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 A B S T R A C T

As artificial intelligence (AI) systems are increasingly deployed in high-stakes environments, the need for 
explanations that convey uncertain information has become evident. Conventional explainable AI (XAI) 
methods often overlook uncertainty, focusing solely on point predictions. To address this gap, we propose using 
permutation feature importance (PFI) combined with predictive uncertainty evaluation measures. This novel 
approach examines the significance of features by relating them to the model’s confidence in its predictions. 
By using split conformal prediction (SCP) to quantify predictive uncertainty and integrating the outcomes 
to PFI, we aim to enhance the robustness and interpretability of machine learning (ML) algorithms. More 
importantly, we examine three scenarios for conformal prediction-based PFI explanations: permuting feature 
values in the test data, the calibration data, and both. These scenarios assess the impact of feature permutations 
from different perspectives, revealing feature sensitivity and the importance of features in various settings. We 
also perform a series of sensitivity analyses, particularly exploring calibration data size and computational 
efficiency, to demonstrate the robustness and scalability of our approach for industrial applications. Our 
comprehensive evaluation offers insights into feature impact on predictions and their associated confidence 
levels. We validate our proposed approach through a real-world predictive process monitoring use case in 
manufacturing.
1. Introduction

Explainable Artificial Intelligence (XAI) has emerged as an essential 
research domain in response to the increasing complexity and opacity 
of artificial intelligence (AI) systems (Gunning et al., 2019; Emmert-
Streib et al., 2020). XAI aims to make AI models more transparent, 
interpretable, and understandable to human users (Arrieta et al., 2020). 
This field encompasses various techniques and approaches designed 
to provide insights into the decision-making processes of AI systems, 
particularly those based on complex machine learning (ML) models like 
deep neural networks or ensemble-based approaches (Dwivedi et al., 
2023; Adadi and Berrada, 2018). By enhancing the interpretability 
of AI models, XAI fosters trust and facilitates the integration of AI 
into critical domains such as healthcare, finance, and criminal justice, 
where transparency and accountability are paramount (Loh et al., 2022; 
Guidotti et al., 2018; Ali et al., 2023).

As AI systems are increasingly deployed in high-stakes environ-
ments, the need for explanations that also convey uncertain information 
has become evident (Gawlikowski et al., 2023). Uncertainty quantifi-
cation (UQ) is crucial in this context, as it provides a measure of 
confidence or reliability in the outputs of ML models (Abdar et al., 
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2021). UQ helps to create a more comprehensive picture of an AI 
system’s decision-making process by explaining the predictions and 
indicating the certainty associated with those predictions (Yang and 
Yee, 2024). This additional layer of information is vital for assessing 
the reliability of AI-driven decisions and identifying situations where 
human intervention might be necessary (Bhatt et al., 2021).

Despite the progress in XAI, integrating uncertainty information into 
explanations presents significant challenges. Traditional approaches to 
explainability primarily focus on point predictions without considering 
the inherent uncertainty in those predictions (Löfström et al., 2024; 
Mehdiyev et al., 2024b). To address this gap, we propose a novel 
approach that integrates permutation feature importance (PFI) with 
conformal prediction (CP), a robust UQ method. Unlike conventional 
PFI, which measures the importance of features for point predictions, 
our approach incorporates uncertainty evaluation measures to provide 
a more holistic understanding of model behavior. In this study, we 
employ split conformal prediction (SCP), a variant of CP, to quan-
tify uncertainty. SCP offers finite-sample validity and is particularly 
suitable for scenarios where data is limited (Vovk et al., 2020). By 
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integrating this method with PFI, we aim to enhance the robustness 
and interpretability of deployed ML algorithms.

We examine in this study three distinct scenarios: permuting feature 
values in the test data, permuting feature values in the calibration data, 
and permuting feature values in both calibration and test data. In the 
first scenario, we permute the feature values in the test data while 
keeping the calibration data intact. This approach allows us to assess 
how changes in the test data impact the model’s predictive performance 
and confidence. By isolating the effects of feature permutations in the 
test data, we can identify which features are crucial for maintaining the 
model’s reliability on new, unseen data. This scenario is particularly 
relevant for understanding the robustness of the model’s predictions 
under variations in the input data, which is critical for real-world ap-
plications where input data can often be noisy or incomplete. We expect 
this scenario to highlight the sensitivity of the model’s predictions and 
uncertainty estimates to changes in specific features, thereby indicating 
their importance.

In the second scenario, we permute the feature values in the cal-
ibration data while keeping the test data unchanged. The calibration 
data is used to generate the prediction intervals, and by permuting its 
feature values, we can observe how this affects the model’s uncertainty 
measures on the test data. This scenario helps us understand the impact 
of calibration data quality on the reliability of the UQ. It is particularly 
important for scenarios where the calibration data may be subject to 
variations or noise, affecting the model’s ability to accurately quantify 
uncertainty. We expect this scenario to reveal how perturbations in 
the calibration phase influence the model’s predictive intervals and 
highlight the features that are critical for constructing reliable and 
accurate prediction intervals.

In the third scenario, we permute the feature values in both the 
calibration and test datasets. This comprehensive approach allows us 
to examine the combined effect of feature permutations across both 
stages of the model evaluation process. By analyzing the compounded 
impact, we can gain insights into the overall robustness of the model’s 
UQ under simultaneous perturbations. This scenario is essential for 
understanding the interdependencies between calibration and test data 
features and their joint influence on the model’s performance. We 
expect this scenario to provide a deeper understanding of how simul-
taneous changes in both datasets affect the prediction intervals and 
identify the features that are pivotal in maintaining robust and reliable 
uncertainty estimates.

By exploring these three scenarios, we aim to provide a compre-
hensive evaluation of feature importance in the context of UQ. This 
approach not only enhances our understanding of which features are 
most influential in predicting outcomes but also how they contribute 
to the confidence we have in those predictions. This dual focus on 
predictive accuracy and uncertainty is crucial for developing robust 
and explainable AI systems that can be trusted in high-stakes decision-
making environments. Additionally, we conduct a series of sensitivity 
experiments to investigate how varying the calibration data size affects 
both coverage and interval accuracy, ensuring the method’s robustness 
for different data availability conditions. We further assess compu-
tational efficiency by evaluating runtime performance under various 
dataset scales, confirming that our approach remains practical even for 
large industrial scenarios. By uniting sensitivity analyses with consid-
erations of scalability, we offer actionable insights for domains where 
robust UQ and feature interpretability are paramount. Our proposed 
approach focuses on the domain of predictive process monitoring, 
specifically addressing predictive analytics problems related to the 
duration of production activities based on data from manufacturing 
execution systems (MES). However, the methodology is transferable to 
other domains with similar tabular data problems.

The remainder of the paper is organized as follows: Section 2 
provides an overview of the background and related work, highlighting 
key advancements and limitations in the field. In Section 3, we present 
2 
the details of our proposed method, including its theoretical founda-
tion and implementation. Section 4 describes the experimental setup, 
datasets, and evaluation metrics used to validate our approach. The 
results and discussion are presented in Section 5, where we analyze the 
performance of the proposed model and interpret the model outcomes. 
Section 6 discusses our findings and outlines potential directions for 
future research. Finally, Section 7 concludes the paper with a summary 
of key contributions.

2. Background and related work

2.1. Explainable Artificial Intelligence (XAI)

XAI refers to a set of processes and methods that allow human 
users to comprehend and trust the results and outputs created by ML 
algorithms (Ali et al., 2023; Adadi and Berrada, 2018; Langer et al., 
2021). XAI aims to make the decision-making process of AI systems 
transparent and understandable, countering the black-box nature of 
many AI models (Saeed and Omlin, 2023; Gunning et al., 2019). The 
concept of XAI has gained significant attention due to the increasing 
complexity and deployment of AI systems in critical applications such 
as healthcare, finance, law and autonomous driving, where under-
standing AI decisions is crucial for safety, fairness, and accountability
(Loh et al., 2022; Weber et al., 2024; Dong et al., 2023; Vale et al., 
2022).

The necessity for XAI arises from several factors. Firstly, regulatory 
requirements such as the EU AI Act emphasize the need for trans-
parency and accountability in AI systems to ensure they are used 
responsibly and ethically (Panigutti et al., 2023). Secondly, XAI is 
essential for building trust among users and stakeholders, allowing 
them to understand and validate AI decisions (Arrieta et al., 2020). 
Thirdly, XAI helps identify and mitigate biases in AI models, ensur-
ing that decisions are fair and unbiased (Nakao et al., 2022). Lastly, 
explainability is crucial for debugging and improving AI models, as it 
provides insights into how models operate and where they might be 
going wrong (Mehdiyev and Fettke, 2021). Several key desiderata have 
been identified for XAI systems. These include fidelity (the explanation 
should accurately reflect the model’s behavior), comprehensibility (the 
explanation should be understandable to the intended audience), and 
actionability (the explanation should provide insights that can be used 
to improve or act upon the model’s decisions) (Mohseni et al., 2021; 
Liao et al., 2022). Additionally, XAI systems should be able to provide 
explanations that are consistent across similar inputs and robust to 
small perturbations in the input data (Baniecki and Biecek, 2024; 
Chander et al., 2024).

XAI methods and approaches can be broadly categorized into sev-
eral dimensions. One key distinction is between model-specific and 
model-agnostic methods (Adadi and Berrada, 2018). Model-specific 
approaches are tailored to particular types of AI models and can lever-
age the internal structure of these models to generate explanations. 
In contrast, model-agnostic methods can be applied to any type of 
AI model, treating it as a black box and focusing on the relationship 
between inputs and outputs. Another important categorization is be-
tween transparency-based and post-hoc explanation methods (Guidotti 
et al., 2018). Transparency-based approaches aim to create inherently 
interpretable models, such as decision trees or linear models. Post-hoc 
methods, on the other hand, generate explanations for already trained 
models, often using techniques like feature attribution or example-
based explanations. XAI methods can also be classified as global or 
local (Arrieta et al., 2020). Global methods aim to explain the overall 
behavior of a model across its entire input space, while local methods 
focus on explaining individual predictions or decisions. Global meth-
ods can provide a high-level understanding of a model’s behavior, 
while local methods offer more detailed insights into specific cases. 
Despite the progress made in XAI, several challenges remain. One 



N. Mehdiyev et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110363 
significant issue is the potential trade-off between model performance 
and explainability, as more complex models that often achieve higher 
accuracy can be more difficult to explain (Rudin, 2019). Another chal-
lenge lies in evaluating the quality and effectiveness of explanations, 
as there is no universally accepted metric for measuring explanation 
quality (Mohseni et al., 2021).

A particularly pressing problem in the field of XAI is the inte-
gration of UQ. As AI systems are deployed in high-stakes domains, 
understanding not just the decisions they make but also the confidence 
or uncertainty associated with those decisions becomes crucial (Slack 
et al., 2021). The relevance of UQ to XAI lies in its potential to 
provide a more complete picture of an AI system’s decision-making 
process (Watson et al., 2024). By incorporating measures of uncertainty 
into explanations, XAI systems can offer more nuanced and informative 
insights, helping users to assess the reliability of AI-driven decisions 
better and identify situations where human intervention may be neces-
sary. There is a recent and growing research interest in the intersection 
of XAI and UQ, and despite this increasing attention, the field remains 
underexplored, which this study aims to address (Löfström et al., 2024; 
Hill et al., 2024; Watson et al., 2024; Slack et al., 2021; Chiaburu et al., 
2024; Marx et al., 2023; Mehdiyev et al., 2023).

Unlike classical combinatorial feature selection (CFS) methods
which aim to identify a minimal set of features that optimally represent 
the data, PFI focuses on the isolated impact of each feature (Fisher 
et al., 2019). Different from traditional PFI, which measures feature 
relevance based on changes in point prediction accuracy, our proposed 
approach evaluates how individual features contribute to the reliability 
and informativeness of prediction intervals. Specifically, PFI does not 
consider feature interactions or subset optimization but instead quan-
tifies how disrupting a single feature affects prediction intervals and 
UQ metrics like prediction interval coverage probability (PICP), mean 
prediction interval width (MPIW), mean relative prediction interval 
width (MRPIW), and the Winkler score. This approach ensures that 
feature contributions to predictive intervals can be robustly evaluated, 
highlighting their role in generating transparent and reliable models.

2.2. Uncertainty quantification (UQ)

UQ in predictive modeling refers to the process of estimating and 
characterizing the uncertainty associated with model predictions (Ab-
dar et al., 2021). It aims to provide a measure of confidence or 
reliability in the outputs of ML models, going beyond just point pre-
dictions to quantify how certain or uncertain those predictions are. 
Predictive uncertainty arises from various sources within the learning 
process. This uncertainty is inherent in all ML models and can signif-
icantly impact decision-making processes in critical applications such 
as healthcare, autonomous driving, and financial forecasting (Ghanem 
et al., 2017). As ML models become increasingly complex and are 
deployed in high-stakes environments, understanding and quantify-
ing predictive uncertainty has become a crucial area of research and 
development.

The sources of uncertainty in ML can be broadly categorized into 
two types: aleatoric and epistemic uncertainty (Hüllermeier and Waege-
man, 2021). Aleatoric uncertainty, also known as statistical or data 
uncertainty, stems from the inherent randomness or noise in the data 
and is irreducible even with the collection of more data (Kendall and 
Gal, 2017). This type of uncertainty can be further divided into ho-
moscedastic uncertainty, which remains constant across all inputs, and 
heteroscedastic uncertainty, which varies depending on the input (Ma-
linin and Gales, 2018). On the other hand, epistemic uncertainty, 
also referred to as model uncertainty, arises from the model’s lack of 
knowledge or understanding of the underlying data-generating process. 
Unlike aleatoric uncertainty, epistemic uncertainty can be reduced by 
gathering more data or improving the model architecture (Ovadia et al., 
2019).
3 
Various methods have been proposed to quantify uncertainty in ML 
models, broadly classified into Bayesian and frequentist approaches
(Bhatt et al., 2021). These methods aim to provide a comprehensive 
framework for estimating and understanding the uncertainty asso-
ciated with model predictions. Bayesian methods, such as Bayesian 
Neural Networks and Monte Carlo dropout, offer a principled ap-
proach to UQ by treating model parameters as random variables and 
inferring their posterior distributions (MacKay, 1995; Gal and Ghahra-
mani, 2016). These methods are particularly effective at capturing 
both aleatoric and epistemic uncertainty, making them attractive for 
applications that require a comprehensive treatment of uncertainty. 
Bayesian approaches naturally incorporate prior knowledge and pro-
vide a probabilistic interpretation of model predictions, which can be 
valuable in decision-making processes (Graves, 2011).

