbach was involved in the
exchange of ideas and the final polishing of the paper.

Definition 3.6.1 ( [BLW23]). A KBO constraint Γ is a finite set of atoms
t#s where t, s ∈ T (Σ,X ) and # ∈ {<,>, 6=,≤,≥,=}. We say that Γ =
{t1#1s1, . . . , tn#nsn} is satisfiable if there exists a substitution σ that is ground-
ing for all tj , sj such that

n∧
j=1

tjσ #j sjσ.

Such a grounding substitution σ is called a solution.

Definition 3.6.2 ( [BLW23]). A right-ground KBO constraint Γ is a KBO
constraint where s1, . . . , sn ∈ T (Σ), i.e., only the tj may contain variables.

Definition 3.6.3 ( [BLW23]). A simple right-ground KBO constraint Γ is a
right-ground KBO constraint where # ∈ {<, 6=}.

For simple right-ground KBO constraints, we prefer more explicit notation:
We now assume t1, . . . , tn, l1, . . . , lm ∈ T (Σ,X ), s1, . . . , sn, r1, . . . , rm ∈ T (Σ)
and call Γ satisfiable if there exists a substitution σ that is grounding for all
tj , lj such that  n∧

j=1

tjσ < sj

 ∧
 m∧
j=1

ljσ 6= rj

 .

Proposition 3.6.4 ( [BLW23]). Checking satisfiability for simple right-ground
KBO constraints is NP-hard.

Proposition 3.6.5 ( [BLW23]). Checking satisfiability for simple right-ground
KBO constraints is in NP.

Next we propose an algorithm for testing satisfiability of simple right-ground
KBO constraints. Let Γ be a simple right-ground KBO constraint with n inequa-
tions tj < sj and m inequalities lj 6= rj .

Assume that vars ({tj | 1 ≤ j ≤ n} ∪ {lj | 1 ≤ j ≤ m}) = {x1, . . . , xk}. The
proof of 3.6.5 shows that we only have to consider the m+ 1 smallest terms for
the grounding, so to begin, we generate an ordered list S of the m+ 1 smallest
terms. This way, a grounding substitution σ corresponds to a vector ~v ∈ Nk
where vi < m+ 1 is the index of the term σ(xi) in S, i.e., S[vi] = σ(xi). Let σ(~v)
with σ(~v)(xi) := S[vi] denote the grounding corresponding to the vector ~v. Later
on, we give a dynamic programming algorithm to compute the k smallest terms
for some number k. Actually, we do not directly generate the m + 1 smallest
terms, but start with a constant number of terms and generate more terms as
needed.

The algorithm is given by three inference rules that are represented by an
abstract rewrite system. They operate on a state which is either ⊥ or a four-tuple
(T ;~v;F ; Γ) where T is a sequence of variables, the trace; ~v ∈ Nk is a grounding
substitution in vector notation, the current grounding ; F is a set of forbidden
groundings; and Γ is a simple right-ground KBO constraint. The initial state
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for a constraint Γ is (ε; (0, . . . , 0); ∅; Γ), i.e., the trace is empty, every variable is
mapped to the smallest constant and there are no forbidden groundings.

We use the following partial ordering ≤F on groundings: ~v ≤F ~u iff for all
i ∈ {1, . . . , k} we have vi ≤ ui. By inc(~v, i) we denote the grounding ~v′ with
v′i = vi + 1 and v′l = vl for all l ∈ {1, . . . , k} with l 6= i, i.e., the grounding where
we increase the term for the variable xi by one. Analogously, we define dec(~v, i),
where we instead decrease the term for the variable xi by one, i.e., v′i = vi − 1.
The two operations inc and dec are only used when they are well-defined, i.e.,
they yield a grounding ~v ∈ Nk where vi < m+ 1. The operation inc is only used
when an inequality lj 6= rj is not satisfied, and this can happen at most m times
without intermediate Backtrack steps. The operation dec(~v, i) is only used for
Backtrack, and in this case vi > 0.

