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Abstract

The article provides a comprehensive overview of biological membrane lipid composition and distribution and ion transport processes,
focusing particularly on red blood cells (RBCs). It begins with a historical perspective, detailing the introduction of the terms ‘cell’
and ‘membrane’ in biological sciences, and the development of the fluid-mosaic model of membrane structure. Early findings on ion
transport highlighted the non-equilibrium distribution of Na+ and K+ across cell membranes, leading to the discovery of the Na+/K+

pump. The article delves into the lipid composition of RBCmembranes, emphasising the roles of various lipids, including cardiolipin, and
the concept of lipid rafts. These rafts, enriched with sphingolipids and cholesterol, play crucial roles in cellular processes. Variations in
RBC shapes are discussed, with biophysical theories explaining transformations and pathological conditions affecting RBC morphology,
such as sickle cell anaemia. Na+ and K+ transporters in RBC membranes are explored, highlighting the almost ubiquitous presence of
the Na+/K+ pump (absent in Carnivora RBCs) and various ion channels, including the Gárdos and Piezo1 channels. The article notes
species-specific differences in ion transport mechanisms and the activation or suppression of transporters during RBC maturation. The
mechanism of residual ion transport is examined, questioning whether a Na+(K+)/H+ antiporter exists in the human RBC membrane.
Residual ion fluxes are mediated by this antiporter, influenced by the fatty acid composition of the RBC membrane. The outlook section
underscores the need for further research to fully understand the complexities of RBC membrane structure and function, suggesting that
many questions remain unanswered despite significant advances.

Keywords: red blood cell; membrane lipid composition; lipid rafts; red blood cell shapes; red blood cell deformability; residual (leak)
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1. Introduction
This publication addresses various open questions in

red blood cell (RBC) membrane research. Its main goal is
to assist young scientists in this field by providing insights
into past research and considerations for future experiments
and theoretical calculations. The content was presented at
the 25th Meeting of the European Red Cell Society (ERCS)
in April 2024 on Ameland, The Netherlands. The talk was
dedicated to the memory of Prof. Dr. Joseph F. Hoffman
(USA) and Prof. Dr. h.c. Herrmann Passow (Germany),
who passed away on May 19, 2022, and November 21,
2023, respectively, both at the age of 98 years. These em-
inent scientists significantly contributed to our understand-
ing of the RBC membrane’s structure and function.

2. Milestones of our Understanding of the
Structure of Biological Membranes and Ion
Transport Processes Across Membranes

First of all, it is interesting to know who first used the
words “cell” and “membrane”. The term “cell” was intro-
duced by the English researcher Robert Hooke in 1665 [1],
when he described the cellular structure of cork observed

through a microscope. Identifying the first use of the term
“membrane” is more challenging. To the best of our knowl-
edge, it was the Swiss botany professor Carl Wilhelm von
Nägeli [2] who introduced the term “membrane” in 1855
while working on osmosis in plant cells. Before and even
after that time, the term “plasmalemma” was commonly
used to describe the boundary of a biological cell.

In 1899, Overton [3] described the cell membrane as a
structure of unknown components with holes permeable to
water. In 1925, Gorter and Grendel [4] were the first to pro-
pose that a lipid bilayer forms a biological membrane. Sig-
nificant progress was made between 1935 and 1943, when
Danielli et al. [5] and Davson et al. [6] proposed a lipid bi-
layer with proteins on both membrane surfaces. Robertson
[7] expanded on this in 1981 by introducing sugar elements
on one surface of the membrane.

Our current understanding of biological membranes is
based on the “fluid-mosaicmodel” developed by Singer and
Nicolson in 1972 [8]. This model posits that membrane
lipids are in a fluid-crystalline state and distributed rela-
tively homogeneously within the membrane, with proteins
inserted like islands in a mosaic. However, at least three
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extensions to the fluid-mosaic model should be considered:
(i) Lipids in general also exist in crystalline states, with
phase transition temperatures higher than the membrane’s
surrounding temperature, leading to both fluid-crystalline
and crystalline domains (e.g., [9]). (ii) Lipids and proteins
are distributed asymmetrically, not only laterally but also
transversally [10,11]. (iii) In addition to forming a bilayer
structure, lipids in biological membranes can also exist in
non-bilayer structures [12].

Understanding the historical views and ideas about ion
transport across biological membranes is also very interest-
ing. The first significant findings were published by Abder-
halden in 1897 [13]. Using chemical methods, he discov-
ered that in human RBCs, the extracellular Na+ concen-
tration is higher than the intracellular Na+ concentration,
while the opposite is true for K+ – with a higher K+ con-
centration inside the cell than outside. It is worth noting
that a non-equilibrium distribution of Na+ and K+ was ob-
served even earlier. In 1894, Zaleski [14] attributed these
findings to Carl Schmidt’s work from the 1850s.