On the other hand, frequentist methods, while less common, offer 
alternative approaches to UQ. These include techniques like bootstrap 
sampling or ensemble methods (Osband et al., 2016; Abdar et al., 
2021). Frequentist approaches may not incorporate prior knowledge as 
explicitly as Bayesian methods, but they can be valuable in scenarios 
where computational simplicity and interpretability are prioritized. For 
instance, ensemble methods can provide robust uncertainty estimates 
by aggregating predictions from multiple models (Lakshminarayanan 
et al., 2017).

Both Bayesian and frequentist approaches have their strengths and 
limitations. Bayesian methods often provide more comprehensive un-
certainty estimates but can be computationally intensive, especially for 
large-scale models. Frequentist methods, while potentially less com-
prehensive, can offer computational advantages and may be easier 
to implement in certain scenarios. It is worth noting that the choice 
between Bayesian and frequentist approaches often depends on the 
specific application, available computational resources, and the desired 
trade-off between uncertainty estimation quality and computational 
efficiency. In practice, researchers and practitioners may use a com-
bination of methods or hybrid approaches to leverage the strengths of 
both paradigms.

2.3. Conformal prediction

Despite the strengths of Bayesian and frequentist methods, there 
remains a need for approaches that can provide robust uncertainty 
estimates with minimal assumptions about the underlying data distri-
bution. This is where CP comes into play, which emerged as a powerful 
framework for UQ that offers distribution-free validity, requiring only 
the assumption of exchangeability in the data (Vovk et al., 2005; 
Tibshirani et al., 2019). CP offers several other key advantages over 
conventional UQ approaches. One of the further strengths of CP is its 
ability to provide finite-sample validity (Xu and Xie, 2021). Unlike 
many traditional UQ methods that rely on asymptotic guarantees, CP 
offers valid prediction intervals even with limited data samples (Tib-
shirani et al., 2019; Gibbs and Candes, 2021). This property is crucial 
in practical scenarios where data may be scarce or expensive to obtain. 
Furthermore, the model-agnostic nature of CP allows it to be applied to 
various pre-trained models, including complex deep neural networks, 
without requiring retraining or modification of the underlying model 
architecture (Lei et al., 2018; Foygel Barber et al., 2021).

There are several types of CP, each with its strengths and weak-
nesses. Full conformal prediction uses the entire dataset for calibration, 
providing the most accurate uncertainty estimates but at a high compu-
tational cost (Shafer and Vovk, 2008; Angelopoulos et al., 2023). SCP, 
on the other hand, uses a held-out calibration set, which is faster but 
potentially less efficient (Papadopoulos et al., 2002; Lei et al., 2015). 
Inductive conformal prediction is suitable for online learning settings, 
where the model is continuously updated with new data (Papadopou-
los et al., 2002). Mondrian conformal prediction provides conditional 
coverage guarantees for subgroups, making it useful for  applications 
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where the data is heterogeneous (Toccaceli and Gammerman, 2019). 
Recent work has focused on extending CP to more complex scenarios. 
Tibshirani et al. (2019) proposed methods for CP under covariate shift, 
addressing the challenge of distribution mismatch between training 
and test data (Tibshirani et al., 2019). Angelopoulos and Bates (2023) 
provide a comprehensive overview of recent developments, includ-
ing applications to structured outputs, time series data, and scenarios 
involving outliers or abstaining models (Angelopoulos et al., 2023).

2.4. Predictive process monitoring (PPM)

Predictive Process Monitoring (PPM) is a branch of process mining 
that aims to forecast the future behavior or outcomes of ongoing 
business process instances based on historical event logs and current 
process data (Van Der Aalst, 2012; Breuker et al., 2016). It extends 
traditional process monitoring by leveraging ML techniques to provide 
proactive insights and support decision-making during process execu-
tion (Evermann et al., 2017; Mehdiyev and Fettke, 2020). PPM enables 
organizations to anticipate and mitigate potential issues, optimize re-
source allocation, and improve overall process performance. The field 
of PPM encompasses several problem types, including predicting the 
remaining time until process completion, forecasting the next activity 
in a process instance, estimating the likelihood of specific outcomes 
(e.g., customer churn or compliance violations), and predicting process 
performance indicators (Di Francescomarino et al., 2018). These pre-
dictions can be made at various stages of process execution, from early 
predictions based on limited information to more accurate forecasts as 
more data becomes available.

Numerous ML approaches have been applied to PPM tasks. Early 
works focused on traditional classification and regression techniques, 
such as decision trees and support vector machines (Lakshmanan et al., 
2011; Maggi et al., 2014; De Koninck et al., 2017). More recently, 
deep learning methods have gained prominence due to their ability to 
capture complex temporal dependencies in process data. Long Short-
Term Memory (LSTM) networks, in particular, have shown promising 
results in predicting next activities and remaining time (Evermann 
et al., 2017). Other approaches include the use of random forests, gradi-
ent boosting machines, and ensemble methods that combine multiple 
predictive models (Di Francescomarino et al., 2018; Teinemaa et al., 
2019; Márquez-Chamorro et al., 2017).

As PPM systems become more sophisticated and widely adopted, 
there is a growing need for XAI techniques to interpret and justify 
predictions (Mehdiyev and Fettke, 2021). XAI for PPM aims to provide 
transparent and understandable explanations for the predictions made 
by complex models, enabling process stakeholders to trust and act upon 
the insights generated. Techniques such as SHapley Additive exPlana-
tions (SHAP) values, Local Interpretable Model-agnostic Explanations 
(LIME), and counterfactual explanations have been adapted to explain 
PPM predictions, offering insights into the most influential factors 
driving specific forecasts (Mehdiyev and Fettke, 2020; Coma-Puig and 
Carmona, 2022; Bukhsh et al., 2019; Rizzi et al., 2020; De Koninck 
et al., 2017; Hsieh et al., 2021).

UQ is another important aspect of PPM that has gained attention 
in recent years. UQ techniques aim to provide reliable estimates of the 
confidence or uncertainty associated with process predictions, allowing 
decision-makers to assess the risk and reliability of forecasts (Weytjens 
and De Weerdt, 2022). Different methods and approaches have been ex-
plored to quantify uncertainty in PPM predictions (Shoush and Dumas, 
2022; Bousdekis et al., 2023; Portolani et al., 2022). Incorporating UQ 
into PPM systems can lead to more robust decision-making processes 
and help identify cases where additional information or human inter-
vention may be necessary (Mehdiyev et al., 2023). The combination of 
XAI and UQ techniques with state-of-the-art ML approaches promises to 
enhance the practical applicability and trustworthiness of PPM systems 
in real-world business environments (Mehdiyev et al., 2024b).
4 
3. Methodology

Our proposed approach integrated advanced ML techniques with 
rigorous UQ and XAI practices to create a comprehensive framework 
for reliable and transparent predictive process monitoring (see Fig.  1). 
By leveraging data from the examined process-aware information sys-
tems, the methodology starts with thorough process data preprocessing 
to ensure high-quality inputs. Following this, model training focuses 
on building robust predictive models through hyperparameter opti-
mization and performance evaluation. The UQ stage then introduces 
SCP to provide reliable prediction intervals, ensuring that the model’s 
predictions are not only accurate but also accompanied by quantified 
uncertainty. Finally, the XAI component incorporates PFI to shed light 
on the model’s decision-making processes by focusing on the model’s 
confidence. In this regard, we examine the illustrated three scenarios 
to explain uncertainty from different perspectives.

3.1. Predictive process monitoring: Data preprocessing and model training

In this study, we tackle a specific predictive process monitoring 
problem to illustrate the relevance and effectiveness of our proposed 
explainability approach combined with uncertainty estimation. This 
section provides a thorough mathematical formalization of the pro-
cess prediction problem, forming the foundation for our subsequent 
analysis and methodology development. Furthermore, the presented 
notation is predominantly based on the works of Mehdiyev et al. 
(2024a, 2023, 2024b), contributing to consistency among relevant 
literature. We start by describing the crucial elements of the predictive 
process and then outline the interrelationships among these elements, 
creating a cohesive framework for process prediction. The formulation 
of the predictive analytics problem is presented as follows:

Definition 1 (Event). An event is represented as a tuple
𝑒 = (𝑎, 𝑐, 𝑡start, 𝑡complete, 𝑣1,… , 𝑣𝑛), where:

• 𝑎 ∈  represents the process activity,
• 𝑐 ∈  signifies the case identifier,
• 𝑡start ∈ start is the start timestamp of the event (in Unix epoch 
time since January 1, 1970),

• 𝑡complete ∈ complete is the completion timestamp of the event,
• 𝑣1,… , 𝑣𝑛 are the event-specific attributes, each 𝑣𝑖 ∈ 𝑖, with 𝑖
representing the domain of the 𝑖-th attribute.

The set of all possible events is  =  ×  × start × complete × 1 ×
⋯×𝑛. For an event 𝑒 ∈  , the following projection functions are defi-
ned:

• 𝑝𝑎 ∶  → , 𝑝𝑎(𝑒) = 𝑎,
• 𝑝𝑐 ∶  → , 𝑝𝑐 (𝑒) = 𝑐,
• 𝑝𝑡start ∶  → start, 𝑝𝑡start (𝑒) = 𝑡start,
• 𝑝𝑡complete ∶  → complete, 𝑝𝑡complete (𝑒) = 𝑡complete,
• 𝑝𝑣𝑖 ∶  → 𝑖, 𝑝𝑣𝑖 (𝑒) = 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

Definition 2 (Traces and Event Log). A trace 𝜎 ∈ ∗ is a finite sequence 
of events 𝜎𝑐 = ⟨𝑒1, 𝑒2,… , 𝑒

|𝜎𝑐 |⟩, where each 𝑒𝑖 ∈ 𝜎 appears only once 
and ∀𝑒𝑖, 𝑒𝑗 ∈ 𝜎, 𝑝𝑐 (𝑒𝑖) = 𝑝𝑐 (𝑒𝑗 ) and 𝑝𝑡start (𝑒𝑖) ≤ 𝑝𝑡start (𝑒𝑗 ) if 1 ≤ 𝑖 < 𝑗 < |𝜎𝑐 |. 
The event log 𝐶 is defined as the set of completed traces, 𝐶 = {𝜎𝑐 ∣ 𝑐 ∈
}.

Definition 3 (Partial Traces). Partial traces are extracted from a full 
trace 𝜎. Using ℎ𝑑𝑖(𝜎𝑐 ) and 𝑡𝑙𝑖(𝜎𝑐 ), prefixes and suffixes are generated:

• Selection operator (.): 𝜎𝑐 (𝑖) = 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑛,
• ℎ𝑑𝑖(𝜎𝑐 ) = ⟨𝑒1, 𝑒2,… , 𝑒min(𝑖,𝑛)⟩ for 𝑖 ∈ [1, |𝜎𝑐 |] ⊂ N,
• 𝑡𝑙𝑖(𝜎𝑐 ) = ⟨𝑒𝑤, 𝑒𝑤+1,… , 𝑒𝑛⟩ where 𝑤 = max(𝑛 − 𝑖 + 1, 1),
• |𝜎| = 𝑛 (the length of the trace).
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Fig. 1. Proposed approach: Uncertainty-Related Permutation Feature Importance.
The partial traces produced by 𝑡𝑙𝑖(𝜎𝑐 ) enable the construction of 
a tabular dataset to predict the duration of remaining events in an 
ongoing trace. Our predictive process monitoring approach starts at 
the case initiation and updates as events occur. The 𝑡𝑙𝑖(𝜎𝑐 ) function is 
instrumental in generating partial traces for structuring training data. 
Various process performance indicators (PPIs) are typically used as 
prediction targets. We focus on the processing time of a specific event, 
computed as the difference in minutes between its completion and start 
timestamps.

Definition 4 (Event Processing Time/Labeling). For a non-empty trace 
𝜎 ≠ ⟨⟩ ∈ ∗, a labeling function resp ∶  →  maps an event 𝑒 ∈ 𝜎
to the value of its response variable resp(𝑒) ∈  . The event processing 
time is calculated as:

resp(𝑒) = 𝑝𝑡complete (𝑒) − 𝑝𝑡start (𝑒),

where  ⊂ R+.
5 
Definition 5 (Feature Extraction). The feature extraction function feat ∶
∗ → ∗ extracts features from a non-empty trace 𝜎 ≠ ⟨⟩ ∈ ∗, with 
 ∈ Rdim representing the feature domain and dim the dimensionality 
necessary to represent the amount of extracted features. For a trace 
𝜎𝑐 = ⟨𝑒1, 𝑒2,… , 𝑒

|𝜎𝑐 |⟩, the function feat produces features (𝑥𝑖,1,… , 𝑥𝑖,dim)
for each event 𝑒𝑖, including case-specific and event-specific features as 
well as intra-case features like n-grams.

Definition 6 (Prediction Task). Given an incomplete, non-empty trace 
𝜎𝑐 = ⟨𝑒1,… , 𝑒𝑖, 𝑒𝑖+1,… , 𝑒

|𝜎𝑐 ⟩, we define the prediction task as a su-
pervised learning problem, predicting the processing time of the next 
upcoming event resp(𝑒𝑖+1) from the suffix based on available data.

3.2. Split conformal prediction

SCP is an advanced statistical framework that strategically divides 
the original dataset into three distinct subsets: a training set 𝐷train, 
a calibration set 𝐷 , and a test set 𝐷 . This division is crucial 
cal test
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for the model’s ability to generalize effectively beyond the training 
data and ensures the accuracy of prediction intervals under real-world 
conditions.

