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A spatio-temporal brain miRNA expression
atlas identifies sex-independent age-related
microglial driven miR-155-5p increase

Annika Engel 1,9, Viktoria Wagner1,2,9, Oliver Hahn2,8, Aulden G. Foltz 2,
Micaiah Atkins 2, Amila Beganovic1, Ian H. Guldner2,3, Nannan Lu 2,3,
Aryaman Saksena2, Ulrike Fischer 4, Nicole Ludwig1,4, Eckart Meese4,
Tony Wyss-Coray 2,3,5 & Andreas Keller 1,6,7

An in-depth understanding of the molecular processes composing aging is
crucial to develop therapeutic approaches that decrease aging as a key risk
factor for cognitive decline. Herein, we present a spatio-temporal brain atlas
(15 different regions) of microRNA expression across the mouse lifespan (7
time points) and two aging interventions. MicroRNAs are promising ther-
apeutic targets, as they silence genes by complementary base-pair binding of
messenger RNAs andmediate aging speed.We first established sex- and brain-
region-specific microRNA expression patterns in young adult samples. Then
we focused on sex-dependent and independent brain-region-specific micro-
RNA expression changes during aging. We identified three sex-independent
brain agingmicroRNAs (miR-146a-5p, miR-155-5p, andmiR-5100). For miR-155-
5p, we showed that these expression changes are driven by aging microglia
and target mTOR signaling pathway components and other cellular commu-
nication pathways. In this work, we identify strong sex-brain-region-specific
agingmicroRNAs andmicroglial miR-155-5p as a promising therapeutic target.

Aging, which is defined as the loss of physiological functions resulting
in the end of lifespan, impacts all organs1. But the mechanisms driving
the gradual decline in the brain and the resulting loss of its function-
alities are yet to be understood2. Molecular and neuroimaging studies
suggested that regions of the brainmay experience varying degrees of
susceptibility to the effects of the aging process3,4. Brain aging atlases
of epigeneticmodifications5 and transcriptional changes3 exist, but the
miRNAexpression layer ismissing.MaturemiRNAs are short (18–24nt)
single-stranded RNA molecules that play an important role in post-
transcriptional regulation via complementary base pair binding to
mRNA molecules6, thereby reducing their stability and inhibiting

translation7. Their capacities of targeting multiple mRNAs in the same
pathways8 and their stability make them promising targets for therapy
applications and diagnostics9. MiRNAs mediate protective microglial
states in an ADmousemodel10, were proposed as important drivers of
aging-related phenotypes cross-organs11 and shown to control aging
speed via exosomes12. Hence, generating a comprehensive atlas of
miRNA expression during healthy brain aging is urgently needed to
characterize how and where aging occurs and leads to vulnerabilities,
such as neurological disorders like Alzheimer’s (AD) or Parkinson’s
disease (PD)13–17. Currently, information on miRNA expression in dif-
ferent brain regions is rather sparse18–20. Many studies focus on a set of
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2–12 regions and predominantly used male mice with few to no dif-
fering age groups18,20. Through NGS, we were able to assess another
layer of miRNA biology, previously unexplored in the aging context,
the isomiR expression. IsomiRs are naturally occurring clinically rele-
vant variants of the mature archetype miRNA21.

Wedecided to use inbredmouse samples tominimize genetic and
environmental variability, creating a baseline of miRNA expression
with minimal confounding factors. A baseline is essential for human
studies as these are challenging due to the sparse availability of unaf-
fected brains, genetic and environmental heterogeneity, varying post-
mortem intervals, and hence varying sample quality.

In this work, we analyze region-specific miRNA expression pat-
terns in males and females separately to uncover sex-specific regional
expression. Building on the sex-specific analysis, we study age-related
miRNA expression changes in a sex-dependent and independent
manner.We identify three cross-sex brain agingmiRNAs, likely derived
frommicroglial expression changes.We check the expression changes
of our brain aging miRNAs in two aging interventions, dietary restric-
tion and young plasma injection. Finally, we combined our miRNA
dataset with the existing mRNA dataset and found that cellular com-
munication and mTOR signaling pathways were regulated by brain
aging miRNA miR-155-5p.

Results
Brain region-specific miRNA expression patterns
Aging is the main risk factor to suffer frommajor neurodegenerative
diseases, therefore, understanding the underlying mechanisms is
crucial for the development of effective therapies13. We generated
bulk sequencing data from 844 samples from 15 defined regions at
seven ages (3, 12, 15, 18, 21, 26, 28 months) to uncover the region-
specific miRNA patterns during aging. Samples from the following
regions were collected: corpus callosum, choroid plexus, neurogenic
subventricular zone (SVZ), hippocampus anterior and posterior,
hypothalamus, thalamus, caudate putamen, pons, medulla, cere-
bellum, olfactory bulb and three cortical regions, namely, motor,
entorhinal and visual cortex (Fig. 1a). On average we found a read
count of over 9.5 million per group, when aggregating all samples
according to brain region and age (Supplementary Fig. 1a) and over
55% of reads mapped to miRNAs (Supplementary Fig. 1b). 828 of
844 samples (98%) passed quality control (Supplementary
Data 1 and 2). A subsequent UMAP visualization of the features
(miRNAs, lncRNAs, piRNAs, rRNAs, scaRNAs, snoRNAs, snRNAs, and
tRNAs) showed a distinct separation of several brain regions, e.g.
olfactory bulb and cerebellum (Supplementary Fig. 1c). Neither sex
nor age was identified as strong drivers for grouping (Supplementary
Fig. 1d and 1e). Analyzing the composition of expressed counts per
brain region indicated a homogenous distribution (Supplementary
Fig. 1f). Within most brain regions like cerebellum, motor cortex,
hippocampus anterior and olfactory bulb, the composition of
expressed counts for all RNA classes remained constant over all ages
(Supplementary Fig. 1g). Correlating each feature with age per brain
region revealed 720 positive correlated tRNAs and 127 negatively
correlated miRNAs (51 positively correlated miRNAs, Fig. 1b). We
exemplary highlight a tRNA (tRNA-Glu-TTC-1-1), which was sig-
nificantly positively correlated in both sexes inmultiple brain regions
(Fig. 1c). Motivated by these high feature numbers exhibiting a cor-
relation with age, we visualized tRNA UMAP results, which failed to
provide a distinct separation into brain regions, sex or age (Fig. 1d,
Supplementary Fig. 2a and 2b). A PVCA explained 36% of the
observed variance with brain region identity (Fig. 1e). In contrast,
miRNAs exhibit a larger share of variance (54%) explained by brain
region. Also visible in the clear UMAP separation for the 1,174miRNAs
by brain region as driving factor over sex or age (Fig. 1f, g, Supple-
mentary Fig. 2c–e). Age, as an independent factor, introduced 0.6%
of the variation and 3.8% in combination with the brain region. The

variable sex was responsible for 0.2% of the variation and for 2.8% in
combination with the brain region (Fig. 1g). Since our sequencing
protocol is optimized for miRNAs and we found the greatest region-
specificity and high age-correlation within miRNAs, we focused the
following analysis on miRNAs. An overview of our miRNA expression
data can be found at https://ccb-compute2.cs.uni-saarland.de/
brainmirmap.

Weherein present a study analyzingmiRNA expression in a spatial
resolution of 15 regions within the male and female brain using NGS.
Previously, only micro-array-based studies were performed with up to
13 regions in male mice18,19. Using NGS methods combined with a
greater sample size of each sex enabled us to identify more expressed
miRNAs. Furthermore, with NGS isomiR alterations of miRNAs can be
identified.

First, we focused on identifying strong region-specific signatures
of miRNA expression in the different brain regions for both sexes,
unified and individually. Therefore, we analyzed the expression of
young adult mice (ages: 3, 12, and 15 months). Visualizing the UMAP
results exhibited a clear separation driven by the brain region identity
(Supplementary Fig. 2f). Exceptions like the overlap of hippocampus
anterior and posterior can be explained by their anatomical and
functional proximity. Neither sex nor age can be identified as strong
factors driving a distinct grouping in the UMAP visualization (Sup-
plementary Fig. 2g and 2h).

To identify miRNAs driving the region-specific grouping (Sup-
plementary Fig. 2f), we selected 50 miRNAs according to the highest
coefficient of variation (Supplementary Fig. 2i). We identified miRNAs
which were distinctly expressed with respect to the brain average
(highlighted with a black border) and clustered the respective brain
regions into four clusters (cf. Methods). The strongest region-specific
signature was observed in the olfactory bulb. Among the 15 distinctly
expressed miRNAs were miR-200a-5p, miR-200a-3p, miR-200b-5p,
miR-200b-3p, and miR-200c-5p. MiR-200 family members in the
olfactory bulb are crucial to mediate neuronal maturation through
targeting Zeb2 during postnatal development22.

Splitting the data into male and female samples, however,
revealed differing signatures (Fig. 2a), underlining the importance
of a sex-separable dataset. For the male samples, the strong
unique signature of the olfactory bulb persisted. For the females,
the signature is less pronounced, but a distinct expression miR-
200 family members persisted (miR-200b/c-5p). In females, pons
and medulla exhibited strong regional expression signatures, by
each forming a separate cluster. MiR-10b-3p and miR-10b-5p were
the signature miRNAs in the medulla and shared between medulla
and pons were miR-1a-1-5p and miR-10a-3p/5p. MiR-1 and miR-10b
were previously reported to regulate BDNF (brain-derived neu-
rotrophic factor) an important protein involved in synaptogen-
esis, memory, and leaning23. In males, a strict anatomical
organization of miRNA expression was observed as the olfactory
bulb anterior had a distinct profile differing from the central
brain regions (corpus callosum, subventricular zone, hypothala-
mus, thalamus, choroid plexus) and the posterior regions,
medulla, pons, and cerebellum.

We determined sex-unspecific miRNA regional expression pat-
terns (Fig. 2b, SupplementaryData 3): inmedulla, we observed thirteen
sex-unspecific miRNAs (e.g., miR-10a/b), eleven in the olfactory bulb
(e.g., miR-200b/c-5p), nine in pons, miR-195b in cerebellum, and miR-
653-5p in hypothalamus. In contrast, we identified sex-specificmiRNAs
with regional expression patterns in thirteen regions for males (e.g.,
miR-133b-5p in cerebellum) and in all regions for females (e.g., miR-
471-3p in medulla). Hence, we concluded that regional miRNA
expressionpatterns occur in a sex independentmanner in anterior and
posterior brain regions, and strong sex-specific regional patterns
rather occur in central brain regions (corpus callosum, motor cortex,
choroid plexus, thalamus).
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Sex as a factor for miRNA expression during aging expression
patterns
Considering the importance of sex as a variable in regional expression
patterns, we chose to investigate the impact of sex as a variable within
our dataset compared to age. During sex-specific analysis, we were
limited to 14 brain regions and timepoints up to 21 months due to an
insufficient number of older female samples.