At the end of the 19th century and later, physiologists
believed that the cell membrane must be impermeable to
ions (e.g., Gürber [15,16]). However, in 1923, van Slyke et
al. [17] described the high permeability of the RBC mem-
brane to Cl−. In 1936, Fenn and Cobb [18] discovered
that muscle cell membranes are permeable to Na+ and K+.
Using radioactive isotopes, Cohn and Cohn [19], Dean et
al. [20], and Eisenmann et al. [21] demonstrated between
1939 and 1941 that the RBC membrane is permeable to
Na+ and K+. These findings led to the hypothesis of the
Na+/K+ pump, developed by Dean [22] and Krogh [23]
between 1941 and 1946. In 1957, Skou [24] identified the
Na+/K+-ATPase in crab nerves as the enzymatic basis for
the Na+/K+ pump, an achievement for which he received
the Nobel Prize in Chemistry in 1997. Subsequent char-
acterisation of ion transport via the pump was carried out
by Glynn (e.g., [25]), Sachs (e.g., [26]), and Hoffman and
Kregenow (e.g., [27]). In 1952, Hodgkin and Huxley [28]
provided a quantitative description of the action potential
through alterations in membrane permeability for monova-
lent cations, earning them the Nobel Prize in Physiology
or Medicine in 1963. Initially, these permeability changes
were thought to involve a carrier mechanism. However, in
1955, Hodgkin and Keynes [29] proposed the existence of
membrane pores (channels) for ion movement.

From 1965 to 1978, there was significant debate about
the existence of ion channels. Ultimately, Hille [30] and
Armstrong [31] identified ion channels with two key fea-
tures: (i) a selectivity filter and (ii) an opening mechanism
(gate). In 1976, Neher and Sakmann [32] developed the
“patch-clamp” technique to investigate single ion channels,
a breakthrough that earned them the Nobel Prize in Physi-
ology or Medicine in 1991. In the years following the in-
vention of the patch-clamp technique, also RBCs were in-
vestigated extensively by this method [33,34].

3. Phospholipid Composition and
Distribution of RBC Membranes in Different
Species. The Role of Cardiolipin and
Plasmalogens in Biological Membranes,
Lipid Rafts, and Lipid Scramblase

When investigating the function of lipids in biologi-
cal membranes, particularly in RBC membranes, only five
or six classes are typically considered. These include
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylserine (PS), phosphatidylinositol (PI), sphin-
gomyelin (SM), and cholesterol. However, other lipids
have been studied to a much lesser extent. These include
lysolipids (e.g., lysoPC), glycolipids (cerebrosides and gan-
gliosides), and especially cardiolipin. Cardiolipin, charac-
terised by two phosphate groups and four fatty acids, is pri-
marily located in the inner mitochondrial membrane. It is
believed to be crucial for the optimal activity of several mi-
tochondrial proteins and is also associated with various dis-
eases, such as neuronal dysfunction [35,36]. Although the
role of cardiolipin in the RBC membrane is not fully under-
stood, it may be significant for the activity of certain mem-
brane proteins through direct interaction (see section 6 on
membrane protein-lipid interactions). Additionally, cardi-
olipin might play a role in maintaining the balance of reac-
tive oxygen species.

Nelson [37] andWessels and Veerkamp [38] described
the phospholipid head group composition (PC, SM, PE,
PS, and others) of RBC membranes from various species
(rat, dog, horse, guinea pig, rabbit, cat, human, pig, cow,
sheep). The RBC membrane lipid composition of RBCs of
different mammalian species including PI has been sum-
marised by Kotyk and Janácek [39]. It was found that
the variability of PE and PS among these species is rela-
tively low. In contrast, the PC and SM content vary sig-
nificantly. For example, dog and rat RBC membranes have
low SM (10.8% and 12.8%, respectively) and high PC con-
tent (46.9% and 47.6%, respectively), while cow and sheep
RBCmembranes have high SM content (46.2% and 51.0%,
respectively) and no PC. When comparing the PI content in
the RBC membrane across species, significant differences
are observed. To current knowledge, RBCs from horses
have the lowest PI content (0.3%), while RBCs from cats
have the highest (7.4%) [39]. The head group composition
of the lipids in the RBC membrane in mice does not dif-
fer significantly from that in rats [40]. However, the lipid
head group composition of camel RBCs shows significant
differences compared to human RBCs. Specifically, camel
RBCs have a much lower PC content but a much higher
PE, with PS and SM levels nearly identical to those in hu-
man RBCs [41]. Additionally, other studies have shown
that compared to sheep and goats, camels have significantly
higher PC, SM, and cholesterol levels in their RBC mem-
brane (e.g., [42]). The cholesterol content of RBCs across
various mammalian species generally does not differ sig-
nificantly, maintaining a total phospholipid/cholesterol mo-
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Table 1. Asymmetrical transversal distribution of the major lipids in the human and bovine RBC membrane [48].
Lipid Human inner (%) Human outer (%) Bovine inner (%) Bovine outer (%)

