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Abstract: Previous research has shown individual differences in (a) time on task (ToT)
and (b) the degree of structuredness in processing figural matrices. The goal of this article
was to integrate these two lines of research by analyzing log files from a computer-based
assessment (N = 198) to examine the role of three ToT sub-components: onset times (before
engaging with the first matrix rule), interrule times (between the rules), and intrarule
times (within a single rule). We tested three clues that support the assumptions that the
interrule times reflect the cognitive construction of a rule-specific solution plan, while
the onset times represent a global orientation reaction, and the intrarule times capture
the behavioral execution of the plan: (1) based on the interrule times, we identified two
clusters of participants, of which one processed the matrices in a more structured fashion;
(2) only the accelerating effect of the interrule times across the test was associated with
test performance, indicating higher reasoning saturation; (3) a mediated path analysis
revealed that faster interrule times propagate in faster intrarule times and more structured
processing of matrix rules, resulting in better performance. Confirming internal validity,
the three log file times accounted for an incremental 24.30% of test performance variance
beyond the traditional ToT. Confirming external validity, two clusters were also identified
based on the interrule times from the first test and performance scores from a second
matrix test.

Keywords: figural matrices; log files; response time; time on task; item processing;
goal management

1. Introduction

Figural matrices are a widely used and economical method to assess reasoning ability
(e.g., Marshalek et al. 1983; Raven et al. 1989). Previous research has shown that participants
differ in the time spent on figural matrices (e.g., Becker et al. 2016; Goldhammer et al. 2015;
Krémer et al. 2023) and the degree of structuredness when solving figural matrix tasks (e.g.,
Carpenter et al. 1990; Krieger et al. 2019; Weber et al. 2023). This article aims to integrate
these two research strands by (a) determining finer response-time components of figural
matrices processing, (b) examining to which extent these components provide information
about the processing strategy, and (c) investigating their role in test performance.

1.1. Figural Matrices in Intelligence Diagnostics

Figural matrices typically consist of a 3 x 3 grid of cells (e.g., Formann et al. 2011;
Koch et al. 2022; Pallentin et al. 2023) containing geometrical symbols (e.g., lines, circles,
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squares). The arrangement of these symbols follows certain logical rules (e.g., addition:
symbols in the first and second cell sum up in the third cell; intersection: only the symbols
that appear in both the first and second cell are contained in the third cell). The last cell of
the third row is empty, and the participants’ task is to complete this empty cell based on
the rules in the rest of the matrix. To prevent participants from guessing the correct answer
among distractors, distractor-free response formats have been invented: while some of
these approaches require drawing the solution either manually (Mitchum and Kelley 2010)
or by clicking pixels of the empty matrix cell (Piskernik 2013; cf. Breuer et al. 2020), several
so-called construction-based matrix tests have been developed (e.g., Becker and Spinath
2014) that ask participants to compose the solution based on a construction-kit containing
all possible symbols (Figure 1). To understand why figural matrices serve as such a strong
indicator of reasoning ability, research particularly investigated the underlying processes
of solving these kinds of items. Two lines of research have taken distinct explanatory
approaches: One focuses on the temporal characteristics of matrices processing, while the
other one examines whether participants vary in structuredness processing matrices.
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Figure 1. The figure shows a typical construction-based figural matrix. The item consists of an item
stem (upper section) and a construction kit (lower section) to complete the item stem. The item
row-wise contains three logical rules: addition (bent lines), subtraction (circles), and intersection
(squares). The symbols that must be selected are highlighted in blue. Please note that this example is
a modified item of the DESIGMA (Becker and Spinath 2014) to prevent leakage of the original items.
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1.2. Temporal Characteristics of Matrices Processing

Research has shown that participants differ in the amount of time they invest in
solving an item. The total time that participants spend on an item is referred to as Time
on Task (ToT). The ToT effect describes the change in the probability of solving an item as
a function of the ToT. Goldhammer et al. (2015) found that a linear association between
ToT and performance comes up short for figural matrices. Instead, they suggest that it
is reasonable to differentiate the ToT effect depending on participants’ cognitive ability.
Specifically, they found a negative ToT effect (i.e., the faster the item processing, the higher
the performance) for more able participants, whereas less able participants exhibited a
diminishing or slightly positive effect. In a comprehensive analysis, Kramer et al. (2023)
replicated this pattern in nine of ten examined samples, revealing a stronger negative ToT
effect for more able compared to less able participants.

Becker et al. (2016) noted that the findings of Goldhammer et al. (2015) were based
on a sample with an above-average ability (i.e., only high school and university students).
Similarly, Kramer et al. (2023) analyzed samples of applicants for the admission tests of
German medical schools, who reported excellent school grades. In contrast, Becker et al.
(2016) examined a more heterogeneous sample with diverse educational backgrounds. Their
results confirmed the negative ToT effect for more able participants and also showed that
this effect does not only diminish but becomes positive for less able participants. Overall,
the relationship between ToT and performance appears to be quadratic. Goldhammer
et al. (2014, 2015) provide a potential theoretical framework to explain this pattern. They
propose a dual-processing theory of reaction times in a figural matrix: When a person’s
ability exceeds the cognitive demands of a task, they process the task “automatically” (i.e.,
requiring sparse cognitive control, attention, and effort resulting in shorter ToT). In contrast,
when a person’s ability falls short of the demands of a task, they must draw on cognitive
control resulting in longer ToT.