Region-wise analysis of variation shares revealed that for two
regions - mot. cortex and caudate putamen - the variation introduced
by the variable sexwas20.2%and20.3%, respectively (Fig. 2c).Whereas
the variation share of age was under 12% for both regions. Sex differ-
ences in pathologies as well as neural properties and associated
mechanisms have been reported previously for caudate putamen24,
e.g., in humans for fiber connection strength.
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We identified 86 significantly upregulated and 37 significantly
downregulated miRNAs between male and female in the caudate
putamen (Fig. 2d, cf. Methods). In the motor cortex, 26 miRNAs were
significantly upregulated and onemiRNA significantly downregulated.
Thalamus and corpus callosum also exhibited solely sex-driven var-
iances above 10% but equally strong solely age-driven variances. In the
thalamus, however, only seven miRNAs were significantly upregulated
between male and female. In contrast, regions with a low share of
variation explained by sex, such as olfactory bulb exhibited no sig-
nificantly differentially expressed miRNAs. A gene set enrichment
analysis (GSEA) over themiRNAs inmot. cortex, caudate putamen, and
thalamus revealed overlaps between regulated pathways (Fig. 2e). E.g.,
“cerebral cortex radially oriented cell migration” was depleted in all
three regions and “complement-dependent cytoxicity” was enriched.
In summary, we found sex-specific miRNA expression patterns that
persist during the entire lifespan and dominate over age-related
expression changes, especially strong in themotor cortex and caudate
putamen. These changes potentially relate to sex-specific regulation of
distinct pathways.

However, our study focusses on age-related miRNA expression
patterns and for five regions the share of variation explainable by age
(>12%) dominated over the share explainable by sex (<10%) and the
combination between age and sex (<3%) (Fig. 2c). These regions,
namely, subventricular zone, olfactory bulb, vis. cortex and medulla
and choroid plexus (18.5% of variation explainable by age) were
especially interesting for the question whether age-related miRNA
changes in the brain occur region specifically.

Sex-specific miRNA expression changes during aging
We first analyzed male and female samples separately to be able
to detect common and sex-specific effects. By collecting multiple
discrete age stages, we were able to approximate the aging tra-
jectories over the lifespan for each miRNA in each region and for
both sexes. Analyzing trajectories is crucial as expression changes
can occur in differing degrees and varying shapes, but in similar
directions.

As miR-9 family members were previously extensively studied in
the brain25–27, we exemplarily investigate miR-9-5p expression. MiR-9-
5p is highly expressed in all regions (Supplementary Fig. 2j), though it
is not amongst the previously defined 50 most variable miRNAs
(Supplementary Fig. 2i). In the olfactory bulb, we detected a median
expression of over 100k rpmm. During aging, themiR-9-5p expression
remained mostly stable in medulla and motor cortex in both sexes
(Fig. 3a, Supplementary Fig. 3a). However, the expression in the
olfactory bulb slightly decreased over the lifespan in males but
remainedmostly stable in females.MiR-9-5p is known to be involved in
neurogenesis, axon development, differentiation, and proliferation of
neural progenitor cells27. Hence, further investigation of functional
consequences of its region-specific and sex-specific aging expression
could yield to additional insights.

We measured the relation of each miRNA with age in each brain
region by calculating the Spearman’s rank correlation coefficient in
males and females. Across all brain regions, we observed significant
correlations with age for 13.79% of the miRNAs in males and 37.87% in
females (Supplementary Fig. 3b). In males, 12 miRNAs were sig-
nificantly positively correlated in the vis. cortex and in olfactory
bulb 12 miRNAs were significantly anti-correlated (Fig. 3b, Supple-
mentary Data 4). In females, 63 miRNAs were significantly positively
correlated in choroidplexus and 13were significantly anti-correlated in
the SVZ. Three miRNAs in males and four miRNAs in females were
significantly positively correlated with age in more than three brain
regions (Fig. 3c). MiR-212-3p was significantly anti-correlated with age
in males andmiR-3473e in females, both for two brain regions, namely
olfactory bulb and corpus callosum, hippocampus anterior and
olfactory bulb, respectively. MiR-155-5p, miR-146a-5p, and miR-5100
were significantly positively correlated with age in males and females,
exhibiting a strong aging signature independent from sex and region.
Given that both miR-155-5p and miR-146a-5p regulate neuroin-
flammation and are implicated in neurodegenerative diseases28, their
roles in brain aging present compelling targets for further
investigations.

By calculating correlations, we neglected non-monotonic effects
in the trajectories. Therefore, we considered the differences between
the older ages (12 to 28 months for male and 12 to 21 months for
females) and 3 months by performing a differential expression (DE)
analysis using these comparisons (SupplementaryData 5, cf.Methods).
In the choroid plexus in males, exclusively one miRNA (mmu-miR-
5100) was significantly positively correlated with age. However, more
than 280 miRNAs were upregulated at 15 months and all later time
points in males in this region (Fig. 3d). Out of these 280 miRNAs, 204
miRNAs were consistently upregulated in all consecutive time points
from 15 to 28 months. These results indicate that the expression is
drastically increased between 12 and 15 months and remained con-
stantly high thereafter. In females, we observed 76 significantly posi-
tively age-correlated miRNAs (Fig. 3b) and a matching high count of
upregulatedmiRNAs is observedwithin the age comparisons across all
regions (Fig. 3d). Especially the brain regions cerebellum and choroid
plexus stood out with 511 and 308 distinct miRNAs over all age com-
parisons, respectively. While the cerebellum exhibited an even higher
upregulation trend in females starting at 12 months of age with 451
upregulated miRNAs, no significant age-correlated miRNAs were
observed.

Though we observed strong deregulation trends for many miR-
NAs in different regions, few were significantly deregulated (Supple-
mentary Fig. 3c). Therefore, we aggregated the miRNAs that were
significantly deregulated uniquely and in multiple regions to deter-
mine the strongest age-deregulated miRNAs per sex (Supplementary
Fig. 4a).MiR-5100, also identified as a significant age-correlatedmiRNA
in multiple brain regions in both sexes (Fig. 3c), was significantly
upregulated in males in the medulla and corpus callosum (Fig. 3e).

Fig. 1 | Spatio-temporal overview and analysis of RNA expression in the aging
mouse brain. a Study overview: Brain tissues collected at 3, 12, 15, 18, 21, 26, and
28 months from 15 brain regions defined by the Allen Brain Atlas. Numbers below
the timeline indicate mouse individuals per age and sex. Created in BioRender.
Engel, A. (2025) https://biorender.com/w13g377. bDistribution of Spearman’s rank
correlation coefficients between age and features per RNA class calculated sepa-
rately for each brain region using all samples. The black lines within the ridgeline
indicate medians. The feature counts are displayed on the right. c Time series
boxplots for tRNA-Glu-TTC-1-1 expression in three brain regions, separated by sex.
Spearman’s rank correlation coefficients from the tRNA expression with age are
displayed above each plot (significant, if adjusted p-value < 0.05, two-sided
Spearman’s rank correlation test adjusted and adjustment for multiple testing
using Benjamini-Hochberg procedure (cf. Methods)). Asterisks mark significant

deregulation (fold change ≥ 1.5 or ≤ 1/1.5 and adjusted p-value <0.05 from two-
sided Welch’s t-test, Benjamini-Hochberg procedure) of the older ages to the
reference age (3 months). The source data contains all exact values and sample
sizes. Box borders correspond to the 25th (Q1) and 75th Percentile (Q3), themiddle
line to themedian andwhiskers to theminimum (maximum) of theminimum value
or Q1 � 1:5 � IQR (maximum value or the Q3 + 1:5 � IQR) where IQR determines the
interquartile range. Solid grey dots in the plot indicate the potential outliers in the
data. d UMAP of all samples for tRNA features, colored by brain regions (Fig. 1a).
e Principal Variance Component Analysis for tRNAs across all samples showing
variance explained by brain region, age, sex, and individual. f UMAP of all samples
for miRNA features colored by brain regions (Fig. 1a). g Principal Variance Com-
ponent Analysis for the miRNAs across all samples, showing variance explained by
brain region, age, sex, and individual. Colors as in Fig. 1e.
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More miRNAs were significantly downregulated in unique regions in
males than in females (Supplementary Fig. 4a).

We aggregated themiRNAsobtained from the age-correlation and
deregulation analysis to a candidate set presenting the age-related
miRNAs (Supplementary Fig. 4b, Supplementary Data 6). In males,
corpus callosum, visual cortex, and olfactory bulb were the most
prominent regions affectedbymiRNA expression changes, as opposed
to choroid plexus in females. We summarized the region-specific and
age-related signatures in each sex (Fig. 3f). Even though there is a high
number of significant age-relatedmiRNAs, we found no region-specific
miRNA that also exhibited strong age-related expression changes in
any region inmales. In females, we detected region-specificmiRNAs as

well as significant age-related ones, but again, no simultaneously
region-specific and age-related miRNAs were detected. Our findings
indicate thatmiRNAs exhibiting a strong regionally defined expression
pattern in the brain have a stable expression during aging. In contrast,
even though age-relatedmiRNAs occur in a region-dependentmanner,
thesemiRNAs were not amongst the highest variable ones between all
regions.

To see whether miRNA candidates from the sex-specific bulk
mouse data showed similar trends in humans, we investigated miRNA
expression within the ROSMAP dataset29. Between the oldest (92–102
years) and the youngest (71–80 years) group, we found 144 down-
regulated and 10 upregulated miRNAs in females and 42
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downregulated and 32 upregulated miRNAs in males (Fig. 3g, cf.
Methods). We considered the deregulated miRNAs with an absolute
effect size greater than or equal to 0.5 as age-related candidates (11
downregulated and 4 upregulated in males; 19 downregulated in
females, Fig. 3h).We intersected thesewithmouse age-relatedmiRNAs
in mot. cortex, the closest matching brain region to the human data
(dorsolateral prefrontal cortex)30. We found no overlap of age-
deregulated miRNAs in the same direction. As the youngest human
age of 71 years roughly compares to the last time point of the mouse
data (28 months), it is possible that the trends observed within the
mousedata couldbepresent inhumansbut cannot be capturedduring
this short time course at the end of the human life span.

Sex independent miRNA expression changes during aging
Apart from sex-specific miRNA expression changes, we recognized
common signatures that we aim to verify in a joint analysis. Analyzing
all samples together enables us to additionally investigate the pons.
We calculated region-wise Spearman’s rank correlation coefficients of
miRNA expression with age (Supplementary Fig. 4c, Supplementary
Data 7) and aggregated the results resolved in unique and multiple
miRNAs (Supplementary Fig. 4d). We found less miRNAs significantly
positively correlated with age in the combined analysis and more
miRNAs significantly anti-correlated, especially driven by 75 antic-
orrelated miRNAs in pons. We found 11 miRNAs significantly anti-
correlated (e.g., miR-18a-5p in olfactory bulb and pons) and 7 sig-
nificantly positively correlated in multiple tissues (e.g., miR-155-5p in
corpus callosum, mot. cortex, caudate putamen, medulla, choroid
plexus, SVZ, thalamus, and vis. cortex). Hence, we were able to detect
more age-correlated miRNAs in the combined analysis than in the sex-
separated one due to the higher sample size.