The dataset partitioning is as follows:

• 𝐷train = {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 ∈ 𝐼train},
• 𝐷cal = {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 ∈ 𝐼cal},
• 𝐷test = {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 ∈ 𝐼test},

where 𝐼train, 𝐼cal, and 𝐼test are disjoint subsets of identifiers for rows of 
the original dataset such that 𝐼train ∪ 𝐼cal ∪ 𝐼test = {1,… , 𝑛}. This en-
sures comprehensive coverage and unbiased evaluation of the model’s 
predictive capabilities.

A regression model 𝑓 is trained exclusively on 𝐷train. The model 
aims to predict the dependent variable 𝑌  based on the explanatory 
variables 𝑋. The effectiveness of 𝑓 depends on its ability to generalize 
from the training data to unseen data, which is subsequently evaluated 
using 𝐷test.

After training, the non-conformity scores for the calibration set are 
calculated as: 
𝑅𝑖 = |𝑌𝑖 − 𝑓 (𝑋𝑖)|, ∀𝑖 ∈ 𝐼cal, (1)

These scores measure how much each prediction deviates from the 
actual observed values in 𝐷cal, serving as a critical dataset for statistical 
analysis.

The pivotal step in SCP involves calculating the quantile of the non-
conformity scores to determine the width of the prediction intervals. 
The quantile is calculated as: 

𝑞 = Quantile
(

{

𝑅𝑖 ∶ 𝑖 ∈ 𝐼cal
}

,

⌈

(1 − 𝛼)
(

|𝐼cal| + 1
)⌉

|𝐼cal|

)

(2)

where 𝛼 specifies the miscoverage level (thus, the confidence level 
is 1 − 𝛼), and the quantile calculation includes an adjustment factor 
⌈(1 − 𝛼)(, |𝐼cal| + 1, )⌉

|𝐼cal|
 to correct for the finite sample size of 𝐷cal.

For each test data point 𝑋𝑛+1 in 𝐷test, the prediction interval is 
constructed as: 
𝐶̂(𝑋𝑛+1) =

[

𝑓 (𝑋𝑛+1) − 𝑞, 𝑓 (𝑋𝑛+1) + 𝑞
]

(3)

The SCP method is designed to guarantee that the prediction interval 
𝐶 (̂𝑋𝑛+1) will cover the true response 𝑌𝑖 with a probability of at least 
1 − 𝛼. Mathematically, this is expressed as: 
𝑃 (𝑌𝑛+1 ∈ 𝐶̂(𝑋𝑛+1)) ≥ 1 − 𝛼 (4)

This guarantee holds under the assumption that the data points (𝑋1, 𝑌1), 
…, (𝑋𝑛, 𝑌𝑛) are exchangeable. Exchangeability means that the joint 
distribution of the data remains unchanged under permutations, which 
is a slightly weaker assumption than being independent and identically 
distributed. The key idea behind the coverage guarantee is the use 
of the calibration set (𝐷cal) to estimate the distribution of the non-
conformity scores. By determining the quantile of these scores from 
𝐷cal, the method ensures that the constructed prediction interval will 
cover the true response for new data points with the desired probabil-
ity, leveraging the empirical distribution of the non-conformity scores 
for non-parametric, distribution-free predictions.

Regarding the effect of calibration set size on the quality of the 
prediction intervals yielded by SCP, it is expected that the conformal 
prediction method guarantees coverage of at least 1 − 𝑎𝑙𝑝ℎ𝑎 on the 
test data as long as the calibration data encompasses a sufficient 
amount of data instances to capture data variability. Furthermore, the 
variability of conditional coverage follows a Beta distribution with 
larger calibration sets reducing the fluctuations in coverage, improving 
reliability (Angelopoulos et al., 2023). The effects of varying the cali-
bration set size and impacts on quality metrics for prediction intervals 
are examined in Section 5.2.

In summary, SCP leverages empirical data from the calibration set 
to adaptively size prediction intervals. This approach ensures that the
6 
intervals are statistically valid and practically useful, providing a signif-
icant advancement in predictive accuracy and reliability across various 
applications. The method’s efficacy is rooted in its structured approach 
to data partitioning and utilization of the empirical distribution of 
prediction errors to form robust prediction intervals.

3.3. Permutation feature importance with uncertainty quantification mea-
sures

PFI is a widely used technique to assess the importance of individual 
features in a predictive model (Fisher et al., 2019). It operates by 
evaluating the effect of randomly shuffling the values of each feature on 
the model’s performance, thereby disrupting the relationship between 
the feature and the target variable. This method provides insights into 
which features are most crucial for making accurate predictions. When 
combined with UQ measures, PFI can offer a nuanced understanding 
of how features contribute not only to the predictions themselves but 
also to the confidence in these predictions. This section describes the 
mathematical formalization of PFI adapted for SCP and UQ measures, 
exploring three distinct scenarios of feature permutation. These scenar-
ios include: (1) shuffling features only in the test data, (2) shuffling 
features only in the calibration data, and (3) shuffling features in both 
calibration and test data. Each scenario is assessed using a generic UQ 
metric, 𝑀 , to evaluate the impact of feature permutation on prediction 
intervals and their quality. UQ measures employed for the underlying 
dataset are introduced in Section 4.3.

3.3.1. Baseline calculation
The initial step in our methodology involves computing a baseline 

measure of uncertainty using the test dataset. This baseline serves as a 
reference point for evaluating the impact of feature permutations on the 
model’s predictive performance and uncertainty estimates. We define 
the baseline uncertainty measure 𝑀base as follows: 

𝑀base = 𝑀
({([

𝑓 (𝑋𝑖) − 𝑞, 𝑓 (𝑋𝑖) + 𝑞
]

, 𝑌𝑖
)

∣ 𝑖 ∈ 𝐼test
}

, 𝛼
)

, (5)

where 𝑓 is the trained regression model, 𝑞 is the quantile calculated 
from the calibration set as per the SCP method, and 𝑀 represents an 
UQ metric. UQ measures include PICP, MPIW, MRPIW, and the Winkler 
score, which are introduced in Section 4.3. This baseline measure 𝑀base
provides insight into the original model’s performance and the inherent 
uncertainty in its predictions without any feature perturbation. It estab-
lishes a benchmark against which the effects of permuting individual 
features can be compared in subsequent analyses.

3.3.2. Scenario 1: Shuffling features only in the test data
In this scenario, we investigate the effect of permuting individual 

features solely in the test dataset while keeping the training and calibra-
tion datasets unchanged. The goal is to assess how sensitive the model’s 
predictions and uncertainty estimates are to each feature when making 
predictions on new, unseen data. This approach helps us understand the 
importance of each feature in maintaining the predictive performance 
and reliability of the model in real-world applications.

For each feature 𝑗 ∈ {1,… , 𝑑}, we perform the following steps:

1. Permute the 𝐣-th feature in the test set:
We create a permuted version of the test dataset, denoted as 
𝐷𝑗
test, by randomly shuffling the values of the 𝑗-th feature among 

the test samples. Formally, for each test sample 𝑖 ∈ 𝐼test, we 
construct a new feature vector 𝑋𝑗

𝑖 :

𝑋𝑗
𝑖 =

(

𝑋𝑖1,… , 𝑋′
𝑖𝑗 ,… , 𝑋𝑖𝑑

)

,

where 𝑋′
𝑖𝑗 is the permuted value of the 𝑗-th feature for sample 𝑖, 

obtained by randomly reordering the 𝑗-th feature values across 
all test samples. The corresponding permuted test dataset is then:
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𝐷𝑗
test =

{

(𝑋𝑗
𝑖 , 𝑌𝑖) ∣ 𝑖 ∈ 𝐼test

}

.

This permutation breaks the association between the 𝑗-th fea-
ture and the target variable 𝑌  in the test data, simulating the 
absence of any predictive information from that feature in the 
test context.

2. Recompute predictions and prediction intervals for the per-
muted test data:
Using the trained regression model 𝑓 (obtained from the train-
ing data), we compute new predictions for the permuted test 
samples:

𝑓 (𝑋𝑗
𝑖 ), ∀𝑖 ∈ 𝐼test.

We then construct the prediction intervals for each permuted test 
sample using the quantile 𝑞 computed from the calibration set 
(which remains unchanged):
𝐶̂(𝑋𝑗

𝑖 ) =
[

𝑓 (𝑋𝑗
𝑖 ) − 𝑞, 𝑓 (𝑋𝑗

𝑖 ) + 𝑞
]

, ∀𝑖 ∈ 𝐼test.

By recalculating the predictions and intervals with the per-
muted feature, we can observe how the disruption of the fea-
ture’s information affects the model’s output and uncertainty 
estimates.

3. Compute the UQ measure for the permuted test data:
We evaluate the chosen UQ metric 𝑀 on the set of prediction 
intervals and true responses from the permuted test data:
𝑀perm.test𝑗 = 𝑀

({(

𝐶̂(𝑋𝑗
𝑖 ), 𝑌𝑖

)

∣ 𝑖 ∈ 𝐼test
}

, 𝛼
)

.

4. Compute the feature importance score:
We quantify the importance of feature 𝑗 by comparing the UQ 
measure after permutation to the baseline measure computed 
without permutation:
𝐹𝐼perm.test𝑗 = 𝑀perm.test𝑗 −𝑀base.

A significant change in the UQ measure indicates that permuting 
feature 𝑗 has a substantial impact on the model’s predictive 
uncertainty, suggesting that the feature is important for accurate 
and reliable predictions on new data.

By shuffling each feature individually in the test data and observing 
the resulting changes in the UQ measures, the importance scores can 
be interpreted as follows: A positive 𝐹𝐼perm.test𝑗  indicates that permuting 
feature 𝑗 leads to an increase in the UQ measure – such as a decrease 
in coverage probability or an increase in interval width – implying 
that the model’s uncertainty worsens. This suggests that feature 𝑗 is 
critical for making precise and confident predictions. Conversely, a 
negative or zero 𝐹𝐼perm.test𝑗  implies that the UQ measure remains the 
same or improves after permutation, indicating that feature 𝑗 may lack 
informativeness for the model’s predictions on the test data or that the 
model is robust to variations in that feature.

This scenario specifically examines the effect of feature importance 
in the context of unseen data, which is critical for evaluating how the 
model might perform in real-world applications where data distribu-
tions may vary. By focusing on the test data, we isolate the impact of 
each feature on the model’s ability to generalize and maintain reliable 
uncertainty estimates when faced with new instances. It is important to 
note that the training and calibration datasets remain untouched in this 
scenario. This means that the model 𝑓 and the quantile 𝑞 are consistent 
across all permutations, ensuring that any changes in the UQ measures 
are solely due to the permutation of the test features.

3.3.3. Scenario 2: Shuffling features only in the calibration data
In this scenario, we explore the effect of permuting individual 

features solely within the calibration dataset while keeping the training 
and test datasets unchanged. The objective is to assess how sensitive the 
model’s uncertainty estimates are to each feature during the calibra-
tion process, which directly influences the construction of prediction 
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intervals. This approach helps us understand the importance of each 
feature in maintaining the reliability and validity of the model’s UQ 
when making predictions on new, unseen data.

For each feature 𝑗 ∈ {1,… , 𝑑}, we perform the following steps:

1. Permute the 𝐣-th feature in the calibration set:
We create a permuted version of the calibration dataset, denoted 
as 𝐷𝑗

cal, by randomly shuffling the values of the 𝑗-th feature 
among the calibration samples. Formally, for each calibration 
sample 𝑖 ∈ 𝐼cal, we construct a new feature vector 𝑋𝑗

𝑖 :

𝑋𝑗
𝑖 =

(

𝑋𝑖1,… , 𝑋′
𝑖𝑗 ,… , 𝑋𝑖𝑑

)

,

where 𝑋′
𝑖𝑗 is the permuted value of the 𝑗-th feature for sample 𝑖, 

obtained by randomly reordering the 𝑗-th feature values across 
all calibration samples. The corresponding permuted calibration 
dataset is then:
𝐷𝑗
cal =

{

(𝑋𝑗
𝑖 , 𝑌𝑖) ∣ 𝑖 ∈ 𝐼cal

}

.

This permutation breaks the association between the 𝑗-th feature 
and the target variable 𝑌  in the calibration data, simulating the 
absence of any informative contribution from that feature during 
the calibration process.

2. Recompute the non-conformity scores and recalibrate the 
quantile:
Using the trained regression model 𝑓 (obtained from the training 
data), we compute new non-conformity scores for the permuted 
calibration samples:
𝑅𝑗
𝑖 =

|

|

|

𝑌𝑖 − 𝑓 (𝑋𝑗
𝑖 )
|

|

|

, ∀𝑖 ∈ 𝐼cal.

We then recalibrate the quantile 𝑞𝑗 based on these new non-
conformity scores:

𝑞𝑗 = Quantile
(

{

𝑅𝑗
𝑖 ∶ 𝑖 ∈ 𝐼cal

}

,
⌈(1 − 𝛼)(|𝐼cal| + 1)⌉

|𝐼cal|

)

.

This recalibration adjusts the width of the prediction intervals 
to reflect the impact of the permuted feature on the model’s 
prediction errors within the calibration set.

3. Compute new prediction intervals for the test data:
Using the recalibrated quantile 𝑞𝑗 , we construct prediction inter-
vals for each test sample (𝑋𝑖, 𝑌𝑖) ∈ 𝐷test:

𝐶̂𝑗 (𝑋𝑖) =
[

𝑓 (𝑋𝑖) − 𝑞𝑗 , 𝑓 (𝑋𝑖) + 𝑞𝑗
]

, ∀𝑖 ∈ 𝐼test.

Note that we use the original test features 𝑋𝑖 since the test data 
remains unchanged. The recalibrated prediction intervals reflect 
how the uncertainty estimates are affected by the permutation 
of the feature in the calibration data.

4. Compute the UQ measure for the test data:
We evaluate the chosen UQ metric 𝑀 on the set of prediction 
intervals and true responses from the test data:
𝑀perm.cal𝑗 = 𝑀

({(

𝐶̂𝑗 (𝑋𝑖), 𝑌𝑖
)

∶ 𝑖 ∈ 𝐼test
}

, 𝛼
)

.

5. Compute the feature importance score:
We quantify the importance of feature 𝑗 by comparing the UQ 
measure after permutation to the baseline measure computed 
without permutation. Both measures are evaluated on the test 
data to assess the impact on the model’s predictions for new, 
unseen instances:
𝐹𝐼perm.cal𝑗 = 𝑀perm.cal𝑗 −𝑀base.