Phosphatidylcholine 14 44 - -
Sphingomyelin 10 44 - 100
Phosphatidylethanolamine 48 12 67 -
Phosphatidylserine 28 - 33 -

lar ratio close to 1, except in camel RBCs, where the ra-
tio is slightly higher [42,43]. Nelson investigated also the
fatty acid composition of the phospholipids in the human
RBC membrane, as reported in [44]. The main phospho-
lipids (PC, PE, PS, SM, PI, lysoPC) contain various fatty
acids. In brackets, the trivial names are provided: 16:0
(palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid),
18:1 (oleic acid), 18:2 (linoleic acid), 20:0 (arachidic acid),
20:3 (eicosatrinoic acid), 20:4 (arachidonic acid), 22:0 (be-
henic acid), 22:1 (erucic acid), 22:4 (docosatetraenoic acid),
22:5 (docosapentaenoic acid), and 22:6 (docosahexaenoic
acid). Other authors investigated the fatty acid composition
of the membrane lipids of RBCs from different mammalian
species (rats, rabbits, guinea pigs, sheep, cows, pigs, dogs,
and cats) [39]. They also identified the presence of the fatty
acids 12:0 (lauric acid, only in sheep, 14:0 (myristic acid,
only in sheep and rats), and 18:3 (α-linolenic acid, only in
sheep). The fatty acids 20:0 and 20:3 were only found in
sheep and sheep and rats, respectively. Furthermore, the
fatty acids 20:0, 22:1, and 22:4 could not be detected in
the membrane lipids of RBCs of the different species [39].
However, it is possible that other fatty acids are present in
the RBC membrane lipids, but likely in minor concentra-
tions.

It should be mentioned that also new data on the fatty
acid composition of RBC membrane lipids based on mod-
ern or sensitivity-improved measuring techniques (e.g., gas
chromatography) are available. In most cases, authors are
investigating the effect of diets on the fatty acid composi-
tion (examples for RBCs of cats and rats see [45,46]), or the
effect of diseases on the fatty acid composition (example for
RBCs of dogs, see [47]). Analysing the transversal distri-
bution of lipids in the RBC membrane reveals interesting
differences between species. Table 1 (Ref. [48]) shows the
asymmetrical transversal distribution of SM, PC, PE, PS in
human and bovine RBC membranes. Notably, it is intrigu-
ing that the outer leaflet of the bovine RBC membrane is
composed entirely of sphingomyelin.

The diverse lipid compositions of RBC membranes of
various species suggest their significance in RBC flexibility
(see section 5). Additionally, the phase transition tempera-
tures of these lipids, determined by both their head groups
and fatty acid content, vary relative to body temperature,
indicating not all lipids maintain a fluid-crystalline state.
It is important to note that the fluidity of the lipid bilayer
and consecutively of the cell membrane is determined by
its lipid composition. However, these findings suggest the

formation of lipid microdomains (lipid rafts) within biolog-
ical membranes since a random distribution of lipids in both
fluid-crystalline and crystalline states appears energetically
unfavourable. Lipid rafts, characterised by their detergent-
insolubility, are enriched with sphingolipids and choles-
terol. Sphingolipids, such as SM and glycosphingolipids,
exist in a crystalline phase with saturated fatty acids, form-
ing distinct phases within the plasma membrane of eukary-
otic cells. Rafts also harbour glycosylphosphatidylinosi-
tol (GPI)-anchored proteins, with raft diameters typically
ranging from 10 nm to 200 nm and containing up to 50
GPI-anchored proteins. Larger sub-micrometric domains
with diameters between 300 nm and 500 nm have also
been reported. The existence of lipid rafts was first sug-
gested by Simons and Ikonen in 1997 [49], and the con-
cept has since been further developed by researchers such
as Sharma et al. [50], Carquin et al. [51,52], and Conrad
et al. [53]. Currently, at least 150 different human GPI-
anchored proteins have been identified [54]. Examples of
GPI-anchored proteins in the human RBC membrane in-
clude protectin (CD59) and Complement Decay Acceler-
ating Factor (CD55) [54]. Rafts represent dynamic struc-
tures, with lipids and proteins residing within them for pe-
riods ranging from seconds to minutes. Identifying rafts
in living cells remains a contentious subject. Future re-
search should prioritise understanding their physiological
functions and properties, including interactions with the cy-
toskeleton and protein receptors, crucial for signal trans-
duction. Notably, Minetti’s group [55,56] has significantly
contributed to our comprehension of rafts in RBC mem-
branes. An important finding regarding the RBC mem-
brane was described by Conrad et al. [53]. Using fluores-
cence and confocal microscopy, three distinct lipid domains
were identified: (i) cholesterol-enriched domains associ-
ated with high curvature areas of the RBC, (ii) ganglioside
GM1/PC/cholesterol-enriched domains present in low cur-
vature areas, and (iii) SM/PC/cholesterol-enriched domains
also present in low curvature areas. Cholesterol- and SM-
enriched domains in the RBC membrane have also been re-
ported by other studies [51,52]. Additionally, the molec-
ular organisation within these different domains has been
described in more detail [57].