Comparing deregulated miRNAs within each region and age,
revealed a persisting aging signature in the combined analysis (Fig. 4a,
Supplementary Data 8). The number of miRNAs downregulated in
pons varied from 46 miRNAs (15 months) to 397 miRNAs (18 months)
(Fig. 4a). MiR-9-3p and eleven other miRNAs were downregulated in
each comparison between 12 months to 28 months. In hippocampus
posterior 196 miRNAs were commonly downregulated at 26 and
28 months of age, even though no significantly anti-correlated miRNA
was found. This indicates a strong expression decrease between 21 and
26 months, which was not detectable via correlation. In choroid
plexus, we determined 45, 122, and 179 significantly upregulated
miRNAs at 15 months, 18 months, and 21 months, respectively (Sup-
plementary Fig. 4e). Seventeen of these were commonly deregulated
in all three comparisons (including miR-155-5p and miR-146a-5p). An
aggregation of the significant results resolved showed a high number
of significantly upregulated miRNAs in choroid plexus (214 miRNAs)
and significant downregulation in pons (94miRNAs), SVZ (82miRNAs)
and choroid plexus (54miRNAs) (Supplementary Fig. 4f). We observed
deregulation for all brain regions and age comparisons to 3months for
all expression levels (Supplementary Fig. 4g). In our previous study,
which examined the expression by bulk sequencing, we observed

peaks of deregulation at 12 and 18 months in the brain without any
regional resolution31. The fact that we did not observe these peaks
across all brain regions in this study highlights the importance of a
region-specific investigation.

We compared miRNAs identified as age-related within each brain
region, evaluating unique and overlapping miRNA sets analog to the
sex-separated analysis (cf.Methods; Fig. 4b). ThereweremanymiRNAs
uniquely associated with age in one region, especially 134 in the
choroid plexus and 82 in pons. However, 41 common miRNAs were
associated with aging in both these regions. The SVZ and choroid
plexus share 31 common agingmiRNAs. SVZ, choroid plexus, and pons
shared 11 miRNAs, comprising the highest number of shared miRNAs
and regions. MiR-5100 as a cross-region age-related miRNA was
observed in ten brain regions (corpus callosum, cerebellum, ent. cor-
tex, medulla, olfactory bulb, choroid plexus, pons, SVZ, thalamus and
hippocampus anterior), miR-146a-5p in six (corpus callosum, mot.
cortex, caudate putamen, olfactory bulb, choroid plexus and thala-
mus) and miR-155-5p in eight (corpus callosum, mot. cortex, caudate
putamen, medulla, choroid plexus, SVZ, thalamus and vis. cortex).
These observations indicated miR-155-5p, miR-146a-5p, and miR-5100
as cross-sex brain aging miRNAs (Supplementary Data 9). To investi-
gate the functionality of the identified age-related miRNAs, we com-
pared the candidates per brain region to the list of cholino-miRNAs32.
Overlaps between thesemiRNAs regulating cholinergic genes and age-
related miRNAs could indicate that the miRNA expression changes
partially relate to altered acetylcholine signaling in aged individuals.
We observed an overlap of seven age-related miRNA with the cholino-
miRNAs in 7 brain regions (Supplementary Fig. 4h). In particular,mmu-
miR-146a-5p, one of the cross-region age-related miRNAs is a known
cholino-miRNA.

Further, we examined whether the miRNAs expression changes
are driven by aging or can be related to transcription process altera-
tions. Per brain region, we examined a +/−10kb window around each
significantly age-correlated miRNA on the same and the opposite
strand for occurrence of significantly age-correlated miRNAs (cf.
Methods, Supplementary Fig. 4i). As a reference, the average number
in this defined neighborhood is 5.27 on the same strand and 0.25
miRNAs on the opposite strand. Noneighboring significant age-related
miRNA was found on the opposite strand. Additionally, we visualize
the significantly correlated miRNAs with respect to their cumulative
genomic coordinates (Supplementary Fig. 5a). Our data indicate no
significant enrichment on the same or the opposite strand. This sug-
gests that the observedmiRNAchanges are likely not a result of strand-
specific transcriptional effects.

We performed a GSEA over the age-related miRNAs in all brain
regions to explore the targeted pathways. This analysis revealed
overlaps between six brain regions for the 50most significant enriched
and depleted pathways (Supplementary Fig. 6a). “GABA-ergic synapse”
is depleted in hypothalamus, “Positive regulation of acetylcholine
secretion, neurotransmission” in hypothalamus and thalamus, and
“Axon development” in pons. “Apoptotic process” is enriched in

Fig. 2 | Sex- and brain region-specific miRNA variation in the mouse brain.
aHeatmaps of the 50 topmiRNA from brain regions determined by the coefficient
of variation calculated using the medians of the expression values of each brain
region. Shown are the absolute standardized expression values (z-scores) for the
younger male (left) and younger female (right) samples. Black borders indicate the
binarization (|z-score|> 0.5) on which a clustering into four clusters using a hier-
archical clustering was applied. We consider a miRNA in a brain region different
from the average brain if it surpasses the aforementioned threshold. If it only
exceeds the threshold for one brain region, we call it brain region-specific. Lines
connecting the two heatmaps are highlighting the occurrence of common features
(light green). If features are differing from the average brain for only one but the
same brain region in both sexes, they are highlighted in pink and in dark green if
they differ from the average brain in the same set of multiple brain regions. For

visualization purposes, we removed features entirely below the selected threshold.
b Venn diagram linking the features which are differing from the average brain per
brain region between the male and female heatmap. c PVCA showing the observed
variance for each brain region individually over all sex-matched samples (3, 12, 15,
18, 21months) for age and sex. Thepoint size indicates the variancewhenobserving
age and sex in combination. Colors refer to the brain regions (Fig. 1a). Thresholds at
12% for both axes are marked with grey dashed lines. d Volcano plot for the sex-
specific comparison of mot. cortex, choroid plexus, thalamus and olfactory bulb.
Colored dots indicate significantly down (green) and significantly upregulated
(yellow) miRNAs (fold change ≥ 1.5 or ≤ 1/1.5, adjusted p-value <0.05, two-sided
Welch’s t-test, Benjamini-Hochberg procedure). eThe gene set enrichment analysis
(GSEA) results obtained from MIEAA60 for mot. cortex, choroid plexus, thalamus
showing the top 10 depleted (green) and enriched (yellow) pathways (cf.Methods).
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choroid plexus and vis. cortex and “DNA damage response” in choroid
plexus.

Region-specific cluster organizationof agingmiRNA trajectories
To uncover continuous changes occurring over the entire lifespan
other than correlations, we calculated miRNA aging trajectories for
eachmiRNA in each brain region. This analysis enabled us to study the

time-related changes in greater detail compared to studies using single
young versus aged comparisons. Subsequently, we clustered these
trajectories in 53 clusters to identify common trajectories (Supple-
mentary Fig. 7a, Supplementary Data 10).

Twenty clusters exhibited a strong region-specific signature as
more than 30% of the trajectories in the cluster originate from the
same brain region (Fig. 4c). Cluster 7, 35 and 47 revealed three distinct
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pons-specific aging miRNA trajectories dominated by a peak at 15
months and an overall decrease (Fig. 4d). In contrast, we observed an
overall increasing expression for three choroid plexus region-specific
clusters (cluster 2, 11 and 28). A loss of choroid plexus gene expression
has been described in aging33, which could be due to increasingmiRNA
expression. Especially, clusters 28 and 41 are dominated by a steady
expression increase within all miRNA trajectories (Fig. 4e). Cluster 41
exhibited no prominent region-specificity. Therefore, we chose to
investigate another characteristic within the clusters: the occurrence
of a single miRNA trajectory originating from different regions
(Fig. 4c).We foundmiR-5100 trajectorieswithin the cluster 41 fromfive
different brain regions (Fig. 4e). Cluster 28 contained miR-203 trajec-
tories originating from three different regions (cerebellum, mot. cor-
tex, choroid plexus). This miRNA negatively regulates NF-κβ signaling
andmicroglia activation in neuronal injury34,35. It is an interesting target
in neuroinflammation regulation and brain injury, in which miR-203
inhibitors have alreadybeen successfully tested36. Twoclusters (24 and
38) exhibited a continuous decrease in expression. Neither of these
clusters were region-specific. But cluster 38 contained trajectories
from miR-466b-5p/466e-5p, 467d-5p and 469-families originating
from four different regions, which were already identified as age-
related.

We investigated the region-specificity of the clusters opposed to
the occurrence of miRNA trajectories of the same miRNA originating
from different regions in detail (Fig. 4f). If a cluster has a high region-
specificity, there are no more than two to three miRNA trajectory
occurrences in most cases. In contrast, clusters with multiple miRNA
trajectoryoccurrences tend tohave lower region-specificity. Out of the
ten clusters harboring more than four times a single miRNA trajectory
from different regions, only three were deemed region-specific.
Especially in cluster 3, we observed thatmiR-3473a occurred ten times
while the second most abundant mmu-miR-3473b occurred
seven times.

The cross-sex brain aging miRNA, miR-5100 was found multiple
times in cluster 41. Apart frommiR-5100, miR-155-5p and miR-146a-5p
were significantly correlated with age in males and females and are
known as key modulators of immune response37. We therefore inves-
tigated the clustering patterns of the three cross-sex brain aging
miRNAs. MiR-146a-5p trajectory center lines show an overall increase
in age (Supplementary Fig. 8a). Motivated by the cluster analysis, we
explored miR-146a-5p expression trajectories for all brain regions
which show an overall increase formost brain regions (Supplementary
Fig. 8b). Looking at cluster center lines containing trajectories from
miR-5100, we observed an increasing tendence (Supplementary
Fig. 8c).MiR-155-5p trajectorieswere alsoobserved indifferent clusters
sharing an increasing center line (Fig. 4g). The center lines of the
clusters containing the miRNA trajectories for mot. cortex and cere-
bellum (28) increased towards 26 months. As our initial analysis did

not reveal the age-relation of miR-155-5p in cerebellum, we investi-
gated miR-155-5p expressions in all regions (Fig. 4h, Supplementary
Fig. 8d). We observed an increase of miR-155-5p to different extents in
all regions.

Microglial age-driven miRNA expression changes
The results of the miRNA trajectory clustering confirmed the three
increasing cross-sex brain aging miRNAs. This prompted us to inves-
tigate whether there is a cell type driving their expression. Mapping
bulk miRNA expression back to cell types is challenging as there is no
robust high-throughput single-cell detection method for miRNAs.
However, miRNA expression patterns were previously measured using
Cre recombinase-dependent miRNA tagging38. MiR-155-5p and miR-
146a-5p expression is likely driven by microglia, as both showed an
over 10-fold enrichment in microglia compared to brainstem38,39

(Fig. 5a, Supplementary Fig. 9a). Unfortunately, miR-5100 was not
detected. To decipher whether the observed miRNA increase is driven
by changes in cell type ratios or microglial expression changes, we
sequenced microglia from young (3 months) and aged (21 months)
mice collected via FACS (Supplementary Fig. 9b, 9c, Supplemen-
tary Data 1).

We compared themiRNA expression of our young/agedmicroglia
to data from Walsh et al.40 and found a strong overlap of expressed
coremiRNAs (Fig. 5b). The highest expressedmiRNAs according to the
median per samples were observed for young and aged, e.g. miR-181a-
5p (Fig. 5c). Basedon the coefficient of variation,we selected the top25
miRNAs for clustering. We found few miRNAs with rather distinct
expression patterns in individual samples (Fig. 5d). Hence, we checked
for our three brain aging miRNAs specifically. MiR-155-5p and miR-
146a-5p were expressed in microglia above a threshold of 3 rpmm,
miR-5100 was not. Only miR-155-5p showed an increase in aged
microglia (Fig. 5e). A detailed analysis of deregulated miRNA between
these two groups revealed 59 miRNAs upregulated in aged microglia
and 70 miRNAs downregulated (cf. Methods, Fig. 5f, Supplementary
Data 11). Within the upregulated miRNAs, miR-155-5p exhibited the
highest fold change (fold change: 3.58, raw p-value: 0.002 and adjus-
ted p-value: 0.659). Hence, the increasing expression of miR-155-5p in
several brain regions is likely driven by an increased microglial
expression.

