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A B S T R A C T

Cold-storage systems are essential components of cold supply chains. Although order picking technologies have 
advanced, many of these systems still rely on human labour, where workers are exposed to temperatures below 
− 20 ◦C. Despite wearing protective clothing, prolonged exposure to such cold conditions can lead to cold stress, 
causing physiological impairments and fatigue, which ultimately reduce performance. Warm rest breaks are 
crucial to mitigate these adverse effects and maintain productivity. However, there is a dearth of field evidence 
on the effect of the timing and duration of these breaks on order picking performance. To address this gap, we 
collaborated with a grocery retailer to examine the impact of rest-break durations on the performance of order 
pickers in a cold-storage environment set at − 21 ◦C. We analysed 514,953 visits to storage locations by 40 order 
pickers over four months, using a multilevel model with random intercepts and slopes. Our findings revealed a 
horizontal S-shaped relationship between work time after a break and order picking time, characterised by an 
initial increase, a stabilisation period, and then a sharp increase. The results suggest that there is an optimal 
working period following a rest break during which performance peaks before it begins to decline. This period 
varies depending on the length of the break, highlighting the importance of strategic scheduling to maximise 
order picking efficiency in cold-storage environments.

1. Introduction

Order picking (OP), which is the most labour-intensive and costly 
activity in warehouses, is crucial for maintaining an efficient logistics 
system (Grosse, 2024). This process, which often accounts for up to 55% 
of the total warehouse operating expenses, directly affects customer 
satisfaction and the operational efficiency of warehouses (Setayesh 
et al., 2022). The growing complexity of supply chains and the 
increasing customer demand for rapid delivery have further emphasised 
the importance of OP performance, which is often assessed based on OP 
time.

Despite the technological advancements attributed to Industry 4.0, 
such as robot picking systems, manual OP remains a critical and irre
placeable component of warehouse operations, owing to the high flex
ibility of human workers (Winkelhaus et al., 2021; De Lombaert et al., 
2023; Grosse, 2024). This necessitates the prioritisation of integrated 
works that focus on human factors and performance in OP (Grosse et al., 

2015, 2017; Vijayakumar et al., 2022). Our research contributes to this 
knowledge base by empirically examining how breaks impact OP per
formance in cold-storage environments operated below − 20 ◦C. This 
investigation is crucial because despite the recognised need for warm 
breaks to mitigate the effects of cold stress, field studies on these 
breaks—particularly the impact of their duration and scheduling on OP 
performance—are lacking in the existing literature.

The investigated OP in cold storage is a special scenario wherein the 
order pickers pick frozen food items stored in artificial cold environ
ments at − 21 ◦C. These items include seafood, meat, vegetables, fruits, 
ice creams, and ready-to-eat and ready-to-cook meals. According to a 
market survey by Fortune Business Insights (2021), the worldwide 
market for frozen foods was valued at nearly 300 billion USD in 2023 
and is projected to grow by approximately 41.94% from 2024 to 2032. 
Hence, the improvement of OP operations in cold-storage warehouses 
and distribution centres is critical.

Previous studies have shown that in general, working in cold 
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temperatures adversely affects the performance of workers. Pilcher et al. 
(2002) concluded that variables such as the length of exposure to the 
cold, the duration before task onset, the type of task, and the duration of 
the task can influence this relationship and potentially modify how 
temperature impacts performance. Cold stress, as detailed by Holmér 
(1994) and Holmér et al. (2012), arises from an imbalance in body heat 
regulation, which leads to fatigue and performance decline. Moreover, 
the substantial temperature gap between the inside and outside of cold 
storage, which could exceed 50 ◦C during the summer, could place 
significant stress on workers (Morioka et al., 1998) which may affect 
their performance.

Physiological studies have indicated that working in cold-storage 
environments significantly lowers both the core and skin temperatures 
(Baldus et al., 2012; Kluth et al., 2012). Although a bulky protective gear 
provides insulation, it also increases physical strain, resulting in a higher 
heart rate (Kluth et al., 2012). Blood pressure also increases with pro
longed exposure to cold (Morioka et al., 2005), and over 60% of workers 
typically report issues such as nasal discharge and cold or painful hands. 
Seasonal variations amplify these effects, particularly during winter 
(Morioka et al., 2005). In addition to these physiological considerations, 
Grosse et al. (2015) highlighted that cold-work environments can induce 
additional psychological stress on order pickers compared to 
room-temperature ones. Therefore, OP in cold storage creates unique 
challenges in addition to the physical, cognitive, perceptual, and psy
chosocial demands (Grosse et al., 2015, 2023) associated with OP at 
room-temperature.

Implementing intra-work breaks is a crucial strategy to facilitate 
recovery from physically demanding work and to enhance both the 
productivity and reliability of workers (Battini et al., 2017; Di Pasquale 
et al., 2017; Glock et al., 2019; Darwish, 2023). In addition, such breaks 
offer psychosocial benefits, improve social relationships in the work
place, enhance worker satisfaction, and induce alertness-enhancing ef
fects (Tucker, 2003). Xu and Hall (2021) emphasised the significant 
impact of strategically planned work–rest schedules on reducing fatigue 
and enhancing productivity across various work environments.

Although work–rest scheduling has been discussed in OP-related 
literature (Casella et al., 2023; Rijal et al., 2021; Zhao et al., 2019), to 
the best of our knowledge, no field studies have examined the real-world 
implications of rest breaks on OP performance in cold-storage environ
ments. In this paper, we present the results of a real-world study wherein 
data from a storage facility in Germany operating at − 21 ◦C were 
collected and analysed. Our research aimed to address the following two 
questions. 

(1) How does the OP performance in cold-storage environments vary 
between breaks?

(2) How does the break duration influence post-break OP 
performance?

The remainder of this paper is organised as follows. Section 2 dis
cusses the relevant studies highlighting the research gap and the 
contribution of this investigation. Section 3 explains the empirical set
tings and data employed in this study, and Section 4 elucidates the 
variables and modelling process employed. Section 5 presents and dis
cusses the results of the analysis. Finally, Section 6 summarises the main 
findings of the study and considers potential future research.