The role of F is that we want to keep the algorithm from considering wrong
groundings again. For all ~u ∈ F , we do not visit states with grounding ~v if
~v ≥F ~u. When we Backtrack, we insert the current grounding into F . The
trace T records the last updated variables so Backtrack is able to undo the last
Increase operation. As will be proven in 3.6.9, the algorithm terminates in ⊥ iff
there exists no solution, and if there exists a solution, then it terminates in a
state where the current grounding ~v is a solution.

Increase (T ;~v;F ; Γ) ⇒ (Txi;~v
′;F ; Γ)

provided ~v′ = inc(~v, i), ljσ(~v) = rj for some lj 6= rj ∈ Γ, ljσ(~v′) 6= rj and there
is no ~u ∈ F with ~v′ ≥F ~u
Backtrack (Txi;~v;F ; Γ) ⇒ (T ;~v′;F ∪ {~v}; Γ)

provided ~v′ = dec(~v, i) and either

1. ljσ(~v) = rj for some lj 6= rj ∈ Γ, but for all l ∈ {1, . . . , k}, we have that
ljσ(inc(~v, l)) 6= rj implies that there is a ~u ∈ F with inc(~v, l) ≥F ~u, or

2. tjσ(~v) ≥ sj for some tj < sj ∈ Γ

Fail (ε;~v;F ; Γ) ⇒ ⊥
provided either

1. ljσ(~v) = rj for some lj 6= rj ∈ Γ, but for all l ∈ {1, . . . , k}, we have that
ljσ(inc(~v, l)) 6= rj implies that there is a ~u ∈ F with inc(~v, l) ≥F ~u, or

2. tjσ(~v) ≥ sj for some tj < sj ∈ Γ

Informally, Increase is applicable if some inequality ljσ(~x) 6= rj is not fulfilled
and we can fix this with the new grounding inc(~v, i) which is not forbidden by
F . Backtrack undoes an operation and is applicable if either some inequality
ljσ(~v) 6= rj is not fulfilled, but Increase is not applicable, or if some inequation
tiσ(~v) < si is not fulfilled. Fail is applicable if Backtrack would be applicable on
an empty trace, i.e., there is no operation to undo.

Obviously, there is no state on which we can apply both Backtrack and Fail.

Definition 3.6.6 ( [BLW23]). A reasonable strategy is a strategy that prefers
Backtrack and Fail over Increase.

Example 3.6.7 ( [BLW23]). Consider a signature with constants a, b, c and a
binary function f . We set w(a) = 1;w(b) = w(c) = 2;w(f) = 3 and a ≺ b ≺ c ≺
f . We consider the constraint

Γ = {x1 6= a, f(x1, x2) < f(a, c)}.
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The m+1 smallest terms, where m = 1, are a, b. This is the unique execution
of the algorithm. In order to increase readability, for ~v, we write the terms instead
of the indices.

(ε; (a, a); ∅; Γ)

⇒Increase
KCS (x1; (b, a); ∅; Γ)

⇒Backtrack
KCS (ε; (a, a); {(b, a)}; Γ)

⇒Fail
KCS ⊥

The algorithm terminates in ⊥, so there is no solution.

Example 3.6.8 ( [BLW23]). Consider a signature with constants a, b, a binary
function g and a ternary function f . Let w(a) = 1, w(b) = w(f) = w(g) = 2 and
a ≺ b ≺ g ≺ f . The constraint is

Γ = {x1 < b, g(x2, a) < g(b, b), f(x1, x2, x3) 6= f(a, a, a), g(x1, x2) 6= g(a, b)}.

The m+ 1 smallest terms, where m = 2, are a, b, g(a, a).