However, while automatic processing appears plausible for learned information stored
in the (long-term) memory (as originally proposed by Schneider and Shiffrin 1977) its ap-
plication to figural matrix tasks remains challenging. Figural matrices require participants
to identify complex relations between symbols (e.g., Robertson 2010) that occur across
multiple matrices in varying combinations and positions with different underlying logical
rules. Although it is conceivable that the logical principles (e.g., addition or intersection)
become internalized over time, the specific content to which they must be applied varies
from item to item, and the solution is therefore not immediately apparent. In other words,
each matrix represents a novel problem making it (almost) impossible to store them in
memory. Hence, it is reasonable to consider further sources of interindividual differences
in matrix processing to account for the reported response time patterns.

1.3. Structuredness in Matrix Processing

Besides temporal differences, it has been shown that participants vary in structured-
ness when processing figural matrices. For instance, beyond simple rule induction Carpenter
et al. (1990) proposed goal management as a key factor in solving figural matrices that de-
composes a global goal (i.e., a figural matrix) into partial goals (i.e., the individual matrix
rules). According to their two-process theory, goal management and rule induction are
intertwined in a multiplicative matter, implicating that a failure in either process renders
the item unsolvable (but see Preufs and Preckel 2025 who recently found evidence for a
rather additive relationship, where each matrix rule appears to contribute independently
to matrix difficulty). While, regarding goal management, the maintenance of the partial
solutions does not seem to be the limiting factor of figural matrix performance, the ability



J. Intell. 2025, 13, 63

40f17

to separate the global goal and to construct solutions for the partial goals was found to be
crucial (Hayes et al. 2011; Krieger et al. 2019; Loesche et al. 2015).

Beyond the elimination of the guessing probability, construction-based matrix tests
hold the potential for a deeper insight into item processing. While traditional distractor-
based matrix tests only assess the response option selected by the participant (resulting in
only one value per item), construction-based tests make it possible to track the sequence
of symbols clicked within log files. From these fine-grained log files, it might be possible
to infer the degree of structuredness in item processing. Chen et al. (2024) recently stated
that the analysis of log files is becoming increasingly popular in contemporary research
(see also Nicolay et al. 2023, who used log files to code individual strategies for complex
problem-solving). For instance, log files were used to emphasize that participants with a
higher reasoning ability process figural matrices in a more structured way (Weber et al.
2023). To this end, based on the log files of a construction-based matrix test it was computed
how many times participants jumped between the matrix rules. A rule jump was defined
as a click on a symbol of a specific rule (e.g., addition), followed by a click on a symbol of
another rule (e.g., subtraction). The correlation between a rule jump score (executed rule
jumps minus the rule jumps necessary for the correct solution) and the test performance
was strongly negative.

1.4. Confluence of Temporal Characteristics and Structuredness in Matrix Processing

Beyond the analysis of rule jumping, log files make it possible to gain insight into
the temporal characteristics of item processing. It is plausible that differences in the
structuredness of item processing manifest in processing times. Log files can be used to go
beyond the traditional global ToT by separating it into several components which might
have different meanings for item processing and might allow inferences regarding the
item processing strategy. In general, figural matrix processing can be separated into three
temporal intervals which we call log file times (LFTs): (1) The time that elapses before
participants start interacting with the first matrix rule (onset time); (2) The time that elapses
between terminating one rule and beginning to process the next one (interrule time). For
instance, if a matrix contains two rules (e.g., addition and subtraction) the interrule time
refers to the interval between the clicks on the last symbol of the addition rule and the
first symbol of the subtraction rule; (3) The time that elapses while processing a single rule
(intrarule time), i.e., the interval between the click on a symbol of a specific rule and on a
second symbol of the same rule. If an item consists of more than two rules and a rule of
more than two symbols, several interrule and intrarule times per item are possible.

The aim of this research is to join two so far distinct lines of research by examining
temporal characteristics of matrix processing in order to obtain a finer-grained insight
into the processes involved. Previous research has found that a more structured item
processing in terms of goal management is associated with higher performance (Hayes
et al. 2011; Weber et al. 2023). Goal separation can be performed on two levels for figural
matrices: (1) On the one hand, the separation of the total matrix into the symbol groups
that are associated with different rules. This separation should be made immediately
at the beginning of the item presentation and require only a few cognitive resources, as
the symbol groups are easy to distinguish. Regarding the LFTs, the onset times (i.e., the
times before the mental construction of the solution to the first rule) might be the temporal
counterpart to this separation. (2) On the other hand, a separation can be performed
regarding a specific rule by separating the corresponding symbol group into the symbols
and identifying the underlying logical connections. The temporal counterpart to this
might be the interrule times, in which a rule-specific mental plan for the next rule might
be constructed. Finally, the intrarule times are likely to be the temporal counterpart
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to the execution of the constructed plan. Hence, we assume the LFTs to reflect three
processes varying in demands on participants’ cognitive resources: The interrule times
are hypothesized to reflect the core cognitive component of matrix processing with high
cognitive demands. The onset times might reflect a cognitive orientation component with
lower cognitive demands. And, the intrarule times might reflect a behavioral component
of matrix processing with small cognitive demands.