2. Literature review

In this section, we begin with a broad overview of work–rest balance 
research in industrial settings. Next, we discuss the current state of the 
art in work–rest research in the context of OP. We then present a syn
thesis of existing research on work–rest practices in OP related to cold- 
storage environments, followed by a discussion of the contributions of 
our study.

2.1. Work–rest balance at work

Work–rest scheduling can effectively prevent work-related fatigue, 
which can significantly affect the normal functioning of the body, with 
effects on the cardiovascular system, skeletal-muscular system, and the 
brain and consequently, worker performance (Konz, 1998). Work–rest 
scheduling requires the strategic allocation of breaks within work shifts 
to facilitate recovery, ensuring a balance between productivity and the 
health and safety of workers by optimising the frequency, timing, and 
length of breaks (Xu and Hall, 2021). Tucker (2003) highlighted that the 
effectiveness of rest breaks on worker performance and recovery is also 
influenced by the specific characteristics of the job and individual 
worker’s needs. Accordingly, they highlighted the importance of 
allowing workers to identify and address their fatigue levels (i.e. 
self-regulation of breaks). However, there is conflicting evidence on 
whether self-determined or pre-planned rest breaks are more effective. 
They also noted that the optimal timing of rest breaks should consider 
job routines and the effects of start-up and shutdown procedures on 
efficiency and accident risks.

Early theoretical and computational models aimed at predicting the 
impact of various work–rest schedules on worker performance, health, 
and safety emerged with Eilon’s 1964 model, which focused on deter
mining the optimal length and timing of a single break to maximise 
productivity (Bechtold and Thompson, 1993; Darwish, 2023). Since 
then, various models have been developed that simulate various sce
narios and their outcomes based on factors such as work intensity, shift 
duration, break times and durations, and physical and cognitive de
mands of tasks (Xu and Hall (2021)). Bechtold (1991) categorised re
covery during rest breaks into five types: (1) less than full recovery, (2) 
exact full recovery, (3) inexact full recovery, (4) at most full recovery, 
and (5) full recovery. Understanding these recovery categories could be 
instrumental in designing work–rest schedules tailored to the specific 
recovery needs of workers.

2.2. Work–rest literature in OP context

Previous studies have noted that fatigue elevates error rates among 
OP workers (Setayesh et al., 2022) and, consequently, increases the 
likelihood of accidents or injuries (Battini et al., 2017; Di Pasquale et al., 
2017). Therefore, determining a rest allowance (RA) in OP is important 
for establishing the amount of time required for an operator to fully 
recover (Battini et al., 2017). Researchers have developed different RA 
models to support decision-making in OP. For instance, Battini et al. 
(2016) combined human energy expenditure in OP and the storage 
assignment problem as a bi-objective optimisation problem and inte
grated RA using Price’s (1990) RA formulation. They showed that 
although a time-based storage-assignment policy may optimise the ef
ficiency of OP processes, it can result in increased fatigue among pickers 
owing to higher energy expenditure. Conversely, an energy-based stor
age-assignment policy might increase the OP time, but it benefits the 
pickers by reducing oxygen consumption, fatigue, and the amount of RA 
needed. Therefore, Battini et al. (2016) emphasized the importance of 
considering multiple objectives, not just time efficiency, when designing 
storage-assignment policies to achieve a more balanced and sustainable 
operational approach. Battini et al. (2017) proposed a model for eval
uating manual OP systems, focusing on the additional ergonomic effort 
required by human operators by integrating two key concepts: human 
availability and RA. Human availability refers to the proportion of time 
during which workers can perform their tasks effectively without being 
hindered by physical or mental limitations while RA quantifies the 
necessary downtime required to maintain health and productivity, 
based on the ergonomic strain imposed by picking activities. Elbert and 
Müller (2017) investigated how the common assumption in OP planning 
models—that pickers travel at a constant velocity throughout the 
warehouse—compares to the realities of navigating curves and per
forming turning manoeuvres across aisles. They explored the impact of 
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these factors on travel time and energy expenditure, and consequently, 
on RA. Sgarbossa and Vijayakumar (2020) developed an RA model that 
considered the age of pickers.

These RA models provide a quantitative basis for determining the 
necessary amount of rest based on ergonomic assessment, which then 
contributes to improved work–rest scheduling to create an effective and 
practical solution for workers.

However, none of these RA models have focused on OP in cold- 
storage environments. The next section discusses work–rest-related 
studies involving OP in cold storage.

2.3. Work–rest-related research in cold storage

Field experiments have consistently demonstrated that working in 
cold-storage environments, such as at − 24 ◦C, induces significant 
physiological changes in order pickers, including reductions in core and 
skin temperature. Table 1 summarises the results of our literature review 
on work-rest-related research in cold-storage environments and the 
contributions of our study, which focuses on the impact of rest breaks on 
OP performance. Among them, Kluth and Strasser (2008) measured the 
physical strain on order pickers in cold-storage environments by 
examining their cardiovascular system, specifically heart rate and blood 
pressure. They found that more experienced order pickers managed 
physical strain better during a work shift than less experienced ones.

In field experimental studies, Kluth et al. (2009, 2013) investigated 
the effects of working in different temperatures on male order pickers of 
varying ages: one group in a chill room at +3 ◦C and another in cold 
storage at − 24 ◦C during a work shift. Their workday included three 
work sessions lasting 80, 100, and 120 min, each separated by 20-min 
warm-up breaks at +21 ◦C. They categorised pickers into two groups 
based on their age: younger (20–35 years) and the older (40–65 years). 
Both studies reported a significant decrease in core temperature across 
both age groups in both environments, whereas no age-related skin 
temperature differences were reported for most measuring positions. 
However, Kluth et al. (2013) suggested that older pickers experience a 
substantially higher strain than younger pickers. Penzkofer et al. (2009)
examined a male order picker sample in a considerably longer experi
mental study (75 workdays) for the same work–rest schedule setting in 
both a chill room and cold storage. During shorter work phases (80 and 
100 min), the heart rate of the older group varied significantly compared 
to that of the younger group. However, no significant age-related dif
ferences in the longest work phase were observed (120 min).