(ε; (a, a, a); ∅; Γ)

⇒Increase
KCS (x1; (b, a, a); ∅; Γ)

⇒Backtrack
KCS (ε; (a, a, a); {(b, a, a)}; Γ)

⇒Increase
KCS (x2; (a, b, a); {(b, a, a)}; Γ)

⇒Increase
KCS (x2x2; (a, g(a, a), a); {(b, a, a)}; Γ)

⇒Backtrack
KCS (x2; (a, b, a); {(b, a, a), (a, g(a, a), a)}; Γ)

⇒Backtrack
KCS (ε; (a, a, a); {(b, a, a), (a, g(a, a), a), (a, b, a)}; Γ)

⇒Increase
KCS (x3; (a, a, b); {(b, a, a), (a, g(a, a), a), (a, b, a)}; Γ)

The algorithm has found a solution, so no rule is applicable and it terminates.
Note that after the third and fifth operation, we cannot increase x1 because
(b, b, a) ≥F (b, a, a) ∈ F .

Theorem 3.6.9 ( [BLW23]). The algorithm is correct: If there exists a solu-
tion, then starting from (ε; (0, . . . , 0); ∅; Γ), the algorithm terminates in a state
(T ;~v;F ; Γ) where ~v is a solution. If there is no solution, the algorithm terminates
in ⊥.

We have implemented the above algorithm in the context of the SPASS
reasoning workbench. The efficiency of the algorithm depends on the respective
variables we choose for Increase. If there exists a solution, then there exists an
execution using only the rule Increase. The following criteria might be useful to
select the best variable for Increase:

– We prefer variables that do not occur in “critical” inequations, or in a
minimal number of inequations. A “critical” inequation is one where the
weight difference is 0 or close to 0.
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– We prefer variables xi for which the next term is not restricted by any
inequality lj 6= rj .

– We prefer variables xi for which the next term does not have a larger
weight, or for which the increase in weight is minimal.

– We prefer variables that fix multiple inequalities lj 6= rj instead of just
one.

It is possible to calculate and maintain some score for every variable here and
decide based on this score. The exact selection criteria still need to be further
explored.

A remaining problem from the presentation of the algorithm is how to com-
pute the k smallest terms. If the occurring weights are rather small, the following
dynamic programming algorithm might be useful in practice. The idea is to com-
pute all terms of a specific weight for increasing weights until we generated at
least k terms. Unfortunately, there may be exponentially many terms of a specific
weight where the exponent is the maximal arity of a function and the base is
the number of terms of smaller weights. However, k is bounded above by the
number of inequalities m, the number of terms with smaller weights is bounded
above by k and the maximal arity is probably small, so it is to be expected that
this is not a big problem.

As it is probably hard to find the next possible weight, we simply always
increase the weight by 1 starting by the weight of the smallest constant. Our
DP array is two-dimensional, one dimension having the weight and the other
dimension having the size of the tuple from 1 to max arity. Actually, it is four-
dimensional since every entry is a list of tuples of terms and every tuple is a list
of its entries. A tuple of size 1 is just a term of the specific weight. The tuples
of larger size are needed for the DP transitions where they serve as argument
tuples for the functions. We maintain an array smallest terms that will in the
end contain the at least k smallest terms.

We iterate over the weights starting at the weight of the minimal constant.
Let curweight denote the current weight. The idea is to compute all terms of
weight curweight, sort them, add them to smallest terms, and proceed with weight
curweight + 1 if |smallest terms| is still smaller than k. To do so, if curweight is
not the smallest weight, we first compute the tuples of size 2 to max arity for
the previous weight. This is done via DP: For tuple size i we iterate over the
terms s ∈ smallest terms. Then we iterate over the tuples t of size i − 1 and
weight curweight− 1−w(s) using the DP array and add (s, t) to the current DP
entry. Afterwards, we calculate all terms of weight curweight by iterating over
all symbols f and and all tuples t of size arity(f) and weight curweight− w(f)
using the DP array. Then, the term f(t) has weight curweight.

We finish this Section by a discussion of potential heuristics, sufficient con-
ditions for a simple right-ground KBO constraint to have a solution. Every
inequality lj 6= rj rules out any assignment that satisfies τj , the matcher from lj
to rj . Now assume we have m inequalities and know that there are more than m
solutions for the inequation t < s, then one might think that there is a grounding
that solves all inequalities lj 6= rj and the inequation t < s. However, this is not
true.

