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Disrupting biological sensors of force promotes
tissue regeneration in large organisms
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Tissue repair and healing remain among the most complicated processes that occur during
postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with
diminished function, while smaller organisms respond with scarless tissue regeneration and
functional restoration. Well-established scaling principles reveal that organism size expo-
nentially correlates with peak tissue forces during movement, and evolutionary responses
have compensated by strengthening organ-level mechanical properties. How these adapta-
tions may affect tissue injury has not been previously examined in large animals and humans.
Here, we show that blocking mechanotransduction signaling through the focal adhesion
kinase pathway in large animals significantly accelerates wound healing and enhances
regeneration of skin with secondary structures such as hair follicles. In human cells, we
demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven
by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen pro-
duction. Disruption of mechanical signaling specifically abrogates these responses and
instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.
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ARTICLE

ibrosis is a significant cause of morbidity and mortality and

contributes to 45% of all deaths in the United States!. In

humans and other large organisms, injured tissue heals by
fibrosis and scar formation, which significantly impacts organ
function, as seen in myocardial infarction and ischemic stroke?.
In contrast, smaller model organisms, such as planaria and
salamanders>4, heal by regenerating normal tissue architecture
without fibrosis®. Achieving scarless tissue regeneration in
humans and other large organisms remains the holy grail of
biomedical research with the potential to revolutionize patient
care for many fibrotic diseases®.

A key feature that distinguishes model organisms from humans
and other large mammals is body mass’. Scaling principles dictate
that as organism size increases, the peak stresses transduced to
tissues during movement increases exponentially’-®. Large
organisms have evolved to compensate for these increased forces
through a variety of mechanisms; from fundamental changes
(e.g., tissue hypertrophy) to complex adaptations (e.g., alterations
in posture to reduce forces experienced by bone and muscle
during locomotion)®10. Skin in particular has adapted to elevated
mechanical stress by promoting a hypertrophic healing response,
resulting in the formation of dysfunctional scar tissue”1?.

Efficient approaches to prevent the development of skin
fibrosis in humans have been limited, and there are currently no
therapeutics that promote wound healing or reverse fibrosis. The
vast majority of in vivo studies in wound healing are conducted in
rodents!1-13, However, rodents are several magnitudes smaller in
mass than humans and experience lower tissue forces’, and even
though current wound models try to mimic human-like wound
biology, these models still do not fully replicate human scar
formation and fibrosis!>!4. These fundamental differences have
significantly limited the translational relevance of fibrosis studies
performed in rodent models. To effectively translate therapies for
human clinical use, we must thoroughly investigate potential
therapies in both clinically relevant, large animal models as well
as in human cells.

Focal adhesion kinase (FAK) is a well-characterized transducer
of tissue-level integrin-matrix forces to downstream intracellular
pathways!3. Pharmacologic inhibition of FAK has been demon-
strated to be a safe approach for the treatment of advanced solid
tumors in clinical trials!>. We have previously shown that dis-
ruption of FAK reduces inflammation and fibrosis in rodent
models!>16, To evaluate the effects of blocking mechan-
otransduction in tissue repair in large mammals, we created deep
partial-thickness excisional wounds on the dorsum of red Duroc
pigs, the closest large animal model to human wound healing!”.
Partial-thickness injuries, which could be caused by trauma,
oncologic resection, venous stasis, or burns, are the most com-
mon wounds treated in clinical practice!8. These wounds are
often left to heal by secondary intention and frequently result in
debilitating scar formation and contracture!®. Both humans and
red Duroc pigs heal from deep dermal injuries by developing
collagenous hypertrophic scars (HTS) that replace the physiologic
skin tissue!®?0. The resulting scar tissue is characterized by a
thicker dermis, increased mechanical stiffness, and an absence of
both skin appendages (e.g., hair follicles) and intradermal adipose
tissue?!. Here, we show that blocking mechanical signaling via
FAK inhibition promotes regenerative healing, defined by for-
mation of healed skin with (1) restored biomechanical properties,
(2) hair follicle regrowth, and (3) normal collagen fiber archi-
tecture. To confirm these findings in humans, we quantify the
effects of FAK inhibition on three-dimensional (3D) cultured
human fibroblasts at the cellular and transcriptomic levels using
single-cell RNA sequencing. We demonstrate that mechanical
stress induces profibrotic fibroblast differentiation fates in large
organisms, which can effectively be averted by FAK inhibition to

instead induce discrete fibroblast clusters that promote wound
regeneration.

Results

Inhibiting FAK in large mammals allows tissue regeneration.
To evaluate the effects of blocking mechanotransduction on tissue
repair in large animals, we employed a pharmacologic inhibitor of
FAK (FAKI) (VS-6062) in red duroc pigs. VS-6062 (formerly
known as PF-562,271) has been well characterized as having high
specificity for FAK over a wide panel of other kinases?223. We
first measured local and systemic toxicity and observed that
neither topical administration of FAKI solution nor subcutaneous
implantation of FAKI hydrogels resulted in any adverse reactions
in unwounded porcine skin (Supplementary Fig. 1a, b). Fur-
thermore, porcine serum FAKI concentrations following local
treatment were almost undetectable and less than 1% of the
maximum tolerated human dose observed in a previous Phase 1
clinical trial (Supplementary Fig. 1c)?4.

FAKI was delivered to partial-thickness excisional wounds on
the dorsum of red Duroc pigs in a controlled manner, using a
biodegradable and biocompatible pullulan-collagen-based hydro-
gel scaffold (Fig. 1a-c; Supplementary Fig. 1d)!!. We found that
wounds treated with FAKI hydrogels (W_HF) had fully healed at
postoperative day (POD) 14 + 2.3, more than 10 days earlier than
wounds treated with standard dressings (W) or empty hydrogels
(W_H) (****p<0.0001) (Fig. 1d, €). Importantly, this pharma-
cologic blockade of mechanical signaling resulted in skin that had
less scar formation with more hair upon gross inspection, at
PODs 40, 60, and 90 (Fig. 1f; Supplementary Fig. le). Using a
tissue cutometer, we demonstrated that FAKI-treated wounds
were less firm and more elastic than untreated wounds and
exhibited more similar biomechanical properties to unwounded
skin (Fig. 1g).

Wound tissue treated with FAKI exhibited dramatic regrowth
of hair follicles and subcutaneous glands (sweat and sebaceous)
(Fig. 1h), as well as newly regenerated peri-follicular adipose
tissue, demonstrated by immunofluorescent staining for the
adipocyte marker perilipin A (Fig. 1i). In contrast, control
wounds failed to regenerate secondary structures and instead
exhibited increased collagen deposition, fibrosis (Fig. 1h), and an
increased number of alpha smooth muscle actin (aSMA)
expressing myofibroblasts (Fig. 1j), a key cell that is known to
drive tissue fibrosis and scar formation!%.