Kluth et al. (2012) and Baldus et al. (2012) conducted similar field 
experiments with only female order pickers. The latter study reported 
that female pickers in both environments experienced a decrease in their 
core-body temperature. However, those in the chill room group 
managed to recover during their 20-min warm-up breaks regardless of 
age. By contrast, those in the cold-storage group did not fully recover, 
regardless of their age. Although their skin-surface temperature was 
maintained in the chill room, it significantly decreased in cold storage, 
especially at the extremities, including at the nose, fingers, and toes, 
leading to discomfort. Baldus et al. (2012) noted that older female 
workers experience larger decreases in core-body temperature under 
such conditions. Kluth et al. (2012) reported interesting variations 
compared with the observations made by Kluth et al. (2013). Although 
the 2012 study anticipated notable differences between age groups, 
these were not evident among female order pickers. This finding implies 
that other elements, such as individual fitness and heart-rate capacity (i. 
e. maximum heart rate calculated as HRmax = 208 – (0.7 × age) (Tanaka 
et al., 2001)), significantly influenced the outcomes in this group.

In a later study, Groos et al. (2019) conducted a similar field 
experimental study in cold-storage environment with a sample size of 60 
comprising both male and female order pickers. They observed a sig
nificant decrease in the core-body and skin-surface temperatures at the 
fingers, toes, and nose. The results from the subjective assessments by 
the pickers confirmed these temperature reductions, reinforcing the 

findings of their physiological measurements.
Overall, these experimental studies confirmed the importance of 

considering individual worker characteristics when assessing the phys
iological impact of working in cold-storage environments.

2.4. Research gap and contributions of this study

Existing RA models, as discussed in Section 2.2, overlook the unique 
physical and mental strains posed by cold-storage conditions. In these 
environments, cold stress intensifies fatigue by increasing the metabolic 
rate, which in turn increases the rest requirements. Although the 
experimental studies detailed in Section 2.3 examined the physiological 
impacts on order pickers in cold-storage environments, they did not 
assess how specific work–rest schedules influence OP performance in 
real-world settings. Our study addresses these gaps by empirically 
investigating the impacts of rest breaks OP performance in cold-storage 
environments in real-world scenarios. Our results offer operational and 
behavioural insights into break-taking, such as optimal timing and 
duration, and the impact of fatigue progression on OP performance.

From a theoretical standpoint, empirical results regarding the impact 
of rest-break schedules and their durations on OP performance in cold- 
storage environments are valuable for extending RA models and 
defining work–rest optimisation problems. These insights can not only 
improve OP performance but also ensure worker safety and well-being. 
From a managerial perspective, this information is beneficial for ware
house managers as it can influence how operations are structured to 
balance efficiency with workers’ needs in harsh working environments 
via optimised work–rest schedules. Additionally, our dataset reflects the 
natural behavioural patterns of order pickers in cold-storage environ
ments when rest breaks are taken without any intervention (i.e., 
observational effects). This facilitates the identification of organic pat
terns that can inform better scheduling policies and decisions without 
disrupting their natural workplace behaviour.

3. Methodology

3.1. Empirical settings and data description

In this field study, we investigated the impact of rest breaks on OP 
performance in cold-storage environments. To address the research 
questions, we collected real-world data from a brick-and-mortar grocery 
retailer warehouse which operates as a picker-to-part OP system. We 
focused on a single warehouse located in Germany that stored and 
processed frozen food products at − 21 ◦C. At any given time, the 5,500 
m2 facility had a total inventory of approximately 1,700 items and 
processed 30,000 items on average per day. As illustrated in Fig. 1, 
pickers equipped for cold environments gathered items from storage and 
placed them in ice-pack-equipped insulated roll cages (‘load units’), 
which were attached to industrial trucks. A digital assistive device (i.e. a 
tablet) was mounted on the truck to provide the picker with information 
regarding the order items, their storage locations, and other relevant 
details. These devices maintain a continuous wireless connection to the 
Warehouse Management System (WMS), enabling real-time documen
tation of all order picker activities. For the field study, we collected OP 
data from the WMS between May and August of 2023, resulting in a 
dataset comprising 514,953 storage location visits by 40 order pickers.

All pick-up locations were at ground level and arranged to facilitate a 
U-shaped travel pattern. The OP process comprised several sequential 
steps, which began with travelling to the storage location where the 
items were stored. Upon arrival, the workers reached and bent to access 
the storage locations, which involved physical manoeuvring to retrieve 
the items. After picking the items, they were documented on the WMS 
using a tablet device. The items were then sorted and stacked in a load 
unit. The cycle was completed by proceeding to the next pick location 
according to the order. This process was repeated until all the items in 
the order were picked and prepared for shipment at the loading bay.
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Table 1 
Summary of studies on work–rest schedules for OP in cold-storage environments.

Reference Independent variables Type of field 
study 
(Experimental/ 
Observational)

Measurements 
type 
(Subjective/ 
Objective)

Dependent variables Duration of 
the 
experiment

Work-rest 
schedule 
adopted

Control 
variable 
(s)

Results 
discussed

Gender Age Experience 
level

Chill 
room 
(+3 ◦C)

Skin surface 
temperature

Core body 
temperature

Blood 
pressure

Heart 
rate

Energy 
expenditure

Male Female

Kluth and 
Strasser 
(2008)

7 5 ​ ✓ ​ Experimental Objective ​ ​ ✓ ✓ ​ 1 work 
shift

No fixed 
schedule

​ Cardiovascular 
system (heart 
rate, BP)

Kluth 
et al. 
(2009)

30 0 ✓ ​ ✓ Experimental Objective ✓ ✓ ✓ ✓ ​ 1 work 
shift

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

​ Temperature 
(Skin, Core)

Penzkofer 
et al. 
(2009)

