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Abstract

English

The electrification of private transport and regulatory requirements to reduce emis-
sions require the energy efficiency of electric vehicles to be maximized. In addition
to increasing battery capacity, optimizing the overall energy consumption is es-
sential. In particular, the low-voltage electrical system, which supplies numerous
auxiliary components, represents a previously underestimated influencing factor.
This dissertation pursues a data-driven approach to analyze and forecast the energy
consumption of electronic control units and their peripherals. For this purpose, a
scalable data processing pipeline is developed that imports, selects, processes and
prepares measurement data for machine learning models according to the latest fea-
ture engineering and selection methods. A suitable regression algorithm is selected
and validated for power consumption prediction. Explainable Al is integrated into
the pipeline to increase transparency and the causes of energy consumption. This
enables a detailed analysis of the variables influencing consumption and makes it
easier for users to interpret the model decisions. This provides engineers with valu-
able insights for optimizing the vehicle electrical system architecture and component
operating strategies. The methods developed contribute to the data-driven increase
in efficiency of electric vehicle platforms and ultimately enable a more precise range
forecast already during the development phase.



Zusammenfassung

Deutsch

Die Elektrifizierung des Individualverkehrs sowie regulatorische Vorgaben zur Emis-
sionsreduktion erfordern eine Maximierung der Energieeffizienz von Elektrofahrzeu-
gen. Neben der Erhohung der Batteriekapazitat ist die Optimierung des Gesamten-
ergieverbrauchs essenziell. Insbesondere das Niederspannungsbordnetz, das zahl-
reiche Nebenverbraucher versorgt, stellt einen bislang unterschitzten Einflussfaktor
dar. Diese Arbeit verfolgt einen datengetriebenen Ansatz zur Analyse und Prog-
nose des Energieverbrauchs von Steuergeraten und deren Peripherie. Hierzu wird
eine skalierbare Datenverarbeitungspipeline entwickelt, die Messdaten importiert,
auswahlt, verarbeitet und fiir Machine-Learning-Modelle gemafl neuester Feature
Engineering Methoden aufbereitet. Zur Verbrauchsvorhersage erfolgt die Auswahl
und Validierung eines geeigneten Regressionsalgorithmus. Zur Erhohung der Trans-
parenz und der Ursachen des Energieverbrauchs wird Explainable Al in die Pipeline
integriert. Dies ermoglicht eine detaillierte Analyse der Einflussgrofien auf den
Verbrauch und erleichtert die Interpretation der Modellentscheidungen durch die
Anwender. Dadurch erhalten Ingenieure fundierte Einblicke zur Optimierung der
Bordnetzarchitektur und Betriebsstrategien der Komponenten. Die entwickelten
Methoden leisten einen Beitrag zur datengetriebenen Effizienzsteigerung elektrischer
Fahrzeugplattformen und ermoglichen schlussendlich eine prazisere Reichweiten-
prognose bereits in der Entwicklungsphase.
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Abrégé

Francais

L’électrification du transport individuel et les réglementations sur la réduction des
émissions nécessitent d’optimiser 'efficacité énergétique des véhicules électriques.
Au-dela de D'amélioration des batteries, 'optimisation de la consommation
énergétique globale est cruciale. Le réseau de bord de basse tension, alimentant
de nombreux systemes auxiliaires, représente un facteur d’influence jusqu’ici sous-
estimé. L’étude présente adopte une approche axé sur les données pour analyser et
prédire la consommation énergétique des unités de controle et de leur périphérie. Un
pipeline de traitement des données évolutif est développé pour importer, sélectionner
et traiter les données de mesure, les préparant pour des modeles de I'apprentissage
automatique selon les techniques d’ingénierie des caractéristiques actuelles. Un algo-
rithme de régression sera validé pour prédire la consommation électrique. L’intégra-
tion d’Explainable Al dans le pipeline augmente la transparence et la compréhension
des facteurs de consommation, facilitant l'interprétation des décisions du modele.
Les ingénieurs obtiennent ainsi des apercus précieux pour optimiser I'architecture
et les stratégies d’utilisation des composants de réseau de bord. Ces méthodes
contribuent a I'amélioration data-driven de l'efficacité des plateformes de véhicules
électriques et permettent des prévisions d’autonomie plus précises déja dans la phase
de développement.
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Abbreviations and Notations

Physical Units

Table 1: Physical symbols, their units, and meanings.

Symbol Unit Meaning

Q C Electric charge
Wea J Electric work
U \Y Electric voltage
I A Electric current
R Q Electric resistance
P W Electric power
t S Time

f Hz Frequency

Vs m/s Vehicle speed

T °C Temperature
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Mathematical Notation

Table 2: Mathematical notation used in this dissertation and their meanings—
arranged by logical groups.

Group Notation Meaning
Data X e R Matrix of training data: m datapoints
Representation (rows), n features (columns).
Y € Rm*4 Matrix of target data: m datapoints (rows),
q target variables (columns).
n Number of features in the dataset.
Total number of datapoints in the dataset.
q Number of target variables.
x; Feature vector for the i-th datapoint.
Yi Target value for the i-th datapoint.
Model I6] General representation of model parameters.
Parameters Bo Intercept in regression models.
51 Curve slope in regression models.
w; Weight for the i-th input feature in a model.
b Bias term in a model (e.g. perceptron).
Metrics and R? Coefficient of determination, measure for the
Evaluation fitting quality in regression.
L Loss function.
] Mean of all target values (labels).
o? Variance of a dataset.
ke Specific metric or KPI from the set /C.
K Set of metrics and KPIs.
ML Algorithms  f(z), g Predicted output of a model for input x.
and Hyperpa- A Set of machine learning algorithms.
rameters ae A A specific machine learning algorithm from
the set A.
0 Set of possible hyperparameter combina-
tions.
0* Optimal hyperparameter combination.
i Learning rate in optimization algorithms.
PH(X,y) Model performance for algorithm a, metric

k, and dataset (X, y).
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Table 2 — continued from previous page

Group Notation Meaning
Weighted Sum D Set of all decision options.
Analysis deD A specific decision option.
C Set of decision criteria.
celC A specific decision criterion.
V Set of weights for decision criteria.
ve €V Weight assigned to criterion c.
Sey Normalized score of decision option d for cri-
terion c.
Uy Total utility value of decision option d.
Aopt (Qopt) Decision option with the highest utility
value.
Domain-Specific 7T Set of test vehicles equipped with measure-
Terms ment equipment.
D, Number of test drives for test vehicle ¢, where
teT.
Vs, Speed of test vehicle .
Additional a(x) General activation function.
Notations a(v) Activation function with parameter 4.
tanh Hyperbolic tangent activation function.
o Set of feature engineering methods with a se-
quence.
D, Optimal set and sequence of feature engineer-

ing methods.
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Table 3: Abbreviations and acronyms used in this dissertation.

Abbreviation Meaning
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Al
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BEV
BLF / .blf
BMS
BO
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CPU
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DC
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ECU
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EV
FCEV
GB
GenAl
GmbH
GPT
GPU

Alternating Current
Analog-to-Digital

Advanced Driver Assistance System(s)
Artificial Intelligence

Akaike Information Criterion
Accumulated Local Effects
Artificial Neural Network
Application Programming Interface
Automotive Safety Integrity Level
Body Controller Front

Battery Electric Vehicle

Binary Logging File

Battery Management System
Bayesian Optimization
Classification and Regression Trees
Central Infotainment Display
Compressed Natural Gas

Central Processing Unit
Cross-Validation

Database CAN

Direct Current

Deep Learning

Deutsches Institut fiir Normung
Electronic Control Unit

European Union

Electric Vehicle

Fuel Cell Electric Vehicle

Gradient Boosting

Generative Artificial Intelligence
Gesellschaft mit beschrankter Haftung
Generative Pre-Trained Transformer

Graphics Processing Unit
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IQR
KPI
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LPG
LSTM
LTS
MAE
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MDF
MLP
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MOST
NaN
NN
OEM
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OS
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PCC
PFI
PNG / .png
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Grid Search
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Integrated Development Environment
Impurity Feature Importance
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Leave-One-Out Cross-Validation
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Long-Term Support

Mean Absolute Error

Mean Absolute Percentage Error
Median Crossing Rate

Measurement Data Format
Multi-Layer Perceptron

Mean Squared Error

Media Oriented Systems Transport
Not a Number

Neural Network

Original Equipment Manufacturer
One-Hot Encoding

Ordinary Least Squares

Open Neural Network Exchange
Operating System

Percentage Average Absolute Deviation
Percentage Average Weighted Deviation
Pearson Correlation Coefficient
Permutation Feature Importance
Portable Network Graphics

Primary Research Question

Positive Temperature Coefficient Thermistor

Random Access Memory
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ReLU Rectified Linear Unit

RF Random Forest

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network
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RS Random Search

SD Standard Deviation

SGD Stochastic Gradient Descent
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SNA Signal Not Available
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UML Unified Modeling Language

US United States
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WP Work Package
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XAI Explainable Al
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1 Introduction

With the increasing social awareness of climate and environmental protection,

along with increasingly stringent air pollution control regulations, there are physical
limits to reducing emissions from conventional combustion engines, which are still
prevalent in global road traffic [1]. For example, the implementation of the EU7
emissions standard [2]—despite alleviating reworks—presents vehicle manufacturers
(original equipment manufacturers, OEMs) with technical and economic challenges.
This means that the development work required for this is increasingly only proving
to be economical in mid and luxury class vehicles, as the contribution margins for
compact cars are generally lower [3]. Additionally, the threat of fines from the Euro-
pean Union (EU) and other regulatory bodies like the United States Environmental
Protection Agency (US EPA) for exceeding fleet CO5 values incentivizes a shift in
development efforts away from fossil fuels towards more sustainable propulsion tech-
nologies [4, 5].
Beyond environmental protection, governments also aim to reduce their dependency
on politically unstable rentier states in the Middle East and Northern Africa that
possess large shares of fossil fuels and thus can determine the prices to a certain
extent [6, 7).

1.1 Motivation and Background

Given the context of the geopolitical tensions and the dependencies on crude
oil, the following section provides an overview of the current state of the challenges
causing the intended shift from fossil fuel-based towards sustainable zero-emission
mobility. This transition is driven by increasing environmental concerns, regulatory
pressures, and economic factors that necessitate innovative approaches in trans-
portation technology.

1.1.1 Sustainable Mobility and Energy Efficiency

In 2024, there are several sustainable propulsion technologies for zero emission
vehicles (ZEV)—which do not comprise fossil gases such as LNG, LPG and CNG—
controversially discussed by the public. The most popular technology is thus the
electric drivetrain combined with a traction battery as the primary energy source.
Such vehicles are commonly referred to as battery electric vehicles (BEVs or EVs).
Regarding ZEV popularity, EVs are followed by hydrogen-powered fuel cell elec-
tric vehicles (FCEVs) despite having a relatively small share of the total fleet [8].
Nonetheless, both technologies promise to reduce COs emissions, provided that the
required electric power (thus also the hydrogen) is generated from renewable ener-
gies such as solar or wind power [9]. Statistics from July 2024 indicate that EVs
constitute a much larger share (approximately 4.7 million units) of the total vehicle
fleet in the EU (EU27) compared to hydrogen-powered cars (approximately 4,600
units only) [10].
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Key Barriers to E-Mobility Adoption

E-mobility is considered to be a key enabler for zero emission mobility. Nonethe-
less, with the recent discontinuations of several EV funding programs in some Euro-
pean countries (e.g. Germany ceased the so-called Umweltpramie in January 2023)
[11, 12, 13] sales tend to flatline or even decrease [14]. This shows that consider-
able barriers for the technology adoption still persist, such as the inadequate and
inconsistent charging infrastructure, high upfront costs of EVs, limited vehicle avail-
ability, consumer misconceptions about EV performance, variability in government
incentives and policies, and range anxiety [15].

Efficiency as a Lever for E-Mobility Adoption

Focusing on range anxiety, there are two ways for OEMs to lower this barrier
and accelerate EV adoption: either by increasing the battery size or by reducing the
vehicle’s energy consumption [16]. Since high-capacity traction batteries, which are
mostly based on lithium-ion technology as of today, not only constitute a significant
cost component of the vehicle but also contribute to its overall weight, OEMs strive
to focus on developing vehicles that use less energy, hence that are more efficient.
They can do so in various domains, which in addition to weight, include aerodynam-
ics, tires, and the drivetrain. With increasing efficiency in these other domains—e.g.
an EV with the electric powertrain can reach a well-to-wheel efficiency up to seven
times higher than the internal combustion engine (ICE), depending on the source
of the electrical energy [17]—the significance of the proportion of the low-voltage
auxiliary components (e.g. displays, infotainment computers, or seat heating) in-
creases. Thus, these components become a considerable lever to increase overall
energy efficiency, too. On average, the latter accounts for around 9 % of the total
energy consumption of an EV during homologation tests where only a minimum of
power consumers are active [18]. Figure 1.1 depicts the five primary energy effi-
ciency domains, including the low-voltage power net with the auxiliary components
(marked in green) as the focus lever discussed in this thesis.

25
Sesiny

Domains of

Energy
Efficiency
in Vehicles

Auxiliary Power Net

Figure 1.1: The five main levers of energy efficiency in vehicles (own representation
according to [16, 18, 19, 20, 21]).
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1.1.2 Economic Aspects of Energy Efficiency

The auxiliary power net is a complex system due to the high number of power

consumers which include electronic control units (ECUs) and their corresponding
sensors and actuators. Furthermore, these components are interconnected through
various communication technologies and power supplies, forming a complex elec-
trical and electronic (E/E) architecture (more details are outlined in Section 3.4).
Adding to this complexity, the system behavior is determined by both the hardware
and software of the components, as well as the underlying operational strategies of
the vehicle’s (customer-recognizable) functions.
Constrained by this complexity, efficiency engineers require considerable experience
and knowledge to understand and optimize the system towards a reduced consump-
tion while maintaining the level of functionality and comfort expected by the cus-
tomers. This process is not only time-consuming but also costly as extensive and
heavy measurement equipment is often needed in many development vehicles to
measure the respective power consumption and inter-ECU communication at the
same time.

1.2 Research Problem

This section addresses the main research problem which is to be assessed within
the scope of this thesis. A motivation for a scientific approach is given by the
formulation of a research gap.

1.2.1 General Problem Statement

Given the current challenges of the mobility transition, new methods are required
for accurately measuring energy consumption and analyzing the overall E/E system
and architecture. A key issue is developing approaches that generate this knowledge
without necessitating deep expertise in each individual vehicle subsystem, while re-
maining economical and efficient. This involves minimizing the need for extensive
measurement equipment and personnel involved. Furthermore, an improved process
should aim to streamline internal workflows within the OEM’s organization, reduc-
ing both interface dependencies and overall organizational complexity [22, 23]. To
achieve this, the data generated by the inter-ECU communication of selected test
vehicles is leveraged to extract valuable information about the functionality of the
E/E architecture and the in-vehicle power net. At this point, it is worth mentioning
that the focus of this work is on making the vehicle data usable in terms of gaining
knowledge about energy consumption. The derivation of specific measures to reduce
consumption, on the other hand, will be the subject of future work based on this.

1.2.2 Identification of the Research Gap

An extensive literature review has shown that no prior work has addressed the
aforementioned research problem as formulated above (cf. Sections 1.2 and 3.8.2).
Databases and search engines related to big data analysis, artificial intelligence (Al),
and the automotive industry were thoroughly examined, including among others Sci-
enceDirect, IEEE Xplore, SpringerLink, arXiv.org, ACM Digital Library and Google
Scholar. In addition, selected analog literature was also consulted.
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The review permits the conclusion that a research gap exists, which can be addressed
by defining appropriate objectives and answering subsequent research questions (cf.
Section 2). Specifically, the gap consists in the absence of a data-driven approach in
the state of the art (cf. Section 3) which leverages ECU communication and power
consumption data in the low-voltage power net of vehicles.

Current studies predominantly focus on isolated aspects such as energy efficiency,
ECU communication or Al applications in automotive systems other than the low-
voltage power net (cf. Table 3.2). However, none of them integrates these elements
into a cohesive, data-driven approach that deals with the complexity of the E/E ar-
chitecture in modern vehicles (leveraging data for system knowledge generation and
energy consumption prediction on ECU level) either. This gap highlights the need
for an innovative framework providing actionable insights into energy consumption
patterns without requiring extensive, costly and heavy measurement equipment nor
in-depth domain expertise in every vehicle subsystem.

1.3 Objectives and Limitations

Derived from the research gap, predefined objectives are formulated which need
to be achieved during the course of this thesis. These objectives can be divided into
general and more specific research objectives.

Generally, the data-driven energy consumption modeling and prediction are intended
to support development engineers and are not to be used in the context of a customer
feature inside the vehicle.

1.3.1 General Objectives

(i) Standardization Using Data Science Best Practices: Develop a stan-
dardized methodology or framework to derive ECU consumption models from
raw data, with an emphasis on economic practicability.

(ii) Feasibility of Power Consumption Prediction: Demonstrate that power
consumption prediction using inter-ECU communication data and previously
trained ECU models is generally feasible.

(iii) Model Explainability: Demonstrate the explainability of selected predic-
tion models to showcase transparency of the influential factors of the power
consumption.

1.3.2 Specific Objectives

(i) Create a Representative Database: Establish a comprehensive and repre-
sentative database for ECU model creation, ensuring that it includes a variety
of vehicle types, driving conditions, and environmental factors to capture a
broad range of scenarios.

(ii) Define Performance KPIs and Metrics: Use meaningful key performance
indicators (KPIs) to assess the performance of the developed machine learning
(ML) pipeline. These KPIs shall include metrics such as prediction accuracy,
computational efficiency (speed), and at least one project specific metric taking
into account the electric charge consumed per test drive.



1. Introduction

(iii) Identify Key Features: Establish a meaningful and automated mechanism
to work out relevant features for the individual power consumption models
prior to the training phase.

(iv) Conduct Objective Modeling Algorithm Selection: Define a methodol-
ogy to objectively select a ”most suitable” ML modeling algorithm appropriate
for the given research problem.

1.3.3 Scope Limitations

In addition to the objectives, the limits to the scope of this thesis are defined, al-
lowing a clear focus on the aforementioned research objectives only. The limitations
include:

Data Availability and Quality

The accuracy and reliability of the energy consumption predictions are dependent
on the quality and comprehensiveness of the data collected from a given set of test
vehicles. Since the number of available vehicles for data collection is limited so is
the amount of data available for this research. Driving scenarios not represented in
the datasets may not be accurately predictable. Furthermore, the collection method
itself can lead to noise and incomplete data since it is subjected to the Nyquist-
Shannon sampling theorem, which states that a signal must be sampled at least
twice the highest frequency present in the signal to be accurately reconstructed [24]
(which may not be safeguarded in this project).

Finally, the research focuses on specific types of ECUs and their communication
data from a specific OEM, which may not be representative of all ECUs or vehicles
in the automotive industry.

Computational Ressources and Methodology

The resources of the available computation hardware limit computation times for
model generation and evaluation. Additionally, the random access memory (RAM,
the working memory) sets boundaries for the amount of training data that can be
processed by one machine at a time.

This study shall leverage current state-of-the-art technologies in ML and data science
at the time of its accomplishment, but may not encompass future advancements or
emerging technologies.

Integration and Implementation Limitations

The entire data-driven power consumption prediction pipeline including the de-
rived ECU models is not supposed to be optimized to run on lower-performance
edge hardware since it is not supposed to be applied as part of a customer function
inside a vehicle, as stated earlier, where computational power is usually sparse.
Any code implementation made is limited to be utilized with the development tools,
including the integrated development environment (IDE), the operating system (OS)
of the host machine and the software packages only. Generalizability of the latter is
not tested.
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1.4 Organization of the Thesis

This thesis is divided into five main work packages (WPs), each addressing a spe-
cific aspect of the research. They are depicted in Fig. 1.2 and described subsequently.

1.4.1 Research Questions

The first WP is dedicated to the definition and formulation of the research ques-
tions which guide this study. They are derived from the identified research gap
(cf. Section 1.2.2) and serve to focus the investigation on specific, measurable, and
achievable goals. This WP is split into three parts:

e Identification of the Questions: Derive primary and subordinate dedicated
research questions.

e Justification of the Questions: Provide a reasoning for each question,
explaining how it addresses the identified research gap.

e Link to Objectives: Show the connection between the research questions
and the specific objectives outlined in Section 1.3.

1.4.2 State of the Art

The second WP addresses the state of the art (cf. Section 3) and outlines the
current technical development and scientific research in the relevant domains for this
thesis. It covers both automotive and computer science, with a particular focus on
the field of ML as well as fundamentals of electrics. Another subsection of the state
of the art serves to underline the research gap by reviewing existing literature.

1.4.3 Preliminaries, Methodology and Modeling

The third WP involves the development of the required preliminaries and of a
methodology necessary for training ECU power consumption prediction models as
well as the execution of the modeling process itself (cf. Section 4).

e Data Collection and Transformation: Describes the process of gathering
relevant data from selected test vehicles, including details on the types of data
collected and the methods used for acquisition.

e Evaluation Metrics: Defines appropriate metrics for evaluating the perfor-
mance of the trained ML models, ensuring that the chosen metrics align with
the research objectives and industry standards.

e Pipeline Composition and Implementation: Details the creation and
implementation of a holistic processing pipeline, including data preprocessing
steps, feature selection, hyperparameter tuning, the application of ML algo-
rithms as well as KPI generation and documentation.



of ML models provides trial results on a given set of power consumers allowing

generate ECU consumption models, predictions, and explanations. A selection
the conclusion on an optimal algorithm choice among them.

uation part, the data processing pipeline is applied to the collected data to

e Modeling Algorithm Selection: Includes the actual modeling and eval-
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1.4.4 Discussion

The fourth WP focuses on the discussion of the results presented in Section 4. It
comprises a final assessment of the performance of the generated ECU consumption
prediction models given the application of the data processing pipeline together
with the selected ML modeling algorithm. Additionally, it provides answers to
the research questions, based on the findings from the data analysis and model
evaluations. The model explainability and the limitations are also discussed. Finally,
the implications of these findings for the automotive industry and for the way-of-
working for development engineers are assessed.

1.4.5 Conclusion and Future Work

The fifth and final WP provides a summary of the thesis, highlighting the key
developments and underlining the contributions in Section 6. It also outlines po-
tential areas for future research and development in the industrial fields considered.
This includes possible extensions of the approach presented.

1.5 Main Contributions and Prior Publications

The main contribution of this thesis is the development of an automated and
integrated pipeline that is capable of processing high-dimensional in-vehicle commu-
nication data. Additionally, there is the application of state-of-the-art ML modeling
algorithms to predict energy consumption of ECUs and other power consumers in
the vehicle with the possibility to examine the model with the help of explainable Al
(XAI) techniques. This novel approach thus reduces the need for costly (time and
money) measurement equipment in certain use cases during the development phase
of a passenger car. The data-driven approach provides development engineers with
insights of the data, the model and the energy consumption in a highly automated
way so that as little data science knowledge as possible is needed. To this end, the
pipeline comprises the following features which themselves are again a contribution
investigated on and realized within the scope of this thesis project:

e Handling High-Dimensional Data: The data which is communicated in
vehicles is vast and complex due to its high dimensionality and frequency.
Hence, it is a necessity to develop a way to automatically handle the data
upon importing and before working with it e.g. by training an ML model.
This comprises the identification of meaningful data which contributes to the
ML model’s predictive quality, the handling of missing values, the correct
resolution of the various data types and adequate scaling where the need arises.
Since the in-vehicle data is so unique and different for each power consumer
(ECU) a novel and highly automatable approach is developed.

e Model Comparison and Selection: Together with Al and domain experts
a set of criteria is defined and weighted according to which the suitability of
an already existing ML modeling algorithm is selected for the main problem
of this research (cf. Section 1.2). The respective metrics provide the degree of
fulfillment in a weighted sum analysis (WSA). Given this fact, a selection of
possibly suitable models is evaluated.
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e Explainability: To explain individual predictions or understand overall fea-
ture importance and feature interactions leading to a certain ECU power con-
sumption state-of-the-art XAl techniques are applied to provide intuitive in-
sights into the data and the ML model’s behavior. The application of these
techniques to the in-vehicle data helps to understand how different factors such
as the environment, the ECU configuration or the driver’s behavior influence
energy consumption.

e Showcasing Real-World Application: The pipeline and evaluations are
applied on real-world datasets collected in a meaningful way from specially
equipped test vehicles proving its validity and practical utility for productive
application in vehicle development activities. Furthermore, the scalability of
the approach demonstrates application perspectives for a broad variety of data
and power consumers without the need to adapt the code basis.

e Interdisciplinary Approach: Bridging the gap between automotive engi-
neering, data science, and ML demonstrates the interdisciplinary nature of
modern engineering challenges which are no longer limited to one specific field
but which are intertwined with other adjacent disciplines.

e Contribution to the Mobility Transition: Contributing to the broader
goal of sustainable mobility by facilitating the optimization of energy consump-
tion in vehicles especially of those with an electric drive train, this dissertation
ultimately contributes to reduced emissions and better overall resource utiliza-
tion.



1.5. Main Contributions and Prior Publications

During the course of this research project, several related publications have been
achieved by the author together with several co-authors which are summarized in
Table 1.1.

Table 1.1: Publications related to this dissertation and underlying research project.

No. | Author(s) Year | Title and DOI
1 Miiller, Julian; 2023 | The Effect of Target Variable Rescaling on Energy
Sprave, Joachim; Consumption Prediction in a Vehicle Powernet us-
Frey, Georg ing Multi-Target Regression Trees: A Study From
the Automotive Industry [25],
ICMLT 2023 Conference,
DOLI: 10.1145/3589883.3589905
2 Miiller, Julian; 2023 | Nluminating the Black Box: A Comparative Study
Czekalla, Lukas; of Explainable Al for Interpreting Time Series
Schuchter, Florian; Data in Vehicle Power Net Consumption Models
Frey, Georg [26],
ICMLA 2023 Conference,
DOI: 10.1109/ICMLA58977.2023.00031
3 Miiller, Julian; 2024 | Enhancing Power Net Efficiency with Data-Driven
Schuchter, Florian; Consumption Prediction - A Machine Learning Ap-
Brauneis, Daniel; proach [27],
Frey, Georg IVS 2024 Conference,
DOI: 10.1109/1V55156.2024.10588508
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1. Introduction

1.6 Note on Code Examples and UML Diagrams

In selected subsections, this thesis contains simple program code excerpts in
the Python programming language, which serve in particular to provide a better
understanding of the methodology developed. The reader is therefore advised to
possess a basic knowledge of this programming language. Similarly, the Unified
Modeling Language (UML) is used to represent code object relations.
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2 Research Questions

In this chapter the primary and secondary research questions guiding and defin-
ing the workflow of this thesis are defined. The questions are derived from the
research gap outlined in Section 1.2.2 and align with the overall objectives from
Section 1.3. Addressing these questions will contribute to the state of the art in the
prediction of energy consumption in vehicle power nets using high-dimensional net-
work communication data, an integrated ML pipeline design and in the productive
application of XAI.

2.1 Primary Research Questions

The primary research questions (PRQs) comprise the main focus of this thesis
and address the primary aspects of the research gap:

(i) PRQ1: How can high-dimensional ECU network communication
data be utilized to predict energy consumption in vehicle power
nets?

(i) PRQ2: What are the most suitable ML modeling algorithms and
preparatory techniques for predicting ECU energy consumption and
how can they be integrated into a holistic pipeline?

(ii) PRQ3: How can the explainability of the trained ECU models be
ensured whilst maintaining high prediction accuracy at the same
time?

2.2 Secondary Research Questions

The secondary research questions (SRQs) support the primary ones by addressing
specific subproblems:

(i) SRQ1: What network communication signals are relevant for pre-
dicting energy consumption in vehicle power nets, and what pre-
processing and feature selection techniques are needed to handle
high-dimensional data effectively?

(i) SRQ2: Which evaluation metrics are appropriate for assessing the
performance of the ML models?

(iii) SRQ3: How can the data processing pipeline be defined to ensure
efficient and automated model generation?

(iv) SRQ4: What methods can be employed to interpret and explain the
predictions made by the ML models?
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(v) SRQ5: Is there one ”most suitable” modeling algorithm to be se-
lected in order to reduce the complexity of the pipeline?

Both PRQs and SRQs are eventually answered in Sections 5.1.4 and 5.1.5.

2.3 Justification and Link to Objectives

The primary and secondary research questions are justified as follows: PRQ1
addresses the core challenge of utilizing high-dimensional network communication
data for energy consumption prediction, which is central to this thesis. This ques-
tion aims to fill the primary research gap identified by exploring how such data
can be leveraged to provide predictions without direct measurement of the currents.
PRQ2 focuses on identifying and integrating adequate ML modeling algorithms, a
critical step in developing the training and prediction pipeline. This question aligns
with the objective of using data science best practices to derive ECU consumption
models from raw data while considering economic practicability. PRQ3 ensures that
the models used are not only accurate but also interpretable (or explainable), ad-
dressing the need for XAl techniques whose application is a key objective of the
thesis. Ensuring model transparency and understanding is crucial for gaining the
trust of development engineers and fostering Al adoption in their daily work.
SRQ1 supports PRQ1 by identifying relevant data types and necessary preprocessing
steps. These questions are essential for finding the most important features relevant
to power consumption prediction, thereby enabling effective model training. SRQ2
supports PRQ2 by establishing a way how to measure model performance effec-
tively, ensuring that meaningful KPIs are defined and evaluated. This alignment
is crucial for assessing the developed ML pipeline’s effectiveness and robustness.
SRQ3 ensures the automation of the data processing pipeline, supporting the prac-
tical application of PRQ2. By optimizing the data processing steps, the research
aims to handle large volumes of inter-ECU communication data efficiently and in an
automated way to lower the AI knowledge needed by future users targeting at do-
main instead of Al experts. SRQ4 directly supports PRQ3 by focusing on methods
for interpreting and validating model predictions, ensuring the explainability of the
AT models. The justification for SRQ5 is the practical need to balance predictive
performance with simplicity of the pipeline. While diverse ML algorithms can be
employed to model energy consumption, each one introduces unique requirements
for feature engineering and selection, hyperparameter tuning, and computational
resources needed. Identifying a "most suitable” algorithm simplifies the pipeline,
reduces development and operational complexity and enhances the interpretabil-
ity and maintainability of the model. Additionally, such a choice can minimize
redundancy and improve scalability, making the solution more economically and
technically applicable for real-world applications.
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3 State of the Art

In the following chapter the state of the art is worked out for the various sub
domains relevant for this thesis. For the corresponding research a structured way is
developed to find adequate sources and resources.

3.1 State of the Art Assessment Strategy

Due to the multidisciplinarity of the research problem there is the need to de-
velop a structured way to assess the state of the art for this thesis. Thus, it can
be divided into different topical sections. Furthermore, a wide range of available
document sources and types must be covered which is why source systems with
different focal points are considered. They are depicted in Fig. 3.1 and a research
process is defined which is described in greater detail in Section 3.2. The main focus
shall be on the basics of electrics (cf. Section 3.3) in order to build a technological
foundation for the reader.

Subsequently, the current developments in automotive E/E architectures are worked
out to underline the cutting-edge technologies under investigation. This includes the
most recent networking and on-board power supply (power net) technologies as well
as ways OEMs collect data in their test vehicles (cf. Section 3.4.5).

This is followed by the second focal research area which is about data science and
ML as a subdomain of Al (cf. Section 3.5). Best industry and research practices
as well as recent developments in setting up Al (or ML) projects and algorithms
are shown which the next chapters then build upon. Due to the numeric problem
dealt with in this project which is to predict the ECU current consumption (cf.
Chapter 2) the research on ML modeling algorithms focuses on regression (instead
of classification) algorithms since regression is capable of solving this type of prob-
lem. After the modeling algorithms, research on possibly suitable XAI methods is
carried out as well (cf. Section 3.6) before defining a mechanism for ML algorithm
assessment (cf. Section 3.7).

To round off the state of the art, an overview of related existing approaches similar
to the one carried out in the course of this thesis is presented in Section 3.8.
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Figure 3.1: To obtain a broad overview of the state of the art for this thesis
digital libraries are crawled which provide diverse types of references such as books,
chapters of books, (journal or conference) papers and technical reports.

3.2 The State of the Art Process

Fig. 3.2 depicts the different steps of the state of the art investigation process.
The research for relevant references is carried out in a structured and reproducible
way so that an objective and broad overview over the latest advancements can be
given.

The process starts with a brainstorming for keywords to find promising references
related to the general topics of this thesis which are in the fields of electricity, au-
tomotive engineering, data processing and ML technologies. Afterwards, search
engines are selected followed by the execution of the search itself. At the first de-
cision point the general relevance of a promising document for this thesis is being
assessed regarding the abstract and the title of the respective reference.

If this is not the case (if results are too unspecific) key words and clusters either
need to be coupled or modified. The next step is checking if the reference is peer
reviewed (does not apply for text books since they are reviewed by the editor), if
not the reference is rejected. Then, the number of citations is assessed meaning
when a reference is cited more than 20 times it is directly considered suitable. If
fewer citations are listed for a particular reference the authority of the first author
is checked with regard to academic qualifications and affiliations.
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3.3 Fundamentals of Electrics

This section explains the basic concepts and norms of electrics with a focus on
the automotive industry. Hence, the most important relationships between physical
variables needed for this thesis are established.

3.3.1 Electric Voltage, Current and Resistance

Whenever positive and negative electric charges () are separated from each other
(within an electrically neutral body), an amount of work W, is needed to do so. The
relation between this work and the amount of electric charge being separated is called
electric voltage U, measured in volts [32]. The relation is defined in Equation 3.1
below:

V] (3.1)

Where:

U: is the voltage measured in volts [V].
Wy is the work to separate the electric charges measured in joules [J].
(Q): is the amount of electric charge measured in coulombs [C].

In electric circuits such as in the power net of vehicles the separation of the electric
charges is carried out by voltage sources such as batteries and alternators. The flow
of electric charges within an electric circuit from the negative (excess of negative
charges) to the positive pole (excess of positive charges) via one or more power con-
sumers striving to equalize the charges is called electric current I which is measured
in ampere [33, 32]. During this flow the power consumers, wiring and other conduc-
tors provide a certain resistance R. The relation between the voltage U, the current
I and the resistance R is defined by Ohm’s law as follows [33, 34]:

R=— 19 (3.2)
Where:
R: is the electric resistance measured in ohm [(2].

U: is the electric voltage measured in volts [V].
I: is the electric current measured in ampere [A].

18



3. State of the Art

3.3.2 Adding the Time Dimension: Electric Power and Charge

Since the current I can also be defined as electric charges that flow per time ¢ by
the formula I = % a time component is added implicitly. Using Equation 3.1 and
the common definition of power which is ”work per time” the definition of electric

power P measured in watts is given by the following formula [32]:
P=U-I [W] (3.3)

Where:

P: s the electric power measured in watts [W].
U: is the voltage measured in volts [V].
I: is the current measured in ampere [A].

On the contrary the integral of the electric current I over the time component ¢ is
the electric charge @), measured in the unit coulombs or also in ampere-seconds [As]
[35]. It is thus defined as follows [32]:

Q- / rdt [C] (3.4)

Where:

@Q: is the electric charge measured in coulombs [C].
I: is the current measured in amperes [A].
t: is the time measured in seconds [s].

3.3.3 Automotive Voltage Standards

This thesis works with the so-called low-voltage power net of passenger vehicles

which needs to be defined since voltage levels in vehicles differ from the definitions
in general electrical engineering. In accordance with the VDE e.V. (Verband der
Elektrotechnik und Informationstechnik) and the DIN VDE 0105-100 standard, the
term low-voltage is defined as the range of (120V, 1500 V] for direct current (DC)
and (50 V, 1000 V] for alternating current (AC). Voltages exceeding these thresholds
are classified as high-voltage, whereas voltages less than or equal to 120V (DC) and
50V (AC) are designated as extra-low-voltage [36].
However, in the automotive industry, there are only two voltage levels which are
defined in Table 3.1 [37, 38]. The levels relevant for this dissertation are located
in the low-voltage section since they are smaller than 60 V DC. The main power
source for the low-voltage power net in the vehicle are the alternator (or generator)
for ICE vehicles or the DC/DC converter for EVs [39].

Table 3.1: Automotive voltage level classification for both AC and DC.

Voltage Classification
AC be low-voltage
<30V <60V
AC DC

high-voltage

<1000 V. <1500 V
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3.4 E/E Architectures, ECU Communication Data
and Data Collection

In this section the basic concepts of E/E architectures are defined as well as the
state of the art of both automotive power nets and data collection in this context.

3.4.1 Common Automotive Networking Technologies

Automotive E/E architectures are complex cyber-physical systems consisting of

ECUs and their peripherals (such as actuators and sensors) which are intercon-
nected by data buses so that messages can be exchanged [40]. The vehicle’s E/E
architecture is central to defining how ECUs are interconnected, thereby governing
the efficacy and efficiency of inter-ECU communication. Modern premium passenger
cars may contain more than one hundred ECUs, leading to a significant data flow
that can reach several gigabytes per hour [40, 41]. This complex network requires
advanced networking technologies to handle this extensive data traffic and ensure re-
liable exchange of messages among the various ECUs on different automotive safety
integrity (ASIL) levels!.
The general behavior of ECUs in modern (passenger) vehicles is typically influenced
by various external mechanisms, including self-regulation by the devices themselves,
responses to environmental conditions, and inputs from the vehicle’s passengers—
especially by the driver. These control mechanisms enforce a robust communi-
cation structure within the vehicle, enabling the reliable exchange of information
between the different components. This is realized and facilitated by several ded-
icated key networking technologies, such as the Controller Area Network (CAN),
Local Interconnect Network (LIN), and FlexRay, which transmit data via messages
[43, 44, 45, 46]. Since the three aforementioned bus systems are designed to be used
for different control tasks within the vehicle they provide access to important state
information of the most of the power consumers expected to carry the information
needed to derive their energy consumption.

Controller Area Network (CAN)

CAN is one of the main digital communication technologies between ECUs in
vehicles today, applicable for a large amount of use cases including time-critical
ones. Initially developed by Bosch and standardized in ISO11898 it is now widely
used across OEMs [44]. To implement CAN on the physical layer, ECUs must be
equipped with a CAN controller and a transceiver. A message formulated by the
CAN controller within the ECU is put onto the CAN bus by the transceiver via a
CAN_high and a CAN_low wire and is broadcast to all participants of the bus, so
no dedicated master controller is needed. The CAN_high and CAN_low lines form a
differential pair, where CAN_high rises and CAN_low falls during data transmission
(and vice versa), providing robust, noise-resistant communication by maintaining
a stable voltage difference between them. Wiring is realized by a twisted pair ca-
ble. The ISO standard also specifies mandatory termination resistances of 120 €2

! Automotive Safety Integrity Level (ASIL)—according to ISO 26262—classifies automotive haz-
ards based on Severity (S), Exposure (E), and Controllability (C). Levels range from QM (lowest)
to ASIL D (highest safety requirements) [42].
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(cf. CAN topology in Fig. 3.3). A lean wiring using only two cables as well as the
high transmission speed are advantages of the CAN bus system [47, 48, 49]. CAN
supports data rates up to 1 Mbit/s* which makes it a promising data source [50].

CAN ® CAN ®

ECU, ECU,

[ [ CAN_ high [
CAN low

Figure 3.3: CAN bus topology with j bus devices (ECUs) as well as two (manda-
tory) and two 120 € termination resistors (own representation based on [51]).

Local Interconnect Network (LIN)

Compared to CAN, the LIN bus system is mostly applied to less time- and data
rate-critical applications and where a CAN bus system would be too costly. LIN is
designed for simpler, low-cost applications and operates with a single master node
that controls communication with multiple slave nodes. The master initiates all
data transfers, ensuring synchronized communication among the slaves. LIN uses a
non-differential signaling method with a maximum data rate of 20 kbit/s®, making
it ideal for applications like climate control (mostly stepper motors) or window
regulators. In contrast to CAN, LIN only uses a single wire connecting all its bus
devices [52, 46, 53]. As a result, LIN is also a promising data source for the scope
of this thesis since it controls mostly volatile power consumers and so the number
of possible ECUs to consider in this project can be enlarged.

FlexRay

A third data bus technology leveraged for this research is FlexRay. Initially
developed in the early 2000s by the FlexRay Consortium (cf. the Consortium’s
logo in Fig. 3.4), an association of OEMs and suppliers such as the Volkswagen
AG, the DaimlerChrysler AG (now Mercedes-Benz AG), NXP Semiconductors and
Bosch. The FlexRay bus was specifically developed to complement CAN which is
limited in speed and not suitable for reliable safety-critical automotive applications
requiring timely synchronized communication, such as advanced driver-assistance
systems (ADAS), brake-by-wire, and steer-by-wire technologies [54]. Data rates
up to 10 Mbit/s and dual channel communication (with then 4 twisted-pair wires
instead of two as with CAN) are supported which means that also a higher variety
of signals and messages can be transmitted via the data bus compared to CAN or
LIN [55].

2Megabit: 1 Mbit = 109 bits.
3Kilobit: 1 kbit = 103 bits.
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Ray"

Figure 3.4: Logo of the FlexRay Consortium [56].

Other Networking Technologies

For the sake of completeness automotive ethernet and Media Oriented Systems
Transport (MOST) are briefly introduced even though they are not considered in
this dissertation. This is due to limitations of computational resources (ethernet)
and the absence of logging data (MOST).

Automotive Ethernet: With the rise of digital functionalities such as audio and
video broadcasting which has to be distributed throughout the vehicle as well as
with the direction to a more service-based design of the in-vehicle communication
common technologies like the ones mentioned above reach their limits. To handle this
high-volume data, ethernet as the subsequent technology comes into play providing
a higher bandwidth [40]. Tt provides communication speeds of up to 10 Gbit/s* and
highly precise time synchronization (time-sensitive networking, TSN®) for critical
applications such as automated driving [58].

Media Oriented Systems Transport: The MOST data transmission system,
defined in ISO 21806 and maintained by the MOST Cooperation® is specifically
designed for high speed multimedia applications in vehicles [59]. The communication
focuses on relations between infotainment ECUs and can reach bandwidths of up to
150 Mbit /s for MOST150 divided into different channels [59, 60].

3.4.2 Automotive Communication Data

On the aforementioned data buses, information of various types is exchanged
between the ECUs. Thus, it is crucial to be aware of what kinds of data types
are prevalent to properly conduct data (pre-)processing in order to obtain adequate
prediction results. The bus data can be classified into four main categories based
on their nature and method of acquisition (categorization inspired by [27]).

4Gigabit: 1 Gbit = 10 bits.

STSN is part of the IEEE Standard 802.1 family [57], last accessed: January 15, 2025.

6See  also: https : / / www.mostcooperation.com / specifications, last accessed:
January 17, 2025.
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Quantitative Data:
Quantitative data in the automotive communication context can be divided into two
subcategories:

e Discrete Data: This includes, for example, engine revolutions per minute
(RPM), the number of passengers in the vehicle, the vehicle’s speed at a given
moment, and other numeric data with a fixed (limited) resolution.

e Continuous Data: This category comprises analog signals recorded during
vehicle operation such as temperature or pressure sensor values. Every numeric
value within the respective range can be adopted.

Categorical Data:
Categorical data is classified based on the attribute type. There are the following
two attribute types present in the in-vehicle communication:

e Nominal Data: An example is the state of ambient light color, which is mea-
sured in discrete categories (e.g. "red”, "green”, "blue”, etc.) neither an order
nor a ranking between them can be established.

e Ordinal Data: This includes variables such as on/off states or the stages of the
seat heating, which have a ranking order (a higher seat heating stage means a
higher intensity).

Event Data:

Event data is collected to monitor specific actions or reactions within the system at
specific points in time, such as key presses and threshold crossings that may indicate
potential deviations or anomalies.

Diagnostic Data:

In addition to the aforementioned data types, bus-specific messages are collected for
system diagnosis and troubleshooting (fault and status information). This includes
checksums, clock signals, and sequence counters that ensure the integrity and proper
functioning of the bus system itself.

3.4.3 Automotive Power Nets and On-Board Power Supply

Every ECU and all other power consumers in the vehicle need to be supplied
with electrical power in order to function properly. Therefore, there is—next to the
communication architecture consisting of the data buses (cf. Section 3.4.1)—also a
complex power distribution network present in the vehicle which is also called the
power net. In modern vehicles there can exist several voltage levels at the same time
to feed different kinds of power consumers. However, this dissertation focuses solely
on the low-voltage power net with the nominal voltage levels of 12 V respectively
13,5 V (cf. Table 3.1, top row).