We performed a detailed quantitative assessment of the
collagen architecture of the wounds at POD90, using the software
algorithms CT-FIRE, CurveAlign, and MatFiber, which have all
been previously developed to analyze collagen fiber properties in
histologic images?>~27. Control wounds were found to exhibit a
significant disruption of dermal architecture across these metrics,
with collagen fiber elongation and increased unidirectional
alignment?® (Fig. 2a). Wounds with pharmacological blockade
of FAK, by contrast, healed with a basket weave-like collagen fiber
network similar to unwounded skin across a wide range of
metrics (Fig. 2a). Specifically, FAK-inhibited wounds and
unwounded skin both demonstrated decreased alignment, fiber
length, angle kurtosis, and box density, while also both having an
increased number of shorter collagen fibers (*p < 0.05) (Fig. 2b).
Utilizing all 24 collagen structural parameters from these analyses
(Supplementary Fig. 2), we performed a principal component
analysis (PCA) and found that the first principal component
(PC1) distinctly separated the fibrotic wounds (W, W_H) from
regenerative healing (W_HF, UW) (Fig. 2c). We can interpret
PCl as an axis of fibrosis-regeneration that quantifies the
significant collagen structural differences between fibrosis and
regeneration across these 24 parameters.
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Manipulating mechanical forces modulates fibrotic behavior.
To understand how disruption of mechanotransduction may be
relevant to human healing, we investigated the behavior of
human fibroblasts in response to changes in tissue force. We
employed a three-dimensional (3D) culture system that permits
the precise manipulation of mechanical strain (and therefore
stress) applied to cells (Fig. 3a-c)2°. Fibroblasts were isolated from
human tissue samples, seeded within 3D collagen scaffolds, and
either restrained (no strain, NS) or subjected to 10% strain
(Strain, S) or 10% strain with FAK inhibition (Strain + FAKI,
S+ FAKI). We have previously demonstrated that fibroblasts
cultured in this system display physiologic morphology and actin/
stress fiber machinery matching fibroblasts in mechanically
stressed in vivo scar environments?%2. To further demonstrate
that our culture system accurately recreates the in vivo wound
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environment, we also observed increases in aSMA+ myofibro-
blasts induced by mechanical strain (Fig. 3d), matching obser-
vations seen in vivo (Fig. 1j). When cultured in a uniaxial strain
environment®%, these fibroblasts demonstrated elongated, uni-
directional cellular alignment similar to the highly aligned fibrotic
scar observed in human and porcine scars?330 (Fig. 3e), while
fibroblasts blocked from sensing mechanical forces demonstrated
a multi-directional organization similar to native skin
architecture?® (Fig. 2a, b).

Fibroblasts play a critical role in reorganizing extracellular
matrix (ECM) by depositing and remodeling collagen to develop
long, aligned fibers3!. Using a contraction assay, we observed that
fibroblasts lost their ability to remodel the surrounding ECM
environment upon FAKI treatment (Fig. 3f)!3. This attenuation
of remodeling was also correlated with a decrease in YAP
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Fig. 1 Disruption of mechanotransduction in large organisms accelerates deep partial-thickness wound healing, attenuates fibrotic scar formation, and
promotes tissue regeneration. a, b Large area (25 cm2) deep partial-thickness excisional wounds were created on the lateral dorsum (left and right) of red
Duroc pigs. Wounds were either treated with standard bandage dressings (Wounded: W, gray), blank pullulan-collagen hydrogels (Wound + Hydrogel:
W_H, blue), or FAKI-releasing hydrogels (Wound 4 FAKI hydrogel: W_HF, red). All wounds were evaluated by gross photography at indicated timepoints
until postoperative day (POD) 180. Dressing changes and hydrogel treatments in all pigs continued until POD90. € Schematic of hydrogel delivery of FAKI
to the wound. d Representative images tracking wound closure and scar formation over time. @ Wound closure rates (*p < 0.05; **p <0.01, ***p < 0.001;
****p =0.0007; n =7 independent wounds per condition) and f Visual Analog Scale (VAS) scoring (****p = 0.0001) were assessed by four blinded scar
experts from digital photographs of wounds throughout the healing process (wound closure assessed from POD O to POD 25; VAS assessed at POD90)
(n =4 independent blinded scores of 7 wounds per condition). g Wound firmness (left, *p = 0.0357) and elasticity (right, *p = 0.023) were compared
between W and W_HF by cutometer at POD 60 (n = 8 independent wounds per condition). h Masson's Trichrome staining of healed scar to assess the
presence of hair follicles (yellow solid arrows), secondary cutaneous glands (black solid arrows), and intradermal adipocytes proximal to the appendage
structures (yellow dashed arrows). Scale bar: 200 um. Blinded experts counted the hair follicles (***p = 0.0005, *p = 0.021) and cutaneous glands
(***p=0.0001, **p=0.0026, *p = 0.0445). Collagen blue area quantified with custom MATLAB algorithm (*p = 0.0361). i Perilipin staining and
quantification (n = 3 independent wounds, *p = 0.0472). Scale bar: 200 um. j aSMA staining and quantification (n = 3 independent wounds, *p = 0.0408).
Scale bar: 200 pum. Statistical comparisons were made either by using either a one-way (f, h) or two-way (e) analysis of variance (ANOVA) with Tukey's
multiple comparisons tests when comparing more than two groups or using paired (g) or unpaired (i, j) two-tailed t-tests when comparing two groups.

Each datapoint represents an independent wound. All data represent mean + SEM. Representative images are shown from similar images across all

wounds.

expression, a downstream transcription factor of the FAK
pathway (Fig. 3g)3233. These data demonstrate that our 3D
human culture system provides a physiological mechanical
environment that induces fibroblast phenotypes consistent with
previous findings on aSMA and YAP mechanotransduction
expression during collagen remodeling and deposition!1-13-32,
During the process of wound healing, increased mechanical forces
trigger activation of FAK and increase integrin-ECM connections,
which in turn promote stabilization of the f-actin cytoskeleton,
aSMA expression, and cellular tension*. aSMA stabilization
promotes expression of transnuclear proteins, such as YAP,
which in turn translocates into the nucleus to activate a cascade of
profibrotic and mechanotransduction signaling33. Since our 3D
culture system accurately recreates the in vivo mechanical
environment by inducing fibrotic myofibroblast phenotypes, we
then used the system to examine specific cellular signaling
pathways governing regeneration or fibrosis in human fibroblasts.

Mechanotransduction inhibition induces regenerative programs.
We have previously shown that targeting mechanotransduction with
FAKI in a murine model of hypertrophic scar (HTS) disrupts the
FAK-ERK-MCP-1 pathway and reduces the expression of those
specific fibrotic and inflammatory signals'3. However, these previous
small animal studies were limited in scope and unable to fully
examine the plethora of cellular signaling pathways, which are altered
in response to mechanical stress disruption. Recent advances in
single-cell transcriptomics have increased our ability to explore het-
erogeneous cellular responses, such as those associated with mod-
ulation of mechanical forces®.