30 0 ✓ ​ ✓ Experimental Both ✓ ✓ ✓ ✓ ✓ 75 
workdays

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

​ Cardiovascular 
system (heart 
rate, BP)

Kluth 
et al. 
(2012)

0 30 ✓ ​ ✓ Experimental Both ✓ ✓ ✓ ✓ ​ 1 work 
shift

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

Average 
workload 
1.6 tons 
to pick 
per hour 
(8 tons 
per shift)

Cardiovascular 
system (heart 
rate, BP, Heart 
capacity 
utilization)

Baldus 
et al. 
(2012)

0 30 ✓ ​ ✓ Experimental Objective ✓ ✓ ​ ​ ​ 1 work 
shift

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

Average 
workload 
1.6 tons 
to pick 
per hour 
(8 tons 
per shift)

Temperature 
(Skin, Core)

Kluth 
et al. 
(2013)

30 0 ✓ ​ ✓ Experimental Objective ✓ ✓ ✓ ✓ ✓ 1 work 
shift

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

Average 
workload 
1.6 tons 
to pick 
per hour 
(8 tons 
per shift)

Cardiovascular 
system (heart 
rate, BP, Heart 
capacity 
utilization) 
Temperature 
(Skin, Core)

Penzkofer 
et al. 
(2013)

62 66 ✓ ​ ✓ Observational Subjective aNA Ratings

Groos 
et al. 
(2019)

30 30 ✓ ​ ​ Experimental Both ✓ ✓ ✓ ✓ ✓ 1 work 
shift

80, 
100,120 
min 
separated 
by 20 min 
warm-up 
breaks

Average 
workload 
1.6 tons 
to pick 
per hour 
(8 tons 
per shift)

Temperature 
(Skin, Core)

This paper 40 0 ​ ​ ​ Observational Objective OP time 4 months Company 
work-rest 
schedule

Travel 
distance, 
Item 
weight, 
Item 
volume, 
Pick 
density

OP time 
variation 
between breaks 
and impact of 
duration of the 
break on OP 
time

a NA – Not Applicable.
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The data set we used was an archival dataset provided by the part
nering firm from their WMS to empirically investigate the impact of 
break duration and time after break on OP time. The WMS captures 
detailed log data of OP operation and includes a wide range of infor
mation, including batch-ID, pick-ID, and picker-ID to identify human
–robot and human–manual configurations, timestamps marking the 
start and end of each individual task, quantity of SKUs picked, weight 
and volume per SKU, and the location. Although the actual travel path of 
the picker was not observed, the minimum travel distance was calcu
lated based on the storage locations and physical layout of the rows and 
cross aisles using a modified version of urban geometry. This form of 
geometry assumes that travel can only occur in a grid pattern, which was 
formed by the aisles and cross aisles between the storage racks in this 
study.

We used the timestamps from the archival WMS data to calculate the 
break duration for each of the 40 pickers. The company policy mandates 
two standard rest breaks of 20 and 40 min per work shift. Additionally, 
order pickers were offered an extra 30 min of paid warm-up breaks, 
which could be distributed as needed to manage cold stress. Pickers had 
the flexibility to divide this extra 30 min across their two standard 
breaks to ensure equality. This flexibility explains the observation of 
breaks in the data for up to 60 min (see Fig. 2(a)). Alternatively, they 
could have opted to take a separate third break of 30 min. However, 
given the mandatory nature of these breaks, we accounted for total 
break duration in our analysis. Although fixed rest breaks were standard, 
the additional flexibility provided by the warm-up breaks allowed us to 
incorporate individual preferences into break-taking behaviour.

3.2. Model formulation and variables

3.2.1. Notations

i Storage location

j Order picker
α0j The intercept term for the jth picker for individual baseline OP time.
ϕ Fixed effects of picking and stacking height
τ Fixed effects of time-related order quantity variations
εij Error term for the ith storage location visited by the jth picker, accounting for 

unexplained variability.
γ00 Overall mean intercept across all order pickers.
υ0j Random effect for the jth picker, capturing individual deviations from γ00.
γ10 Average effect of the interaction between break duration and time after break 

across all order pickers.
γ20 Average effect of time after break across all order pickers.

3.2.2. Dependent variable
In this study, we analysed the order pickers’ performance by 

measuring the OP time required to complete the OP cycle, as described 
in Section 3. Specifically, we measured the seconds elapsed between 
consecutive storage points—from one location to the next (i-1 to i)—for 
each picker (j), treating it as a continuous variable. On average, the OP 
cycle took 20.12 s, with a standard deviation of 18.11 s (see Table 2 for 
descriptive statistics).

3.2.3. Independent variables
To assess the impact of rest-break duration on OP performance, 

specifically the OP time, we analysed the durations of rest breaks, which 
averaged to 27.07 min with a standard deviation of 18.11 min, as listed 
in Table 2. This average represents the rest-break duration of an order 
picker during a shift, including both scheduled and unscheduled breaks, 
in accordance with the work–rest policy of the warehouse. Fig. 2(a) 
presents the distribution of break durations in our dataset, which reveals 
the break-taking behaviour of pickers in the cold-storage warehouse. 
Notably, most rest breaks are within the 20–30 min. Overall, Fig. 2(a) 
indicates that the break duration distribution was inconsistent, high
lighting that, although there were common break durations, the break 
lengths of the pickers varied significantly.

To explore the impact of break duration on post-break OP perfor
mance and assess the performance variations between breaks (RQ1 and 
RQ2), we introduced a variable called time after break, which represents 
the time of active work that an order picker engages in between rest 
breaks. The average of time after break was 39.62 min with a standard 
deviation of 35.71 min. This interval began immediately after an order 
picker resumed work, as identified by their first visit to a storage 

Fig. 1. OP in the cold-storage warehouse operating at − 21 ◦C.