Fig. 3.5 depicts a schematic representation of a simple structure of the vehicle elec-
trical system: essential to a power net is the power source which is an alternator in
ICE cars and a DC/DC converter in EVs which converts from high to low-voltage.
In most of the cases the power source feeds a 12 V battery that serves as a buffer
and for smoothing out voltage peaks and ripple [61]. Subsequently, the power is
distributed via several fuse boxes (here: depicted as a single fuse F;) which secure
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the power net from overload and—in safety critical-cases—ensure the freedom of
interference [42, 49]. In modern vehicles, melting fuses are used almost exclusively.
In melting fuses a small metal wire disintegrates in the event of a persisting over-
load, so that the affected electric circuit is opened mechanically. The design of the
flat plug melting fuse developed in 1976, which is used for currents of up to 30 am-
peres, is standardized in accordance with DIN 72581/3C [62] which also comprises
standardized dimensions according to the nominal current. Figure 3.6 depicts the
essential components of the flat melting fuse as found in most motor vehicles.

As the degree of branching in the wiring system increases, the nominal current that
has to be protected by the fuses decreases, and so does the amount of power con-
sumers behind the fuse. As a result, almost every individual consumer in the vehicle
electrical system can be assigned its own fuse, which simplifies fault assignment dur-
ing troubleshooting (cf. Fig. 3.5) [49, 62].

The power (distribution) networks in combination with the communication archi-
tecture eventually define the automotive E/E architecture.

Internal Combustion Engine Electric Vehicle
(ICE) (EV)
Fy DC ,_lFl
| e— | be | —
F, Fjiq —_—l F, Fjq
1oy —— a0V ) —1 S S
T 800 V ] T

Ry R; ]__ Ry R;

Figure 3.5: Simplified power net architectures for ICE vehicles with a generator
(G) and starter (S) (left) and EVs with a high-voltage system (right), based on
[62, 61, 63]. Resistors R, (p € 1,...,J) represent power consumers, secured by fuses
F, (p € 1,...,7+1). Wiring harness losses are omitted. Voltage differences are
indicated by different battery circuit symbols joint in series.

Transparent
Window

Figure 3.6: Side way illustration of a flat plug melting fuse. In the center, the
metallic fuse element is visible which melts when the current is too high.
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3.4.4 Current Measurement Techniques

When power net or homologation engineers need to get a closer look on the
components and how power consumption evolves during the vehicle’s operation they
need to measure the current over time during various operational procedures. This
can either be a driving cycle e.g. the Worldwide Harmonized Light Vehicles Test
Procedure (WLTP) [64] or other research conducted e.g. driving under real road
conditions.

Introduction to Shunts

Since accurately capturing current consumption near the power consumer(s) is
crucial during training data collection. Shunt resistors, also known as current sense
resistors, are commonly employed and are available as a replacement for the melting
fuses [65, 66]. A shunt is a precision resistor used to measure electric current by
detecting the voltage drop across it [67]. According to Ohm’s law, as defined in
Equation 3.2, the voltage drop U across the shunt is directly proportional to the
current I flowing through it, given the resistance R. By rearranging Equation 3.2,
the current can be determined as:

U

I = 7 (3.5)
Shunt resistors are widely used in various applications, including battery manage-
ment systems, automotive power networks, and industrial energy monitoring due to
their simplicity and reliability [68]. They are typically designed with low resistance
values to minimize power dissipation (own power consumption) while ensuring accu-
rate current sensing [67]. To ensure accurate current measurements proper thermal
management is necessary to prevent drift in resistance values due to temperature
variations, which can impact measurement accuracy. Therefore, selecting shunt re-
sistors with low temperature coefficients is essential for maintaining measurement
precision [66, 68]. In summary, shunt-based current sensing is preferred for its sim-
plicity, reliability, and cost-effectiveness compared to alternative methods such as
Hall-effect sensors or current transformers especially in the case of the automotive
low-voltage power net it is favorable to replace the melting fuses with equal shaped
shunts [69]. However, for this study, careful consideration of shunt placement and
thermal effects is necessary to ensure accurate and stable measurements and thus a
precise data collection.
Since one flat melting fuse approximately corresponds to one power consumer, it
makes sense to replace them with shunts and record the measured data per ECU.
Companies like IPETronik have specialized in such measurement equipment offering
high precision shunts which meet even certification (homologation) requirements.

Current Measurement Hardware Used for This Research

The shunts used for this research are supplied by the aforementioned company
[PETronik. Their IPEshunt 1 is a high-precision current sensor designed for auto-
motive applications, capable of monitoring both operational and quiescent currents
directly at the vehicle’s fuse holder. Available in current ranges of £5 mA, £1 A
+5 A, £10 A, and £30 A, it converts current into a proportional voltage signal for
data acquisition according to Ohm’s law.
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The output sensitivities vary depending on the current range:

Quiescent current (£5 mA): 20 mV/mA with an output range of 0 to 0.1 V.

Operational current (£1 A): 1 V/A with an output range of 0 to 1.0 V.

(
Operational current (5 A): 0.2 V/A with an output range of 0 to 1.0 V.
Operational current (10 A): 0.1V/A with an output range of 0 to 1.0 V.
(

Operational current (£30 A): 0.033 V/A with an output range of 0 to 1.0 V.

The sensors used in this research cover the entire product range, except for the

quiescent current sensors, which are not employed here, as ECUs with different con-
sumption characteristics—and thus magnitudes—are investigated. All of the shunts
offer an overload protection up to 1.5 times their nominal current for short durations
(maximum of 1 second) as the safety for the vehicle must be guaranteed since the
original melting fuse is replaced. The integrated overload protection of the shunts
therefore ensures the safety of the vehicle during test drive operations.
The IPEshunt 1 maintains high accuracy, with a +1 % deviation at 25 °C, and
is designed to operate within a temperature range of -40 °C to 85 °C. This makes
the component suitable for data collection in this research (cf. Section 4.1.1) [66].
Figure 3.7 shows a photograph of the shunt which has the exact shape of the original
melting fuse.

Figure 3.7: Photograph of the IPEshunt 1—eventually replacing the vehicle’s
melting fuses (image source: [70]).
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3.4.5 Measurement System and Logging Technology
Measurement System Architecture

As relevant components for current measurement have been introduced, the mea-

surement and logging system as depicted in Figure 3.8 can be put together and
adapted to this project’s needs [27]. Shunts are in use to collect the current data
from the power consumers. Their voltage signal can then be passed to an analog-
to-digital (A/D) converter and then be put on a dedicated measurement CAN bus
which is fed to the general data logger together with all other data buses from the
vehicle which include LIN, CAN and FlexRay buses. The A/D converter used is
also supplied by the company IPETronik to match with the shunt hardware. More
precisely the MSENS-2 A/D converter module is utilized in this research. It is a 4-
channel analog measurement module and supports both voltage and current inputs,
making it suitable for various automotive applications. It is capable of providing sen-
sor power supplies up to 15 V with currents up to £60 mA. The MSENS-2 module
operates within a temperature range of -40 °C to 125 °C and transmits measurement
data via its CAN interface with configurable data rates up to 1 Mbit/s. Its accuracy
at 25 °C is: £0.05 % for bipolar and +0.13 % for unipolar voltage ranges [71].
For logging, the incoming the data a BLUEPIRAT Rapid logger is used which is
an advanced data logger developed by MAGNA Telemotive GmbH, designed pri-
marily for high-performance logging in automotive environments. Within the data
logger the signals are synchronized in time and saved in the attached memory to
be retrieved after a test drive. The sampling rate can be set manually between
frequencies of 1 Hz and 4 kHz [72]. The logger provides dedicated measurement files
in a binary logging file, also called .blf file which can be downloaded, extracted and
converted with a dedicated software [72].

Measurement Systemi Vehicle

A/D

1

1

Converter |

\ 1 \

Memory Data Logger "
1

1

1

1

FlexRay LIN CAN CAN

9

.blf

e

Measurement Measurement

File

==

-mf4 Data Buses
\ LIN N
\ FlexRay ————

Figure 3.8: Measurement system for electric current and network traffic logging.
The data logger ensures time synchronization of the recorded measurements, a fixed
sampling rate and the creation of measurement files in a binary logging format (.blf).
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Data Export and Measurement File Generation

The .blf file provides the hexadecimal values of the measurement channels con-
figured in the data logger. However, it cannot be interpreted directly since the
information on the physical values and the signal names are missing. These are
added by the conversion of BLF to the so-called measurement data file (.mdf) or—
in version 4—.mf4 using a library providing the necessary metadata information
[73]. The library—also called database (.dbc file)—provides bus specific information
on how to translate the raw values into meaningful and human interpretable infor-
mation. This includes information about bus messages, signals, and their properties,
such as data type, range, and physical units. The conversion process is also depicted
in Figure 3.8, however it requires external software such as vSignalyzer from Vector
Informatik GmbH [74, 75, 73].

In general, BLF is optimized for storing bus data, offering high-speed logging and
compact storage. MF4, a version of the MDF standard, is more versatile, support-
ing complex datasets as well as compression. In contrast, ASCII for example is a
plain-text format that, despite being human-readable, is less efficient and scalable,
making it less suitable for handling large-scale, high-speed data logging in real-time
systems as it is required in this research [73, 76].

Hence, the conversion from the raw data to the more meaningful enriched MDF
format becomes necessary for further processing the information as input for ML
model training since more information is added to the data through the conversion
process. This ensures the interpretability of the investigated models.

3.5 Machine Learning and Data Science Funda-
mentals

This section introduces the basics of ML and data science with the most impor-
tant algorithms and methods needed to tackle the underlying research project.

3.5.1 Artificial Intelligence and Machine Learning
The Non-Trivial Definition of Al

Until today there is no universally valid and recognized definition of Al and even,
Alan Turing only defines the so-called Turing Test (instead of Al directly) which is a
measure of a machine’s ability to exhibit intelligent behavior indistinguishable from
that of a human in his seminal works on that subject [77]. In the scientific literature,
a variety of definitions of Al can be found. Kreutzer and Sirrenberg define Al in
a way that is particularly relevant to this research project: ”Artificial Intelligence
refers to the ability of a machine to perform cognitive tasks that we associate with
the human mind” [78, p. 123]. According to this definition, Al serves as an umbrella
term encompassing model building (i.e. the abstraction of reality), machine learning
(i.e. the generation of knowledge through experience), and deep learning (DL). (cf.
Fig. 3.9). Using this methodology, the cognitive task of extracting information
from the recordings of in-vehicle bus communication with the help of a "machine”
is accomplished in this project, as humans are unable to do so due to the high
frequency and number of signals (data points) available.
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Figure 3.9: The different and nested scopes of ML, DL, and GenAlI as subdisciplines
of computer science.

Stepping down from AT as the umbrella term, DL is considered a subfield of ML
and involves artificial neural networks (ANNs, cf. Section 3.5.3) that have more
than one logical connection between the input and output of the model (multilay-
ered model). They are constructed after the functioning of the human brain where
neurons are interconnected with each other through synapses. For this reason, the
term ”"machine learning” will subsequently be used as an umbrella term for both
subfields of Al
Additionally, with the rise of powerful chatbots such as OpenAl's ChatGPT" and
other applications that are capable of generating prompt-based new (previously un-
seen) output such as texts or images, generative Al (also called GenAl) plays a
vital role as a sub-field of DL [79]. The term GPT stands for generative pre-trained
transformer which is an application of a deep neural networks for generative Al and
shall be mentioned here for the sake of completeness and will not be further used
for this research project [80]. Hence, the focus of the present work lies on ”classic”
ML tasks such as predicting an output based on a given input with the help of a
pre-trained (regression) model.

3.5.2 Introduction to Supervised Machine Learning

For ML model training one can distinguish between supervised and unsupervised
learning. Supervised learning involves training models on labeled data where the
correct output is provided together with the corresponding input data during the
training process. On the contrary, unsupervised learning involves discovering pat-
terns or structures in unlabeled data without explicit guidance on what the correct
output should be [81]. Hereafter, only supervised learning is discussed in greater
detail since it is the suitable procedure used for the underlying research project of
this thesis since the bus trace data is labeled in this project.

"https://chatgpt.com, last accessed: December 17, 2024.
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Basic Principles of Supervised Learning

Expressed mathematically, in ML tasks ”learning” refers to fitting a curve to a

given set of data points in an multi-dimensional space. The dimensionality refers
to the number of input (independent) variables as well as datapoints available to
make a prediction (cf. Equation 3.6). The resulting curve is subjected to minimize
a so-called loss function which defines the quality of a fit to the given set of data
points [82].
When the combination of input—the so-called features—and output data—the so-
called target—is already available during the training phase the algorithm constructs
(fits) a function that maps input data to output data based on these labeled examples
best. ML algorithms then have the goal to minimize the error between predicted
and the corresponding actual outputs across the labeled dataset [83].

Introduction of a Mathematical Notation

A variety of sources describe ML tasks with a similar mathematical notation i.e.
[84, 85] and [86]. According to them the construction of the aforementioned fitting
function can be described as in the following mapping notation:

fiXoY (3.6)

Where:

represents the input data (features) in R™*™.

represents the output labels (target values) in R4,
represents the number of features.

represents the number of data points.

represents the number of targets considered simultaneously.

o I 3 <=

Given a dataset of labeled samples {(x;,y;)}™,, where z; € X and y; € Y, the
goal of supervised learning is to minimize the error between the predicted and actual
outputs by optimizing a model. The training dataset consists of labeled pairs (z;, ;).
Here, z; is the feature vector for the i-th data point in the dataset, represented as
x; € R™ containing n feature values corresponding to the n columns of the feature
matrix X. The corresponding label or target for the i-th data point is y; € RY,
where ¢ is the number of target variables. The dataset as a whole is structured
as follows: X € R™*™ is the feature matrix with m rows and n columns, where
each row represents a data point, and each column represents a specific feature.
Similarly, Y € R™*? is the target matrix with m rows and ¢ columns, where each
row corresponds to the target variables for a data point. In this context, m denotes
the number of data points (rows in X and Y'), n denotes the number of features
(columns in X'), and g denotes the number of target variables (columns in Y). Hence,
the formal objective of supervised learning is to estimate a function f : R — R? that
maps each feature vector z; to its corresponding label y;. This involves learning and
adapting the model parameters such that the error between the predicted outputs
U; = f(x;) and the true outputs y; is minimized, using the loss function L.

The loss function can be defined as L(y, f(z)) and it quantifies the error between
the predicted output f(z) = y and the actual label y. The model’s internal parame-
ter set (3 is optimized using techniques like gradient descent (especially weights in the
case of Neural Networks (NNs), cf. Section 3.5.3) or by optimizing a dedicated loss
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function [87]. There are multiple loss functions that can be used such as the mean
squared error (MSE, cf. Section 3.5.4). A loss function can be chosen according to
the individual ML tasks and needs of a project [87, 85].

(ys — f ()" (3.7)

i=1

1
m

Ly, f(z)) =

Where:

m  represents the number of data points.
y; represents the label or target for the i-th data point.
f(z;) represents the predicted output for the i-th data point.

In the following, the prediction is referred to as ¢ and the actual label as y for the
sake of simplicity and to be aligned with common notations in literature [88, 80, 83].

Regression vs. Classification Tasks

As mentioned in the state of the art assessment strategy (cf. Section 3.1), this
dissertation focuses on regression tasks. The main differentiation between regression
and classification tasks is the output type for a given set of input features X. For
regression the output of the ML model is a continuous numerical value (y € R) as for
example the prediction of power consumption for ECUs. For classification however,
the main task is to assign a class label y to the given input X as for example the
categorization of images into the two classes "cat” and ”dog” [85, 80].

3.5.3 Data Analysis Methods and Algorithms

Due to the high complexity of the data in ML projects and especially with the
large amounts of bus communication data in vehicles it is particularly important
to follow a standardized, structured and validated process to ensure high output
quality and consistency during an ML project’s life cycle [89]. A common feature of
many process models is the application of ML algorithms to some extent in solving
the given problem. Those relevant for the further course of this thesis are outlined
in this section.

Machine Learning Methodology and Process Models

Data science projects are often complex in terms of both the amount of data in-
volved and the skillset required of the personnel responsible for applying the method-
ologies and interpreting the output. Hence, especially on an enterprise level it is
important to have a standardized framework in place that guides the creation, im-
plementation, and management of productive Al or ML systems. Therefore, several
dedicated process models have been developed and continuously improved over the
recent years to handle differences between Al and conventional software develop-
ment projects. In their comparative study involving seven process models, Kutzias
et al. conclude that none of the current ones is complete or entirely suitable for
the complex needs of data science projects, especially not for small and medium
enterprises (SMEs) [90].
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CRISP-DM: One of the early process models is CRISP-DM tackling this gap
(Cross-Industry Standard Process for Data Mining) which is a widely adopted frame-
work for data mining and AI (ML) projects. It follows a structured, iterative process
comprising six phases from Business Understanding until eventually the Deployment
of the project takes place.

CRISP-ML(Q): Studer et al. identify the lack of adaption of CRISP-DM to
contemporary data science and Al problem statements and extend it by developing
CRISP-ML(Q) where ML stands for machine learning and @ for quality. They take
into account the dynamics and impact of decisions derived from an Al project’s
outcome by including model maintenance and monitoring in the process as lifecycle
elements, too. CRISP-ML(Q) is designed to be universally applicable across various
industries and applications [91].

Given the extensive and diverse automotive datasets utilized in this research, CRISP-
ML(Q) approach is used to shape this research reflected in Chapter 4’s structure.
The initial phase involves understanding the context and the data simultaneously.
This is followed by data preparation, model development, and evaluation. Once the
models are deployed, their performance is continuously monitored and validated.
The single steps of CRISP-ML(Q) together with an initial mapping to the underly-
ing project’s tasks (where evident) is given below:

(i) Data Collection and Understanding:
Gather and understand the bus network data and the types of information
available.

(ii) Algorithm Selection:
Choose an appropriate regression algorithm.

(iii) Model Generation:
Train (fit) the ML model. Adapted to the present research:

(a) Systematically select relevant Electronic Control Units (ECUs) from a
specific model series.

(b) Prepare the data by removing bus signals that have minimal or no impact
on the prediction.

(c) Train the ECU models, validate with cross-validation (CV) and KPIs.

(iv) Model Quality and (Computational) Efficiency Assessment:
Evaluate the quality and computational efficiency of the model.

Machine Learning Tooling and Frameworks

The ML algorithms proposed for this research project capable of solving the given
ML task (cf. below) are complex. A large number of mathematical operations need
to be computed to obtain the final results, making manual implementation tedious
and impractical [83]. As a result, a wide range of ML tools and frameworks have
been developed to efficiently encapsulate these implementations, providing standard-
ized application programming interfaces (APIs) for streamlined model development.
Among these, TensorFlow (with the Keras API) and scikit-learn are two of the most
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widely used frameworks, offering optimized implementations of ML operations that
enable efficient training, evaluation, and deployment.

TensorFlow, with its high-level Keras API, simplifies DL model construction through
an intuitive interface and support for graphics processing unit (GPU) acceleration,
making it particularly efficient for training large-scale NNs. On the other hand,
scikit-learn provides a comprehensive collection of classical ML algorithms, includ-
ing regression, classification, clustering, as well as hyperparameter tuning, making
it a powerful toolkit for supervised and unsupervised learning tasks [92]. There-
fore, scikit-learn’s popularity originates from several key advantages: a seamless
integration within the Python ecosystem, a comprehensive API enabling switching
between algorithms with little effort. Additionally, its extensive community support
comes along with a complete documentation, and community-based quality assur-
ance, making it a promising choice. [93, 92].

Both frameworks support model deployment through APIs such as ONNX for inter-
operability [94]. While TensorFlow excels in DL applications, scikit-learn remains
the preferred choice for traditional ML tasks due to its efficiency and broad applica-
bility across various domains—including regression. These tools reduce the need for
implementing the aforementioned mathematical operations manually, allowing to
focus on hyperparameter tuning, model interpretability, and real-world application
development which are crucial tasks around the actual execution of the respective
algorithms [95].

In the following selected ML techniques and modeling algorithms are presented to-
gether with the chosen implementation and parametrization in either scikit-learn or
TensorFlow Keras.

Regression Analysis Methods

As already discussed in Sections 3.1 and 3.5.2 regression is a technique used in
statistics, ML and data analysis to model and understand the relationship between
one or more independent variables (features) and a dependent variable (target). The
goal of regression is to predict the numerical value of the dependent variable based
on the values of the independent variables [96]. The simplest case is the linear re-
gression with one feature variable X € R™*" and one target variable y € R™*!
assumed to have a linear relationship. This relationship can then be approximated
by the regression curve as shown in Fig. 3.10 (own representation using the Python
scikit-learn library version 1.5.2%).

This trivial regression function can be defined as in Equation 3.8. The goal is
to find an optimal intercept and slope of the linear curve which in combination
minimize an error measure.

y=0o+ 5z (3.8)
Where:
y is the target (dependent) variable.
x is the feature (independent) variable.
Bo is the intercept, determined during model training (fitting).
p1 is the slope of the line, also determined during model training (fitting).

8https://scikit-learn.org/dev/whats new/v1.2.html, last accessed: October 22, 2024.
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Linear Regression Example with MSE

81 e Data Points ®
Regression Line
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Figure 3.10: Simple linear regression using 100 random data points having a linear
relationship with noise added to it. The loss function used is MSE resulting in a
MSE value of 0.8066 in this example.

However, for more complex data such as the one dealt with in this project linear
regression is not capable enough. Therefore, multiple regression with more than
one feature variable is necessary [97]. When dealing with the prediction of multiple
target variables, multi-target regression is required [25].

Tree-based Algorithms

Another way to conduct predictions for either regression or classification tasks
is the use of decision trees. Tree-based methods have gained significant popularity
in supervised machine learning due to their ability to efficiently classify and predict
both continuous and categorical variables, often with comparably fast evaluation
times [98]. Most decision tree algorithms can handle multivariate input data and
can predict both single and multitarget outputs, providing benefits, such as the ease
of interpretation and the ability to handle incomplete data (missing values) [99, 25].
Fig 3.11 shows a simple tree-like visualization of possible decisions, whether to buy
a classic or a family car. Based on the criteria budget, purpose and maintenance
costs decisions can be made to eventually classify which type of car to buy. The
decisions are made sequentially starting at the root node passing through the tree’s
inner nodes until a leaf node is reached which means that no further decision can
be made at that point [100]. In this example the tree has a depth of 2 which means
there are two edges between the root and the leaf node [101]. In the case of single-
target regression each leaf node represents a numeric value that represents a single
possible prediction y instead of a class [102].
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Figure 3.11: Simple decision tree on what car to buy. This example tree has a
depth of two and four leaf nodes representing the final decisions.

Simple Decision Trees: One highly cited algorithm commonly used to induce
(train) single decision trees is CART (Classification and Regression Trees) developed
by Leo Breiman in 1984, which is a decision tree algorithm that can be employed for
both classification and regression tasks. The main concept of CART is to iteratively
split the data into smaller subsets that show greater homogeneity concerning the tar-
get variable, ultimately forming a tree-like structure. CART splits the (sub-)dataset
into two child nodes based on minimizing an impurity measure for classification or
a predefined error (or loss) for regression. In the case of regression, CART uses the
MSE as the loss function (cf. Equation 3.7) which is also the default metric of the
scikit-learn framework and library used for this research [103, 92].

Ensemble Methods 1 - Random Forest: Since a single decision tree tends to
overfit the training data and is prone to noise, ensemble methods have been de-
veloped to make this ML technique more robust, improve generalization, and—for
regression trees—reduce variance [103].

Random Forests (RF) are an ensemble learning method that enhances the perfor-
mance and robustness of decision trees by combining multiple trees. This involves
drawing multiple bootstrap samples from the training data and the training of a
separate decision tree on each sample® [102, 104]. Additionally, during the con-
struction of each tree, only a random subset of features is considered for splitting
nodes, which introduces extra randomness and reduces the correlation between trees
which—again—increases robustness. The final prediction is made by aggregating the
predictions of all trees, by using majority voting for classification and averaging for
regression tasks [105]. The RandomForestRegressor class from scikit-learn is an im-
plementation of the random forest regression algorithm used in the further course

9Bootstrapping is a statistical technique of resampling with replacement from a dataset to create
multiple new samples which are themselves representative for the actual population.
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of this research!®.

This algorithm induces multiple decision trees during the training phase and deliv-
ers the average prediction of the individual trees minimizing overfitting and vari-
ance [103]. Key hyperparameters play a vital role in tuning the performance of the
RandomForestRegressor (cf. Listing 3.1). The n_estimators parameter deter-
mines the number of trees in the ensemble, where increasing this value typically
enhances performance but also raises computational performance demands. The
max_depth parameter sets an upper limit for the tree depth, helping to prevent over-
fitting by restricting tree growth (cf. Fig. 3.11 above). The min_samples_split and
min samples_leaf parameters specify the minimum number of samples needed to
split an internal node and to constitute a leaf node, respectively. The max _features
parameter dictates the proportion of features considered for each split, introducing
randomness to reduce tree correlation. Furthermore, the random _state parameter
controls the randomness in bootstrapping and feature selection, ensuring repro-
ducibility across different runs. The max_leaf nodes parameter limits the number
of leaf nodes in each tree whereas bootstrap decides whether bootstrap samples are
used when building trees [92].

from sklearn.ensemble import RandomForestRegressor

regr = RandomForestRegressor (
n_estimators=100,
criterion=’squared_error’,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
max_features=1.0,
max_leaf_nodes=None,
bootstrap=True,
random_state=None,

[...]
)

Listing 3.1: Constructor of the RandomForestRegressor instance in Python using
key parameters (some have been omitted for brevity).

Ensemble Methods 2 - Gradient Boosting: Gradient boosting (GB) can be
seen as a type of gradient-based optimization, a concept that was explored by Mason
et al. [106] prior to Friedman’s seminal framework published in 2001 [107]. Unlike
random forests, which build (induce) trees independently and which average their
predictions, gradient boosting sequentially adds new trees to the overall model that
specifically target and correct the residual errors made by the previously combined
ensemble of learners [108]. Scikit-learn’s GradientBoostingRegressor [92] is one
such implementation for regression tasks which is also used in this research project.
Generally, GB operates by iteratively fitting new models to minimize a differen-
tiable loss function £. Each new tree is trained on the negative gradient of the
loss function with respect to the model’s predictions, effectively performing gradient

Ohttps: //scikit-learn.org/dev /modules/generated /sklearn.ensemble. RandomForest
Regressor.html, last accessed: October 22, 2024.
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descent. This approach allows the algorithm to identify and correct patterns of er-
rors in the predictions of the existing ensemble [107]. By tuning parameters such as
the number of boosting stages (n_estimators), the learning rate (learning rate),
and the subsampling of the training set (subsample), overfitting can be controlled
and thus be limited. While parameters such as max_depth, min samples_split,
min _samples_leaf, n estimators and max features have already been described
in the context of the RandomForestRegressor (cf. above). In GB they also de-
termine the same model behavior [92]. In fact, the incremental, gradient-based
optimization distinguishes gradient boosting from random forests as well [108].
As depicted in Listing 3.2, the GradientBoostingRegressor can be instantiated
with a chosen loss (scikit-learn default is ’squared error’ for regression) and a
learning rate defining the individual contribution of each additional tree. The
parameter subsample, when set to a value less than 1.0, introduces stochasticity
into the boosting process, acting similarly to a bootstrap sample and helping fur-
ther reduce overfitting [108, 109].

from sklearn.ensemble import GradientBoostingRegressor

regr = GradientBoostingRegressor(
n_estimators=100,
learning_rate=0.1,
max_depth=3,
min_samples_split=2,
min_samples_leaf=1,
max_features=None,
subsample=1.0,
loss=’squared_error’,
[...]

)

Listing 3.2: Constructor of the GradientBoostingRegressor instance in Python
using key parameters (some have been omitted for brevity).

Artificial Neural Networks (ANNs)

Yet another way to induce ML regression models is the use of ANNs. This kind
of model intends to imitate the way a (e.g. human) brain is built and learns. The
initial concept and fundamental basis of ANNs was first introduced by McCulloch
and Pitts in 1943 [110].

To represent knowledge a NN consists of neurons (nerve cells) which are inter-
connected with synapses—electrochemical interconnections of neurons. In general,
once there is an input to a neuron it can be activated and subsequently activate
following neurons according to both the connected synapses and the respective ac-
tivation thresholds [111]. In the case of ANNs, basic neurons are represented by a
binary Threshold Logic Unit (TLU) which computes the weighted sum of its inputs
w1T, + wexe + -+ + wyxy (with N as the number of inputs) and outputs 1 if a
threshold is reached and 0 if not.

A more advanced approach is the concept of the perceptron, first introduced by
Frank Rosenblatt in 1958 [112, 113]. A perceptron enables training through su-
pervised learning, explained further in Section 3.5.2, which involves adjusting the
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weights using a learning algorithm (perceptron learning rule) that compares the
predicted output g with the actual target output y (cf. Equation 3.9) [83, 114].
Additionally, a bias term b is added to the weighted sum, allowing the model to
shift the activation function independently of the input data [114, 111].

Therefore, a single perceptron using this weight update rule can only classify linearly
separable data points [114].

Aw;=n-(y—9) -z, ie{l,...,N} (3.9)

Where:

w; is the weight associated with an input feature.
7 is the learning rate.

is the actual output label (ground truth).

is the predicted output.

x; is the respective input feature.

)
)

Figure 3.12 illustrates a simple perceptron with N input features and a predicted
output y. The output is generated by an activation function a(d)), where ¥ =
> or  xw; + b is the weighted sum of the inputs plus the bias term. The choice
of activation function is critical for the predictive quality of the neural network
(or perceptron) [115]. Common activation functions (cf. Fig. 3.13) include the
binary step function (used in the TLU), ReLLU (Rectified Linear Unit), sigmoid, and
hyperbolic tangent (tanh).

The binary step function is defined as:

1, ifx>0
—h = 3.10
ale) {o, if 2 <0 (3.10)

This function outputs discrete values based on a threshold which is computationally

cheap [110]. One of the main disadvantages of this activation function is that it

cannot be differentiated for # = 0, which is why it cannot be used for NNs [116].
The Rectified Linear Unit (ReLU) is defined as:

a(z) = max(0, z) (3.11)

It outputs zero for negative inputs and the input itself for positive inputs. Despite
being fast, simple and the avoidance of vanishing gradients (they are either 1 or 0)
it can suffer from the so-called dying ReLU when a neuron stops updating due to
the fact of the gradient being 0 [117, 118, 119].

The sigmoid function is shown below:

B 1
C l4e®

a(x) (3.12)
Sigmoid maps inputs smoothly to outputs between 0 and 1 using an S-shaped curve.
However, it suffers from the vanishing gradient problem (gradient becomes very small
for large positive or negative inputs) which can slow down the learning process sig-
nificantly [120]. Furthermore, it is computationally expensive with regard to the
derivative calculation compared to ReLU [121].
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The hyperbolic tangent function (tanh) is:

et —e "
Tanh also provides an S-shaped curve, but maps inputs to outputs between -
1 and 1 [121, 122, 111]. This means it is zero-centered which helps to achieve better
gradient updates than sigmoid [123], however it also suffers from the vanishing gra-
dient problem [124].

v

Figure 3.12: Perceptron architecture with n inputs, an activation function a(¥),
and a predicted output .
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Figure 3.13: Common functions used for the activation of neurons in neural net-
works.
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Multi-Layer Perceptron (MLP): To handle more complex and non-linearly
separable data MLP has been developed which combines several perceptrons into a
feed-forward neural network (cf. Fig. 3.14) where the input is passed in one direction
through the network. This means there is at least one input and one output layer.
Optionally, so-called hidden layers can be added between the input and output if
the complexity of the ML problem is high [125]. The perceptron update rule (cf.
Equation 3.9) is no longer applicable due to the concatenation of perceptrons and
due to the multitude of weight inter-connections between them.

To update the weights within the MLP the so-called gradient descent algorithm
must be used since it provides a systematic and recursive way to minimize the loss
function, thus improving the network’s performance on the given ML task during
training. This algorithm involves initializing weights and biases, then iteratively
performing forward propagation (passing input data through the network) to com-
pute predictions g, and calculating the loss by comparing them to the corresponding
target labels y using a loss function L(y, f(z)). The gradients of the loss with re-
spect to each weight w and bias b are computed using backpropagation [126]. They
are then used to update the weights and biases respectively as follows:

Whew < W — nac(ya’qj(l’))
e b 2021

where 7 is the learning rate, a decisive parameter in finding the optimal weights
and biases [122, 83|. This process is recursive, as it involves repeatedly performing
forward propagation, loss calculation, backpropagation, and weight updates until
the loss converges to a satisfactory level defined by the user.

One thing that must be considered when updating and initializing weights is the
phenomenon of the vanishing gradients which occurs when gradients in deep neu-
ral networks become exceedingly small, hindering effective weight updates during
backpropagation and slowing down or even preventing learning [127]. Variants like
stochastic gradient descent (SGD) and Adam (also a method for stochastic opti-
mization) can enhance this process by optimizing the update steps [111, 128].
There are several Python libraries that support the construction of MLPs. One of
them is also provided by scikit-learn!! and its constructor is shown in Listing 3.3
below, depicting selected hyperparameters and their default values of scikit-learn
version 1.2.1 [92]. The hidden_layer_sizes parameter specifies the number of neu-
rons in each hidden layer, defaulting to (100,) for one layer with 100 neurons.
Multiple layers can be created by providing a tuple, such as (100, 50). The acti-
vation function is set via activation, with ’relu’ being the default [117]. Other
options include ’logistic’, tanh’, and ’identity’. Regularization is controlled
by alpha, applying L2'? regularization to penalize large weights, with a default value
of 0.0001 [92]. The batch_size parameter defines the number of samples processed
before weight updates, defaulting to min (200, n_samples) when set to >auto’ [92].

Hhttps://scikit-learn.org/dev/modules/generated /sklearn.neural network. MLPRegressor.html,
last accessed: October 22, 2024.

12The L2 regularization adds a squared penalty term (squared magnitude of all weights w;) to
the model’s loss function [108].
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Smaller batches may speed up the algorithm’s convergence [129]. Learning behav-
ior is adjusted via learning rate, with the default ’constant’ keeping the rate
fixed. Alternatives, like *invscaling’ or ’adaptive’, allow dynamic adjustments.
The initial learning rate is set by learning rate_init (default 0.001), balancing
convergence speed and stability of the training process [92, 130]. Reproducibility is
ensured using random state, which controls the random seed for weight initializa-
tion and data shuffling [92]. Finally, early stopping can be enabled to interrupt
the training process if validation performance stops improving after a set number of
iterations, specified by n_iter no_change, with a default of 10 [92].

from sklearn.neural_network import MLPRegressor

regr = MLPRegressor (
hidden_layer_sizes=(100,),
activation=’relu’,
alpha=0.0001,
batch_size=’auto’,
learning_rate=’constant’,
learning_rate_init=0.001,
random_state=None,
early_stopping=False,
n_iter_no_change=10,
[...1

)

Listing 3.3: Constructor of the MLPRegressor instance in Python using key
parameters (some have been omitted for brevity).

Input Layer Hidden Layer Output Layer

Figure 3.14: Representation of a feed-forward MLP with one input layer capturing
four distinct features, one hidden layer with size three (hy, ho, h3) and an output layer
for one target variable.
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Long Short-Term Memory (LSTM): A major challenge in training recurrent
neural networks (RNNs) over long sequences is the vanishing or exploding gradient
problem, which makes it difficult for standard RNNs to retain information across
extended time spans. This impediment initiated the development of long short-
term memory (LSTM) networks, which address these challenges by incorporating
mechanisms like special gates to control the information flow (e.g. by controlling
input, output and the forgetting of information) making it easier to retain impor-
tant long-term dependencies while discarding irrelevant data [131, 132]. To capture
these long-term temporal dependencies in the data properly, Hochreiter et al. [133]
developed LSTMs as a sub-type of RNNs. The difference between RNNs and feed-
forward NNs such as MLP is that the output of one cell can be re-inserted into a
cell of a previous layer of the network. This means, information does not necessarily
flow unidirectionally from input to output but it can also flow backwards through
the network allowing it to persist across steps (cf. Fig. 3.15) [131].

s | Ouiput Layer_
Input Layer (st e Output Layer

Figure 3.15: Simple RNN with one hidden recurrent layer (hi,hs, hg). In this
representation hidden-layer information flows back into its origin cell, also capable
of crossing layers (own representation inspired by [94]).
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The Tensorflow Keras 3 API'3 provides a convenient way to create LSTM ANN
architectures and is used in this research [134]. The constructor and select variables
are defined as follows:

from tensorflow.keras.layers import LSTM

regr = LSTM(
units=50,
activation=’tanh’,
recurrent_activation=’sigmoid’,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state=False
# [...]

)

Listing 3.4: Constructor of the LSTM layer in Keras with key parameters (some
omitted for reasons of clarity).

In Listing 3.4 above, the LSTM constructor from TensorFlow’s Keras API shows
the key parameters. The units parameter specifies the number of neurons in the
LSTM layer, whereas the activation parameter, defaulting to tanh (cf. Equa-
tion 3.13), defines the activation function within the LSTM cells, while
recurrent_activation determines the activation function to use for the recurrent
step. Its default is sigmoid (cf. Fig. 3.13). The dropout parameter, with a default
value of 0.0 helps avoid overfitting by randomly setting a given fraction of the input
to zero during the training process, similarly to the recurrent _dropout parameter,
which applies to the recurrent step. This way, not all input units have an effect in
each forward (and recurrent) pass [135]. The return_sequences parameter, when
set to True, returns the full sequence of outputs for each input sequence, rather than
just the last output. Eventually, the return_state parameter, when set to True,
returns the last state of the LSTM cell in addition to the output itself [134].

3.5.4 Quality Assessment for AT Model Predictions

To enable the objective selection of an adequate ML modeling algorithm among
those presented in Section 3.5.3, metrics need to be defined that can compare training
and prediction performance across them [136, 137]. Unlike loss functions which are
used to train and optimize an ML model, KPIs are used to monitor performance
post-training hence they do not need to be differentiable. Given that the prediction
of power consumption is composed of continuous numerical values, the following
base (unspecific to the respective regression task) KPIs from the state of the art are
proposed. However, these require a project-specific adaptation and complementation
which will be developed in Section 4.1.6.

3https://keras.io/api/layers/recurrent_layers/lstm, last accessed: December 15, 2024.
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Prediction Quality

Mean Squared Error - MSE: The mean squared error (MSE) is the average of
the squared differences between the predicted and actual (here: measured) target
labels. For n labelled observations of a validation dataset, the squared difference
between the actual value y; and the predicted value y; MSE is defined as in Equa-
tion 3.14 after [80]:

m

. 2)2
MSE — Zi:1<yl y%)

m

(3.14)

Coefficient of Determination - R?: The Coefficient of Determination (R?) is
a measure indicating the proportion of the variance in the dependent variable that
is predictable from the independent variables. When the R? has a value of 1, this
indicates that the regression model fits the data perfectly while an R? value of 0
shows that the regression does not explain the variability in the response variable but
its average only. Negative values hence indicate that the predictions are even worse
than only predicting the average. Mathematically, R? is defined in Equation 3.15

[80, 88]:
Zzl(yi - ?Ji)Q
>oici(yi —9)?

In addition to the already introduced notation: 7 is the mean of all target labels.

RP=1- (3.15)

Model Speed

Especially when it comes to economically productive applications of ML, time
plays a vital role for the success of a project. This includes the speed of training
and model inference which is the time to receive predictions from it once an input is
ingested [138, 139]. These speeds shall thus be considered for this research especially
for research questions SRQ2 and SRQ3 (cf. Section 2.2).

3.5.5 Preprocessing of Input Data and Feature Engineering

Another key challenge of large-scale high-dimensional ML projects is data prepa-

ration. In addition to preparing the dataset for the ML task a check for completeness
must be conducted and missing values, or duplicates be handled and—if needed—
features can then be scaled before further processing [140, 141].
Subsequently, the process of feature engineering and selection—transforming raw
data into meaningful features for the ML model—can be both complex and time-
consuming especially when the number of available data points m is high [130].
Consequently, selecting the optimal feature engineering techniques to cope ideally
with the given data requires not only domain-specific knowledge of the dataset and
task but also an understanding of the model’s architecture [139, 142]. In general,
feature engineering is essential to ensure the interpretability and the accuracy of an
ML model which is also why it can be employed not only for numeric regression
problems but also in other domains such as e.g for text and multimedia data [143].
The methods can be classified into feature selection, feature creation and feature
extraction [143, 130]. In the following, selected methods of all three aforementioned
categories as well as for data preprocessing are presented according to [31].
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Data Preprocessing

The following data preprocessing methods are considered relevant for this thesis
due to the measurement system used to record the considered data.

Handling Missing Values: Whenever data is being recorded by a data logger (cf.
Section 3.4.5), it can occur that not every data point is properly saved. Therefore,
missing data points can exist in the raw dataset which can mainly be handled by
imputing them through filling in missing data points using estimated or calculated
values [144].

(i) Mean Imputation:
Replaces the missing values with the mean of the remaining observed values
for that feature. This approach is useful for numeric data that is symmetrically
distributed and has no extreme outliers which could potentially influence the
mean. However, it can reduce overall data variance, potentially leading to
biased estimates [145].

(i) Median Imputation:
Fills in missing values with the median of the remaining observed values,
making it more robust to outliers than mean imputation. Median imputation
is suitable for biased data distributions since it stabilizes the general tendency
without a significant influence of extreme outliers [146].

(i) Zero Imputation:
Substitutes missing values with 0 (zero), commonly used when zero already
signifies a meaningful baseline or absence in the data. This method can in-
troduce bias if missing values are not truly representative of zero but have a
different meaning, potentially distorting feature relationships [146].

Feature Scaling: Especially when working with NNs, the input data needs to be
scaled between 0 and 1 so that the network’s neuron’s calculations are not biased by
the differences in nominal input values [114, 123]. Therefore, three common scaling
methods are presented (in accordance with [25]):

(i) Min-Max Scaler:
This scaler transforms features by scaling them to a fixed range, usually [0, 1],
which preserves the relationships between data points. It is sensitive to outliers
since they can affect the minimum and maximum values significantly.

X - Xmin
X = 1
scaled Xmax — Xmin (3 6)

Where:

Xmin 18 the minimum value in X.
XNimax 18 the maximum value in X.
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(i) Robust Scaler:
This scaler centers and scales data according to percentiles, e.g. the interquar-
tile range (IQR), as per default in the scikit-learn Python implementation'?),
making it less sensitive to outliers compared to the min-max scaler. It is thus
useful for data with highly different values.

X — median(X)
IQR(X)

Xscaled = (3 1 7)

Where IQR is the interquartile range, or ()3 — 1, representing the spread of
the middle 50 % of the data (data points between first quartile (¢);) and third

quartile (Q3)).

(iii) Standard Scaler:
This scaler standardizes feature values by removing their mean and scaling
them to unit variance, hence transforming the data to follow a standard normal
distribution (mean 0, variance 1). It is effective for algorithms that assume
normally distributed data. The standard scaler can be influenced by outliers,
too.

X — px

0x

Xscaled = (318)

Where:

px is the mean of X.
ox Is the standard deviation of X.

All scalers can be influenced by outliers to a certain degree. If a dataset is
susceptible to this, it is advisable to remove it first before applying the scaler.

Feature Selection

Feature selection methods target the reduction of the number of features in the
dataset so that model size is reduced and accuracy rises to eventually utilize less
memory (RAM) and return more precise predictions [108]. Additionally, a well
selected feature set helps to reduce overfitting, thus fostering generalizability of the
ML model [147]. Three common effective methods are presented below.

Pearson Correlation: In a dataset, redundancy can occur when features share
the same root origin. This means that one feature can be derived from one or more
other features. Consequently, there is a correlation between them and thus one
can be removed as it does not provide additional information to the model. This
can be done by applying the Pearson correlation coefficient (PCC) to each possible
pair of features in the dataset to check for correlations [144]. The value range of
the PCC reaches from -1 to 1 where -1 means complete negative correlation and
+1 complete positive correlation. The closer the correlation coefficient is to 0 the
more independent two variables are, the closer to 1 (respectively -1) the higher their
dependency (correlation) is [84]. It is then possible to define a correlation threshold

Mhttps://scikit-learn.org/dev/modules/generated /sklearn.preprocessing.
RobustScaler.html, last accessed: October 30, 2024.
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above (and below) which one of the two correlated features is removed from the
dataset. PCC between features a and b is computed as follows:

PCCy, 4, = 2eiza (T — Ha) (B — o) ,oabeX;a#b  (3.19)
m 2 m 2
\/Zi:l (Ta; — Hay) \/Zi:l (zp, — N%)

Where:

m  represents the number of data points.

x4, represents the value of feature x, at the i-th data point.
xp, represents the value of feature x; at the i-th data point.
Iz, represents the mean of feature z,.

iz, represents the mean of feature xy.