To examine the molecular drivers of fibrosis and regeneration
in human fibroblasts, we used single-cell RNA sequencing
(scRNA-seq) in combination with our 3D collagen scaffold system
(Fig. 4a). Fibroblasts were isolated from a variety of anatomic
locations, and each patient’s fibroblasts were separately subjected
to the previously mentioned NS, S, and S+ FAKI conditions.
After 48 h, the collagen scaffolds were enzymatically digested and
scRNA-seq was performed on the cells using the 10x Genomics
Chromium platform3?. Data for individual cells were subjected to
Louvain-based clustering and embedded into a two-dimensional
UMAP space in a manner blinded to the phenotype of origin3°.
Overall, we found that mechanical strain shifted fibroblast
transcriptional programs away from the NS cell states (Fig. 4b).
Conversely, FAKI treatment pushed the cells to a new transcrip-
tional metastate, and this shift was present even when analyzing
each set of patient’s cells individually (Fig. 4b, top three plots).

These findings highlight the robustness of FAKI treatment across
three separate tissue donor sites collected on three different days.

UMAP-based clustering identified nine transcriptionally dis-
tinct fibroblast clusters (clusters 0-8) in the pooled dataset
(Fig. 4c). Unstrained fibroblasts were found to aggregate together
as a relatively homogeneous group, representing the majority of
cells in our putative cluster 0. These cells, defined primarily by
consistent expression of fibroblast housekeeping genes such as
RND3, likely represent the native fibroblast steady-state in our
system (Fig. 4c, d)37. By contrast, mechanical strain strongly
altered transcriptomic profiles and considerably increased
fibroblast transcriptional heterogeneity. Strained fibroblasts
differentiated among five different heterogeneous clusters,
delineated by clusters 2, 4, 5, 7, and 8 (Fig. 4b, c). Overall, all
of these strained fibroblasts were defined by collagen production
(COL1A1, COL3AI), myofibroblast differentiation (POSTN,
ACTA2 [encoding aSMA], PDGFRA, RUNXI, ZEB2)343839 and
genes related to mechanotransduction PTK2 (encoding FAK) and
its downstream effector YAPI (Fig. 4f, Supplementary Fig. 3a-c),
recapitulating our findings identifying aSMA and YAP upregula-
tion both in vivo (Fig. 1g) and in vitro (Fig. 3d, g). We also
observed overall upregulation of ENI (encoding engrailed-1) and
PRRX1, which our group has previously identified as hallmarks of
a profibrotic fibroblast lineage in small animal models (Fig. 4f;
Supplementary Fig. 3a-c)40:41,

Next, we used Genetrail3, a computational pipeline for over-
representation analysis (ORA) of specific genesets on a single-cell
level, to further investigate differential regulation of cellular
signaling pathways among human fibroblast groups*2. We found
that mechanically strained fibroblasts exhibited a significant
induction of genesets for focal adhesion (WP306), MAPK6/
MAPK4 signaling (WP3307), positive regulation of actin filament
binding assembly (GO-BP:0032233), TGF-beta signaling pathway
(KEGG:M2642), and EGF/EGFR signaling pathway (WP437)
(Fig. 4g; Supplementary Fig. 3d), with an enrichment of the genes
EGFR, MAPKI1, ROCKI, and RACI (Supplementary Fig. 3a,
c)#-47. Furthermore, strained fibroblasts showed a significant
enrichment of activated immune response pathways (GO-
BP:0002253) (Fig. 4g) and positive regulation of the immune
response (GO-B0O:0002218) (Supplementary Fig. 4b), corre-
sponding to upregulation of inflammatory genes such as CCL2
(Supplementary Fig. 3a). We have previously shown that MCP-1
(protein form of CCL2) is an inflammatory cytokine upregulated
by fibroblasts in response to mechanical activation during murine
fibrosis!3. These findings further demonstrate that mechanical
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Fig. 2 FAKI-mediated inhibition of mechanotransduction in wounds of large organisms promotes a regenerative organization of collagen fiber
networks. a Picrosirius Red staining of postoperative day 90 standard wounds (W, gray, n =9 independent wounds), blank pullulan-collagen hydrogels
treated wounds (W_H, blue, n =9 independent wounds), or FAKI-releasing hydrogel treated wounds (W_HF, red, n =7 independent wounds) was
quantified and compared to unwounded skin (UW, purple, n= 6 independent skin samples) using alignment (CurveAlign, second column), fiber length
metrics (MatFiber, middle two columns), and CT-Fire (right two columns). Scale bar: 10 um. b Quantification of the different collagen fiber network
characteristics, alignment (****p =0.0001), fiber length (*p = 0.0494), box density (***p =0.0006,; *p = 0.0275), feature number (*p = 0.0196), and
angle kurtosis (*p = 0.0394) across the four different groups. ¢ Principal component analysis (PCA) plots showing the variance explained by the first three
principal components (PCs); PC1 explains 61.7% of the variance, PC2 explains 11.6%, and PC3 explains 8.2%. Statistical comparisons were made using a
one-way analysis of variance (ANOVA) with Tukey's multiple comparisons tests. Each datapoint represents an independent wound. All data represent
mean + SEM. Representative images are shown from similar images across all wounds.

strain promotes inflammation by upregulating fibroblast MCP-1
expression, contributing to fibro-proliferation that attracts
inflammatory cells to the wound site and further aggravates
inflammation and fibrosis.

The strained fibroblast clusters also expressed considerable
heterogeneity, representing several differentiation fates that each

contribute to the development of fibrosis. Cluster 2 cells
upregulated CKS2, which increases cellular proliferation and
metabolic activity*?, and demonstrated an enrichment for cell
division pathways (GO-BP:0051301), signifying a highly prolif-
erative state (Supplementary Fig. 4b). Especially mechanosensi-
tive clusters 4, 5, and 7 demonstrated upregulation of pathways
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***p = 0.0005)26. Scale bar: 140 um. f Contraction in vitro assay using collagen scaffolds to quantify remodeling of the ECM environment
(****p=0.0001). Scale bar: 1cm. g Pharmacological unloading (FAKI treatment) and mechanical unloading create similar decreases in YAP expression.
Control (grey) & FAKI (purple) loaded (n =5 independent collagen scaffolds; *p = 0.0258); control (light gray) & FAKI (light purple) unloaded (n=2
independent collagen scaffolds). Scale bar: 140 um. Statistical comparisons were made by using a one-way analysis of variance (ANOVA) with Tukey's

multiple comparisons tests (c=g). Each datapoint represents an independent collagen scaffold. All data represent mean + SEM. Representative images are
shown from similar images across all experiments.
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for the alteration of the YAP1/ECM axis (WP3967) (Supplemen-  BP:0002218), indicating proinflammatory phenotypes. Within
tary Fig. 4b), corresponding with increased activation of each cluster, individual cells also each exhibited heterogeneity
myofibroblast differentiation gene POSTN (Fig. 4f). Clusters 5 when expressing key genes (Supplementary Fig. 4a). From this
and 8 represented especially fibrotic clusters, with an enrichment analysis, cluster 2 could represent an early proliferative and
for fibrosis pathways (WP3624) (Supplementary Fig. 4b) and proinflammatory fibroblast state, clusters 4 and 7 could represent
upregulation of HESI and SOX4 (Fig. 4d-e; Supplementary mechanoresponsive fibroblast states that drive differentiation into
Fig. 3a-c). HESI is a downstream effector of NOTCH3 and has myofibroblasts, and clusters 5 and 8 could represent fibroblasts
been related to a variety of human fibrotic diseases*’, and SOX4 found in chronic, late-stage fibrotic conditions.