Example 3.6.10 ( [BLW23]). Consider a signature with constants a, b and c
and a binary function f . The weights are w(a) = 1;w(b) = w(c) = 2;w(f) = 3
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and we use a ≺ b ≺ c ≺ f as a precedence. Now consider the constraint

Γ = {x 6= a, f(x, y) < f(a, c)}.

The inequation has two solutions, namely {x 7→ a, y 7→ a} and {x 7→ a, y 7→ b}.
However, it has no solution where x is not mapped to a, so for the overall problem,
there is no solution.

So the above sufficient condition needs to refined in order to be correct.
However, calculating the number of solutions is again NP-hard.

Proposition 3.6.11 ( [BLW23]). Calculating the number of solutions σ for
some right-ground inequation t < s is NP-hard.

The problem with the aforementioned insufficient condition is that an in-
equality lj 6= rj does not necessarily rule out only one grounding, but possibly
infinitely many groundings. This happens if there are variables that are not
restricted by the matcher τj of lj and rj . However, the criterion can be refined
to a correct sufficient condition. If we restrict ourselves to the m + 1 smallest
terms again, we would again at least have a finite number of groundings that
lj 6= rj rules out. If we now sum up these numbers over all inequalities, we have
an upper bound on the total number of ruled out groundings. For the inequation
t < s, the same problem with variables that do not occur arises (there may be
infinitely many solutions), so here, we restrict ourselves to the m + 1 smallest
terms again. If now, the number of solutions for t < s is larger than the upper
bound on the total number of ruled out groundings, we can actually be sure that
there is a solution. However, this correct sufficient condition is hard to compute
and therefore seems to be not very useful in practice.

For an extended version of CC(X ) we need alternating KBO Constraints.
The reason why we integrated inequalities as opposed to the CC(X ) algorithm
presented above is that we wanted to support the checking of non-ground equal-
ities. Currently, one can only check them by examining all ground instances. By
adding inequalities to the constraints, you can quickly check whether a more
detailed equality check is even necessary for the terms to be checked. However, it
turned out that the integration of inequalities is difficult to accomplish efficiently.
We therefore decided not to integrate it for the first published version of CC(X ).
Note, that the early version of CC(X ) also does not support subsumption checks.

Definition 3.6.12 (Alternating KBO Constraint). An alternating KBO con-
straint Γ consists of terms t, s1, . . . , sn ∈ T (Σ,X ) and β ∈ T (Σ). We say that Γ
is satisfiable if there exists a substitution σ that is grounding for t such that for
all substitutions τ that are grounding for all sj we have n∧

j=1

tσ 6= sjτ

 ∧ tσ < β.

Proposition 3.6.13 ( [BLW23]). Checking satisfiability for alternating KBO
constraints is NP-hard.

If a reasonable strategy is used, satisfiability of alternating KBO constraints
can be checked using the algorithm from this Section. Any solution σ must be
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such that tσ < β, so we only have to consider instances of the sjτ with sjτ < β.
What we can now do is to calculate for all sj all groundings τ with sjτ < β
and add the inequality t 6= sjτ to the constraint. There are only finitely many
such groundings because we did not allow unary functions f with w(f) = 0.
This way, we obtain a simple right-ground KBO constraint, so we can apply the
algorithm. A more efficient possibility to do this is to add the groundings of
the sj implicitly, i.e., to change the condition of Increase (and the first case of
Backtrack and Fail) to whether there exists a matcher τ such that ljσ(~v) = rjτ .
Also, the condition for the next grounding for Increase changes: It is not that
we fix the inequality anymore, but that we change a variable that occurs on the
left side of the inequality.

Example 3.6.14 ( [BLW23]). Consider the signature Σ = {f/2, g/1, a/0}, to-
gether with the following alternating KBO constraint Γ:

t = f(x1, x2) s1 = f(g(y1), y2)

β = f(f(a, a), a) s2 = f(a, a)

We set w(a) = w(g) = w(f) = 1 and a ≺ g ≺ f . The few smallest terms are

a, g(a), g(g(a)), f(a, a).