Here, 𝑀base is the baseline UQ measure computed on the test 
data using the original prediction intervals constructed with the 
original quantile 𝑞.

By shuffling each feature individually in the calibration data and 
observing the resulting changes in the UQ measures on the test data, the 
importance scores can be interpreted as follows: A positive 𝐹𝐼perm.cal
𝑗
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indicates that permuting feature 𝑗 leads to an increase in the UQ 
measure – such as a decrease in coverage probability or an increase 
in interval width – implying that the model’s uncertainty estimation 
has worsened. This suggests that feature 𝑗 is critical for calibrating 
precise and confident prediction intervals. Conversely, a negative or 
zero 𝐹𝐼perm.cal𝑗  implies that the UQ measure remains the same or im-
proves after permutation, indicating that feature 𝑗 may not significantly 
influence the model’s uncertainty estimates or that the calibration 
process is robust to changes in that feature.

This scenario specifically examines the role of each feature in the 
calibration process, which is crucial for ensuring the validity of the un-
certainty quantification in the model’s predictions. By focusing on the 
calibration data and evaluating the impact on the test data, we isolate 
the effect of each feature on the construction of prediction intervals and 
how they generalize to new, unseen data. It is important to note that 
the training and test datasets remain untouched in this scenario. This 
means that the model 𝑓 and the test inputs 𝑋𝑖 are consistent across 
all permutations, ensuring that any changes in the UQ measures are 
solely due to the permutation of the calibration features. In summary, 
Scenario 2 helps identify features that are essential for the reliability 
of the model’s uncertainty estimates. By understanding which features 
significantly affect the calibration of prediction intervals, practitioners 
can gain insights into the variables that contribute most to the model’s 
confidence in its predictions.

3.3.4. Scenario 3: Shuffling features in both calibration and test data
In this scenario, we investigate the effect of permuting individual 

features in both the calibration and test datasets while keeping the 
training dataset unchanged. The goal is to assess how sensitive the 
model’s predictions and uncertainty estimates are to each feature when 
both the calibration process and the test data are affected by feature 
perturbations.

For each feature 𝑗 ∈ {1,… , 𝑑}, we perform the following steps:

1. Permute the 𝐣-th feature in the calibration set:
Create a permuted version of the calibration dataset, denoted as 
𝐷𝑗
cal, by randomly shuffling the values of the 𝑗-th feature among 

the calibration samples. For each calibration sample 𝑖 ∈ 𝐼cal, the 
new feature vector 𝑋cal,𝑗

𝑖  is:

𝑋cal,𝑗
𝑖 =

(

𝑋𝑖1,… , 𝑋′
𝑖𝑗 ,… , 𝑋𝑖𝑑

)

,

where 𝑋′
𝑖𝑗 is the permuted value of the 𝑗-th feature for sample 𝑖

in the calibration set. The permuted calibration dataset is:
𝐷𝑗
cal =

{(

𝑋cal,𝑗
𝑖 , 𝑌𝑖

)

∣ 𝑖 ∈ 𝐼cal
}

.

2. Recompute the non-conformity scores and recalibrate the 
quantile:
Using the trained regression model 𝑓 , compute the non-con-
formity scores for the permuted calibration data:

𝑅𝑗
𝑖 =

|

|

|

|

𝑌𝑖 − 𝑓
(

𝑋cal,𝑗
𝑖

)

|

|

|

|

, ∀𝑖 ∈ 𝐼cal.

Recalculate the quantile 𝑞𝑗 based on these non-conformity sco-
res:

𝑞𝑗 = Quantile
(

{

𝑅𝑗
𝑖 ∣ 𝑖 ∈ 𝐼cal

}

,
⌈(1 − 𝛼)(|𝐼cal| + 1)⌉

|𝐼cal|

)

.

3. Permute the 𝐣-th feature in the test set:
Create a permuted version of the test dataset, denoted as 𝐷𝑗

test, 
by randomly shuffling the 𝑗-th feature among the test samples. 
For each test sample 𝑖 ∈ 𝐼test, the new feature vector 𝑋test,𝑗

𝑖  is:

𝑋test,𝑗
𝑖 =

(

𝑋𝑖1,… , 𝑋′′
𝑖𝑗 ,… , 𝑋𝑖𝑑

)

,

where 𝑋′′
𝑖𝑗 is the permuted value of the 𝑗-th feature for sample 𝑖

in the test set. The permuted test dataset is:
𝐷𝑗
test =

{(

𝑋test,𝑗
𝑖 , 𝑌𝑖

)

∣ 𝑖 ∈ 𝐼test
}

.
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4. Compute new prediction intervals for the permuted test 
data:
Using the recalibrated quantile 𝑞𝑗 , construct prediction intervals 
for each permuted test sample:
𝐶̂𝑗

(

𝑋test,𝑗
𝑖

)

=
[

𝑓
(

𝑋test,𝑗
𝑖

)

− 𝑞𝑗 , 𝑓
(

𝑋test,𝑗
𝑖

)

+ 𝑞𝑗
]

, ∀𝑖 ∈ 𝐼test.

5. Compute the uncertainty quantification (UQ) measure for 
the permuted test data:
Evaluate the chosen UQ metric 𝑀 on the prediction intervals 
and true responses from the permuted test data:
𝑀perm.cal.test𝑗 = 𝑀

({(

𝐶̂𝑗
(

𝑋test,𝑗
𝑖

)

, 𝑌𝑖
)

∣ 𝑖 ∈ 𝐼test
}

, 𝛼
)

.

6. Compute the feature importance score:
Quantify the importance of feature 𝑗 by comparing the UQ 
measure after permutation to the baseline measure computed 
without permutation:
𝐹𝐼perm.cal.test𝑗 = 𝑀perm.cal.test𝑗 −𝑀base,

A positive 𝐹𝐼perm.cal.test𝑗  indicates that permuting feature 𝑗 leads 
to an increase in the UQ measure – such as a decrease in coverage 
probability or an increase in interval width – implying that the model’s 
uncertainty estimation has worsened. This suggests that feature 𝑗 is 
critical for both calibrating precise prediction intervals and making 
confident predictions on new data. Conversely, a negative or zero 
𝐹𝐼perm.cal.test𝑗  implies that the UQ measure remains the same or im-
proves after permutation, indicating that feature 𝑗 may not significantly 
influence the model’s uncertainty estimates or that the model is robust 
to changes in that feature. This scenario examines the compounded 
effect of feature perturbations on both the calibration process and the 
test data. By considering permutations in both datasets, we assess the 
overall importance of each feature in the end-to-end predictive perfor-
mance and uncertainty estimation of the model. This comprehensive 
analysis helps identify features that are pivotal in maintaining robust 
prediction intervals.

4. Experiment settings

This section provides a detailed description of the dataset and 
use case, hyperparameter optimization settings, and evaluation metrics 
used in our study. It offers insights into the methodology and perfor-
mance assessment of the ML models employed. These elements ensure 
that the prediction capabilities of the final ML model are sufficient 
to reliably measure the effects of feature permutation on the model’s 
UQ. For reproducibility, Appendix  A presents experiment settings and 
results for the open source Production Analysis dataset (Levy, 2014), a 
similar use case from the field of manufacturing.

4.1. Dataset and use case overview

The used dataset stems from a collaborative research project with 
a medium-sized German manufacturer specializing in custom and stan-
dardized vessel components, consisting of relevant process data regard-
ing the planning and execution of manufacturing tasks (Mehdiyev et al., 
2024a, 2023, 2024b). Customer orders, derived from the partner’s 
product catalog, initiate the manufacturing sequence. Each order is 
assessed for priority, and the sequence of manufacturing steps is de-
termined based on product specifications. These specifications include 
attributes such as article group identifier, material group identifier, 
weight, quantity, and other product-specific features. To address the 
challenge of estimating processing times, which currently relies on 
expert intuition, a solution leveraging MES has been implemented to 
capture precise execution details. The manufacturing steps are recorded 
as events in a structured dataset, with each row containing event- 
and trace-level information pertaining to the characteristics of the 
production process. Each event is linked to a specific activity, machine, 
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Table 1
Extract from the utilized event log data as in Mehdiyev et al. (2024a).
 Job Start End Diameter Resource  
 ID Activity Time Time Base ... ID ... 
 162384 Plasma 2019–04–18 2019-04-18 1800 ... 409  
 Welding 06:26:47 09:51:25  
 162384 Grinding 2019–04–18 2019-04-18 1800 ... 108  
 Weld. Seam 12:11:30 19:07:14  
 162384 Dishing 2019–04–23 2019-04-23 1800 ... 150  
 Press (2) 10:50:31 18:34:11  
 162384 Bead 2019–04–24 2019-04-24 1800 ... 726  
 Small 10:20:13 19:57:45  
 162384 X-ray 2019–04–25 2019-04-25 1800 ... 703  
 Examination 10:26:23 10:26:32  
 162384 Edge 2019–04–26 2019-04-26 1800 ... 742  
 Deburring 09:08:38 17:50:27  
 ... ... ... ... ... ... ... ... 
 177566 3D Micro- 2021–06–21 2021-06-21 3680 ... 139 ... 
 step Circle 07:04:38 10:26:37 ... ... 
 ... ... ... ... ... ... ... ... 
and qualified worker executing the process step. An excerpt from the 
dataset is presented in Table  1.

Preprocessing and feature engineering were conducted similarly 
to Mehdiyev et al. (2024a), although a more relaxed outlier filtering 
was applied compared to the referenced study. Such an outlier filtering 
allows for the dataset to contain more aleatoric uncertainty which, in 
turn, is expected to impact the ML model’s performance regarding UQ. 
Feature engineering was then employed to identify previous activities, 
and their processing times and integrate statistical data of the current 
activity.

During iterative feature selection, conducted alongside model train-
ing, variables with relative feature importance below 0.05% were 
categorically excluded, as they were deemed to contribute negligible 
predictive value. Additionally, variables containing sensitive informa-
tion, such as data allowing for the personal identification of workers, 
were omitted to address ethical considerations and safeguard indi-
vidual privacy. Since the employed data contains only variables with 
domain-specific relevance regarding the examined production process, 
all remaining variables were included for the final model training and 
evaluations.

For hyperparameter tuning, model training, and the calibration 
of the CP method, the dataset was partitioned into training, calibra-
tion, and test sets in an 8:1:1 ratio, resulting in 132,982 events for 
training, 16,217 events for calibration, and 16,234 events for testing. 
The splitting was conducted in chronological order, ensuring that only 
complete traces were allocated to each dataset, thereby maintaining the 
integrity of each dataset. The product-specific features are detailed in 
Table  2 and process-specific features in Table  3, while comprehensive 
information about the datasets is provided in Table  4.

The proposed approach was implemented in R, encompassing data 
processing, hyperparameter optimization, model training, PFI, and re-
sult visualization. The tidyverse library suite was predominantly utilized 
for data cleaning, hyperparameter tuning, and model training activities. 
Visualization tasks were performed using the ggplot2 library. All com-
putational tasks were executed on a 64-bit system equipped with a 13th 
Gen Intel(R) Core(TM) i7-13700F processor, running at a clock speed 
of 2,100 MHz, with 16 cores and 32 GB of RAM.

4.2. Machine learning settings

Hyperparameter optimization is a critical process in ML aimed at 
improving ML model performance by identifying the best set of hy-
perparameters. Unlike model parameters, which are learned during the 
training process, hyperparameters are set before training and govern 
the learning process itself. The objective of hyperparameter tuning is 
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Table 2
Description of product-specific features.
 Feature Name Abbreviation Description  
 Article ART The specific article or product being 

manufactured.
 

 Bend Radius L BRL The large bend radius of the sheet metal 
used in the product.

 

 Bend Radius S BRS The small bend radius of the sheet metal 
used in the product.

 

 Diameter Base DBA The diameter of the base component used 
in the product.

 

 Diameter Circle DCI The diameter of the circular component 
used in the product.

 

 Material MAT The material used to manufacture the 
product.

 

 Sheet Width SWI The width of the sheet metal used in the 
product.

 

 Weight WGT The weight of the sheet metal used in the 
product.

 

to find the optimal hyperparameters that minimize the loss function, 
often using techniques such as grid search or random search.

In this study, we conduct hyperparameter optimization for four dis-
tinct models: generalized linear model (GLM) employing glmnet (Hastie 
et al., 2021), decision tree (DT), random forest (RF), and gradient 
boosting machine (GBM) employing XGBoost (Chen and Guestrin, 
2016). The settings for hyperparameter optimization for each model 
are detailed in Table  5. We employ a grid search via Latin hypercube 
sampling with a sample size of 30 to comprehensively explore the 
hyperparameter space, with each model being evaluated using 10-fold 
cross-validation on the training dataset and the performance being 
assessed based on mean absolute error (MAE) and root mean squared 
error (RMSE) (see Section 4.3). By employing this approach, we aim to 
ensure robust hyperparameter tuning and optimal model performance. 
The specific settings for hyperparameter optimization for each model 
are detailed in Table  5.

4.3. Evaluation metrics

This section outlines evaluation methodologies appropriate for as-
sessing the predictive quality of the employed ML model. We focus on 
evaluation metrics concerning UQ, particularly regarding the quality 
of prediction intervals. We use PICP, MPIW, MRPIW, and the mean 
Winkler score to assess this aspect.
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Table 3
Description of process-specific features.
 Feature Name Abbreviation Description  
 Activity ACT The specific activity being performed, 

including machine equipment type, in the 
event.

 

 Mean Processing 
Time

MPT* The average time expected to complete the 
current activity. Engineered using historical 
averages across the corresponding activity 
of the produced article.

 

 Mean Total 
Processing Time

MTT* The average time expected to complete all 
activities of the current type within trace.

 

 Mean Trace 
Processing Time

TTT* The average processing time for the entire 
event trace. Engineered using historical 
data.

 

 Planned Processing 
Steps

PPS The total number of processing steps 
planned for the event.

 

 Previous Processing 
Time

PPT* The time taken for the previous processing 
step. Engineered based on historical event 
logs.

 

 Processing Step 
Number

PSN The specific number assigned to each 
processing step in the event.

 

 Quantity QU The quantity of items currently produced.  
 Total Quantity TQU The quantity of items to be produced in 

total.
 