expression has been tightly linked to various profibrotic factors, Suppression of mechanical signaling by FAKI in strained
such as TGFB, Wnt, and NOTCH?0-°2, Clusters 2 and 5 also both  fibroblasts abrogated nearly all of these transcriptomic signatures,
demonstrated positive regulation of the immune response (GO- effectively blocking fibroblast differentiation into profibrotic and
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Fig. 4 Mechanical stress drives profibrotic fibroblast heterogeneity; subsequent inhibition of mechanotransduction reduces heterogeneity and
triggers AKT-dependent EGR1 and MFGE8 expression. a Adult human dermal fibroblasts were isolated from tissue collected from three patients at
different anatomical locations: the breast skin from a mastectomy sample, the abdomen skin from an abdominoplasty sample, and the thigh skin from a
thighplasty sample. Freshly isolated fibroblasts were seeded into 3D collagen scaffolds and subjected to either no strain (NS, gray), strain (S, blue), or
strain +10 uM FAKI (S + FAKI, red) and then submitted for 10x genomics. b UMAP embeddings of cellular transcription profiles for the three patients were
combined into a final embedding. ¢ Unsupervised clustering of fibroblast transcriptional signatures revealed a total of 9 distinct clusters of human dermal
fibroblasts (clusters 0-8). d Heatmap of the top five differentially expressed genes in all clusters. e Violin plots of group-defining differentially expressed
genes. f Gene expression of group-defining genes projected onto UMAP embedding. g Over-representation analysis (ORA) of key pathways that

differentiate the groups projected onto UMAP embedding.

proinflammatory myofibroblast clusters. Instead, we found that
disruption of FAK signaling shifted fibroblasts toward a more
homogeneous metastate (Fig. 4b, c). We observed that blocking
mechanical signaling strongly reduced the transcription of
collagen encoding genes, such as COLIAI and COL3A1 (Fig. 4e,
f), and strongly induced the expression of the matrix-
metalloproteinase (MMP) genes MMPI, MMP3, and MMPI10

(Fig. 4e, f, Supplementary Fig. 3a-c). MMPs reduce fibrosis across
a wide range of disease models through collagen
degradation®3->°, and also promote cellular migration and re-
epithelialization®3°°. Finally, FAK inhibition induced the expres-
sion of the antifibrotic gene STCI (stanniocalcin-1), which has
also been shown to promote wound healing and re-
epithelialization>7->8,
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We observed a significant reduction of the MAPK-ERK
mechanotransduction pathway but preservation of AKT after
blocking mechanical signaling with FAK inhibition (Fig. 4e, f,
Supplementary Fig. 3a-c), consistent with prior findings!'!13.
Differential expression analysis revealed that FAK-inhibited
fibroblasts upregulated EGRI (encoding early growth response
protein 1) and MFGES8 (encoding milk fat globule-EGF factor 8
protein or lactadherin) expression, which are both mediated by
AKT signaling. Recent studies have found that the AKT-EGRI
pathway has been specifically associated with regenerative
phenotypes that regulate tumor suppression®*-%1, while MFGE8
mitigates scar by tagging collagen molecules for phagocytosis®2.
MFGES8 also promotes regeneration by positively regulating
vascular endothelial growth factor (VEGF) expression and
angiogenesis through AKT phosphorylation®3. FAK inhibition
consistently promoted these regenerative transcriptional profiles,
even when analyzing each set of patient cells individually
(Supplementary Fig. 5a, b). Furthermore, we found that even
cells experiencing a basal level of physiologic strain responded to
FAK inhibition (No Strain 4+ FAKI group) with similar shifts in
gene expression by decreasing profibrotic signaling and increas-
ing regenerative transcription (Supplementary Fig. 3e).

Genetrail3 analysis of FAK-inhibited fibroblasts demonstrated
a significant induction of genesets for ECM disassembly (GO-
BP:0022617), activation of MMPs (WP2769), and collagen
catabolic process (GO-BP:0030574), consistent with an antifi-
brotic phenotype (Fig. 4g). Moreover, FAK inhibition strongly
induced beneficial transcriptional genesets for cellular detoxifica-
tion (GO-BP:1990748), epithelial cell migration (GO-
BP:0010634), cellular homeostasis (GO-BP:0019725), cell redox
homeostasis (GO-BP:0045454), and collagen catabolic processes
(GO-BP:0030574) (Fig. 4g; Supplementary Fig. 3d; Supplemen-
tary Fig. 4b). Cluster 3 fibroblasts showed a specific enrichment
for pathways related to tissue development (GO-BP:0009888) and
adipogenesis (WP236), demonstrating that this cluster of cells
could potentially have the highest regenerative potential (Supple-
mentary Fig. 4b). Based on these findings, we postulated that FAK
inhibition promotes collagen degradation and reduces profibrotic
fibroblast phenotypes by inhibiting a wide range of mechan-
otransduction pathways, such as MAPK-ERK and YAP, while
preserving the AKT pathway to induce regenerative phenotypes
through EGR1 and MFGES.

Mechano-modulation of two opposing fibroblast trajectories.
Traditional differential expression analysis (Fig. 4) only provides
a snapshot of mRNA expression. We therefore employed RNA
velocity analysis using the scVelo package to explore the com-
parative abundance of spliced and unspliced pre-mRNA tran-
scripts in fibroblast clusters®4. scVelo uses a dynamical likelihood-
based model, which identifies velocity states and transcriptional
dynamics of each individual cell in an unbiased manner (Sup-
plementary Fig. 6a)04%5, Two opposing trajectories of fibroblast
differentiation were identified in both the pooled and individual
patient datasets, triggered either by the activation of mechan-
otransduction pathways or the disruption of mechanical signaling
by FAK inhibition (Fig. 5a, Supplementary Fig. 7a). We found
that FAK inhibition strongly increased the transcriptional activity
of mechanically activated fibroblasts, resulting in a higher pro-
portion of unspliced pre-mRNA, which accounted for 60% of all
mRNA transcripts versus 30% in control and strained cells
(Fig. 5b). To quantify the relationship between fibroblast clusters
resulting from either mechanical activation or disruption of
mechanotransduction, we applied partition-based graph abstrac-
tion (PAGA) informed by velocity-inferred directionality to
quantify the relationship between fibroblast clusters resulting

from either mechanical activation or disruption of mechan-
otransduction (Fig. 5c)%. The fibroblasts of the control group
(cluster 0) were identified as the origin of the underlying Markov
transition matrix, confirming their identity as root cells of
fibroblast differentiation (Fig. 5d). Partition-based graph
abstraction (PAGA) identified trajectory vectors pointing from
the control fibroblasts toward either activated profibrotic clusters
in response to mechanical strain (2, 4, 5, 7, 8) or regenerative
clusters in response to mechanotransduction blockade (1, 3, 6)
(Fig. 5¢).