MiR-155-5p as sex independent cross-region aging miRNA
Summarizing all analysis, we considered miR-155-5p the most pro-
mising candidate for investigation into its regulatory mechanisms. We
examined whether its regulatory mechanisms contribute to known
aging interventions suchasdietary restrictions aswell as youngplasma
injections, which were reported as beneficial for aged individuals41,42.
Hence, we investigated the expression changes of miR-155-5p in acute
dietary restriction (aDR) and after young mouse plasma injections

Fig. 3 | Sex-specificmiRNAdynamics inbrainagingacrossmale and female. Sex-
specific analysis, with male samples shown on the left and female on the right.
a Time series boxplots of mmu-miR-9-5p in three brain regions. Spearman’s rank
correlation coefficient of miRNA expression with age is displayed above each plot
(significant, if adjusted p-value < 0.05, two-sided Spearman’s rank correlation
test, Benjamini-Hochberg procedure). Boxplots follow Fig. 1c andMethods; exact
values in Supplementary Data 4 and 5.b Barplots of significantly anti- or positively
correlated miRNAs with age per brain region (|R| ≥ 0.5, Spearman’s rank corre-
lation coefficient, adjusted p-value < 0.05, two-sided Spearman’s rank correlation
test, Benjamini-Hochberg). Upper bars contain miRNAs in the same direction
significantly correlated in multiple brain regions (yellow). Lower bars contain
miRNAs unique for one region (colors refer to brain regions (Fig. 1a)). c Features
significantly correlated in multiple brain regions. Dots indicate brain regions,
background color yellow (green), if significantly positively correlated (anti-cor-
related). d Heatmaps showing up- or downregulated miRNAs per brain region
between older ages and 3 months (fold change ≥ 1.5 or ≤ 1/1.5). Numbers are

shown ifmore than 200miRNAs. e Significantly upregulatedmiRNAs (yellow; fold
change ≥ 1.5, adjusted p-value < 0.05) and significantly downregulated (green;
fold change ≤ 1/1.5) in multiple brain regions. Colors analog to Fig. 3c. f Summary
of brain region-specific and age-related features. Purple markers indicate brain
region-specific features from Fig. 2a. Arrows pointing to the top in yellow (bottom
in green) stand for significantly upregulated (downregulated) miRNAs and posi-
tive in yellow (negative in green) signs for significantly positively (anti-) corre-
latedmiRNAs. gHumanROSMAP29 data: Healthy samples split by age of death (71-
80, 81-91, 92-102 years). Color indicates the log2-fold changes between the
youngest and oldest group per sex. Black borders mark if the fold change exceeds
|log2(1.5)|. Asterisks indicate significance (two-sided Welch’s t-test, Benjamini-
Hochberg). h Scatterplot of Cohen’s d against log2-fold change, colored if
thresholds for fold change (|log2(fc)| ≥ log2(1.5)) and effect size (|d| ≥ 0.5) are
exceeded (upregulation yellow and downregulation green). LabeledmiRNAswere
age-correlated in mot. cortex (Supplementary Fig. 4c).
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(YMP). We analyzed miRNA expression patterns in all previously col-
lected regions of female mice aged 19months, either fed ad libitum or
treatedwith 4 weeks of aDR. Andwe analyzed samples from the young
plasma injection cohort, which consisted ofmale 18-month-oldC57BL/
6JN mice injected with young mouse plasma42. We found an average
read count per sample of over 21 million for aDR and 23 million for
YMP (Supplementary Fig. 9d and9e).On average, over 55%of the reads

were mapped to miRNAs (Supplementary Fig. 9f and 9g) and 113 of
118 samples (96%) for aDR and 68 of 84 (81%) for YMP passed our
quality control (Supplementary Data 1). Across all regions, exclusively
miR-451a showed a significant expression change during aDR (Sup-
plementary Fig. 9h). An in-depth analysis of miR-155-5p expression in
aDR did not reveal any persisting trends (Supplementary Fig. 9i). No
significant expression changes were observed in any region after YMP
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(Supplementary Fig. 9j). Similarly, for YMP, we did not detect any
significant miR-155-5p expression changes compared to control
groups, however we observed decreased expression in corpus callo-
sum, cerebellum, caudate putamen, medulla, and choroid plexus and
an increase in mot. cortex (Supplementary Fig. 9k). We hypothesize
that the beneficial effects of these interventions are not crucially
mediated via miRNA changes.

Sequence variations of mature miRNAs, so called isomiRs, occur
naturally due to either altered cleaving patterns or sequence editing.
IsomiR patterns can vary between different organs and in disease to
their archetype miRNA expression. IsomiRs can alter the target spec-
trumof amiRNA, hencewe investigatedwhether the isomiR-archetype
ratio is alteredduring the agingprocess.We found that isomiRsofmiR-
155-5p followed a similar trend of increase during aging in all regions,
but the archetype form dominated (Fig. 5g, Supplementary Fig. 10a).
Furthermore, we checked whether there was a region-specific sig-
nature of isomiR expression for miR-155-5p. We discovered that in
medulla miR-155-5p isomiRs showed a distinct expression pat-
tern (Fig. 5h).

As miR-155-5p increased during aging, we investigated whether
this increase leads to altered regulation of itsmRNA targets. Therefore,
we gathered all miR-155-5p targets using miRTargetLink 2.043. Lever-
aging the matching bulk mRNA data3, we calculated the Spearman’s
rank correlation coefficients between miR-155-5p and each target
within each region (cf. Methods). Twenty-six targets were significantly
anti-correlated during aging in multiple regions (Fig. 5i).

Cyclin H (CCNH) and the basic helix-loop protein (ARNLT) were
significantly anti-correlated in five and six different regions, respec-
tively. The correlation strength in each region differs (Fig. 5j). In cau-
date putamen the miR-155-5p increase lead to a strong ARNTL
decrease, whereas in medulla the decrease was less pronounced. We
observed similar region-dependent regulation strengths for ZFP322A
(zinc finger protein) and PTPRJ (protein tyrosine phosphatase). PTPRJ
activates MAPK1, which is an important player during extracellular
signaling and various cellular processes. Additionally, we considered
the functionally validated targets genes44. Six of the 80 target genes
showed a significant anti-correlation with mmu-miR-155-5p for at least
one brain region, including the previously shown ARNTL (ADAM23,
PCSK5, REPS2, NRCAM and NSG2, Supplementary Fig. 10b). We found
multiple targets within important age-related pathways, such as reg-
ulation of cell communication and the mTOR signaling pathway
(Fig. 5i). Consequently, we focused on the additional transcripts of the
mTOR pathway45 and their correlations with miR-155-5p expression
(Supplementary Fig. 10c). For corpus callosum, caudate putamen, ent.
cortex, hippocampus anterior, choroid plexus, SVZ and thalamus a
significantly anti-correlation can be observed for multiple genes like
PDPK1, YWHAZ and CYCS. This highlights that miR-155-5p deregulation
might not only affect its direct targets but also other downstream

targets within this pathway. Using the data from Keele et al.46, we
explored the protein levels between young and aged mice in hippo-
campus, as we predicted that miR-155-5p expression increase, leads to
gene silencing by targeting MEF2A in hippocampus. In males, MEF2A
protein was less expressed in 18 months aged mice as compared to
8 months old mice (Supplementary Fig. 10d). We conclude that age-
relatedmicroglialmiR-155-5p expression changes likely regulatemTOR
pathway gene expression.

Discussion
In our aging brain region-specific miRNA atlas, we identified region-
specific miRNA signatures, especially in the olfactory bulb and cere-
bellum in males and medulla and pons in females. We reproduced
previousfindings ofmiR-200 exclusively expressed inolfactorybulb in
males and extend this knowledge to equal region-specific expression
in females. This miRNA family plays a crucial role in neurogenesis
previously22. Furthermore, we found strong female region-specific
patterns in medulla and pons that did not overlap with male expres-
sion patterns. The identified region-specific miRNAs are therefore
interesting targets to study sex-dependent region-specific
functionalities.

In the motor cortex and caudate putamen, we determined a
strong sex-driven expression signature persistent over the entire life-
span. In sex-separated analysis, we found themostpronouncedmiRNA
expression changes in females in choroid plexus, SVZ, and hippo-
campus. While in males, expression changes in the visual cortex,
olfactory bulb, and corpus callosum dominated.

The analysis of miRNA patterns in brain regions during aging
revealed sex-independent miRNAs increasing with age in multiple
brain regions, namely miR-146a, miR-155-5p, and miR-5100. Especially
miR-155-5p, which we identified as a global agingmiRNA before31, is an
interesting target for further studies. This miRNA has been shown to
regulate leukocyte adhesion at the inflamed BBB47 and has been
associated with neurological disorders such as AD10 and the murine
model of multiple sclerosis48. We detected an increase of miR-155-5p
expression in aged microglia. Increased secretion of miR-155-5p from
microglia mediates inflammatory neuronal cell death and therefore
plays a pro-inflammatory role49. Whether the increased microglial
expression of miR-155-5p in age is limited to microglia or is actively
secreted into the microenvironment remains to be studied. Secretion
of miR-155-5p via e.g. exosomes could contribute to the inflammaging
phenotype, as miR-155 has been proposed as a central regulator in
CNS-related inflammation50. In the disease context (AD), miR-155
together with interferon-γ signaling mediates a protective microglial
state10. A microglia specific deletion of miR-155 reduced amyloid-β
pathology in AD mouse models but caused hyperexcitability and
seizures51. The distinct isomiR expression in certain brain regions, like
medulla calls for further investigation. In our dataset, we discovered

Fig. 4 | Global miRNA expression dynamics in brain aging across regions. All
samples from the dataset are considered. a Heatmaps showing deregulated miR-
NAs between each older age and 3months (fold change ≥ 1.5 or ≤ 1/1.5). Numbers
shown if ≥ 200 miRNAs. On the left, significantly anti- or positively correlated
miRNAs with age are given (|R| ≥ 0.5, Spearman’s rank correlation coefficient,
adjusted p-value < 0.05, two-sided Spearman’s rank correlation test, Benjamini-
Hochberg). b Upset plot of miRNAs changing significant with age per brain region,
indicating unique and overlapping candidates. Significant candidates from Fig. 4a
and Supplementary Fig. 4e. Brain regions above the age variance threshold in
Fig. 2c are bold. Regionswith <10 candidates and combinations with <5miRNAs are
omitted. c Trajectory clustering overview (k = 53,minimummembership 15%). Each
dot represents a cluster, sized by cluster size. Dot color indicates brain region if
occurrence exceeds 30%, dark green if the most frequent features incidence
exceeds 4, otherwise light green. d Center lines of clusters with brain region
occurrence >30%, highlighting choroid plexus and pons. e Trajectories of four

selectedclusters (z-scoredmiRNAexpression). Yellowplots showa steady increase,
green plots steady decrease with age. Labels show dominant regions (>10%) and
frequent miRNAs (>3 features). Regions with black borders and bold miRNAs
exceed the thresholds from Fig. 4c. fDetailed viewof brain region occurrence (left)
and miRNA frequency (right). Brain regions (<10%) and miRNA (<3) are omitted.
Dots over thresholds from Fig. 4c (grey dashed lines) appear in dark green for
miRNAs or have black borders for brain regions. g Center lines of seven clusters
containing mmu-miR-155-5p trajectories. Line widths vary if multiple regions share
a center line. h Boxplots of mmu-miR-155-5p trajectories in seven brain regions.
Asterisks highlight significant comparisons to 3 months (fold change ≥ 1.5 or ≤ 1/
1.5, adjusted p-value < 0.05, two-sided Welch’s t-test, Benjamini-Hochberg proce-
dure). Spearman’s rank correlation coefficient with age are displayed above each
plot (significantly, if adjustedp-value < 0.05, two-sidedSpearman’s rank correlation
test, Benjamini-Hochberg). Boxplots follow Fig. 1c and Methods; exact values in
Supplementary Data 7 and 8.
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altered isomiR expression for miR-155-5p and an expression change in
a target gene (CISH) exclusively in medulla. Additional studies could
use this dataset together with functional validation experiments to
advance understanding of isomiR regulatory properties, specifically in
the aging context.