Fig. 2. Distributions of independent variables in the data. Distributions of (a) break durations and (b) work times between breaks.
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location after a break using the WMS logs, and ended when the picker 
began their next break. Fig. 2(b) illustrates the distribution of the time 
after break data within our sample, which reveals a decreasing and right- 
skewed pattern. This indicates that shorter work periods following rest 
breaks are more prevalent than longer work periods. By monitoring the 
duration of work after the breaks, we aimed to explore workers’ post- 
break work rhythms and activities. This analysis offers insights into 
the effects of the duration of breaks on subsequent work performance 
and the overall pace of the pickers.

3.2.4. Control variables
For analysing OP time, it is important to account for variables that 

may complicate the relationships of interest. First, we incorporated 
controls for item weight and item volume, recognising them as relevant 
characteristics that can significantly influence picker performance.

Next, the travel distance was identified as a key factor as our 
dependent variable included the time spent by the order picker to 
navigate from one storage location to the next. The distance between the 
picking locations significantly influenced the OP time as a longer travel 
distance may increase the OP duration. In addition, we introduced the 
pick density variable to control the number of items retrieved from a 
storage location. Pick density represents the frequency of picks per 
storage location and is known to significantly influence product char
acteristics such as colour (Hanson et al., 2018). A higher pick density 
could imply a higher retrieval frequency, which may in turn affect the 
ease and speed of the OP process, especially when coupled with other 
products and packaging characteristics.

We further introduced a fixed effect of storage place, referred to as ϕ, 
to account for the height at which the picking and stacking activities 
occur. Height is an essential component as it entails varying levels of 
physical effort and ergonomics, which can impact OP performance. 
Furthermore, by introducing the time-fixed effect variable, τ, we aim to 
control temporal fluctuations, such as seasonal changes in the order 
quantities of retail stores. This ensured that our analysis accurately re
flected the effects of the examined variables while isolating the influence 
of time-related factors. This methodological approach enhances the 
robustness and generalisability of our findings, providing a clear un
derstanding of how the interactions between break duration and time 
after break affect OP time. Table 2 summarises the descriptive statistics 
for all the variables included in the econometric model, offering insights 
into the distribution and range of each variable. For instance, the me
dian OP time was 15 min, which was lower than the mean of 20.12 min, 
indicating a right-skewed distribution, as discussed in Section 4.3. The 
first quartile was at 10 min and the third quartile was at 24 min, indi
cating that 50% of the OP times are distributed between these two 
values.

3.2.5. Econometric model
We adopted a longitudinal design based on the data in which the OP 

time for each picker was tracked across multiple points during the study 
period. Standard linear regression models assume that each data point is 
independent, which is not valid for our repeated measures. Therefore, 
we used a multilevel model, also known as a hierarchical or mixed- 
effects model, which can handle multiple observations of the same in
dividuals without artificially inflating the estimates. Our base model is 

expressed as follows: 

Order Picking Timeij = α0 + β1j Break durationij + β2j Time after breakij

+ β3j Item volumeij + β4j Item weightij
+ β5j Travel distanceij + β6j Pick densityij + ϕ + τ
+ εij

(1) 

α0j = γ00 + υ0j (2) 

β1j = γ10 (3) 

β2j = γ20 (4) 

To develop the multilevel model, we differentiated between fixed 
effects, which were consistent across individuals, and random effects, 
which varied among them. To quantify the extent to which the variation 
in the OP time was caused by inter-picker differences (as opposed to 
intra-picker differences over time), we calculated the intraclass corre
lation coefficient (ICC) using a model without predictors. The ICC value 
was 6.20% for the pickers, indicating that a significant amount of the 
variance in the OP time was due to the differences between them. The 
remaining variance was owing to intra-picker variability over time. This 
also justifies the use of a multilevel model that can include random ef
fects to account for the variability between order pickers.

Given that we observed meaningful differences within and between 
the pickers, we used a multilevel model with ’random intercepts’. This 
allowed us to account for individual picker differences, represented by a 
unique random intercept for each picker (j). Thus, the model could 
adjust to the unique baseline performance of each picker owing to 
inherent individual differences.

In addition to the random intercepts, we added random slopes, which 
facilitated the estimation of the individual effects of certain factors such 
as the rest-break duration and the time spent picking orders after breaks, 
which varied among the pickers. For instance, some pickers may benefit 
more from longer rest breaks than others. Therefore, we allowed random 
slopes in the break duration (Eq. (3)) and time after break (Eq. (4)). By 
including random slopes, we aimed to capture the heterogeneous effects 
of break duration and the time after break on OP time to further eluci
date the dynamics of the OP process in cold-storage environments.

Finally, error εij represents the unexplained variance in the OP time 
for picker j at storage location i. This included variations not accounted 
for by the established fixed effects, random intercepts assigned to each 
order picker, and random slopes associated with variables such as break 
duration and work duration post-break. This term reflects the unique 
individual discrepancies between the actual observed OP times and 
those predicted by the model. We assumed that these error terms were 
normally distributed with an average of zero, εij ~ N (0, σ2). This implies 
consistent variance across all data points. This assumption of homo
scedasticity (i.e. constant variance) and independence among the re
siduals, is critical for the reliability and accuracy of the proposed 
model’s predictions.

To ensure the reliability of our econometric model, we thoroughly 
examined the relationships between all the variables by calculating the 
variance inflation factors (VIFs) for each variable. The VIFs allowed us to 

Table 2 
Descriptive statistics of the variables employed in this study.

Variables Minimum 1st Quantile Median Mean 3rd Quantile Maximum

OP time (s) 2.00 10.00 15.00 20.12 24.00 239.00
Time after break (min) 0.02 11.15 28.10 39.63 58.95 150.00
Break duration (min) 10.02 21.53 26.12 27.07 32.80 44.98
Travel distance (m) 2.40 2.40 4.80 17.08 12.00 149.40
Item weight (kg) 0.24 2.72 3.51 4.35 5.01 31.39
Item volume (L) 0.83 9.98 12.74 14.06 17.45 29.50
Pick density (Number of items picked from one location) 4.00 6.00 8.00 9.10 10.00 28.00
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determine whether the utilised variables were too closely related, which 
is known as multicollinearity. A high VIF value indicates that a variable 
is heavily influenced by others, which reduces the accuracy of the 
model’s estimations. However, the highest VIF value of 2.9 was obtained 
for the ‘item weight’ variable, suggesting that multicollinearity did not 
significantly affect the accuracy of the model (detailed results are pre
sented in Table A1 in the Appendix).