Using RNA velocity analysis, we identified several genes with
differential proportions of unspliced to spliced mRNA among the
treatment groups. Specifically, EGRI showed a high proportion of
unspliced pre-mRNA in FAK-inhibited cells, providing further
evidence for its role as a driver gene of regenerative fibroblast
clusters (Fig. 5e). Additionally, MDM2, a gene regulated by AKT
expression that regulates apoptosis, showed similar kinetics and
further demonstrates how AKT-reliant genes persist within the
FAK-inhibited fibroblast subset (Supplementary Fig. 4c)¢7. RNA
velocity analysis also revealed an enrichment of pre-mRNA for
PIEZO1 and CAPZA2 in FAK-inhibited cells. PIEZO1 has been
recently implicated in regulating mechanotransduction in
macrophages®, and PIEZOI activation in fibroblasts may also
mitigate fibroblast migration into the wound and contribute to
the antifibrotic effects observed in response to FAK inhibition®.
CAPZA2 is an f-actin capping complex that binds to the barbed
ends of actin filaments, preventing further addition of actin
monomers. This reduces subsequent actin polymerization and
may limit the ability to form a functional contractile myofibro-
blast phenotype in FAK-inhibited fibroblasts’?. We also com-
pared the relative differentiation states of individual cells based on
the distribution of unique mRNA transcripts using
CytoTRACE’!. Mechanically stimulated fibroblasts appeared less
differentiated compared to other cells due to a high number of
uniquely expressed mRNA features, further demonstrating how
strain initiates transcription of a wide range of unique profibrotic
gene expression profiles in fibroblasts (Fig. 5f; Supplementary
Fig. 7b).

To further understand the transcriptional shifts observed in
our single-cell data, we constructed pseudotime trajectories’2.
Using the locus of origin identified by RNA velocity analysis
(Fig. 5¢, d), we found significant pseudotemporal divergence
between mechanically strained, untreated fibroblasts and FAK-
inhibited fibroblasts (Fig. 5g center; Supplementary Fig. 8a, b).
These findings demonstrate that mechanotransduction alters
fibroblast programming, and that blocking mechano-signaling in
strained fibroblasts alters the resulting cellular program in a way
that is transcriptionally similar to the native fibroblast base state
of control cells. Using pseudotime analysis, we identified a
regenerative axis leading from the control cells (origin, O) to the
FAK-inhibited cell clusters (regeneration, R), and a fibrotic axis
leading in the opposite direction toward the mechanically
strained, untreated fibroblast clusters (fibrosis, F) (Fig. 5g, center;
Supplementary Fig. 4b). These diverging trajectories were also
observed with RNA velocity analysis and PAGA (Fig. 5a, c), with
vectors radiating out of cluster O into either regenerative or
fibrotic clusters. Along the fibrotic axis, we observed a transcrip-
tional increase in the previously identified genes COLIAI,
PDGFRA, POSTN, RUNXI, and ENI, which are hallmarks of
myofibroblast proliferation, mechanotransduction, and collagen
production (Fig. 5g; Supplementary Fig. 8a, b). This trajectory
was also characterized by an induction of genesets for cell
metabolism and regulation of DNA binding (GO:0051101),
demonstrating an increasingly active and proliferative process
(Fig. 5g, bottom right). In contrast, the trajectory from control to
the FAK-inhibited cells (regenerative axis) exhibits a preservation
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Fig. 5 Mechanotransduction regulates opposing trajectories of profibrotic and regenerative fibroblast differentiation fates. a RNA velocities shown as
the main gene-averaged flow, visualized by velocity streamlines projected onto the UMAP embedding. b Ratio of spliced to unspliced mRNA residuals in
the three groups. ¢ Partition-based graph abstraction (PAGA) showing the connectivity of cellular clusters with edge weights representing confidence in
the presence of connections. d Root cells of cellular differentiation as identified by RNA velocity analysis. e Left: Gene-resolved velocities for EGRT and
PIEZOT. The dotted line represents the estimated ‘steady-state’ ratio of unspliced to spliced mRNA abundance. RNA velocities are the residuals from the
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state). Right: Gene-specific RNA velocity projected onto the UMAP embedding. f Cells colored by CytoTRACE scores. g Cells colored by pseudotime
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the fibrotic axis (F). Expression of key marker genes is plotted over pseudotime along both regenerative (left) and fibrotic (right) trajectories. Bottom panel
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of the AKT pathway (shown by AKTI expression), along with
increased EGRI, MFGES8, MMPI, and PIEZOI expression. In
contrast, myofibroblast markers, such as PRRXI1, POSTN,
RUNX1, ENI, and PDGFRA, clearly decreased along this axis
(Fig. 5g; Supplementary Fig. 8a, b). Pathways, such as mRNA
processing (WP411), RNA splicing (GO:0000375), and regulation
of mRNA processing (GO:0050684), decreased along the
regenerative trajectory (Fig. 5g, bottom left), correlating with
our RNA velocity analysis. In summary, we utilized advanced
bioinformatic tools to identify two diverging transcriptional
trajectories, either toward fibrosis or toward regeneration. Along
these opposing trajectories, we observed stark differences in
transcriptional profiles that either defined fibrotic or regenerative
fibroblast phenotypes.

Porcine and human confirmation of diverging trajectories. In
order to confirm these diverging proregenerative and profibrotic
differentiation trajectories as well as correlate human and large
animal phenotypes (Figs. 1, 2), we first performed immuno-
fluorescent staining of tissue sections from porcine wounds for
the key regenerative and fibrotic markers identified in our human
fibroblasts. FAK inhibition significantly blocked YAP expression
at POD7 after injury (**p<0.01) (Fig. 6a, b), while also pro-
moting expression of top regenerative markers EGR1, MFGES,
and MMP1 (*p <0.05) (Fig. 6a, b). These observations persisted
at POD90 for both the fibrotic marker YAP and the regenerative
marker EGR1, highlighting the long-lasting effects of alterations
in mechanotransduction upon fibroblast phenotypes (Supple-
mentary Fig. 9a, b). Expression of MMP1 and MFGE8 normal-
ized by POD90, demonstrating that key ECM remodeling occurs
early and tapers off by late timepoints (Supplementary Fig. 9¢, d).

We then repeated our human fibroblast experiments to
confirm these key markers on both the mRNA and protein level
using qPCR and western blotting (Fig. 6¢, d; Supplementary
Fig. 10a). First, we confirmed that mechanical strain indeed
induced fibrotic YAP mRNA and protein expression (Fig. 6¢, d;
Supplementary Fig. 10a). Mechanically strained fibroblasts
treated with YAP1 small interfering RNA (siRNA) promoted
EGRI expression and also decreased expression of COL3AI and
POSTN (Supplementary Fig. 10b). These experiments demon-
strated that YAP indeed acts as a master regulator of profibrotic
differentiation, and that silencing YAP expression could, like FAK
inhibition, promote regenerative EGRI expression while down-
regulating collagen and myofibroblast markers.

We also confirmed on the mRNA and protein levels that FAK
inhibition increased EGR1, MFGES, and MMP1 expression, while
decreasing YAP and preserving AKT expression (Fig. 6¢, d;
Supplementary Fig. 10a). Silencing EGRI using siRNA, however,
negated the beneficial effects of FAK inhibition by instead
promoting profibrotic YAP1 and COL3A1 expression (Supple-
mentary Fig. 10c). These findings confirmed that disruption of
mechanotransduction unlocks a regenerative differentiation path
driven by the master transcription factor EGRI.