Note that for alternating KBO constraints, it does not suffice anymore to consider
the n + 1 smallest terms only since an inequality may rule out more than one
term for a variable. However, as already mentioned, we calculate the smallest
terms as needed, so this is not a problem. For shorter notation, for F , we omit
groundings ~u if there is a grounding ~v ∈ F with ~v <F ~u. A possible run of the
algorithm looks as follows:

(ε; (a, a); ∅; Γ)

⇒Increase
KCS (x1; (g(a), a); ∅; Γ) s2, τ = {}
⇒Increase

KCS (x1x1; (g(g(a)), a); ∅; Γ) s1, τ = {y1 7→ a, y2 7→ a}
⇒Increase

KCS (x1x1x1; (f(a, a), a); ∅; Γ) s1, τ = {y1 7→ g(a), y2 7→ a}
⇒Backtrack

KCS (x1x1; (g(g(a)), a); {(f(a, a), a)}; Γ) β

⇒Backtrack
KCS (x1; (g(a), a); {(g(g(a)), a)}; Γ) s1

⇒Backtrack
KCS (ε; (a, a); {(g(a), a)}; Γ) s1

⇒Increase
KCS (x2; (a, g(a)); {(g(a), a)}; Γ) s2, τ = {}

3.6.1 Experiments

We implemented the algorithm of Section 3.6 and its extension to constraints
with right hand side variables, Definition 3.6.12, and tested it in the context of
a very early version of the CC(X ) algorithm [Hur01, NO80, DST80, Sho84]. I
implemented a rather naive variant of [Hur01] with the only goal to generate KBO
constraints in order to test my new algorithm on KBO constraints. In contrast
to [Hur01] my algorithm considers a finite signature, as usual for first-order logic
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Table 3.4: UEQ problem results for a nesting depth of 4

Problem < β Time KBO Solver #calls # true # false
GRP183-3 9969 3 8014 7946 68
LAT143-1 29720 8797 31033 29554 1479
GRP409-1 103565 0 6 6 0

problems. All experiments were carried out on a Debian Linux server equipped
with AMD EPYC 7702 64-Core CPUs running at 3.35GHz and an overall memory
of 2TB. The result of all runs as well as all input files and binaries can be found
at https://nextcloud.mpi-klsb.mpg.de/index.php/s/BAwd99cxFpSJmSp.

As a first test case I considered all eligible UEQ problems from CASC-
J11 [Sut16]. I consider equations and all inequalities for the congruence closure
algorithm. The equations generate the congruence and for the inequalities I
compute the congruence classes for the respective right and left side term of the
inequality. For each example, the KBO function weight was always set to one
and the precedence is generated with respect to the occurrence of symbols in the
input file in ascending order. For β I chose a fixed nesting depth of 4 and build for
each input file a nested term of exactly this depth using function symbols in the
order of occurrence in the input, starting with a non-constant function symbol.
Out of all eligible problems my CC algorithm terminated on 186 problems within
a time limit of 30 minutes. Please note that although my CC implementation is
rather naive, in contrast to the classical ground CC algorithm it does not need
a complete grounding; for the examples where my naive algorithm runs out of
time a complete grounding is not affordable. Table 3.4 shows some typical runs
on the UEQ domain. All timings are presented in hundredths of a second and
if they take less than one hundredth of a second I write zero. The table shows
the problem name, the number of ground terms smaller than β indicating the
solution space for the constraint, the summed up time of all calls to the KBO
constraint solver during the CC run, the number of calls to the KBO constraint
solver, and the results of these calls. The three selected examples are typical:
most of the problems are satisfiable and the constraint solving algorithm needs
almost no time. Note that for the first example all 8014 calls to the constraint
solver needed in sum 3 hundreds of a second. The LAT143-1 is the example
showing the worst constraint solving performance, i.e., still less than a hundreth
of a second per call.