Another intriguing aspect is the presence of plasmalo-
gens in the RBC membrane. Plasmalogens are a subclass
of glycerophospholipids characterised by a vinylether bond
at the sn-1 position and polyunsaturated fatty acid at the
sn-2 position. While their role in biomembranes is still un-
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Fig. 1. Overview of red blood cell (RBC) shapes. (A) represents 3D-rendered RBC from confocal microscopy recordings in the
stomatocyte-discocyte-echinocyte (SDE) sequence. These cell shapes were induced by osmotic manipulation. Recently, the SDE se-
quence was proposed to be matched on an analogue scale from -1 to +1 [65]. (B) shows the distribution of the occurrence of the RBCs
of the SDE sequence in a blood sample from a healthy person. (C) shows 3D images of examples of other cell shapes not covered by the
SDE sequence. In blood samples of healthy donors such shapes occur very rarely. (D) indicates this probability compared to the RBCs
of the SDE sequence. Reproduced with permission from Simionato et al, PLoS Computational Biology; published by PLoS, 2021 [65].

der discussion, it is believed that plasmalogens contribute
to the physical and chemical properties of the membrane
and act as antioxidants, protecting unsaturated fatty acids
and lipoproteins from oxidative stress [58,59]. Plasmalo-
gens have been identified in neuronal, immune, and cardio-
vascular cells [59] and are also present in the RBC mem-
brane [60,61]. Therefore, in future, it seems of importance
to investigate their role in the RBC membranes. In addi-
tion, the biophysical properties of plasmalogens and their
implications for certain diseases, such as Alzheimer’s dis-
ease, should be considered. For more details, we refer to
the reviews by Honsho and Fujiki [62,63].

Finally, very recent research showed significant lipid
remodelling during reticulocyte maturation and the RBC
ageing process beyond [64]. Lipid analysis showed that
cholesterol and SM increase, while PC and PS decrease as
reticulocytes mature into RBCs. Specific phospholipid sub-

classes change during the ageing of RBCs, with some ap-
proaching the composition of plasma lipoproteins. Further-
more, VPS13A, a lipid transport protein, is present in retic-
ulocytes and decreases with RBC maturation, potentially
playing a role in lipid exchange. The findings challenge the
traditional view that RBC membrane maturation is solely
linked to membrane skeleton assembly, suggesting a more
complex process involving lipid remodelling [64]. The con-
crete molecular regulation of lipid remodelling during RBC
aging is among the unsolved problems in RBC membrane
research.

4. Variations in RBC Shapes
Under physiological conditions, human RBCs typi-

cally have a biconcave shape and are referred to as dis-
cocytes. When subjected to volume changes, such as al-
terations in the osmolarity of the surrounding medium as
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performed for Fig. 1A (Ref. [65]), the RBCs undergo a se-
ries of shape transformations in the sequence stomatocyte-
discocyte-echinocytes (SDE). The normal distribution of
these cell shapes under physiological conditions is illus-
trated in Fig. 1B. Experimentally, other methods can also
induce similar RBC shape changes, as documented in the
literature (e.g., [66]). Various biophysical theories have
been proposed to explain the mechanisms behind these
shape transformations. Additionally, unusual or patholog-
ical RBC shapes (for selected examples see Fig. 1C) can
occur under physiological conditions, though at a very low
frequency, as depicted in Fig. 1D.