Limitations of our study include, aside from restricted transfer-
ability to humans, the limitations arising from technical challenges of

analysis of cell-type specific miRNA patterns. Commonly used single-
cell sequencing techniques cannot be applied to assess maturemiRNA
expression due to the lack of polyA-tails, which are essential to most
protocols. Hence, we resorted to FACS to sort for microglia. Selecting
antibodies for the sorting process requires a careful balance to speci-
fically select cells of interest. We chose to exclude CD45+ cells to dis-
tinguish resident microglia from infiltrating immune cells. However,
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we thereby exclude a subset of residentmicroglia, as the expression of
CD45 can increase with age in resident microglia. Another limitation is
the question of whether different microglial states in aDR and YMP
exist with respectively specificmiRNA expression patterns. Changes in
cell type composition and especially cell type states could drastically
influence miRNA bulk expression patterns. These limitations further
underline the need for studies of cell-type-specific miRNA expression
and even different cell-type states. Due to limited access to agedmice,
especially females, this was not possible in this study. Therefore, also
our microglia data is also limited to male samples. In addition to
human data, validation of brain aging miRNAs in other mouse strains
would strengthen our hypotheses, as differing miRNA expression in
different brain regions was previously reported52.

In conclusion, we identified microglial-derived miR-155-5p as the
most interesting therapeutic target. As it regulates broadly cellular
communication pathways during aging and increased sex-
independent manner across all brain regions. MiR-146a-5p is another
interesting candidate, because we also observed its sex-independent
cross-region expression increase. We furthermore identified unique
aging signatures in e.g., choroid plexus, subventricular zone, and pons
as interesting targets to study region-specifically. The sample size of
this study enabled us to even identify sex-specific aging signatures that
are currently heavily understudied. In sum, this atlas offers a com-
prehensive map of miRNA expression across different brain regions in
a sex-specific manner, which was previously nonexistent, with possi-
bility to go in-depth into isomiR analysis, including multiple time
points to study aging signatures.

Methods
Samples
As previously described, male and female C57BL/6JN mice from the
National Institute of Aging colony (Charles River) were shipped to
the Stanford ChEM-H animal facility (Palo Alto), where they were
housed for at least one month before euthanasia3. For each age
group of 3, 12, 15, 18, and 21months, 5 femalemice and 5–6malemice
were used; age groups 26 and 28 months consisted only of 5 and 3
male mice, respectively. Animals were housed in cages of 2–3 mice,
with a 12 h/12 h light/dark cycle, at 19.4–22.8 °C under 40–60%
humidity and provided with food and water ad libitum. Over the
course of four days, the sample collectionwas performed between 10
am and 12 pm. Mice were anaesthetized with 2.5% v/v Avertin, 700 µl
of bloodwas drawn via cardiac puncture and followed by transcardial
perfusion with 20ml cold PBS. After immediate removal of the
brains, the organs were snap-frozen by submission in liquid nitrogen-
cooled isopentane (60 s) and ultimately stored at −80 °C before
further processing. The respective regions were dissected via slicing
and atlas-guided tissue punching while frozen. Using a metal brain
matrix coronal sections of 1mm thickness were sliced with 0.22 razor
blades (Ted Pella, 15045; VWR, 55411-050). Regions of interest
(1.5mm and 2mm diameter) were dissected quickly from the right

hemisphere of these sections using disposable biopsy punches
(Alimed, 98PUN6-2, 98PUN6-3). The following 15 regions were col-
lected: three cortical regions (motor cortex, visual cortex and
entorhinal cortex), anterior (dorsal) and posterior (ventral) hippo-
campus, hypothalamus, thalamus, caudate putamen (part of the
striatum), pons, medulla, cerebellum and the olfactory bulb, corpus
callosum, choroid plexus and the subventricular zone. Four regions
were collected in the following order, as the collection required
overlapping punches: (1) motor cortex, (2) caudate putamen, (3)
subventricular zone, (4) corpus callosum. All animal care and pro-
cedures complied with the Animal Welfare Act and were in accor-
dance with institutional guidelines and approved by the institutional
administrative panel of laboratory animal care at Stanford University.
RNA was isolated using the RNeasy 96 kit (Qiagen, 74181) and a Tis-
sueLyser II (Qiagen, 85300), according to RNeasy 96 Handbook
protocol “Purification of Total RNA from Animal Tissues using Spin
Technology” without the optional on-plate DNase digestion.

Aging interventions
Young Mouse Plasma (YMP) was collected following the protocol
described by Villeda et al.42 Briefly, C57Bl/6J male mice aged 2 months
were anesthetized with 2.5% v/v Avertin after being group-housed.
Around 700μl of blood was drawn via cardiac puncture prior to
transcardial perfusion. 15μl of 250mM EDTA (Thermo Fisher Scien-
tific, 15575020)wasused to collect blood. Themixturewas centrifuged
at 4 °C for 15min at 1000 g to obtain plasma. The plasma from 20–25
micewaspooled together anddialyzed in 1XPBSusing cassettes (Slide-
A-Lyzer Dialysis Cassettes, 3.5 kDa molecular weight cut-off, 3–12ml)
before being frozen at −80 °C. For plasma transfer experiments, 18-
month-old male C57BL/6JN mice were injected retro-orbitally with
150μl of YMPper injection. Prior to injection,mice were habituated by
being placed on the procedure table in their cage. Injections were
administered every 3–4days, alternating between the left and right eye
to allow for recovery. Mice were rested for four days before tissue
collection.

For the aDR study with C57BL/6JN mice, 18-months-old mice
were randomly assigned to AL or aDR. aDR treatment was initiated by
transferring mice from AL to 10% aDR for 7 days. After that, aDR was
increased to 25%. aDR animals were fed once per day between 3–5
p.m., and all animals were checked daily for their well-being and any
deaths. For the first 16 days, weights were checked daily. Mice were
euthanized at the age of 19 months. All mice were euthanized in the
morning within a period of 6 h prior to the regular feeding time of
the DR mice.

The aDR study with C3B6F1 mice was performed in accordance
with the recommendations and guidelines of the Federation of the
European Laboratory Animal Science Association (FELASA), with all
protocols approved by the Landesamt für Natur, Umwelt und Ver-
braucherschutz, Nordrhein-Westfalen, Germany (84-02.04.2015.A437).
Female F1 hybrid mice (C3B6F1) were generated in-house by crossing

Fig. 5 | MiR-155-5p expression and target interactions in brain aging and
microglia. a Based-on CNS microRNA Profiles39. Barplot displays fold changes of
mmu-miR-155-5p between brain cell types and brainstemdata.b Venn plot (distinct
mode) of our microglia expression data (FACS-sorted young and aged mice)
compared to immunopanning-derived profiles from young microglia40. c Top 25
most expressed miRNAs in our microglia dataset (expression in log10-scale),
miRNAs clustered hierarchically. d Top 25 miRNAs by coefficient of variation,
showing absolute standardized expression per sample and miRNA, clustered
hierarchically. e Line plot for twomiRNAs showing themedian expression in young
and old mice, indicating direction of deregulation. f Volcano plot of differential
expression (old versus young), showing raw p-values (two-sidedWelch’s t-test). No
miRNA reaches significance after adjustment, but mmu-miR-155-5p shows strong
upregulation (marked in bold). g Trajectories of median expression per age for
isomiRs of mmu-miR-155 in five brain regions. The canonical isomiR is highlighted

as a dark line. h Top 25 most expressed isomiRs of mmu-miR-155-5p (sorted from
top to bottom). Averaged standardized expression per brain region and isomiR,
clustered by brain regions (hierarchical clustering with complete linkage) and split
into three clusters. i Region-wise Spearman’s rank correlation coefficient for target
genes ofmmu-miR-155-5p (frommiRTargetLink 2.043) using mRNA data fromHahn
et al. 3. Upset plot shows significantly anti-correlated genes ((|R| ≥ 0.3, adjusted p-
value < 0.05, two-sided Spearman’s rank correlation test, Benjamini-Hochberg
procedure) with brain region assignment. Genes are colored by pathways: “mTOR
Signaling Pathway” (yellow) and the “Regulation of cell communication” (blue).
j Scatter plots for four of the significantly anti-correlated target genes (fromFig. 5i).
Brain regions with significant anti-correlation are color-coded. Plots show the
relationship between gene expression and themiR-155-5p, based onmedian values
per brain region and age.
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C3H/HeOuJ females with C57BL/6NCrl males (strain codes 626 and
027, respectively, Charles River Laboratories). Five female animals
were housed as a group in individually ventilated cages under specific-
pathogen-free conditions with constant temperature (21 °C), 50–60%
humidity, and a 12 h/12 h light/dark cycle. For environmental enrich-
ment,mice had constant access to nestingmaterial and chew sticks. All
mice received commercially available rodent chow (ssniff R/M-Low
phytoestrogen, ssniff Spezialdiäten, Germany) and were provided with
filtered water ad libitum. aDR animals received 60% of the food
amount consumed by AL animals. aDR treatment was initiated at
20months of age by directly transferringmice fromAL to 40%DR. aDR
animals were fed once per day, and all animals were checked daily for
their well-being and any deaths. Mice were euthanized at the age of
24months. All mice were euthanized in themorning within a period of
3 h prior to the regular feeding time of the DR mice. Mice were
euthanized by cervical dislocation, and tissues were rapidly collected
and snap-frozen in liquid nitrogen.

The cohort of mice treated with YMP or PBS was housed at
the Palo Alto VA animal facility under a 12 h/12 h light/dark cycle
at 68–73 °F under 40–60% humidity. All experiments were per-
formed in accordance with institutional guidelines approved by
the VA Palo Alto Committee on Animal Research. Euthanasia and
organ collection were conducted in the same way as the aging
cohorts.