For the SMT-LIB examples of the UF domain [BFT16], I expanded let oper-
ators, removed the typing, coded predicates as equations, did a CNF transforma-
tion and then took the first literal of each clause as input for the CC algorithm.
Nesting depth was set to 2, the rest done as for the UEQ examples. Removing
types means that the number of smaller terms increases, i.e., the problems get
potentially more difficult for the constraint solver, in particular for unsatisfiable
constraints. Table 3.5 again shows some typical results. 1112 examples could
be performed by the CC algorithm inside 30 min. The UF domain contains
larger examples compared to the UEQ domain, but the characteristics remain.
Constraint solving itself takes almost no time. Again all timings are presented
in hundredths of a second.
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Table 3.5: SMT-LIB problem results for a nesting depth of 2

Problem < β Time KBO Solver #calls # true # false
00336 2120806 0 131 131 0

uf.926761 138397692 0 3882 1988 1894
uf.555113 254939 134 5120 3306 1814

Here uf.555113 is the worst example on constraint solving time with 1.34
seconds for 5120 calls. Although alternating KBO constraint solving is NP-hard,
in practice there are typically only a few inequalities meaning that out of the
overall number of terms smaller β, only a few need to be considered.

3.7 Discussion of CC(X )
I presented the new calculus Non-Ground Congruence Closure (CC(X )). It takes
as input non-ground equations and computes the corresponding congruence
classes for the overall set of ground terms smaller than a given maximum term β.
The algorithm is sound, complete, and terminating due to a notion of redundancy
and the finite ground input space. I developed and implemented a sophisticated
redundancy concept, e.g., by introducing filters to expensive checks such as
subsumption. I did first steps towards an implementation with KBO constraints
needed for the SCL(EQ) calculus.

Still there is room for further improvement. From an implementation point
of view, as already mentioned, Condensation modifies a copy of the class and
checks for subsumption. In the Merge and Deduction rules, the number of copies
of classes is also higher than necessary, especially when the generated class is
subsumed. For some border cases CC outperforms CC(X ). Extending⇒CC(X ) to
cope with input equations with only a few constants or few equations is a further
line of research. Already now CC(X ) can decide shallow equational classes, where
the only arguments to functions are variables. This is independently of β and
due to the notion of redundancy.

Equality checking between ground terms amounts to instance finding in a
particular class, once the congruence closure algorithm is finished, both for CC
and CC(X ) where for the latter this has to be done modulo matching. Checking
the equality of non-ground terms is much more involved both for CC(X ) and CC.
This is mainly due to the fact that I consider finite signature. If two non-ground
terms are not in the same class this does not actually mean that they are not
equal, since it could be the case that all instances of these terms are in the
same class. First steps towards a solution to this were made in the KBO part of
this Chapter. I could extend the constraints to support inequalities in order to
quickly find out if all instances of a term already exist in other classes.

In general, CC(X ) outperforms CC if the ratio of different variables to consid-
ered ground terms is on the ground term side. The other way round, if there are
many variables but only a few ground terms to consider, then running CC is ben-
eficial. This situation can be easily checked in advance, so CC(X ) can be selected
on problems where CC will fail extending the overall scope of applicability.

From an application point of view CC(X ) can be immediately applied for
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detecting false or propagating clauses in SCL(EQ), even with respect to equations
with variables. Unit equations need to be considered this way. In an SMT context
it could immediately add to the ground CC in the following sense: Using the
result of CC(X ) with equations before grounding in the theory combination and
this way detecting additional ground instances needed.
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Chapter 4

Conclusion and Future
Work

This thesis contributes SCL(EQ), the first approach to conflict driven clause
learning in first-order logic with equality that only learns non-redundant clauses
according to a dynamically changing ordering. I prove SCL(EQ) sound and
complete. Moreover, the thesis contributes first steps towards an efficient im-
plementation of SCL(EQ) by introducing and implementing the new calculus
CC(X ), a generalization of the congruence closure algorithm for terms with vari-
ables. I prove CC(X ) to be sound, complete and terminating. The evaluation
shows that CC(X ) outperforms CC if grounding gets infeasible. In joint work
with Yasmine Briefs we showed that KBO constraint solving can be effectively
achieved, i.e. KBO fulfills the requirements of SCL(EQ) on effective algorithms
for a term order. Thus, CC(X ) might be an effective solver for SCL(EQ) to find
propagating and conflicting instances.