1.5. Research Questions and Hypotheses

To test these assumptions, we first asked whether the LFTs can provide a deeper
insight into the item processing strategy (Research Question 1; RQ 1). Therefore, after
a replication hypothesis on the ToT effect (H1), we tested three hypotheses to find three
clues that the interrule times reflect the core cognitive component of matrices processing
(H2-H4):

H1. We assumed to confirm the ToT effect for figural matrices i.e., to find a quadratic association
between the performance and the ToT. Participants with a medium performance were expected to
spend most time on the items while participants with low and high performance were expected to
spend less time.

H2. We expected to find two clusters of participants with different processing strategies based on
the interrule times and test performance: one cluster that applies rule-specific goal management
(structured cluster) and one cluster that does not apply rule-specific goal management (unstructured
cluster). To confirm this interpretation of the two clusters, we assessed whether the participants of the
structured cluster (a) jump less frequently between different rules and (b) invest more time between
the rules since they construct processing plans before solving the rules whereas the unstructured
cluster tend to start processing immediately with less elaborated strategies.

H3. In terms of a training effect, the LFT5 should diminish throughout the matrices test. If the
interrule times reflect the cognitive component of matrix processing its accelerating effect across
the items of a test should correlate with the test performance in the structured cluster. We derived
this hypothesis from the observation that individuals with higher cognitive ability tend to benefit
more from cognitive tasks (i.e., basic cognitive ability predicts performance improvement over time;
e.g., Drskov et al. 2021; Wiemers et al. 2018). In contrast, the accelerating effects of the onset and
intrarule time, as well as the accelerating effect of the interrule time in the unstructured cluster,
should not be performance-associated.

H4. In the case of a structured processing strategy, we assumed the interrule times to reflect the
part of matrix processing in which participants construct a mental solution to a matrix rule. As a
sign of higher cognitive abilities, faster interrule times might be associated with a better mental plan
of how to construct the solution which might facilitate executing this plan. This might result on the
one hand in faster intrarule times and on the other hand in fewer rule jumps. Hence, we expected
the correlation between the interrule times and the test performance to be mediated by the intrarule
times and the rule jumps.

Second, we asked what role the LFTs play in test performance (Research Question 2;
RQ 2). In this regard, we had the following hypothesis:

H5. Focusing on the structured cluster, we expected shorter LETs to be associated with higher
performance. Since the LFT contains more information about the item processing they should explain
performance variance beyond the traditional ToT.
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Our hypotheses were formulated a priori to the analyses. However, we did not
preregister the study, as it was based on existing data. In subsequent post hoc analyses, we
examined whether the validity of the interrule times for clustering participants regarding
their processing strategy could be extended to a second matrix test. To disentangle the
dual role of the first matrix test score as both the clustering variable and the criterion, we
conducted an additional cluster analysis using the interrule times from the first test and
the scores from a second matrix test. If it is possible to replicate the clustering based on
an independent intelligence test resulting in a pattern analogous to the original test-based
scores, this would provide further support for the cognitive reflection of the interrule
times. In addition, we post hoc explored indicators of potentially interfering motivational
influences in matrix processing.

2. Materials and Methods
2.1. Sample and Materials

Our sample consisted of N = 198 participants who were assessed for monetary compen-
sation. They had a mean age of M = 23.00 (SD = 4.43) years, and 75.25% of the participants
were female. After an instruction item, they processed a computer-based version of the
Design a Matrix test (DESIGMA; Becker and Spinath 2014). As a construction-based figural
matrix test, the participants are not provided with response options to an item, but they
must compose the response by means of a construction kit. They can select out of six
symbol groups (e.g., quarter circles) with four symbols each (e.g., quarter circle on the
left and the right top, the left and the right bottom) by clicking (please see Figure 1 for
the principles of construction-based matrices). Each symbol group is associated with one
of seven rules (addition, subtraction, disjunctive union, intersection, rotation, resizing,
completeness) that participants must identify and apply to the last cell of the matrix. The
maximum time participants could spend on an item was 90 s, which is a relatively mild
time constraint (see the mean ToT in the descriptive statistics section) and might be a better
alternative to a global test time constraint, which has been shown to be associated with
skipping items and poorer strategy use in figural matrices (e.g., Gonthier 2023). Since
single rule items require no rule jumps, they do not provide any information about the
structuredness of the item processing. Hence, we only analyzed items with two or more
rules. The final item set consisted of 22 items (eleven items with two rules, seven with three
rules, three with four rules, and one item with five rules).

Furthermore, we assessed the participants with Raven’s Advanced Progressive Ma-
trices (RAPM) Set II (Raven et al. 1988) as a traditional matrix test. In contrast to the
DESIGMA, the RAPM is a distractor-based matrix test with eight response options per item.
The participants randomly either processed the RAPM full-item set of 36 items (n = 94) or a
short version of 24 items (n = 103; n = 1 participant only took part in the DESIGMA). The
items of the short version were selected to maintain the same distribution of matrix rules as
in the full-item version.