Low-Variance Feature Removal: Low-variance features should be removed from
the dataset because they provide minimal or no useful information for predictive
modeling while unnecessarily increasing model complexity and size. When a feature
has nearly the same value across all instances m, it does not support distinguish-
ing between different classes (in classification tasks) or predicting a numeric target
variable (in regression tasks), since its contribution to the model is minimal or zero
[147]. The variance of a feature a is computed as follows:

1 m
0= (T =)’ a€X (3.20)
1=1

Low-Importance Feature Removal: Yet another method to reduce the dataset
to a minimum number of features required to obtain a maximum accuracy is the
removal of features with low importance (cf. also Section 3.6). By setting an impor-
tance threshold adequately unimportant features can be filtered and removed from
the dataset automatically [148, 147].

Feature Creation

One-Hot Encoding (OHE): One-hot encoding (OHE) is a feature engineering
technique used to convert categorical variables into a format that can be provided
to ML algorithms to improve predictions. Categorical variables are those that have
a fixed number of possible values (categories), such as "red”, "green”, and ”blue”
for the ambient light color feature of a vehicle. ML algorithms, especially NNs,
require numerical input, however. Hence, categorical data, which consists of labels
or categories, cannot be used directly. OHE thus transforms them into a numerical
format that can be used effectively by the ML model [149]. The presence of one
category state at a given timestamp is then encoded with 0 and 1 respectively,
depending on the state. For the ambient light color example the encoding could
look like this:
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o Color_Red
o (Color_Green

e Color_Blue

If at a given point in the dataset the actual feature value is "red,” the transformed
and encoded features would be:

e Color_Red: 1
o Color_Green: 0
o (Color_Blue: 0

The encoder used for this research is the scikit-learn OneHotEncoder'® which
automatically detects and encodes categorical features as a one-hot numeric array
which can then be treated further in the subsequent steps of the ML pipeline [92].
It has to be considered that OHE counteracts the feature reduction principle carried
out in the feature selection and feature extraction steps since it adds new features
(in the example above one feature becomes three through the encoding process). It
therefore makes sense to conduct (another) feature reduction after the application

of OHE.

Feature Extraction

Feature extraction finds meaningful representations of data through algorithms
that transform raw data into more informative features, e.g. with dimensionality
reduction.

Principal Component Analysis - PCA: Principal Component Analysis (PCA)
is a statistical method which is used for the reduction of the input feature dimen-
sionality of ML problems and thus a constitutes a part of feature extraction. It
transforms a dataset with potentially correlated variables into a (smaller) set of lin-
early uncorrelated variables known as principal components. The main objective of
PCA is to capture the maximum variance in the data with the fewest number of
principal components [144]. These principal components are abstract and do not
correspond directly to the original features, making it difficult to interpret the re-
sults in the context of the original data [150].

5https://scikit-learn.org/dev/modules/generated /sklearn.preprocessing.
OneHotEncoder.html, last accessed: November 1, 2024.
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3.6 Knowledge Extraction with Explainable Al

Despite their advantages, complex ML models often miss the necessary trans-
parency which makes it difficult to reconstruct how they make their predictions or
decisions derived from the ingested input data. This opacity necessitates the de-
velopment of methods to explain the inner functioning of ML models, particularly
in critical applications (medicine, military, etc.). Such methods are essential to
foster trust, ensure transparency, and comply with legal and ethical requirements
[151, 152]. Political initiatives also emphasize the importance of trustworthy Al, as
demonstrated by the EU’s ” Artificial Intelligence Act” (AT Act) [153] which entered
into force in August 2024 and the similar ” AT Bill of Rights” in the United States
[154].

The XAI techniques presented below address both the overarching and detailed per-
spectives on ML models to draw conclusions about the entire dataset (globally) as
well as specific instances or events (locally).

3.6.1 Explainable AI Techniques

During the course of the present research, a survey among engineers of a large
German OEM about the usefulness of certain XAl techniques for a similar problem
was conducted and published in [29]. The results demonstrate the general suitability
of this preselected subset of XAI methods by applying them to a virtual ECU with
especially engineered training data and a previously known influence of the latter
on the virtual ECU’s power consumption [26]. They also allow the selection and
application of the following three explainers for this thesis.

Permutation Feature Importance (PFI)

Feature importance—a global explainer—assigns a numerical value to each fea-
ture based on its impact on a model’s output. A higher value indicates a greater
influence on the model’s predictive capability. Specifically, the model-agnostic per-
mutation feature importance (PFI) method involves randomly shuffling the values
of a feature and measuring the subsequent decrease in the model’s performance
score (here: R?), while keeping other features unchanged. A larger decrease in the
score means a more important feature, indicating a greater impact on the prediction
[155]. Additionally, impurity feature importance (IFI) is used for ensembles of deci-
sion trees, such as RF or GB. However, it is avoided in this research (it is only used
to determine unimportant features during data preprocessing, cf. Section 4.2.2) due
to its potential bias when the model overfits [92].

PFI can produce negative values when shuffling the feature values improves the
prediction quality by chance, whereas IFI only outputs non-negative values [103].

Accumulated Local Effects (ALE)

The Accumulated Local Effects (ALE) algorithm is an explainer that quantifies
the impact of a specific feature on a model’s output globally while keeping other
features constant. ALE plots depict how the model’s predictions change as the
feature of interest varies, where ALE values indicate the average change in the
model’s output across the feature’s range. The algorithm approximates the partial
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derivative of the model output with respect to the feature using finite differences,
and then integrates this derivative over the feature’s range to obtain the ALE value
[156]. ALE can thus be compared to and interpreted as a sensitivity analysis for
each feature.

Shapley Additive Explanations (SHAP)

The SHAP (SHapley Additive ExPlanations) algorithm generates local expla-
nations for individual predictions even made by complex models. This method
employs game-theoretic principles to allocate fairly each feature’s contribution to
the prediction, ensuring properties such as local accuracy, missingness, and consis-
tency, as outlined in [157]. For ensemble tree-based models, an optimized variant
known as TreeSHAP is utilized [158]. By aggregating explanations across multiple
instances, SHAP can also offer a sort of global insight into the model’s behavior,
although this process is computationally expensive and not considered here. Addi-
tionally, KernelSHAP provides a model-agnostic approach that approximates SHAP
values through weighted linear regression on perturbed samples, while DeepSHAP
leverages the structure of deep neural networks.

3.6.2 XAI Suitability to the Research Problem

Another research by Mueller et al. shows formally that the aforementioned XAI
methods generally work on the regression data used in their research which is similar
to the one treated in this dissertation (cf. Section 4.1.1) by both theoretical and
practical validation. Additionally, they show that the computation times needed

to execute the explainer computation do not contradict their economic application
[26].

3.7 Model Evaluation and Optimization

As already mentioned in Section 3.5.3, the hyperparameters influence the predic-
tive performance of an ML model significantly. Moreover, the selection of a suitable
ML model is another degree of freedom and a significant step in the CRISP-ML(Q)
process model [91]. Therefore, a choice must be made for an appropriate ML algo-
rithm and for an "optimal” set of hyperparameters 6* (cf. Equation 3.23). Due to
the novelty of the research problem, the experimental design carried out in Chapter 4
automated black-box model selection and optimization libraries (AutoML) such as
Auto-WEKA [159] or Auto-Sklearn [160] are not considered any further.

3.7.1 Weighted Sum Analysis for Algorithm Selection

A common method to tackle multi-criteria decision problems in an objective way
is the weighted sum analysis (WSA). It is mainly used when choices and decisions
must be made based on a range of both qualitative and quantitative objectives with
varying degrees of importance, typically in business or engineering [161].

To conduct a WSA, the available decision options d € D and the individual
decision criteria ¢ € C must be outlined first. Subsequently, the decision objectives
are broken down into measurable criteria, each assigned a weight v. € V to reflect
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its importance [161]. Stakeholders or experts determine these weights, which can
for example be done by a pairwise comparison (cf. below).

Each decision option d is then scored based on how well it fulfills each criterion
c € C, with the help of scores s.,—normalized for consistency. The total utility
value Uy of a decision option is calculated as:

Us=> V- Se, VYdED (3.21)
ceC
This utility value provides a quantitative measure of each alternative’s fulfillment
of the respective objectives since it relies on the additivity of singular utilities per
criterion [162]. The alternative with the highest utility value dop is selected, since
it fulfills the entire weighted criteria best, given the other options. Consequently,
dope can be defined as follows:

dopt = arg max Uy = arg max Z Ve * Sey (3.22)

deD deD eC

Pairwise Comparison for Criteria Ranking

The weights of the respective decision criteria can be determined by conducting
a so-called pairwise comparison. In this method each criterion is compared in a
pairwise manner to each and every other criterion and it has to be decided if it is
more (encoded by 1), less (encoded by -1) or equally important (encoded by 0) than
the other one. As a result, a triangular matrix is generated from which the rank and
weight of each decision criterion are derived [163]. This process is ideally conducted
by stakeholders, subject matter experts, and other decision makers involved in the
process and project [161].

3.7.2 Hyperparameter Tuning Strategies

Once the data has been cleaned and the features are engineered and selected, the
model training process takes place [91]. Given the high number of hyperparameters
available per ML algorithm as well as a specific loss function (cf. Section 3.5.2) a
systematic approach on how to find the optimal ones given an individual ML task
seems more favorable compared to a tedious manual procedure. Therefore, differ-
ent hyperparameter optimization strategies are available which can be applied to
find a parameter set 6* [129]. According to [164], the hyperparameter optimiza-
tion process involves four key components: an estimator (ML algorithm) with its
loss function L(y, f(z)), a search space that defines possible configurations, an op-
timization method for exploring hyperparameter combinations, and an evaluation
function to assess the performance of each configuration (e.g. MSE or R?). For-
mally, the problem of finding a hyperparameter set that minimizes the loss of an
ML model can be defined as follows:

0" = arg m@in L(y, fo(x)) (3.23)
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In the following, the three optimization methods grid search, random search,
and bayesian optimization are outlined in greater detail as they offer a balance of
simplicity, effectiveness, and versatility, making them suitable for different types
of ML modeling algorithms and datasets—including regression problems [165, 164,
166]. They are depicted in Fig. 3.16.
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Figure 3.16: Visual representation of the three considered hyperparameter search
strategies grid search, random search, and bayesian optimization applied to two
hyperparameters with different magnitudes of influence on the loss function. (Figure
adapted from [167] and [168]; generously granted by Prof. Yoshua Bengio.)

Grid Search (GS)

Grid search (GS) is a simple baseline hyperparameter optimization strategy to
evaluate all possible parameter combinations 6. This means their Cartesian prod-
uct is calculated. The higher the number of parameters or resolution within the
parameters the more function evaluations are needed which makes grid search com-
putationally expensive [165]. Another inefficiency of the GS is that also parameters
with a low impact on the predictive performance of the ML model are evaluated (cf.
Fig. 3.16, left plot) which wastes computational resources [169], too.

Random Search (RS)

The middle plot of Fig. 3.16 shows parameter combinations generated by the RS.
This strategy sets a fixed number of evaluations and randomly selects parameter val-
ues from predefined ranges [165]. Bergstra et al. state that for high-dimensional
parameter spaces theta, RS can outperform GS, as it allows finer searches for influ-
ential parameters [168, 166]. With RS, sampling strategies vary by parameter type.
For example, the learning rate eta is typically drawn from a log-uniform distribution
to cover multiple orders of magnitude, while the number of trees in a random forest
is sampled from a uniform distribution [168, 129].

Bayesian Optimization (BO)

Bayesian optimization (BO) constructs a probabilistic model to approximate the
target function. It then uses this model to select the subsequent set of hyperparam-
eters (#') to test, balancing exploration of unknown regions with exploitation of
promising areas. Acquisition functions, such as expected improvement or entropy
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search—both not expensive to compute—assess the potential benefit of evaluating
each point [170]. This approach is especially effective for expensive, non-convex
loss functions (with local and global minima), aiming to find the global optimum
with fewer trials [171]. In Fig. 3.16, this strategy is depicted by hyperparameter
combinations clustering around the minima of the respective losses.

3.8 Related Work

3.8.1 Approaches to Modeling

Complementing the CRISP-ML(Q) approach (cf. Section 3.5.3), Isermann [172]
distinguishes between different modeling strategies. According to Isermann, these
strategies can be categorized into two main types: theoretical (white box) modeling
and experimental (black box) modeling, with hybrid approaches—such as grey box
modeling—lying between these two extremes.

Theoretical Modeling

Theoretical modeling is based on mathematically defined natural laws. This in-
volves the application of fundamental constitutive and phenomenological equations,
as well as balance equations, entropy balances, and circuit equations. The modeling
process typically starts with simplifying assumptions to make the problem tractable.
The model parameters are assumed to be known in advance. Given that these mod-
els are often sophisticated and detailed, they are usually simplified for practical use,
such as through linearization or by reducing the model’s order [172]. As an example,
the current consumption I of a component can be modeled as a function of various
input features x € X such as the component’s operational state, and general model
parameters 3.

I = f(zi4,B) (3.24)

The advantage of this approach lies in the deterministic nature of the model, often
referred to as a white-box model. However, a notable disadvantage is the complex-
ity of deriving the mathematical equations and the challenge of estimating model
parameters, such as through measurement. Additionally, the operational strategies
of the component (ECU) must also be considered.

Experimental Modeling

Experimental modeling is based on the creation of models from empirical data
obtained through experiments (e.g. measured), observations, or simulations. Com-
mon types for experimental modeling include the aforementioned regression models
(cf. Section 3.5.2), NNs [111], and more. This approach proves especially ben-
eficial for highly complex systems where theoretical modeling becomes less effec-
tive. The recent advancements in computational power and the availability of large
datasets have significantly expanded the potential of data-driven experimental mod-
eling. However, one of the challenges of this approach is the tendency for models
to overfit (memorize) the training data, as well as the non-trivial issue of ensuring
that relevant data for specific model areas is available [172].
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Experimental Models for Energy Consumption Prediction

For passenger vehicles, experimental models are predominantly used to predict
overall energy consumption (cf. review Table 3.2 below), while in other fields, such
as smart buildings, energy consumption forecasting is more common [173, 174].
Data-driven models are currently the most advanced tools for predicting energy con-
sumption accurately. However, their application within the complex power distribu-
tion systems of vehicles, particularly based on bus data, has not yet been extensively
explored.

3.8.2 Literature Review

In this section, a review of the existing literature in the relevant research field is
conducted to enable an alignment of this thesis with current tendencies and research
focuses. A comprehensive overview of the reviewed sources is depicted in Table 3.2.
After a thorough analysis of the existing (scientific) literature it can be stated that
only little work has been achieved with regard to the detailed prediction of the
auxiliary power net components and ECUs of passenger vehicles. However, there
is a considerable amount of relevant work that focuses on data-based prediction of
the entire energy consumption of vehicles such as [175], [176], [177], [178] or [179]
which analyze possible influential factors on the prediction before generating their
predictive models which are regressions due to the numeric nature of the general
problem. They state that the influential factors are versatile reaching from envi-
ronmental (e.g. weather) conditions to individual driving behavior (e.g. speed and
cruise time) as well as traffic situations.

Schiéfers et al. [180] confirm that currently there is little research on a detailed rep-
resentation of the auxiliaries in (EV) vehicle power consumption prediction and if
there is, the power net components are often summarized by either a scalar or simple
linear functions depending on time and temperature [181]. Therefore, Schéfers et
al. focus on modeling the thermal components such as the PTC! auxiliary heater
with only a limited amount of information available on a data bus and from external
sources using LSTM NNs. [180].

Nonetheless, except for [176] which predict the energy consumption to enhance the
function of the battery management system (BMS) most of the sources aim at coun-
teracting range anxiety by more accurately predicting the total power consumption
of the vehicle. In addition to their work in the field of propulsion energy predic-
tion Zhou et al. also present a high-level framework to train and obtain AI models
from their raw data. It includes feature engineering and data preprocessing methods
[182].

Derived from the current state-of-the-art research conducted in the field of energy
consumption prediction and modeling at the ECU level, it can be concluded that
there is a gap this research work fills as—to the best of the author’s knowledge—
there is a lack of a holistic approach that covers the entire auxiliary power net and
its components as well as adequate explainability of the predictions made in that
context.

I6PTC: Positive temperature coefficient thermistor.
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Table 3.2: Comparison of ML methods for predicting EV energy consumption.

Source | ML Model Quality Data Source Feature Count
Metrics and Types
[175] XGBoost RMSE, MAPE Real-world 12 features from
driving data the vehicle,
from 55 electric environment,
taxis in Beijing. and
driver-related
factors.

[176] Heuristic Average error of | Real-time vehicle | 5 key features:
methods, no predicted power | data (speed, vehicle and road
traditional ML requirements. acceleration, parameters.
model road

information)
with historical
data.

[177] Random Forest, | MAE, MSE, R?, | Aggregated 10 features
Ridge MAPE sensor data from | including
Regression, 62 electric mileage, speed,
k-Nearest trucks. temperature,
Neighbors, MLP auxiliaries.

[178] LSTM- MAPE, MAE, Real-world 20 features from
Transformer RMSE vehicle data (one | the vehicle and

year) and the environment.
weather data.

[179] Ordinary Least | R?, AIC GPS data from | 14 features
Squares (OLS) 68 EVs in the including speed,
Regression, Aichi Prefecture, | distance,
Multilevel Mixed Japan. gradient, HVAC
Effects usage,
Regression temperature.

[180] Bidirectional RMSE, Simulation data | 9 features
LSTM Prediction Error | from thermal including

Percentage management temperature,
models and real | humidity, solar
measurements irradiance, and
from EVs. cabin

preconditioning.

[181] Multiple Linear | R?, Relative Real-world 7 features
Regression Error driving data including speed,
(Macro, Hybrid, from a Nissan elevation,

Micro models) Leaf temperature,
(2013-2014). acceleration,
auxiliaries.

[182] Quantile RMSE, and Real-world 17 features
Regression more driving data including driving

Neural Network

from 55 battery
electric taxis in
Beijing.

distance, vehicle
velocity,
acceleration and
elevation.
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3.9 Conclusion on the State of the Art

Finally, it can be concluded that this state of the art analysis provides a compre-
hensive overview of the foundational concepts, architectures, data collection meth-
ods, analysis techniques, and evaluation strategies relevant for predicting energy
consumption in vehicle power nets. These insights can now guide the development
of an integrated, explainable ML pipeline tailored to the unique challenges of auto-
motive E/E architectures in the following sections and is used as a foundation to
eventually answer the research questions.

o6



4 Empirical Methodology: Design and
Results

In the following chapter the state of the art as well as novel approaches are
brought together to answer the research questions forming WP 3 of this thesis.
Starting with the necessary preparatory work outlined in the preliminaries (cf. Sec-
tion 4.1) a methodology to obtain data-based energy consumption predictions for
selected power consumers is developed in Section 4.2. Subsequently, the method-
ology is applied to real-world data in order to obtain experimentation results in
Section 4.3.

4.1 Preliminaries

Prior to the experiment design—according to CRISP-ML(Q) [91]—data must be
collected to train the ML model and it must be analyzed beforehand to identify its
influence on the ML model’s predictions as well as any prior transformations that
may arise which the data must undergo.

4.1.1 Data Collection and Database Generation

It is crucial for data collection that a large variety of the diverse ECU com-

munication network traffic is generated as well as ensuring that as many operation
states of the considered power consumers as possible are reflected in the training
data (features and target labels). This enables the resulting ML models to react
with more precise predictions for a larger variety of driving situations.
Hence, the data collection does not take place in laboratory conditions or in sim-
ulations but on actual roads. Therefore, different road types, ambient conditions,
speeds and other possibly influential factors are varied during dedicated real-world
data collection drives. In addition to that, power consumers which depend on the
influence of the driver or passengers must be manipulated manually such as the seat
heating, the seat ventilation, the power steering and the ambient light.

Data Collection Mechanism

In preparation of the test drives, two vehicles are equipped with the measure-
ment equipment described in Section 3.4.5.
The first vehicle (thereafter referred to as Vehicle A) is a luxury sedan equipped
with a diesel engine. The second vehicle (thereafter referred to as Vehicle B) is an
SUV EV with electric propulsion.
The set of vehicles is denoted as T = {VehicleA, VehicleB}. Both vehicles are
equipped with nearly all available options. The respective individual options lists
are shown in Appendix A. Both vehicles are based on the same E/E architecture
platform. This means, they share certain E/E components, though it is not inves-
tigated which ones exactly. Each available ECU is equipped with a measurement
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shunt that collects power consumption data, which is subsequently transmitted via
the measurement CAN bus. The logger is configured to record data at a rate of
100 Hz. Table 4.1 provides an overview of the bus types available for each vehicle
and lists the number of power measurement points—118 for Vehicle A and 110 for
Vehicle B.

Table 4.1: Number of available (recorded) data communication buses on both
Vehicle A and Vehicle B.

Bus Type Vehicle A Vehicle B
CAN 14 11
LIN 11 8
FlexRay 1 1
Measurement CAN 1 1
N° of meas. points 118 110

Eventually, for each recorded data bus one .bif data file is produced per test
drive which is then converted into an .mf4 file enriched with additional knowledge
using a .dbc file. This includes information on data type, value range and possible
conversion rules (cf. Section 3.4.5) as well as with the signal names themselves.

Database Description

The entirety of the data collected forms two distinct databases of .mf/ files. The
number of test drives is D, with t € 7. It is 15 for Vehicle A and 25 for Vehicle B.
A detailed statistical summary (cf. Table 4.2) provides insights into the (numerical)
environmental conditions and operational ranges of the two vehicles during the test
drives, highlighting variations in temperature, speed, and bus signal availability.
These value ranges allow for an initial assessment of the limits of the predictive
capabilities of the ML models trained later on. The real-world data collection en-
sures that a diverse range of driving situations is captured, thereby enhancing the
precision of the resulting ML models.

Table 4.2: Statistical summary for numerical variables of Vehicles A and B.

Vehicle  Numerical Variables Min Max Average Median
Outside temperature 74 [°C] -0.45  23.50 9.45 9.50
Vehicle A Vehicle speed v, [km/h] 0.00 232.66 74.83 70.71
Bus Signals [count] 23 7796 1058 263
Outside temperature 75 [°C]  3.00  21.50 10.47 10.00
Vehicle B Vehicle speed v, [km/h] 0.00 186.49 87.19 92.61
Bus Signals [count] 45 7861 548 1283
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Vehicle A is exposed to an outside temperature 74 ranging from -0.45 °C to

23.50 °C, with an average temperature of 9.45 °C and a median of 9.50 °C. The
vehicle speed v, for Vehicle A ranges from 0.00 km/h to 232.66 km /h (=~ 64.64 m/s),
with an average speed of 74.83 km/h (= 20.79 m/s) and a median of 70.71 km/h
(~ 19.64 m/s). Additionally, the number of bus signals per data bus recorded for
Vehicle A ranges from 23 to 7796, with an average of 1058 and a median of 263 signals
captured. Overall, a total of 263370 data points are collected with a downsampling
from 100 Hz to 5 Hz!” which results in 52674 seconds (14.63 hours) of driving time.
Conversely, Vehicle B shows an outside temperature 75 ranging from 3.00 °C to
21.50 °C, with an average temperature of 10.47 °C and a median of 10.00 °C. The
speed v, of Vehicle B varies between 0.00 km/h and 186.49 km/h (=~ 51.80 m/s),
with an average speed of 87.19 km/h (= 24.22 m/s) and a median of 92.61 km/h
(=~ 25.73 m/s). The number of signals per data bus for Vehicle B ranges from 45 to
7861, with an average of 548 and a median of 1283. Here, 384290 data points are
sampled with the same raster as Vehicle A which is 0.2 or 5 Hz, resulting in 76858
seconds (21.35 hours) of driving time.
Disclaimer: All bus signals mentioned explicitly hereafter are referred to with a
human readable signal name which does not reflect the actual signal name in the
dataset and in the vehicle. This also serves privacy concerns by the OEM. Not all
data buses recorded might be used in the further process steps since the actual buses
needed depend on the ECUs selected for the final experimentation.

Table 4.3 summarizes categorical metadata of the compiled database for both

vehicles. Omitted categories have occurrences of less than 5 data points and are
thus considered irrelevant or incorrectly recorded. For Vehicle A, the day/night
distribution shows that 56.66 % of the data was collected during the day and 43.34 %
at night, with a negligible 0.00 % (rounded value) falling into omitted categories.
When considering whether the vehicle was driven with a passenger, 54.70 % of the
instances include a passenger, while 45.29 % do not, and 0.01 % are omitted. The
data confirms that the vehicle is always driven with a driver—which is obvious—
accounting for 100.00 % of the cases. Regarding the driver’s seatbelt usage, it is
fastened 99.45 % of the time and unfastened 0.55 % of the time, with 0.00 % omitted.
For the passenger seatbelt, it is fastened in 54.88 % of the instances and unfastened
in 45.12 %, with 0.00 % omitted.
In contrast, Vehicle B’s day /night distribution indicates that 63.31 % of the data was
collected during the day and 36.69 % at night, with 0.00 % omitted. When examining
whether the vehicle was driven with a passenger, 57.38 % of the instances included
a passenger, 42.62 % did not, and a negligible 0.00 % (rounded value) involve a
child seat or were omitted. Similar to Vehicle A, Vehicle B is always driven with
a driver, accounting for 100.00 % of the cases. The driver’s seatbelt was fastened
99.64 % of the time and unfastened 0.36 % of the time, with 0.00 % (rounded value)
omitted. The passenger seatbelt however, is fastened in 57.50 % of the instances
and unfastened in 42.50 %.

175 Hz returned best results compared to the model size in preparatory experiments.
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Table 4.3: Statistical summary for categorical variables of Vehicles A and B
(including omitted categories).

Vehicle  Categorical Variables Categories and Distribution

Day /night distribution Day: 149219 (56.66 %), Night: 114146
(43.34 %), omitted categories: 5 (0.00 %)

Driving with a passenger Yes: 144060 (54.70 %), No: 119288 (45.29 %),
omitted categories: 15 (0.01 %)

Driving with a driver Yes: 263370 (100.00 %)
Vehicle A priver seatbelt Fastened: 261923 (99.45 %), unfastened: 1443
(0.55 %), omitted categories: 4 (0.00 %)
Passenger seatbelt Fastened: 144530 (54.88 %), unfastened:
118834 (45.12 %), omitted categories: 6
(0.00 %)
Day /night distribution Day: 243277 (63.31 %), night: 140998
(36.69 %), omitted categories: 15 (0.00 %)
Driving with a passenger Yes: 220488 (57.38 %), No: 163780 (42.62 %),
child seat: 17 (0.00 %), omitted categories: 5
(0.00 %)
Driving with a driver Yes: 384290 (100.00 %)
Vehicle B priver seat belt Fastened: 382901 (99.64 %), unfastened: 1385
(0.36 %), omitted categories: 4 (0.00 %)
Passenger seat belt Fastened: 220976 (57.50 %), unfastened:

163314 (42.50 %)

Figures 4.1 and 4.2 show the outside air temperature 74 and speed profiles v, ,.
The graphics underline the desired randomness the vehicles are exposed to during
their test drives. A certain standardized driving cycle or profile (e.g. WLTP) is not
included in the database. In addition to that, Figures 4.3 and 4.4 demonstrate the
same for Vehicle B.
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Figure 4.1: Outside air temperatures 74 Figure 4.2: Speeds v, captured by Ve-
captured by Vehicle A. hicle A.
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4.1.2 Data Type Analysis and Blacklisting

Vehicle bus data can be of all kinds of data types as described in Section 3.4.2 due

to the variety of information that needs to be transmitted between ECUs. However,
special attention is to be paid to bus control data, event-based data as well as any
type of diagnostics data since it is known ex ante that some signals do not provide
any information on the prediction of the energy consumption nor on its explanation.
For example, bus control data such as checksums and tickcounts are not related to
the energy consumption (if not by spurious correlation). This is why it is useful to
already filter these signals out beforehand, via a static blacklist. The same applies
to diagnostics data and other information such as the current local time or date
as well as measurement signals which are not part of customer-ready vehicle ECU
software. The exact blacklist is displayed in Table 4.4.
Event data is non-cyclic information which can be triggered by users, systems, de-
vices, or external conditions spontaneously. This means if it is not triggered it is
not available in the dataset. Missing data (Not-a-Number, NaN) which e.g. NNs
cannot handle properly [129] must be avoided by the data import strategy and at
the latest during data preprocessing.

Table 4.4: Signals flagged for blacklisting signals during the data import.

Category Signal Names

Bus Control Markers  Sequence Counter, Tickcounts, Authentication Info, Checksums
Irrelevant Information Odometer Reading, Measurement Signals
Metadata Fields Current Date and Time, Timestamps

4.1.3 Developing a Robust Data Import Strategy and Algorithm

Algorithm 1 is designed to import and process vehicle measurement data from
.mf4 files using the open source Python library asammdf [183]. It starts with ini-
tializing a dedicated Data.py class with several input parameters (some optional),
inlcuding the directory containing the .mf4 files, a fuse-to-bus allocation file, a prefix
used in the .mfj files, and optionally, a blacklist file with signals to exclude (ad-
ditional to the static standard blacklist shown in Table 4.4), a target signal name
which can manually be specified if not already done in fuse-to-bus mapping, and a
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boolean flag (inner_join) indicating the DataFrame concatenation method.

The fuse-to-bus allocation file is a text file indicating the fuse’s (ECU’s) name in
the measurement CAN as well as the data buses relevant for each fuse (connected
to the corresponding ECU) in the following format < fuse_name >:< bus; >, <
busy >, ..., < bus, >. More than one fuse can be specified. Additional fuses require
similar entries in new lines of the text file. Creating the mapping file is a man-
ual process and requires knowledge about the respective E/E architecture since the
exact relations between ECU (fuse) and the data it comes in touch with must be re-
flected. The next step of the algorithm involves organizing the files. The fuse-to-bus
mapping is read and a dictionary created from it (fuse_bus_dict). It then lists all
.mf4 files and groups them by time frames into another dictionary, (dict_files).
This ensures that data points from different test drives are not mixed up.
Subsequently, the algorithm identifies the available fuses by searching the measure-
ment files using the specified fuse prefix and stores the results in a set called
set_fuses_names.

For each fuse in set_fuses names, the algorithm proceeds to process the data. If
an additional blacklist is specified, it creates a list of signals which are then not
imported. Then, for each group of files in dict_files, it initializes a collection,
mf4 _collection. For each file in the group, it is checked whether the file contains
measurement data (Mess_CAN). If so, it reads the measurements for the fuse and adds
them to mf4_collection. If a file corresponds to the data bus relevant for the fuse,
it reads the bus signals, applies the blacklist, and adds the data to mf4_collection,
too.

If mf4 collection eventually contains the desired data, the algorithm stacks the
data into mf4_stacked and converts it into a Pandas DataFrame'®, named
df mf4_stacked. It then fills any NaN values with zeros in df mf4_stacked, and
appends it to a list of DataFrames, dataframes.

Once all fuses (specified in the fuse-bus-allocation file) are processed, the algorithm
concatenates all DataFrames in dataframes into a single one which is df result.
If the inner_join flag is set to True, it concatenates the DataFrames using an in-
ner join, keeping only the common columns which handles missing data caused by
events that were not triggered during all the test drives effectively. Otherwise, an
outer join is used, keeping the superset of all columns.

The final output of the algorithm is df _result, a Pandas DataFrame containing the
processed data ready to be processed further within the holistic ML pipeline.

18 A Pandas DataFrame is a two-dimensional, mutable data structure in Python that allows
for the storage and manipulation of heterogeneous data types, organized into labeled rows and
columns. It is comparable to a table in a relational database or an Excel spreadsheet, providing a
flexible and efficient means of handling structured data [184].
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Algorithm 1: Algorithm for importing and processing vehicle measure-
ment data in preparation for ML tasks.

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29
30
31
32

Input: filedir: directory with .mf4 files
fuse_bus_file: fuse-to-bus mapping file
fuse prefix: prefix used in .mf4 files
blacklist: (optional) file with signals to exclude
target_signal: (optional) target signal name
inner_join: (optional) boolean flag for DataFrame concatenation method
Output: df _result: DataFrame containing processed data
1. Initialize Data class with input parameters
2. Organize files: Read fuse-to-bus mapping; create fuse bus dict
List .mf4 files; group by time frames, write into dict_files
3. Identify available fuses: Search measurement files using fuse_prefix;
store in set_fuses_names
4. For each fuse in set_fuses names: foreach fuse do
if blacklist is specified then
‘ Create blacklist of signals
end
foreach group in dict_files do
Initialize mf4 _collection
foreach file in group do
if file is measurement data (Mess_CAN) then
‘ Read measurements for fuse; add to mf4 collection
end
else if file corresponds to bus for fuse then
‘ Read bus signals; apply blacklist; add to mf4_collection
end

end

if mf4_collection has data then

Stack data into mf4_stacked; convert to DataFrame
df mf4 stacked

Add file column with file name to the mf4_stacked; Append
df mf4 _stacked to dataframes

=1

end

end
end
5. Concatenate all DataFrames into df result
if inner_join is True then
‘ Concatenate using inner join (keep common columns)
end
else
‘ Concatenate using outer join (keep all columns)
end
6. Output df _result
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4.1.4 Methodology to Select Simulation-worthy ECUs

Another research problem-specific element that needs to be developed before

constructing the ML pipeline is a mechanism to reduce the number of ECUs (fuses)
to be examined, since not every component in the vehicle is ”worth” predicting
by an ML model. This is especially applicable to ECUs without any variation in
their consumption (constant power drawing). The procedure of selecting the right
ECUs for modeling can be considered part of the model training process since only
simulation-worthy ECUs are then processed further by the ML modeling pipeline.
To realize this, an algorithm is developed whose functions include processing the
current measurement data, computing relevant metrics, and scoring each fuse based
on them. As a result, a ranking for ”simulation-worthiness” can be derived for each
vehicle in 7 from which the ECUs considered for further examination are chosen.
The ranking algorithm is structured to first use the function computing the median
crossing rate (MCR) of an ECU current signal, which serves as a key metric in the
analysis as it is an indicator of volatility and ECUs with a volatile consumption are
considered more ”simulation-worthy” than those with a constant one. After reading
the measurement files, a function processes the data to extract various additional
statistics (cf. enumeration below), and saves the results in an Excel file. A score
function then evaluates each fuse (and each metric) against certain thresholds, scor-
ing them based on their performance and saving the scoring results.
The algorithm is designed to be run as a standalone program, hence the correspond-
ing script—mnot discussed further at this point—accepts command-line arguments
for the car model series, source data path, whether to plot histograms, whether to
use automatic or manual thresholds, and the save path. When executed, it performs
the entire analysis and scoring process, providing valuable insights into the perfor-
mance and reliability of the fuses. The considered metrics for ECU ranking are the
following;:

e Median Crossing Rate (MCR)

— Global MCR. (MCR): This metric measures the frequency at which the
signal crosses its median value over the entire duration of the measure-
ment. It provides insight into the overall variability and stability of the
signal.

— Local MCR (MCR_loc): A metric similar to the global MCR but it
is computed over smaller, localized windows over the progression of the
signal. It helps to identify local variations and instabilities within the
signal.

e Minimum Value (Min)

— The smallest signal value observed, indicating the lower bound of the
signal’s behavior.

e Maximum Value (Max)

— The largest signal value observed, indicating the signal’s upper bound.
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Mean Value (Mean)

— The average signal value, providing a measure of the central tendency of
its behavior.

Median Value (Median)

— The median value of the signal, representing the central point of the data.
Compared to the mean, it is less influenced by outliers.

Standard Deviation (SD)

— This metric measures the amount of variation or dispersion in the signal.
A higher SD indicates that the signal values are spread over a wider range.

Normalized Standard Deviation (SD_Norm)

— The standard deviation of the signal after normalization. Normalization
rescales the data to a standard range, facilitating easier comparison be-
tween signals with different scales.

Once the metrics are computed, the script and the corresponding algorithm
evaluate each fuse against predefined thresholds (explained below). This evaluation
process is encapsulated in the score function. The scoring methodology involves
the following steps:

(i) Threshold Determination

e The script either calculates thresholds for each metric automatically based
on the data ("auto threshold”) or loads them from a predefined JSON
file. These thresholds serve as benchmarks to evaluate the performance
of each fuse (here: "auto threshold” is used).

(i) Metric Evaluation
e Each ECU is evaluated to determine whether its metrics meet the respec-
tive thresholds.
e If a metric meets the threshold, it is marked as ”Y” (yes); otherwise, it
is marked as "N” (no).
(iii) Score Assignment
e For each fuse (ECU), an overall score is calculated by counting the number
of 'Y’ marks across all metrics.

e The score eventually represents the number of metrics for which the
fuse meets the thresholds, providing a quantitative measure of its per-
formance. Since five metrics are used for the evaluation, the highest
possible score is 5.
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Thresholds for each metric are useful to distinguish between acceptable and po-
tentially problematic fuse (ECU) power consumption performances. They are de-
termined as follows when set to "auto threshold”: The maximum value thresh-
old (Threshold MAX) is the 30th highest maximum value among all ECUs, which
identifies fuses with unusually high maximum values. The mean value threshold
(Threshold MEAN) is the 30th highest mean value, flagging fuses with significant
deviations in average performance.

The global median crossing rate (MCR) threshold (Threshold MCR) is the 30th
lowest global MCR value, indicating fuses with stable signals. Similarly, the local
median crossing rate threshold (Threshold-MCR_LOC) is the 30th lowest local MCR
value, identifying fuses with fewer local signal variations.

Finally, the normalized standard deviation threshold (Threshold SD_NORM) is the
30th highest normalized standard deviation, highlighting fuses with higher signal
variability.

These thresholds effectively differentiate between fuses performing within simulation-
worthy parameters and those which need to be rejected for this research. Given the
total number of ECUs available in contemporary luxury vehicles (cf. measurement
points in Table 4.1) the threshold of 30 is chosen to reflect around one quarter of
the best performing components per selection criterion. So if a score is among the
top 30, then “yes” is awarded, otherwise “no”.

Table 4.5 provides an extract of the top-ranked ECUs from a larger pool of 118 for
Vehicle A and 110 for Vehicle B forming the ECU set £. Only the most promising
(high-ranked) ECUs, as determined by the previously introduced metrics, are to
be considered. Lower-ranked components, which do not meet the criteria for high
simulation relevance, are omitted from the table and from any further consideration
in this research.

Table 4.5: Result of the ECU selection algorithm. Ranks in descending order. For
Vehicle A and B 9 ECUs are considered respectively for the further experimentation.

ECUs Vehicle A Max Mean MCR MCR.loc SD Norm Score
Body Controller Front (BCF) Y Y Y Y Y 5
Extractor Fan Y Y Y Y Y 4
Central Infotainment Display (CID) N N Y Y Y 4
Fuel Supply ECU Y Y Y Y N 4
Coolant Pump Y Y Y Y N 4
Right Pixel Headlamp Y Y Y Y N 4
Left Pixel Headlamp Y Y Y Y N 4
Adaptive Suspension Y Y Y Y N 4
Driver Display N N Y Y Y 3
ECUs Vehicle B Max Mean MCR MCR_loc SD_Norm Score
Right Headlamp Y Y Y Y Y 5
Left Headlamp Y Y Y Y Y 5
Steering Column ECU Y Y Y Y Y 5
Coolant Pump Y Y Y Y Y 5
Seat ECU Driver Y Y Y Y N 4
Door ECU Front Left Y Y Y N Y 4
Body Controller Front (BCF) Y Y Y N Y 4
Central Infotainment Display (CID) Y Y Y N Y 4
Active Air Suspension Y Y Y N Y 4
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4.1.5 Features and Data Buses for Selected ECUs

Table 4.6 provides an overview of the ECUs selected for both Vehicle A and

Vehicle B. Each of them is associated with a set of data buses (to which they are
physically connected in the vehicle). Additionally, the corresponding number of
raw features (bus signals) available per ECU is shown. The table also highlights the
diversity of data sources and features captured for each ECU, showing the complexity
of the datasets analyzed. For example, the adaptive suspension in Vehicle A and
the steering column ECU in Vehicle B are connected to the FlexRay bus and thus
have the highest number of raw features (5,399 and 5,608 respectively). In contrast,
simpler components, such as the coolant pump, use a LIN bus with significantly
fewer features.
The buses connected to the 18 selected ECUs are nonetheless only a subset of all
the recorded buses during database compilation. For privacy reasons, the actual
bus names used by the OEM are omitted. Instead, the buses are identified by their
protocol types.

Table 4.6: Overview of the power consumers under investigation with their corre-
sponding data buses and the number of distinct bus signals in the raw data.

ECUs Data Buses N° of Features
Vehicle A (inner join, raw)
BCF 3x CAN, 5x LIN 3480
Extractor Fan 1x LIN 138
CID 1x CAN 972
Fuel Supply ECU 1x CAN 216
Coolant Pump 1x LIN 138
Right Pixel Headlamp 1x CAN 1334
Left Pixel Headlamp 1x CAN 1334
Adaptive Suspension 1x FlexRay 5399
Driver Display 1x CAN 972

ECUs Data Buses N° of Features
Vehicle B (inner join, raw)
Right Headlamp 1x CAN 1386
Left Headlamp 1x CAN 1386
Steering Column ECU  1x FlexRay 5608
Coolant Pump 1x LIN 134
Seat ECU Driver 1x CAN 1064
Door ECU Front Left 1x CAN 1599
BCF 3x CAN, 5x LIN 2748
CID 1x CAN 987
Active Air Suspension 1x FlexRay 5608
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4.1.6 Metrics and KPI Selection for Model Evaluation

This subsection addresses the selection and subsequent weighting of KPIs to
assess an ML model’s quality. Therefore, a workshop was conducted in February
2023 with two Al research experts from an OEM as well as with five domain experts
from the OEM’s E/E architecture department who take the customer perspective.
The goal of the workshop was to discuss a predefined set of metrics and a set of
proposed KPIs I which range from project-specific ones to common ML metrics
as introduced in Section 3.5.4. The workshop results thus permit the answering of
SR)2—which is about appropriate metrics for performance assessment—Ilater on.

Need for a Project-specific Metric

It is the aspiration of this research project to not solely rely on state-of-the-art
metrics for the quality assessment. Hence, a specific KPI is developed to address
the project’s main prediction challenge which is the correct prognosis of the elec-
tric current over time, thus the electric charge (cf. Section 3.3, Equation 3.4). It
shall measure the absolute percentage difference of electric charge consumed by a
given ECU averaged over a number of test drives D;. Since the power consump-
tion might be different for every drive a weighting mechanism is to be included to
give more importance to a drive where the respective ECU consumes more power
than in others. This metric is especially important when k-fold or leave-one-out
cross-validation (LOOCV, cf. Section 4.2.2) is used for model training, where the
folds are not of equal length and thus consumption might not be comparable over
the different drives [27]. The KPI is therefore named Percentage Average Weighted
Deviation (PAWD) and is defined as follows:

Dy Qi 1) %100) * i
PAWD:ZZ‘J((QZ'ZD,E)Q il (%] (4.1)
i=1 i
Where:

D;:  is the number of drives (CV folds) of a vehicle t € T.
@;: is the measured electrical charge of drive i.

Q;: s the predicted electrical charge of drive 1.

State-of-the-Art Metrics for Regression Models

Additional common metrics suggested to use in the context of ML model quality
assessment for this research are the R? (cf. Equation 3.15), the MSE (cf. Equa-
tion 3.14) and the inference speed measured in seconds. More precisely, the average
and cross-validation-weighted R? (in analogy to PAWD) are proposed, as well as its
standard deviation (SD) over all test drives (CV folds). The same is proposed for the
MSE. For the inference and training times—the latter also measured in seconds—the
calculation by sample (inference time) and by number of features and samples (for
the training time) are suggested to the experts. Complementing PAWD, the stan-
dard deviation (SD) as a measure of the volatility of the electric charge prediction
per test drive is proposed. The model size measured in kilobytes when exporting the
ML regressor via the standardized ONNX' format, is another quantitative metric.