Furthermore, pathological RBC shapes are charac-
teristic of specific diseases and have even given their
names to some of them [67], such as drepanocytes (sickle
cells), which are associated with sickle cell disease. This
condition is explained by the replacement of normal
haemoglobin (mainly HbA) with abnormal haemoglobin
(HbS), which alters the interaction between haemoglobin
molecules and the inner membrane surface of RBCs. Ker-
atocytes and schistocytes often appear after cardiac or vas-
cular surgery, while dacrocytes are associated with tha-
lassemia, leukaemia, toxicity, and haemolytic anaemias.
Codocytes are indicative of hypochromic anaemias. Acan-
thocytes are linked to a group of rare hereditary neurode-
generative disorders known as neuroacanthocytosis syn-
dromes [68]. Elliptocytes, which are prominent in various
anaemias like hereditary elliptocytosis, are also of signifi-
cant interest.

Camel RBCs exclusively adopt an ellipsoid shape,
termed ovalocytes. Bessis’ atlas comprehensively covers
these shapes [69]. Notably, human elliptocytes lack the in-
creased resistance to osmotic haemolysis observed in camel
cells. Camels can lose significant body weight (30–40%)
and rapidly consume vast amounts of water (up to 200
litres), leading to considerable water uptake of the RBCs
resulting in their volume expansion. Camel RBCs can in-
crease their volume to a much larger extent compared with
human RBCs [70]. Possible explanations of such differ-
ences are still a matter of debate.

5. Deformability of RBCs in Different
Mammalian Species

The deformability is one of the most, if not the most
important property of the RBC. It is crucial for their ability
to pass through narrow capillaries without rupturing, which
is essential for maintaining efficient blood flow [71]. This
flexibility varies significantly among different mammalian
species, reflecting adaptations to their unique environmen-
tal challenges and physiological requirements. RBC de-
formability is influenced by several factors, including the
structural integrity of the cell membrane— such as the lipid
composition (see section 3, above) and the membrane pro-
teins (their abundance, interaction and activity), the orga-
nization of the cytoskeleton, and the viscosity of the cyto-

plasm. However, the exact relation and contributions of all
mentioned parameters is among the unsolved problems in
RBC membrane research [72]. Additionally, there is a bio-
molecular signaling component, namely the interplay be-
tween mechano-sensitive ion channels, such as Piezo1 and
the Gárdos channel (see section 6, below). The activation
of the mechano-sensitive channel allows Ca2+ to enter the
RBC, which activates the Gárdos channel resulting primar-
ily in the loss of K+, followed by Cl− and water, finally
leading to a volume decrease [73]. Nevertheless, the bi-
concave shape of RBCs in most mammals (see section 4,
above) is a key feature that enhances their flexibility, allow-
ing them to undergo significant deformation while travers-
ing capillaries [74]. Structural properties of the RBC mem-
brane are subject to variation across species, depending on
their environmental and physiological needs. Camels have
evolved RBCs with unique characteristics [70] to survive in
the extreme conditions of the desert (see sections 3 and 4,
above). For comparative studies of RBC deformability see,
e.g., Amin and Sirs [75], Nemeth et al. [76], and Plasen-
zotti et al. [77]. There is a wide range of methods to in-
vestigate the deformability of RBCs [78]. It includes mi-
cropipette aspiration [79], atomic force spectroscopy [80],
optical tweezers [81], ektacytometry [82], and microfluidic
assays [83], just to name a few.

6. Cation Transporters in the RBC
Membrane, Including the Activation or
Suppression of these Transporters during
RBC Maturation

A wide array of ion transporters, particularly for Na+
and K+, are now recognized in the RBCmembrane. Nearly
all cells possess a Na+/K+ pump crucial for establishing
the Na+ and K+ gradient across the cell membrane. In-
terestingly, mature RBCs of dogs and cats lack this pump,
relying on alternative mechanisms for maintaining Na+
and K+ gradients (details see next paragraph (iii)) [84–86].
Besides the pump, the RBC membrane harbours various
carriers, including the Na+-K+-2Cl− symporter (NKCC),
K+-Cl− symporter (KCC), Na+-dependent amino acid
transporters, Na+(Mn+)/Mg2+ antiporter, Na+/Li+ an-
tiporter, Na+/H+ antiporter (NHE1), band 3 (anion trans-
porter), which can act as NaCO3