For data analysis, we used the RStudio Cloud platform, which we 
configured using four processing cores and 16 GB of memory, along with 
the lme4 (Bates et al., 2023) and multilevel (Bliese et al., 2022) 
packages.

4. Results and discussion

4.1. Base model: impact of control variables on OP time

Initially, we employed a base model to better understand the factors 
influencing the OP time in the cold-storage warehouse. The results are 
summarised in the Model 1 column in Table 3, wherein significant 
positive relationships between travel distance, pick density, and OP time 
can be observed. This indicates that long travel paths and high pick 
densities are associated with increased OP times, as described in Section 
4.4. For example, the OP time increased by 0.64% when the travel dis
tance increased by one unit. Note that although the positive estimator is 
0.006401, the OP time is logarithmic, requiring a log transformation 
with eβ. Conversely, the item volume exhibited a negative correlation. 
This suggests that picking tasks involving large volumes reduce the 
picking time. By incorporating fixed effects for place, aisle, and time, we 
accounted for the unobserved heterogeneity across these factors, 
thereby refining our estimation accuracy. The significance of the inter
cept confirmed that the baseline OP time was independent of the 
considered variables. This base model not only offers meaningful in
sights but also establishes a comparative platform for subsequent models 
with higher complexity, which facilitates the examination of the incre
mental effects of additional variables and interactions on the OP time.

4.2. OP time between breaks

Building on the base model, we incorporated key independent vari
ables—time after break and duration of these breaks—into the analysis. 
Table 3 presents the results of the multilevel models. Transitioning from 

the base Model (1) to the enhanced Model (2) resulted in a notable 
decrease in both the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) values; for instance, the AIC value decreased 
by 192 (i.e. from 983,202 to 983,010) and the BIC value decreased by 
147 (i.e. from 983,313 to 983,166) (see Table 3). This indicated an 
enhancement of the explanatory power of the model. Evidently, the time 
elapsed after break significantly increased the OP time linearly, whereas 
the break duration did not have a statistically significant effect. To 
explore the possibility of a nonlinear relationship, we introduced 
quadratic and cubic terms for the time after a break in Models (3) and 
(4), respectively. These modifications further reduced the AIC and BIC 
values, indicating a progressively better fit of the model to the data.

Model (3) exhibited an inverted U-shaped relationship between the 
time after break and the OP time, as indicated by the positive and sig
nificant effect of the linear term (0.001207) and the negative and sig
nificant effect of the quadratic term (− 0.000007). It was therefore 
concluded that after a rest break, each minute spent in the warehouse 
increased the OP time but with smaller increments of e(0.01207-0.000007), 
resulting in an increment of 1.2063%. Thus, the positive coefficient of 
the linear term indicates that the OP time increases initially as the time 
spent in cold storage increases after a break, and the negative coefficient 
of the quadratic term indicates that this increase eventually plateaus and 
then starts decreasing, producing the inverted U-shaped curve charac
teristic of a quadratic relationship.

In Model (4), the introduction of a cubic term (which involves 
increasing the time after break by a power of three) indicated a more 
complex horizontal S-shaped relationship. This means that after a rest 
break, the OP time initially increased, and thereafter, the rate of increase 
was lower (top of the ‘S’), and eventually started increasing again at a 
faster rate (bottom of the ‘S’). Although this horizontal S-shaped curve 
was significant, the impact of the cubic term was low, suggesting subtle 
changes in the relationship dynamics.

Fig. 3(a) illustrates the horizontal S-shaped relationship of the log
arithm of the OP time plotted against the time after break using Model 
(4). The OP time initially increased until it reached approximately 45 
min on the ‘time after break’ axis. Beyond this point, the OP time did not 
change significantly until approximately 100 min. Subsequently, the OP 
time began to increase sharply, completing the horizontal S-shaped 
pattern. This visualisation helped us to understand the impact of break 
time on OP performance across various post-break intervals.

Table 3 
Results of multilevel regression analysis.

Dependent variable: OP time

Model (1) 
Base model

Model (2) 
IV model

Model (3) 
Quadratic IV model

Model (4) 
Cubic IV model

Independent variables
Time after break3 ​ ​ ​ 0.0000002*** (0.00000002)
Time after break2 ​ ​ − 0.000007*** (0.000001) − 0.000041*** (0.000003)
Time after break ​ 0.000373*** (0.000116) 0.001207*** (0.000131) 0.002858*** (0.000197)
Break duration ​ − 0.000137 (0.000104) − 0.000134 (0.000104) − 0.000139 (0.000104)
Control variables
Travel distance 0.006401*** (0.000027) 0.006407*** (0.000027) 0.006409*** (0.000027) 0.006411*** (0.000027)
Item weight 0.011559*** (0.000489) 0.011509*** (0.000489) 0.011519*** (0.000489) 0.011562*** (0.000489)
Item volume − 0.002049*** (0.000192) − 0.002024*** (0.000192) − 0.002019*** (0.000192) − 0.002019*** (0.000192)
Pick density 0.015123*** (0.000265) 0.015065*** (0.000265) 0.015055*** (0.000265) 0.015035*** (0.000265)
Fixed effects
Storage place Included Included Included Included
Aisle Included Included Included Included
Time Included Included Included Included
Intercept 2.52*** 2.54*** 2.52*** 2.51***

Observations 514,953 514,953 514,953 514,953
AIC 983,202 983,010 982,919 982,847
BIC 983,313 983,166 983,087 983,025

Note: Standard errors are reported in parentheses. *, **, and *** indicate significance at the 0.1%, 0.05%, and.
001% levels, respectively. IV = Independent variables.
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4.3. Moderating effects of break duration on OP time

Thereafter, we analysed the effects of break lengths on the rela
tionship between time after breaks and OP time by introducing inter
active terms in the model. The interaction between break duration and 
time after break across all three forms (linear, quadratic, and cubic) was 
statistically significant. Both AIC and BIC values decreased slightly (by 
25 and 23, respectively) compared to those of Model (4), suggesting that 
this model, with the moderating effect of break duration, fitted the data 
better. This implies that the effect of time after a break on the OP time is 
influenced by the length of the break. For example, the impact of time 
after break on the OP time might vary between short and long break 
periods.