2.2. Statistical Analyses

As a performance measure, we computed the total score over the 22 items. As pre-
dictors, we computed from the log files of the assessment the mean ToT on the one hand
and the mean LFTs (onset times, interrule times, intrarule times) on the other hand. Since
the time between the start of the item presentation and the first click also contains the
first rule-specific time, we computed the onset times as the residuals from regressing the
rule-specific interrule times on the time before the first click. Further, analogously to Weber
et al. (2023) we computed the mean difference between the applied and the necessary
number of rule jumps.
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To replicate the ToT effect that for participants with lower ability a higher ToT and
for participants with higher ability a lower ToT is more effective, we tested for a quadratic
regression and compared it with the linear model. We ran a cluster analysis based on
the standardized test performance and the standardized interrule times as a supposed
indicator of whether participants applied a structured processing strategy in terms of goal
management (i.e., they construct rule-specific plans to the item rules as partial goals). The
analysis was performed using hierarchical agglomerative clustering (Ward’s method with
Euclidean distance), with 100 bootstrap iterations, evaluating cluster solutions ranging
fromk =1 to k =10.

To analyze accelerating effects we computed the mean times in the first third of the
test and compared them to the mean times in the last third. To underline that the interrule
times reflect the cognitive component of item processing critical for the test performance we
regressed the performance on the accelerating effects. To obtain a better insight into the role
and the interplay of the interrule and intrarule times we ran a path analysis with parallel
mediation effects of the intrarule times and the rule jumps on the correlation between the
interrule times and the test performance. We performed bootstrapping with 1000 iterations.

To examine whether in the structured cluster the speed (a) to obtain a rough overview
at the beginning of the items, (b) to construct a rule-specific mental processing plan, and
(c) to execute the constructed plan goes along with higher performance, we computed the
correlations between the test score and the (a) onset, (b) interrule and (c) intrarule times.
To prove whether it is worth considering the LFTs beyond the traditional ToT we ran a
hierarchical regression.

To disentangle the dual role of the DESIGMA score as both the clustering variable
and the criterion, we conducted an additional cluster analysis with the RAPM score—for
both the subsamples that were assessed with the RAPM full-item version and the short
version, respectively. We examined whether the interrule times, as the supposed temporal
counterpart of cognitive ability, could account for incremental variance of the DESIGMA
score beyond the RAPM score.

As a post hoc analysis, we sought indicators of potentially interfering motivational
effects. To this end, we considered two approaches: (1) response to difficulty (RtD) and
(2) incomplete attempt propensity (IAP). The RtD approach was derived from Cheyette
and Piantadosi (2024), who found that the willingness to devote more time to more difficult
items accounted for up to 42% of the variance in Raven’s Progressive Matrices (Raven et al.
1989). For each participant, we computed the RtD as the slope of an intraindividual regres-
sion of item response time on item difficulty. Higher slopes indicate a greater willingness to
invest more time in solving more difficult items. We then controlled the RtD in a multiple
regression predicting test performance by the interrule times. The IAP was derived from
our log data and reflects a participant’s tendency to terminate an item without attempting
all the rules of a matrix that are necessary for the correct solution. We computed a linear
mixed-effect model including two components: (a) an individual’s global IAP, calculated
as the individual’s mean IAP across the 22 items, and (b) a within-person (current) IAP, cal-
culated by group-mean centering the individual’s IAP for each item, potentially indicating
occasional lack of effort. Both global and current IAP were used to predict response time,
controlling for participant and item effects. Finally, we determined whether controlling for
global IAP affects the prediction of test performance by the interrule times.

We conducted our statistical analysis in R (R Core Team 2024). For data preparation,
we used the packages dplyr (Wickham et al. 2023) and stringr (Wickham 2019); for data
analysis, the packages car (Fox and Weisberg 2018), effsize (Torchiano 2020), jmv (Selker
et al. 2022), lavaan (Rosseel 2012), Im.beta (Behrendt 2023), ImerTest (Kuznetsova et al. 2017),
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MASS (Venables and Ripley 2002), and psych (Revelle 2022); and for visualization, the
packages factoextra (Kassambara and Mundt 2020) and ggplot2 (Wickham 2016).

3. Results
3.1. Descriptive Statistics

Participants solved on average Mscore = 7.89 (SDscore = 6.02) of the 22 items. The mean
item difficulty was P = .36 and the mean corrected item-total correlation r;(.;) = .55. The
internal consistency was very high at « = .92. On average, participants spent Mg, =51.79 s
(SD1,1 = 14.29 s) per item, of which Mopser = 20.96 s (SDypser = 8.16 s) were for the onset
time, Mjuer = 13.35 s (SDjpter = 5.95 s) per rule for the interrule time and My, = 1.42 s
(SDjptra = 0.71 s) per click for the intrarule time. Internal consistencies were ot = .93,
Xonset = -89, Kinter = -87, and &inira = -65. Table 1 shows the item characteristics of the 22
matrices items.

Table 1. Item characteristics of the figural matrices.