 Worker WOR The worker assigned to the activity in the 
event.

 

Table 4
Overview of the employed event log dataset.
 Training Calibration Test Complete Dataset 
 Number of 132,982 16,217 16,234 165,433  
 events (80.4%) (9.8%) (9.8%)  
 Number of 26,264 3,283 3,283 32,831  
 cases (80%) (10%) (10%)  
 Unique 32 27 27 32  
 activities  
 Mean 102.10 89.55 100.86 100.74  
 processing  
 time (min)  
 Std. deviation 118.09 107.90 117.00 117.08  
 of processing  
 time (min)  
 Mean trace 5.06 4.94 4.94 5.04  
 length  
 Std. deviation 3.89 4.20 4.39 3.98  
 of trace length  

PICP measures the proportion of target values from a dataset of 
length 𝑁 falling within the prediction intervals and is calculated as 
follows: 

PICP = 1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖𝑐𝑖, 𝑝𝑖𝑐𝑖 =

{

1, 𝑌𝑖 ∈
[

𝐿𝑖, 𝑈𝑖
]

0, 𝑌𝑖 ∉
[

𝐿𝑖, 𝑈𝑖
]

,
(6)

with 𝐿𝑖, 𝑈𝑖 respectively representing the lower and upper boundaries 
𝑓 (𝑋𝑖) − 𝑞 and 𝑓 (𝑋𝑖) + 𝑞 of the prediction interval as defined in Eq.  (3).

MPIW evaluates the average width of these prediction intervals: 

𝑀𝑃𝐼𝑊 = 1
𝑁

𝑁
∑

𝑖=1
(𝑈𝑖 − 𝐿𝑖) (7)

To account for the relative scale of prediction intervals, MRPIW 
normalizes the interval width by the corresponding point predictions: 

𝑀𝑅𝑃𝐼𝑊 = 1
𝑁

𝑁
∑

𝑟𝑊 𝑖𝑑𝑡ℎ𝑖, 𝑟𝑊 𝑖𝑑𝑡ℎ𝑖 =
(𝑈𝑖 − 𝐿𝑖)
𝑓 (𝑋 )

(8)

𝑖=1 𝑖
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Table 5
Hyperparameter optimization settings for DT, GBM, GLM and RF models.
 Model Hyperparameter Search Interval 
 DT cost_complexity (0; 0.1)  
 min_nc [2; 40]  
 tree_depth [1; 15]  
 GBM trees [1; 2000]  
 mtry [1; 18]  
 min_n [2; 40]  
 tree_depth [1; 15]  
 learn_rate (0; 0.1)  
 loss_reductione (1𝑒 − 10; +∞)  
 sample_sizef [0.1; 1]  
 GLM mixturea [0; 1]  
 penaltyb (0; 1)  
 RF min_n [2; 40]  
 mtryd [1; 18]  
 trees [1; 2000]  
a Proportion of pure lasso to ridge regression penalty.
b Amount of regularization.
c Minimum number of data points in a node for splitting.
d Number of predictors randomly sampled at each split.
e Reduction in loss function required to split further.
f Data set size used for modeling within an iteration of the modeling algorithm.

The MRPIW sets the absolute prediction interval width in the con-
text of the point prediction, capturing the relative proportion of inter-
vals regarding the point forecast.

Additionally, we employ the mean of the Winkler score across single 
predictions to measure the accuracy and informativeness of prediction 
intervals, which is calculated as follows: 

𝑊 = 1
𝑁

𝑁
∑

𝑖=1
𝑊𝑖, (9)

𝑊𝑖 =

⎧

⎪

⎨

⎪

⎩

(

𝑈𝑖 − 𝐿𝑖
)

+ 2
𝛼

(

𝐿𝑖 − 𝑌𝑖
)  if 𝑌𝑖 < 𝐿𝑖

(

𝑈𝑖 − 𝐿𝑖
)  if 𝐿𝑖 ≤ 𝑌𝑖 ≤ 𝑈𝑖

(

𝑈𝑖 − 𝐿𝑖
)

+ 2
𝛼

(

𝑌𝑖 − 𝑈𝑖
)  if 𝑌𝑖 > 𝑈𝑖

The Winkler score is useful for UQ as it not only measures the 
width of the prediction intervals but also penalizes intervals that fail to 
cover the true values, thereby providing a balanced assessment of both 
accuracy and informativeness. When aiming at high coverage of ground 
truths, the alpha levels in the penalty term of the Winkler calculation 
decrease. However, this also means that the penalty for intervals failing 
to cover the true values becomes more significant. Consequently, the 
Winkler score adjusts to discourage overly broad intervals that do not 
effectively encapsulate the true values, maintaining a critical balance 
between interval width and coverage accuracy. This property ensures 
that the prediction model is not only broadening its intervals indis-
criminately but is also mindful of maintaining coverage, thus offering 
a nuanced and robust measure of predictive performance.

5. Results

In this section, we examine the results of hyperparameter optimiza-
tion and UQ evaluation. First, the optimal hyperparameter settings 
and performance outcomes for the underlying dataset and use case 
are presented. Next, the performance regarding point prediction of the 
optimized ML models was assessed on the test data. The model exhibit-
ing the highest performance was evaluated regarding UQ, providing a 
comprehensive evaluation of the model’s predictive capabilities. This 
established the necessary foundation for the examination of PFI results, 
which concludes this section.
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Table 6
Optimal settings for GLM, DT, RF and GBM models yielded by hyperparameter tuning 
and evaluated via 10-fold cross-validation on the training data.
 Model Hyperparameter Settings 𝑀𝐴𝐸a 𝑅𝑀𝑆𝐸a 
 GLM mixture 0.13 46.8 78.4  
 penalty 0.846  
 DT cost_complexity 1.3e−07 41.5 72.9  
 min_n 35  
 tree_depth 10  
 RF min_n 36 39.5 65.7  
 mtry 18  
 trees 979  
 GBM trees 1622 38.2 66.4  
 mtry 12  
 min_n 25  
 tree_depth 8  
 learn_rate 0.0356  
 loss_reduction 1.05e−10  
 sample_size 0.864  
a In minutes.

Table 7
Evaluation of fitted models on test data.
 Model 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 
 GLM 47.1 77.4  
 DT 43.6 73.3  
 RF 39.1 64.9  
 GBM 37.2 62.1  

5.1. Hyperparameter optimization and model evaluation

Hyperparameter tuning was conducted as described in Section 4.2 
and evaluated using 10-fold cross-validation on the training data, with 
a final evaluation on the test data. First, the optimal settings as well as 
performance results from the 10-fold cross-validation on the training 
data are being examined (see Table  6).

Both RF and GBM models demonstrate strong predictive capabili-
ties, as evidenced by their performance metrics, followed by the DT 
model and lastly GLM. The RF model achieved an RMSE of 65.7, 
slightly lower than the GBM’s 66.4, indicating marginally better per-
formance in terms of overall prediction error. However, the GBM 
model’s MAE of 38.2, compared to RF’s 39.5, suggests that GBM offers 
more precise predictions on average. Considering both MAE and RMSE, 
the GBM model exhibits superior average prediction accuracy, while 
the RF model demonstrates slightly better performance in minimizing 
overall prediction error variance. For a comprehensive evaluation, each 
of the models was trained using the full training dataset, and their 
performance was examined on the test data (see Table  7).

Regarding computational complexity, a comparative analysis of 
the computation times for the hyperparameter tuning was conducted, 
utilizing the parallel processing capabilities of the setup described 
in Section 4: DT and GLM models yielded the shortest computation 
times with 5.4 min and 10.2 min respectively, followed by the RF 
model with 83.0 min and the GBM model with 116 min. This analysis 
excluded the computation time for the SCP calibration, considering 
its linear complexity regarding calibration set sizes, its independence 
from computational costs of the employed point prediction models, 
and negligible computation times (approximately 2 s) for the maximum 
calibration set size of 16,217 instances.

When evaluated on the test data, the RF model reported an MAE of 
39.1 and an RMSE of 64.9, showing consistent performance across both 
training and test datasets. This indicates that the RF model generalizes 
well. However, the GBM model slightly outperformed the RF model, 
with an MAE of 37.2 and an RMSE of 62.1. Both black-box models 
showed increased performance on unseen data compared to their trans-
parent counterparts, DT and GLM. Therefore, the GBM model is selected 
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Fig. 2. Evaluation of the fitted models regarding the sensitivity of uncertainty 
quantification for an 𝛼 value of 5% on test data across varying sizes of calibration 
data.

for further analysis and application in this study due to its robustness 
and higher accuracy in capturing complex data patterns. This selection 
ensures that the study leverages the model with the best predictive 
capability, enhancing the reliability of the results.

5.2. Uncertainty quantification

To analyze model uncertainty as well as sensitivity, we applied SCP 
to the fitted models, using unseen data from the calibration dataset to 
fine-tune prediction intervals and perform analyses on the test data. 
Figs.  2–5 present the results of the sensitivity analysis for the fitted 
models at an 𝑎𝑙𝑝ℎ𝑎 value of 5% across varying volumes of calibration 
data regarding the PICP, MPIW, MRPIW, and mean Winkler score 
metrics respectively. Particularly, the analysis was conducted on cal-
ibration set sizes equivalent to 100%, 75%, and 50% of the maximum 
calibration set size of 16,217 instances, with further evaluation con-
ducted by iteratively halving the set size down to 63 data instances, 
which is approximately 0.391% of the maximum set size.

While GBM and RF generally outperform the DT and GLM models, 
all four models demonstrate clear performance gains, evident through 
high coverage at reduced prediction interval widths and more stable 
mean Winkler scores when larger calibration datasets (above 12,000 
data instances) are employed. When calibration data are extremely 
limited (below 1,000 data instances), PICP values return to levels com-
parable to those observed with ample calibration data, suggesting that 
even small datasets can achieve the same nominal coverage. However, 
this improvement in coverage arises at the expense of broader intervals, 
reflected in elevated MPIW and MRPIW scores, which indicates a trade-
off between coverage and precision. The trends observed across these 
models highlight the advantages of using larger calibration datasets 
to capture the inherent variability of the data more effectively and, 
consequently, to maintain more precise, and therefore more practical, 
prediction intervals. For further examination, Appendix  B provides Figs. 
26–41 for a detailed examination of the sensitivity analysis results 
across the utilized models, 𝛼 values and calibration set sizes.

The evaluation of the fitted GBM model on the test data is sum-
marized in Table  8, detailing MPIW, MRPIW, PICP, and mean Winkler 
score for different significance levels 𝛼 used for the construction of 
prediction intervals. These results emphasize the inherent connection 
of PICP to the value of 𝛼, since the width of prediction intervals is 
calibrated to achieve the desired coverage. A lower 𝛼 means that the 
intervals are designed to be more inclusive, reducing the risk of missing 
the true values. However, this inclusivity comes at the cost of interval 
width, making the intervals potentially less useful in practical scenarios 
where narrower intervals are preferred. As 𝛼 increases, the interval 
width, and thus the PICP, is expected to decrease, reflecting a relaxation 
of the desired coverage.

At 𝛼 = 5%, the PICP is 0.94, indicating that 94% of the true values 
are within the prediction intervals. This high coverage ensures that the 
model captures the most true values but results in wide intervals. As 𝛼
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Fig. 3. Evaluation of the fitted models regarding the sensitivity of uncertainty 
quantification for an 𝛼 value of 5% on test data across varying sizes of calibration 
data.

Fig. 4. Evaluation of the fitted models regarding the sensitivity of uncertainty 
quantification for an 𝛼 value of 5% on test data across varying sizes of calibration 
data.

Fig. 5. Evaluation of the fitted models regarding the sensitivity of uncertainty 
quantification for an 𝛼 value of 5% on test data across varying sizes of calibration 
data.

increases to 20%, the PICP decreases to 0.77. The reduction in coverage 
probability signifies that fewer true values fall within the narrower 
intervals, indicating the expected trade-off between significance and 
coverage levels.

The MPIW increase from 93.4 at 𝛼 = 20% to 247.3 at 𝛼 = 5%. The 
decrease in MPIW is particularly pronounced between 𝛼 = 5% and 𝛼
= 10%, with a reduction of 85 min. This significant reduction suggests 
that initially increasing 𝛼 leads to substantially narrower intervals. As 
𝛼 increases further, the rate of decrease in MPIW continues but at 
a slower pace, indicating that initial adjustments in 𝛼 have a more 
pronounced impact on interval width.

Similarly, MRPIW, which normalizes the interval width relative to 
the point prediction, increases from 0.48 at 𝛼 = 20% to 1.28 at 𝛼 =
5%, with the largest drop in MRPIW occurring between 𝛼 = 5% and 
10%, decreasing the mean relative width by 44%. This trend indicates 
diminishing returns in the quality of prediction intervals for increases 
in the desired coverage of ground truths.

The mean Winkler score, which combines both interval width and 
coverage, increases from 227.4 at 𝛼 = 20% to 409.3 at 𝛼 = 5%. Although 
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Table 8
Evaluation of the final GBM model regarding uncertainty quantification on test data.
 𝛼-Value 𝑃𝐼𝐶𝑃 𝑀𝑃𝐼𝑊 𝑀𝑅𝑃𝐼𝑊 𝑊  
 5% 0.94 247.3 1.28 409.3 
 10% 0.88 162.3 0.84 314.9 
 15% 0.82 119.2 0.62 262.9 
 20% 0.77 93.4 0.48 227.4 

lower 𝛼 values result in wider intervals, as indicated by the MPIW 
and MRPIW metrics, the W tends to increase with higher PICP levels. 
This increase occurs due to the balance between interval width and the 
increased penalty for non-coverage. Due to the nature of calculating 
the Winkler score, increasing coverage by decreasing 𝛼 levels results in 
more ground truth values being captured by wider prediction intervals, 
thus yielding minimal Winkler penalties. However, for instances that 
were not covered by the prediction intervals, the decrease in 𝛼 levels 
results in the penalty term of the Winkler score calculation increasing 
proportionally. Consequently, uncovered ground truths yield higher 
penalties for lower 𝛼 levels, which cannot be compensated by the 
increase in coverage, resulting in the exhibited trend for the mean 
Winkler scores.