90pen Neural Network Exchange (ONNX) is an open-source format designed to represent ML
models in a standardized, thus exchangeable way [185].
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A Note on Explainability as a Metric

One discrete, stepwise metric developed in this thesis is the explainability in-

dication, to what extent both the local and global state-of-the-art XAI methods
from Section 3.6 can be applied to the respective regressor. A value of 1.0 thus
refers to the ML algorithm that is most and 0.0 least explainable amongst the ones
considered in this research. The KPI is defined below.
Random forest shall be given the highest explainability score of 1.0 due to its in-
terpretable tree-like structure. Both local and global XAI methods, such as PFI,
ALE and SHAP are applicable. Gradient boosting also works with these methods,
although its sequential training introduces a slightly increased complexity compared
to RF. It shall therefore be given the explainability score of 0.8. In contrast, MLP
shall rank lower (with a score of 0.5) in explainability since it has a non-linear and
complex network structure, hence a black-box nature. Although SHAP and ALE
can still be applied, the insights derived from these methods are less intuitive com-
pared to tree-based models. Eventually, the LSTM model is the least explainable
(score: 0.0), which is due to its black-box nature and the additional challenge of
interpreting temporal dependencies derived from the given set of explainers.

4.1.7 KPI Assessment Workshop, Pairwise Comparison and Results

During the aforementioned workshop, Al and domain experts carry out a so-
called pairwise comparison on the KPIs and their previously mentioned variations.
The result is not only a ranking but also a set of weights V specific to the present
problem. Each KPI weight v. € V can later be applied to different ML model results
(decision criteria) to carry out a weighted sum analysis (WSA, cf. Section 4.3.3)
to ultimately determine a "most suitable” modeling algorithm. The results of the
weight determination process are presented in Table 4.7.

Table 4.7: Metrics and their respective rankings and weights, according to a pair-
wise comparison conducted during an expert workshop.

KPI / Metric k Rank Weight v,
X-val weighted PAWD [%)] 1 10
X-val weighted R2 2 7.8
Inference time per sample [s] 3 7.4
SD(PAAD) over all X-vals [%] 4 6.5
Explainability (local & global methods) 5 6.1
X-val avg. R? 6 5.7
Model size after export [kB] 6 5.7
SD(R?) over all X-vals 8 5.2
X-val weighted MSE [A2] 9 3.9
MSE [A2] 10 2.6
SD(MSE) [A4?] 11 1.3
Training time per feature & sample [s] 12 0.4
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As shown in Table 4.7, metrics like the X-val weighted PAWD (rank 1, weight
10) and the inference time per sample (rank 3, weight 7.4) are ranked high
because of their direct influence on model performance and their training, hence
deployment efficiency. These factors are critical for the underlying real-world ap-
plication, for which workshop participants (which include end users of the resulting
models, as well) prioritize prediction accuracy and computational efficiency.

In contrast, metrics like SD(MSE) (rank 11, weight 1.3) and MSE (rank 10, weight
2.6) are ranked lower, due to their secondary importance for ML problems or due
to redundancy with other KPIs already ranked higher (e.g. R? is generally ranked
higher even though MSE is a standard error metric in the ML context). Criteria like
explainability (rank 5, weight 6.1) reflect growing concerns by the domain experts
about transparency in their resulting ML models, but they do not overweight core
performance metrics in terms of priority, however. Similarly, the ONNX model
size (rank 6, weight 5.7, sharing the same rank with X-val avg. R?) is important
for productive model deployment, but resource efficiency is secondary to model ac-
curacy and runtime, according to them.

These rankings suggest that task-specific needs dominate the prioritization of met-
rics, with a strong emphasis on performance, efficiency, and scalability. Metrics
that measure raw prediction error or error variability are ranked lower due to their
reduced relevance in this context compared to performance measures providing in-
sights into model reliability, speed, and ease of deployment.

The detailed results of the pairwise comparison can be found in Appendix C.

4.1.8 Computational Resources

All subsequent experiments are conducted on the same local Linux workstation
with the following computational capabilities:
The machine is powered by an Intel Xeon Gold 6226R Central Processing Unit
(CPU), which features a total of 32 logical processors. The processor architecture
is based on the x86_64 instruction set, supporting both 32-bit and 64-bit operation
modes. It has a single socket containing 16 physical cores, each supporting two
threads, providing a total of 32 threads through hyper-threading [186]. The CPU
operates at a base frequency of 2.90 GHz [186]. The machine includes 502 GiB* of
system memory (RAM), with an additional 4.0 GiB of swap space available and it
runs on Ubuntu 22.04.5 Long-Term Support (LTS, Jammy Jellyfish).
The software environment is configured with Python 3.10.12, a programming lan-
guage commonly used for ML and data analysis tasks. The libraries and dependen-
cies required for the experiments are listed in the accompanying requirements.txt
file (cf. Appendix B), ensuring the reproducibility of the results.

20Gibibyte: 1 GiB = 23 byte ~ 1,074 gigabytes. 1 byte = 8 bit.

70



4 . Empirical Methodology: Design and Results

4.2 Methodology

At this point of the present study, the preliminaries are fully worked out. More
precisely, the experimental data is collected from the test vehicles under real-world
conditions, and code is developed to import the data in a way and format the ML
algorithms can deal with it. Furthermore, the framework has been set to which
enables objective and project-specific ML model comparison including respective
metrics and KPIs.

In this section, the methodology is developed to train and assess the ML modeling
algorithms used. This consists of an ML pipeline processing the raw data from the
import to the final regressor model as well as the detailing of its contents such as
the selection of a (cross-)validation and documentation mechanism together with an
appropriate hyperparameter tuning strategy suitable for the given ML task.

One overarching goal is also to ensure practicability which means that the pipeline
must be as automatable as possible so its usability in a real-world engineering en-
vironment can be guaranteed without the need of an extensive ML training and
qualification for the development engineers using it.

4.2.1 Construction of a Pipeline Architecture

According to the CRISP-ML(Q) process model, its step 3 can now be realized
at this point which includes the model training (cf. Section 3.5.3) and the necessary
steps to attain acceptable prediction results.

Therefore, a stepwise algorithm (pipeline) is subsequently presented that comprises
the approach to achieve that goal.

(i) Feature Engineering and Selection

After the data import there is a considerable number of features present in
the training data (cf. Table 4.6). Hence, an algorithm has to be applied to
reduce the size of the feature set further to speed-up subsequent processes such
as hyperparameter search and model training, as well as to reduce the model
size. Therefore, the methods by the authors of [31] are applied with a static
feature engineering pipeline (fixed sequence) to ensure the reproducibility of
the results.

(i) Model Hyperparameter Tuning Strategies
Following the feature engineering and selection each ML model’s hyperparam-
eter set 0, with a € A = {RF,GB, MLP, LSTM} can be tuned to further
optimize its predictive capabilities. Therefore, the tunable parameters as well
as an adequate search range needs to be determined before selecting a suitable
search and sampling algorithm among the ones presented in Section 3.7.2.

(iii) Model Validation Strategy

Once the hyperparameters are tuned and the features are selected as well
as engineered the resultant data can be used to apply CV strategies, which
resample the training data and execute several fits for the same regression task
with slightly altered training and validation datasets. The KPIs and metrics
for each run can then be averaged over all CV folds and a more concise image
of the algorithm’s generalization performance on variations of the input data
can be derived.
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(iv)

Model Training

With the feature set prepared and the parameters tuned the actual productive
regression can take place as a result of which the regressor can be exported
as an ONNX model file and the respective KPIs can be calculated to be able
to assess the algorithm’s performance for the given ML task. Ideally, the
KPIs are not the result of a single run of the regression algorithm but of a
systematic validation strategy including several fits with variations of training
and validation data.

Regressor and KPI Export

After the regression task, the regressor (the actual ML model) must be able to
be exported so that it can be transferred freely to any other computation en-
vironment where it can then be fed with unseen ECU communication data to
make predictions, eventually replacing a complex and costly physical measure-
ment system (cf. Section 3.4.5). For a thorough assessment of the regressor’s
performance on the training and validation data, the KPIs (cf. Section 4.1.6)
must be saved to a file in a tabular format where they represent the columns
and each run adds a new line of KPI values to the table. This way, different
runs can be compared to each other with greater ease.

Explainable AI Method Implementation

To be able to explain root causes and important influential factors of the ECU
energy consumption it shall optionally be possible to turn on the execution
of XAI methods for a training run. Those helpful for the given ML task are
described in Section 3.6 and are selected based on a survey with automotive
development engineers from the same domain conducted by the authors of
[29].

The base structure of the ML pipeline developed can be found in Fig. 4.5 below.
It starts on the left side with the relevant .mf/ measurement files as well as with
the fuse/bus allocation (cf. data import in Section 4.1.3). The data is then passed
through until the final training and results export stage. The points above, with the
exception of point (iv), are explained in greater detail in so-called detailed views in
Section 4.2.2. The resulting full architecture is schematically shown in Appendix D.

] Model Results
Measurement CAN Blacklist Training Handling

Database i
Optional Rand. For. Results
.mf4 (Metrics)
\/_—
Feature Hyperparameter
Inter-ECU Engineering Tuning
Communication Exported
Database Model
J
| .mf4 1

Explainable
Al

Figure 4.5: Simplified visualization of the automated pipeline to obtain ECU
consumption prediction models including data import, feature engineering, model
training, results export as well as XAI.
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4.2.2 Pipeline Components and Order

Subsequently, detailed perspectives of the order of the ML and data processing
pipeline’s components are laid out as well as specifics on selected Python code im-
plementations are presented. This pipeline is then eventually utilized to produce
the modeling and XAI results in Section 4.3.

Detailed View 1: Feature Engineering and Selection

Once the data is imported, a training dataset and a so-called test dataset are
created from the raw data. The test dataset is set aside and excluded from the model
generation process. However, it remains available for later (optional) validation of
the model using unseen data, should the need arise. Importantly, the transforma-
tions resulting from feature engineering must also be applied consistently to the test
dataset. This ensures the feature columns remain identical across datasets, which
is essential for most ML modeling algorithms to function correctly—in particular
when features are constructed or removed.

In order not to tamper with the original training data, a copy of it is produced and
the target column is removed so that only the input features remain on which the
feature engineering methods are then executed (virtual training data). This way,
helper columns which are not features—such as the identifier of a test drive, the
target column and the timestamps—can remain in the original training and test
datasets. The results of the processing methods are then applied to that original
training dataset only. Therefore, a fit-and-apply approach is developed which first
fits a feature engineering method on the virtual training data before applying it to
the actual one which is then used in the further steps of the ML processing pipeline.
For this research, a static pipeline is used, applying methods proposed by the au-
thors of [31]?!. Additionally, the static pipeline explicitly excludes the creation of
polynomial features (e.g. multiplying two features, where their product constitutes
a new one) even though they might capture non-linear relationships between the
features and the target variable that linear models might not otherwise [187]. The
reason for that is the lack of explainability of polynomial features as squared or
cubic features might lose their original meaning. This would then contradict the
goal of enabling explainability.

The process is graphically depicted in Fig. 4.6 where it is shown that at the end of
the steps the feature engineered dataset is available for further processing.
Formally written, the static pipeline always consists of a learning algorithm a € A
with A = {RF,GB, MLP,LSTM} and a performance metric k& € K. Therefore,
the model’s performance shall be denoted as P¥(X, y). Feature engineering methods
and sequence, represented by @, transform the original feature set X = {xy,...,z,}
into a modified set X', expressed as ®(X). Ideally, ®,, shall thus designate the
maximization of the model’s performance by determining an optimal set of features
X' for the given regression problem.

Dot = arg max P,(X',y) (4.2)

21Tn this publication—conducted during the course of this research—a more sophisticated re-
inforcement learning (RL) based approach is introduced which finds an optimal sequence of the
methods based on a reward function. Nonetheless, it not used in this thesis due to the approach
being non-deterministic which prohibits the reproducibility of the results generated.
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The feature engineering applied for this use case starts with a first feature se-
lection part eliminating columns (features) with no variance since the absence of
variance does not provide any information for an ML model to learn from. Then,
missing values (NaN) and ”signal not available” values are handled with an im-
plementation of median imputation. After that, OHE is applied to the categorical
features before another low-variance removal is executed since OHE might produce
low-variance columns. Finally, features with a low importance to the model are
removed from the training data. There is a threshold applied which cuts off features
with an importance lower than that. In the final step, highly correlated features
among the remaining ones are removed using PCC (cf. Equation 3.19).

Imported and Sampled Data (Blacklisting Applied)

Test Data

(not used for Training Data (copy) Training Data
information gain)
s

Copy

-

Low-Variance Removal

Apply Results Apply Results

NaN-Handling

Apply Results Apply Results

SNA-Handling

Apply Results Apply Results

One-Hot-Encoding

Apply Results Apply Results

Low-Variance Removal

Apply Results Apply Results

Low-Importance Removal

Apply Results Apply Results

Feature Improvement

Drop Correlated

Feature Selection

Polynomial Features

Low-Importance Removal

Feature Engineered Train and Test Dataset

Figure 4.6: Stepwise feature engineering and selection process with a fixed (static)
sequence of methods omitting polynomial feature generation.

Feature Selection Methods:

(i) Zero Variance Elimination
In this step of the feature engineering and selection process, all features with
zero variance are eliminated. This means, if the feature values are constant
over the entire time recorded, they are removed from the dataset since without
alteration they do not add value to the ML model. The Python implemen-
tation to find and eliminate zero variance features Python can be referenced
from Listing E.1 shown in Appendix E, Section E.1.
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(i)

(iii)

Feature Importance Removal with Threshold

To remove features with a low importance and thus low benefit to the ML
model the same fit-and-apply logic as for the low-variance removal is used.
First, the importances are determined using a RandomForestRegressor or
GradientBoostingRegressor in the fit function, depending on the ML algo-
rithm the data is being prepared for. Then, the identified feature columns
whose importance is lower than the threshold are removed in the transform
(application) part of the function pair.

In this case tmpurity feature importance is used which measures how much a
feature reduces the MSE [92] when it is used for splitting a node in a decision
tree [188]. More precisely, first the importance of the corresponding feature
data is assessed with either an RF-based feature importance algorithm using
scikit-learn version 1.2.1%2 default values (since the method is not applicable
per se for MLP and LSTM). The exception is GB where a GB-based feature
importance can also be calculated using scikit-learn version 1.2.123 with its
default values. The detailed implementation of the corresponding functions
are shown in Listing E.2, in Appendix E, Section E.2.

It is pointed out that the application of feature removal with importance on
the dataset eventually results in different reduced feature sets for GB com-
pared to the other considered algorithms (cf. Table 4.12) since the latter use
RF to determine the importances.

Removal of Correlated Features with Threshold

To further reduce the complexity and size of the dataset features which are
correlated to each other shall be inspected and one of them eventually be
removed. To do so, a fit function is developed that takes a threshold for
the minimum correlation required among two features (here the threshold is
set to 0.9) and the DataFrame df containing the training data as another
argument. Then, at first, the helper columns (cf. above) are removed before
pairs of features whose correlation exceeds the given threshold are identified.
The feature (column) with a lower importance is dropped. Therefore, the
aforementioned importance implementation from scikit-learn is used in the
way that the importances calculated at this preceding stage need to be handed
over to the private drop features(df, correlated pairs, importances)
function (cf. Listing E.3, line 27) where the column with the lower (respectively
higher) importance is identified from a pair of columns and eventually dropped.
The detailed listing of the respective functions to realize this preprocessing
functionality is shown and described in Appendix E, Section E.3.

2https:/ /scikit-learn.org/1.5/modules/generated /sklearn.ensemble. RandomForest
Regressor.html#sklearn.ensemble.RandomForestRegressor.feature_importances_, last accessed:
October 30, 2024.

Zhttps://scikit-learn.org/1.5/modules/generated /sklearn.ensemble. Gradient Boosting
Regressor.html#sklearn.ensemble.Gradient BoostingRegressor.feature_importances_, last accessed:
December 31, 2024.
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Feature Improvement Method: For feature improvement a median imputa-
tion is applied to the training dataset. It is applied only to columns in the dataset
that have at least the threshold value of 32 unique values, which has proven to be a
generally suitable parameter in preliminary experiments with similar data [31]. For
the affected columns, the median is calculated and used to replace NaN values. The
strategy to find respective feature columns with NaN values also follows the fit-and-
apply approach. In the fit function a dictionary (sna_dict) is created mapping each
column in the input DataFrame to a "filler” value. The filler is either the column’s
median (in case of numeric values) or the string ”"sna” if the threshold number is
not met. In a method called £ill sna median fit([...]) the sna dict is then
applied to the real training DataFrame.

The corresponding Python implementation with a more in-depth explanation of the
respective functions can be found in Listing E.4 in Appendix E, Section E.4.

Feature Construction Method: The third module of the feature engineering
and selection process is the application of OHE to the categorical features in the
dataset (cf. Section 3.5.5). Therefore, the dedicated FeatureEncoding class is
implemented providing two main functions: one hot_encoding fit([...]) for
fitting and one_hot_encoding transform([...]) for applying OHE. They per-
form OHE on categorical columns in the training DataFrame using scikit-learn’s
OneHotEncoder?* implementation. The latter is part of the aforementioned fit func-
tion and is set to automatically detect categorical features, extract them into distinct
categories and store them in a special decoder object.

In the corresponding transform function the fitted encoder is used to transform the
categorical columns of the training DataFrame into one-hot encoded representations
while maintaining the structure of the original data. Since the number of categorical
features is unknown prior to the feature engineering process, there is a risk that the
number of columns increases significantly, potentially leading to a memory (RAM)
overflow or at least to substantially larger training data. This has to be handled
accordingly by the user (e.g. by adding sufficient RAM memory to the computation
resource). The detailed implementation of the OHE fit and transform functions
together with a more detailed description are outlined in Appendix F, Section E.5.

Detailed View 2: Hyperparameter Tuning Strategies

Now as the training as well as the test dataset are both preprocessed according

to the methods described, the next step in CRISP-ML(Q) is the tuning of the mod-
eling algorithms’ hyperparameter sets 6,, Va € A.
Therefore, an adequate tuning mechanism for the given ML modeling task must be
defined globally—this means for all four ML algorithms under investigation so their
results remain comparable. Subsequently, the tunable parameters for each algorithm
must be identified and meaningful search spaces for each hyperparameter must be
defined. The concept of hyperparameter tuning is introduced in Section 3.7.2 and
specifically Equation 3.23.

Zhttps:/ /scikit-learn.org/1.5/modules/generated /sklearn.preprocessing. OneHot
Encoder.html, last accessed: January 4, 2024.
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In the Python implementation for this thesis, the hyperparameters are set through a
configuration object (which has the format of a Python dictionary) upon the instan-
tiation of the respective regressor objects in the codebase as shown in the Listing 4.1
below:

# Load configuration dictionary
config_dict = self.config.get_dict(
config_path=self.config.configFile,
default_path=(
pathlib.Path(__file__) .parent.parent.resolve().as_posix () +
"/default_configs/randomforest_defaults. json"

)

# Instantiate the Random Forest Regressor
regr = RandomForestRegressor (x*config_dict)

Listing 4.1: Instantiation of a RandomForestRegressor with hyperparameters
from a configuration dictionary.

In this listing the configuration which includes the hyperparameters is stored in a
human and machine readable randomforest_default. json configuration file. This
is the case for any of the ML algorithms in 4. This way, the parameter set 6, can be
exchanged in a modular way (e.g. with a set of tuned hyperparameters). A selection
of the considerable hyperparameters together with their functionalities is presented
in Section 3.5.3.

Tunable Parameters and Search Space Definitions: In the following, tunable
parameters are defined for each of the ML algorithms to enhance their individual
performance. This is preceded by a systematic sensitivity analysis which is carried
out for each parameter with a subset of the real-world ECU communication data
to obtain meaningful search spaces specific to the present ML task. In total, six
power consumers from Vehicle A are chosen randomly but with the goal to cover
a large variety of vehicle domains. Since this analysis took place before the KPI
assessment workshop (cf. Section 4.1.6) only R? and PAWD are considered, both
averaged over all test drives (CVs, cf. Section 4.2.2). No data preprocessing had
been developed yet at that point of the research project, so the sensitivity analysis is
carried out on the raw data. This assessment is also useful to determine the impact
of individual hyperparameters. The overall results are complemented by findings
from literature where possible.

Due to the high number of possible combinations of hyperparameters for each algo-
rithm, the sensitivity analysis is carried out by varying one parameter at once only
whilst keeping others constant. Even though this procedure may not capture all
interactions and dependencies between hyperparameters it is considered a practical
way as the combinatorial complexity decreases.

Hereafter, the condensed results of the sensitivity analysis are presented, combined
with findings from the literature, in the form of respective search spaces for hyper-
parameter tuning.
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(i)

Sensitivity Analysis for Random Forest (RF)

The search space ranges as well as the choice for tunable parameters for RF
are supported by literature [189, 190]. Even though it is stated there that
the actual search range depends strongly on the size and complexity of the
training dataset [191].

For visualization, Figure 4.7 illustrates the development of the two perfor-
mance KPIs, R? and PAWD, across different values of the n_estimators
hyperparameter for the RandomForestRegressor, using two of the six ECUs
from the sensitivity analysis as examples. From this excerpt it can already be
derived that the R? value improves significantly as n_estimators increases,
while the PAWD decreases, indicating better model performance with more
trees (estimators) in the forest.

A good value for any considered parameter can then be derived visually. The
overall range for a parameter is then determined by the superset of ”best pa-
rameters” over all six ECUs considered in the analysis. This procedure is
repeated for all hyperparameters considered "tunable” which ultimately re-
sults in the values shown in Table 4.8.
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Figure 4.7: Sensitivity analysis example for the rear multi-mode radar and for the
front left door ECU, and slope of the corresponding two KPI curves over different
values of the n_estimators hyperparameter.
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Table 4.8:

Hyperparameter, search space,

spacing,

RandomForestRegressor (scikit-learn version 1.2.1).

and default values for

Hyperparameter Search Space Value Package
Distribution Defaults

n_estimators [50, 300] Equidistantly 100
(20 values) spaced

max_depth [2, 20] Equally spaced None
(7 values)
+ [30, 100]
(6 values)
+ None

min_samples_split  [2, 200] Equidistantly 2
(10 values) spaced

min_samples_leaf  [1, 100] Equidistantly 1
(10 values) spaced

max_features [0.1, 1.0] Equidistantly 1.0
(10 Values) spaced

max_leaf_nodes [50, 1000] Equidistantly None
(10 values) spaced
+ None

bootstrap [True, False] Binary True

(ii) Sensitivity Analysis for Gradient Boosting (GB)
The part of the tunable parameters for GB wich are similar to the ones for
RF are taken over since they signify the same model behavior and influence.
Whereas the GB-specific hyperparameters (learning rate, subsample and
loss) are taken from [109]. They are summarized as a whole in Table 4.9.

Table 4.9:

Hyperparameter, search space,

spacing,

GradientBoostingRegressor (scikit-learn version 1.2.1).

and default values for

Hyperparameter Search Space Value Package

Distribution Defaults

n_estimators [50, 300] Equidistantly 100
(20 values) spaced

learning_rate [0.01, 0.05, 0.1, 0.2] Categorical 0.1

max_depth 12, 20] Equidistantly 3
(7 values) spaced

min_samples_split  [2, 200] Equidistantly 2
(10 values) spaced

min_samples_leaf  [1, 100] Equidistantly 1
(10 values) spaced

max_features ['sqrt’, 'log2’, None, 0.8, 1.0]  Categorical None

subsample [0.5, 0.7, 1.0] Categorical 1.0

loss [squared,error’, "huber’| Categorical 'squared_error’
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(iii) Sensitivity Analysis for Multilayer Perceptron (MLP)

80

With regard to the MLPRegressor, the choice of tunable hyperparameters as
well as their ranges is also supported by literature (by both [164] and [192]).
Ancillary, the procedure of determining ranges for this specific research is also
carried out through a sensitivity analysis and with the same six power con-
sumers and data as explained above. Figure 4.8 is an example for the alpha
hyperparameter which influences the KPIs R? and PAWD over different val-
ues (here displayed—again—for two out of six power consumers). From these
graphs (and from those not depicted) it can be derived that smaller alpha
values are more favorable. The same procedure is applied to the other MLP-
specific KPIs as well.

However, one of the more decisive factors of NNs is their architecture con-
sisting of input, output and hidden layers (cf. Section 3.5.3). Despite the
existence of several approaches to automate the architectural design, called
neural architecture search—short NAS [193]—in this case, a systematic and
dedicated sensitivity analysis is carried out for this parameter as well. This
approach is chosen due to the novelty and complexity of the data, which makes
it challenging to apply general-purpose NAS methods effectively, because of
the aspiration to provide the most specific and tailored results for the given
problem. Here, for each of the six ECUs a vast number of designed trials—a
total of 161—are carried out to approximate a suitable range for the number
and sizes of the hidden layers (parameter name: hidden layer_sizes). The
trial range for the sensitivity analysis reaches from no hidden layers (Arch_[0])
to a single one (Arch_[5]) with five nodes to up to four hidden layers with
150 nodes each (Arch_[150,150,150,150]).

Single-layer architectures are designed to vary in size from 5 to 50 neurons,
while multi-layer models include configurations with uniform or mixed layer
sizes. The deeper networks with three or four layers allow for learning com-
plex, hierarchical patterns, enabling the analysis of non-linear relationships
in the data—with a remaining risk of overfitting. However, larger networks
might be a good fit for the presently researched ML problem as well, since the
data (feature) complexity and number both vary as shown in Table 4.6.

The risk of overfitting is underlined by the results of the analysis which show
a discouragement of very large hidden layer architectures with a tendency to
fewer hidden layers and especially to smaller node numbers depending on the
power consumer and the complexity (number of features) of the input data
involved. This result is plausible since NNs with large hidden layers tend to
overfit the data which leads to worse results in model validation, hence poorer
generalization. Consequently, a set of architectures can be selected to be in-
corporated in the hyperparameter optimization strategy (cf. Table 4.10). The
largest hidden layer configurations from the sensitivity analysis could eventu-
ally be discarded to keep the search space smaller. This way, a reduction from
initially 161 to eventually 127 considered hidden layer configurations can be
achieved.
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Figure 4.8: Sensitivity analysis example for the rear multi-mode radar and for the
front left door ECU, and slope of the corresponding two KPI curves over different
values of the alpha hyperparameter. Due to the sampling focus towards smaller
values the x-axis is log scaled.

Table 4.10: Hyperparameter, search space, spacing, and default values for
MLPRegressor (scikit-learn version 1.2.1).

Hyperparameter Search Space Spacing Package
Defaults

activation ["tanh”, Categorical ?relu”
”logistic”,
"relu”]

alpha [0.001, 0.1] Equidistantly 0.0001
(10 values) spaced

batch_size [16, 32, 64, Power of two 7 auto”
128, 256]

hidden_layer_sizes Various architectures Categorical (100,)
(see below)

learning rate_init  [0.1, 0.01, 0.001, Log spaced 0.001

0.0001, 0.00001]
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The following scheme is used to build a search space for the MLP hidden
layer architectures which is then converted to and stored in a JSON file of
architectures for the hyperparameter hidden layer _sizes. It results directly
from the sensitivity analysis:

e No hidden layers

Single-layer architectures: [5], [10], [15], [...], [40], [50].
Two-layer architectures:
— Same values: [5, 5], [10, 10], [15, 15], [...], [40, 40], [50, 50].
— Different values: [5, 10], [5, 15, [5, 201, [5, 25], [...], [15, 30, [15, 3],
[15, 40], [15, 50], [...], [50, 60], [50, 100], [50, 150].
Three-layer architectures:
— Same values: [5, 5, 5], [10, 10, 10], [...], [40, 40, 40], [50, 50, 50].
— Different values: [5, 10, 5], [5, 15, 5], [...], [25, 40, 25], [25, 50, 25],

[...], [50, 60, 50], [50, 100, 50], [50, 150, 50].

Four-layer architectures:

— Same values: [5, 5, 5, 5], [10, 10, 10, 10], [...], [50, 50, 50, 50].
— Different values: [5, 10, 10, 5], [5, 15, 15, 5], [...], [20, 25, 25, 20], [20,
30, 30, 20], [20, 35, 35, 20], [20, 40, 40, 20], [...], [50, 60, 60, 50], [50,

100, 100, 50], [50, 150, 150, 50].

(iv) Sensitivity Analysis for Long Short-Term Memory (LSTM):
For the LSTM algorithm the tunable parameters as well as their ranges are
determined with the same experimental sensitivity analysis setup as for MLP
and RF. They are outlined in Table 4.11 and the choice for the parameters is

also supported by literature [194, 195].

Table 4.11: Hyperparameter search space, spacing, and package defaults for LSTM
(Tensorflow Keras version 2.12.0).

Hyperparameter Search Space Spacing Package
Defaults

layer _sizes Various architectures Categorical User-defined
(see MLP above)

batch _size [64, 128, Power of two 32
256, 512, 1024]

activation [”tanh”, Categorical tanh
”sigmoid” ]

dropout [0, 0.1] Uniform 0
(continuous)

learning_rate [0.01, 0.001, Log spaced 0.001
0.0001]

82



4 . Empirical Methodology: Design and Results

The layer_sizes parameter contains the same NN architecture definition op-
tions for hidden layers as determined above for MLP. However, the package
Ray Tune®® and specific functions from it are used for the hyperparameter def-
inition, spacing and eventually tuning since there is no dedicated scikit-learn
implementation for LSTM. This way, the function tune.choice([...]) is
used for drawing discrete samples for hyperparameters such as layer sizes,
batch_size, activation, and learning rate [196]. The package function
tune.uniform([...]) is utilized to sample continuous values for the dropout
hyperparameter given its upper and lower bounds. More details on the Ray
Tune package are outlined below.

Selection of the Tuning Mechanism: Once the hyperparameters and their
ranges are defined, a search strategy must be developed that meets the criteria of
efficiency in terms of tuning time and results improvement. A manual tuning is
considered impossible given the high number of manual trials that would need to be
executed. In addition to that, a manual process would contradict the aim of estab-
lishing an automated data processing and model training pipeline for this ML task.
Therefore, an automated tuning strategy must be implemented. In the supporting
literature about hyperparameter tuning three strategies prevail: Grid Search (GS),
Random Search (RS), and Bayesian Optimization (BO) [80, 165, 189, 194] (cf. also
Section 3.7.2).

In fact, GS is the most extensive search strategy since it covers all possible param-
eter combinations with a brute-force approach. Nonetheless, it is impractical given
the large datasets and possible parameter combinations 6, as there are too many
trials to be executed which takes too much time. Given the defined parameters for
RF for example, this would result in 6.16 x 10° different combinations to be assessed.
In previous preparatory experiments with the data of both Vehicles A and B, exper-
iments have shown that BO does not provide significant improvement despite being
faster than GS. These findings are supported and underlined by the fact that BO
struggles with scaling and parallelization which is an impediment for large datasets.
Furthermore, the influence of each hyperparameter within the set 6, a € A is not
known ex ante which can also inhibit BO to be effective should none of them have
a significantly greater impact on the model performance (cf. also Fig. 3.16 on the
right).

Apart from this fact, Bergstra et al. state that RS outperforms GS which they found
out by empirical experiments and they also underline the statements made about
BO stated above and in Section 3.7.2. This is why—in this case—RS is chosen
as the most promising way to find good hyperparameter configurations for the ML
algorithms investigated.

e Search Strategy Definition As previously discussed, RS samples randomly
composed sets of hyperparameters 6,, for each ML modeling algorithm a € A
with ¢ being in a predefined range. This range depends on the project’s con-
straints regarding the total processing time since for each drawing of hyperpa-
rameters a complete training and validation run on the given training dataset
is conducted. In addition, the large number of available parameters needs to

25Python package version 2.3.0, https://pypi.org/project/ray/2.3.0, last accessed: Decem-
ber 5, 2024.
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be considered, as the more parameters there are, the more trials need to be
conducted to achieve significant coverage.

Therefore, it is defined that the counter index i shall range from 1 to 100:
i€ {1,...,100} wich equals 100 trials with different randomly sampled pa-
rameter combinations.

e Search Strategy Implementation

(i) Scikit-learn RandomizedSearchCV Class
For RF, GB and MLP there is an implementation available from scikit-
learn which offers a constructor for RS parametrization. For this research
it is used as a part of a dedicated Python wrapper class RandomSearch. py.
The predefined parameters and their distributions are received via a pri-
vate _get_search parameters(model type) function, according to the
model type in use, which randomly draws parameter combinations with
put back. The number of drawings is defined by the predefined n_iter
parameter and a verbosity level for terminal (console) output is set.
Especially worth mentioning is that RandomizedSearchCV performs an
internal CV by splitting the data into five parts of equal length (cv =5
in this case, default value). For each combination of hyperparameters, it
trains the model on cv-1 folds and evaluates it on the remaining fold.
This procedure is repeated cv times, with each fold being used as the
validation set once. Multiplied by 100 parameter drawings this results in
500 individual fittings for each ECU. The performance metrics are then
averaged over the cv folds per fit to provide a robust estimate of the
model’s performance for a given 6,,.
Finally, the regressor is fitted with the parameters found returning the
best score for further processing. The detailed implementation is shown
in Listing F.1 in the Appendix F, Section F.1.1.

(ii) Ray Tune Tuner Class

Since there is no out-of-the-box scikit-learn implementation for LSTM
hyperparameter optimization—as stated previously—a special wrapper
function _get_best_param ray([...]) is defined as part of the superor-
dinate class RandomSearch.py using the parameter tuning package Ray
Tune. The search strategy and parametrization is similar to the other
three ML modeling algorithms described above and the detailed imple-
mentation is shown in Appendix F, Section F.1.2, Listing F.2.

Detailed View 3: Model Validation Strategy

Selection of a Cross-Validation Design: Another part of the CRISP-ML(Q)
process model step 3 "model generation” is the validation of the generalization
capability of the ML model [91]. Therefore, CV is performed, where the training
data, consisting of a given number of test drives D; — 1 (one drive is already put
aside as test data), is partitioned into the same number of subsets. For each model
training of a power consumer during the CV stage, another drive is excluded from
the training process, and the model is then fitted with the D, — 2 remaining drives
(cf. Section 4.1.1). This process is repeated D; — 1 times.
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Since one test drive (a distinct subset of the training data) is iteratively excluded
from the fitting process, this procedure is also referred to as leave-one-out-cross-
validation (LOOCV, cf. also Section 4.1.6). Standard train-test split ratios (e.g.,
70:30 or 80:20 [197]) are not used here to avoid mixing data from different drives,
which could lead to unrealistic driving scenarios at timestamps where one drive
transitions into another.

All metrics in the results part (cf. Section 4.3) are then averaged over all D, —1 CV
runs in order to obtain a robust statement on a model’s generalization performance
and correctness [198]. Figure 4.9 illustrates the generalized LOOCV process with
D; — 1 test drives and resulting model fits. For simplicity reasons all drives are
depicted as of equal length which is however not the case in this project. In addition
to that, it is visualized that each LOOCYV fit produces a regressor model and the
respective KPIs which are then averaged as explained before.

All results presented in Section 4.3 use this LOOCV strategy.
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Figure 4.9: Schematic depiction of the LOOCYV strategy applied in this research
aiming at preserving the integrity of the test drive data. Additionally, the test
dataset remains untouched in this stage, too. Only the actual training data is used.

LOOCYV Implementation Strategy: The implementation to realize the LOOCV
strategy for this project follows a modular implementation strategy as well, so
the functionalities around creating CV splits are encapsulated in a dedicated class
CrossValidation.py. The class is particularly designed for segmented data—e.g.
distinct test drives, identified by a unique file name. Each test drive has one dedi-
cated and unique filename which is also part of the imported data so these identifiers
can be used to distinguish between the respective drives and to subsequently build
the CV folds accordingly. To be more precise, this means that drives (splits) are
separated by that identifier.

Ultimately, a compiled list of CV splits which can then be further processed by the
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four investigated ML modeling algorithms in the set A is returned. By this stan-
dardized and reproducible procedure it is ensured that for a detailed comparison,
every algorithm is fed with the same (split) data. Avoiding such sources of ran-
domness is a contribution to consistency in the assessments conducted and to the
assumptions made in the following results and discussion sections.

The detailed Python implementation of the CrossValidation.py class together
with its associated class methods is shown in Appendix F, Section F.2, Listing F.3.

Detailed View 4: Regressor and KPI Export

Another work item of this research is the assessment of the model’s predictive
capabilities on a selection of example ECUs. To be able to make this assessment,
certain KPIs and metrics as well as model sizes must be calculated and made acces-
sible. As already shown in Fig. 4.9, this is realized by the calculation of the average
values of all CVs conducted during a training run.

Regressor Export: As previously introduced in Section 4.1.6, the trained models
(regressors) are exported in the standardized ONNX format, which ensures that they
are both comparable and interchangeable across platforms and tools. To enable this
functionality in the code, a so-called export flag —e can be set as a command-line
parameter, which in turn sets the corresponding boolean flag in the configuration
to the value True. When this is the case, the export function in the orchestrat-
ing Model.py class is triggered. The actual functionality of the export process is
encapsulated in the dedicated ModelExport.py class, also adhering to the general
object-oriented programming paradigm for better modularity. This means, an ob-
ject is then instantiated, which facilitates the export process through the public
methods it makes available which can then—again—be handled centrally from the
overarching Model.py class described later in this section. The actual Python im-
plementation of the ModelExport.py class is shown in Appendix F, Section F.3,
Listing F.4

It is also possible to export metadata and model information from a given training
run. An example of a metadata export from a pipeline run for the driver display
of Vehicle A, in a human- and machine-readable JSON format, is provided in Ap-
pendix G.

KPI and Metrics Export: The KPI export is organized similarly as the previ-
ously explained regressor and metadata export. Some KPIs are already part of the
metadata JSON file (cf. Appendix G). Nonetheless, a holistic collection of necessary
KPIs is achieved through the dedicated main _collector and model collector ob-
jects which are then used to prepare an Excel (.zlsz) file listing the respective KPIs
in a structured way. One line per complete run of the ML pipeline. This means,
these KPIs are thus averaged values over all CV runs. Figure 4.10 shows the results
of 20 training runs for an example ECU. More KPIs are not displayed for brevity
reasons, however the most important ones identified in Section 4.1.6 as well as se-
lected meta data such as the number of CVs, the longest respectively shortest CV,
the number of features (bus signals) involved or the ML modeling algorithm used
are recorded.
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C D E F H J AA AB AE AF AG Al AK AL

Min.CV | Max.CV |Frequency ML spPaap)over, XY@ | x.val |sDR7)over| Xwal |msE|spmsg)| XV

N°CVS| 1 ongth [s] | length [s]|  [Hz] Algorithm | N Features| oy vais ] | YoM | oug Re| all X-vals |weighted R2| [Az] | [Ag] |“SigNted
PAWD [%] MSE [A2]

14 976 6634 5 |randomforest 972 13,399 9067 1225 2579 0510 0,005 0005 0,006
14 976 6634 5 mb 972 11,669 7235 0,686 2,196 0050 0,004 0005 0,004
14 976 6634 5 Ism 972 21,666 9471  -68,536 245,508 34220 0007 0011 0,006
14 976 6634 5 randomforest 80 4,530 3080 0258 0518 0431 0,002 0002 0,003
14 976 6634 5 mbp 80 7,696 6792 0,620 3395 0,650 0,003 0,004 0,005
14 976 6634 5 lsm 80 19,196 8,652 2,007 4367 0818 0,007 0012 0,006
14 976 6634 5 randomforest 80 2,650 2,576 0588 0287 0652 0002 0002 0,002
14 976 6634 5 mbp 80 52,575 49,105 79440 145360 51312 0070 0086 0,102
14 976 6634 5 Ism 80 13,458 8717 0734 1644 0405 0,007 0009 0,009
14 976 6634 5 Ism 80 9,484 8390 0,105 0,789 0084 0004 0004 0,005
14 976 6634 5 gradientboosting 972 3,204 2555 0411 0772 0626 0001 0001 0,002
14 976 6634 5 gradientboosting 6 1,389 1286 0627 0309 0,709 0,001 0001 0,001
14 976 6634 5 gradientboosting 6 1,368 1335 0629 0320 0,707 0,001 0001 0,001
14 976 6634 5 |randomforest 972 13,983 8916  -1,185 2203 0,566 0,006 0007 0,006
14 976 6634 5 |randomforest 80 5,147 3514 0,031 1013 0268 0,003 0003 0,003
14 976 6634 5 randomforest 80 3,483 2,595 0,177 0,746 0425 0,002 0,002 0,002
14 976 6634 5 gradientboosting 6 1,368 1335 0,629 0,320 0,707 0,001 0,001 0,001
14 976 6634 5 gradientboosting 6 1,389 1286 0,627 0,309 0,709 0,001 0,001 0,001
14 976 6634 5 gradientboosting 6 1,368 1335 0629 0320 0707 0001 0001 0,001
14 976 6634 5 gradientboosting 6 1,368 1335 0629 0320 0707 0001 0001 0,001

Figure 4.10: Excerpt of a result Excel file, showcasing the most relevant KPIs and
metrics of one of the ECUs for 20 individual training runs with different configura-
tions of the ML pipeline arranged one below the other.

Detailed View 5: XAI Method Implementation

Once the model training is completed, all the necessary data, information, and
other precursors necessary to conduct XAl are available. These necessary elements
notably consist of a trained regressor model and the associated engineered training
and validation data. The corresponding XAI Python implementation follows the
already presented strategy where thematically related functions are summarized
in one class. In the final code, any XAI method from Section 3.6 can thus be
retrieved by creating an Explanation.py object and calling the desired encapsulated
function. This modular logic is depicted in the UML diagram in Fig. 4.11. In that
case, the class name is Explanation and—as shown in the UML diagram—the
components X_trn, X_val, y_trn and y_val for the training and validation data,
the trained model (regressor) regr and the fuse to identify the target name are
attributes of such an object. Especially for the SHAP explainer the feature names
feature _columns and the absolute number of targets num _fuses is also needed.
All XATI methods are primarily calculated on the training data (even though for
some the validation data is needed, too) which ensures that the explanations are
done with the patterns the model was trained with, providing insights into the
reasoning behind the predictions based on that original data.

The actual instantiation of the class is depicted in Listing F.6 (cf. Appendix F,
Section F.5).
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Explanation

-X_trn: DataFrame

-X_val: DataFrame

-y_trn: DataFrame

-y_val: DataFrame

-regr: Any

-fuse: str
-feature_columns: List[str]
-numFuses: int

+init()

| +do_pfi_explanation(X, y)
+do_ale_explanation(X)
+do_shap_explanation(X)
+do_lime_explanation(X, y)

creates creates creates
v ¥
PFI v SHAP
ALE
-regr: Any -regr: Any
-feature_columns: List[str] -X_trn: pd.DataFrame -feature_columns: List[str]
-feature_importances: Any -X_val: pd.DataFrame -fuse: str
-pfi_features: List[str] -regr: Any -X_trn: pd.DataFrame
-fuses: List -numFuses: int

+init(explanation)
+calculate_importances(X, y) +init(explanation, [...]) +init(explanation, [...])
+print_importances(X, y) +create_1D_ale(X) +create_shap_explainer()
+plot_importances(max_display=6) -feature_variance_is_zero(df) +generate_shap_values(indices, X_exp)
+get_feature_importances() +shap_waterfall_plot(indices, X_exp)

Figure 4.11: Representation of the XAl implementation strategy in a UML format.
The actual XAI logic is encapsulated in the corresponding classes, callable through
functions of a more generic Explanation object.

Permutation Feature Importance (PFI): The function responsible for PFI,
which wraps the project-specific PFI Python implementation, is assigned the name
do_pfi explanation(self, X, y) and is shown in Listing 4.2. It supports all ex-
amined ML modeling algorithms defined in .A. However, since it relies on randomly
shuffling feature values, special caution must be taken when interpreting results,
particularly for LSTM models. The shuffling may disrupt potential (assumed) tem-
poral dependencies, thereby impacting the reliability of the explanations for sequen-
tial data. The PFI implementation used in this research leverages the scikit-learn
sklearn.inspection API? [92].