Fig. 3(b) shows a horizontal S-shaped curve that maps the relation
ship between the time after break and the OP time, with curves plotted 
for break durations of 15, 30, 45, and 60 min. The three phases are 
visible in all the curves. As shown in Fig. 3(b), the 15-min break duration 
curve is flat throughout, suggesting that shorter breaks had a consistent 
but minimal impact on OP performance. In contrast, the 60-min break 
duration curve shows the most significant variation in the OP time, 
suggesting that the longer the break, the greater the variation in OP 
performance following it.

This pattern can be explained by the dynamics of fatigue and re
covery point. Shorter rest breaks may result in incomplete recovery, 
which could initially hinder performance, as fatigue accumulates faster 
than in the case of longer breaks. However, after extended work dura
tion, workers may adapt to shorter breaks by pacing themselves and 
become more efficient at task execution as they adjust to shorter re
covery periods. By contrast, longer rest breaks may allow for higher 
recovery but potentially result in a steeper decline in performance after 
extended periods of work owing to overcompensation or loss of 
momentum.

Additionally, this relationship may reflect the natural variability in 
individual responses to different rest durations, highlighting the 
complexity of balancing rest breaks for both recovery and sustained 
performance. This also suggests that although shorter breaks are less 
effective for immediate recovery, they may lead to better long-term 
performance for prolonged tasks.

This OP time behaviour also suggests that there is an optimal window 
of work after a break, where the performance is best before it starts 
deteriorating. Moreover, the impact of break duration on performance 
was not uniform. Longer breaks appeared to cause higher fluctuations in 
OP performance over time. The optimal post-break period during which 

workers perform best, is noteworthy, especially in the challenging 
conditions of cold-storage environments. Bacause, identifying these 
periods can improve the scheduling of tasks and breaks to maximise 
efficiency and minimise the health risks associated with extended cold 
exposure.

To address potential concerns regarding the reliability of the pre
sented results, we examined the possibility that other control variables 
might also influence the relationship between the time after break and 
the OP time. Specifically, we introduced the travel distance parameter in 
Models (6) and (7) to examine their robustness, as summarised in 
Table 4, because of their relevance to the physical demands of the order 
pickers. The introduction of travel distance into our analysis showed 
that it did not significantly alter the cubic relationship of time after the 
break in Model (6). Similarly, in Model (7), travel distance did not 
significantly moderate the relationship for any time-after-break vari
ables. Moreover, both models exhibited higher AIC and BIC values than 
Model (5), indicating that the addition of travel distance did not improve 
the model fit. Additionally, Models (6) and (7) fit the data less effectively 
than Model (5), suggesting that although travel distance is an important 
factor that affects the physical workload in OP, it does not significantly 
change the established relationship between break duration and OP time 
in this study.

5. Conclusions

This study investigated the impact of rest breaks on OP performance 
in a cold-storage warehouse operating at − 21 ◦C. We collected real- 
world data from a German retailer and analysed 514,953 storage loca
tion visits by 40 order pickers using multilevel regression models. A 
horizontal S-shaped relationship was observed between work time after 
the break and the OP time, indicating an initial increase in OP time, a 
plateau, and a subsequent sharp increase. This pattern suggests post- 
break variability in OP performance at different intervals. Further
more, we found that the interaction between break duration and work 
time after a break significantly affected the OP time. Different break 
durations (15, 30, 45, and 60 min) exhibited different impacts on the OP 
time, indicating that longer breaks led to more pronounced fluctuations 
in performance with duration after a break.

Our findings align with previous knowledge on the importance of 
strategically timed rest breaks for reducing work-related fatigue and 
enhancing worker performance (Dababneh et al., 2001; Tucker, 2003), 
revealing that the length of breaks, not just their occurrence, is crucial 
for improving operational outcomes. The observed horizontal S-shaped 

Fig. 3. S-shape behaviour of OP time. (a) S-shape variation in OP time after a break; (b) the moderating effect of break duration on OP time.
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behaviour for the post-break OP time suggests that worker performance 
changes dynamically throughout the workday. This finding diverges 
from the linear or exponential OP time assumptions of previous studies 
and offers a new perspective on how performance deteriorates and re
covers in response to work–rest cycles.

These findings have several managerial implications for cold-storage 
OP operations. First, field studies are key for developing effective and 
practical work–rest schedules by understanding the resting patterns of 
workers and the impact of rest breaks on their performance. Given the 
high variability in break-taking patterns, customising work–rest sched
ules based on field data is advisable, particularly after identifying the 
most common break times. Second, the flexibility of the work–rest 
policy in cold-storage facilities should be leveraged to help workers 
achieve appropriate rest and optimal post-break performance. Incor
porating Bechtold’s (1991) categorisation of different types of rest 
breaks can further enhance the effectiveness of this approach. Third, the 
variability in the effect of different break durations on OP performance 
highlights the importance of considering individual differences among 
workers. Managers could consider implementing more personalised 
break schedules that cater to each worker’s preferences and physical 
requirements to develop more human-centric warehousing operations. 
Finally, understanding the horizontal S-shaped relationship between the 
time after a break and OP performance offers insights into the most 
productive periods. Managers could use this information to schedule the 
most labour-intensive tasks during peak performance periods, which 
typically occur shortly after breaks.