−/Cl− antiporter, and
Na+(K+)/H+ antiporter (e.g., [87]). Further details on the
Na+(K+)/H+ antiporter are provided below (see section 7).
The presence of ion channels adds complexity to the pic-
ture. Initially, only the Ca2+-activated K+ channel (Gár-
dos channel) was known [88], which years later was identi-
fied as KCNN4 [89]. This was followed by the description
of the non-selective, voltage-dependent cation (NSVDC)
channel in human RBCs [90–92]. Fig. 2 (Ref. [88,89,93–
104]) illustrates the current state of knowledge. The Gár-
dos channel and the Piezo1 channel have both been con-
firmed with molecular evidence [105]. It is highly prob-
able that Piezo1 accounts for most of the measurements
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Fig. 2. Overview of ion channels reported to be present in RBCs. Gárdos Channel (KCNN4) [88,89]; piezo1 [93,94]; voltage-
dependent anion channel type 2 (VDAC2) [95]; n-methyl-d-aspartate receptor (NMDA-R) [96]; transient receptor potential channel of
vanilloid type 2 (TRPV2) [97,98]; transient receptor potential channel of canonical type 6 (TRPC6) [99,100]; CaV2.1, voltage-dependent
Ca2+ Channel 2.1 [101,102]; pannexin 1 (PANX1) [103]; α-amino-3-hydroxy-5-methylisoxacol-4-propion acid receptor (AMPA-R)
[104]; X: high permeability for small ions (Na+, K+, Cl−) but also glutamate, ATP, Ca2+, acetylcholine, dopamine, tris etc. Drawn by
Keynote (Apple Inc., Cupertino, CA, USA).

previously attributed to the NSVDC channel [93,94,106].
However, there are additionally non-selective cation chan-
nels in the RBC membrane, such as VDAC2 – Voltage-
Dependent Anion Channel type 2 [95], NMDA-R – N-
Methyl-D-Aspartate Receptor [96], TRPV2 - Transient Re-
ceptor Potential Channel of Vanilloid type 2 [97,98], which
may also account for specific previous NSVDC channel
recordings. These channels have been unequivocally con-
firmed on the molecular level. However, there are also
channels where standard molecular techniques, such as
Western blots or proteomic mass spectrometry, fail or yield
inconsistent results. This can be attributed to the detection
limits of the methods combined with a low copy number of
the channels per cell [105]. Despite these challenges, the
effects of the channel openings can still be observed by ap-
plying specific agonists or antagonists or by a specific ac-
tivation of a signalling cascade and measuring an expected
consecutive cellular response. We refer to these as channels
described mainly based on functional evidence. Channels
in this category include TRPC6 – Transient Receptor Po-
tential Channel of Canonical type 6 [99,100] and CaV2.1
– Voltage-Dependent Calcium Channel 2.1 [101,102]. In
contrast, there are isolated, episodic reports of ion channels
in RBCs [103,104] that have not been confirmed by other

research groups; we categorize these as channels with un-
clear evidence. Further investigations are required to de-
termine the actual repertoire of ion channels in the RBC
membrane as well as their genesis and physiological func-
tions [107].

Another intriguing aspect is the variation in ion trans-
port pathways among RBCs of different species and their
modulation during RBC maturation. For instance, (i) KCC
is present in young but silent in mature human RBCs [108].
However, in mature RBCs it can be activated by different
manoeuvres [109]. KCC is present in low K+-type (LK)
sheep RBCs but absent in high K+-type (HK) sheep RBCs
[110,111]. The K+ content in sheep RBCs is under genetic
control, resulting in either low K+-containing (LK) or high
K+-containing (HK, similar to RBCs of most mammalian
species). For more details, we refer to [109,112]. No differ-
ences in the lipid composition between these twoRBC types
have been observed [113]. (ii) Voltage-activated cation
transport occurs in HK but not in LK sheep RBCs [114].
On the contrary, the low ionic strength (LIS) induced resid-
ual (leak) cation transport is present in LK but not HK sheep
RBCs ([115], for LIS effect see section 7). (iii) Despite the
absence of the Na+/K+ pump in mature dog and cat RBCs,
these cells possess a Ca2+/Na+ antiporter [116,117] absent
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in RBCs of other mammals, enabling Na+ gradient genera-
tion based on the Ca2+ gradient realised by the Ca2+ pump
(which is present in all mammalian cells) [118]. Assuming
the existence of NKCC in dog and cat RBCs, a K+ gradient
is ultimately established. (iv) Notably, Ouabain, a Na+/K+

pump inhibitor, requires much higher concentrations for rat
and mouse RBCs compared to human RBCs [119,120]. (v)
Approximately 10% of Japanese cows lack band 3 protein
crucial for gas exchange in their RBC membrane, raising
questions about their survival mechanism [121].