5.3. Uncertainty-related permutation feature importance

The following subsections describe the results of three approaches 
towards the examination and interpretation of PFI at the calibration 
and testing stages of UQ evaluation. The analysis commences with the 
assessment of feature importance regarding UQ metrics at the testing 
stage, which builds the foundation for the interpretation of subsequent 
results. Next, feature importance is assessed at the calibration stage and 
the magnitude of disruption regarding model uncertainty is captured 
and examined. Lastly, implications of concurrently permuting feature 
values in the calibration and the test data are investigated in light of 
the preceding results.

5.3.1. Permutation feature importance on test data
To understand the influence of individual features on a calibrated 

ML model, we conduct a PFI analysis regarding PICP, MRPIW, and 
mean Winkler score. The SPC method, which calibrates prediction 
interval widths for future predictions based on the desired significance 
level 𝛼, inherently keeps the MPIW metric constant. Consequently, we 
expect the changes in the model’s point predictions to subsequently af-
fect UQ metrics, allowing for the examination of the feature importance 
for the calibrated model.

Figs.  6 (a), (b), (c) and (d) respectively illustrate the PFI results 
regarding the PICP metric across four different 𝛼-levels: 5%, 10%, 15%, 
and 20%. Each plot segmented the features (see Table  2 and Table 
3) into two categories: product-specific and process-specific features. 
The importance of a feature is denoted by its mean deviation from the 
baseline (see Table  8) across ten iterations of PFI measurements, and 
is indicated by an orange bar for negative and a blue bar for positive 
values.

Across all 𝛼-levels, the ranking of most influential features within 
each category remains consistent: For process-specific features, MPT*
consistently ranks highest, followed by ACT  and QU. This suggests that 
these features are pivotal in influencing the PICP metric, regardless 
of the significance level. DCI maintains a dominant position across all 
significance levels, albeit with a minimal absolute deviation from the 
baseline. Other features like WGT  and MAT  show some importance 
but to a lesser extent compared to DCI. The influence of product-
specific features on the PICP metric is considerably less pronounced 
than that of process-specific features, with the engineered feature MPT*
spearheading the importance ranking, suggesting that process-specific 
features have a more substantial impact on the model predictions.
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Fig. 6. PICP-related permutation feature importance for the GBM model for permuted test data.
The absolute deviation from the baseline for the most important 
features diminishes slightly as 𝛼 levels decrease. Considering that the 
corresponding baselines increase with decreasing significance levels, 
this trend indicates that calibration on lower 𝛼 levels yields increased 
robustness regarding the coverage of ground truths. This observation 
can be attributed to higher 𝛼 levels allowing for narrower prediction 
interval widths which are more sensitive to changes in the point 
prediction and, subsequently, perturbances of the input data.

The order of features within each category remains relatively stable 
across varying 𝛼-levels, indicating that the relative importance of fea-
tures does not drastically change with different levels of significance. 
Many features across all categories exhibit negligible importance, re-
gardless of 𝛼-level. This suggests that only a few key features predomi-
nantly influence the PICP metric, while the rest have a minimal impact. 
These findings highlight the robustness and stability of certain key 
features across different significance levels, emphasizing their marginal 
effect on the model prediction.

Regarding the MRPIW metric, Figs.  7 (a), (b), (c) and (d) depict 
feature importance in similar fashion as for PICP. Across all feature 
categories, deviations from the baselines exhibit a more balanced dis-
tribution when compared to the PICP, with deviations decreasing their 
magnitude with higher 𝛼 values.

Across all significance levels, the ranking of the most influential fea-
tures within the process-specific category remains consistent. WOR and
MTT* consistently rank highest, followed by ACT  and TQU, influencing 
the MRPIW metric regardless of the significance level. For product-
specific features, WGT  maintains a dominant position across all 𝛼 ≤
15%. Other features like MAT  and SWI also show some importance but 
to a lesser extent compared to WGT. The influence of product-specific 
features on the MRPIW metric is slightly less pronounced than that of 
process-specific features, especially with decreasing significance levels.

In the context of SCP, the prediction interval width is determined 
during the calibration phase and remains constant regardless of model 
uncertainty. Therefore, the MPIW also remains consistent across signif-
icance levels. However, the MRPIW metric differs as it is influenced by 
changes in the model’s point predictions. The MRPIW is calculated by 
dividing the determined interval width by the model’s point prediction. 
Therefore, increases in MRPIW can be traced back to an average 
decrease in the predicted target values.

Deviations in the mean Winkler score are presented in Figs.  8 
(a), (b), (c) and (d). The stability importance rankings across varying 
significance levels indicate that the relative impact of these features 
remains relatively unchanged with different levels of significance. For 
process-specific features, MPT* is the most influential feature, followed 
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by QU and ACT, regardless of the 𝛼 value. DCI and WGT  are the most 
significant product specific features. However, the overall impact of 
product-specific features on the Winkler score is negligible compared 
to that of process-specific features.

Similar to the observations in Table  8, greater deviations from 
the baseline can be observed with decreasing significance levels. This 
behavior stems from the Winkler score’s intrinsic connection to the 
𝛼 value. As 𝛼 decreases, the penalty for uncovered ground truths 
increases. This increase in penalty is not sufficiently offset by the 
higher likelihood of the prediction intervals covering the true values, 
leading to greater deviations from the baseline mean Winkler score with 
decreasing significance levels.

In summary, the changes in the test dataset result in the model 
misinterpreting the permuted feature’s values, negatively affecting the 
point forecast and subsequently the quality of UQ. However, the mea-
sured effects of the permuted variables indicate that changes in the 
model’s point prediction accuracy may be a relevant contributor. The 
following experiment settings aim at further isolating the feature im-
pact on UQ.

5.3.2. Permutation feature importance on calibration data
After examining the influence of individual features on a calibrated 

ML model, we explore and compare the effects of permuting values of 
individual features during the conformal inference calibration on the 
final model’s UQ performance. Due to these changes, it is expected that 
the prediction intervals to be affected according to the magnitude of 
uncertainty introduced during calibration. We evaluate the calibration 
quality on the test dataset, examining the deviations of PICP, MPIW, 
MRPIW, and mean Winkler score from the baseline established in Table 
8.

Figs.  9 (a), (b), (c) and (d) generally follow the same trends as 
their respective counterparts in Figs.  6 (a), (b), (c) and (d), although 
the values deviate in a positive direction from the baseline. With the 
magnitude of deviations being limited by the number of uncaptured 
ground truths of the corresponding 𝛼 value, we observe that the impact 
of relevant variables drives the ground truth coverage towards its max-
imum, especially for lower significance levels. Again, MPT*, ACT  and
QU consistently rank highest for process-specific features, with DCI and
WGT  showing the highest impact regarding product-specific features. 
The minimal impact of other product-specific features indicates their 
lesser influence on the PICP metric. The general trend shows that 
the most influential features maintain their relative importance across 
varying 𝛼 levels, underscoring their robustness.



N. Mehdiyev et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110363 
Fig. 7. MRPIW-related PFI for the GBM model for permuted test data.
Fig. 8. Mean Winkler score-related PFI for the GBM model for permuted test data.
Considering that the prediction intervals are allowed to change, 
increases in PICP necessitate further examination of the prediction 
interval width to assess the interplay between model uncertainty and 
coverage of ground truths.

Figs.  10 (a), (b), (c) and (d) depict the deviations in MPIW, offering 
insight into the uncertainty of the ML model’s predictions, with wider 
intervals indicating higher uncertainty. Similar to Figs.  9 (a), (b), (c) 
and (d), the consistently high deviations for MPT* suggest the variable’s 
critical role in model uncertainty, with other features generally follow-
ing the same trend. The relationship between the expected coverage 
of ground truths based on the significance level and the width of 
prediction intervals is highlighted by larger deviations in MPIW being 
observed with decreasing 𝛼 levels. Regarding the interpretation pertain-
ing to deviations in PICP depicted in Figs.  9 (a), (b), (c) and (d), the 
increase in coverage implies that the calibration on the permuted data 
resulted in prediction intervals being generated more conservatively, 
leading to an increased performance on intact unseen data.

The observations for MPIW are overall congruent with the results 
for the MRPIW, depicted in Figs.  11 (a), (b), (c) and (d): Importance 
ranking remain unchanged, with the magnitude and orientation of de-
viations from the baseline mimicking the feature importance regarding 
the MPIW metric.
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For the analysis of model uncertainty regarding the mean Winkler 
score, a comparison between Figs.  12 (a), (b), (c) and (d) and Figs.  8 
(a), (b), (c) and (d) highlights the overall stability of the mean Winkler 
score for most features, emphasizing the role of relevant variables in 
the estimation of prediction intervals. Most notably, the impact on 
the mean Winkler score is only pronounced for MPT*, following the 
trends observed for MPIW and MRPIW of decreasing its absolute impact 
with increasing significance levels. The remaining variables follow the 
previously identified importance trends, although their absolute effect 
on the mean Winkler score is relatively negligible.

The presented observations highlight that the model’s inability to 
leverage the shuffled feature values of the permuted variable during 
the calibration step results in the prediction intervals being widened 
accordingly. However, the intact test dataset allows for the model to 
gain insight from the feature in question, consequently maintaining 
its point prediction accuracy during testing. This results in increased 
coverage of ground truths due to overestimation of prediction interval 
widths. Although this yields increased returns in PICP (see Figs.  9) for 
certain features, the mean Winkler score seems to accentuate only the 
most relevant ones.
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Fig. 9. PICP-related PFI for the GBM model for permuted calibration data.

Fig. 10. MPIW-related PFI for the GBM model for permuted calibration data.

Fig. 11. MRPIW-related PFI for the GBM model for permuted calibration data.
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Fig. 12. Mean Winkler score-related PFI for the GBM model for permuted calibration data.
5.3.3. Permutation feature importance on calibration and test data
While the previous analysis allowed the model to leverage the 

predictive qualities of all variables from the test dataset for its point 
predictions, the following analysis extends the permutation to cor-
responding feature values within the test set as well. The resulting 
deviations from the baseline (see Table  8) regarding PICP, MPIW, 
MRPIW and mean Winkler score were examined and compared to the 
previous results.

Figs.  13 (a), (b), (c) and (d) present the results of PFI regarding 
PICP, showing a distribution of positive and negative deviations from 
the baseline, with the magnitude of deviations increasing with rising 
𝛼 values. The importance rankings across significance levels conform 
mostly with the corresponding rankings observed in Figs.  6 (a), (b), (c) 
and (d) and Figs.  9 (a), (b), (c) and (d). Differences can be observed 
regarding the bi-directionality of deviations as well as the increase 
in the number of variables with a noticeable impact on the PICP. As 
the significance levels decrease, the importance of certain features, 
particularly within product specifications at 𝛼 = 5%, becomes less 
pronounced with minimal impact on the coverage of ground truths. 
The absolute effect on the PICP metric is marginal across significance 
levels, with the highest impact being recorded for QU at 𝛼 = 20%, 
deviating by slightly more than 1%. Thus, the model’s prediction in-
terval coverage is relatively unaffected by the permutations, reflecting 
effective calibration of the model’s prediction intervals with minimal 
fluctuations.

Since the calibration process remains unchanged, relevant results 
pertaining to the MPIW can be retrieved from Figs.  10 (a), (b), (c) 
and (d) of Section 5.3.2. However, as Figs.  14 (a), (b), (c) and (d) 
depict, the results regarding the MRPIW metric rather show similarities 
to Figs.  7 (a), (b), (c) and (d). Most notably, the magnitude of deviations 
from the baseline as well as slight differences in the feature importance 
rankings indicate the impact of inaccuracies in the point prediction on 
the relative prediction interval width: Considering that the calculation 
of the MRPIW is tied to the point prediction (see Section 4.3) and 
comparing the results to Fig.  11, the rise in MRPIW can be mainly 
attributed to the model generally reducing the predicted processing 
time as a reaction to the erroneous values introduced through feature 
permutation. Although the MRPIW metric conveys relevant insight 
about the quality of prediction intervals, its convoluted relationship 
with the model’s point predictions complicates the analysis of model 
uncertainty and emphasizes the analyses from Section 5.3.2.

Mean Winkler score-related PFI is depicted in Figs.  15 (a), (b), (c) 
and (d) and shows notable similarities across alpha levels and feature 
categories towards the results depicted in Figs.  8 (a), (b), (c) and (d). 
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These similarities pertain to the overall feature importance ranking, 
indicating the previously established relevance of variables like MPT*,
QU, ACT  and DCI, although the magnitude in deviations decreased 
notably compared to the results of the former analysis. Similar to the 
results for MRPIW, a comparison with previously presented results for 
the mean Winkler score indicates that these similarities stem from 
inaccuracies in the point prediction due to the permuted test data, with 
a subsequent effect on the performance regarding UQ. In particular, 
Figs.  12 (a), (b), (c) and (d) indicated that calibration on the permuted 
feature generally mitigates the impact of erroneous feature values, with
MPT* increasing the mean Winkler score by less than 30 points and 
negligible changes for other variables. Consequently, any increases in 
the deviation of the mean Winkler score in Figs.  15 (a), (b), (c) and (d), 
although partially mitigated through the calibration, are predominantly 
affected by the changes in point predictions.

6. Discussion

Our proposed uncertainty-aware PFI enables the general assess-
ment of a feature’s impact on an ML model’s predictive performance, 
specifically focusing on how perturbations in feature values influence 
the prediction intervals around predictions. In our work, we leverage 
SCP to construct prediction intervals and then examine three distinct 
scenarios of feature-value permutation to isolate how each stage – 
calibration vs. testing – affects uncertainty. This section discusses how 
these scenarios tie into practical settings of predictive process monitor-
ing, compares them with conventional approaches, and highlights the 
principal insights derived from our findings.

Rationale behind the three permutation scenarios:  A key con-
tribution of our study is the design of three specific scenarios for 
permuting feature values – (1) in the test data only, (2) in the calibra-
tion data only, and (3) in both calibration and test data – and evaluating 
their impact on CP-based uncertainty quantification. These scenarios 
collectively capture a spectrum of real-world conditions in predictive 
process monitoring, especially when data come from event logs that 
are prone to changes over time and across different stages of model 
usage.