Our findings provide valuable insights that can help policymakers to 
develop work–rest regulations that improve both worker performance 

and well-being, particularly in demanding environments like cold stor
age. The British Frozen Food Federation (2013) recommends that breaks 
to be taken in heated rest areas, with the timing and length of these 
breaks tailored according to risk assessments. Factors such as air tem
perature, wind chills, workload, and protective clothing should be 
considered in cold work settings. Additionally, Germany’s Working 
Time Act (Bundesministerium der Justiz und für Verbraucherschutz, 
1994) mandates at least a 30-min break for shifts exceeding 6 hours. 
However, high-strain environments such as cold storage often demand 
more specific rest schedules, which individual companies need to 
customize to better meet the needs of their workers. Our findings suggest 
that more flexible, risk-based guidelines would be beneficial—for 
example, setting worker-specific rather than shift-specific break times 
across different storage areas within a warehouse operating at various 
temperatures. By advocating for evidence-based work–rest regulations, 
this research supports a growing body of knowledge aimed at enhancing 
worker well-being in human-centred warehousing.

Nevertheless, this study has several limitations that must be 
acknowledged. Owing to its focus on cold-storage environments, the 
findings may not be directly applicable to other work environments, 
such as standard-temperature warehouses. Additionally, the results are 
based on observational data of rest breaks without interventions 
involving control over several variables, which requires additional 
analysis. Moreover, although it acknowledged the variability in 
workers’ break-taking behaviour and preferences, it did not fully anal
yse the patterns or account for individual differences in physical fitness, 
health conditions, or previous work experience.

Future research should address these limitations. Additional analyses 
are necessary to clarify the effects of different environmental conditions, 
such as temperature and humidity, and a comparison of their effects on 
the rest-break effectiveness for different OP settings. Additionally, 
investigating the physiological and psychological factors that contribute 
to individual variability in resting requirements at different tempera
tures is necessary. This includes analysing the influence of age, sex, 
fitness, and health status on recovery rates and post-break performance. 
Specifically, as discussed in Section 2.3, the experimental data high
lighted that the rest-break requirements in cold-storage environments 
varies with age. However, there is minimal focus on quantifying the 
optimal development of individualised work–rest schedules. Ranasinghe 
et al. (2024) highlighted the significant role of organisations in shaping 
the experiences and expectations of the aging workforce at workplaces. 
Therefore, implementing policies and practices that support flexible and 
adaptive rest schedules could lead to a healthier and more productive 
ageing workforce. Additionally, future research should investigate the 
influence of individual break-distribution preferences, such as frequency 
and duration, on worker performance and well-being, and that of po
tential self-selection bias, where workers choose break times based on 
individual preferences, on the observed effects. Furthermore, this study 
primarily emphasised OP performance; therefore, future research should 
consider a broader perspective by integrating both economic and ergo
nomic factors, as suggested in frameworks such as that proposed by 
Grosse et al. (2015). This integrative perspective would allow for a 
comprehensive assessment of how work–rest cycles influence worker 
health and well-being, extending the focus to include social sustain
ability in workplaces.

Moreover, integrating latest technologies, such as wearable devices, 
could transform how physiological responses are monitored, thereby 
enhancing health and productivity in cold working environments. These 
devices could help determine timings for warm breaks and customize 
break schedules to meet individual needs. Grosse (2024) discussed the 
use of autonomous sensors to gather real-time feedback from order 
pickers by using machine-learning algorithms and digital twin models 
for predictive analytics to facilitate human-centric planning. However, 
despite the valuable data provided by these advanced sensor systems, 
they also pose significant ethical and privacy risks if not managed with 
appropriate level of surveillance and governance. Most importantly, 

Table 4 
Results of a multilevel regression model with interaction effects.

Dependent variable: OP time

Model (5) 
Moderating Effect

Model (6) 
Robustness 1

Model (7) 
Robustness 2

Interactions
Time after break3 

× Break 
duration

0.000001*** 
(0.0000001)

​ 0.000001*** 
(0.0000001)

Time after break2 

× Break 
duration

− 0.000002*** 
(0.0000004)

​ − 0.000002*** 
(0.0000004)

Time after break 
× Break 
duration

0.000121*** 
(0.000021)

​ 0.000120*** 
(0.000021)

Time after break3 

× Travel 
distance

​ 0.0000001*** 
(0.00000001)

0.0000001*** 
(0.00000001)

Time after break2 

× Travel 
distance

​ 0.0000002** 
(0.0000001)

0.0000002** 
(0.0000001)

Time after break 
× Travel 
distance

​ − 0.000015*** 
(0.000006)

− 0.000014*** 
(0.000006)

Moderators
Time after break3 − 0.0000001 

(0.0000001)
0.0000002 
(0.00000002)

− 0.0000001 
(0.0000001)

Time after break2 0.000017 
(0.000012)

− 0.000045*** 
(0.000004)

0.000013 
(0.000012)

Time after break − 0.000406 
(0.000598)

0.003101*** 
(0.000225)

− 0.000123 
(0.000604)

Break duration − 0.001431*** 
(0.000257)

​ − 0.001411*** 
(0.000257)

Controls and fixed effects
Control variables Included Included Included
Fixed effects Included Included Included
Intercept 2.55*** 2.51*** 2.55***

Observations 514,953 514,953 514,953
AIC 982,822 982,923 983,004
BIC 983,002 983,123 983,249

Note: *p < 0.1, **p < 0.05, ***p < 0.01.
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organisations must consider involving workers in decision-making 
processes regarding the use of their data and the feasibility of de
cisions to enhance both transparency and trust.
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Appendix 

Table A1 
Variance inflation factors and cross-correlation

VIF 1 2 3 4 5 6

1: Time after Break 1.002 1.00 ​ ​ ​ ​ ​
2: Break Duration 1.002 0.012 1.00 ​ ​ ​ ​
3: Travel distance 1.014 0.004 0.011 1.00 ​ ​ ​
4: Item weight 2.099 − 0.001 0.000 − 0.040 1.00 ​ ​
5: Item volume 1.492 0.001 − 0.001 0.010 − 0.527 1.00 ​
6: Pick Density 1.468 − 0.003 0.002 0.073 − 0.527 0.126 1.00
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