It has long been known that the activity of integral
membrane proteins, including ion transporters, can be in-
fluenced by the lipid environment within the membrane.
It is now broadly accepted that the function of membrane
proteins can be affected by the head group or fatty acid (or
both) of the surrounding lipids. In addition to such specific
effects, which are not fully understood, also non-specific
effects, influenced by the physical properties of membrane
lipids, e.g., the structure and the fluidity of the membrane,
play a role in the regulation of membrane proteins [122–
124]. In general, the investigation of lipid-protein interac-
tion is complicated since three different possibilities have
to be taken into consideration, the role of (i) bulk lipids, (ii)
boundary or annular lipids, representing the first shell of the
membrane protein coat, and (iii) specifically bound lipids
at the membrane protein surface. One example of such ef-
fects is the Na+/K+ pump affected by the lipid environment
via both general (physical) and specific (chemical) interac-
tions [125,126]. In the case of the RBC membrane, spe-
cific effects of membrane lipids on transport proteins have
been demonstrated. These findings stem from a study us-
ing different mammalian species, by reconstitution of puri-
fied proteins in lipid bilayer structures, e.g., liposomes, or
by altering the lipid composition of RBCs through the use
of a phospholipid exchange protein (PLEP) or using right-
site-out membrane vesicles [127]. Furthermore, the activ-
ity of certain transport proteins has been shown to depend
on the molar phospholipid/cholesterol ratio, which has been
modified by incubating RBCswith lipid vesicles containing
varying amounts of cholesterol (for details see [128]). An-
other aspect not yet fully explored is how the movement of
membrane lipids, particularly their transmembrane move-
ment, affects the activity of integral membrane proteins.
As this issue lies beyond the scope of this paper, interested
readers are referred to a variety of reviews (e.g., [129]).
However, it is worth mentioning that SM does not translo-
cate from the outer to the inner membrane leaflet. Con-
sequently, sheep and cow RBCs, which exclusively con-
tain SM in the outer membrane layer, do not require scram-
blases, as reported by Nguyen et al. [130].

While numerous ion transporters exist in the RBC
membrane, our understanding of pathways for trace metal
ions such as zinc, copper, cobalt, nickel, chromium, man-
ganese, iron, and cadmium remains limited [131]. Iden-
tifying and characterizing specific transporters for these

ions is imperative for future research. Additionally, elu-
cidating the dynamics, including transporter movement
during ion translocation, is essential alongside determin-
ing the 3D structure of membrane transport proteins post-
crystallization.

7. The Mechanism of Residual (Leak) Ion
Transport: Is there a Na+(K+)/H+

Antiporter in the Human RBC Membrane?
How does Ion Transport Depend on the Fatty
Acid Composition of the RBC Membrane?

The question remains whether electrodiffusion of a
particular ion can occur in the human RBCmembrane when
all specific pathways for this ion (pumps, carriers, chan-
nels) are inhibited. It has long been assumed that the re-
maining residual (leak) ion flow is attributable to simple
electrodiffusion [132–136]. In several publications, we
have demonstrated that the observed residual fluxes of Na+
and K+ are mediated by a Na+(K+)/H+ antiporter (e.g.,
[87,137,138]). This notion stems from studies [87,137,138]
of residual K+ efflux in low ionic strength (LIS) solu-
tions. It has been established for some time that the residual
K+ efflux, specifically the (ouabain + bumetanide + ethy-
lene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic
acid (EGTA))-insensitive K+ efflux, significantly increases
when RBCs are transferred from physiological solutions
to LIS media [139]. Ouabain, bumetanide, and EGTA
are used to inhibit the K+ transport mediated by the
Na+/K+ pump, the Na+-K+-2Cl−-symporter, and the Gár-
dos (Ca2+-activated K+) channel, respectively.

Experimental data illustrating this phenomenon are
presented in Fig. 3. Theoretically, an increase in K+ efflux
can be anticipated based on electrodiffusion mechanisms.
This expectation arises from a shift of transmembrane po-
tential, from approximately –12 mV in physiological solu-
tions to roughly +50 mV in LIS solutions due to reduced
NaCl concentration. However, the observed flux-increase
surpassed predictions based on the Goldman flux equation:

Jj = Pjz
2
j

VmF 2

RT
× cji − cj0 e

−
zjVmF

RT

1− e−
zjVmF

RT

with Jj – outward flux of the ion j, Pj – membrane per-
meability for ion j, Vm – transmembrane potential, cji –
intracellular concentration of ion j, cjo – extracellular con-
centration of ion j, and zj – valence of ion j. F, R, and
T – are the Faraday constant, gas constant, and absolute
temperature, respectively. Thus, the Goldman flux equa-
tion (equation above) describes the electrodiffusion of an
ion in dependence on the driving force, which includes the
ion concentrations of both sides of the membrane and the
transmembrane potential [140]. For an illustration of the
effect, see Fig. 3.
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Fig. 3. K+ efflux of human RBCs depending on the mem-
brane potential, i.e., on the extracellular NaCl concentration
of isotonic solution (the NaCl reduction was compensated by
sucrose). The figure (hand drawing) represents one of the oldest
data of K+ efflux in low ionic strength (LIS) solutions, probably
obtained from experiments carried out before the 1960s and is a
personal gift of H.J. Schatzmann (former Director of the Pharma-
cological Institute of the University Bern (Switzerland) to Ingolf
Bernhardt.