Item Rules P Ti(t-i) Mrr Monset Minter Mintra
1 2 .54 31 43.14 21.76 12.51 8.33
2 2 57 44 46.78 23.64 9.76 291
3 2 .53 51 50.19 28.19 14.95 1.72
4 2 16 46 56.69 32.67 14.23 1.84
5 2 33 .64 53.72 29.75 17.77 1.33
6 2 30 41 58.18 25.62 24.71 2.47
7 2 .39 49 53.44 2495 20.20 4.06
8 2 .51 48 47.23 24.45 18.22 1.33
9 2 13 49 52.77 22.96 24.24 2.66

10 2 15 51 54.15 33.53 11.96 1.87
11 2 .59 .63 39.46 17.28 14.92 1.43
12 3 32 52 50.60 17.82 14.36 1.81
13 3 .16 .58 61.33 31.18 15.42 2.03
14 3 46 .59 53.83 17.24 15.26 0.77
15 3 43 .64 50.45 15.19 13.71 0.86
16 3 35 .69 50.24 13.76 16.69 1.52
17 3 .39 .79 48.30 12.61 15.90 1.36
18 3 .61 .63 47.01 18.16 10.83 1.18
19 4 21 49 55.03 14.07 13.20 1.74
20 4 .30 .60 53.01 11.22 13.38 2.54
21 4 .26 .67 55.05 12.25 14.08 1.46
22 5 21 53 57.86 12.87 13.35 1.42
Mean 2.73 .36 .55 51.79 20.96 14.30 1.61
Note. Rules = number of rules contained in the item, P = item difficulty, r;.; = item-rest correlation, Mgt = mean

time on task, Moyst = mean onset time, M;,;,, = mean interrule time, M;,;,, = mean intrarule time.

3.2. Replication of the ToT Effect

The total test score and the ToT showed a significant quadratic association: 3 = —1.68,
p < .001. The quadratic model accounted for R? = 22.78% of the variance, which were
incremental AR? = 20.88% compared to the linear model: F(1, 195) = 52.70, p < .001. Figure 2
shows the relationship between the two variables.
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Figure 2. The figure shows the quadratic relationship between the DESIGMA score and the mean
time on task per participant.

3.3. Clustering

The hierarchical agglomerative cluster analysis based on the interrule times as a sup-
posed indicator of whether participants applied a structured processing strategy resulted in
two clusters with n; = 87 and 1, = 111, respectively (Figure 3). We determined the optimal
number of clusters based on the dendrogram and the silhouette width which was highest
for the two-cluster solution (average silhouette width = 0.47). Table 2 shows the mean test
scores, the mean ToT, and the mean LFT per cluster. Cluster 2 achieved higher test scores
than cluster 1 [£(146.15) = 21.90, p < .001, Cohen’s d = 2.86] and invested more time between
the rules than cluster 1 [#(196) = 10.77, p < .001, Cohen’s d = 1.54] which might indicate the
elaboration of a processing plan before the rules in cluster 2. Further, participants of cluster
2 jumped less frequently between the rules of an item: #(157.27) = —4.94, p < .001, Cohen’s
d = —0.73. Hence, for the following analyses, we declared cluster 1 as the unstructured
and cluster 2 as the structured cluster. We interpreted this finding as a first clue for the
assumption that the interrule times reflect the cognitive component of matrix processing.

Cluster 3-
@] 1
E 2 12

20-

\' 1713 135117 19
10 * *14°° * 18 19001
10 *1551a7 *418°°° 22

° 13 ®9¢° 1920 °

1- 1314 * 178° %20 22
13° *15 13 19 20 22

\ 1 C 14151617 1808

X‘ 13° 17 223 28
‘ 0 1M2°1315 M7 *  21°° 24 y
0% ° %5167 2223° 2728
5- 0- 12 *** 12 °° 26°°
‘ —15_ 19°° 22 25 *2728
1 23 ¢ 31

| \7\'\‘1‘9@\', 24
1 L L[] -

Height
Total Score

-2 - 0 1 2 3
Interrule Times
Figure 3. The figure shows the results of a cluster analysis based on the interrule times and the total
test score. The analysis resulted in two clusters: cluster 1 consisted of n = 87, cluster 2 of n = 111

participants. (A) Dendrogram from the analysis; (B) clustered scatter plot: the variables have been
scaled, while the (rounded) raw interrule times are displayed in the diagram.
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Table 2. Characteristics of the two clusters.

Cluster # Mscore (SD)  Monset SD)  Miyger (SD)  Miypra (SD)  Mp,r (SD)

1 87  234(1.63)  22.82(9.44) 1021 (4.38) 151(0.64)  46.37 (15.95)
2 111 1224 (439)  1950(6.70)  17.50 (4.98) 1.69 (0.76)  56.04 (11.21)

Note. n = sample size, Mscore = mean test score, M, = mean time on task, Myust = mean onset time, M., = mean
interrule time, M, = mean intrarule time, SD = standard deviation.