Znttps://scikit-learn.org/1.5/api/sklearn.inspection.html, last accessed: December 8,
2024.
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def do_pfi_explanation(self, X_trn, y_trn) -> List[Tuple[float, str

11:

>?? Here all class variables of PFI.py are made available to
the Explanation.py class ’’°

pfi_explainer = PFI(self)

pfi_explainer.print_importances (X_trn, y_trn)

pfi_explainer.plot_importances ()

self .pfi_features = pfi_explainer.pfi_features

return pfi_explainer.get_feature_importances ()

Listing 4.2: Object-oriented ~ Python  implementation  of  the
do_pfi_explanation([...]) function. The actual implementation is encapsulated
in the get_feature_importances() function.

The wrapper function creates an instance of the PFI.py class (cf. Appendix H) to
compute permutation feature importances, log them to a file (cf. Listing 4.2, line 4),
and visualize the top features in a bar plot (cf. Listing 4.2, line 5). The calculated
importances are stored in self.pfi features—a class variable of Explanation—
for further use. They are returned as a sorted list of tuples containing feature names
and their importance scores with get_feature_importances().

Accumulated Local Effects (ALE): In the case of ALE, the same logic as for
PFI is applied. The do_ale_explanation(self, X_trn) function is also part of the
Explanation.py class. However, the underlying calculation logic is drawn from the
package PyALE?" encapsulated inside an ALE object (cf. Listing 4.3, line 3).

For this research, the focus shall be on the analysis of one feature at a time with the
target variable (1-dimensional ALE) only. To do so, the respective regressor needs
to be handed over to the ALE class upon generation of the ale_exp object in order
to generate the relevant predictions (cf. Appendix I).

do_ale_explanation(self, X_trn) -> None:
>?? Creation of an ALE object. An instance of the dedicated ALE

class. ’7°

ale_exp = ALE(
self,
X_trn,
self .regr,
self.fuses,

)

>?? Trigger execution of ALE value calculation and plot
generation. ’7’

ale_exp.create_1D_ale(X_trn, "X_trn")

return None

Listing 4.3: Object-oriented ~ Python  implementation  of  the
do_ale explanation([...]) wrapper function for the creation of 1-dimensional
plots.

2TPackage version 1.1.3, available at https://pypi.org/project/PyALE/1.1.3, last accessed:
December 8, 2024.
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The function create_1D_ale(self, X, path) (Listing 4.3, line 10) first creates
directories for storing plots according to the path variable, then it iterates over
all features of X, checking for sufficient variance to ensure an impactful analysis.
For ”valid” features, ALE values are computed. Features with significant effects are
visualized in plots, saved as portable network graphics (PNG or .png) files. A feature
is considered ”valid” when its value variations cause a current prediction difference
(range) of at least 0.1 A, otherwise no plot is created due to lacking significance.
This functionality is needed to avoid the creation of numerous plots which have
no further use as even after feature selection there can still be several hundreds of
features left for ML model training (cf. Table 4.12).

Shapley Additive Explanations (SHAP): As a third XAI element, SHAP
value and SHAP explanation generation is integrated into the Explanation.py
class. The logic is similar to the two aforementioned explainers where within
Explanation.py inside the dedicated function do_shap_explanation(self, X) an
object shap_exp of the underlying SHAP class is created and all the variables needed
for this constructor are supplied through the class variables of Explanation.py.
Hence, the created object can be used to call shap_waterfall plot() to create
a waterfall plot, visually demonstrating either the positive or negative impact of
the most important features on the local prediction. To be more precise, the plot
then presents the feature-wise justification for the deviation of a given prediction
y = f(x;;) at one specific timestamp (SHAP is a local XAl method) from the
expected value E[f(z;;)], V(i,j) € {1,...,m} x {1,...,n} of all predictions (cf.
Mueller et al. [26]). The implementation logic of SHAP is referenced in Listing 4.4.
The similarity with the aforementioned two implementations is intended and does
not only serve a better structure and readability of the code base but also contributes
to the object-oriented, modular code design.

def do_shap_explanation(self, X) -> None:
>?? Creation of a SHAP object. An instance of the dedicated

class. 77’

shap_exp = SHAP(
self,
self .regr,
self.feature_columns,
self .X_trn,
self . fuse,
self .numFuses

)

’>?? Trigger execution of SHAP value calc. depending on the
regressor type and plot generation. 7’
shap_exp.shap_waterfall_plot ()

>?? Keeping SHAP-relevant features as Explanation class
variables ’’°
self .shap_features = shap_exp.imp_features

return None

Listing 4.4: Object-oriented ~ Python  implementation  of  the
do_shap_explanation([...]) wrapper function within the Explanation class.
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The SHAP value calculations are conducted using the Python package shap,
version 0.41.0%® [157]. For MLP, SHAP is applied in its standard configuration.
However, TreeSHAP is employed for random forests (RF) and gradient boosting
(GB) models, as it is specifically optimized for tree-based ML algorithms, as de-
scribed in Section 3.6 [158]. Consequently, differentiation between regressor types
must be implemented within the SHAP class (cf. Appendix J). The SHAP values are
then computed accordingly. For LSTM, explainability is more challenging. While
shap provides DeepFxplainer and KernelEzxplainer for deep learning models, these
explainers are less optimized for sequential data and may result in higher computa-
tional costs or less interpretable outputs. This poses limitations in the explainability
of LSTMs compared to tree-based models.

On a Modular Python Implementation - Using the Example of XAI

The explainer object needed to call the functions introduced in the sections

above is optionally created in the superordinate class Model.py which has been
mentioned several times already. The UML diagram depicted in Fig. 4.12 shows
the modeling class with the most important parameters and functions discussed.
The Explanation class in Fig. 4.12 is the same as shown in Fig. 4.11. It can be
seen that for each ML modeling algorithm a different object is created based on the
configuration. The same logic is applied to the XAI class (Explanation.py). Public
class methods in the related classes make their respective functionalities accessible
to the model class thus allowing the centralized flow control of the model-related
part of an entire pipeline run through this instance. The actual implementation
of the related functions (e.g. fit(X, y) or predict(X)) is encapsulated in the
corresponding classes allowing for individual implementations should the need arise.
This structure is also used for other functionalities implemented in Model.py to
control the different elements of the overall code: It is used for the actual model
creation depending on the desired modeling algorithm a € A (cf. Appendix F,
Listing F.5, line 23 ff) as well as for the fitting of the regressor, for the collection of
metrics and KPIs, and for the model export (the latter two not shown for brevity).
This way, the flow of a part of the pipeline, namely everything downstream of data
preprocessing, can be controlled centrally in Model. py.
A centralized yet modular code structure as such enables the addition or removal
of modules—such as new XAI methods, metrics, or ML modeling algorithms—
with minimal effort. The program can then be parameterized via the command
line, whose parameters are read in and then stored in a central configuration class
(Config.py) so that they can then be made accessible at any location by means of
an import from config import Config (cf. Listing F.5, line 12).

28nttps://pypi.org/project/shap/0.41.0, last accessed: December 8, 2024.
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Figure 4.12: UML diagram of an excerpt of the Model.py class focusing on the
model and explainer creation (other functionalities omitted for brevity).

4.3 Modeling and Evaluation Results

Given the implementation of the ML data processing and training pipeline just
introduced, this section deals with its application to real-world data. This includes
the full use of the implemented functionalities as described in the previous sections
as well as the presentation of the results of each important process step. Hence,
this complies with the CRISP-ML(Q) step 4 which involves the quality assessment.
All results subsequently presented involve the 18 ECUs present in the set of power
consumers £ compiled through the selection process in Section 4.1.5. Eventually, a
selection for one ML modeling algorithm is made, hence all subsequent considera-
tions (notably XAI) are conducted utilizing that selected regressor.

However, due to a large number of resultant evaluations and runs some results
are presented in an aggregated way, while selected methods are still discussed at
a detailed ECU-level. Additional details can be found in the related referenced

appendices.
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4.3.1 Feature Engineering and Selection

Starting with the data preprocessing pipeline, the results for the feature engineer-
ing and selection are assessed by the reduction of the features and the capabilities
of the pipeline to improve the respective ML model’s prediction quality KPIs.

Feature Reduction

After applying the feature engineering and selection pipeline, the first observation
is that the number of remaining signals per ECU is reduced significantly for both the
RF- and GB-based data preprocessing runs. As shown in Table 4.12, the reduction
ratios range from -73.1 % for the fuel supply ECU (Vehicle A, RF-based) until up
to -99.9 % for the steering column ECU (Vehicle B, GB-based). The mean of all
feature reductions is -90.2 % for RF-based (also used for MLP and LSTM regression
later on) and -97.7 % for GB-based reduction respectively. These high reduction
ratios show the effectiveness of the entire preprocessing pipeline in terms of one of
its goals which is to reduce the number of features thus model size significantly.

Table 4.12: Results of the signal reduction per ECU from & after applying the
feature engineering and selection pipeline to the raw input data. In brackets: results
for GB-based feature reduction. In boldface: highest and lowest reduction ratios.

ECUs Vehicle A N° of Raw N° of Engineered Ratio (GB)

Features (GB) Features (GB) [%]

BCF 3410 223 (63)  -93.6 (-98.2)
Extractor Fan 138 20 (9)  -79.0 (-93.5)
CID 972 95 (21)  -90.2 (-97.8)
Fuel Supply ECU 216 58 (6) -73.1(-97.2)
Coolant Pump 138 26 (4) -81.2 (-97.1)
Right Pixel Headlamp 1334 128 (29)  -90.4 (-97.8)
Left Pixel Headlamp 1334 108 (25) -91.9 (-98.1)
Adaptive Suspension 5399 150 (40)  -97.2 (-99.3)
Driver Display 972 80 (6) -91.8 (-99.4)
ECUs Vehicle B N° of Features N° of I'Teatures Ratio (GB)
(raw) (engineered) [%]

Right Headlamp 1386 01 (15) -93.4 (-98.9)
Left Headlamp 1386 99 (3) -92.9 (-99.8)
Steering Column ECU 5608 143 (5) -97.5 (-99.9)
Coolant Pump 134 11 (3) -91.8 (-97.8)
Seat ECU Driver 1064 61 (14)  -94.3 (-98.7)
Door ECU Front Left 1599 147 (55)  -90.8 (-96.6)
BCF 2748 190 (29)  -93.1 (-98.9)
CID 987 150 (36)  -84.8 (-96.4)
Active Air Suspension 5608 152 (22)  -97.3 (-99.6)

Table 4.13 presents a detailed comparison of the feature engineering pipeline’s
impact across the different ML algorithms in A regarding the quality performance
metrics and KPIs only (excluding efficiency KPIs), which are a subset of K (cf.
Section 4.1.6). Each metric is evaluated for its optimization target (either increase
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or decrease), and the effect of the feature engineering pipeline is quantified in terms
of the average change in performance over all considered ECUs and the number of
enhanced trial runs compared to a run without data preprocessing.

Quality KPIs: Random Forest and Gradient Boosting

Therefore, Table 4.13 shows that the feature engineering pipeline offers a clear

benefit for RF, with an average of 13.5 enhanced trials* out of 18. For example, the
weighted R? over all CVs shows a significant improvement of 58.01 % on average,
with 14 out of 18 trials showing an enhancement according to the definition.
In contrast, MLP has fewer amended experimental runs (8.875 on average) and
generally shows less improved KPIs than RF. Nonetheless, the pipeline still helps
to achieve a 7.12 % increase in X-val weighted R? over all GB runs, though with
a lower number of enhanced trials (9 out of 18). The key takeaway here is that RF
benefits more consistently from the feature engineering pipeline, whereas GB shows
mixed results, with certain metrics such as X-val weighted PAWD indicating
a slight reduction in the average performance and X-val avg. R? comprising
significant negative outliers with —260.95 % on average (even though it still shows
9 out of 18 amended trials).

Quality KPIs: Multi-Layer Perceptron and Long Short-Term Memory

The evaluations for MLP however, show only a slightly reduced average of
amended trials compared to GB whereas there is only one KPI (X-val weighted
R?) which improves—on average—by 11.92 %. Another evident result is that the
dispersions of MSE and R? rise significantly on average by 27.07 % and 65.26 %
respectively. LSTM reveals moderate improvements, with an average of 9 enhanced
trials out of 18. For instance, PAWD increases by 15.72 %, although the number
of individual improvements is lower compared to RF, GB or MLP.

The analysis of the feature engineering pipeline across different ML algorithms shows
varying degrees of improvement depending on the modeling algorithm and the ac-
tual ECU under investigation. RF shows robust performance across a variety of
metrics as all optimization targets are met on average. GB achieves three KPIs
which are improved on average with 8.875 trials showing more than half of the met-
rics ameliorated. MLP, however, shows only moderate advancements, with only one
optimization target actually met (X-val weighted R?). A view on the detailed
data shows significant scattering in the effects of the feature reduction on the pre-
diction itself. LSTM achieves just moderate improvements as well (here also just
one optimization target is met), although with fewer enhanced trials compared to
RF and slightly more compared to GB and MLP.

The actual performance of the ML models, together with the actual values of the
performance KPIs also taking into account the efficiency KPIs (the entire set K, is
then evaluated in the weighted sum analysis in Section 4.3.3. There, it is combined
with the results of the hyperparameter tuning, too.

29A trial is considered "enhanced” when more than half (>50 %) of the quality KPIs have a
better value compared to the respective other experimental run.
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Table 4.13: Performance comparison of the feature engineering and selection
pipeline with no data preprocessing across the model quality KPIs and the ML
modeling algorithms. The table is split into two parts: one for RF and GB, and one
for MLP and LSTM. For a facilitated reading, the optimization directions for each
KPI are indicated in the second column.

Performance Metric Optimization ‘ RF GB
Direction Avg. Change Enhanced | Avg. Change Enhanced
[%] Trials [%] Trials
X-val weighted PAWD [%)] Reduce -17.23 14 0.16 10
X-val weighted R? Increase 58.01 14 7.12 9
SD(PAAD) [%)] Reduce -5.14 11 10.72 9
X-val avg. R? Increase 51.60 13 -260.95 9
SD(R?) Reduce -11.92 12 15.27 9
X-val weighted MSE [A?] Reduce -15.97 15 -1.85 8
MSE [AZ] Reduce -15.79 15 -1.0 8
SD(MSE) [A?] Reduce -17.46 14 1.56 9
Average Enhanced Trials ‘ 13.5 ‘ 8.875
Performance Metric Optimization ‘ MLP LSTM
Direction Avg. Change Enhanced | Avg. Change Enhanced
[%] Trials [%] Trials
X-val weighted PAWD [%] Reduce 5.49 10 15.72 9
X-val weighted R2 Increase 11.92 10 -16.09 9
SD(PAAD) [%] Reduce 12.53 7 8.53 8
X-val avg. R?2 Increase -20.94 8 19.65 10
SD(R2?) Reduce 65.26 8 7.92 11
X-val weighted MSE [A?] Reduce 27.63 9 33.42 9
MSE [A?] Reduce 30.72 8 15.89 9
SD(MSE) [AZ] Reduce 27.07 9 55.13 7
Average Enhanced Trials 8.625 ‘ 9

Results on Trial Level

At the level of the individual experiments (cf. Appendix K, Tables K.1 to K.4),
it becomes evident that feature engineering and selection generally perform better
on Vehicle A than on Vehicle B especially for the MLP and LSTM regressors. In
addition to that, the overall performance varies significantly with the algorithm used
as for example with the active air suspension of Vehicle B. As a result of that, de-
pending on the baseline behavior without any optimization made beforehand, the
actual performance of the feature engineering pipeline depends on the general capa-
bilities of an algorithm. In other words, the better the baseline performance without
preprocessing, the smaller the potential for additional improvements through feature
engineering and selection.

4.3.2 Hyperparameter Tuning Results

One additional step to enhance ML model performance even further, is the exe-
cution of the hyperparameter tuning, notably the random search (RS), as described
in Section 4.2.2 using the feature engineered and selected data.

The high-level results of the hyperparameter tuning process step are presented in Ta-
ble 4.14 and provide insights into the performance impact of RS on the investigated
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ML modeling algorithms in A. They are evaluated relative to and as a subsequent
process of the observations made during the feature engineering phase. Hence, in-
sights into the joint effect of feature engineering and hyperparameter tuning can be
gained from these results.

Additional Hyperparameter Tuning Impact - RF and GB

Random forest maintains its status as the most consistently performing algo-

rithm, also after hyperparameter tuning. With an average of 13.375 enhanced tri-
als®® out of 18, RF shows stable improvements across all key metrics. For instance,
the X-val weighted R? increases by 46.7 % on average compared to just feature
engineering and selection and the number of enhanced trials remains high at 16.
This aligns with the results observed for RF in the feature engineering phase. Sim-
ilarly, RF achieves a significant reduction in metrics like PAWD (-19.3 %) and
X-val weighted MSE (-7.9 %) as intended.
Gradient boosting demonstrates fewer consistent enhancements than RF, still show-
cases meaningful performance improvements across some key metrics. It achieves
an average of 11.125 enhanced trials out of 18. Notable improvements include a
reduction in X-val weighted MSE by -4.1 % and increases in metrics such as
X-val avg. R? in 13 trials. However, PAWD for example shows an unintended
average increase of 6.5 %, reflecting variability in the optimization impact of the
hyperparameter tuning.

Additional Hyperparameter Tuning Impact - MLP and LSTM

The performance of MLP and LSTM after the hyperparameter tuning demon-
strates differences in their optimization consistency and impact. Compared to RF
and GB, MLP and LSTM—both NN-based algorithms—show more variable results,
with especially MLP struggling to achieve performant improvements regarding the
evaluated quality metrics.

MLP achieves an average of just 5 enhanced trials out of 18, with some metrics
showing extreme deviations caused by outliers (cf. detailed results in Appendix K,
Tables K.5 to K.8). For example for X-val weighted PAWD, MLP achieves an
average increase of 384.3 % instead of a reduction. Similarly, X-val weighted R?
suffers from a significant average decrease of -62,536.1 %, mainly caused by the
seat ECU driver (Vehicle B) and by the driver display (Vehicle A), highlighting the
challenge in tuning MLP effectively within the chosen RS strategy. Although a few
trials show slight improvements, the overall performance of MLP is more unreliable
compared to RF, GB, and even LSTM.

In contrast, LSTM demonstrates much more stable and significant improvements,
achieving an average of 10.25 enhanced trials out of 18. This includes for example a
reduction of the MSE dispersion SD(MSE) by -6.5 % and an increase in X-val avg.
R? by 25.1 % over all 18 trials. Nonetheless, LSTM does not outperform RF or GB
in overall performance. However, it is more competitive and shows promising results
as an alternative approach for individual power consumers. In addition to that, the
reduction in SD(PAAD) (-0.8 %) and the improvement in X-val weighted R?
(+1.0 %) further support LSTM’s utility in this context.

30Enhancement based on the resultant data after the feature engineering and selection pipeline.
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Table 4.14: Performance comparison of the RS search strategy across the model
quality KPIs and the investigated ML modeling algorithms. The table is split into
two parts: one for the RF and GB regressors and one for MLP and LSTM. For
a facilitated reading, the optimization directions for each KPI are indicated in the
second column.

Performance Metric Optimization ‘ RF ‘ GB
Direction Avg. Change Enhanced | Avg. Change Enhanced
[%] Trials [%] Trials
X-val weighted PAWD [%] Reduce -19.3 15 6.5 6
X-val weighted R? Increase 46.7 16 -23.8 12
SD(PAAD) [%)] Reduce -16.7 12 9.9 12
X-val avg. R2 Increase 42.3 14 -22.7 13
SD(R?) Reduce -16.8 13 43.2 11
X-val weighted MSE [A?] Reduce 7.9 14 -4.1 13
MSE [AZ] Reduce -7.5 12 -1.2 12
SD(MSE) [A?] Reduce 2.6 11 3.2 10
Average Enhanced Trials ‘ 13.375 ‘ 11.125
Performance Metric Optimization ‘ MLP ‘ LSTM
Direction Avg. Change Enhanced | Avg. Change Enhanced
[%] Trials (%] Trials
X-val weighted PAWD [%)] Reduce 384.3 5 78.5 10
X-val weighted R? Increase -62536.1 6 1.0 10
SD(PAAD) [%] Reduce 420.0 4 -0.8 10
X-val avg. R? Increase -9956.0 3 25.1 10
SD(R?) Reduce 5669.9 7 18.5 11
X-val weighted MSE [A?] Reduce -2016.2 6 2.5 11
MSE [AZ?] Reduce 2242.9 4 1.6 11
SD(MSE) [A?] Reduce 5288.6 5 -6.5 9
Average Enhanced Trials 5 10.25

Remarks on Trial Level

On an individual trial level (cf. Appendix K, Tables K.5 to K.8) the MLP evalu-
ations show significant negative outliers especially for the R2 metric for both Vehicle
A (e.g. driver display) and Vehicle B (e.g. seat ECU driver and steering column
ECU) after the hyperparameter tuning. They are especially responsible for causing
the overall MLP results to be negative. There are also outliers present regarding
the X-val weighted MSE with the fuel supply ECU of Vehicle A contributing
negatively to the overall MLP results, too.

Visual Evaluation Using the Driver Display as an Example

The effect of the ML pipeline on the quality of the predictions can also be as-
sessed visually. Figures 4.13, 4.14, and 4.15 depict the modeling results of the first
CV iteration of the driver display ECU of Vehicle A. They are obtained with the raw
and the feature-engineered data as well as with additional RS-based hyperparameter
tuning (in that order). They show plots which are divided into three subplots each.
For privacy reasons the entire data has been min-max-scaled before being plotted,
hence retaining its qualitative statements.

In each subplot the blue line represents the training data and the orange line the
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associated prediction made by the corresponding ML model.

The top subplot depicts the measurement and prediction of the training data. There,
the blue and orange curves are almost congruent in Figures 4.13 and 4.14 since the
training data is already memorized by the model (as it has been trained with it).
However, in Fig. 4.15, where an additional RS is performed, there is more of the
actual measurement visible (top subplot, blue line), which demonstrates less over-
fitting of the training data.

The middle plot is the test drive used for that very CV fold. This means it is not
part of the training data in that particular run, hence the corresponding model has
not "seen” that data beforehand during the training and it thus serves as validation
data. It therefore represents the actual prediction for that test drive using the ML
model generated from the data of the top subplot. Comparing the three figures, it
becomes visible that for this ECU each additional step of the ML pipeline makes
the prediction more accurate as the blue and orange lines gradually become more
congruent (cf. red circle in the middle subplot in all three Figures).

The effect is underlined as well by the lower subplot which shows the measurement
and prediction of the electric charges which are the integral over the current con-
sumption over time (cf. Equation 3.4). The comparison of the blue and orange
lines of the lower subplot indicates a cumulative error. Comparing the figures sub-
sequently, the curves also become more congruent (cf. red circle in the lower plot),
hence the overall error diminishes the more sophisticated the ML pipeline is.
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Figure 4.13: Measurement (blue curve) and predictions (orange curve) of current
and electric charge consumption for the driver display in Vehicle A. Here, RF with
raw data and default hyperparameters is used.
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Figure 4.14: Measurement (blue curve) and predictions (orange curve) of current
and electric charge consumption for the driver display in Vehicle A. Here, RF with
feature-engineered data and default hyperparameters is used.
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Figure 4.15: Measurement (blue curve) and predictions (orange curve) of current
and electric charge consumption for the driver display in Vehicle A. Here, RF with
feature-engineered data and RS-tuned hyperparameters is used.
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4.3.3 Model Selection Process Using Weighted Sum Analysis

In the following, the entire ML pipeline is taken into account to make predic-

tions for the 18 selected ECUs. Furthermore, for the subsequent evaluation, the
entire KPI set K is considered. This includes also the time measurements to assess
computational efficiency and the model size after export.
Due to the number and diverse nature of the evaluated metrics, a WSA as described
in Section 3.7.1 is chosen to obtain an objective result reflecting the importance of
the different evaluation criteria set by the domain experts, through weighted KPIs.
Its goal is to reduce the complexity of the entire ML pipeline and code base en-
abling an objective selection of one ML modeling algorithm out of A for the given
task. This selection also fulfills step 2 of the CRISP-ML(Q) process model which
comprises the algorithm selection [91].

KPI Normalization and Cut-Off Strategy

Before conducting the WSA, the metrics of all 18 examined ECUs must be
normalized to have the same value range in order not to bias the final result, which
is why a normalization (scaling) strategy is needed. The selection of that strategy
depends on the actual value ranges of the KPIs themselves.

Additionally, a strategy to cope with outliers must be defined as well which ensures
a meaningful application of the scaling strategy as well as the correct interpretability
of the resulting utility values.

Normalization Strategy Selection: An analysis of K (also refer to Table 4.7 and
Section 4.1.6) reveals that the metric measuring the explainability of the respective
models produced by the algorithms in A ranges from 1 (most explainable) to 0 (least
explainable) including selected increments in between. Therefore, it is considered
favorable to normalize all remaining metrics into that range which can be achieved
by the min-max-scaler introduced in Equation 3.16. Some metrics are considered
"enhanced” when their value decreases which means that the scaled result then
needs to be inverted by changing the algebraic sign.

KPI Range Capping and Adjustment Strategy: As already demonstrated
and as it can also be seen in Appendix K, some of the results suffer from outliers
compared to their general mean, depending on the metric in consideration. Metrics,
like explainability and model size, retain their full ranges for scaling because they
lack significant outliers or do not otherwise require specific constraints. However,
outliers influence the normalization negatively since they lead to a compression of the
total range in which acceptable values are located significantly, making meaningful
differentiation in the range between 0 and 1 impossible.

Therefore, a subset of K undergoes an individual value range pre-treatment before

the min-max-normalization is applied. The individual strategies are described in
Table 4.15.
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Table 4.15: Pre-treatment of KPI and metrics value ranges before min-max-
normalizing their values prior to utility value calculation.

Native Acceptable

KPI Range Range

Reasoning (when capping applied)

No special requirements for the project.
Discretionary decision by the author.

At least 40% of the variance to be explainable.
(Not higher due to partially noisy data.)

The 90% quantile is used to cut off a
moderate number of outliers.

10 shall be the max. allowed value

X-val weighted PAWD [%] [0,00) (0, 10]
X-val weighted R2 (—o0,1] [0.4,1]

Inference time / sample [s] (0,00) (0, Qo)

(&
SD(PAAD) [] [0, 00) [0,10) in harmony with PAWD.
Explainability [0,1] - -
X-val avg. R? —00,1] [0.4,1] See X-val weighted R*.

Large value range, no significant
outliers, hence no cut-off.
High variable data and performance
across ECUs and training data.
. This cut-off was chosen by the author in consultation
_ | 2
X-val weighted MSE [A%] [0, 00) [0,0.25) with the domain experts (cf. 4.1.6).
MSE [A?] [0,00)  [0,0.25) See X-val weighted MSE.
e The SD should be a maximum of

A 2 A

SD(MSE) [A7] [0,00) [0, MSE] 30% of the avg. MSE (author’s discretion).

Model size [kB] 0,00)  (0,00)

SD(R?) 0,00)  [0,0.2)

Training time per

feature & sample (0,00)  (0,Qq0) See Inference time / sample.

For the sake of completeness it shall be mentioned that there is no commonly
valid solution for capping the KPI value ranges before the application of a min-max-
normalization. However, the author advises to conduct it before the calculation of
the utility values to avoid retrospective bias that might be introduced through shifted
distributions within the interval [0,1].

To be in harmony with the WSA nomenclature introduced in Section 3.7 the term
"score” is used to denominate the normalized experimental results.

Condensed WSA Results and Final Algorithm Selection

With the evaluation results and the KPI weighting conducted in Section 4.1.6
and the normalizing eventually set-up, the utility values U, with a € Aand e € £
for each ECU and ML algorithm can be calculated according to Equation 4.3. In a
second step, the sum of the utility values can be aggregated for each ML algorithm—
they are additive—thus permitting to determine the one with the highest utility over
all ECUs in £ as shown in Equation 4.4. Both equations are adaptions of the general
WSA descriptions previously outlined in Section 3.7.

Use = Y 0k~ Sk, Va€AVee& (4.3)
ke

As a result, the total utility U, of one modeling algorithm a € A is calculated as

follows:
U, = Z Ua,e = Z ka * Skaes Va € A (44)

ec& ecf kek
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Equation 4.4 thus exploits the general additivity of utilities. As a final step the
ML modeling algorithm with the highest utility can be selected according to Equa-
tion 4.5 which is an adaption of the general notation formulated in Equation 3.22:

Aopt = arg max U, = arg max E E Vk * Skq.. (4.5)
acA acA ccE kek

Table 4.16: Resultant utility values of the WSA: cumulative, as well as min, max
and their dispersions over the examined ECUs per algorithm are shown (values
rounded to the third decimal place).

Algorithm Us Uape,, Uae,, SDUae) Uge
RF 548.665 8.195 54.910 13.894  30.481
GB 614.115 12.418 48.500 11.583 34.118
MLP 349.110 10.653 45.111 10.034 19.395
LSTM 362.423 4918 40.112 11.745 20.135

Table 4.16 demonstrates that GB has the highest accumulated utility value with
614.115 since Ugp > Urr > Ursty > Unrp, followed by RE with around 65 value
points of distance. Falling behind are LSTM and MLP with 362.423 and 349.110
points respectively.

Additionally, GB also has the highest average utility value U, over all considered
ECUs with 34.118 and the highest minimum Uy, of 12.418 (door ECU front left,
Vehicle B).

Given the importances of the metrics and the modeling results MLP achieves the
lowest utility value despite having lowest dispersion (standard deviation SD(U, ) of
all utility values with 10.034. On the contrary, RF' has the highest maximum utility
with 54.910 U, (coolant pump, Vehicle A) whilst only having a lower cumulative
utility value than GB with 548.665.

The individual utility values for every ECU and ML modeling algorithm are shown
in Appendix L. Hence, in all subsequent (XAI) considerations—this includes the fi-
nal discussion in Chapter 5, only GB is further considered thus reducing the overall
dimensionality of this ML task. The aforementioned results then serve to answer

PRQ2 and SRQS5.

Remarks: The detailed results of the WSA (cf. Appendix L, Table L.1) indicate
that GB does not perform well universally across the considered ECUs.
Considering for example the steering column ECU or the (front left) door ECU (both
Vehicle B), RF achieves a higher utility value than GB. Even though especially for
the door ECU all of the algorithms in A do not perform as well as for others. This
adds to the fact that the performance on Vehicle B (cumulative utility: 269.355; av-
erage: 29.928) is generally not as good as in Vehicle A (cumulative utility: 344.760;
average: 38.310), given the training data and the selected ECUs.
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4.3.4 Explainable AI Using the Example of the Driver Display

To conclude the results part of this thesis—following the KPI assessments and
model selection—the XAI results are shown in the following and their plausibility
discussed in Section 5.1.3. The XAI explorations are made on the fully feature en-
gineered dataset with RS hyperparameter tuning activated. Due to the satisfactory
results with Ugp,. = 40.117, the driver display of Vehicle A shall be considered.
Table 4.17 shows the KPI values for this ECU as raw values and normalized after
the capping strategy is applied. The XAI evaluations commence with a simple PCC
calculation among the features themselves as well as with the target. The correlation
analysis is then followed by the more advanced methods introduced in Section 3.6.

Table 4.17: KPIs and metrics £ € K as well as corresponding normalized scores
Skgp,. tor the driver display using the GB algorithm, feature engineering, selection
and RS for hyperparameter optimization (values rounded to the third decimal place).

KPI / Metric Value Score (Normalized)
X-val weighted PAWD [%] 1.335 0.880
X-val weighted R2 0.707 0.523
Inference time per sample [s] 2.095 x 107° 0.774
SD(PAAD) over all X-vals [%)] 1.368 0.882
Explainability (local & global methods) 0.8 0.8
X-val avg. R? 0.629 0.382
Model size after export [kB] 413.95 0.993
SD(R?) over all X-vals 0.320 0
X-val weighted MSE [AZ] 0.001 1.0
MSE [A2] 0.001 1.0
SD(MSE) [A2] 0.001 0.994
Training time per feature & sample [s]  3.463 x 107° 0.0

Pearson Correlation Coefficient (PCC)

A basic explanation of the correlation of the features with the target and among

each other is delivered by PCC calculated according to Equation 3.19. Figure 4.16
shows a PCC matrix over the six most important features relevant for the prediction
of the energy consumption of the aforementioned driver display. Here, the effective-
ness of the feature engineering and selection pipeline becomes visible since at this
point no features are correlated more by a factor greater than 0.9 which further
reduces the size of the training data and the model complexity.
In this case the feature Illumination Level followed by Head-Up Display Sensor Value
are most correlated to the target with correlation coefficients of 0.85 and 0.8 respec-
tively. The least correlated are Supply Battery Current and Supply Battery Voltage
with PCCs of -0.0026 and 0.16 respectively. Since correlation has no direction the
resultant correlation matrix is symmetric.
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Figure 4.16: Symmetric PCC matrix of the six most important features for the
driver display’s energy consumption prediction (Vehicle A).
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Permutation Feature Importance (PFI)

The PFI for the driver display is calculated as described in Section 3.6.1 and in
the present example on the validation data from the first LOOCV iteration. The
validation data comprises a total driving time of 1033.4 seconds (cf. Fig. 4.17) with
the results shown in Fig. 4.15 and Table 4.18—ranked by importance in descending
order. From them it can be derived that for that validation test drive the display’s
illumination level has the highest impact on the model’s prediction with a PFI of
0.624 and a variability of + 0.014. Much less drop in model performance are caused
by the voltage of the supply battery (0.229 £ 0.009) and the value of the display’s
brightness sensor (0.184 4+ 0.006) even less important are the supply battery current
and the calculated elevation angle of the sun. This is in accordance with the findings
in the PCC analysis. An even negative importance (unintended positive impact on
performance) is caused by a signal related to the head-up display (Head-Up Display
Sensor Value).

Illumination Level

Supply Battery |
Voltage

Display Sensor |
Value All

Features

Supply Battery |
Current

Sun Elevation |
Angle

Sensor Value

Head-Up Display | |

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Permutation Feature Importances

Figure 4.17: The six most important features for the first out of 15 CV folds
(validation drive) of the drivers display of Vehicle A.

Table 4.18: Numeric PFI values with variability (six most important) for the driver
display.

Feature Importance (Variability)
[llumination Level 0.624 £0.014
Supply Battery Voltage 0.229 £+ 0.009
Display Sensor Value 0.184 4+ 0.006
Supply Battery Current 0.023 4+ 0.003
Sun Elevation Angle —0.000 £+ 0.00

Head-Up Display

Sensor Segment Value —0.006 £ 0.004
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Accumulated Local Effects (ALE)

In contrast to PFI, ALE focuses on the individual features whilst exploring the
entire dataset for a specific one. This implies that there is one plot per feature per
se but—as previously discussed—it is limited to a minimum value range of 0.1 A
in this XAI implementation (cf. Section 4.2.2). This results in two ALE plots
for (Illumination Level and Display Sensor Value) from which the first one—as an
example—is analyzed in greater detail.

As shown in Listing 4.3, the do_ale _explanation(self, X_trn) function takes the
training dataset as input but also the validation data could possibly be passed.
However, to show the effect of one feature a set of more explanatory data points
is preferred in this case which is fulfilled by the training data (the model has been
trained with it and more data points are available). Figure 4.18 shows the ALE plot
for the feature Illumination Level. Here, it becomes apparent that this feature is
capable of influencing the power consumption significantly depending on the value
it assumes, which leads to an approximate total influential range of 0.3 A. The
highest gradient of the curve is reached in the feature value range between 40 and
80 flattening out for values above 80.

Additionally, the density indication above the x-axis shows an almost completely
consistent coverage of values in the training data. The exception is the range between
20 and 30, and short before 100 where values thin out.

1D ALE Plot - Continuous

Effect on prediction (centered)

|| l_l—_ll
20 40 60 80 100
lllumination Level

Figure 4.18: Graph of the 1-dimensional ALE plot for the bus signal lllumination
Lewvel, a continuous numeric feature for the GB-based regression model of the driver
display of Vehicle A—on the training data.

As it can be seen in Fig. 4.19, the ALE plot for the same ECU calculated on
the much smaller evaluation dataset, the value range of the x-axis is more limited
compared to the ALE value calculations based on the significantly larger training
data, visible in Fig. 4.18. Furthermore, the density indication above the x-axis shows
areas where values are more sparse e.g. between illumination levels 20 and 30 as
well as between 40 and 55. In these areas the ALE curve is less detailed and more
interpolated than in the area between 60 and 70 where the datapoint availability is
significantly higher.
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1D ALE Plot - Continuous

Effect on prediction (centered)
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Figure 4.19: Graph of the 1-dimensional ALE plot for the bus signal Illumination
Lewvel, a continuous numeric feature for the GB-based regression model of the driver
display of Vehicle A—on the validation data.

Shapley Additive Explanations (SHAP)

The SHAP explanations are calculated on the training data only, since more data

points are then available to explain the model’s (and thus the power consuming com-
ponent’s) behavior. Figure 4.20 shows the influence of a total of 8 features on the
prediction. In this case, the 90 % quantile (Qgg) of the available power consumption
measurement values y is chosen by the author as the local index to be examined by
SHAP in order to provoke sufficient distance between the expected value E[f(x)] and
the considered value which can then be explained3!. This is realized automatically
within a dedicated function of the program code as part of the Explanation.py
class introduced in Listing F.6, which returns the desired indices as a list which
then serves as input for the SHAP method (cf. Listing 4.5, line 8). This modularity
can be utilized to automatically examine any other data point of interest as long as
it can be retrieved by a function (e.g. the maximum or minimum, turning points,
etc.) before it is passed to the actual generate shap values([...]) function as
the indices parameter (cf. Listing J.1, line 80). Given the example index chosen
for this research, Fig. 4.20 demonstrates that at Q99 the prediction deviates from
the average of all predictions (exact values blacked for privacy reasons). Accord-
ing to the SHAP algorithm the Display Sensor Value Segment 2 contributes most
(40.22 A) to the elevated energy consumption of the driver display at that moment.
It is followed by the Illumination Level—already discussed in the ALE section—as
well as by the Supply Battery Voltage with +0.18 A and 40.07 A respectively. The
subsequent features only have little impact on the energy consumption.
However, SHAP is also able to indicate negative influence on the deviation from the
average prediction as it can be derived from Fig 4.21. In this example, which is the
9th CV iteration, of the right pixel light unit (Vehicle A), the Supply Battery Volt-
age and Temperature at the chosen index reflecting the value of (Qgg) influence the
current consumption negatively as well as the sum of 23 other features. Nonethe-
less, the features (bus signals) causing an overall positive deviation from the global
average outweigh the negative ones.

31Note: Depending on the aim of the analysis, any index (data point) from the dataset can be
passed to the SHAP method.
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Figure 4.20: SHAP plot for the driver display of Vehicle A, CV iteration 1 (out
of 15), calculated using the GB regression algorithm. Actual values are blacked due
to a non-disclosure policy.
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Figure 4.21: SHAP plot for the right pixel light unit (headlamp) of Vehicle A, CV
iteration 9, calculated using the GB regression algorithm. Actual values are blacked
due to a non-disclosure policy.

import numpy as np

def set_local_index(self, y):
max = np.argmax (y)
percentile_90 = np.percentile(y, 90)
closest_val_90 = y.flat[np.abs(y - percentile_90).argmin()]
min = np.where(y == closest_val_90) [0] [0]
self.index_list = [min, max]
return None

Listing 4.5: Python function to automatically determine distinctive points in the
measurement data. Here: the maximum of all measured values y and the 90 %
quantile are identified using built-in numpy functions and stored in index list.
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5 Discussion of Findings and Answering
of the Research Questions

With the research results from the previous chapter now available, they can be
categorized and discussed as part of WP 4 of this dissertation. The results also
give the opportunity to answer both the primary and secondary research questions

(PRQs and SRQs).

5.1 Summary of the Key Results

5.1.1 Energy Consumption Predictability with an Integrated Pipeline

During the course of this research it could be demonstrated that the inter-ECU

communication data of contemporary passenger vehicles carries valuable informa-
tion for the prediction of the low-voltage energy consumption of selected power
consumers. To systematically select relevant ECUs, an adequate methodology was
developed in Section 4.1.4 which provides a ranking of promising power consumers
in an automated way.
From two luxury passenger vehicles (Vehicle A and Vehicle B), 14.63 respectively
21.35 hours of training data for the selected ECUs were able to be collected. There-
fore, an integrated special shunt-based measurement system with a data logger as
described in Section 3.4.5 was used, focusing on the coverage of diverse real-world
driving conditions. This data served as an input for all the subsequent evaluations
and for an integrated data processing and ML training pipeline.

Data Import, Feature Selection and Engineering

To preprocess the data, state-of-the-art feature engineering and selection meth-
ods were employed as the first pipeline step after importing the raw data. The
feature engineering and selection part is composed of a set of methods for feature
selection, improvement and construction in a fixed order. The two main goals of
that process step were to achieve a significant reduction of the number of features
in order to make the resultant ML models smaller as well as—ideally—an improve-
ment of the model’s predictive capabilities. These capabilities were assessed with
measured KPIs which were defined, selected and weighted according to their impor-
tance by Al and automotive domain (low-voltage energy efficiency) experts during
a workshop.

The feature preprocessing pipeline however, was able to reduce the number of bus
signals (features) used for prediction of at least -73.1 % until up to -99.9 %. With
regard to the actual performance of the 18 selected ECUs it became apparent that
the four ML modeling algorithms from the set A showed different results reaching
from as much as 13.5 (RF) to as few as 8.625 (MLP) enhanced trials (cf. Table 4.13).
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5.1.2 Hyperparameter Tuning and Systematic Algorithm Selection

After a detailed analysis of various hyperparameter tuning strategies, a random
search was chosen for this ML task. This conclusion was preceded by the systematic
narrowing down of the search spaces of the respective parameters using a sensitivity
analysis with selected power consumers.

The results of the RS show that further improvements in model performance are
possible even after feature engineering, depending on the regression algorithm. How-
ever, this does not apply to every power consumer and so the overall effect of the
improvements per regression algorithm varies significantly. Of the 18 ECUs exam-
ined, RF showed the greatest additional improvement in the KPIs for model quality
with an average of 13.375 improved trials. MLP, again, performed the worst with
only 5 further improvements. At the same time, the average values for this regressor
were strongly influenced by individual outliers, in which the model performance was
considerably weakened by the random search (cf. Table 4.14). The positive effects
evolving from an analysis using the raw, feature engineered and hyperparameter
tuned RF algorithm could also be shown graphically using the example of the driver
display (cf. Figures 4.13 to 4.15)

Based on the results obtained for 18 ECUs, each of them applied to the four ML
modeling algorithms, as well as the weighted KPIs and metrics, it was then possible
to carry out a WSA with the aim of selecting a regression algorithm from the four
that best meets the requirements across the ECUs. The aim was to remove com-
plexity from the overall ML pipeline and to find a universally well-performing way
to model the energy consumption behavior of diverse ECUs.

Eventually, this was achieved by calculating the utility values for each ML modeling
algorithm according to Equation 4.3 and Equation 4.4 for each of the 18 ECUs and
then accumulating them per algorithm. In the final result, GB achieved the highest
cumulative utility value of 614.115, followed by RF with 548.665. LSTM (362.423)
and MLP (349.110) were at the bottom by some distance.

5.1.3 Explainability

With regard to the XAI methods investigated, this research could add to the
findings made in previous publications [26, 28]. Using the example of the driver
display, it could be demonstrated that the methods proposed are also applicable to
additional power consumer ECUs. Additionally, the appropriateness of the methods
could be shown on the GB algorithm.

The results presented in the previous chapter show the plausibility of the physical
coherences between signals as well as their values and energy consumption:

e Permutation Feature Importance (PFI) The PFI plot from Fig. 4.17
shows that the Illumination Level of the driver display has the highest impact
on the prediction (g, output) which is plausible since the background LED
lighting of the central display is also associated with the evaluated fuse. This
fact is also related to the Display Sensor Value signal—measuring the ambient
brightness—that regulates the display’s illumination accordingly. The brighter
the outside the more intense the illumination of the display needs to be the
more power is drawn from it. Less important but also mentioned amongst the
top six features is the sun elevation angle which itself relates to the ambient
brightness. The occurrence of the Head-Up Display Sensor Value in the PFI
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(and SHAP; cf. below) plot might as well result from spurious correlation with
regard to brightness as there is no coherence known to the author.

e Accumulated Local Effects (ALE) These coherences are also underlined
by the detailed observations of the Illumination Level signal in the ALE plots
of both the training and validation data (cf. Fig. 4.18 and Fig. 4.19). Higher
levels (a brighter screen) are related to higher consumptions.

e Shapley Additive Explanations (SHAP) Given the specific local index
selected for the SHAP explainer, it can also be derived that the signals already
mentioned above are responsible for causing the positive deviation from the
global average of all predictions which is also plausible.