Microglia isolation
Microglia from young and aged mice (3 and 21 months, C57BL/6,
males)were isolated via FACS-sorting following the protocol described
below. In brief, mice were anaesthetized with Avertin and perfused
with 20mL ice-cold DPBS. Brains were dissected, hemispheres sepa-
rated, and the olfactory bulb and cerebellum removed. Single-cell
solutions were created for each hemisphere via mincing and douncing
the tissue, the solution was filtered (70 µm cell strainers, Falcon
352350) and finally centrifuged (400 x g, 10mins, 4 °C). After resus-
pension in MACS buffer and addition of myelin removal beads (Mil-
tenyi Biotech, 130-096-433), solutions for each hemisphere were
loaded on LD columns (Miltenyi Biotech, 130-042-901) to remove
myelin. Columns were washed twice with MACS buffer. Cells were
pelleted via centrifugation (400 x g, 5mins, 4 °C) and resuspended in
FACS buffer. FC blocking antibody was added and incubated for
5mins. Primary antibodies (CD11b-FITC (1:50, Biolegend 101206); CD-
45-BUV396 (1:50, Biolegend 50-162-785) and CD206-APC (Biolegend
141707)) were added and incubated for 30min on ice. After another
centrifugation, samples were resuspended in 0.5mL FACS buffer, and
Sytox Blue (Thermo, S34857) was added for live cell labeling. Cells
were sorted on a MA900 Multi-Application Cell Sorter (Sony Bio-
technology) and selected by gating for live single cells (FSC-A/SSC-A).
Further, cells were gated for CD11b+; CD45low; CD206- and sorted
directly into 1.5mL tubes containing 50 µl FACS buffer. As CD11b+/
CD45+ brain cells are mainly infiltrating macrophages53, we exclude
these macrophages with our sorting strategy. FACS-isolated CD11b+/
CD45low/CD206- brain myeloid cells are referred to as microglia in this
manuscript. Between 10,000 and 40,000 cells per sample were col-
lected. For the aged mouse sample 4, two mice were pooled together
to reach the threshold of minimal 10,000 cells as input for RNA iso-
lation. After collection was completed 1mL QIAzol was added
instantly. After vortexing, samples were stored at −80 °C until RNA
isolation. Since cell sorting provides little input material for RNA iso-
lation, the standard miRNeasymicroKit (QIAGEN, cat. no. 217084) was
used with standard protocol for elution of separated fractions for
RNAs above and below 200 nt, to concentrate the miRNA input for
library preparation. Library preparation of microglia miRNAs was
optimized and performed as described below, except for the RT-
primer input, whichwas altered to a 1:5 dilution, and amplification PCR
was 25 cycles long.

Library preparation
The MGIEasy Small RNA Library Prep Kit (Item 940-000196-00) was
used for library preparation on the high-throughput MGI SP-960
sample prep system according to the manufacturer’s protocol. In
principle, this library preparation method works by ligating 3’- and 5’-
adapters to all RNAs in each sample. During reverse transcription (RT),
specific RT primers that bind to the adapters are used to generate
cDNA and introduce sample-specific barcodes. Amplification of this
cDNA is performed via a 21-cycled PCR. Size-selection of this PCR
product is performed viamagnetic beads (AMPureBeads XP, Beckman
Coulter). To focus on the small RNAs a size of around 110 bp was
selected, this was checked using an Agilent DNA 1000 Kit (Agilent
Technologies). The concentration of each sample was measured by a
QuBit 1x dsDNAHigh Sensitivity Assay (Thermo Fisher Scientific). Each
library in this diet study consisted of 16 samples, barcoded with the
following barcodes: 1–4, 13–16, and 25–32. All samples of one library
were pooled after concentrationmeasurement in an equimolar fashion
to reach a concentration of 4.56 ng µl-1 for each sample in each pooled
library. After circularization, the pooled libraries were sent for
sequencing.

Sequencing & data analysis
Samples were single-end sequenced on the BGISEQ500RS using the
High-throughput Sequencing Set (SE50) (Small RNA) as a service
provided by BGI, Hong Kong. We utilized miRMaster 2.054 with stan-
dard settings on the given datasets which performed an alignment
against the mouse genome (GRCm38) and a mapping against miRNAs
using miRBase55 (version 22.1) using Bowtie56 (version 1.2.3) with the
options “-m 100 —best —strata” to obtain the raw counts for miRNAs
and their isomiRs, for lncRNAs, piRNAs, rRNAs, scaRNAs, snoRNAs,
snRNAs and tRNAs. The miRMaster pipeline denotes any fragment as
either tRNAor lncRNA, even though it cannotdetect themat full length
as we are size selecting for miRNAs as our RNAs of interest57. Addi-
tionally, we gathered the alignment and mapping information that
were produced during the run. For further analysis, we worked with a
misclassification rate of 1. We normalized the raw counts with a rpmm-
normalization tobe able to ensure comparability between thedifferent
samples. Next, we filtered the samples and features. We kept only the
samples for which more than 2 million reads could be aligned to the
mouse genome. Feature filtering was performed by checking if for at
least 10% of the samples for at least one group the raw count exceeded
or was equal to 5. Subsequently, for the aging cohort, we obtained
844 sequenced samples and 1966 miRNAs (9139 lncRNAs, 30930
piRNAs, 356 rRNAs, 51 scaRNAs, 1542 snoRNAs, 1390 snRNAs and 408
tRNAs) from which we kept 828 samples and 1174 miRNAs (3424
lncRNAs, 605 piRNAs, 194 rRNAs, 27 scaRNAs, 672 snoRNAs,
705 snRNAs and 404 tRNAs). For the acute diet restriction (aDR) and
young mouse plasma injection in older mice study (YMP), we added a
further quality control step. If wewere left with three or fewer samples
per brain region after the sample filtering, we additionally discarded all
samples of this brain region. This resulted in 118 sequenced and 113
kept samples for the aDR study, and 68 out of 84 samples for the YMP
study. For both, wemapped 1966 features and obtained 1345 and 1382
features after filtering, respectively. Themicroglia dataset consisted of
8 samples, of which all samples and 419 features survived the filtering
using an adjusted threshold of 1.8million reads. All isomiR expressions
were also normalized by rpmm-normalization and included the same
samples as their corresponding expression tables and the isomiR
forms connected to these miRNAs. Therefore, we did not perform a
separate filtering for the isomiRs.We called a featuremost expressed if
its median value over all samples was the highest compared to the
othermiRNAs.Wedenoted a feature as expressed in a brain region if at
least 10% of the samples of that brain region had a raw count higher
than or equal to 5. Human data from ROSMAP29 was processed with
miRMaster 2.054 with default settings. We performed the same pre-
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processing as explained above up to the feature and samples filtering
where we changed the thresholds for the number of aligned reads to
10,000 and the rawcount value to 2what need to be fulfilled for 10%of
the samples for either the male or female samples. So, after filtering,
we obtained 203 samples and 280 miRNAs.

We use all features for the Uniform Manifold Approximation and
Projection (UMAP) calculation, which was done according to McInnes
et al.58 and was colored by information from the metadata. The para-
meters were selected visually from the results of a pool of linear
combinations of default parameters. We prepared the expression
matrix for the calculation by standardizing it (z-scoring). As para-
meters, we chose 0.25 as the minimum distance, as a metric we used
the Euclidean, and we started with a random initialization. For the
young samples, we used 5 as the size of the local neighborhood, and
for the samples from all ages, we used a local neighborhood of 10.

We calculated per brain region, the expressed features (raw count
greater than or equal to 5 for at least 10% of the brain region’s samples)
for each of the seven RNA classes. From those, we determine relative
values to the total number of raw counts of all expressed features from
all RNA classes of each brain region individually. We display these
values in a stacked bar plot per brain region, colored by the RNA
classes. Due to the different raw count distributions of theRNAclasses,
the shareofmiRNAbecomes lessprominent compared to themapping
results. By the same approach, we obtain relative values of the RNA
classes per brain region on an age-resolved level to gain an overview of
the raw count composition over time. Per brain region, we show the
relative data points as a scatter plot for each age, colored again by the
RNA classes. A third-degree polynomial fitted per RNA class to the
respective data points indicates the age-trend of the raw count com-
position. Using the rpmm-normalized and filtered expression of each
RNA class, we calculate the correlations with age of each feature per
brain region using Spearman’s rank correlation coefficients. Showing
the resulting correlation values in a ridgeline plot (like a histogram)
joint over the brain regions per RNA class illustrates inwhichRNA class
we obtain the most positive and negative correlations with age.

Box plots for features per brain region resolved by age were cal-
culated. The box borders correspond to the 25th (Q1) and 75th Per-
centile (Q3), the middle line to the median and whiskers to the
minimum (maximum) of the minimum value or Q1 � 1:5 � IQR (max-
imum value or the Q3 + 1:5 � IQR), where IQR determines the inter-
quartile range. Solid grey dots in the plot indicate the potential outliers
in the data. We fitted a polynomial regression line of degree 2 to the
data. For male and female separately, we calculated the Spearman’s
rank correlation coefficients for each feature with the age per brain
region. The corresponding p-values were obtained using a two-sided
Spearman’s rank correlation test of the null hypothesis that the true
correlation is 0. The test statistic is Spearman’s ρ, and the p-values are
computed using an exact permutation test called algorithmAS 89. The
Benjamini-Hochberg procedure is used for the adjustment of multiple
testing.

To quantify the difference of a brain region to the average brain,
we used the coefficient of variation given by the ratio of standard
deviation and mean value per feature. We selected the 50 miRNAs
yielding the highest value. To differentiate features from the brain
average for a particularbrain region,we calculatedper brain region the
median expressions and standardized each feature (z-score). Thus, we
called a feature different from the brain average for a specific brain
region if the absolute z-scorewashigher thanor equal to0.5. For the so
obtained binarized table, we applied a hierarchical clustering using
complete linkage to cluster the binarized expression profiles into four
clusters.

Next, for the analysis regarding the sex comparison, Male vs
Female, we discarded all samples from the brain region pons due to a
lack of samples for older ages in the female case. All Principal Variance
Component Analysis59 (PVCA) in this publication were processed with

properties given by the metadata, all of which could be seen in the
PVCA results presented as bar plots, together with two-way interaction
terms (containing all combinations of the properties). For clarity, only
two-way interaction terms with a non-vanishing observed variance
were shown. The residual contains the observed variance that was not
covered by the usedmetadata.While a PVCA is normally used to reveal
batch effects within the data, we used it to identify properties sug-
gesting a high impact in the dataset, guiding a further analysis.

In a second investigation, we applied the PVCA to every brain
region individually for the properties of age and sex. We applied a DE
analysis per brain region for the sex comparison, Male vs Female. We
calculated the fold changes for each feature by dividing the geometric
median over all male samples by the geometricmedian over all female
samples in every brain region. For any further analysis, we removed the
features exhibiting no deregulation (fold change of 1). To obtain the
adjusted p-values we performed a two-sidedWelch’s t-test, which is an
adaption of Student’s t-test (for simplicity, we always write Student’s t-
test instead of Welch’s t-test), with the corresponding samples and
adjusted the obtained p-values using the Benjamini-Hochberg proce-
dure. We called a feature significantly up- or downregulated if the
adjusted p-value was smaller than 0.05 and in case of an upregulation
(down-) if the fold change was greater than or equal to 1.5 (smaller or
equal than 1/1.5). We performed a gene set enrichment analysis for all
features. Therefore, we ranked the features with a positive (negative)
log2-transformed fold change increasingly (decreasingly) according to
their significance (p-value). Subsequently, the enrichment analysis
(Gene set enrichment analysis, GSEA) was performed using miEAA
202360 with the combined list of ranked features. P-values were cal-
culated using an exact dynamic programming algorithm based on the
null distribution of enrichment scores, avoiding the variability of ran-
dom permutation tests, and were adjusted for multiple testing using
the Benjamini–Hochberg procedure, as detailed in Backes et al.61 and
Keller et al.62.