3.4. Accelerating Effect of the Log File Times

As expected, in both clusters, the LFTs diminished across the test, indicating an
accelerating effect (i.e., participants spent less time on the items as they moved through
the test; Table 3). The strongest acceleration was observed in the onset times, suggesting
that participants adapted more quickly to new items later in the test compared to earlier
ones. However, only the acceleration of the interrule times correlated with the DESIGMA
test performance: r = .31 (95% CI [.13, .47]), p < .001. This finding is in line with previous
research showing that task improvement is correlated with basic cognitive ability (e.g.,
@rskov et al. 2021; Wiemers et al. 2018). We interpreted this finding as a second clue that
in contrast to the onset and intrarule time, the interrule time has a stronger reasoning
saturation and reflects the cognitive component in matrix processing.

Table 3. Accelerating effect of the log file times and its correlation to the test performance.

Measure AM t PAM d T Pr
Structured Cluster (n = 111)

ToT —2.72 - - - —.13 178
Onset 13.71 18.87 <.001 1.66 —.14 138
Inter 3.06 3.85 <.001 0.41 31 <.001
Intra 0.81 3.73 <.001 0.47 —.01 934

Unstructured Cluster (1 = 87)

ToT 223 - - - .04 .682
Onset 12.44 11.64 <.001 1.17 .18 .097
Inter 1.29 1.65 .051 0.20 .06 .590
Intra 0.90 3.58 <.001 0.49 .02 .835

Note. ToT = time on task, Onset = onset times, Inter = interrule times, Intra = intrarule times, AM = mean
difference of the times in the first and the last third of the test (accelerating effect), f = t statistic of the accelerating
effect, pap = p-value of the accelerating effect, d = Cohen’s d effect size of the accelerating effect, » = correlation
between the accelerating effect and the test score, p, = p-value of the correlation.

3.5. Interplay of the Interrule and Intrarule Times

In the following, we analyzed the importance of the LFTs for structured item processing
(i.e., in the structured cluster). The path analysis to gain a deeper understanding of the
roles of the interrule and intrarule times resulted in a parallel mediation model with a good
fit: x(1) = 3.05, p = .081; CFI = .983, RMSEA = .136, p(RMSEA < .050) = .123, SRMR = .052.
Both the direct effect of the interrule times on test performance ( = —0.23, p =.001) and
the two indirect effects were significant: interrule times on test performance via intrarule
times (f = —0.12, p < .001) as well as via the number of rule jumps ( = —0.18, p < .001).
Hence, we concluded an incomplete mediation. The model is demonstrated in Figure 4.
We interpreted these mediation effects as a third clue for the cognitive reflection by the
interrule times.
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Interrule Times

R?=12.62%

Intrarule Times

R? =53.52%

B =—052%**
Test Performance
B=—0.23*
R? = 16.66%
Rule Jumps

Figure 4. Path model with the results of the parallel mediation analysis; red path = total effect, black
paths = direct effects, blue paths = indirect (mediated) effects, R? = coefficient of determination,
**p <.01, ** p <.001.

3.6. Importance of the Log File Times for Test Performance

The onset times in which participants might obtain a rough overview of the item,
and the test score were negatively correlated, r = —.40 (95% CI [—-.55, —.23], p < .001),
i.e., participants with a higher performance needed less time to start processing the item.
Further, the interrule times in which participants might construct a rule-specific processing
plan had a strong negative correlation with the test score, r = —.51 (95% CI [—.64, —.36],
p <.001), i.e., higher test performance goes along with less time between the rules. Finally,
there was a strong negative correlation between the intrarule times in which participants
might execute their rule-specific processing plan and the test score, r = —.53 (95% CI
[—.65, —.38], p < .001), i.e., higher performant participants executed the processing plans
more quickly.

In order to determine whether the LFT has an incremental value to the test performance
beyond the traditional ToT we computed a hierarchical regression (Table 4). The overall
model with all response times (ToT and LFT) accounted for R? = 56.00% of the test score
variance, F(4, 106) = 33.73, p < .001. Since the VIFs of the response times were below the
critical threshold of VIF = 10 (VIFr,r = 5.51, VIFonset = 2.16, VIFinter = 3.91, VIFipga = 1.27),
there was no multicollinearity of the response times. Each response time contributed
significantly to the prediction of the test performance. The LFT explained incrementally
AR? = 24.30% beyond the ToT, F(3, 107) = 19.52, p < .001.

Table 4. Results of the hierarchical regression of the DESIGMA score on the time on task and the log
file times.

ToT Only ToT and LFT
Statistics
ToT Total ToT Onset Inter Intra Total
B —0.22 - 0.35 —0.53 —0.63 —0.41 -
torF —-7.11 50.58 2.29 —5.57 —4.95 —5.65 33.73
df 109 1,109 106 106 106 106 4,106
p <.001 <.001 .024 <.001 <.001 <.001 <.001
R? 31.70% 31.70% 2.18% 12.87% 10.19% 13.25% 56.00%
AR? - - - - - - 24.30%

Note. ToT = time on task, Onset = onset times, Inter = interrule times, Intra = intrarule times, 3 = beta regression
coefficient, t = t statistic, F = F-statistic, p = p-value, R? = (unique) determination coefficient, AR? = change in
variance explanation between the models.
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3.7. External Validation of the Interrule Times