These results may suggest that the actual content displayed on the screen might
not play a crucial role for the energy consumption since the focus is mainly on
the screen brightness. However, the data streamed to the screen is not part of
the database as it is not captured by the measurement system, which is why no
statement on its influence can be derived from the model.

5.1.4 Answers to the Primary Research Questions

All findings made above, now permit the answering of the primary research
questions (PRQs).

PRQ1: How can high-dimensional ECU network communication data be
utilized to predict energy consumption in vehicle power nets?

This question can be answered through the entire conception of the pipeline as
it graphically shown in Appendix C. Each of the modules shown there contributes
to the achievement of an accurate prediction made by an adequate regression algo-
rithm. More generally, it can be stated that the network communication data can be
exploited by an adequate data collection mechanism (cf. Sections 4.1.1 and 4.1.3),
suitable data preprocessing (feature engineering and selection, cf. Section 4.2.2) as
well as by the usage of GB as the appropriate regression algorithm (selection made
in Section 4.3.3). The combination of these methods returned different KPIs for a
set of 18 ECUs examined. The KPIs were then combined in an aggregated utility
value per algorithm to eventually assess the overall project-specific performance of
the respective ML model.

PRQ2: What are the most suitable ML modeling algorithms and prepara-
tory techniques for predicting ECU energy consumption and how can
they be integrated into a holistic pipeline?

To answer these research questions, the nature of the problem was first identified
as a regression algorithm due to the numerical in- and output. Subsequently, a set
of candidate algorithms A was composed which was then evaluated using a WSA.
Input to the WSA was delivered by a weighted set of KPIs K, compiled and as-
sessed by a multidisciplinary project team. Prior to that, the data preprocessing
and hyperparameter tuning needed to be executed to receive the most satisfactory
results for all ML algorithms. Data preprocessing involved blacklisting previously
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known non-value-adding features (bus signals) and handling erroneous and missing
data points. This was then followed by OHE, low-variance and importance feature
removal as well as by the dropping of highly correlated features. This eventually led
to significantly smaller and manageable datasets as well as faster evaluation trial
runs within the scope of the actual WSA, where all the aforementioned methods
were employed in a fixed sequence.

To receive an additional boost in model performance the algorithm’s hyperparame-
ters were also tuned using random search before the final evaluation run.

As a result of the WSA, the GB regressor could be identified as the most suitable,
given the weighted KPIs and metrics (cf. Section 5.1.2).

PRQ3: How can the explainability of the trained ECU models be ensured
whilst maintaining high prediction accuracy at the same time?

First, high-precision and accuracy are ensured by the objectively selected ML
modeling algorithm which is GB. Subsequently XAI methods were executed and
assessed using the models trained and the engineered input data with exactly that
algorithm. The respective assessment of the explanatory local and global methods
considered (PCC, PFI, ALE and SHAP) does not only show the effectivity but also
the functioning of the methods, despite the application of an algorithm (GB) which
had not yet been employed in the referenced literature (e.g. [26] and Section 4.3.4).

5.1.5 Answers to the Secondary Research Questions

SRQ1: What network communication signals are relevant for predicting
energy consumption in vehicle power nets, and what preprocessing and
feature selection techniques are needed to handle high-dimensional data
effectively?

The fact that for the most power consumers different data buses are available due
to the topology of the E/E architecture, different features are available for each ECU
for prediction as well. Therefore, this research question cannot be answered generally
but requires the construction of a data preprocessing pipeline that automatically
compiles the relevant methods to retrieve the best-fitting set of features specific to
each power consumer. The necessary feature engineering and selection techniques
are a result of a concise assessment depending on the characteristics of the data
available. Therefore, the static pipeline as described in Section 4.2.2 was developed
and put to use. It has the main goals to not only improve the predictive performance
of the respective ML model but also to reduce the complexity of the high-dimensional
input data significantly.

SRQ2: Which evaluation metrics are appropriate for assessing the per-
formance of the machine learning models?

Evaluating the aforementioned predictive performance of the ML models is a
crucial step in assessing the practicability of the entire approach. Therefore, mean-
ingful KPIs could be defined and one of them could be developed specific to the
present ML task (PAWD). To ensure a high degree of explanatory power as well
as informative value of these metrics, a joint workshop of both AI/ML and domain
experts was conducted to build a foundation with regard to the selection of such
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KPIs as a precursor to their subsequent weighting. The exact procedure to obtain
these metrics as well as the outcome of the KPI workshop (pairwise comparison) is
outlined in Section 4.1.6.

SRQ3: How can the data processing pipeline be defined to ensure efficient
and automated model generation?

One of the main goals of this research is to develop a pipeline which can be ex-
ecuted by energy efficiency specialist engineers without detailed knowledge of ML.
Therefore, an automated approach has been developed over the entire course of
Chapter 4 of this dissertation. In this chapter, methods from importing, converting
and preprocessing respective input data from the domain experts which eventually
retrieves trained and hyperparameter-tuned ML models are sequentially compiled.
They can then be used again by the domain experts to make on- or offline predic-
tions or run XAl on them.

However, the essence of the approach and of the corresponding outcome is the seam-
less handling of the data between the pipeline steps without necessary intervention
by its users as graphically depicted in the figures in Appendix C.

SRQ4: What methods can be employed to interpret and explain the
predictions made by the ML models?

Following previously published work by the author ([26]), the general concept
of XAI was selected and eventually employed to make the predictions which result
from both the input data as well as from the trained ML models explainable in a
way that is convenient and meaningful to the target group (cf. above). According
to a survey among domain experts—also conducted by the author ([28])— the three
most preferred XAI methods were applied to a different power consumer ECU.
Additionally, GB was used (instead of RF) as ML modeling algorithm. The results
show that these methods applied on a new power consumer as well as a new algorithm
produce similar plausible results as in the preliminary work. This manifests the
correct selection of the three principal XAl methods PFI, ALE and SHAP, optionally
combined with a preceding PCC analysis between features and between features with
the target.

SRQ5: Is there one "most suitable” modeling algorithm to be selected in
order to reduce the complexity of the pipeline?

This research question is substantially connected with PRQ2. In order to select
a "most suitable” ML modeling algorithm in the most objective way, first the cri-
teria for the selection were agreed upon by fixing the KPIs in the KPI assessment
workshop together with their weight attribution (cf. Section 4.1.7 and Table 4.7).
Subsequently, a set of affected ECUs was systematically selected (cf. Section 4.1.6)
and then the ML pipeline was applied to their respective bus data. The resulting
models and KPIs then served as an input to a WSA to determine the cumulative
utilities for all investigated algorithms. As a result, the gradient boosting algorithm
accumulated the highest utility value (cf. PRQ2 above) which is why it shall be
considered the "most suitable” one, given the algorithms available in A.
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5.2 Interpretation of the Key Results

Taking into account the results and the answered research questions the overall
outcome of the present research can be interpreted and put into a context to the
state-of-the-art literature.

5.2.1 Power Consumption Prediction

Given the related literature—as stated in the state of the art research in Ta-
ble 3.2—it can be stated that this research as well as its results pose a novelty in
the domain of high-dimensional regression analysis for energy prediction to the best
of the author’s knowledge. This is mainly due to the fact that the primary goal of
this research was to find a way to predict energy consumptions of in-vehicle ECUs
based on their associated communication data with other bus participants within
the E/E architecture of passenger cars.

For many of the considered ECUs, the GB algorithm—selected through the WSA—
produced results measured by appropriate KPIs and metrics that fall within an
acceptable range. This indicates that the inter-ECU communication data carries
information correlated with energy consumption. Furthermore, the XAI algorithms
applied to the example ECU revealed that the most correlated features are not the
result of spurious correlations. This is supported by the observation that the fea-
tures identified for the driver display ECU mainly relate to the display’s brightness
settings (influenced by external conditions) and variations in the power net voltage
level. These voltage variations can impact the operation of internal components,
such as DC-DC converters, leading to changes in current consumption required to
maintain the necessary power (cf. Fig. 4.17).

Nonetheless, it can be stated that the KPIs are volatile even when considering the
"most suitable” regression algorithm which is GB as stated in the Appendix Ta-
ble K.6. This may have several causes one of which can be a missing relevant
variety in the training data. Moreover, the differences in the results can be caused
by insufficient data preprocessing or hyperparameter tuning. Runs with different
sets of hyperparameters 6 can lead to improved results.

5.2.2 Methodological Reflections

The reference literature in Table 3.2 demonstrates that ML tasks are generally
complex regarding data collection, the number of input features, and the selection
of the appropriate modeling algorithm. As a result a key feature to be implemented
was the automation of the entire pipeline. Except for the data collection mechanism,
which still relies on a manual file format conversion process, all subsequent steps
could be automated until the retrieval of the final results. This way the ML and data
science complexity knowledge is incorporated into the pipeline itself and does not
need to be handled by the final customers who are notably the domain and energy
efficiency experts respectively development engineers. This user group usually lacks
the required data science and XAl knowledge according to a survey conducted by
the author in [29], shown in Fig. 5.1.
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Data Science XAl E/E Architectures Energy Efficiency

Mean SD Mean SD Mean SD Mean SD

Figure 5.1: Experience of the surveyed development engineers regarding their prior
experience in the relevant fields (adapted from [29, p. 61]).

Consequently, the present complexity imposed by the high-dimensional data
could be reduced by a pipeline step that lowers the number of remaining bus sig-
nals to an acceptable minimum (data preprocessing). Furthermore, the WSA as a
precursor to the final pipeline composition served to handle the manifold require-
ments for the resulting ML models—previously formulated by weighted KPIs—since
it reduced the number of available regression algorithms. Nevertheless, it must be
mentioned that the apparent objectivity of the WSA is based on subjective assess-
ments of the importance of the KPIs, which are developed as part of workshops and
the pairwise comparison method. Due to the different influences of expert opinions
during such KPI assessment workshops on the weightings of the metrics, complete
objectivity cannot be guaranteed. However, given these weightings, the subsequent
WSA process is intrinsically objective again and allows a relative comparison of
the individual decision options, which can ultimately be quantified in a cumulative
overall benefit.

5.3 Statement on Implications

By filling a gap in the state of the art, this dissertation has significant practical
implications within the automotive industry, too, which can be divided into impli-
cations on the way engineers work (efficiency) as well as into implications for the
vehicles themselves.

5.3.1 A New Way-of-Working for Efficiency Engineers

The method developed here, going from raw training data to fully trained re-
gression models for predicting energy consumption in low-voltage vehicle electrical
systems is a new tool for the (energy efficiency) engineers involved. In addition to
the complex measurement technology, which is associated with high costs, weight,
and set-up times, they now have another option for obtaining current values offline—
within certain accuracy tolerances. This means that the number of measurement
systems that need to be installed in dedicated test vehicles and the number of actual
measurement runs (road or dynamometer driving) can be reduced, as existing bus
traces can be utilized to make a statement about the power consumption behavior
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of an ECU using the trained models. Data from vehicles that are equipped with a
data logger but not with measurement technology can also be used for this purpose.

5.3.2 Contributions to More Efficient Vehicles

The outcome of this research not only provides a new tool for engineers to work in
a more efficient data-driven way, but also contributes to more efficient vehicles. The
tool offers the possibility of examining the complex vehicle electrical system and thus
the entire E/E architecture like an X-ray machine, with a focus on energy consump-
tion. XAl plays a crucial role by revealing and effectively displaying the influencing
variables as bus signals. This allows for a meaningful and efficient interpretation
of the data. Additionally, applying the presented methodology to real-world data
eliminates the need for tedious manual work. This way, the automated data pipeline
developed during this research makes a contribution to data-driven development in
the automotive industry, hence to the overall technical progress.

5.4 Limitations of this Research

5.4.1 Model Predictive Quality

The detailed results of the evaluations conducted (shown in Appendix K) demon-
strate that, given the same amount of training data the individual results per vehicle,
differ significantly. This applies even for the selected "most suitable” regression al-
gorithm GB. One example is the X-val weighted and X-val avg. R? metric for
the relatively complex BCF ECU of Vehicle B which—even after feature engineer-
ing and hyperparameter tuning—still show a significant negative value which means
that the model performs even worse than by just predicting the average. Addition-
ally, the corresponding dispersions are much higher compared to other ECUs.
From this fact, a limitation can be derived that even with a considerable amount of
training data the quality aspirations cannot be met in certain cases. It can there-
fore be concluded that either more training data is needed or a more specific feature
engineering or hyperparameter tuning is necessary. Another influential factor for
low-quality prediction results can be that the relevant information for the energy
consumption is not present on the data bus(es).

5.4.2 Hardware and Data Resources

In this study, CAN, LIN and FlexRay buses are evaluated, with the latter con-
taining a high number of features. Other data buses—such as the automotive
ethernet—could not be processed within the scope of this study since the num-
ber of features could not be handled by the workstations used as the RAM was
exceeded (cf. Section 4.1.8) by the large amount of data points.

Some feature engineering methods like OHE contribute to the rise in the amount of
data. Equipping the physical workstation with more RAM or using a more scalable
computing approach (e.g. cloud computing) could solve this limitation in the future.
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5.4.3 Methodological Limitations

With regard to the methodology applied for the selection of a suitable ML mod-
eling algorithm, it can be stated that the number of ECUs (which is fixed to 18
in this case, distributed over two test vehicles) could still be extended to a higher
number and to more diverse vehicles (e.g. to different E/E architecture platforms)
in the future. This way, it is possible to obtain more significant and more substanti-
ated results in the WSA. However, during this study the number and availability of
vehicles equipped with the necessary measurement systems was limited to the two
vehicles in set 7.

5.5 Conclusion

This research takes a deep dive into the currently uncharted territory of predict-
ing the energy consumption of in-vehicle ECUs and their peripherals (low-voltage
power net) using high-dimensional network communication data. Through the de-
velopment and implementation of a comprehensive and automated ML processing
pipeline, it could be demonstrated that inter-ECU communication data is a valu-
able resource for predicting low-voltage energy consumption within certain accuracy
boundaries. This research’s scientific novelty lies in several key contributions:

(i) New Way of Data Utilization
It was demonstrated that high-dimensional and complex network communi-
cation data, typically underutilized in automotive data science applications,
can be systematically exploited to predict energy consumption. This marks a
significant step further from traditional methods that rely heavily on conven-
tional direct measurement systems.

(ii) Advanced Feature Engineering and Selection
The conducted research introduced a robust and automated feature engineer-
ing and selection pipeline which significantly reduced the number of input
features for the prediction while enhancing the predictive performance of the
respective models. This core element of the entire ML pipeline ensures that
the resultant models are both efficient and effective for the given task.

(iii) Systematic Algorithm Selection via WSA
By employing a WSA to evaluate a given set of multiple diverse ML regression
algorithms, it could be objectively identified that gradient boosting is the
"most suitable” algorithm for predicting the ECU energy consumption. Using
WSA as a systematic approach, it adds objectivity and reproducibility to the
model selection process which is however influenced by the expert’s estimations
incorporated in the KPIs” weights.

(iv) Explainable AT Integration
The integration of XAI methods into the pipeline ensures that the predictions
made and that the models themselves are interpretable. This is essential for
practical real-world applications, as it allows energy efficiency engineers to
understand and trust the model outputs, thereby facilitating better decision-
making with regard to optimization measures towards energy efficiency.
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(v) Development of an Integrated Pipeline

The creation of an end-to-end automated pipeline, which can be used by energy
efficiency engineers as an integrated application without requiring in-depth ML
knowledge, is another decisive contribution. This pipeline not only simplifies
the process of model generation but also democratizes access to advanced
predictive tools within the automotive industry, enabling domain experts to
leverage ML and AI methods who otherwise might not have had the oppor-
tunity due to a lack of specialized knowledge. Consequently, this approach
bridges the gap between data science and domain expertise, fostering broader
adoption of data-driven methodologies.

As a whole, the implications of this research are considerable. For energy effi-
ciency engineers, the developed pipeline and the results achieved offer a new way
of working, reducing the need for extensive and costly measurement systems during
the development of E/E architecture platforms. It permits the utilization of existing
data bus traces to make accurate offline predictions, thereby optimizing the use of
available data. For the automotive industry, this research contributes to the devel-
opment of more efficient vehicles by providing a deeper understanding of the energy
consumption behavior of ECUs. However, it is not without its limitations. The pre-
dictive quality and power of the ML models vary across different ECUs and vehicles,
indicating the need for additional training data or more refined feature engineering
and hyperparameter tuning. Additionally, the computational resources required to
handle high-dimensional (training) data, particularly from automotive ethernet and
FlexRay, pose a challenge which could be addressed with more powerful computing
hardware in the future.

In conclusion, this research fills a critical gap in the state-of-the-art literature by
presenting a novel and comprehensive approach to predicting ECU energy consump-
tion using network communication data. It offers practical tools and insights for the
automotive industry, paving the way for more efficient and data-driven vehicle de-
velopment.

Future work on this topic is eventually assessed in the following and last chapter of
this thesis.
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To conclude on this thesis and research project, a final summary and an outlook
for further work in its context are given.

6.1 Final Summary

The main goal of this dissertation project was to exploit in-vehicle inter-ECU
communication data transmitted over the various communication networks to pre-
dict the energy consumption of these control units and their associated actuators.
The scope was therefore deliberately limited to the low-voltage power net of pas-
senger vehicles. With the communication data harvested, a holistic ML processing
pipeline was developed with the respective steps needed to reduce the high number
of bus signals to those contributing to an energy consumption prediction. Other
necessary parts of the pipeline were identified as an adequate data importing mech-
anism, and a process step in which an algorithm’s hyperparameters are tuned with
respect to the actual training data. To do so random search was selected for the
latter.

Due to the numeric nature of the energy consumption prediction problem, a set of
possibly suitable ML modeling algorithms was determined from which the ”"most
suitable” was identified utilizing a weighted sum analysis (WSA). The criteria for
this analysis were determined and weighted with domain and ML experts from the
automotive industry. Applying a selection of 18 ECUs with training data collected
from two test vehicles to the set of regression algorithms produced a considerable
amount of results, enabling the assessment of each algorithm’s suitability. From this
procedure, the gradient boosting regressor (GB) was chosen as the "most suitable”
algorithm since it provided the highest average and overall utility, given the WSA
results.

Ultimately, three XAI methods as well as a Pearson correlation analysis were applied
to selected power consumers, their respective ML models and input data. The asso-
ciated results demonstrated the capability to "x-ray” the power consumer thereby
revealing physical coherences which can then further be used by energy efficiency
engineers to develop optimization measures.

6.2 Future Work

6.2.1 Complementary Methodologies

The presented methodology, which is to say the ML processing pipeline for energy
consumption prediction, is built in a generic way with the goal to provide a tooling
to handle all the different kinds of ECUs present in a vehicle. Therefore, future work
could still comprise certain methodical specifications in a way that individual power
consumers of interest can be more particularly fine-tuned with regard to the actual
algorithm’s hyperparameters. Hence, one could narrow down the hyperparameter
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search ranges even more with certain manual effort if an even higher precision is
needed. The same applies to the feature engineering and selection process step.

With regard to the evaluation of the generic pipeline—as it was conducted during
this dissertation project—more trial runs could be conducted to average out the pa-
rameter selection through the random search. In the scope of this thesis one run per
selected ECU was made. With more runs, more RS trials are conducted ultimately
reaching a better statistical significance of the results which could lead to a more
precise statement of the WSA, too. With a standard distribution anticipated, a rule
of thumb states that 25 to 30 trials (per ECU) would return more robust results [199].

6.2.2 Application and Scaling of the ML Pipeline

Since the ML processing pipeline developed in the course of this dissertation

project not only targets real-world data usage but also real-world application, it
has been designed to ensure practical usability and scalability. Nonetheless, it must
currently be executed as a python application requiring a certain knowledge of how
to run scripts in a terminal, how to set-up virtual environments and how to incor-
porate the corresponding training data correctly. Therefore, a subsequent step in
the development could be to wrap the ML processing pipeline compiled here in a
stand-alone tool with a user-friendly interface so that engineers can access and use it
more easily. Additionally, it is imaginable to display the validation and XAI results
directly in the tool as well. This way, the pipeline logic is easily distributable and
scalable, therefore providing an economic benefit eventually surpassing its develop-
ment effort.
Furthermore, according to the CRISP-ML(Q) process model continuous monitoring
and validation of the ML models and their predictive quality for the supported use
cases is to be ensured, too. However, as the world of Al and ML evolves rapidly
and especially with the emerging trends in the field of GenAl applications, enhance-
ments to the methods incorporated in this project could be achieved. Additionally,
generative Al could assist users of the pipeline in running and parameterizing it
more efficiently while also speeding up the analysis of training data for missing
driving situations. It could further be used to generate synthetic driving scenarios
to augment training datasets, thus improving model generalization and robustness.
Moreover, GenAl could support automated feature engineering by generating new
candidate features or by suggesting transformations to enhance model performance.
This would reduce manual effort while optimizing predictive power. Furthermore,
the newly emerging multi-agent-based LLM technology—where LLMs have access
to productive (engineering) tools and systems [200]—could be leveraged to auto-
matically access data sources and documentation systems to store results, retrieve
training data, or even to book and reserve test vehicles for training data collection
independently. This would give engineers more time and capacity for the actual in-
terpretation of the results. Ultimately, GenAl could enhance explainability by gener-
ating natural language reports that summarize model decisions, making the complex
ML outputs more accessible to non-experts or to ECU owners to discuss optimization
measures more thoroughly. This would facilitate better collaboration between data
scientists and domain and ECU experts, driving more informed decision-making.
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A Test Vehicle Options Lists

This appendix presents a comprehensive inventory of the key options and con-
figurations available on both test Vehicle A and Vehicle B, as specified by the OEM.

A.1 Options List Vehicle A

Table A.1: Option codes and descriptions list for Vehicle A (excerpt).

Code Option Description

H29 ZIERELEMENTE-HOLZ WURZELNUSS GLAENZEND (2B29)
K32 AKTIVER FAHRSPURWECHSELASSISTENT

L LINKS-LENKUNG

L2B LUXUS-LENKRAD LEDER

MO005 FAHRZEUGE MIT 4-MATIC-/ALLRAD-ANTRIEB
M656 R6-DIESELMOTOR OM656

PBG KONNEKTIVITAETSPAKET PREMIUM

P09 SONNENSCHUTZ-PAKET

P20 FAHRASSISTENT-PAKET PLUS

P21 LUFTQUALITAETSPAKET

P43 SITZKOMFORT-PAKET IM FOND

P47 EINPARK-PAKET HIGH

P64 MEMORY PAKET VORNE

P69 KOMFORT-HEIZPAKET VORNE U.HINTEN

P82 DIEBSTAHLSCHUTZ-PAKET PLUS

Uo01 FONDGURTSTATUSANZEIGE

U10 BEIFAHRERSITZ MIT GEWICHTSERKENNUNG
U19 AUGMENTED REALITY VIDEO

U25 EINSTIEGSCHIENE BELEUCHTET

U60 FUSSGAENGERSCHUTZ - AKTIVE MOTORHAUBE
01U MBCONNECT - DIENSTE FUER NAVIGATION
049U DESIGNO-MAGNO-KASCHMIRWEISS LACKIERUNG
1B3 KOMMUNIKATIONSMODUL ECE-AUSFUEHRUNG
2U1 KUEHLERJALOUSIE

2XXL. BUNDESREPUBLIK DEUTSCHLAND

223
233
235
243
249
266
275
276
292

FONDLEHNENVERSTELLUNG UND KOPFSTUETZEN ELEKTRISCH
ABSTANDSREGELTEMPOMAT PLUS (DISTRONIC PLUS)

AKTIVER PARK-ASSISTENT

AKTIVER SPURHALTE-ASSISTENT (KAMERA)

INNEN- UND AUSSENSPIEGEL AUTOMATISCH ABBLENDBAR
DISTRONIC PLUS QUERUNTERSTUETZUNG (DTR+Q)
MEMORY-PAKET (FAHRERSITZ, LENKSAEULE U. SPIEGEL)
MEMORY IM FOND

PRE-SAFE IMPULS SEITE
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A . Test Vehicle Options Lists

Table A.1 — continued from previous page

Code

Option Description

293
297
322
325
33U
351
365
367
380
401
402
406
413
421
432
436
443
447
475
489
501
513
534
540
546
551
581
582
587
628
642
682
72B
8U0
804A
810
856
868
874
883
889
891
897
898
902
903
906
907

SIDEBAG IM FOND LINKS UND RECHTS
SONNENSCHUTZROLLO ELEKTRISCH IN FONDTUER LI1.U.RE
NACKENWAERMER IM FOND

MITTENAIRBAG

MBCONNECT - ERWEITERTE KONNEKTIVITAET
ECALL-NOTRUFSYSTEM

FESTPLATTEN-NAVIGATION

LIVE TRAFFIC - FAEHIGKEIT
AUTO-TELEFONIE-PAKET

SITZKLIMATISIERUNG VORNE

SITZKLIMATISIERUNG HINTEN

MULTIKONTURSITZ IM FOND
PANORAMA-SCHIEBEDACH/-GLASDACH

GETRIEBE AUTOMATISCH 9-GANG
FAHRDYNAMISCHER SITZ LINKS UND RECHTS
KOMFORTKOPFSTUETZE FAHRER UND BEIFAHRER
LENKRAD HEIZBAR

BERUEHRBILDSCHIRM IM FOND (TOUCHSCREEN REAR)
REIFENDRUCKKONTROLLE (RDK)

AIRMATIC DC / LUFTFEDERUNG SEMIAKTIV
360°-KAMERA

VERKEHRSZEICHENERKENNUNG

CONNECT 20 PREMIUM (NTG7)

ROLLO ELEKTRISCH FUER HECKFENSTER
AUTOMATISCHE GESCHWINDIGKEITSREGELUNG
EINBRUCH- UND DIEBSTAHLWARNANLAGE BASIS (EDW)
KLIMATISIERUNGSAUTOMATIC

KLIMAANLAGE IM FOND

LOGO-PROJEKTION UEBER SPIEGEL

AUTOMATISCHE FERNLICHTSCHALTUNG PLUS (IHC+)
SCHEINWERFER LED DYNAMISCH RECHTSVERKEHR
FEUERLOESCHER

USB-PAKET

BEHEIZTER WISCHWASSERBEHAELTER

LEDER / NAPPA / SEMIANILIN - BRAUN
SOUNDSYSTEM PREMIUM

TELEFONBEDIENHOERER IN FONDARMLEHNE
ZENTRALDISPLAY GROESSE L

MAGIC VISION CONTROL INKL.SCHEIBENWASCHANL BEHEIZT
SERVOSCHLIESSUNG

KEYLESS - GO

AMBIENTENBELEUCHTUNG PREMIUM

DRAHTLOSE TELEFONAUFLADUNG VORNE
DRAHTLOSE TELEFON-AUFLADUNG IM FOND
KOMFORTSITZHEIZUNG VORNE
KOMFORTSITZHEIZUNG HINTEN

AUFLAGEN VORNE BEHEIZT

AUFLAGEN HINTEN BEHEIZT
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A.2. Options List Vehicle B

A.2 Options List Vehicle B

Table A.2: Option codes and descriptions list for Vehicle B (excerpt).

Code Option Description

B53 AUSSENGERAEUSCH-SOUNDGENERATOR FUER HYBRIDE UND EV
GA GETRIEBE AUTOMATISCH

HO8 ZIERELEMENTE - HOLZ FINELINE ANTHRAZIT (2C09)
K32 AKTIVER FAHRSPURWECHSELASSISTENT

K33 ERWEITERTES WIEDERANFAHREN BEI STOP-AND-GO-VERKEHR
K34 STRECKENBASIERTE GESCHWINDIGKEITSANPASSUNG
L LINKS-LENKUNG

L3E SPORT-LENKRAD - SPALTLEDER GLATT

MO005 FAHRZEUGE MIT 4-MATIC-/ALLRAD-ANTRIEB

PAG DISPLAY-PAKET HIGH

PAX LICHT-PAKET-PREMIUM

PBG KONNEKTIVITAETSPAKET PREMIUM

PBH REMOTE PARKING-PAKET

PBR PAKET FIT UND GESUND - HIGH

P20 FAHRASSISTENT-PAKET PLUS

P21 LUFTQUALITAETSPAKET

P24 KEYLESS-GO-PAKET HIGH

P49 SPIEGEL-PAKET

P53 LUFTREINIGUNGS-PAKET

P82 DIEBSTAHLSCHUTZ-PAKET PLUS

U19 AUGMENTED REALITY VIDEO

U23 SITZBELEGUNGSERKENNUNG IM FOND

U25 EINSTIEGSCHIENE BELEUCHTET

01U MBCONNECT - DIENSTE FUER NAVIGATION

13U MBCONNECT - EV-FUNKTIONEN (HERMES)

16U SMARTPHONE INTEGRATION APPLE CARPLAY

17U SMARTPHONE INTEGRATION ANDROID AUTO

19R LM-RAD 5-SPEICHEN DESIGN 217 RUNDUM

250 PAKET - MULTIMEDIALE / DIGITALE INHALTE

2XXL  BUNDESREPUBLIK DEUTSCHLAND

211A LEDER - SCHWARZ / ANTHRAZIT

215 ADAPTIVES-DAEMPFUNGS-SYSTEM PLUS (ADS+)

216 HINTERACHSLENKUNG MIT GROSSEM WINKEL

22U MB-CONNECT MBUX ENTERTAINMENT

231 GARAGENTOROEFFNER
233 ABSTANDSREGELTEMPOMAT PLUS (DISTRONIC PLUS)
241 FAHRERSITZ LINKS ELEKTRISCH VERSTELLBAR MIT MEMORY

242 FAHRERSITZ RECHTS ELEKTRISCH VERSTELLBAR M. MEMORY
243 AKTIVER SPURHALTE-ASSISTENT (KAMERA)

249 INNEN- UND AUSSENSPIEGEL AUTOMATISCH ABBLENDBAR

262 HINTERE SENSOREN FUER SPURHALTEASSISTENT

266 DISTRONIC PLUS QUERUNTERSTUETZUNG (DTR+Q)

272 VORDERE SENSOREN ZUR KREUZUNGSUEBERWACHUNG

Continued on next page
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A . Test Vehicle Options Lists

Table A.2 — continued from previous page

Code

Option Description

275
290
292
294
299
318
32U
321
324
325
351
36U
383
399
401
443
444
475
489
500
501
503
507
513
546
551
553
581
587
596
597
628
67B
728
8U4
810
83B
84B
860
865
871
875
876
878
890
891
897
902

MEMORY-PAKET (FAHRERSITZ, LENKSAEULE U. SPIEGEL)
WINDOWBAG

PRE-SAFE IMPULS SEITE

KNIEBAG

PRESAFE

SCHEINWERFER LED DIGITAL RECHTSVERKEHR
KLANGPERSONALISIERUNG

BIOMETRISCHE BENUTZERIDENTIFIKATION-FINGERABDRUCK

LICHTBAND VORNE
MITTENAIRBAG
ECALL-NOTRUFSYSTEM

MBCONNECT KONNEKTIVITAET U. ERWEITERTES LADEN PLUS

KOMMUNIKATIONSMODUL RAMSES ENTRY (4G)
MULTIKONTURSITZ VORN MIT MASSAGEFUNKTION
SITZKLIMATISIERUNG VORNE

LENKRAD HEIZBAR

HEAD-UP-DISPLAY ADVANCED (HUD)
REIFENDRUCKKONTROLLE (RDK)

AIRMATIC DC / LUFTFEDERUNG SEMIAKTIV
AUSSENSPIEGEL ELEKTRISCH ANKLAPPBAR
360°-KAMERA

FERNGESTEUERTES PARKEN

FERNGESTEUERTES PARKEN PREMIUM
VERKEHRSZEICHENERKENNUNG

AUTOMATISCHE GESCHWINDIGKEITSREGELUNG
EINBRUCH- UND DIEBSTAHLWARNANLAGE BASIS (EDW)
ANHAENGERASSISTENT
KLIMATISIERUNGSAUTOMATIC

LOGO-PROJEKTION UEBER SPIEGEL

IR WIRKSAME VERGLASUNG

WINDSCHUTZSCHEIBE HEIZBAR

AUTOMATISCHE FERNLICHTSCHALTUNG PLUS (IHC+)
AUTOMATISCHE FAHRERTUER

USB-PAKET

PTC-BATTERIE-ZUHEIZER FUER HYBRID/EV
SOUNDSYSTEM PREMIUM

DC-LADEFUNKTION

AC-LADEFUNKTION EIN-/MEHRPHASIG HIGH (6KW-22KW)
BEIFAHRER-DISPLAY

TV TUNER DIGITAL

SENSORIK F. HECKDECKELOEFFNUNG/SCHLIESSUNG
SCHEIBENWASCHANLAGE BEHEIZT
INNENRAUM-LICHTPAKET

AMBIENTEBELEUCHTUNG CONNECTED LIGHT
AUTOMATISCHE RUECKWANDTUER
AMBIENTENBELEUCHTUNG PREMIUM

DRAHTLOSE TELEFONAUFLADUNG VORNE
KOMFORTSITZHEIZUNG VORNE
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B Python Virtual Environment

The list below shows all Python dependencies required to run the entire code
base of this research project. They come along with their specific versions as defined
in the associated requirements.txt file. They ensure a reproducible environment
set-up for running any part of the associated codebase.

absl-py==1.4.0
aiosignal==1.3.1
asammdf==7.4.2
astunparse==1.6.3
attrs==22.2.0
black==23.1.0
brokenaxes==0.5.0
cachetools==5.3.0
canmatrix==1.0
certifi==2022.12.7
charset-normalizer==3.0.1
click==8.1.3
cloudpickle==2.2.1
coloredlogs==15.0.1
contourpy==1.0.7
cycler==0.11.0

dash==2.8.1
dash-core-components==2.0.0
dash-html-components==2.0.0
dash-table==5.0.0
distlib==0.3.6
dm-tree==0.1.8
eli5==0.13.0
et-xmlfile==1.1.0
Farama-Notifications==0.0.4
filelock==3.9.1
Flask==2.2.3
flatbuffers==2.0.7
fonttools==4.38.0
frozenlist==1.3.3
future==0.18.3

gast==0.4.0
google-auth==2.16.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
graphviz==0.20.1
grpcio==1.51.1
gymnasium==0.29.1

h5py==3.8.0
humanfriendly==10.0
idna==3.4

imageio==2.31.1
imbalanced-learn==0.11.0
importlib-metadata==6.0.0
isal==1.1.0
itsdangerous==2.1.2
jax==0.4.10
Jinja2==3.1.2
joblib==1.2.0
jsonschema==4.17.3
kaleido==0.2.1
keras==2.12.0
kiwisolver==1.4.4
lazy-loader==0.2
libclang==15.0.6.1
lime==0.2.0.1
llvmlite==0.39.1
Ixml==4.9.3

1z4==4.3.2
Markdown==3.4.1
MarkupSafe==2.1.2
matplotlib==3.6.3
ml-dtypes==0.1.0
mpmath==1.3.0
msgpack==1.0.5
mypy-extensions==1.0.0
networkx==3.1
numba==0.56.4
numexpr==2.8.4
numpy==1.23.5
oauthlib==3.2.2
onnx==1.14.0
onnxconverter-common==1.13.0
onnxruntime==1.15.0
openpyxl==3.0.10
opt-einsum==3.3.0

143



packaging==23.0
pandas==1.5.3
pathspec==0.11.0
patsy==0.5.3
Pillow==9.4.0
platformdirs==3.0.0
plotly==5.13.1
protobuf==4.23.2
PyALE==1.1.3
pyasnl==0.4.8
pyasnl-modules==0.2.8
pyparsing==3.0.9
pyrsistent==0.19.3
python-dateutil==2.8.2
pytz==2022.7.1
PyWavelets==1.4.1
PyYAML==6.0
ray==2.3.0
requests==2.28.2
requests-oauthlib==1.3.1
rsa==4.9
scikeras==0.10.0
scikit-image==0.21.0
scikit-learn==1.2.1
scipy==1.10.0
seaborn==0.12.2
setuptools==69.5.1
shap==0.41.0
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six==1.16.0
skfeature-chappers==1.1.0
skl2onnx==1.14.1
slicer==0.0.7
statsmodels==0.14.0
sympy==1.12
tabulate==0.9.0
tenacity==8.2.1
tensorboard==2.12.3
tensorboard-data-server==0.7.0
tensorboard-plugin-wit==1.8.1
tensorflow==2.12.0
tensorflow-estimator==2.12.0
tensorflow-io-ges-filesystem==0.30.0
termcolor==2.2.0
tf2onnx==1.16.1
threadpoolctl==3.1.0
tifffile==2023.4.12
tomli==2.0.1

tqdm==4.64.1
typing-extensions==4.4.0
urllib3==1.26.14
virtualenv==20.21.0
Werkzeug==2.2.2
wrapt==1.14.1

zipp==3.11.0

keras nlp==0.6.1



C Detailed Results of the Pairwise Com-
parison

Detailed results of the pairwise comparison carried out together with domain as
well as ML research experts from the automotive industry. The goal is to identify
a relative ranking for several suggested metrics and KPIs. The template has been
granted for use by the Mercedes-Benz Design for Six Sigma Blackbelt Program.

Rank ~ | © -] @ — < o = & w0 © =
i o
Weights RO = B S S B =
Sum ® ) o ~ Q
SD(MSE) ™~ o ] o o~
ONNX model size after | _ - - o o
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Training time per feature
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and sample [s]
SD(PAAD) over all x-vals | o o o~ ~ o o o o o o
[%]
X-val PAWD [%] =E @] © o o o o o o

Inference time per

Pair-wise Comparison for
ML Model Evaluation Metrics & KPIs
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Figure C.1: Pairwise comparison of the 12 suggested ML model assessment metrics.
Each KPI is compared to each other criterion.
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D Holistic Pipeline Overview

The following figure shows the entire ML pipeline developed during this research.
It comprises all steps and ”detailed views” described in Chapter 4.
Disclaimer: Train* in Fig. D.2 refers to the subset of the entire training data which
is used for model induction during one specific cross-validation split.
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15
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18
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20

E Relevant Listings for Feature Engineer-
ing and Selection

E.1 Zero Variance Elimination

The Python implementation in Listing E.1 shows the implementation of the two-
step process for filtering out low-variance features in the (training) dataset:
filter by variance fit(self, df, th=0.0) identifies numeric columns with vari-
ance below a given threshold (th, in this case it is set to zero) and compiles a list
of these zero-variance columns. It ensures that at least 5 columns are retained,
even if low-variance columns have to be added back to meet this minimum. The
df .var (numeric_only=True) (cf. Listing E.1, lines 10 and 17) implements the
variance calculation according to Equation 3.20 ensuring only numeric columns are
used.

Then, the class method filter by variance transform(self, df,
drop_col_var=None) removes the identified columns from the DatakFrame while ig-
noring any errors caused by non-existent ones.

import pandas as pd
from typing import List, Optional

class FeatureSelection:
def filter_by_variance_fit(self, df: pd.DataFrame, th: float =
0.0) -> List[str]:

) ) )

Identify columns with variance below the threshold.
) )
# Identify numeric columns with variance less than or equal
to the threshold.
drop_col = (
df . select_dtypes (include=["number"])
.columns [df .var (numeric_only=True) <= th]
.tolist ()

# Calculate variances for numeric columns.

variances = df.select_dtypes (include=["number"]) .var ()

# Sort variances in descending order.

variances_sorted = variances.sort_values (ascending=False)

# Determine how many columns to keep, ensuring at least 5
columns are retained.

num_columns_to_keep = max(len(variances_sorted) - len(
drop_col), 5)

# Select columns to drop, adding extra columns from the
sorted variances if needed.

if num_columns_to_keep < 5:
drop_col_var = drop_col + variances_sorted.index[: 5 -

num_columns_to_keep].tolist ()
else:
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drop_col_var = drop_col
return drop_col_var

def filter_by_variance_transform(

self,
df: pd.DataFrame,
drop_col_var: Optional[List[str]] = None

) -> pd.DataFrame:

29

Drop columns with low variance from the DataFrame.
20

df = df .drop(columns=drop_col_var, axis=1, errors="ignore")
return df

Listing E.1: Fit and transform methods for (zero) variance elimination as part of
the FeatureSelection.py class.

E.2 Feature Importance Selection

The class method drop_unimportant features fit(self, df, th, model,

fuse, path, X trn, y_trn) is designed to calculate feature importances using ei-
ther a GB or an RF model, depending on the specified input (model variable). The
feature importance is computed on the training dataset X_trn and y_trn. As a
result, features with an importance below a pre-defined threshold (here: 0.0009999
is used) are marked for removal. They are eventually returned in drop_cols_fi—a
list of columns (features) to be dropped. The aforementioned threshold has proven
to be satisfactory in previous experiments with different values. The relatively low
threshold used here does justice to the size and complexity of the input data, as the
feature importances potentially have to be split across many features and—when
using [FI—the sum of all importances is one.
The  drop_unimportant features transform(self, df, drop_cols_fi=None)
function then removes these unimportant features from the dataset, logging the
number of features before and after the process. If no features remain, an error is
raised to ensure the integrity of the dataset needed for subsequent steps of the ML
pipeline.

import pandas as pd
from typing import List, Optional

class FeatureSelection:
def drop_unimportant_features_fit(

self,

df: pd.DataFrame,
th: float,

model: str,

fuse,

path: str,

X_trn,

y_trn

) -> List[str]:
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def

#Initialize feature selection with provided config.
feature_selection = FeatureSelection(self.config)

) )

Determine global feature importance on train data.
) )

if model == "gradientboosting":
20

Calculate feature importance using gradient boosting.
23
importances = feature_selection.
calc_globalFeatureImportance (
"gradientboosting", fuse, path, X_trn, y_trn
)
else:

29

Calculate feature importance using random forest.
)20

importances = feature_selection.
calc_globalFeatureImportance (
"randomforest", fuse, path, X_trn, y_trn

) )

Create boolean mask to select columns to keep.
) )

keep_cols_fi = “df .columns.isin([col for _, col in
importances if _ < thl])
drop_cols_fi = df.columns[~“keep_cols_f£fi]

drop_cols_fi [col for col in drop_cols_fi if col != "file

II]
return drop_cols_fi

drop_unimportant_features_transform(
self ,

df: pd.DataFrame,

drop_cols_fi: Optional[List[str]] = None

) -> pd.DataFrame:

print ("Number of features in dataset:", len(df.columns))

) )

Select columns to keep and assign back to DataFrame.

) )

df = df .drop(columns=drop_cols_fi, axis=1, errors="ignore")
print ("All unimportant features dropped.")

print ("Number of features in dataset:", len(df.columns))

#Raise error if no important features are found.
if len(df.columns) == O:
raise ValueError ("#ERROR#! No important features could
be found!")

return df

Listing E.2: ML algorithm-dependent selection of feature importance calculation.
A precursor to determine which ”unimportant” feature columns are to be removed
from the entire dataset (df) based on a threshold th.
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E.3 Feature Correlation Filtering

The feature correlation filtering mechanism is implemented as part of the
FeatureSelection.py class, designed to identify and remove highly correlated fea-
tures from a given training dataset. The implementation, detailed below, is struc-
tured into three principal components: filtering irrelevant columns, identifying cor-
related features, and preserving the most important features based on predefined fea-
ture importance scores. The filtering process begins by excluding the helper columns
which are irrelevant for the analysis. For the underlying use case, the columns file,
timestamps, or I_ (the latter identifying the target columns, as I stands for the
electric current) are identified and removed. Next, the pairwise PCCs between the
remaining features are computed, resulting in a correlation matrix. Features with
a PCC greater than or equal to the threshold th are marked as highly correlated.
For each pair of highly correlated features, the feature to keep is identified based
on its importance score. The feature with the lower overall importance is removed
to preserve the feature considered more valuable ("important”) for model training.
If a feature does not have an explicitly defined importance score, it is assigned a
default value of zero, ensuring robust handling of missing information.

e filter target_columns([...]): A method that removes the helper columns.

e _identify highly correlated features([...]): A method calculating a
correlation matrix and identifying pairs of features with correlation coefficients
above the specified threshold th.

e _drop_features([...]): This method examines the identified highly corre-
lated feature pairs and removes the less important feature from each pair based
on the importance scores.

e drop_correlated features fit([...]): A method that returns the list of
features to be dropped.

e drop_correlated features_transform([...]): A method that applies the
identified feature drops to a new dataset.

import pandas as pd
from typing import List, Tuple

class FeatureSelection:

def _filter_target_columns(df: pd.DataFrame) -> pd.DataFrame:

20

Drop helper columns from the DataFrame.