Overall, these data strongly indicate the presence of two
distinct profibrotic and proregenerative differentiation paths
dependent on mechanotransduction signaling that occur after
injury in both large animals and humans. On both the mRNA
and protein levels, we confirmed the interlinked behavior of both
YAP and EGRI signaling and showed how silencing the
expression of each of these master transcriptional factors directly
pushes fibroblasts toward the opposing trajectory. Taken
together, our findings identify a critical role of mechanical
signaling in wound healing and scar formation for large
organisms and highlight that true tissue regeneration can occur
by blocking mechanical signaling.

Discussion

Our study indicates that modulation of mechanotransduction can
push and pull fibroblast programming either toward or away
from fibrotic transcriptional states, highlighting the critical
importance of mechanical forces in tissue regeneration. This
principle has not been previously demonstrated in the context of
large organisms, including humans. To our knowledge, this is the
first study to demonstrate that inhibition of mechanotransduction
through the FAK pathway improves scar formation, encourages
skin regeneration, and promotes regenerative fibroblast pheno-
types in a large animal porcine model and a physiologically
relevant 3D human fibroblast culture system.

We demonstrate that high mechanical stress promotes het-
erogeneous myofibroblast differentiation and collagen deposition,
leading to slower wound healing and eventual fibrosis (Fig. 6e).
Inhibition of mechanotransduction through the FAK pathway
blocks the appearance of profibrotic fibroblast subpopulations,
accelerates wound healing, promotes skin regeneration, and
reduces fibrosis, bringing the healed tissue almost back to a
normal state. In human cells cultured in a physiologic three-
dimensional system, we captured previously unknown cellular
kinetics driving fibroblast differentiation during fibrotic pro-
cesses. At a cellular level, we showed that inhibiting fibroblast
mechano-sensation through FAK reduces profibrotic transcrip-
tional signatures and interestingly preserves AKT signaling to
create putatively regenerative fibroblasts characterized by EGRI,
MMPI1, and MFGES8 expression (Fig. 6f)°3->°. Furthermore,
scRNA-seq analysis allowed us to frame these findings along an
axis of fibrosis-regeneration, capable of modeling multigene
contributions. Along this axis, we observed that mechan-
otransduction increases mRNA splicing and unique mRNA
transcripts, contributing to increased fibroblast heterogeneity.
Future work should be done to investigate the effects of
mechanotransduction on other cell types, such as inflammatory
infiltrates or other skin cells associated during wound healing
(e.g., keratinocytes). While there is some recent evidence that
myeloid cells respond to mechanical cues in certain situations,
these studies have yielded conflicting results’>74. The effects of
mechanotransduction on the crosstalk between fibroblasts and
inflammatory or epithelial cells will further improve our ability to
promote tissue regeneration after injury.

Collectively, our study represents the most comprehensive
characterization linking mechanical forces and tissue regenera-
tion in large organisms, including humans. We demonstrate that
locally disrupting mechanical forces encourages true tissue
regeneration in large organisms. These findings may have pro-
found implications for future efforts to regenerate limbs, hearts,
and other tissues.

Methods

Blank and FAKI-releasing pullulan-collagen hydrogel production. Blank and
FAKI-releasing hydrogel patch production was conducted!!. First, one gram of
pullulan (TCI, Tokyo) was mixed with 1 g of trisodium trimetaphosphate (STMP)
(Aldrich, St Louis, MO) and 1 g potassium chloride KCI (Fisher Scientific, USA).
Deionized water was added to the powder mixture to a total volume of 5mL and
thoroughly mixed, followed by 5 mL of 10 mg/mL bovine collagen (Sigma-Aldrich,
USA) suspension in 0.01 M hydrochloric acid (HCI). The resulting mixture was
vortexed until a homogenous suspension was obtained, and then gently vortexed
again after adding 0.65 mL of 1 N sodium hydroxide NaOH to initiate crosslinking.
The mixture was then aliquoted in silicon molds and allowed to dry overnight in a
sterile hood at room temperature. The dried films were washed with deionized
water to remove non-crosslinked polymers, KCl, and NaOH until the pH of the
wash solution was between 7.0 and 7.5. Swollen hydrogels were frozen at —80 °C
followed by lyophilization to obtain dry (blank) patches.

FAKI (VS-6062) compound was obtained from Verastem Oncology (Needham,
MA) and Selleckchem (Houston, TX). To incorporate FAKI in the hydrogels, we
first dissolved FAKI in acetone at 1 mg/mL. One milliliter of the solution was
spread uniformly upon the porous hydrogel, followed by the solvent evaporation in
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immunofluorescence staining of wounded and untreated (W, left, blue, n = 3 independent wounds) vs. wounded and FAK-inhibited (W_HF, right, red, n =3
independent wounds) porcine dermal tissue sections at POD7 (from Figs. 1, 2). Staining for YAP (encoded by the gene YAPT, **p = 0.0015), which
contributes to myofibroblast differentiation, mechanotransduction, and scar formation, or EGR1 (*p = 0.0415), MFGE8 (*p = 0.0499), and MMP1, which
contribute to regenerative healing and collagen degradation. Scale bar: 200 um. Magnified image scale bar: 50 um. ¢, d Western blot protein quantification
of human fibroblasts from repeated experiments utilizing our collagen scaffold system of YAP1 (n = 4 independent collagen scaffolds per condition,
*p=0.0493), EGR1 (n = 2 independent collagen scaffolds per condition, *p = 0.0134), MFGE8 (n = 6 independent collagen scaffolds per condition,
*p =0.0164), and MMP1 (n = 4 independent collagen scaffolds per condition, *p = 0.0471). e, f Schematic of the proposed cellular mechanism of action
showing how increased mechanical stress drives fibrosis and scar formation, while FAK inhibition unlocks AKT activation of EGR1 and MFGES. Statistical
comparisons were made using either unpaired (b) or paired (d) two-tailed t-tests. Each datapoint represents an independent wound or collagen scaffold.

All data represent mean + SEM. Representative images are shown from similar images across all experiments.

the hood. Blank and FAKI-containing hydrogel patches were placed in individual
plastic bags and sterilized using e-beam irradiation at a 20kGy irradiation dose.

Animal care. We have complied with all relevant ethical regulations for animal
testing and research, and all animal work received ethical approval in accordance
with the Administrative Panel on Laboratory Animal Care protocols (APLAC#
31530 and 32962) approved by Stanford University. Seven female red Duroc pigs,
6-8 weeks old and weighing ~16-20 kg at the time of surgery, were purchased from

Pork Power Farms (Turlock, CA). All animals were acclimated for at least 1 week
upon arrival. All animals were fed lab porcine grower diet and water ad lib.