On average, participants solved M =24.27 (5D = 6.33) of the 36 RAPM full-item version
items and M = 14.92 (SD = 4.67) of the 24 RAPM short version items. Internal consistencies
were good with & = .87 and « = .84, respectively. For both RAPM versions, two plausible
clusters based on the interrule times of the DESIGMA could be identified, showing a similar
pattern to the clusters derived from the DESIGMA score (Figure 5). One cluster processed
the matrices in a more structured manner with fewer rule jumps than the other one: (full-
item version) #(48.62) = —2.26, p = .014, Cohen’s d = —0.51; (short version) #(88.57) = —3.60,
p <.001, Cohen’s d = —0.71. In the structured cluster of both RAPM version, the interrule
times accounted for incremental 6.21% (full-item version) and 22.42% (short version) of
the DESIGMA score variance beyond the RAPM score, which was a significant model
improvement due to the inclusion of the interrule times for both subsamples: (full-item
version) F(1, 64) = 5.88, p = .018, (short version) F(1, 48) = 18.97, p < .001.

= =3
< <
= - Cluster £
g 1 o I
3 3
e a5 e
g 0- 0 12 13 1.? 17 g
O_
,1 -
,1 o
-2 1 0 1 2 =) - 0 1 2
Interrule Times (DESIGMA) Interrule Times (DESIGMA)

Figure 5. Results of the cluster analysis based on the interrule times from the DESIGMA and the
RAPM score; (A) based on the RAPM full-item version, two plausible clusters of the sizes n; = 27 and
ny = 67 could be identified; (B) also based on the RAPM short version, two plausible clusters of the
sizes n; = 52 and n, = 51 could be identified.

3.8. Post-Hoc Analyses of Potential Task Misunderstanding and Motivational Effects

The cluster which we called “unstructured” consisted of n = 87 participants represent-
ing 43.94% of the total sample. On average, these participants solved only 2.34 of the 22
DESIGMA items. Notably, 15 participants did not solve any item. To rule out the possibility
that this poor performance was due to a misunderstanding of the matrix task, we analyzed
the responses of these 15 participants to the DESIGMA items with only one logical rule,
which had been excluded from the primary analyses. Actually, the 15 participants solved
an average of 3.60 (SD = 0.91) out of the four one-rule items. In addition, they solved
an average of 14.20 (SD = 7.37) rules across the 22 multi-rule items. Since guessing the
correct answer in a construction-based matrix test is highly improbable, this response
pattern suggests that the participants indeed understood the task but failed to apply goal
management just as they had to handle multiple rules. This interpretation is supported
by the finding that this cluster exhibited significantly more rule jumping compared to the
structured cluster.
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The slopes of the RtD effect, as an indicator for motivated processing, were on average
Mg =0.23 (SDg = 0.25), indicating that participants tended to spend more time on more
difficult items. RtD accounted for R? = 16.96% (3 = 0.38, p < .001) of the test performance
variance, and for R? = 6.68% (B = 0.26, p < .001) and R? = 12.28% (B = 0.35, p < .001) of the
ToT and interrule times variance, respectively. However, in a multiple regression including
RtD as an additional predictor, the interrule times remained a strong predictor of test
performance (3 = —.51, p <.001).

A total of 16.09% of participants in the unstructured and 19.82% in the structured
cluster did not attempt at least one item. However, only two participants skipped more
than five of the 22 DESIGMA items. The global IAP, representing the general tendency
to not attempt solving all rules of an item, was slightly higher in the unstructured cluster
[£(166.59) = —2.07, p = .040], but not associated with test performance (3 = 0.12, p = .084).
The global IAP predicted the ToT, but not the interrule times (Table 5), suggesting that the
interrule times are more robust against motivational differences across participants. The
current IAP, used as an indicator for intraindividual variation in effort, did not predict
either the ToT or the interrule times (Table 5), indicating that these two temporal measures
are not affected by occasional lack of effort. In a multiple regression including the global
IAP, the interrule times remained a strong performance predictor (3 = —0.53, p < .001).

Table 5. IAP effects on response times from a linear mixed-effects model.

ToT Interrule Times
Predictor
b p b p
Global IAP 14.84 .008 1.52 615
Current IAP —0.37 627 0.08 .887

Note. IAP = incomplete attempt propensity, ToT = time on task.

4. Discussion
4.1. Summary and Contextualization of the Results

The goal of this article was to combine two lines of research on figural matrix process-
ing: previous research has shown that structured item processing is associated with a higher
test performance (Weber et al. 2023). In this regard, goal management is a crucial factor
(Carpenter et al. 1990), especially the capacity to separate the matrix into subgoals and to
construct solutions to them (Krieger et al. 2019; Loesche et al. 2015). Furthermore, it has
been shown that for more able persons a shorter ToT goes along with higher performance
in matrix tests (Becker et al. 2016; Goldhammer et al. 2015; Kramer et al. 2023). Based on
this research, we used reaction times from log files of a computer-based matrix test to draw
conclusions regarding matrix processing. We separated the traditional ToT into three LFT
components: (1) the onset times before interacting with the first matrix rule, (2) the interrule
times between two rules, and (3) the intrarule times within a single rule.