) I

target_prefixes = ("file", "timestamps", "I_")

filtered_columns = [col for col in df.columns if not col.
startswith(target_prefixes)]

return df [filtered_columns]

def _identify_highly_correlated_features(df: pd.DataFrame, th:
float) -> List[Tuplelstr, strl]:
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) ) )

Identify pairs of features that are highly correlated based

on the threshold th.

) )

corr_matrix = df.corr ()

correlated_pairs = [
(corr_matrix.columns[i], corr_matrix.columns
for i in range(len(corr_matrix.columns))

i1

for j in range(i + 1, len(corr_matrix.columns))

if abs(corr_matrix.iloc[i, jl) >= th
]

return correlated_pairs

def _drop_features(
df: pd.DataFrame,
correlated_pairs: List[Tuplelstr, strl],
importances: List[Tuple[float, str]]

) -> List[str]l:

) )

Drop the less important feature from each correlated

feature pair.
P

feature_importance_dict = {feature: importance for

importance, feature in importances}
drop_list: Listl[str]l = []

for featurel, feature2 in correlated_pairs:

if featurel in drop_list or feature2 in drop_list:

continue

if feature_importance_dict.get(featurel, 0) <

feature_importance_dict.get (feature2, 0):
drop_list.append(featurel)

else:
drop_list.append(feature?2)

return drop_list

def drop_correlated_features_£fit(

cls,

df: pd.DataFrame,

th: float,

importances: List[Tuple[float, str]]
) -> List[str]:

) )

Fit function that identifies and stores the features to

drop.

) )

df = cls._filter_target_columns (df)

correlated_pairs = cls._identify_highly_correlated_features
(df, th)

return cls._drop_features(df, correlated_pairs, importances
)

def drop_correlated_features_transform(
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df: pd.DataFrame,
dropped_features: List[str]
) -> pd.DataFrame:

29

Drop the identified features from the DataFrame.
20

return df.drop(columns=dropped_features, errors="ignore")

Listing E.3: Set of functions to drop correlated features from a Pandas DataFrame
with a correlation threshold.

E.4 Median Imputation

Listing E.4 shows the Python implementation of the median imputation fit and
transform functions. Here, a generic threshold is implemented that defines the
number of unique values that a feature column must have so that the functions are
applicable which in this case is 32. The £i1ll_sna_median_fit([...]) method cal-
culates and stores filler values for each column, either as the column’s median (if the
column contains sufficiently many unique values and is numeric) or as a placeholder
string "sna". The fill sna median transform([...]) method applies this filler
information to another DataFrame (here: the actual training data), replacing invalid
or missing values in accordance with the calculated fillers.

import pandas as pd
import warnings
from typing import Dict, Union

class SnaHandling:
def fill_sna_median_fit(self, df_train: pd.DataFrame, th: int)
-> Dict[str, Union[float, strll]:
PR
Initialize dictionary to store median or "sna" for each
column.

) )

sna_dict: Dict[str, Union[float, strl]l = {}

20

Iterate through each column in the training DataFrame.

20

for col in df_train.columns:
PRI

Check if column has enough unique values.
)22

if len(df_train[col].value_counts()) >= th:

) )

Convert column to numeric, coercing errors to NalN.
) )

col_numeric = pd.to_numeric(df_train[col], errors="

coerce")
) )

Calculate median while ignoring runtime warnings.
) )

with warnings.catch_warnings():
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warnings.filterwarnings ("ignore", category=
RuntimeWarning)
median = col_numeric.median(skipna=True)

)22

Check if median is a valid float and not NaNlN.

) )

if self._is_float(median) and not pd.isnull (median)

sna_dict [coll] median
else:

sna_dict [col]

n Sna"
else:

sna_dict[col] = "sna"

return sna_dict

def fill_sna_median_transform(self, df: pd.DataFrame, sna_dict:
Dict[str, Union[float, str]]) -> pd.DataFrame:

) )

Iterate through each column in the DataFrame.
) ) )
for col in df.columns:
try:
PRI
Check if the sna_dict value of that column is a
float.

)22

if self._is_float(sna_dict[col]):

) )

Fill missing and invalid values with the median

)

df [col] = [

(
float(val) if self._is_float(val)
else sna_dict[col] if "sna" in str(val)
.lower () else O
)
for val in df[col]
]
df [col].fillna(sna_dict[col], inplace=True)
else:

) )

Fill missing and invalid values with
) )
df [col] = [
sna_dict [col] if "sna" in val.lower () else
str(val)
for val in df [col].astype(str)

Sna

]
df [col] = df[col].astype(str).fillna("nan"
except KeyError:
continue

return df

Listing E.4: Fit and transform methods for median imputation with variable
threshold.
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E.5 One-Hot Encoding

The code shown in Listing E.5 provides the corresponding Python implemen-
tation of the one-hot encoding part of the feature engineering pipeline. The class
FeatureEncoding.py class encapsulates the two key methods for fitting and trans-
forming categorical data of the passed dataset. The one hot_encoding fit([...])
method fits a OneHotEncoder object to categorical columns identified in that DataFrame,
while one_hot_encoding transform([...]) ensures compatibility with the en-
coder and transforms the data into a one-hot encoded format.

To handle variations in input DataFrames, the helper functions combine_dfs and
remove _duplicate_cols manage the merging and cleaning of DataFrames, ensuring
consistent structure and avoiding duplicate columns.

1 import pandas as pd

2 from sklearn.preprocessing import OneHotEncoder

3 from typing import List, Optional

4 import numpy as np

5

6 class FeatureEncoding:

7 def one_hot_encoding_fit(self, df: pd.DataFrame) ->

OneHotEncoder:

8 20

9 Initialize OneHotEncoder with parameters to handle unknown
categories.

l(] 20

11 ohe_regr = OneHotEncoder (handle_unknown="ignore", dtype=int
)

12

13 20

14 Select columns with object or category data types.

ly') )20

16 string_columns = list(df.select_dtypes(include=["object", "
category"]) .columns)

17

18 29

19 Fit the OneHotEncoder on the selected columns.

20 00

21 ohe_regr.fit(df [string_columns].astype(str))

22

23 return ohe_regr

24

25 def one_hot_encoding_transform(self, df: pd.DataFrame, ohe_regr

Optional [OneHotEncoder] = None) -> pd.DataFrame:

26 P

27 Identify columns present in encoder but missing in the
DataFrame.

2(\; 20

29 diff = list(

30 set (ohe_regr.feature_names_in_)

31 - set(list(df.select_dtypes (include=["object", "

category"]).columns))

32 )

33

r;l 20

35 Add missing columns to dataframe and fill with zeros if any
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are found.
36 200
if len(diff) > O:

~

38 df _test = pd.DataFrame (columns=np.array(diff))

39 df _test.fillna(value=0, inplace=True)

10 df = pd.concat ([df, df_test], axis="columns")

41

]2 ) )

43 Transform the dataframe using the fitted OneHotEncoder.

44 ) I

45 df _out = ohe_regr.transform(df [ohe_regr.feature_names_in_].

astype (str))

46 df _out = df_out.toarray ()

47 df _out = pd.DataFrame (df_out, columns=ohe_regr.
get_feature_names_out ())

48

1() ) )

50 Drop original columns that were one-hot encoded.

r)l ) )

52 df = df .drop(ohe_regr.feature_names_in_, axis=1)

53

r)l ) )

55 Reset index of both dataframes to ensure alignment.

r’)() P

57 df _out.reset_index (drop=True, inplace=True)

58 df .reset_index (inplace=True)

59

60 ’0

61 Combine the transformed dataframe with the original
DataFrame.

62 )2

63 df = combine_dfs ([df_out, df])

65 return df

67 | HHBHHHAARAFHHHHBHAR SRR HH
68 # Helper functions
69 |HHAHHBHHAFHFFAAAHHRBRBRAHAHS

71 'def combine_dfs(dfs: List[pd.DataFrame]) -> pd.DataFrame:
72 PEP D)

73 Reset index for all dataframes and concatenate them.
l PP
5

dfs_modified = [df.reset_index(drop=True) for df in dfs]

6 combined_df = remove_duplicate_cols(pd.concat(dfs_modified,
axis=1))

7 combined_df.index = dfs[0]. index

78 return combined_df

80 def remove_duplicate_cols(df: pd.DataFrame) -> pd.DataFrame:

81 P

82 Remove duplicate columns from the DataFrame.
8‘ 22
84 return df.loc[:, “df.columns.duplicated ()]

Listing E.5: Fit and transform methods for OHE applicable to a Pandas
DataFrame - including necessary helper functions.
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F.1 Implementation of Random Search

The RS implementation is divided into two parts: a scikit-learn wrapper and a
Ray Tune wrapper depending on the regression model in use.

F.1.1 Scikit-learn Wrapper for RF, GB and MLP

Detailed Python implementation of the hyperparameter tuning for RF, GB and
MLP. The private _get best_param RS([...]) method implements randomized hy-
perparameter optimization for the aforementioned algorithms using the scikit-learn
RandomizedSearchCV class. As parameters it accepts a configuration object and
training data, then performs randomized search with 5-fold internal cross-validation

over 100 iterations. Finally, the best hyperparameters 0% are stored in the regr .best_params_

variable, and the best score (mean loss) is stored in the regr.best_score_ variable
for further processing in the actual training operation.

from models.model import Model
from sklearn.model_selection import RandomizedSearchCV

class RandomSearch:

[...]
def _get_best_param_RS(self, config, X_trn, y_trn) -> object:

’>?’ Get model type from configuration object. ’’’
model_type = config.model.lower ()

>?2 Create regressor object (raw). ’°’°
model = Model(config, None, X_trn, y_trn)
regr = model.regressor

[...]

if model_type in {"randomforest", "gradientboosting", "mlp"}:
regr = RandomizedSearchCV(

regr,

param_distributions=self._get_search_parameters(
model_type),

verbose=5,

cv=5,

[...1,

n_iter=100,

random_state=10,
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>?? Fit regressor with tuned parameters. ’’°

regr . fit(X_trn, y_trn)

>?? Store the best score and parameters. ’’°
best_score = regr.best_score_
best_params = regr.best_params_

return regr

[...]

Listing F.1: Python wrapper class RandomSearch.py which implements
RandomizedSearchCV for hyperparameter tuning (used for both RF and GB as well
as MLP).

F.1.2 Ray Tune for LSTM

Detailed implementation of the Ray Tune-based hyperparameter optimization
which is used for the LSTM algorithm within the RandomSearch class. In the wrap-
per function _get best_param ray([...]), the type of the regressor regr is stored
in the self.model _type variable via the config object and a regressor object is
created. Next, a tune.Tuner object is instantiated (among others with a function-
based Ray Tune Trainable®?, a configuration and the respective parameter space..
Subsequently the tuner.fit() method is called to start the tuning process. The
latter runs the tuning trials and returns the respective trial results. The best one
is obtained by calling results.get best_result([...]) which originates from
the trial with the lowest "mean_loss". The best hyperparameters 6! are stored in
regr.best _params_, and the best score (mean loss) is stored in regr.best_score_
for further processing in the actual training operation.

from models.model import Model
from ray import tune
from ray.tune.schedulers import AsyncHyperBandScheduler

class RandomSearch:
[...]

def _get_best_param_ray(self, config, X_trn, y_trn, num_samples
=100) -> object:
’>?’’Define a search space, run_config and return results object
num_samples = number of samples for RandomSearch.
) )
’>?? Get model type from configuration object. ’’°
model_type = config.model.lower ()

>22 Create regressor object (raw). °’°°
model = Model (config, None, X_trn, y_trn)
regr = model.regressor

>?? Create a Tuner object for hyperparameter tuning. ’’°
tuner = tune.Tuner (

32https://docs.ray.io/en/latest/tune/api/trainable.html, last accessed: Jan 04, 2025
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self._objective, # RayTune function-based Trainable
tune_config=tune.TuneConfig(
scheduler=AsyncHyperBandScheduler (metric="mean_loss",
mode="min"), # Scheduler for managing trials
search_alg=self._get_search_alg(), # Search algorithm
for hyperparameter tuning, here: RS

num_samples=num_samples, # Number of samples for the
search
),
param_space=regr.param_space, # Hyperparameter search
space
)
>?? Run the tuning process. ’’°
results = tuner.fit ()
>?? Get the best result based on the mean_loss metric. ’’’
best_result = results.get_best_result(metric="mean_loss", mode=
"min"
’>?’ Store the best hyperparameters and score in the regressor
object. ’’°
regr .best_params_ = best_result.config
regr .best_score_ = best_result.metrics["mean_loss"]

return regr

[...]

Listing F.2: Python wrapper class RandomSearch.py implementing
hyperparameter tuning with Ray Tune (used for LSTM).

F.2 Cross-Validation Python Implementation
When a CV object is created, the CrossValidation.py class accepts a Pan-

das DataFrame (dataframe) which consists of the imported and feature engineered
training data. The __init__ method then establishes several instance variables:

e self.df retains the original input DataFrame df.

e self.df id and self.df_ts designate the column names for the test drive
IDs and timestamps.

e self.delta_time computes the time interval between consecutive rows, de-
rived from the DataFrame’s index.

e self.cv_splits is initialized as an empty list intended to eventually store the
CV splits.

e self.ls testdrives is populated with a list of unique test drive IDs (cf.

above) extracted from the DataFrame via the get testdrive_ids(self)
method.
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The function create_splits(self) actually realizes the creation of the CV
splits by iterating over each unique test drive ID (self.ls testdrives). For each
test drive ID:

e df _train_folds is generated by excluding the current test drive from the
DataFrame, thus forming the respective model fit’s training dataset (D; — 2
drives).

df val folds is created by including only the data which forms the validation
set for one fit (one dedicated test drive per CV iteration).

The timestamps within both df_train folds and df_val_folds are recal-
ibrated using self.delta time to ensure that they start with 0 and the
that new resulting timestamps are evenly spaced as in the original (non-split)
dataset to maintain consistency among shuffled drives.

Each resultant split includes the test drive ID, the validation set, and training
set for a given fit and is eventually appended to self.cv_splits as shown in
Listing F.3, line 34.

import pandas as pd

class CrossValidation:

164

def

def

def

__init__(self, dataframe):

’?? Initialize with a Pandas DataFrame containing
timestamps, features, and IDs of test drives.

self .dataframe = dataframe

>?22 Column name for the ID of test drives (was added during
data import). 77

) )

self.df_id = "file"
’>?? Column name for the timestamps. ’’°
self .df _ts = "timestamps"

>’’’ Time delta based on the index of the DataFrame. ’’°

self.delta_time = self.dataframe.index[1]

2?2 List to store different splits with different folds. 7’
J

self.cv_splits = []

’>?? List of unique IDs of test drives in the DataFrame. ’’°

self.ls_testdrives = self.get_testdrive_ids ()

get_testdrive_ids (self):

>’’’ Return a list of unique test drive IDs from the
DataFrame. °’’°

return pd.unique(self.dataframe[self.df_id]).tolist ()

create_splits (self):
>’’’ Create cross-validation splits by iterating over each
unique test drive ID. ’’°°
for testdrive_id in self.ls_testdrives:
’>?? Get training data excluding the current test drive.
22
df _train_folds = self.df_train[self.df_train[self.df_id
] != testdrive_id].copy )
>?? Get validation data for the current test drive. ’’°
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df _val_folds = self.dataframe[self.dataframe[self.df_id

] == testdrive_id].copy ()
>’’’ Reset timestamps for the training set. ’’’
df _train_folds[self.df_ts] = [x * self.delta_time for x

in range(len(df_train_folds))]
Reset timestamps for the validation set. ’7°
df _val_folds[self.df_ts] = [x * self.delta_time for x
in range(len(df_val_folds))]
>?? Append the split to the list. 7’
self.cv_splits.append([testdrive_id, df_val_folds,
df _train_folds])
return self.cv_splits

) )

[...]

Listing F.3: CrossValidation.py class for systematic train and test split creation
within the LOOCYV strategy (excerpt).

F.3 Model Export Python Implementation

The function export_model (config, main_collector, model_collector) ex-
ports the trained regressor in the ONNX format, while the function
export model information([...]) exports supplementary metadata regarding
the model and data. This metadata includes information about the carline, E/E
architecture, affected bus systems, ECU, and other relevant details, all stored in a
JSON file. An example JSON for the driver display of Vehicle A can be found in
Appendix G. These outputs ensure both human- and machine-readable accessibility.
Moreover, the design ensures that key meta-information about the script’s execu-
tion (main_collector) and the model-specific details (model_collector) which are
compiled in previous steps of the training process (not mentioned for the sake of
brevity) are seamlessly integrated into the export process.

from doc_utils import ModelExport
from data.data import logger

import config
import time

class Model:

if config.model_export:
exporter = ModelExport (export_dir=doku.get_fuse_path(fuse))
logger.info (f"Exporting model to {doku.get_fuse_path(fuse)}

ll)
print("--- Starting Model Export ---")
start_time = time.time ()

exporter .export_model (
config,
main_collector,
model_collector
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)

exporter .export_model_information(main_collector,
model_collector)

model_export_time = time.time() - start_time

logger.info("--- Ys seconds to export model---" % (
model _export_time))

print ("--- Regressor Export Finished ---")

else:
pass

Listing F.4: Excerpt of the model export functionality as part of a central
Model.py class.

F.4 The Model Class - An Example of a Modular
Paradigm

The Model.py class is an example of the modular structure pursued for the im-
plementation of the overall ML pipeline designed in this research. Listing F.5 below
illustrates this modular, object-oriented principle in greater detail for the regressor
creation and for the explainer objects. In the example of XAl, a hierarchical struc-
ture that is realized by the dedicated classes located "below” Explanation.py in
which the actual XAI logic is implemented and returned. Depending on whether
XAl is activated in a training run or not, the respective object is created or the part
of the code is skipped using a boolean flag (cf. Listing F.5, line 48).

from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor

from sklearn.neural_network import MLPRegressor

from models.lstm_model import LSTMModel

from explanation.explanation import Explanation

’>?? More imports omitted for brevity. ’’°

[...]

class Model:
def __init__(self, config, best_params, X_trn, y_trn):
self .model_type = config.model.lower ()
’>?? Retrieve configuration parameters. 7’
self.config_dict = config.get_dict(

[...]
)
’>?? Store the best parameters from the RS tuning. ’’°
self .best_params = best_params
>?7 More class variable declarations omitted for brevity. °’
)
[...]
>’’’ Model imitialization. ’7°
if self .model_type == "randomforest":
self .regr = RandomForestRegressor (**xself.config_dict)
elif self.model_type == "gradientboosting":
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F . Miscellaneous Python Listings

def

self .regr = GradientBoostingRegressor (**self.
config_dict)
elif self.model_type == "mlp":

self .regr = MLPRegressor (*¥xself.config_dict)
elif self.model_type == "lstm":

self.regr = LSTMModel (X_trn.shape[1], self.config_dict)

pass

generate_model (config, best_params, X_trn, y_trn, [...]):

H %k 5k 3k 5k 3k 5k 3k 5k >k 5k >k 5k >k 3k %k 3k >k 3k %k 3k >k 5k >k 5k >k >k 5k >k >k >k > >k > >k 5k %k >k %k > %k % % % % % % %k % %k % %k % %k
# Model Creation

ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok % sk ok ok ok ok ok ok ok K s sk ok ok ok ok ok ok k ok ok ok ok ok K k % % ok ok ok ok k K K
model = Model (config, best_parameters, X_trn, y_trn)
regr = model.regr

>?? Model training, evaluation, export, etc. omitted for
brevity. 7’

[...]

%k ok 5k ok ok 5k 5k %k 3k 3k %k %k %k %k %k 5k 3k 5k 5k 5k 5k 5k %k %k >k %k %k %k % % % x* %k %k

# XAI Methods
ok sk ok ok ok ok sk ok ok sk ok ok o ok sk ok ok %k ok ok % ok sk ok ok % ok k %k ok K ok k

if config.exp_enabled:
explainer = Explanation(

’?? Initialize the Explanation class. ’7°
[...]
)

’?’Feature Importance explanation. ’’°

feature_importances_trn = explainer.do_pfi_explanation/(

X_trn, y_trn, "training"
’>?’Explaining feature importances with PFI. ’°°
explainer.explain_signal_names_pfi ()
>’ ALE explanation. 7’
explainer.do_ale_explanation(X_trn)

explainer.explain_signal_names_ale ()

>?? SHAP explanation. ’’°
explainer.do_shap_explanation(X_trn)

return regr

Listing F.5: Shortened Model.py class focusing on the modularity of the XAI
functionality and the Model object generation.
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F.5. The Explanation Class Constructor

F.5 The Explanation Class Constructor

Listing F.6 presents the definition of the Explanation.py class which serves as
a wrapper for encapsulating XAl functions (cf. above). As input, it takes training
and validation datasets (X_trn, X_val, y_trn, y_val), a regression model (regr),
and ECU (target) related parameters (fuse, numFuses). Additionally, it retains
feature names via the feature_columns list to support interpretability. This struc-
ture facilitates seamless integration of explainability techniques within the overall
ML workflow that might need this input data. As a result, all variables mentioned
above are class variables.

class Explanation:
def __init__(

self,
X_trn,
X_val,
y_trn,
y_val,
regr,
fuse,
feature_columns,
numFuses,

[...]

Listing F.6: Definition of an Explanation object. It is needed to call encapsulated
XAT functions.

168



G Metadata for a Training Run and ECU
Model

The example JSON file shown in Listing G.1 below provides detailed informa-

tion on the first CV iteration of the driver display ECU using the GB modeling
algorithm. From the provided JSON, the model can be identified as
”00_DriverDisplay_20250105-153515_gradientboosting”, and that it is trained on
data from ”Vehicle A”, a "sedan” car line, and that it utilizes a single CAN bus
system. Key features include illumination level, display sensor values, battery volt-
age and current, and sun elevation angle, with the target being the driver display’s
energy consumption (current).
This model’s performance can be derived from the R? validation score (in this itera-
tion: R? = 0.91). Further energy related KPIs are also stored but they are omitted
for brevity. Additionally, the JSON file provides detailed metadata on the environ-
mental and operational conditions during the training phase, such as outside and
inside temperatures measured by the vehicle’s onboard temperature sensors, bright-
ness levels, vehicle speed, and supply battery voltage. The JSON also captures
the day/night ratio, city driving ratio, and motorway driving ratio, all measured in
percent, offering a comprehensive view of the conditions under which the model is
trained.

"model-ID": "OO0_F223_20250105_153515_gradientboosting",
"carline": [
"Sedan"
1
"architecture": [
"<non-disclosed>"
1,
"bussystems": [
"1xCAN"
15
"fuses": "F223",
"component": [
"Driver_Display"
1,
"test_vehicle": [
"Vehicle A"
1,
"raster": 0.2, //Import frequency
"features": [
"Illumination Level",
"Display Sensor Value Al11l",
"Head-Up Display Sensor Value",
"Supply Battery Voltage',
"Supply Battery Current",
"Sun Elevation Angle"
15
"targets": [
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29 "Driver Display Current"'

30 1
31 "model-type": "gradientboosting",
32 "model -parameters": "{’n_estimators’: 100, ’learning_rate’: 0.1,
’max_depth’: 3, ’min_samples_split’: 2, ’min_samples_leaf’: 1,
’max_features’: None, ’subsample’: 1.0, ’loss’: ’
squared_error’, [...],",

33 "R"2 validation": [
34 0.91
35 1,
36
37 AT
38
39 //Further model and energy consumption metrics
40
41 "training time [s]": 19.26,

42 "traindata length [s]": 47502.0,

13 "validationdata length [s]": 1034.0,
44 "outside temperature (train)": {
45 "max": 22.0,
46 "avg": 9.56,

47 "min": -0.45,

18 "25%": 8.0,

49 "50%": 10.0,

50 "7h%": 11.56

51 },

52 "inside temperature (train)": {

3 "max": 27.40,

1 "avg": 23.19,

5 "min": 8.0,

"25%": 22.70,
"50%": 23.40,

-~

[SL S} SN GG G ) B
S s W

8 "75%": 24.60

9 Yo

60 "brightness (train)": {
61 "max": 250.0,

62 "avg": 6.91,

63 "min": 1.0,

64 "25%": 1.0,

65 "50%": 1.0,

66 "75%": 5.0

67 Fe

68 "vehicle speed (train)": {
69 "max": 226.90,

70 "avg": 74.31,

71 "min": 0.0,

72 "25%": 38.90,

73 "50%": 69.90,

74 "75%": 111.06

75 ¥

76 "LV-voltage (train)": {
77 "max": 14.73,

78 "avg": 13.83,

79 "min": 10.69,

80 "25%": 13.02,

81 "50%": 14.32,

82 "T5%": 14.57

83 Fe
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G . Metadata for a Training Run and ECU Model

84 "day night relation (train)": {
85 "day": 0.46,

86 "night": 0.54

87 i

88 "city relation (train)": {
89 "no city": 0.44,

90 "city": 0.56

91 T,

92 "motorway (train)": {

93 "unknown": 0.38,

94 "no motorway": 0.24,

95 "motorway": 0.38

96 X

97 | }

Listing G.1: JSON representation of evaluation and analysis metadata from a
training run (one single cross-validation) of the ML pipeline.
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H Implementation of the PFI Class

The PFI.py class, shown in Listing H.1, is the Python implementation for com-
puting and visualizing Permutation Feature Importance (PFI) for an ML model.
PFI was introduced in Section 3.6 and applied in Section 4.2.2.

Initialization: The class is initialized with an explanation object that provides
the regression model (regr), feature names (features), and a unique model identi-
fier (model_id). Additionally, the class ensures a directory is created at a specified
path to store PFI-related outputs.

Key Functions:

e calculate_importances([...]): This function computes the feature impor-
tances using the given PFI algorithm for RF, GB, MLP, and LSTM models.

e print_importances([...]): This function writes the computed feature im-
portances to a text file, documenting the mean importance and standard de-
viation for each feature.

e plot_importances([...]): This function generates a bar plot of the top
features ranked by their importances for an efficient visual reference of the
PFI results. The plot is saved as a PNG image in the designated directory.

e get _feature importances([...]): This helper function returns a sorted list
of feature importances (PFI) together with their feature names, enabling fur-
ther analysis if needed.

import os

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn

from sklearn.inspection import permutation_importance
from models.lstm_model import LSTMModel

class PFI:
def __init__(self, explanation) -> None:

>?? Initialize paths, model type and feature data. ’’’

self .pfi_path = os.path.join(explanation.
get_explanation_path(), "PFI")

if not os.path.exists(self.pfi_path):
os.mkdir (self.pfi_path)

self .regr = explanation.regr

self .features = explanation.features

self .model_id = explanation.model_id

self.feature_importances = None

self .pfi_features = None

def calculate_importances(self, X, y) -> None:

173



46

47
48
49
50

Ut Ot
w N

ot ot Ut
(G2 BTN

(=)

3

ot

58
59

60

61
62
63
64
65
66
67
68

69

174

def

def

) )

if (

Compute permutation importances if the model supports
A o

) )

type (self.regr)
_RandomForestRegressor

or

or

or

sklearn.ensemble.

sklearn.ensemble.GradientBoostingRegressor
sklearn.neural_network.MLPRegressor

LSTMModel

self.feature_importances = permutation_importance (

)

self .regr,

X, y

, random_state=0

print_importances (self, X, y) -> None:

29

Save feature

importances to a text file. 77’

if self.feature_importances is None:
self.calculate_importances (X, y)
with open/(
os.path. join (
self .pfi_path,
PermutationFeatureImportance.txt"

)

>

"w
) as f:
for i in self.feature_importances.importances_mean.
argsort () [::-1]:

n
>

f.write(

f"{self .model_id}-

f"{self.feature_importances.importances_mean[i
1:.3f}"

f" +/- {self.feature_importances.
importances_std[i]:.3f}"

f" {self.features[i]:20}\n"

plot_importances (self,
Plot and save a bar plot of feature importances. ’’°

if self.feature_importances is None:

raise ValueError ("Feature importances not computed; run
calculate_importances first.")

pfi_data = {

20

max_display=6) -> None:

"features": self.features,
"feature importances": self.feature_importances.
importances_mean,
"feature importances std": self.feature_importances.
importances_std,
}
pfi_df = pd.DataFrame(pfi_data)

pfi_df.sort_values(by=["feature importances"], ascending=

False,

pfi_df
self .pfi_features

plt.
plt.

)

img

inplace=True)

= pfi_df [0O:max_display]l[:]

pfi

figure(figsize=(12,
title(
f"{self.model_id} -
fontsize=12,

sns.barplot (

_df ["features"].tolist ()
8))

Permutation Feature Importance",



H.Implementation of the PFI Class

x=pfi_df ["feature importances"],
y=pfi_df ["features"],
palette="ch:s=-.25,rot=.25",

img.set_yticklabels(img.get_yticklabels (), fontsize=12)
img.set_xticklabels (img.get_xticklabels (), fontsize=12)
plt.tight_layout ()

U W N =
~

S IES N BEEN IEES BN BEES RS IEN |

7 plt.savefig(

8 os.path. join (

79 self .pfi_path,

80 f"{self .model_id}-PermutationFeatureImportances.png

n

81 )

82 dpi=300,

83 )

84 plt.clf O)

85

86 def get_feature_importances(self) -> list:

87 >?? Return a sorted list of feature importances and names.
)y

88 return sorted(

89 zip (

90 [float(x) for x in self.feature_importances.

importances_mean],

91 self.features,

92 ),

93 reverse=True,

94 )

Listing H.1: PFI.py class to encapsulate the generation of permutation feature
importances for a given ML modeling algorithm and dataset.
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I Implementation of the ALE Class

The ALE.py class, defined in Listing 1.1, provides the functionality to generate
accumulated local effects (ALE) plots for analyzing ML models feature-based as
described in Sections 3.6 and 4.2.2.

Initialization: The constructor of the class accepts training and validation datasets
(X_trn, X_val), a trained model (regr), and the target names (here: fuses). It also
automatically creates a directory to store ALE plots under the path provided.

Key Functions:

e create 1D ale([...]): This function generates 1-dimensional ALE plots for
each feature in the dataset and it skips features with near-zero variance to
avoid the creation of too many plots that provide no information. The plots
are saved as PNG images only if the ALE effect exceeds a defined threshold,
reducing the number of plots and focusing on features with a minimum impact.

e feature variance_is zero([...]): This is a helper function that checks if
the variance of a given feature is below a specified threshold (e.g. 0.001). If
this is the case the feature is discarded for the ALE analysis (cf. above).

| import os
2 import numpy as np
import matplotlib.pyplot as plt

class ALE:

6 def __init__(self, explanation, X_trn, regr, fuses) -> None:

7 >?? Initialize the ALE class with necessary datasets, model
, and explanation parameters. 7’

8 self.X_trn_df = (X_trn)

9 self .regr = regr

10 self.fuses = fuses

11 self .model_id = explanation.model_id

13 self.ale_path = os.path.join(explanation.
get_explanation_path(), "ALE")

14

15 if not os.path.exists(self.ale_path):

16 os.mkdir (self.ale_path)

17

18 self.common_params = {"grid_size": 100, "include_CI": False
, "C": 0.95%}

def create_1D_ale(self, X, path) -> None:
>?? Create and save 1D ALE plots for each feature. 7’
_1D_exp_path = os.path.join(self.ale_path, path)
if not os.path.exists(_1D_exp_path):
os.mkdir (_1D_exp_path)

NN N NN NN
T = W N =

plt.close ()
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27 num_features = len(self.preprocessor.getFeatureColumns())

28

29 for fuse_id in range(len(self.fuses)):

30 for feature_number in range (num_features):

31 # Skip feature if its variance is nearly zero.

32 if self.feature_variance_is_zero(feature_number, X)

33 continue

34 feature_name = str(self.preprocessor.
getFeatureColumns () [feature_number])

35 ale_eff = ale(

36 X=X,

37 model=self .regr,

38 feature=[feature_namel],

39 **self.common_params,

40 )

41 if (abs(ale_eff["eff"].max()) + abs(ale_eff["eff"].
min())) > 0.1: # Plot only if ALE effect
exceeds 0.1.

42 plt.gcf )

43 plt.tight_layout ()

44 plt.savefig(

A5 os.path. join (

46 _1D_exp_path,

47 f"{self .model_id}-{feature_namel}-1D-

ALE_on_{path}.png",

48 e

19 dpi=300,

50 )

51 plt.close ()

52

53 def feature_variance_is_zero(self, feature_number, df) -> bool:

54 ’?? Return True if the variance of the feature is near zero

) )
55 feature_name = self.preprocessor.getFeatureColumns () [
feature_number]

56 array = df [str(feature_name)].values

57 if np.var(array) <= 0.001:

58 return True

59 else:

60 return False

Listing I.1: ALE.py class to encapsulate the generation of 1-dimensional
accumulated local effects (ALE) plots for a given ML modeling algorithm and
dataset.
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J Implementation of the SHAP Class

The SHAP. py class, shown in Listing J.1, is the corresponding Python implemen-
tation for computing and visualizing SHAP values in this project as discussed in
Section 3.6 and applied in Section 4.2.2.

Initialization: The class is initialized with the following parameters:

e explanation: An object providing specific information such as model_id from
the Explanation.py class.

e regressor: The ML regression model for which SHAP values shall be calcu-
lated (e.g., RandomForestRegressor, MLPRegressor).

feature_columns: A list of feature names used by the model.

e X: A matrix of input features used for SHAP calculations.
e fuse: Specifies the target variable name.
e numFuses: The number of target variables.

The class also initializes a path (shap_path) to store SHAP-related outputs.
If the specified directory does not exist, it is created upon execution of the class
constructor.

Key Functions:

e create_shap explainer([...]): This method creates a SHAP explainer ob-
ject depending on the type of regression model and returns an appropriate
SHAP explainer.

e generate_shap values([...]): This function calculates SHAP values for a
set of indices or for all data points if no indices are provided. It uses the SHAP
explainer created by the create_shap_explainer([...]) function.

e shap waterfall plot([...]): This method generates and saves waterfall
plots for the SHAP values. The plots are saved as PNG images in the SHAP
directory corresponding to the (cross-validation) run of the ML pipeline. The
number of features displayed can be controlled and customized using the
max_display parameter.

import os

import numpy as np

import matplotlib.pyplot

import shap

import sklearn

import time

from models.lstm_model import LSTMModel
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class SHAP:

def

def
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__init__(
self , explanation, regressor, feature_columns, X, fuse,
numFuses

’>?? Initialize the SHAP class with the regression model and
necessary data. ’’°

self . regr = regressor
self.feature_columns = feature_columns
self.X_create = X

self.fuse = fuse

self.numFuses = numFuses

self .model_id = explanation.model_id

’>?? Create the SHAP explainer object based on the model

type‘ 20
self.shap_explainer = self.create_shap_explainer ()
self .shap_values = None
self .shap_features = None
self.imp_features = []

’>?? Set the path where SHAP outputs will be stored and
create the directory if it does not exist. ’’°

self.shap_path = os.path.join(explanation.
get_explanation_path(), "SHAP")

if not os.path.exists(self.shap_path):
os.mkdir (self.shap_path)

self.dir = self.shap_path

create_shap_explainer (self):
’>?? Create an appropriate SHAP explainer based on the model
type. 77’
if (
type(self.regr) == sklearn.ensemble.
RandomForestRegressor
or sklearn.ensemble.GradientBoostingRegressor

) 3
>’ For RandomForestRegressor , use SHAP Tree explainer.
20
return shap.explainers.Tree(self.regr, feature_names=
self.feature_columns)
elif type(self.regr) == sklearn.neural_network.MLPRegressor
>?? For MLPRegressor, use SHAP Kernel explainer. ’’’
return shap.KernelExplainer(
self .regr, self.X_create, feature_names=self.
feature_columns
)
elif type(self.regr) == LSTMModel:
>?? For LSTMModel, use SHAP Deep explainer. ’°’°
return shap.DeepExplainer (
self .regr .model, self.X_create, feature_names=self.
feature_columns
)
else:

pass # No explainer available for other model types



(S S
[N}

~

60
61
62
63
64
65
66
67
68
69
70
71
72

~
N

-

~N 3
(=] ot

o

79
80
81
82

83
84

85
86
87
88
89
90

91
92
93
94
95
96
97

98

99
100
101
102

J . Implementation of the SHAP Class

def

def

generate_shap_values(self, indices, X_exp):
>?? Generate SHAP values for given indices or all samples
in X_exp. 7’
if indices != None:
’>?? If specific indices are provided, extract the
corresponding data points. ’7’
self .X_exp = np.take(X_exp, indices, 0)
self.indices = indices
else:
’>?? Otherwise, use all the data points. ’’’
self .X_exp = X_exp
self.indices = list(range(0, len(X_exp), 1))

>?? Calculate SHAP values using the explainer. ’’°
if self.shap_explainer != None:

start_time = time.time ()

self .shap_values = self.shap_explainer (self.X_exp)
else:

pass # No SHAP explainer available, skipping value
generation

shap_waterfall_plot(self, indices=None, X_exp=np.array ([
Nonel)):
’>?? Generate and save SHAP waterfall plots for the given
indices or all data points. ’’°
self.imp_features = []

>?? Generate SHAP values if they are not already computed.
)2 )

if X_exp.all() != None:
self .generate_shap_values(indices, X_exp)

max_display = 7 # Maximum number of features to display on
the waterfall plot

>?? Create summary plot if the model has only one target
fuse. 777
if self.numFuses == 1:
for num in range(len(self.indices)):
’>?? Clear the current plot ’7°
matplotlib.pyplot.clf ()

>?? Create SHAP explanation object for the current
data point. ’°’°

exp = shap.Explanation (
self .shap_values.values,
self.shap_values.base_values [0] [0],
self .shap_values.data,
feature_names=self.feature_columns,

)

>’ Extract feature names and SHAP values for the
current data point. ’7°

self.shap_features = exp[num].feature_names

self.shap_values_ = expl[num].values

’>?’ Sort the features by the absolute value of
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103
104
105
106
107

108
109
110

112
113
114
115
116

117
118

119

120
121
122
123

124
125
126
127
128
129
130
131
132

their SHAP values. 7’
order = np.argsort(-np.abs(self.shap_values_))
if len(order) < max_display:
max_display = len(order)
>?? Ensure that features are in list form for easy
iteration. ’’°
if not isinstance(self.shap_features, list):
self.shap_features = [self.shap_features]

>’’’ Store the top contributing features for the
current data point. 77’

if len(self.shap_features) == 1:
self .imp_features = self.shap_features

else:
for i in range(max_display):

self.imp_features.append(self.shap_features
[order[i]])

’>?? Generate and save the waterfall plot for the
current data point. ’7’
shap.plots.waterfall (exp[num], show=False,
max_display=7)
matplotlib.pyplot.savefig(
os.path. join (
self .shap_path,
f"{self .model_id}-SHAP-Waterfall -Timestamp
{self.indices [num]}.png",

)
bbox_inches="tight",
dpi=300,
)
matplotlib.pyplot.clf ()
else:
pass
[...]

Listing J.1: Implementation of the SHAP.py class to encapsulate the generation of
SHAP values and plots for the investigated ML modeling algorithms.
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K Detailed Feature Engineering and Hy-
perparameter Tuning Results

This section of the appendix shows the detailed results of the training runs
conducted with the 18 selected ECUs (from the set £). First, the feature engi-
neered results are depicted for the four ML modeling algorithms and subsequently
those with additionally tuned hyperparameters (random search) are presented. As
a baseline, the respective previous results are taken into account. This means, for
feature engineering and selection the baseline is no data preparation at all (suffix
” raw”). Hence, for the hyperparameter tuning (suffix ”_ht”) the baseline is the
results from the preceding feature engineering and selection step (denotation with
the suffix ”_en”).

Remark: The results from the hyperparameter tuning are used for the utility value
calculation (after the application of the respective capping strategies) in the scope
of the weighted sum analysis (WSA) (cf. Section 4.3.3).
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Table K.1: Detailed feature engineering results for RF. ECUs marked with ” _raw’

comprise the raw, whereas ” _en” denotes the use of the modified dataset.

)

X-val weighted X-val X-val avg. 2y X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted R SD(PAAD) rz SD(RY) MSE [A;]  [Ag] [Az]
Extractor Fan_raw 10.486 0.692 12.710 0.714 0.173 1.104  0.867 2.756
Extractor Fan_en 10.019 0.710 11.955 0.731 0.162 1.019  0.780 2.5637
Change [%)] -4.45 2.39 -5.94 2.40 -6.54 -7.67  -7.75 -7.93
Coolant Pump_raw 0.523 0.997 0.523 0.997 0.001 0.007  0.007 0.004
Coolant Pump_en 0.356 0.998 1.187 0.998 0.000 0.004  0.004 0.001
Change [%) -31.98 0.12 126.91 0.17 -68.03 -48.57  -51.09 -65.11
Right Pixel Headlamp_raw 4.013 0.783 3.801 0.805 0.151 0.139  0.107 0.085
Right Pixel Headlamp_en 3.715 0.750 6.421 0.768 0.236 0.135 0.114 0.100
Change [%)] -7.42 -4.16 68.93 -4.55 56.09 -2.47 5.97 18.01
Left Pixel Headlamp_raw 3.390 0.769 3.734 0.789 0.192 0.103  0.089 0.068
Left Pixel Headlamp_en 2.260 0.793 2.594 0.810 0.182 0.083  0.078 0.060
Vehicle Change [%)] -33.32 3.17 -30.51 2.00 -5.05 -19.47  -12.43 -12.00
A BCF _raw 15.529 -0.250 23.001 -0.113 0.712 1.361  0.985 1.535
BCF_en 9.489 0.135 16.937 0.191 0.439 1.004 0.713 1.122
Change [%)] -38.90 153.90 -26.37 268.45 -38.37 -26.20 -27.62 -26.94
Adaptive Suspension_raw 4.316 0.666 6.142 0.655 0.127 0.114  0.136 0.136
Adaptive Suspension_en 2.187 0.802 4.621 0.783 0.112 0.071  0.092 0.125
Change [%)] -49.32 20.50 -24.78 19.44 -11.76 -37.81  -32.16 -8.07
Driver Display_raw 9.067 -0.510 13.399 -1.225 2.579 0.006  0.005 0.005
Driver Display_en 3.080 0.431 4.530 0.258 0.518 0.003  0.002 0.002
Change [% | -66.03 184.45 -66.19 121.06 -79.91 -53.13  -55.53 -56.61
CID_raw 2.709 -0.624 4.662 -0.947 2.767 0.005  0.006 0.007
CID_en 1.662 0.334 2.632 0.232 0.621 0.003  0.005 0.005
Change [%)] -38.65 153.57 -43.54 124.51 -77.56 -27.21  -30.65 -25.77
Fuel Supply ECU_raw 1.184 0.954 1.938 0.950 0.109 0.006  0.007 0.006
Fuel Supply ECU_en 0.441 0.988 0.765 0.987 0.028 0.002  0.002 0.001
Change [%)] -62.78 3.62 -60.52 3.84 -74.43 -73.33  -72.08 -81.44
Seat ECU Driver_raw 22.663 -8.728 173.695 -362.408  1726.075 1.907  1.458 1.610
Seat ECU Driver_en 13.415 -5.158 108.221 -63.115 205.587 1.577  1.201 1.380
Change [%)] -40.81 40.90 -37.69 82.58 -88.09 -17.33  -17.67 -14.32
Coolant Pump_raw 0.422 0.998 0.975 0.997 0.001 0.007  0.008 0.005
Coolant Pump_en 0.672 0.998 1.117 0.998 0.001 0.006  0.007 0.002
Change [%) 59.17 0.02 14.57 0.04 -47.34 -12.65 -19.80 -53.07
Right Pixel Headlamp_raw 1.594 0.719 2.851 0.748 0.275 0.052  0.049 0.067
Right Pixel Headlamp_en 3.060 0.410 4.646 0.478 0.525 0.105  0.092 0.118
Change [%)] 92.01 -43.03 62.95 -36.05 90.71 100.59  89.81 74.86
Left Pixel Headlamp_raw 1.607 0.730 2.569 0.762 0.252 0.046  0.044 0.057
Left Pixel Headlamp_en 2.609 0.184 3.501 0.375 0.748 0.088  0.081 0.089
Vehicle Change [%)] 62.30 -74.82 36.28 -50.71 197.26 89.01  83.35 55.31
B BCF _raw 7.097 -19.449 13.077 -13.156 43.527 0.009  0.008 0.019
BCF_en 7.135 -23.300 13.301 -14.825 50.125 0.010  0.008 0.021
Change [%] 0.53 -19.80 171 -12.68 15.16 722 -0.15 8.44
Door ECU Front Left_raw 17.333 0.022 13.549 0.033 0.143 0.748  0.742 0.095
Door ECU Front Left_en 15.443 0.067 14.116 0.093 0.171 0.712  0.693 0.092
Change [%)] -10.91 210.95 4.19 179.64 19.70 -4.88  -6.61 -3.16
Active Air Suspension_raw 23.651 0.157 16.424 0.220 0.310 0.163  0.116 0.065
Active Air Suspension_en 11.747 0.600 12.543 0.529 0.209 0.075  0.074 0.042
Change [%)] -50.33 282.12 -23.63 139.75 -32.63 -54.27  -36.51 -34.66
Steering Column ECU_raw 41.723 -279.959 121.579 -1619.102  4336.299 2.584  2.039 1.372
Steering Column ECU_en 17.557 -20.701 24.978 -120.317 337.183 0.741  0.541 0.464
Change [%)] -57.92 92.61 -79.46 92.57 -92.22 -71.33  -73.44 -66.21
CID_raw 6.538 -4.861 8.659 -8.102 23.846 0.038  0.029 0.041
CID_en 4.490 -3.028 7.839 -8.395 30.622 0.027  0.024 0.034
Change [%)] -31.32 37.70 -9.47 -3.62 28.42 -27.95 -19.87 -15.63
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K. Detailed Feature Engineering and Hyperparameter Tuning Results

Table K.2: Detailed feature engineering results for GB. ECUs marked with 7 _raw’

comprise the raw, whereas ”_en” denotes the use of the modified dataset.