In the first scenario, only the test data are permuted. This setup 
simulates on-the-fly perturbations in new process instances, reflecting 
how, in many production systems, real-time data can be incomplete, 
noisy, or suffer from sensor or user-entry errors. Because the calibration 
data remain untouched, the intervals retain their original width, allow-
ing us to isolate how deployment-phase noise influences the reliability 
of point predictions and final coverage. In the second scenario, only 
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Fig. 13. PICP-related PFI for the GBM model for permuted calibration and test data.

Fig. 14. MRPIW-related PFI for the GBM model for permuted calibration and test data.

Fig. 15. Mean Winkler score-related PFI for the GBM model for permuted calibration and test data.
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the calibration data are permuted, which reveals how flawed interval 
construction arises if the historical or offline logs used to size these 
intervals are inconsistent with present conditions. Although the test 
data stay accurate, shifting even one critical feature in calibration 
can lead to systematically biased intervals that either over- or under-
estimate the true uncertainty. In the third scenario, both calibration 
and test data are simultaneously permuted, representing a worst-case 
environment where logs are incomplete or outdated and newly arriving 
data are similarly unreliable. This dual disturbance provides insight 
into whether the model can still maintain acceptable coverage despite 
major deviations in both the data used to form interval widths and the 
data used for ongoing forecasts.

Because process mining involves the exploration of event logs that 
may span months or years, the three scenarios address several core 
challenges. Continual drifts and heterogeneity in the event logs mean 
that the training and calibration stages might be disconnected from 
current process realities—machines could be replaced, operators could 
introduce novel practices, and new product variants might emerge, all 
of which can appear at the test stage (scenario 1) or already distort 
historical data (scenario 2). Partial traces further complicate matters 
because process monitoring is often near-real-time, meaning that any 
missing or noisy features at either calibration or runtime can shift 
coverage and interval width. Complex feature spaces, in which domain-
specific attributes such as weight or quantity intersect with hierarchical 
structures (for instance, case-level vs. event-level data), highlight why 
conventional point-focused explanations (e.g., SHAP) might not suffice 
to understand how intervals change under feature corruption. Mean-
while, industrial constraints frequently limit data-quality improvement 
efforts, so managers must know whether legacy logs or real-time data 
capture is more critical to fix. These three scenarios clarify whether 
uncertain intervals stem primarily from flawed calibration, noisy inputs 
at runtime, or the combined effect of both.

Overall, systematically permuting features in test data, calibration 
data, or both offers a realistic view of how incomplete, drifting, or noisy 
event logs in process-aware information systems affect conformal in-
tervals. The findings allow practitioners to identify which types of data 
corruption most strongly undermine coverage, thereby guiding whether 
to prioritize cleaning historical logs or enhancing the reliability of 
incoming data streams.

Comparison and trade-offs with other UQ methods:  Many con-
ventional UQ approaches, such as Bayesian methods or ensembles, 
focus on capturing parameter uncertainties or averaging over multiple 
models to derive prediction intervals. These techniques are power-
ful for accounting for both epistemic and aleatoric uncertainty but 
typically do not split off a separate calibration set to guarantee finite-
sample coverage. By contrast, our CP–based approach inherently uses 
a dedicated calibration set to produce coverage guarantees under mild 
assumptions (e.g., exchangeability). This structural separation enables 
the three-scenario design, allowing us to examine, in isolation, how 
errors in historical logs (calibration data) versus real-time data (test 
data) affect interval width and coverage. Recalibrating intervals with 
permuted calibration data offers direct insights into how historical 
inaccuracies can inflate or deflate intervals while permuting the test 
data evaluates the model’s sensitivity to real-time noise. In practical 
settings where process mining often encounters evolving data distribu-
tions, this scenario-based approach can highlight whether data-quality 
investments are more urgent in the logs used for calibration or ongoing 
data-capture processes. From a computational perspective, repeatedly 
recalibrating CP intervals to assess feature permutations can be more 
demanding than a single-pass Bayesian or ensemble-based approach. 
However, the additional overhead can yield more granular insights into 
which aspects of the data pipeline – historical calibration or real-time 
inputs – pose the greatest risk to coverage guarantees. For organizations 
that rely on accurate intervals to manage production resources or detect 
anomalies, pinpointing the exact source of coverage issues can be worth 
the extra computation.
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Isolating the feature importance regarding prediction intervals 
from feature importance regarding point forecast: When feature 
shuffling is applied at the testing stage, as in the first and third 
experimental setting (Section 5.3.1 and Section 5.3.3 respectively), the 
integrity of the test dataset is compromised as a result. This reduction 
in dataset quality degrades the quality of point forecasts, subsequently 
affecting the utility of the prediction intervals. In particular for these 
scenarios, noticeable similarities for the MRPIW as well as mean Win-
kler metrics regarding importance rankings and the relative magnitude 
of deviations were observable. Comparing the results for these metrics 
to those of the second experiment scenario (see Section 5.3.2) reveals 
distinct differences regarding the expression of variable impact on 
these metrics. Due to the test data being kept intact and the model’s 
point prediction being able to retain its accuracy, these configurations 
ensure that the measured effect is not diluted by changes in the point 
forecast. Thus, the results for this scenario highlight the impact of 
feature permutation solely on the calibration result and the quality 
of prediction intervals. For the underlying dataset and use case, the 
findings from the second experiment setting underscore the crucial role 
of process-specific features and the negligible role of product-specific 
features in calibrating prediction intervals. In the remaining scenarios, 
the model’s point forecast mitigated the effect of the permuted feature 
value by modifying its prediction accordingly, subsequently altering the 
position of the prediction intervals and diluting the measured effect.

Informativeness of UQ measures for PFI and their practical 
implications: An important aspect of our study lies in interpreting how 
the employed uncertainty metrics – particularly PICP, MPIW, MRPIW, 
and the Winkler score – translate into both experimental outcomes 
and real-world decision-making in manufacturing. In many industrial 
settings, tighter (narrower) prediction intervals can aid in scheduling 
and resource allocation by reducing idle times and process bottlenecks. 
However, intervals that become too narrow risk overlooking genuine 
variability, potentially causing unexpected overruns and reactive real-
locations. By contrast, intervals that are too wide may safeguard against 
missing the true duration of a task but can lead to inefficient resource 
usage.

Findings from our experiments further emphasize that these metrics 
often diverge in how they respond to feature permutations. Apart from 
PICP, no other metric exhibited relevant negative deviations (which 
would signify improvement) when a feature was permuted. Increases 
in MPIW generally indicate that the model requires broader intervals, 
which can reduce the quality and usefulness of its predictions for 
practical planning. Yet in scenarios that alter test data, changes in 
MRPIW and the mean Winkler score partly stem from the model’s ten-
dency to lower predicted values when input features appear corrupted, 
thereby inflating the relative interval width. Because MRPIW and the 
Winkler score are compound metrics, it is vital to interpret their fluc-
tuations with caution: a higher MRPIW may reflect a more uncertain 
model reacting to irregular inputs rather than merely indicating poor 
calibration.

In concrete manufacturing contexts, this trade-off between coverage 
and interval tightness poses critical questions. PICP addresses reliability 
by measuring the proportion of true values captured within the inter-
vals, which can be particularly valuable when missing a true value 
incurs steep penalties (e.g., unplanned downtime or delays). In one 
of our case studies, ensuring sufficiently high coverage for welding 
activities helped mitigate the costly ripple effects of underestimating 
task durations. However, excessively increasing the coverage often 
necessitated substantially wider intervals, as tracked by MPIW, limiting 
the granularity of resource scheduling. The Winkler score, in turn, 
penalizes intervals that fail to encompass the true value yet also dis-
courages overbroad predictions, capturing the delicate balance between 
safety margins and operational efficiency.

Ultimately, whether narrower intervals or higher coverage is prefer-
able depends on the cost structure of schedule deviations, rework, and 
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machine downtime in a specific production environment. A plant man-
ager might prefer intervals that are moderately wide to ensure reliable 
forecasts, while a less failure-sensitive assembly line may aim for tighter 
intervals in pursuit of higher throughput. The insights gained from 
PICP, MPIW, MRPIW, and the Winkler score collectively illuminate 
these trade-offs by revealing intricate details about how each permu-
tation experiment – or real-world data anomaly – affects model confi-
dence and calibration quality. By examining them in conjunction, prac-
titioners can better identify scenarios where additional data-cleaning 
efforts, sensor upgrades, or model refinements offer the greatest payoff 
in balancing efficiency and reliability.

Practical limitations and domain adaptation: We tested our ap-
proach in a regression setting tailored to continuous outcome prediction 
in a manufacturing environment for a PPM problem. However, in 
classification tasks with severe class imbalance, the validity of SPC 
and PFI can become more challenging to maintain, particularly for mi-
nority classes. While CP remains formally valid under exchangeability 
assumptions, highly skewed label distributions may limit its ability to 
generate tight, reliable intervals for underrepresented outcomes. One 
way to mitigate this limitation is to adopt more elaborate calibration 
strategies. Another option involves specialized sampling techniques 
before applying CP.

Beyond manufacturing, domains like healthcare or finance often 
confront rapidly evolving data distributions and domain-specific con-
straints. For instance, healthcare data can be inherently temporal, 
requiring additional causal modeling or domain knowledge to handle 
risk factors effectively. Financial data similarly necessitates adaptive 
conformal methods that can update prediction intervals as market in-
dicators shift. By adjusting calibration procedures or leveraging domain 
insights, our uncertainty-aware PFI framework can be adapted success-
fully to a wide range of high-stakes applications, maintaining robust 
interval estimation and feature-importance insights despite domain-
specific challenges. In addition, our current implementation assumes 
that the exchangeability assumption remains reasonably intact and that 
both calibration and test data share similar distributions. Situations 
involving severe covariate shifts, non-stationarity in event logs, or real-
time streaming data may demand more sophisticated CP variants (such 
as online or adaptive conformal approaches).

Moreover, organizations operating under stringent data privacy or 
regulatory guidelines may face limitations in applying both feature 
permutations and conformal predictions. In such cases, anonymization 
or federated learning solutions might be required to preserve compli-
ance, potentially reducing the granularity or availability of calibration 
data. Methods for adaptively incorporating these constraints, while 
still maintaining valid intervals, represent a promising direction for 
extending the current framework.

Future Work: While our study presents a novel integration of PFI 
with UQ within the CP framework, several avenues remain open for 
further exploration and enhancement. Our current application focuses 
on process mining for manufacturing, which presents unique challenges 
due to its event-driven and temporal data characteristics. Extending 
our methodology to other domains within process mining, such as 
healthcare, finance, or autonomous systems, would demonstrate its 
versatility and robustness across different data types and application 
contexts.

In addition to evaluating traditional UQ measures, exploring al-
ternative metrics could enhance the comprehensiveness of predictive 
uncertainty assessment. Various uncertainty measures, such as Bayesian 
credible intervals, entropy-based measures, or adversarial uncertainty 
measures, could be combined to look at various aspects of uncertainty 
and make it easier to understand which features are most important. 
Our method recognizes the challenges associated with permuting fea-
tures in the calibration data, which can disrupt the exchangeability 
assumption central to conformal prediction. Future research could 
investigate techniques to mitigate this issue, such as conditional per-
mutation methods that preserve the joint distribution of features or 
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incorporate robustness checks to assess the impact of exchangeabil-
ity violations. Additionally, developing adaptive conformal methods 
that relax the exchangeability assumption while maintaining valid 
uncertainty estimates would be a significant advancement.

Future work could explore integrating our PFI and UQ framework 
with knowledge graph-based reasoning to enhance interpretability (Li 
et al., 2024a). Leveraging structured semantic information and explicit 
rules can provide more transparent and understandable explanations 
of model predictions, especially in complex, event-driven domains (Li 
et al., 2024b). This integration would allow for the incorporation of 
domain-specific knowledge, facilitating the identification of meaningful 
feature relationships and enhancing the overall explainability of the 
model. Understanding the causal relationships between features and 
predictions is also crucial for developing robust and reliable models. 
Future research could also integrate causal inference techniques with 
our PFI and UQ framework to disentangle correlation from causation. 
This integration would identify truly influential features and enhance 
the model’s ability to generalize to unseen scenarios.

Finally, conducting longitudinal studies and deploying our method-
ology in real-world settings would provide valuable insights into its 
practical utility and impact. Such studies could assess how the im-
portance of uncertainty-aware features influences decision-making pro-
cesses, model trust, and operational efficiency in dynamic environ-
ments. Additionally, collaborating with industry partners to apply our 
framework to live data streams would validate its effectiveness and 
adaptability in real-time applications.

7. Conclusion

This study presents a novel methodology for integrating PFI into 
the domain of UQ. Our approach, structured into four primary stages – 
data preprocessing, model training, UQ, and XAI – provides a compre-
hensive framework for predictive process monitoring. The initial data 
preprocessing stage ensures high-quality inputs. This refined event log 
serves as a strong foundation for subsequent model training, ensuring 
appropriate model performance. In the UQ stage, SCP are employed 
to generate reliable prediction intervals, and evaluated using PICP, 
MRPIW, and mean Winkler score. The final XAI stage leverages PFI to 
elucidate the model’s inner workings. By evaluating feature importance 
at various stages, permuting the calibration or test data or both, we 
were able to examine the results under various aspects. This stage 
contributes to the correct interpretation of the measured effects and 
provides a guideline for evaluating feature importance in the context 
of UQ.

Our methodology successfully integrates advanced ML techniques 
with rigorous UQ and XAI practices. By systematically combining these 
elements, we create a robust framework that can not only be leveraged 
to enhance predictive performance but also contribute to model inter-
pretability. This dual focus on UQ and explainability addresses critical 
challenges in the predictive process monitoring domain associated with 
black-box algorithms, fostering trust and accountability in automated 
decision-making systems. Through the evaluation of three distinct PFI 
for UQ approaches, our study highlights the necessity of isolating the 
impact of feature permutation on UQ metrics from those related to 
point forecasts. The findings emphasize the importance of maintaining 
test data integrity and leveraging a variety of UQ metrics for a holistic 
understanding of model behavior. By doing so, we provide a nuanced 
understanding of how features contribute to both predictions and the 
confidence in these predictions, ultimately enhancing the robustness 
and reliability of predictive models.