Porcine deep partial-thickness excisional wound model. Prior to operation,
animals were administered oral amoxicillin 10 mg/kg for 24 h. General anesthesia
was administered by Veterinary Services personnel and established with intra-
muscular telazol 6-8 mg/kg, administered once as a pre-anesthetic. Animals were
then intubated using an endotracheal tube and maintained on 1.5-3% of inhaled
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isoflurane throughout the procedure. The hair on the back was clipped and skin
was cleansed initially with Betadine® solution following by a 70% alcohol rinse.
Excisional wounds were created with a standard electric Zimmer dermatome
(Zimmer Biomet, Warsaw, IN). Up to eight wounds, ~5 x 5 cm in size, were created
on each lateral flank, with 3-5 cm intervals between wounds (Fig. 1a, b). Multiple
dermatome passes were performed to create deep partial-thickness wounds of
uniform 0.07 inch depth. The wounds were randomly assigned to receive either
FAKI hydrogel (W_HF), blank hydrogel (‘placebo’, W_H), or no hydrogel
(wounded control, W) (n = 6-9 wounds per condition). Animals were given oral
amoxicillin 10 mg/kg post-operatively twice a day for 5 days total. Wound dres-
sings, including FAKI hydrogel patches, were changed every other day for the first
3 weeks after initial injury until POD 21 (Fig. 1d, Supplementary Fig. 1d).
Thereafter, dressings were changed twice per week until POD90. Animals were
subject to short-term sedation for each dressing change.

Wound closure, visual scar assessment, and viscoelastic analyses. Wounds
were monitored photographically at each dressing change. Days to wound closure,
defined as complete re-epithelialization without open wound area, were determined
for each wound based on gross photographic assessment. Quantification of scar
metrics were performed using a Visual Analog Scale (VAS) for five components
(vascularity, pigmentation, observer comfort, acceptability, and contour) by a panel
of four blinded scar experts. Total scores are calculated as a composite of all five
scores; lower scores indicate improved scar appearance. A cutometer (Dual MPA
580, Courage + Khazaka Electronic, Kéln, Germany) was used to evaluate the
firmness and elasticity of the healing wounds at POD 60. Cutometer assessment is
the gold standard to measure viscoelasticity in human patients. The cutometer
measures the vertical deformation of the skin surface by applying negative pressure
(suction) through a small circular diameter (8 mm probe). Deformation (suction)
for two seconds followed by two seconds of relaxation (no suction) was applied
three times and averaged. The elasticity ratio (ability for tissue to return back to
original setpoint) was measured during the relaxation period (R2 metric)”>.

Histological analysis of collagen architecture. Specimens were harvested from
the center of each wound at intermediate timepoints and at the end of the study,
fixed in 4% paraformaldehyde, dehydrated, and then paraffin embedded. Masson’s
Trichrome staining and Picrosirius Red staining were performed. Picrosirius Red-
stained images were captured using polarized light microscopy (Leica DM5000 B
upright microscope). Analysis of fiber alignment was performed on Picrosirius
Red-stained images at x40 magnification using the custom software MatFiber, an
intensity-gradient-detection algorithm we have previously used to analyze overall
alignment of collagen fibers and stress fibers from multiple samples?>2° as well as
the open-source package CurveAlign?” (Fig. 2, Supplementary Fig. 2). The mean
vector length (MVL) represents the strength of alignment and ranges from a value
of 0 (completely random fiber alignment) to 1 (completely aligned fibers). The
overall strength of alignment of the fibers were calculated following methodology
previously published?®. Quantification of individual collagen fiber parameters was
performed using CT-FIRE (http://loci.wisc.edu/software/ctfire)27-7, CT-FIRE
analyzes individual fiber metrics such as length, width, angle, curvature, localized
fiber density, and the spatial relationship between fiber and the associated
boundary. The average fiber parameters for each sample were used for statistical
analysis.

Statistical analyses. Statistical analysis was performed in Prism8 (GraphPad, San
Diego, California) using paired or unpaired Student’s t-tests, as well as one-way or
two-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test.
Data are presented as means = SEM. P values of p <0.05 were considered statisti-
cally significant. Principal component analysis (PCA) of fiber parameters was
performed with centering to mean zero and scaling to unit variance using the
prcomp function in R. Plots were generated with 95% confidence intervals using the
ggbiplot and pca3d packages.

Implantation toxicity tests. The pig was anesthetized with 2% isoflurane delivered
at a rate of 2 L/min through a fitted nose cone. Control of pain was achieved by
intramuscular administration of caprofen administered prior to surgery with a
second dose given at 24 h and then every 24 h as needed. The dorsal neck was
prepped and draped in the usual sterile fashion using chlorhexidine. Lidocaine 2%
with epinephrine will be utilized to provide local anesthesia to the dorsal neck of
the pig. Using a 15 blade scalpel, a 2-3 cm incision was made subcutaneously.
Metzenbaum scissors were used to dissect a subcutaneous pocket away from the
incision 2 x 2 cm in size. A piece of prewet FAK inhibitor hydrogel 2 x 2 cm or
smaller in size was carefully inserted into the subcutaneous pocket. Hemostasis was
ensured. The deep dermal layer was closed with 4-0 vicryl suture using buried
simple interrupted sutures. The skin was closed using 5-0 monocryl suture in a
running subcuticular fashion. Dermabond skin glue was used to seal the incision.
The skin was cleaned with wet and dry gauze and a sterile occlusive dressing was
placed over the wound. The pig was monitored carefully in the postoperative
period. The implanted hydrogel was kept for up to 4 weeks and local parameters
(edema, erythema, bleeding, skin peeling or ulcers) were monitored daily. After
4 weeks, we obtained an excisional 8 mm tissue specimen using a biopsy tool.

Immunofluorescent staining. Immunofluorescent staining was performed using
primary antibodies targeting EGR1 (1:100 dilution; ThermoFisher, PA5-83115),
MFGES (1:100 dilution; ThermoFisher, PA5-82036), MMP1 (1:100 dilution;
Abcam, ab52631), a-smooth muscle actin (1:200 dilution; Abcam, ab5694), YAP
(1:100 dilution; CellSignaling, 14074 S), and Perilipin-1 (1:100 dilution; Abcam,
ab172907). The percentage of fluorescent area was quantified using custom a
MATLAB image processing code written by the authors and previously
published?®. All histology and immunofluorescent images shown are representative
images of multiple experiments.

Collection of human skin tissue. We have complied with all relevant ethical
regulations for work with human tissue, and all human skin was collected with
ethical approval under the IRB #54225 from Stanford University. Skin tissue was
collected from patients undergoing procedures, which normally involve tissue
removal (including plastic surgery operations). No patient identifying information
was collected. This skin would otherwise be discarded as medical waste. Thus, there
was no additional risk to patients and recruitment was not needed.