)

X-val weighted X-val X-val avg. 5 X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted R2 S0 (PAAD) r: SPRY MSE [As]  [As] [As]
Extractor Fan_raw 10.177 0.723 11.546 0.743 0.149 0.956  0.751 2.372
Extractor Fan_en 10.079 0.723 11.503 0.744 0.150 0.959  0.753 2.382
Change -0.97 0.10 -0.38 0.10 1.00 0.79  0.32 0.42
Coolant Pump_raw 0.229 0.998 0.278 0.998 0.000 0.006  0.005 0.002
Coolant Pump_en 0.233 0.998 0.291 0.998 0.000 0.006  0.005 0.002
Change 1.79 0.00 4.73 0.00 -0.09 -1.31 -0.90 0.40
Right Pixel Headlamp_raw 0.916 0.922 1.791 0.926 0.058 0.055  0.045 0.040
Right Pixel Headlamp_en 1.423 0.857 1.668 0.861 0.101 0.085 0.073 0.047
Change 55.28 -7.03 -6.88 -7.00 7243 53.34  61.76 17.41
Left Pixel Headlamp_raw 0.990 0.914 1.479 0.922 0.061 0.045 0.038 0.031
Left Pixel Headlamp_en 1.367 0.860 1.622 0.871 0.102 0.064  0.057 0.037
Vehicle Change 38.06 -5.95 9.68 -5.55 65.97 42.76  48.91 21.16
A BCF _raw 5.999 0.390 6.542 0.454 0.483 1.046  0.632 1.333
BCF_en 7.389 0.420 7.459 0.548 0.426 1122 0.656 1.436
Change 23.17 7.78 14.02 20.60 -11.81 719 3.80 7.76
Adaptive Suspension_raw 4.026 0.729 5.113 0.720 0.150 0.101  0.117 0.131
Adaptive Suspension_en 1.602 0.805 3.399 0.787 0.109 0.073  0.095 0.125
Change -60.20 10.40 -33.52 9.27 -27.74 -27.80 -19.27 -4.69
Driver Display_raw 3.204 0.626 2.555 0.411 0.772 0.002  0.001 0.001
Driver Display_en 1.389 0.709 1.286 0.627 0.309 0.001  0.001 0.001
Change -56.66 13.36 -49.67 52.59 -59.99 -30.02  -26.16 -25.26
CID_raw 1.156 0.557 1.696 0.477 0.300 0.002  0.003 0.004
CID_en 1.352 0.483 2.307 0.320 0.682 0.003  0.003 0.004
Change 16.92 -13.30 36.01 -32.92 127.49 4.11 8.42 -4.39
Fuel Supply ECU_raw 0.126 0.992 0.217 0.991 0.017 0.001  0.001 0.000
Fuel Supply ECU_en 0.210 0.990 0.320 0.989 0.021 0.001  0.001 0.000
Change 67.53 -0.15 47.43 -0.17 24.78 11.16  12.21 23.65
Seat ECU Driver_raw 6.260 0.654 14.285 0.014 1.863 1492  1.130 1.361
Seat ECU Driver_en 4.838 0.581 17.940 -0.667 3.936 1.466  1.140 1.369
Change -22.72 -11.21 25.59 -4830.59 111.31 -1.70 091 0.63
Coolant Pump_raw 0.207 0.998 0.396 0.998 0.000 0.007  0.007 0.002
Coolant Pump_en 0.403 0.997 1.160 0.997 0.001 0.008  0.008 0.003
Change 94.54 -0.03 192.70 -0.04 92.26 12.39  17.76 73.27
Right Pixel Headlamp_raw 1.899 0.717 3.240 0.797 0.321 0.066  0.120 0.066
Right Pixel Headlamp_en 1.247 0.692 2.042 0.731 0.304 0.049  0.057 0.049
Change -34.36 -3.49 -36.99 -8.23 -5.19 -26.23  -52.65 -26.23
Left Pixel Headlamp_raw 1.346 0.787 2.321 0.833 0.235 0.045  0.037 0.076
Left Pixel Headlamp_en 0.991 0.751 1.545 0.772 0.256 0.040  0.033 0.045
Vehicle Change -26.42 -4.53 -33.45 -7.29 9.24 -11.47 -12.14 -41.25
B BCF_raw 9.112 -22.708 14.071 -13.663 40.796 0.013  0.010 0.021
BCF_en 5.876 -15.872 11.776 -8.763 36.626 0.008  0.006 0.018
Change -35.51 30.10 -16.31 35.87 -10.22 -42.52  -37.77 -15.44
Door ECU Front Left_raw 9.741 0.119 11.844 0.152 0.155 0.672  0.651 0.103
Door ECU Front Left_en 11.753 0.117 15.566 0.149 0.190 0.673  0.650 0.096
Change 20.66 -1.86 31.42 -1.61 22.86 0.13  -0.09 -6.50
Active Air Suspension_raw 8.331 0.637 8.078 0.634 0.155 0.072  0.058 0.038
Active Air Suspension_en 6.108 0.672 7.793 0.658 0.129 0.064 0.054 0.034
Change -26.68 5.40 -3.52 3.77 -16.72 -10.16  -5.71 -10.33
Steering Column ECU _raw 3.845 -2.499 7.051 -19.149 58.663 0.262  0.206 0.204
Steering Column ECU_en 2.531 -0.000 6.392 -4.239 13.494 0.313  0.229 0.207
Change -34.18 99.99 -9.35 77.86 -77.00 19.44  11.47 1.58
CID_raw 4.424 -3.781 8.428 -10.116 44.322 0.025 0.024 0.038
CID_en 4.310 -3.977 9.877 -13.142 59.500 0.026  0.027 0.049
Change -2.58 -5.18 17.19 -29.91 34.25 2.58 16.18 30.09
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Table K.3: Detailed feature engineering results for MLP. ECUs marked with 7 _raw”
comprise the rawm whereas ” _en” denotes the use of the modified dataset.

X-val weighted X-val X-val avg. 5y X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted Rz SP(PAAD) Rz SP(RY) MSE [As]  [A4] [As]
Extractor Fan_raw 11.620 0.723 13.780 0.735 0.115 0.585 0.470 1.318
Extractor Fan_en 14.324 0.693 14.842 0.712 0.149 0.943 0.745 2.299
Change [%)] 23.26 -4.12 7.70 -3.12 29.48 61.13 58.27 74.42
Coolant Pump_raw 0.348 0.998 0.573 0.998 0.001 0.006 0.005 0.002
Coolant Pump_en 0.381 0.998 0.648 0.998 0.000 0.005 0.004 0.001
Change [%)] 9.59 0.03 13.13 0.03 -35.70 -14.39  -14.56 -28.83
Right Pixel Headlamp_raw 1.775 0.907 2.640 0.911 0.084 0.058 0.050 0.047
Right Pixel Headlamp_en 3.440 0.729 3.837 0.748 0.312 0.163 0.137 0.151
Change [%)] 93.76 -19.57 45.32 -17.91 269.75 180.12  174.87 223.50
Left Pixel Headlamp_raw 1.874 0.898 2.626 0.901 0.112 0.043 0.041 0.038
Left Pixel Headlamp_en 2.804 0.800 3.690 0.809 0.165 0.093 0.087 0.061
Vehicle Change [%)] 49.58 -10.88 40.50 -10.24 47.66 115.84  110.09 62.05
A BCF _raw 32.764 -3.083 61.868 -2.942 7.340 4.298 3.620 7.064
BCF_en 39.485 -7.804 90.946 -7.160 23.580 8.608 7.490 20.726
Change [%)] 20.51 -153.12 47.00 -143.37 221.26 100.27  106.88 193.41
Adaptive Suspension_raw 4.316 0.666 6.142 0.655 0.127 0.114 0.136 0.136
Adaptive Suspension_en 2.187 0.802 4.621 0.783 0.112 0.071 0.092 0.125
Change [%)] -19.32 20.50 2478 1944 -11.76 3781 -32.16 -8.07
Driver Display raw 7.235 -0.050 11.669 -0.686 2.196 0.004 0.004 0.005
Driver Display_en 6.792 -0.650 7.696 -0.620 3.395 0.005 0.003 0.004
Change [%)] -6.13 -1201.94 -34.04 9.72 54.65 10.94 -14.82 -15.72
CID_raw 5.128 -2.623 6.627 -1.747 4.847 0.016 0.011 0.024
CID_en 6.26295 -2.05014 7.87395 -1.33563  3.44764 0.01983 0.01595 0.02990
Change [%)] 22.12 21.84 18.81 23.54 -28.86 22.79 49.26 25.37
Fuel Supply ECU_raw 0.535 0.989 0.654 0.988 0.021 0.002 0.002 0.001
Fuel Supply ECU_en 0.204 0.991 0.337 0.991 0.018 0.001 0.001 0.000
Change [%)] -61.87 0.26 -48.47 0.28 -14.58 -25.23 -27.24 -49.55
Seat ECU Driver_raw 11.927 -0.483 36.497 -8.803 37.509 1.738 1.470 2.260
Seat ECU Driver_en 11.202 -0.019 76.388 -22.720 76.478 1.602 1.206 1.456
Change [%)] -6.08 96.04 109.30 -158.08 103.89 -7.83  -17.95 -35.57
Coolant Pump_raw 0.422 0.998 0.975 0.997 0.001 0.007 0.008 0.005
Coolant Pump_en 0.228 0.999 0.442 0.999 0.000 0.004 0.004 0.001
Change [%)] -46.03 0.10 -54.69 0.12 -72.23 -44.75  -48.17 -74.73
Right Pixel Headlamp_raw 1.972 0.677 2.942 0.770 0.365 0.067 0.049 0.118
Right Pixel Headlamp_en 4.929 -0.480 5.812 0.092 1.690 0.177 0.128 0.237
Change [%)] 149.94 -170.79 97.55 -88.02 362.66 163.06  163.66 100.80
Left Pixel Headlamp_raw 2.314 0.747 2.989 0.747 0.360 0.062 0.046 0.102
Left Pixel Headlamp_en 3.260 4.305 0.349 0.861 0.130 0.103 0.168
Vehicle Change [%] 40.88 44.03 53.26 13910 11065 121.81 64.78
B BCF_raw 7.400 14.181 -22.542 60.118 0.011 0.010 0.023
BCF_en 6.382 12.595 -10.870 43.955 0.009 0.007 0.021
Change [%)] -13.76 -11.18 51.78 -26.89 -21.74 -25.17 -9.47
Door ECU Front Left_raw 24.322 33.336 -0.107 0.554 0.851 0.830 0.317
Door ECU Front Left_en 23.659 30.455 -0.122 0.254 0.849 0.871 0.220
Change [%)] -2.72 -8.64 -14.87 -54.13 -0.19 4.88 -30.55
Active Air Suspension raw 11.282 11.523 0.541 0.153 0.101 0.073 0.047
Active Air Suspension_en 7.715 17.496 0.484 0.410 0.060 0.078 0.076
Change [%)] -31.62 51.84 -10.53 168.28 -40.82 7.56 63.06
Steering Column ECU_raw 27.081 29.272 -2.320 9.322 1.746 1.029 2.240
Steering Column ECU_en 3.344 5.878 -0.928 3.539 0.360 0.258 0.234
Change [%)] -87.65 -79.92 60.01 -62.03 -79.36  -74.88 -89.56
CID_raw 7.900 11.021 -12.606 36.493 0.049 0.047 0.055
CID_en 7.457 12.344 -17.949 67.234 0.051 0.052 0.068
Change [%)] -5.61 12.00 -42.39 84.24 4.64 10.56 21.92
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K. Detailed Feature Engineering and Hyperparameter Tuning Results

Table K.4: Detailed feature engineering results for LSTM. ECUs marked with
" _raw” comprise the raw whereas ”_en” denotes the use of the modified dataset.

X-val weighted X-val X-val avg. 5 X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted Rz 5P (PAAD) r: SPRY MSE [As]  [As] [As]
Extractor Fan_raw 11.743 0.724 16.706 0.726 0.136 0.309  0.265 0.538
Extractor Fan_en 14.495 0.695 17.465 0.707 0.130 0.663  0.534 1.510
Change [%)] 23.44 -3.96 4.54 -2.57 -4.51 114.46  101.68 180.61
Coolant Pump_raw 0.923 0.969 3.301 0.967 0.016 0.081  0.069 0.031
Coolant Pump_en 0.686 0.969 1.586 0.970 0.009 0.081  0.067 0.033
Change [%)] -25.67 0.06 -51.96 0.27 -42.70 -0.24  -2.97 5.53
Right Pixel Headlamp_raw 1.867 0.799 3.240 0.803 0.179 0.103  0.092 0.050
Right Pixel Headlamp_en 3.982 0.748 6.103 0.764 0.195 0.147  0.127 0.097
Change [%)] 113.22 -6.34 88.36 -4.84 9.00 43.00  38.00 93.00
Left Pixel Headlamp_raw 2.253 0.779 2.921 0.792 0.204 0.084  0.079 0.050
Left Pixel Headlamp_en 3.735 0.750 5.028 0.773 0.294 0.105  0.096 0.099
Vehicle Change [%] 65.79 -3.73 72.15 -2.37 44.12 2549  22.02 97.30
A BCF raw 56.809 -5.921 83.893 -5.124 9.854 8.568  5.978 10.259
BCF _en 6.722 -0.161 9.025 -0.120 0.528 1.229  0.886 1.515
Change [%)] -88.17 97.28 -89.24 97.66 -94.64 -85.66 -85.18 -85.24
Adaptive Suspension_raw 3.947 0.642 7.708 0.582 0.302 0.125  0.163 0.199
Adaptive Suspension_en 2.781 0.771 5.693 0.744 0.144 0.084 0.113 0.169
Change [%)] -29.55 20.07 -26.14 2782 -52.43 3271 -30.80 -15.12
Driver Display_raw 9.471 -34.220 21.666 -68.536  245.508 0.006  0.007 0.011
Driver Display_en 8.652 -0.818 19.196 -2.007 4.367 0.006  0.007 0.012
Change [%)] -8.65 97.61 -11.40 97.07 -98.22 6.67 7.03 0.56
CID_raw 7.670 -56.947 10.726 -74.215  263.203 0.016  0.017 0.022
CID_en 5.662 -1.236 6.159 -1.425 2.320 0.008  0.009 0.011
Change [%)] -26.18 97.83 -42.58 98.08 -99.12 -53.38  -47.20 -51.48
Fuel Supply ECU_raw 1.418 0.908 1.942 0.894 0.270 0.010  0.011 0.007
Fuel Supply ECU_en 0.850 0.963 1.943 0.959 0.040 0.009  0.011 0.010
Change [%)] -40.01 6.12 0.09 7.33 -85.37 -5.20  -4.07 53.69
Seat ECU Driver_raw 17.624 -0.407 48.494 -28.88¢  111.241 1.800  1.320 1.603
Seat ECU Driver_en 13.707 -2.265 68.581 -30.172 99.623 1.698  1.258 1.534
Change [%)] -22.22 -457.19 41.42 -4.45 -10.44 -5.65  -4.66 -4.34
Coolant Pump_raw 0.360 0.998 0.472 0.998 0.000 0.006  0.006 0.002
Coolant Pump_en 0.464 0.998 0.655 0.998 0.000 0.006  0.006 0.002
Change [%)] 28.74 0.01 38.88 0.01 5.37 =275 -2.98 -7.08
Right Pixel Headlamp_raw 2.003 0.682 3.137 0.699 0.329 0.049  0.049 0.051
Right Pixel Headlamp_en 5.145 -0.447 5.932 0.097 1.499 0.169  0.120 0.218
Change [%)] 156.79 -165.55 89.09 -86.07 356.09 246.53 143.64 324.13
Left Pixel Headlamp_raw 1.838 0.685 2.744 0.704 0.343 0.040  0.049 0.072
Left Pixel Headlamp_en 3.015 0.230 4.258 0.395 0.783 0.126  0.098 0.180
Vehicle Change [%] 64.07 -66.40 55.18 -43.94 128.65 219.09  99.68 150.49
B BCF raw 4.806 -28.708 9.834 -24.321 69.226 0.007  0.008 0.014
BCF_en 9.777 -48.966 17.241 -35.711  101.983 0.018  0.013 0.036
Change (%) 103.42 -70.57 75.31 -46.83 47.32 137.08  58.59 153.23
Door ECU Front Left_raw 28.238 -0.546 35.202 -0.143 1.028 1.235  0.899 0.899
Door ECU Front Left_en 12.402 -0.025 12.891 0.039 0.172 0.781  0.737 0.111
Change [%)] -56.08 95.45 -63.38 127.23 -83.28 -36.76  -18.04 -87.61
Active Air Suspension_raw 13.630 0.464 20.277 0.390 0.287 0.100  0.095 0.064
Active Air Suspension_en 15.239 0.372 26.963 0.220 1.098 0.122  0.124 0.196
Change [%)] 11.81 -19.69 32.97 -43.50 282.15 22.03  31.16 207.37
Steering Column ECU _raw 19.066 -19.789 34.053 -119.731  477.087 1.084  0.826 1.012
Steering Column ECU_en 9.579 -0.666 13.897 -4.053 9.621 0.669  0.529 0.727
Change [%)] -49.76 96.63 -59.19 96.61 -97.98 -38.30 -35.96 -28.13
CID_raw 6.898 -4.306 11.210 -11.338 38.252 0.048  0.042 0.059
CID_en 11.167 -4.616 11.139 -7.243 14.453 0.072  0.049 0.062
Change [%)] 61.88 -7.19 -0.63 36.11 -62.22 48.15  16.19 5.15
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Table K.5: Detailed hyperparameter tuning results for RF. ECUs marked with
”_en” comprise the feature engineered ” _ht” denotes the use of the tuned parameter
set.

X-val weighted X-val X-val avg. 5 X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted Rz SD(PAAD) 2 SD(R%) MSE [A;]  [As] [As)
Extractor Fan_en 10.019 0.709 11.955 0.731 0.162 1.019  0.799 2.537
Extractor Fan_ht 9.872 0.728 11.582 0.750 0.154 0.968 0.758 2.413
Change (%) -1.47 2.68 -3.12 2.55 -4.68 -5.06  -5.18 -4.87
Coolant Pump_en 0.274 0.998 0.356 0.998 0.000 0.004  0.004 0.001
Coolant Pump_ht 0.242 0.998 0.327 0.998 0.000 0.004  0.004 0.001
Change (%) -11.39 0 -8.08 0.00 -15.32 049  0.29 -6.11
Right Pixel Headlamp_en 3.715 0.750 4.246 0.768 0.236 0.135 0.114 0.100
Right Pixel Headlamp_ht 3.197 0.796 3.761 0.808 0.157 0.116  0.099 0.068
Change [%) -13.94 6.14 -11.43 5.25 -33.45 -14.23  -13.04 -32.33
Left Pixel Headlamp_en 2.261 0.793 2.595 0.805 0.182 0.083  0.078 0.060
Left Pixel Headlamp_ht 1.899 0.828 2.067 0.835 0.142 0.072  0.070 0.051
Vehicle Change [%] -15.98 441 -20.34 370 2223 1311 -10.67 -14.93
A BCF _en 9.489 0.135 16.937 0.191 0.439 1.004 0.713 1.122
BCF_ht 5.620 0.549 5.512 0.633 0.308 0.869  0.540 1.202
Change (%) -40.78 307.77 -67.45 232.46 -29.79 -13.51 -24.35 717
Adaptive Suspension_en 2.187 0.802 4.621 0.783 0.112 0.071  0.092 0.125
Adaptive Suspension_ht 1.799 0.804 4.166 0.784 0.114 0.071  0.092 0.126
Change (%) -17.75 0.23 -9.84 0.16 1.82 -0.21  0.55 1.14
Driver Display_en 3.080 0.431 4.530 0.258 0.518 0.003  0.002 0.002
Driver Display_ht 2.576 0.652 2.650 0.588 0.287 0.002  0.002 0.002
Change (%] -16.38 51.42 -41.49 128.02 -44.60 -20.96 -27.89 -21.89
CID_en 1.662 0.334 2.632 0.232 0.621 0.003  0.005 0.003
CID_ht 1.431 0.524 2.180 0.442 0.399 0.003  0.005 0.003
Change (%] -13.88 56.86 -17.17 90.33 -35.68 -17.87 -6 -17.87
Fuel Supply ECU_en 0.441 0.988 0.765 0.987 0.028 0.002  0.002 0.001
Fuel Supply ECU_ht 0.154 0.993 0.218 0.992 0.015 0.001  0.001 0.000
Change [%] -64.93 0.47 -71.49 0.52 -44.83 -35.22 -37.10 -69.88
Seat ECU Driver_en 13.415 -5.158 108.221 -63.115  205.587 1.577  1.201 1.380
Seat ECU Driver_ht 9.211 0.478 40.419 -5.229 25.816 1.520 1.153 1.364
Change (%] -31.33 109.26 -62.65 91.72 -87.44 -3.61  -3.97 -1.10
Coolant Pump_en 0.228 0.999 0.442 0.999 0.000 0.004  0.004 0.001
Coolant Pump_ht 0.255 0.998 0.594 0.998 0.000 0.005  0.005 0.002
Change [%)] 11.93 -0.04 34.38 -0.04 35.19 26.13  26.85 29.99
Right Pixel Headlamp_en 3.060 0.410 4.646 0.478 0.525 0.105  0.092 0.118
Right Pixel Headlamp_ht 3.347 0.380 5.094 0.462 0.558 0.123  0.107 0.157
Change [%)] 9.39 -7.26 9.64 -3.39 6.31 17.18  16.03 33.04
Left Pixel Headlamp_en 2.609 0.184 3.501 0.375 0.748 0.088  0.081 0.089
Left Pixel Headlamp_ht 2.541 0.309 3.620 0.499 0.580 0.094  0.080 0.114
Vehicle Change (%] -2.60 68.01 3.41 32.94 -22.48 7.36  -1.61 28.64
B BCF _en 7.135 -23.300 13.301 -14.825 50.125 0.010  0.008 0.021
BCF_ht 7.956 -18.807 13.417 -13.302 38.174 0.010  0.009 0.020
Change [%)] 11.51 19.29 0.88 10.27 -23.84 -0.46  14.83 -6.74
Door ECU Front Left_en 15.443 0.067 14.116 0.093 0.171 0.712  0.693 0.092
Door ECU Front Left_ht 11.459 0.133 15.035 0.155 0.168 0.662  0.648 0.111
Change [%)] -25.80 98.61 6.51 67.34 -1.74 -6.95 -6.55 20.25
Active Air Suspension_en 11.747 0.600 12.543 0.529 0.209 0.075  0.074 0.042
Active Air Suspension_ht 8.464 0.603 18.046 0.498 0.443 0.076  0.079 0.073
Change [%)] -27.95 0.61 43.87 -5.69 112.36 1.93 7.59 71.25
Steering Column ECU_en 17.557 -20.701 24.978 -120.317  337.183 0.741  0.541 0.464
Steering Column ECU_ht 2.210 0.523 4.378 -1.751 7.504 0.311  0.224 0.201
Change [%)] -87.41 102.52 -82.47 98.54 -97.77 -57.98 -58.58 -56.56
CID_en 4.490 -3.028 7.839 -8.395 30.622 0.027  0.024 0.034
CID_ht 4.119 -2.448 7.555 -7.769 32.205 0.026  0.022 0.032
Change [%) -8.26 19.15 -3.62 7.46 5.17 -5.39  -5.93 -5.16
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K. Detailed Feature Engineering and Hyperparameter Tuning Results

Table K.6: Detailed hyperparameter tuning results for GB. ECUs marked with
”_en” comprise the feature engineered ” _ht” denotes the use of the tuned parameter

set.
X-val weighted X-val X-val avg. 5y X-val weighted MSE SD(MSE)
ECU / Change PAWD [%] weighted R2 SP(PAAD) gz SP(RY) MSE [As]  [As] (As]
Extractor Fan_en 10.079 0.723 11.503 0.744 0.150 0.959  0.753 2.382
Extractor Fan_ht 9.962 0.724 11.694 0.745 0.149 0.931  0.730 2.304
Change -1.16 0.14 1.66 0.05 -0.73 -2.96  -2.96 -3.25
Coolant Pump_en 0.233 0.998 0.291 0.998 0.000 0.006  0.005 0.002
Coolant Pump_ht 0.237 0.999 0.339 0.999 0.000 0.004  0.003 0.001
Change 1.75 0.08 16.38 0.09 -28.69 -36.25  -36.63 -30.42
Right Pixel Headlamp_en 1.423 0.857 1.668 0.101 0.857 0.085  0.045 0.040
Right Pixel Headlamp_ht 1.593 0.859 1.632 0.106 0.859 0.081  0.073 0.047
Change 12.01 0.21 -2.13 5.09 0.21 -4.09  61.76 17.41
Left Pixel Headlamp_en 0.990 0.914 1.479 0.922 0.061 0.045  0.038 0.031
Left Pixel Headlamp_ht 1.599 0.859 1.832 0.873 0.096 0.071  0.059 0.046
Vehicle Change 61.52 -6.06 23.88 526 55.95 58.07 5482 49.18
A BCF_en 7.389 0.420 7.459 0.548 0.426 1.122  0.656 1.436
BCF_ht 5.212 0.543 5.840 0.627 0.341 0.852  0.540 1.280
Change -29.46 29.19 -21.70 14.54 -20.00 -24.05 -17.70 -10.90
Adaptive Suspension_en 1.602 0.805 3.399 0.787 0.109 0.073  0.095 0.125
Adaptive Suspension_ht 1.823 0.817 3.271 0.801 0.106 0.065 0.084 0.109
Change 13.79 1.52 -3.76 1.81 -2.25 -10.59 -11.78 -12.95
Driver Display_en 1.286 0.709 1.389 0.627 0.309 0.001  0.001 0.001
Driver Display_ht 1.335 0.707 1.368 0.629 0.320 0.001  0.001 0.001
Change 3.85 -0.30 -1.51 0.36 3.71 5.65 -2.01 0.01
CID_en 1.352 0.483 2.307 0.320 0.682 0.003  0.003 0.004
CID_ht 0.809 0.592 1.472 0.519 0.338 0.003  0.003 0.004
Change -40.15 22.54 -36.16 62.27 -50.50 -1.53  -0.61 19.25
Fuel Supply ECU_en 0.210 0.990 0.320 0.989 0.021 0.001  0.001 0.000
Fuel Supply ECU_ht 0.193 0.991 0.283 0.990 0.021 0.001  0.001 0.000
Change -8.07 0.06 -11.32 0.06 -2.88 -9.61  -7.83 -9.63
Seat ECU Driver_en 4.838 0.581 17.940 -0.667 3.936 1.466  1.140 1.369
Seat ECU Driver_ht 5.315 0.657 16.962 0.249 1.161 1.455 1.124 1.373
Change 9.86 13.15 -5.45 137.30 -70.51 -0.79  -1.35 0.27
Joolant Pump_en 0.403 0.997 1.160 0.997 0.001 0.008  0.008 0.003
Coolant Pump_ht 0.305 0.998 0.821 0.998 0.001 0.006  0.006 0.002
Change -24.52 0.07 -29.21 0.07 -26.32 -26.75 -25.03 -20.66
Right Pixel Headlamp_en 0.207 0.998 0.396 0.998 0.000 0.007  0.007 0.002
Right Pixel Headlamp_ht 0.403 0.997 1.160 0.997 0.001 0.008  0.008 0.003
Change 94.54 -0.03 192.70 -0.04 92.26 12.39  17.76 73.27
Left Pixel Headlamp_en 1.247 0.692 2.042 0.731 0.304 0.049  0.057 0.049
Left Pixel Headlamp_ht 0.951 0.739 1.543 0.747 0.296 0.034  0.030 0.034
Vehicle Change -23.75 6.91 -24.42 2.10 -2.72 -30.32  -47.92 -30.32
B BCF_en 5.876 -15.872 11.776 -8.763 36.626 0.008  0.006 0.018
BCF_ht 6.588 -17.468 11.313 -12.555 36.437 0.008  0.007 0.015
Change 12.11 -10.06 -3.94 -43.27 -0.52 3.58 2.20 -13.92
Door ECU Front Left_en 9.741 0.119 11.844 0.152 0.155 0.672  0.650 0.096
Door ECU Front Left_ht 11.753 0.117 15.566 0.149 0.190 0.673  0.653 0.125
Change 20.66 -1.86 31.42 -1.61 22.86 0.13 0.36 30.15
Active Air Suspension_en 6.108 0.672 7.793 0.658 0.129 0.064  0.054 0.034
Active Air Suspension_ht 6.182 0.679 7.782 0.666 0.132 0.063  0.053 0.033
Change 1.22 1.08 -0.15 1.27 2.07 -1.82  -2.88 -1.77
Steering Column ECU_en 2.531 -0.666 6.392 -4.239 13.494 0.313  0.229 0.207
Steering Column ECU_ht 2.717 -3.973 9.773 -29.742  124.698 0.311  0.231 0.202
Change 7.37 -496.55 52.89 -601.58 824.08 -0.40 0.72 -2.38
CID_en 4.310 -3.977 9.877 -13.142 59.500 0.026  0.027 0.049
CID_ht 4.548 -3.492 9.812 -10.726 48.625 0.025  0.027 0.052
Change 5.53 12.20 -0.66 18.38 -18.28 -5.36  -1.96 4.68
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Table K.7: Detailed hyperparameter tuning results for MLP. ECUs marked with
”_en” comprise the feature engineered ” _ht” denotes the use of the tuned parameter
set.

X-val weighted X-val X-val avg. 5y X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted R2 SD(PAAD) r: SPRY MSE [As]  [Aa] [As)
Extractor Fan_en 14.324 0.693 14.842 0.712 0.149 0.943 0.745 2.299
Extractor Fan_ht 23.181 -0.164 30.771 -0.157 0.359 1.798 1.532 3.549
Change [%)] 61.83 -123.65 107.33 -121.99 140.26 90.77 105.74 54.38
Coolant Pump_en 0.381 0.998 0.648 0.998 0.000 0.005 0.004 0.001
Coolant Pump_ht 2.522 0.961 3.410 0.965 0.012 0.109 0.083 0.051
Change [%)] 561.98 -3.76 426.07 -3.31  3572.37 2197.15  1989.73 3331.73
Right Pixel Headlamp_en 3.440 0.729 3.837 0.748 0.312 0.163 0.137 0.151
Right Pixel Headlamp_ht 7.299 0.409 11.191 0.456 0.415 0.410 0.298 0.272
Change [%)] 112.18 -43.90 191.67 -39.00 33.07 151.01 116.71 80.08
Left Pixel Headlamp_en 2.804 0.800 3.690 0.809 0.165 0.093 0.087 0.061
Left Pixel Headlamp_ht 6.030 0.323 12.306 0.401 0.498 0.318 0.277 0.227
Vehicle Change [%] 115.10 59.66 233.53 -50.45 202.04 243.40 218.91 272.19
A BCF_en 39.485 -7.804 90.946 -7.160 23.580 8.608 7.490 20.726
BCF_ht 5.620 0.549 5.512 0.633 0.308 0.869 1.210 1.869
Change [%)] -85.77 107.03 -93.94 108.85 -98.69 -89.91 -83.85 -90.98
Adaptive Suspension_en 1.538 0.811 3.749 0.794 0.100 0.068 0.087 0.108
Adaptive Suspension_ht 4.225 0.417 8.097 0.385 0.141 0.209 0.257 0.216
Change [%)] 174.76 -48.55 115.97 -51.48 41.79 208.24 195.53 98.91
Driver Display_en 6.792 -0.650 7.696 -0.620 3.395 0.005 0.003 0.004
Driver Display_ht 49.105 -51.312 52.575 -79.440  145.360 0.102 0.070 0.086
Change [%)] 622.98 -7789.20 583.14 -12718.41  4181.17 2115.01  2206.06 2033.36
CID_en 6.263 -2.050 7.874 -1.336 3.448 0.020 0.016 0.030
CID_ht 8.544 -3.160 9.958 -3.045 3.153 0.015 0.016 0.018
Change [%)] 36.42 -54.12 26.47 -127.96 -8.55 -25.90 1.34 -38.71
Fuel Supply ECU_en 0.204 0.991 0.337 0.991 0.018 0.001 0.001 0.000
Fuel Supply ECU_ht 6.034 -0.222 9.736 -0.264 0.425 0.370 0.441 0.325
Change [%] 2858.22 -122.37 2790.30 -126.70  2311.86 26799.38  31282.92 82459.77
Seat ECU Driver_en 11.202 -0.019 76.388 -22.720 76.478 1.602 1.206 1.456
Seat ECU Driver_ht 62.320 -201.805 631.115 -3065.391 8115.845 5.884 4.458 4.977
Change [%)] 456.34 -1053758.20 726.19 -13391.87  10512.05 267.22 269.53 241.81
Coolant Pump_en 0.464 0.998 0.655 0.998 0.000 0.006 0.006 0.002
Coolant Pump_ht 1.937 0.954 2.650 0.951 0.015 0.140 0.158 0.080
Change [%)] 317.73 -4.43 304.67 -4.73  3252.21 2190.26  2416.19 4938.19
Right Pixel Headlamp_en 4.929 -0.480 5.812 0.092 1.690 0.177 0.128 0.237
Right Pixel Headlamp_ht 3.632 -0.230 6.642 -0.039 1.509 0.171 0.228 0.462
Change [%)] -26.33 52.11 14.29 -142.63 -10.67 -3.40 T7.67 94.74
Left Pixel Headlamp_en 3.260 0.069 4.305 0.349 0.861 0.130 0.103 0.168
Left Pixel Headlamp_ht 2.916 0.259 5.292 0.318 0.598 0.189 0.289 0.792
Vehicle Change [%] -10.57 277.27 22.92 -8.84 -30.60 45.15 181.31 370.33
B BCF_en 6.382 -19.259 12.595 -10.870 43.955 0.009 0.007 0.021
BCF_ht 7.181 -16.520 11.586 -13.441 29.124 0.007 0.007 0.014
Change [%)] 12.52 14.22 -8.01 -23.66 -33.74 -17.61 -5.75 -31.37
Door ECU Front Left_en 23.659 -0.098 30.455 -0.122 0.254 0.849 0.871 0.220
Door ECU Front Left_ht 10.421 -0.064 10.599 -0.032 0.086 0.817 0.805 0.144
Change [%] -55.95 34.89 -65.20 73.94 -65.99 -3.74 -7.60 -34.50
Active Air Suspension_en 7.715 0.619 17.496 0.484 0.410 0.060 0.078 0.076
Active Air Suspension_ht 30.419 -1.522 23.591 -0.347 1.102 0.648 0.228 0.362
Change [%)] 294.29 -346.01 34.84 -171.73 169.12 986.59 192.08 373.39
Steering Column ECU_en 3.344 0.510 5.878 -0.928 3.539 0.360 0.258 0.234
Steering Column ECU_ht 53.153 -324.967 133.497 -1414.937  2761.396 4.534 3.483 2.753
Change [%)] 1489.72 -63817.30 2171.19  -152444.29 77928.39 1158.13  1247.87 1076.62
CID_en 7.457 -6.580 12.344 -17.949 67.234 0.051 0.052 0.068
CID_ht 6.098 -4.210 9.605 -11.502 41.346 0.041 0.035 0.044
Change [%)] -18.23 36.01 -22.19 35.92 -38.50 -19.71 -32.51 -35.02
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K. Detailed Feature Engineering and Hyperparameter Tuning Results

Table K.8: Detailed hyperparameter tuning results for LSTM. ECUs marked with
”_en” comprise the feature engineered ” _ht” denotes the use of the tuned parameter
set.

X-val weighted X-val X-val avg. 5y X-val weighted MSE SD(MSE)

ECU / Change PAWD [%] weighted Rz SD(PAAD) rz SP(RY) MSE [A;]  [As] [As]
Extractor Fan_raw 14.495 0.695 17.465 0.707 0.130 0.663  0.534 1.510
Extractor Fan_en 19.902 0.637 26.296 0.643 0.203 0.960  0.769 2.285
Change [%) 37.30 -8.44 50.57 -9.10 56.03 44.80 44.21 51.37
Coolant Pump_raw 0.686 0.969 1.586 0.970 0.009 0.081  0.067 0.033
Coolant Pump_en 4.765 0.968 1.800 0.967 0.011 0.085 0.071 0.035
Change [%) 594.65 -0.17 13.53 -0.23 22.71 5.50  5.58 5.02
Right Pixel Headlamp_raw 3.982 0.748 6.103 0.764 0.195 0.147  0.127 0.097
Right Pixel Headlamp_en 2.601 0.788 2.718 0.800 0.174 0.113  0.095 0.050
Change [%] -34.67 5.40 -55.46 4.69 -10.44 -22.86 -24.62 -48.13
Left Pixel Headlamp_raw 3.735 0.750 5.028 0.773 0.294 0.105  0.096 0.099
Left Pixel Headlamp_en 1.457 0.805 2.451 0.812 0.158 0.079  0.078 0.049
Vehicle Change [%] -60.99 7.37 -51.26 4.99 -46.19 -24.79 -18.78 -48.13
A BCF_raw 6.722 -0.161 9.025 -0.120 0.528 1.229  0.886 1.515
BCF_en 13.608 -0.195 18.443 -0.120 1.028 1.505 1.127 1.757
Change [%)] 102.43 -21.13 104.36 -0.03 94.59 2248 27.22 16.02
Adaptive Suspension_raw 2.781 0.771 5.693 0.744 0.144 0.084 0.113 0.169
Adaptive Suspension_en 2.585 0.775 4.986 0.755 0.125 0.082 0.107 0.152
Change [%) -7.06 0.52 -12.42 1.48 -13 -2 -5 -10
Driver Display_raw 8.652 -0.818 19.196 -2.007 4.367 0.006  0.007 0.012
Driver Display_en 8.717 -0.405 13.458 -0.734 1.644 0.009  0.007 0.009
Change [%)] 0.75 50.49 -29.91 63.41 -62.37 42,67 0.00 -25.00
CID_raw 5.662 -1.236 6.159 -1.425 2.320 0.008  0.009 0.011
CID_en 4.199 -0.234 7.204 -0.515 1.760 0.008  0.011 0.020
Change [%] -25.83 81.08 16.97 63.85 -24.13 3.50 25.81 81.21
Fuel Supply ECU_raw 0.850 0.963 1.943 0.959 0.040 0.009  0.011 0.010
Fuel Supply ECU_en 1.520 0.907 2.626 0.900 0.170 0.016  0.018 0.010
Change [%] 78.76 -5.84 35.13 -6.17 329.31 67.16  60.62 0.13
Seat ECU Driver_raw 13.707 -2.265 68.581 -30.172 99.623 1.698  1.258 1.534
Seat ECU Driver_en 10.597 -0.956 50.099 -24.381 67.593 1.693  1.265 1.585
Change [%] -22.69 57.82 -26.95 19.19 -32.15 -0.28  0.50 3.33
Coolant Pump_raw 0.839 0.960 0.945 0.957 0.012 0.117  0.133 0.045
Coolant Pump_en 7.453 0.946 1.012 0.944 0.011 0.162 0.174 0.052
Change [%)] 788.54 -1.52 7.09 -1.36 -10.10 3848 31.18 16.54
Right Pixel Headlamp_raw 5.145 -0.447 5.932 0.097 1.499 0.169  0.120 0.218
Right Pixel Headlamp_en 4.224 0.138 5.344 0.313 0.767 0.133  0.106 0.167
Change [%)] -17.90 130.84 -9.93 221.53 -48.85 -21.66 -11.93 -23.04
Left Pixel Headlamp_raw 3.015 0.230 4.258 0.395 0.783 0.126  0.098 0.180
Left Pixel Headlamp_en 3.674 -0.147 3.966 0.329 0.960 0.117  0.090 0.121
Vehicle Change [%] 21.86 -163.89 -6.88 -16.68 22.48 -7.18  -T.75 -33.07
B BCF _raw 9.777 -48.966 17.241 -35.711  101.983 0.018  0.013 0.036
BCF_en 7.593 -22.880 12.429 -16.025 43.382 0.009  0.008 0.019
Change [%)] -22.34 53.27 -27.91 55.13 -57.46 -46.62  -39.05 -48.41
Door ECU Front Left_raw 12.402 -0.025 12.891 0.039 0.172 0.781  0.737 0.111
Door ECU Front Left_en 9.491 -0.002 10.617 0.054 0.154 0.762  0.726 0.097
Change [%] -23.48 92.80 -17.64 38.07 -10.29 =237 -1.48 -13.02
Active Air Suspension_raw 15.239 0.372 26.963 0.220 1.098 0.122  0.124 0.196
Active Air Suspension_en 11.612 0.447 11.758 0.511 0.164 0.120  0.080 0.057
Change [%) -23.80 19.95 -56.39 132.09 -85.06 -1.42 -35.31 -70.71
Steering Column ECU_raw 9.579 -0.666 13.897 -4.053 9.621 0.669  0.529 0.727
Steering Column ECU_en 14.244 -2.407 20.633 -7.649 17.244 0.660  0.525 0.954
Change [%) 48.71 -261.44 48.48 -88.72 79.23 -1.25  -0.78 31.22
CID_en 0.049 0.062 11.139 -7.243 14.453 0.072  0.049 0.062
CID_ht 0.039 0.050 11.508 -9.492 33.057 0.039  0.039 0.050
Change [%] -20.68 -18.92 3.31 -31.04 128.72 -45.11  -20.68 -18.92

191






L. Results of the Weighted Sum Analysis

Table L.1: Detailed results of the WSA. Utility values per ECU and ML modeling
algorithm (all values are rounded to the third decimal place, maximum values in

boldface).
ECUs RF GB MLP LSTM
Extractor Fan 18.157  21.776  11.732  11.092
Coolant Pump 54.910 48.500 45.111 40.112
Vehicle Right Pixel Headlamp 33.610  44.641  14.227  31.437
A Left Pixel Headlamp  43.288  46.047 14.431  34.366
BCF 22.735  22.225 10.653  4.918
Adaptive Suspension  35.495  36.654  20.357  30.752
Driver Display 38.829  40.117 15.968  14.812
CID 32.810 38.880 19.697 20.911
Fuel Supply ECU 53.771 45920 15.965  38.327
Seat ECU Driver 14.481  20.817  11.592 5.321
Coolant Pump 53.470  48.015 43.939  34.668
Vehicle Right Pixel Headlamp  21.582  41.187  21.517  17.218
B Left Pixel Headlamp  26.543  44.147  22.814  19.049
BCF 20.160  22.956  21.712  15.041
Door ECU Front Left 8.195 12.418  14.520 6.445
Active Air Suspension  20.261  31.528  11.914  12.427
Steering Column ECU  27.790 23.469 11.102  10.784
CID 22.578 24.818 21.859 14.743
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