We called a feature significantly positively or negatively
correlated with the age if the adjusted p-value was smaller than
0.05 and positively (negatively) correlated if the correlation value
was greater than 0.5 (smaller than −0.5). Additionally, we denoted
a feature as unique if it exhibited a significantly positive or sig-
nificantly negative correlation within only one brain region. If this
held for more than one brain region in the same direction, we
called it multiple. Subsequently, we determined the deregulated
features per brain region by calculating the fold changes analog
to above for the comparisons of every older age (12 m, 15 m, 18m,
21 m and in the case of male add. 26m, 28m) versus the control
age of 3 m again for male and female separately. Therefore, we
used the medians of each group. Again, we determined the p-
values with the Student’s t-test and adjusted them by using the
Benjamini-Hochberg procedure. Analogously to the above for the
correlation approach, we introduced the property unique or
multiple for features that were significantly up- or downregulated
in at least one age comparison within a brain region. If this fea-
ture were in only one brain region significantly deregulated, we
called it unique, and for more than one, we called it multiple. To
close the side-by-side analysis, we combined the male and female
data back to one dataset for which we calculated the unique and
multiple features for the two approaches as explained above. We
call a feature a candidate if it was significantly positively or
negatively correlated with age in at least one brain region or
significantly up- or downregulated in at least one age comparison
for a brain region. If the direction changed between the brain
regions, the features were just counted as one candidate.

The humanmiRNAdata fromROSMAP29 was binned for the age of
death in threehalf-open intervals [71,81), [81, 92), and [92, 103) in years.
Afterwards, we perform a DE analysis between the oldest and the
youngest group using the Student’s t-test and Benjamini-Hochberg to
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adjust the p-values for multiple testing. Again, the fold changes were
calculated with the geometric means. Additionally, we determined
Cohen’s d for every feature to obtain a measure for the effect size63.

Madrer and Soreq32 introduced a set ofmiRNAs that are predicted
to target cholinergic genes. We intersect this list of miRNAs with the
miRNAs of our dataset found tobe significantly positively or negatively
correlated with age individually for each brain region.

For each significantly age-correlated miRNA, we investigated a
10 kb range on the same and the opposite strand and determined
significantly age-correlatedmiRNAs. Hence, we obtained a tuple of the
number of feature candidates on the same and the opposite strand.
Summing up the occurrences of these tuples for each significantly age-
correlated miRNA within each brain region yields a global overview.

Per brain region, we conduct a gene set enrichment analysis for all
features. Therefore, we ranked the features with a positive (negative)
Spearman’s rank correlation coefficient with age increasingly
(decreasingly) according to their significance (p-value of the correla-
tion). We usedmiEAA 202360 with the combined list of ranked features
to obtain the GSEA results as explained above.

Using a c-means clustering64, we clustered the standardized tra-
jectories given by the miRNAs resolved in the brain regions (total: 15
brain regions × 1174 features = 17,610 trajectories).We determined the
number of used clusters by visually inspecting the minimum centroid
measurements for all cluster numbers from 2 to 200. From the
method, we obtained a percentage value for each trajectory and each
cluster, containing the probability that the trajectory belongs to this
cluster. Note, cluster 52 contained only one trajectory; hence, we
excluded it from further evaluations. Using this measure, we assigned
each trajectory to the cluster where it exhibits the highestmembership
and afterwards discarded the ones with a membership lower than 15%.
Therefore, each cluster with its specific aging trajectory has a unique
composition of tuples of miRNAs and brain regions. Each tuple only
occurs once across all clusters.We called a cluster brain region specific
if more or equal than 30% of the elements in this cluster belonged to
only one brain region, and feature specific if 4 ormore occurrences of
one feature could be found in the cluster.

miRTargetLink 2.043 provided 82 target genes for the feature
mmu-miR-155-5p, considering all functional ones. Using the gene data
from Hahn et al.3, we obtained for 66 of the target genes expression
values from 809 samples matching to the miRNA samples. We calcu-
lated the Spearman’s rank correlation coefficients between the target
genes and the miRNA 155-5p for every brain region and the corre-
sponding adjusted p-values with the Benjamini-Hochberg procedure.
For this part of the analysis, we called a gene significantly negatively
correlated if the correlation value was smaller than or equal to 0.3 and
the adjusted p-value was smaller than 0.05. Further, we only investi-
gated target genes, and their expression values resolved in the ages for
only the brain region for which they were significantly negatively
correlated with mmu-miR-155-5p. In the mTOR pathway are 67 genes
included45. For 63 genes, we calculated the Spearman’s rank correla-
tion coefficient using the mRNA data presented by Hahn et al. 3. As an
adjustment method, we used the Benjamini-Hochberg procedure.
Analog to above, we calculated the Spearman’s rank correlation coef-
ficients for the miRNA mmu-miR-155-5p and 66 from the 80 func-
tionally validated target genes introducedbyHart et al.44 for eachbrain
region.We consider genes forwhich at least one brain region exhibits a
significant (adjusted p-value < 0.05, Benjamini-Hochberg procedure)
correlation value below -0.5.

For data introduced in Keele et al.46 and published via their web
interface Aging B6 Proteomics, we show the intensities for MEF2A in
thehippocampus asboxplots. Theboxplots are built like abovedue to
the low number of samples per box, we added black circles visualizing
the exact data points within the plots.

The topmost expressed isomiRs were calculated analog to the
most expressed miRNAs. The brain region clustering for the

standardized isomiR expression data was achieved by hierarchical
clustering using complete linkage. The features were ranked based on
their expression level.

A visualization of the dataset fromHoye et al. 38 was implemented
accordingly to previous publications39. The top miRNAs in the micro-
glia dataset were obtained analog to above. The clustering of the fea-
tures was done by hierarchical clustering using complete linkage.
Analogously to the aging cohort, we calculated the top features based
on the coefficient of variation and clustered the standardized expres-
sion values by samples and features (hierarchical clustering using
complete linkage). A DE analysis within the microglia data was done
analog as before for the comparison Old versus Young. We selected 5
upregulated (greater than or equal to 1.5) and 5 downregulated fea-
tures (smaller than or equal to 1/1.5) by their adjusted significance for
further analysis. For the aDR and YMP dataset, we obtained a DE ana-
lysis analog to the above for the comparison Treatment versus Control
and old mice with young plasma versus PBS for all samples and split in
the different brain regions. We calculated violin plots for features per
brain region resolvedby treatment type. The violin displays thedensity
of the data points. Grey dots in the plot represent all data points used
for this violin.

The analysis and figures were produced via snakemake
pipelines65 (version 7.18.2) using R (version 4.2.2) and Python
(version 3.11.0). Data analysis was done using the package data.-
table (version 1.14.6), ggrepel (version 0.9.2), reshape2 (version
1.4.4), stringr (version 1.4.1), mfuzz66 (version 2.58.0) and
DESeq267 (version 1.38.0). The UMAP calculation in Python was
implemented using the package umap-learn58 (version 0.3.10),
numpy (version 1.19), and pandas (version 0.24.2). The heatmaps
were created with ComplexHeatmap68 (version 2.14.0) and circlize
(version 0.4.16); all other figures with ggplot2 (version 3.3),
gridtext (version 0.1.5), and fontawesome (version 0.4.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the NCBI’s Gene Expression Omnibus database under accession codes
GSE282205 and GSE282207 for the brain aging, invention studies and
the microglia data, respectively. We built a web service that offers
interactive access to processed bulk-sequencing data from the brain
aging cohort, as well as studies on dietary restriction, young plasma
injection, and microglia. The web service is accessible via https://ccb-
compute2.cs.uni-saarland.de/brainmirmap. Human ROSMAP data is
available via Synapse69. Source data are provided with this paper.

Code availability
The code supporting the analysis within this paper is available at
GitHub70.

References
1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer,

G. Hallmarks of aging: An expanding universe. Cell 186,
243–278 (2023).

2. Brito, D. V. C. et al. Assessing cognitive decline in the aging brain:
lessons from rodent and human studies. NPJ Aging 9, 23 (2023).

3. Hahn, O. et al. Atlas of the aging mouse brain reveals white matter
as vulnerable foci. Cell 186, 4117–4133 e4122 (2023).

4. Feng, X. et al. Brain regions vulnerable and resistant to aging
without Alzheimer’s disease. PLoS One 15, e0234255 (2020).

5. Perez, R. F. et al. A multiomic atlas of the aging hippocampus
reveals molecular changes in response to environmental enrich-
ment. Nat. Commun. 15, 5829 (2024).

Article https://doi.org/10.1038/s41467-025-59860-6

Nature Communications |         (2025) 16:4588 15

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE282205
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE282207
https://ccb-compute2.cs.uni-saarland.de/brainmirmap
https://ccb-compute2.cs.uni-saarland.de/brainmirmap
www.nature.com/naturecommunications


6. Ambros, V. microRNAs: tiny regulators with great potential. Cell
107, 823–826 (2001).

7. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and
function. Cell 116, 281–297 (2004).

8. Inukai, S. & Slack, F. MicroRNAs and the genetic network in aging. J.
Mol. Biol. 425, 3601–3608 (2013).

9. Diener, C., Keller, A. & Meese, E. Emerging concepts of miRNA
therapeutics: fromcells to clinic. TrendsGenet.38, 613–626 (2022).

10. Yin, Z. et al. Identification of a protective microglial state mediated
by miR-155 and interferon-gamma signaling in a mouse model of
Alzheimer’s disease. Nat. Neurosci. 26, 1196–1207 (2023).

11. Swahari, V. et al. miR-29 is an important driver of aging-related
phenotypes. Commun. Biol. 7, 1055 (2024).

12. Zhang, Y. et al. Hypothalamic stem cells control ageing speed
partly through exosomal miRNAs. Nature 548, 52–57 (2017).

13. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease.
Nat. Rev. Neurol. 15, 565–581 (2019).

14. Hebert, S. S. et al. MicroRNA regulation of Alzheimer’s Amyloid
precursor protein expression. Neurobiol. Dis. 33, 422–428 (2009).

15. Lau, P. et al. Alteration of the microRNA network during the pro-
gression of Alzheimer’s disease. EMBO Mol. Med. 5,
1613–1634 (2013).

16. Shaheen, N. et al. MicroRNAs regulation in Parkinson’s disease, and
their potential role as diagnostic and therapeutic targets. NPJ Par-
kinsons Dis. 10, 186 (2024).

17. Lukiw, W. J., Andreeva, T. V., Grigorenko, A. P. & Rogaev, E. I.
Studying micro RNA function and dysfunction in Alzheimer’s dis-
ease. Front Genet 3, 327 (2012).

18. Juhila, J. et al. MicroRNA expression profiling reveals miRNA
families regulating specific biological pathways in mouse frontal
cortex and hippocampus. PLoS One 6, e21495 (2011).

19. Bak, M. et al. MicroRNA expression in the adult mouse central ner-
vous system. RNA 14, 432–444 (2008).

20. Inukai, S., de Lencastre, A., Turner, M. & Slack, F. Novel microRNAs
differentially expressed during aging in the mouse brain. PLoS One
7, e40028 (2012).

21. Wagner, V., Meese, E. & Keller, A. The intricacies of isomiRs: from
classification to clinical relevance. Trends Genet. 40,
784–796 (2024).

22. Beclin, C. et al. miR-200 family controls late steps of postnatal
forebrain neurogenesis via Zeb2 inhibition. Sci. Rep. 6,
35729 (2016).

23. Varendi, K., Kumar, A., Harma, M. A. & Andressoo, J. O. miR-1, miR-
10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol.
Life Sci. 71, 4443–4456 (2014).