It turns out that lifting from SCL calculus to first-order logic with equality
involves an enormous increase in the complexity of the calculus. So far, none of
the more complex CDCL-style calculi for first-order logic, like model evolution
with lemma learning [BFT06] or SGGS [BP15], have ever been extended to first-
order logic with equality. This hints at the complexity of the task, especially
as extensions to equality have been promised but not delivered [BP15]. Apart
from the calculus itself, an efficient implementation requires, in addition to
the presented CC(X ), many building blocks including an infrastructure for a
Superposition based prover as well as one for CDCL/SMT based provers. I will
now discuss future work especially towards an implementation of SCL(EQ).

The trail reasoning in SCL(EQ) is currently defined with respect to rewriting.
Beyond finding propagating and conflicting instances with CC(X ) it would be
interesting to create a rewrite proof out of the congruence classes. Gallier et
al [GNP+93] already showed an algorithm which creates a ground rewrite system
out of the congruence classes in polynomial time. Future work could extend this
algorithm to CC(X ) to effectively compute the actual propagations, decisions
and refutations.

In the case that SCL(EQ) runs into a stuck state, i.e., the current trail is a
model for the set of considered ground instances, then the trail information can
be effectively used for a guided continuation [BKMW24]. For example, in order
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to use the trail to certify a model, the trail literals can be used to guide the
design of a lifted ordering for the clauses with variables such that propagated
trail literals are maximal in respective clauses. Then, it could be checked by
Superposition, if the current clause is saturated by such an ordering. If this is
not the case, then there must be a Superposition inference larger than the current
β, thus giving a hint on how to extend β. Another possibility is to try to extend
the finite set of ground terms considered in a stuck state to the infinite set of all
ground terms by building extended equivalence classes following patterns that
ensure decidability of clause testing, similar to the ideas in [BFW21]. If this fails,
then again this information can be used to find an appropriate extension term
β for rule Grow.

Bromberger et al. [BGLW22] showed how to lift the two-watched literal
scheme to SCL. I could make use of this in an implementation as well. The
aspect of how to find interesting ground decision or propagation literals for the
trail including the respective grounding substituion σ can be treated similar to
CDCL [SS96,JS96,MMZ+01,BHvMW09]. A simple heuristic may be used from
the start, like counting the number of instance relationships of some ground
literal with respect to the clause set, but later on a bonus system can focus
the search towards the structure of the clause sets. Ground literals involved
in a conflict or the process of learning a new clause get a bonus or preference.
However, since the number of ground literals is not fixed from the beginning
with growing β, all these operations need to be done via hashing or indexing
operations modulo matching/unification in contrast to simple look-ups in the
CDCL case. The regular strategy requires the propagation of all ground unit
clauses smaller than β. For an implementation a propagation of the (explicit
and implicit) unit clauses with variables to the trail will be a better choice. This
complicates the implementation of refutation proofs and rewriting (congruence
closure), but because every reasoning is layered by a ground term β this can still
be efficiently done.
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[AW15] Gábor Alagi and Christoph Weidenbach. NRCL - A model build-
ing approach to the bernays-schönfinkel fragment. In Carsten
Lutz and Silvio Ranise, editors, Frontiers of Combining Sys-
tems - 10th International Symposium, FroCoS 2015, Wroclaw,
Poland, September 21-24, 2015. Proceedings, volume 9322 of Lec-
ture Notes in Computer Science, pages 69–84. Springer, 2015.

[Bau98] Peter Baumgartner. Hyper tableau – the next generation. In
Harrie C. M. de Swart, editor, Automated Reasoning with An-
alytic Tableaux and Related Methods, International Conference,
TABLEAUX ’98, Oisterwijk, The Netherlands, May 5-8, 1998,
Proceedings, volume 1397 of Lecture Notes in Computer Science,
pages 60–76. Springer, 1998.

[BBB+22] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kre-
mer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mu-
dathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
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