In conclusion, our proposed methodology represents a significant 
advancement in predictive process monitoring by integrating XAI with 
UQ. This comprehensive approach ensures that predictive models are 
not only accurate but also transparent and reliable, thereby promoting 
their adoption and trust across various domains.
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Appendix A. Production analysis event log

Dataset and use case overview

The dataset utilized for the alternative use case is the Production 
Analysis event log (Levy, 2014) and stems from a manufacturing con-
text, which exhibits similarities with the primary use case description 
detailed in Section 4: various articles are being produced and each 
activity of the production process is documented as an event in the log, 
accompanied by the event- and trace-level specifications regarding the 
produced item. Similarly, the product specifications dictate the man-
ufacturing procedures, including rework to fulfill qualitative product 
requirements.

The original event log consists of 4543 events grouped into 225 
cases with 55 unique activities performed using 31 unique resources. 
For preprocessing and feature engineering the primary use case and 
the steps performed in Mehdiyev et al. (2024a) served as guidelines. 
Notably, the activity (ACT ) and resource (RSC) columns were subject 
to rigorous changes due to the redundancy of shared information, 
commonly stemming from resource information being reiterated in the 
activity column and leading to a false uniqueness. Therefore, activities 
were split from the resources, such as machines or tools, they were 
executed with, leading to a corrected number of 25 unique activities. 
Furthermore, we identified tasks that were interrupted, for example, 
due to changes in worker shifts, which partitions planned processing 
times. Such events were aggregated into a single event, correcting 
relevant feature values, such as those regarding produced quantities, 
accordingly. Additionally, previous activities, their processing times as 
well as the next planned activities were added via feature engineering.
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Table 9
Evaluation of the final RF model regarding uncertainty quantification on test data of 
the Production Analysis event log.
 𝛼-Value 𝑃𝐼𝐶𝑃 𝑀𝑃𝐼𝑊 𝑀𝑅𝑃𝐼𝑊 𝑊  
 5% 0.98 1588.2 11.6 2016.9 
 10% 0.92 855.4 6.2 1395.9 
 15% 0.88 652.9 4.8 1149.7 
 20% 0.81 476.8 3.48 982.0 

Model evaluation

The dataset was then partitioned into training, calibration, and test 
sets in a 6:2:2 ratio, yielding 1,536 events for training, 513 events 
for calibration, and 520 events for testing. With the only product-
specific feature being the part description (ART ), describing the specific 
article or product being manufactured, the remainder of variables 
contains process-specific information. n accordance with the primary 
use case, hyperparameter optimization was performed as described 
in Section 4.2, with the RF model (min_n= 3, mtry= 6, 527 trees) 
achieving the best performance across MAE and RMSE with 180 min 
and 356 min respectively, followed by the GBM and DT models and, 
lastly, the GLM model. An additional evaluation of test data yielded an 
MAE 158 min and an RMSE of 281 min, with the next best model being 
GBM with 159 and 312 min respectively. Both evaluations highlight 
the superior performance of the RF model, especially with regards to 
the RMSE metric, scoring a 10% lower RMSE then the next best model 
when evaluated on test data. Thus, further analysis regarding UQ is 
conducted by employing the RF model.

The evaluation of model uncertainty for the Production Analysis 
event log entails the application of SCP to the final RF model and, as in 
the primary use case (see Section 5.2), utilizing the calibration data for 
fine-tuning prediction intervals. Afterward, the model was evaluated on 
the test data, with the results summarized in Table  9, presenting MPIW, 
MRPIW, PICP, and mean Winkler score across various significance 
levels 𝛼.

The achieved coverage probabilities for the final RF model on the 
Production Analysis event log consistently exceed the nominal coverage 
levels corresponding to the 𝛼 values. Specifically, at 𝛼 = 5% (nominal 
coverage of 95%), the PICP is 98%, indicating over-coverage due to 
overly conservative prediction intervals. As 𝛼 increases from 5% to 
20%, the PICP decreases from 98% to 81%, yet remains above the 
nominal coverage levels (95% to 80%), suggesting that the intervals 
are consistently wider than necessary. Concurrently, the MPIW and 
MRPIW decrease with increasing 𝛼, reflecting narrower intervals but 
still indicating excessive width at lower 𝛼 levels.

Comparing these results with the German Manufacturer dataset in 
Table  8, we observe that the PICP values are closer to the nominal 
coverage levels and occasionally slightly below them (e.g., PICP of 
94% at 𝛼 = 5%). The notably wider prediction intervals for the 
Production Analysis dataset can be attributed to several key differences 
in its characteristics compared to the German Manufacturer dataset. 
Firstly, the Production Analysis dataset exhibits a significantly higher 
standard deviation in processing times (550.9 min) relative to its 
mean (325.2 min), indicating substantial variability and dispersion in 
the target variable. In contrast, the German Manufacturer dataset has 
a lower standard deviation (117.08 min) with respect to its mean 
processing time (100.74 min), suggesting more consistent processing 
times across cases. Secondly, the Production Analysis dataset is consid-
erably smaller, containing only 225 cases and 2,569 events, whereas 
the German Manufacturer dataset includes 32,831 cases and 165,433 
events. The limited size of the Production Analysis dataset reduces the 
model’s capacity to learn complex patterns effectively, often resulting 
in less precise predictions and necessitating wider prediction intervals 
to maintain the desired coverage levels. Additionally, 𝑊  values are 
substantially higher for the Production Analysis dataset across all 𝛼



N. Mehdiyev et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110363 
Fig. 16. PICP-related PFI for the RF model for permuted test data.

Fig. 17. MRPIW-related PFI for the RF model for permuted test data.

levels (e.g., 𝑊 = 2016.9 at 𝛼 = 5%) compared to the German Manu-
facturer dataset (e.g., 𝑊 = 409.3 at 𝛼 = 5%). The excessive 𝑊  scores 
in the Production Analysis dataset reflect the combination of wider 
intervals (as indicated by higher MPIW and MRPIW) and over-coverage. 
This inefficiency can be attributed to the dataset’s higher variability 
and smaller size, which compel the model to produce conservative 
estimates to achieve the desired coverage, albeit at the expense of 
interval sharpness.

Permutation feature importance on test data
The PFI analysis for the uncertainty metrics at varying significance 

levels 𝛼 reveals consistent patterns in feature influence for the cal-
ibrated model. Across all metrics, the features ACT, RSC, and WOR
consistently demonstrate high importance, underscoring their critical 
impact on model performance. The engineered feature NXT* (next 
activity) also shows moderate influence but ranks slightly lower, with 
its counterpart PRE* (previous activity) showing almost no relevance 
at all. Comparing the results for PICP (see Fig.  16) against MRPIW (see 
Fig.  17), higher deviations in the PICP are documented for increasing 
𝛼 levels, whereas for MRPIW the inverse trend is exhibited, suggesting 
reduced sensitivity to individual features at higher significance levels at 
the cost of ground truth coverage. Lower-ranked features like QU and
PPT* show minimal impact, indicating limited influence on interval 
coverage. For the mean Winkler score (see Fig.  18), which balances 
interval width and accuracy, ACT  and RSC again exhibit strong impor-
tance as well as robust scores for all features across different 𝛼 values. 
These identified trends show strong similarities to the results from the 
German Manufacturer dataset (see Figs.  6–8).
21 
Fig. 18. Mean Winkler score-related PFI for the RF model for permuted test data.

Permutation feature importance on calibration data
The analysis of PFI across UQ metrics, namely PICP (see Fig.  19), 

MPIW (see Fig.  20), MRPIW (see Fig.  21), and mean Winkler score 
(see Fig.  22), reveals distinct patterns in feature relevance with respect 
to the model calibrated through split conformal inference. For PICP, 
the most impactful features consistently include RSC, ACT, and WOR
across various levels of 𝛼, suggesting their impact on the model’s 
predictive coverage. Notably, the impact of PPT* appears slightly more 
prominent at the lowest 𝛼 values (5%), indicating that the role of 
certain features in maintaining prediction interval coverage may vary 
with the calibration confidence level. Since the calibration data is 
permuted, which directly influences the interval width, differences in 
feature impacts on the MPIW can be observed (see Fig.  20). Although 
the prediction intervals primarily show increases, indicating heightened 
model uncertainty, only marginal variations are observable in feature 
rankings. This trend extends to the MRPIW and mean Winkler score 
as well, exhibiting similar trends regarding the relative impact of 
features on the examined uncertainty metric. In summary, RSC and
ACT  consistently emerge as primary contributors across all metrics, 
highlighting their importance in maintaining effective uncertainty es-
timates. Secondary features, such as PPT* and WOR, exhibit variable 
influence depending on the calibration level (𝛼), indicating that their 
role in UQ metrics depends on the tolerance level for prediction error. 
Furthermore, notable differences in feature rankings compared to only 
permuting test data can be identified, primarily RSC overtaking ACT
as the most impactful variable.

Permutation feature importance on calibration and test data
The permutation of calibration data leads to more conservative 

prediction intervals, which is observed through generally higher val-
ues in MPIW, as noted in previous figures (see Fig.  20). However, 
permuting both calibration and test data, introduces an opportunity 
to analyze the interaction between the adapted prediction intervals 
and the modified model predictions, as seen across PICP (see Fig.  23), 
MRPIW (see Fig.  24), and mean Winkler score metrics (see Fig.  25). 
For PICP, significant features are consistently observed across 𝛼 values, 
with ACT  playing a prominent role, particularly at medium and high 𝛼
levels (10%–20%). The inclusion of test data permutation highlights 
the robustness of ACT  in sustaining coverage requirements despite 
the disturbances introduced in both the calibration and test datasets. 
MRPIW demonstrates the interaction between the adaptation of the CP 
towards the permuted calibration data and the adaptation of model 
predictions to the permuted test data, highlighting the fine-grained 
role of features like WOR, PPT* and NXT* in managing prediction 
intervals at the lowest 𝛼 level (5%). For higher significance levels, 
however, the relevance of these features diminishes. For the mean 
Winkler score, similar trends and feature rankings as in Fig.  18 can be 
observed, although slight decreases in the absolute values are exhibited. 
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Fig. 19. PICP-related PFI for the RF model for permuted calibration data.

Fig. 20. MPIW-related PFI for the RF model for permuted calibration data.

Fig. 21. MRPIW-related PFI for the RF model for permuted calibration data.

In summary, the analysis underscores the centrality of ACT  and RSC
across all UQ metrics in adapting to the permutations in calibration 
and test data. These features are pivotal in the model’s recalibration 
process, while PPT* and WOR offer conditional importance that varies 
with 𝛼, particularly in stricter predictive requirements.

To conduct a dedicated analysis of feature impacts on model un-
certainty, it is essential to methodologically separate the influence of 
features on UQ metrics from their influence on model point predictions. 
When both calibration and test data are permuted, the observed effects 
on UQ metrics result from a combination of feature impact on both 
interval adjustments (UQ) and model output accuracy (point predic-
tions). This dual impact complicates the interpretation of each feature’s 
contribution to uncertainty. Isolating these aspects by analyzing UQ 
feature impacts independently of point prediction effects showed sub-
stantial differences and is crucial for obtaining clear insights into 
22 
Fig. 22. Mean Winkler score-related PFI for the RF model for permuted calibration 
data.

Fig. 23. PICP-related PFI for the RF model for permuted calibration and test data.

Fig. 24. MRPIW-related PFI for the RF model for permuted calibration and test data.

each feature’s role in managing prediction intervals and maintaining 
predictive coverage.

Appendix B. Conformal prediction calibration sensitivity analysis

Regarding the sensitivity analysis conducted in Section 5.2,
Figs.  26–29, 30–33, 34–37, and 38–41 depict the effects of varying 
calibration set sizes across different levels of 𝑎𝑙𝑝ℎ𝑎 for the PICP, MPIW, 
MRPIW and mean Winkler score metrics for each of the employed ML 
models (GBM, GLM, DT and RF) respectively. These findings support 
the findings and identified trends from Section 5.2, highlighting the 
superior performance of the GBM model across varying 𝑎𝑙𝑝ℎ𝑎 values.
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Fig. 25. Mean Winkler score-related PFI for the RF model for permuted calibration 
and test data.

Fig. 26. Evaluation of the fitted GBM model regarding sensitivity of PICP on test data 
across varying sizes of calibration data.

Fig. 27. Evaluation of the fitted GBM model regarding sensitivity of MPIW on test 
data across varying sizes of calibration data.

Fig. 28. Evaluation of the fitted GBM model regarding sensitivity of MRPIW on test 
data across varying sizes of calibration data.
23 
Fig. 29. Evaluation of the fitted GBM model regarding sensitivity of W on test data 
across varying sizes of calibration data.

Fig. 30. Evaluation of the fitted GBM model regarding sensitivity of PICP on test data 
across varying sizes of calibration data.

Fig. 31. Evaluation of the fitted GBM model regarding sensitivity of MPIW on test 
data across varying sizes of calibration data.

Fig. 32. Evaluation of the fitted GBM model regarding sensitivity of MRPIW on test 
data across varying sizes of calibration data.
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Fig. 33. Evaluation of the fitted GBM model regarding sensitivity of W on test data 
across varying sizes of calibration data.

Fig. 34. Evaluation of the fitted GBM model regarding sensitivity of PICP on test data 
across varying sizes of calibration data.

Fig. 35. Evaluation of the fitted GBM model regarding sensitivity of MPIW on test 
data across varying sizes of calibration data.

Fig. 36. Evaluation of the fitted GBM model regarding sensitivity of MRPIW on test 
data across varying sizes of calibration data.
24 
Fig. 37. Evaluation of the fitted GBM model regarding sensitivity of W on test data 
across varying sizes of calibration data.

Fig. 38. Evaluation of the fitted GBM model regarding sensitivity of PICP on test data 
across varying sizes of calibration data.

Fig. 39. Evaluation of the fitted GBM model regarding sensitivity of MPIW on test 
data across varying sizes of calibration data.

Fig. 40. Evaluation of the fitted GBM model regarding sensitivity of MRPIW on test 
data across varying sizes of calibration data.
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Fig. 41. Evaluation of the fitted GBM model regarding sensitivity of W on test data 
across varying sizes of calibration data.

Data availability

The data that has been used is confidential.
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