Surprisingly, the K+ efflux in bovine and HK sheep
RBCs remained largely unchanged in LIS solutions com-
pared to physiological ones [141–143]. Thus, we conducted
comprehensive measurements of all four residual fluxes for
K+ and Na+ — efflux and influx for both — in human
RBCs. Surprisingly, all four fluxes exhibited significant
increases in solutions with decreasing ionic strength [137].
This phenomenon defies explanation solely through elec-
trodiffusion, as it would necessitate two fluxes increasing
and two decreasing under uniform changes of the driving
force for all four. Various mechanisms were considered,
with several possibilities eliminated based on arguments
presented as early as 2003 [87]. The most plausible ex-
planation for the observed effect was the involvement of a
Na+(K+)/H+ antiporter [87,137,138]. A K+/H+ exchange
has been also described in trout RBCs [144].

Despite accumulating evidence supporting this hy-
pothesis, we unfortunately failed to demonstrate the pres-

ence of such a transporter in the RBC membrane at the
molecular level. To date, 13 isoforms of Na+/H+ an-
tiporters have been identified in biological membranes,
with isoforms 1–9 relatively well-characterized [145].
While NHE1–NHE5 are typically found in cell membranes,
NHE6–NHE9 have been primarily detected in organelle
membranes, leading to the assumption that NHE6–NHE9
are absent from cell membranes [146]. However, recent ev-
idence has suggested the presence of NHE9 in the plasma
membrane of inner ear hair cell bundles [147].

Furthermore, NHE7 and NHE9 not only exchange
Na+ but also K+ for H+. However, attempts to detect
the presence of NHE7 in the human RBC membrane using
mass spectrometry and fluorescent antibodies were unsuc-
cessful. Our focus on NHE7 stemmed from limited knowl-
edge about NHE9 at the time of our investigations. Future
research should explore the hypothesis of NHE9’s presence
in the human RBC membrane. Recent support for the pres-
ence of a Na+(K+)/H+ antiporter in the human RBCmem-
brane comes from various other findings.

As alreadymentioned, unlike human RBCs, HK sheep
and bovine RBCs did not exhibit increased residual K+ ef-
flux in LIS solutions, despite experiencing similar changes
of the transmembrane potential. Our research demonstrated
that residual K+ efflux of RBCs of different species corre-
lates with lipid composition of the RBC membrane, par-
ticularly the content of arachidonic acid. Furthermore,
we observed an increased residual K+ flux in LIS solu-
tions of new-born calf RBCs, which diminished over time
(blood taken between one day and six weeks after birth
of the calves), as their arachidonic acid content decreased
(correlation coefficient between flux in LIS solution and
arachidonic acid content of the RBC membrane of the
calves: 0.951) [141,143]. A recent study has shown that
NHE9 activity is modulated by phosphatidylinositol-4,5-
bisphosphate (PIP2), with potential implications for its in-
teraction with arachidonic acid-enriched membranes [148].
This provides a plausible explanation for our earlier find-
ings. In summary, residual transport of Na+ and K+ across
the RBC membrane appears to be specific and mediated
by a cation/proton antiporter in humans. Future research
should aim to elucidate how monovalent cations traverse
the RBC membrane when all known specific pathways
(pumps, channels, carriers) are inhibited.

8. Conclusion
Although we have a substantial understanding of the

structure and function of the RBC membrane, many ques-
tions remain unanswered. Notably, the RBC was almost
always the first cell type studied when new methods for
investigating biological cells were introduced. The only
exception was the patch-clamp technique since RBCs are
“designed” to pass through small capillaries, which made
it difficult to create pipette geometry where RBCs could be
“patched” and not just “sucked in the pipette” [149]. How-
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ever, today, patch-clamp studies of channels in the RBC
membrane are routine (e.g. [150]) and can even be per-
formed using automated patch-clamp devices (e.g. [151]).

In this review we focussed on original findings, some
dating back to the 1960s or 1970s, as we recognised that
these data are often forgotten or unknown to younger scien-
tists. Occasionally these measurements are repeated many
years after the original investigations, yet the earlier work
is often ignored and not cited in subsequent publications.
Building on earlier investigations and employing modern
techniques, it will be possible to address unsolved questions
regarding RBC membranes. Some of these questions have
been discussed in this paper.
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