24. Wong, J. E., Cao, J., Dorris, D. M. & Meitzen, J. Genetic sex and the
volumes of the caudate-putamen, nucleus accumbens core and
shell: original data and a review. Brain Struct. Funct. 221,
4257–4267 (2016).

25. Dajas-Bailador, F. et al. microRNA-9 regulates axon extension and
branching by targeting Map1b in mouse cortical neurons. Nat.
Neurosci. 15, 697–699 (2012).

26. Wu, J. et al. Downregulation of microRNA-9-5p promotes synaptic
remodeling in the chronic phase after traumatic brain injury). Cell
Death Dis. 12, 9 (2021).

27. Sim, S. E. et al. The brain-enriched MicroRNA miR-9-3p regulates
synaptic plasticity and memory. J. Neurosci. 36, 8641–8652 (2016).

28. DankaMohammed, C. P., Park, J. S., Nam, H. G. & Kim, K.MicroRNAs
in brain aging. Mech. Ageing Dev. 168, 3–9 (2017).

29. Bennett, D. A. et al. Religious orders study and rush memory and
aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

30. Laubach, M., Amarante, L. M., Swanson, K. & White, S. R. What, If
Anything, Is Rodent Prefrontal Cortex? eNeuro5, https://doi.org/10.
1523/ENEURO.0315-18.2018 (2018).

31. Wagner, V. et al. Characterizing expression changes in noncoding
RNAs during aging and heterochronic parabiosis across mouse
tissues. Nat. Biotechnol. 42, 109–118 (2024).

32. Madrer, N. & Soreq, H. Cholino-ncRNAsmodulate sex-specific- and
age-related acetylcholine signals. FEBS Lett. 594, 2185–2198
(2020).

33. Baruch, K. et al. Aging. Aging-induced type I interferon response at
the choroid plexus negatively affects brain function. Science 346,
89–93 (2014).

34. Yang, Z., Zhong, L., Zhong, S., Xian, R. & Yuan, B. miR-203 protects
microglia mediated brain injury by regulating inflammatory
responses via feedback to MyD88 in ischemia. Mol. Immunol. 65,
293–301 (2015).

35. Li, S. et al. miR-203, fine-tunning neuroinflammation by juggling
different components of NF-kappaB signaling. J. Neuroinflamm. 19,
84 (2022).

36. Zhao, L. et al. Inhibition ofmicroRNA-203protects against traumatic
brain injury induced neural damages via suppressing neuronal
apoptosis and dementia-related molecues. Physiol. Behav. 228,
113190 (2021).

37. Testa, U., Pelosi, E., Castelli, G. & Labbaye, C. miR-146 and miR-
155: Two key modulators of immune response and tumor
development. Noncoding RNA 3, https://doi.org/10.3390/
ncrna3030022 (2017).

38. Hoye,M. L. et al.MicroRNAprofiling revealsmarker ofmotor neuron
disease in ALS models. J. Neurosci. 37, 5574–5586 (2017).

39. Pomper, N., Liu, Y., Hoye, M. L., Dougherty, J. D. & Miller, T. M. CNS
microRNA profiles: a database for cell type enriched microRNA
expression across the mouse central nervous system. Sci. Rep. 10,
4921 (2020).

40. Walsh, A. D. et al. Mouse microglia express unique miRNA-mRNA
networks to facilitate age-specific functions in the developing
central nervous system. Commun. Biol. 6, 555 (2023).

41. Wahl, D. et al. Comparing the effects of low-protein and high-
carbohydrate diets and caloric restriction on brain aging in mice.
Cell Rep. 25, 2234–2243.e2236 (2018).

42. Villeda, S. A. et al. Youngblood reverses age-related impairments in
cognitive function and synaptic plasticity in mice. Nat. Med 20,
659–663 (2014).

43. Kern, F. et al. miRTargetLink 2.0-interactive miRNA target gene and
target pathway networks. Nucleic Acids Res. 49, W409–W416
(2021).

44. Hart, M. et al. Expanding the immune-related targetome ofmiR-155-
5p by integrating time-resolved RNA patterns into miRNA target
prediction. RNA Biol. 22, 1–9 (2025).

45. Schaefer, C. F. et al. PID: the pathway interaction database. Nucleic
Acids Res. 37, D674–D679 (2009).

46. Keele, G. R. et al. Global and tissue-specific aging effects onmurine
proteomes. Cell Rep. 42, 112715 (2023).

47. Chakraborty, C., Sharma, A. R., Sharma, G., Bhattacharya, M. & Lee,
S. S. MicroRNAs: Possible regulatory molecular switch controlling
the BBB microenvironment. Mol. Ther. Nucleic Acids 19,
933–936 (2020).

48. Thompson, J. W. et al. MicroRNA-155 plays selective cell-intrinsic
roles in brain-infiltrating immune cell populations during neuroin-
flammation. J. Immunol. 210, 926–934 (2023).

49. Cardoso, A. L., Guedes, J. R., Pereira de Almeida, L. & Pedroso de
Lima, M. C. miR-155 modulates microglia-mediated immune
response by down-regulating SOCS-1 and promoting cytokine and
nitric oxide production. Immunology 135, 73–88 (2012).

50. Guo, Y. et al. MicroRNAs in Microglia: How do MicroRNAs affect
activation, inflammation, polarization of microglia and mediate the
interaction between Microglia and Glioma? Front Mol. Neurosci. 12,
125 (2019).

Article https://doi.org/10.1038/s41467-025-59860-6

Nature Communications |         (2025) 16:4588 16

https://doi.org/10.1523/ENEURO.0315-18.2018
https://doi.org/10.1523/ENEURO.0315-18.2018
https://doi.org/10.3390/ncrna3030022
https://doi.org/10.3390/ncrna3030022
www.nature.com/naturecommunications


51. Aloi,M. S. et al. Microglia specificdeletion ofmiR-155 in Alzheimer’s
diseasemousemodels reduces amyloid-beta pathologybut causes
hyperexcitability and seizures. J. Neuroinflamm. 20, 60 (2023).

52. Trontti, K., Vaananen, J., Sipila, T., Greco, D. & Hovatta, I. Strong
conservation of inbred mouse strain microRNA loci but broad var-
iation in brain microRNAs due to RNA editing and isomiR expres-
sion. RNA 24, 643–655 (2018).

53. Rayaprolu, S. et al. Flow-cytometricmicroglial sorting coupledwith
quantitative proteomics identifies moesin as a highly-abundant
microglial protein with relevance to Alzheimer's disease. Mol Neu-
rodegener. 15, 28 (2020).

54. Fehlmann, T. et al. miRMaster 2.0: multi-species non-coding RNA
sequencing analyses at scale. Nucleic Acids Res. 49,
W397–W408 (2021).

55. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from
microRNA sequences to function. Nucleic Acids Res. 47,
D155–D162 (2019).

56. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol. 10, https://doi.org/10.1186/gb-
2009-10-3-r25 (2009).

57. Fehlmann, T. et al. A high-resolution map of the human small non-
coding transcriptome. Bioinformatics 34, 1621–1628 (2018).

58. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv pre-
print arXiv:1802.03426 (2018).

59. Bushel, P. PVCA: Principal Variance Component Analysis (PVCA).
https://doi.org/10.18129/B9.bioc.pvca (2024).

60. Aparicio-Puerta, E. et al. miEAA 2023: updates, new functional
microRNA sets and improved enrichment visualizations. Nucleic
Acids Res. 51, W319–W325 (2023).

61. Backes, C., Khaleeq, Q. T., Meese, E. & Keller, A. miEAA: microRNA
enrichment analysis and annotation. Nucleic Acids Res. 44,
W110–W116 (2016).

62. Keller, A., Backes, C. & Lenhof, H. P. Computation of significance
scores of unweighted Gene Set Enrichment Analyses. BMC Bioin-
forma. 8, 290 (2007).

63. Cohen, J. Statistical power analysis for the behavioral sciences.
Routledge 2, 567 (1988).

64. Futschik, M. E. & Carlisle, B. Noise-robust soft clustering of gene
expression time-course data. J. Bioinform. Comput. Biol. 3,
965–988 (2005).

65. Mölder, F. et al. Sustainable data analysis with Snakemake.
F1000Research 10, https://doi.org/10.12688/f1000research.
29032.2 (2021).

66. Kumar, L. & M, E. F. Mfuzz: a software package for soft clustering of
microarray data. Bioinformation 2, 5–7 (2007).

67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
changeanddispersion for RNA-seqdatawithDESeq2.GenomeBiol.
15, 550 (2014).

68. Gu, Z. Complex heatmap visualization. Imeta 1, e43 (2022).
69. Center, R. A. S. D. https://doi.org/10.7303/syn3219045

(Synapse, 2025).
70. Engel, A. & Keller, A. A spatio-temporal brain miRNA expression

atlas identifies sex-independent age-related microglial driven miR-
155-5p increase https://doi.org/10.5281/zenodo.15211021
(GitHub, 2025).

Acknowledgements
We thank all members of the Wyss-Coray and Meese lab, as well as all
members of the Keller lab, for feedback and support. This study is

funded by the Saarland University (A.K.), the DAAD (V.W.), NIH Pathway
to Independence Award 1K99AG088304-01 (I.H.G), AHA-Allen Brain
Health and Cognitive Impairment Cross-Network Collaborative Grants
(23BHCICG1188316; N.L.), and the M.J. Fox Foundation (MJFF-021418;
A.K. & T.W-C.). Computational resources used within this study were
financed through the DFG project 469073465 (A.K.). N.L. is a MAC3
Dementia andAgeing Fellow supportedbyMAC3 Impact Philanthropies.
Special thanks to Phillip Gross (Georgetown University Medical Center)
and RubenGarciaMartin (Centro Nacional de Biotecnología CSIC (CNB),
Madrid) for their support.

Author contributions
Conceptualization: A.K., T.W-C., O.H., V.W.; Methodology: N.L., V.W.; in-
vivo: microglia experiments: N.L., I.G., A.S., V.W.; Sample collection:
O.H., A.F., M.A.; Library Preparation: N.L., A.B., V.W.; Software: A.E.;
Resources: O.H., T.W-C.; Data Curation: A.E., V.W.; Writing – Original
Draft: A.E., V.W.; Writing – review & Editing: O.H., U.F., A.K., T.W-C.;
Visualization: A.E., A.K., V.W.; Supervision: E.M., A.K., T.W-C.; Funding
Acquisition: A.K., T.W-C., E.M.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-59860-6.

Correspondence and requests for materials should be addressed to
Andreas Keller.

Peer review informationNatureCommunications thanksXavier Bofill De
Ros, who co-reviewed with Zhenyi Hong and the other anonymous
reviewer(s) for their contribution to the peer review of this work. A peer
review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-59860-6

Nature Communications |         (2025) 16:4588 17

https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.18129/B9.bioc.pvca
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.7303/syn3219045
https://doi.org/10.5281/zenodo.15211021
https://doi.org/10.1038/s41467-025-59860-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase
	Results
	Brain region-specific miRNA expression patterns
	Sex as a factor for miRNA expression during aging expression patterns
	Sex-specific miRNA expression changes during aging
	Sex independent miRNA expression changes during aging
	Region-specific cluster organization of aging miRNA trajectories
	Microglial age-driven miRNA expression changes
	MiR-155-5p as sex independent cross-region aging miRNA

	Discussion
	Methods
	Samples
	Aging interventions
	Microglia isolation
	Library preparation
	Sequencing & data analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