Addressing RQ 1 to which extent the LFTs can provide a deeper insight into matrix
processing, VIF analysis showed no multicollinearity of the LFTs, indicating that they are
three distinct temporal measures. We found three clues that the interrule times reflect the
core cognitive component of matrix processing in which participants construct a mental
solution plan to a matrix rule: First, based on the interrule times and the test performance,
we identified two clusters of participants. One of the clusters spent more time between the
rules (which might indicate a stronger elaboration of a mental solution plan) and jumped
less between rules (i.e., applied more structured processing) than the other cluster. Second,
only the accelerating effect of the interrule times but not that of the onset or intrarule times
was associated with the test performance, indicating a higher reasoning saturation. Third,
within a mediated path model faster interrule times propagated on the one hand in faster
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intrarule times and, on the other hand, in fewer rule jumps, both resulting in better test
performance. Hence, we conclude that the onset times reflect a global orientation process
with rather low cognitive demands, that the interrule times are the temporal counterpart of
the participant’s construction of a mental solution plan with high cognitive demands, and
that during the intrarule times, participants execute this plan with behavioral demands.
These findings support the proposal of Carpenter et al. (1990) that goal management is
a crucial component of matrix processing and extend the understanding of structured
matrix processing.

Addressing RQ 2, whether the LFTs are a valid measure compared to the traditional
ToT, we found that they accounted incrementally for 24.30% of the performance variance
when applying structured matrix processing, with each LFT contributing uniquely. The
strong predictive effect of the interrule times on test performance was not affected by
motivational factors. To abstract from the matrix test from which the LFTs were derived, we
performed additional cluster analyses based on the scores of a second, independent matrix
test. In two subsamples, the interrule times again successfully differentiated participants
into two clusters, analogously to the test-inherent clusters.

4.2. Limitations and Future Perspectives

First, it should be noted that the findings of this study are based on behavioral process-
ing patterns, and that the conclusions regarding participants’ strategies are implicit. We
chose this approach to evaluate the potential of log data, which Chen et al. (2024) recently
emphasized in their literature review as an auspicious lever for enhancing psychological
assessments. Since log files are generated automatically in many computerized intelligence
tests the consideration of the LFTs in diagnostics could be a very economical way to obtain
more fine-grained test results. Alternative approaches for future research might include the
use of think-aloud protocols or eye-tracking methodologies.

A second limitation is the borderline internal consistency of the intrarule times
(0t =.65). A plausible explanation for this might lie in the generally low values of the
intrarule times (M = 1.42). Minor variations in an individual’s clicking behavior (e.g.,
whether participants kept their hand on the mouse or not) may have had a comparatively
large impact on these low values. In contrast, the internal consistencies of the onset (x = .92)
and interrule times (o« = .87) were high, which is important for this study since we identified
the interrule times in particular as the temporal counterpart of cognitive ability. Notably,
their internal consistency was comparable to that of the test score which supports their
potential use as an additional diagnostic indicator in intelligence diagnostics.

A third point that warrants discussion is the potential role of motivation or effort.
To investigate this, we examined the effects of two indicators of motivation: the RtD,
which we adopted from the literature (Cheyette and Piantadosi 2024), and the IAP, which
we derived from our log data. Although both indicators were correlated with either the
test performance or temporal measures, controlling for them did not reduce the strong
predictive effect of the interrule times on test performance. This suggests that the interrule
times are largely unaffected by motivational factors. An advantage of these two indicators
is that they are based on test-inherent processing behavior, making them highly naturalistic.
However, they are implicit measures. To conclusively rule out motivational effects, future
research could complement this approach with self-report measures of motivation or effort
administered alongside the matrix items.

Our research provides evidence that cognitive ability and distinct processing strategies
are reflected in response times on figural matrices. However, this does not imply that
interindividual differences in response times are fully explained by cognitive parameters
alone. In addition to motivational factors, differences in personality traits may also con-
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tribute to variation in response times. For instance, conscientiousness and achievement
motive might influence (1) whether a participant develops a processing plan at the begin-
ning of an item, (2) how much effort and time they invest when having difficulty solving the
item (potentially leading to longer response times for incorrectly answered items compared
to correctly solved ones), and (3) the tendency to double-check or assure a solution (possibly
resulting in more time between the last click on a symbol of the construction-kit and the
submission of the response). Future research could examine these personality traits to
further elucidate why individuals differ so markedly in both performance and response
times on figural matrices.

5. Conclusions

Our research enables a finer-grained differentiation of the traditional ToT by introduc-
ing log file-based reaction times and shows initial evidence of the relevance of these LFTs
for item processing and the test performance on figural matrix tests. Our findings support
the assumption that the onset times at the beginning of matrix processing reflect a global
orientation process, that the interrule times reflect the cognitive construction of a mental so-
lution plan, and that the intrarule times reflect the execution of this plan. The LFTs account
for incremental test performance variance beyond the traditional ToT. These findings lead
to the recommendation to track response times of computer-based assessments by log files
when feasible and to consider them within research on item processing strategies and on
the ToT effect.
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