Fibroblast-populated 3D collagen scaffold experiments. We isolated and cul-
tured dermal fibroblasts from human skin samples from three surgical procedures:
a breast mastectomy, an abdominoplasty, and a thighplasty (n = 3 patients).
Fibroblasts were isolated by mechanical and enzymatic digestion and cultured
under standard conditions until passage 3. The primary fibroblast cultures were
then used to create fibroblast-populated collagen hydrogels at final concentration of
200k cells/mL and 2 mg/mL collagen (PureCol, Advanced Biomatrix, San Diego,
CA), following our previously published protocols?®. In brief, collagen scaffolds
were formulated in a cruciform shape in petri dishes with a PDMS coating

(~4 mm) on the bottom. Pins were pushed through the hydrogel cruciform arms to
constrain the scaffolds in both directions for a 24 h preculture period before being
subjected to either no strain, 10% equibiaxial strain, or strain + FAKI treatment for
an additional 48 h. FAKI treatment was administered by adding 20 mM FAKI in
DMSO into the culture media of the scaffolds to achieve a final concentration of
10 uM FAKI for 48 h. Strained but untreated fibroblasts were also treated with the
same volume of DMSO only. Strain was imposed by removing the anchoring pins,
manually extending the hydrogel cruciform arms, and pushing the pins back to
hold the arms in the new, extended position. We applied nine Titanium(IV) oxide
paint dots (Sigma-Aldrich) on the surface of the central region of the gel to track
and quantify the imposed strains. We used a digital camera to image the markers
before and after strain. Photographs of marker position were used to compute a
single homogenous deformation gradient tensor F that provided the least-squares
best fit mapping of the 9 marker positions from the undeformed to deformed
positions by solving the overdetermined matrix equation:

x=FX+p, 1)

where p is an arbitrary vector included to account for translation between images.
We converted the deformation to a strain tensor E using:

E= % (FTF —1I) (2

Single-cell barcoding, library preparation, and single-cell RNA sequencing.
After 2 days of increased (induction of strain) or inhibited (induction of strain +
FAKI) mechanotransduction, collagen scaffolds were micro-dissected and enzy-
matically digested in a 50 mL conical tube containing 20 mL Collagenase, Type I
(ThermoFisher) in PBS at a concentration of 5 mg/mL for enzymatic digest>>. The
cell-digest suspensions were constantly agitated (rotated) for a total of 1 h at 37 °C.
The sample was then subjected to maximum speed on a vortex mixer (VWR) for
30 seconds to physically disrupt any tissue that had clumped together and thus
maximize the tissue surface area exposed to enzymatic digestion at all times. The
cellular and enzymatic solution was then pipetted through a 100 um Nylon cell
filter (Fisher-Scientific) into a new conical tube, and 20 mL of 10% FBS DMEM was
added through the filter to quench the enzymatic reaction and release any cells
trapped within the filter, maximizing downstream cell yield. Solutions were then
spun at 300 x g for 8 min at 4 °C in a centrifuge to pellet the cells, resuspended in
20 mL 10% FBS DMEM, and passed through a 70 um Nylon cell filter. A 20 mL
solution of 10% FBS PBS (FACS Buffer) was added through the filter to collect the
remaining cells.

To remove excessive debris left by the collagen hydrogel and dead cells, we stained
the cellular suspension with Propidium Iodide (biolegend) and sorted this cellular
suspension for live cells at the Stanford Shared FACS Facility (Supplementary Fig. 11).
The sorted cells were resuspended to a final cellular concentration of 1200 cells/uL in
0.04% Bovine Serum Albumin (BSA; Sigma-Aldrich) in PBS in accordance with the
maximum capture concentration short of overloading, per specifications from 10x
Genomics (Pleasanton, CA). This cellular suspension was then submitted for droplet-
based microfluidic single-cell RNA sequencing (scRNA-seq) at the Stanford Functional
Genomics Facility (SFGF) using the 10x Chromium Single Cell platform (Single Cell 3’
v3, 10x Genomics, USA). A droplet of the cell suspension, reverse transcription master
mix, and partitioning oil was loaded onto a single-cell chip and processed on the
Chromium Controller. Reverse Transcription was performed at 53 °C for 45 min.
c¢DNA was amplified for 12 cycles total (BioRad C1000 Touch thermocycler) with
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cDNA size selected using SpriSelect beads (Beckman Coulter, USA) and a 0.6 ratio of
SpriSelect reagent volume to sample volume. cDNA was analyzed on an Agilent
Bioanalyzer High Sensitivity DNA chip for qualitative control purposes. cDNA was
fragmented using the proprietary fragmentation enzyme blend for 5 min at 32 °C,
followed by end repair and A-tailing at 65 °C for 30 min. cDNA were double-sided size
selected using SpriSelect beads. Sequencing adaptors were ligated to the cDNA at 20 °C
for 15 min. cDNA was amplified using a sample-specific index oligo as primer,
followed by another round of double-sided size selection using SpriSelect beads. Final
libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip for
qualitative control purposes. cDNA libraries were sequenced on a HiSeq 4000 Illumina
platform aiming for 50,000 reads per cell.

Data processing, FASTQ generation, and read mapping. Base calls were con-
verted to reads using the Cell Ranger (10x Genomics; version 3.1) implementation
of mkfastq and then aligned against the GRCh38 v3.0.0 (human) genome using Cell
Ranger’s count function with SC3Pv3 chemistry and 5000 expected cells per
sample”’. Cell barcodes representative of quality cells were delineated from bar-
codes of apoptotic cells or background RNA based on a threshold of having at least
200 unique transcripts profiled, less than 10,000 total transcripts, and less than 10%
of their transcriptome of mitochondrial origin’8. We also considered evaluating
stricter thresholds (e.g., at least 500 unique transcripts), but found that cells falling
between 200 and 500 unique transcripts exhibited profiles consistent with intact
cells, notably with lower percent mitochondria RNA.

Data normalization and cell subpopulation identification. Unique molecular
identifiers (UMIs) from each cell barcode were retained for all downstream ana-
lysis. Raw UMI counts were normalized with a scale factor of 10,000 UMIs per cell
and subsequently natural log transformed with a pseudocount of 1 using the R
package Seurat (version 3.1.1)7°. Highly variable genes were identified, and cells
were scaled by regression to the fraction of mitochondrial transcripts. Aggregated
data were then evaluated using uniform manifold approximation and projection
(UMAP) analysis over the first 15 principal components®’. Automated cell-level
annotations were ascribed using the SingleR toolkit (version 3.11) against the
ENCODE blue database®!.

Generation of characteristic subpopulation markers and enrichment analysis.
Cell-type marker lists were generated with Seurat’s native FindMarkers function
with a log fold-change threshold of 0.25 using the ROC test to assign predictive
power to each gene. The 100 most highly ranked genes from this analysis for each
cluster were used to perform geneset enrichment analysis against pathway data-
bases in a programmatic fashion using EnrichR (version 2.1)82.

Over-representation analysis using Genetrail3. Using GeneTrail v3.0%2, an
over-representation analysis (ORA) was performed for each cell using the 500 most
expressed protein coding genes with the genesets Gene Ontology: Biological Process
(GO-BP) and WikiPathways (WP). P values were adjusted using the
Benjamini-Hochberg procedure and genesets were required to have between 2 and
1000 genes.

CytoTRACE analysis. The CytoTRACE algorithm was used with default para-
meters to compare cellular differentiation states among fibroblasts in our dataset’.
CytoTRACE analyzes the number of uniquely expressed mRNA features per cell, as
well as other factors such as distribution of mRNA content, to calculate a score
assessing the differentiation and developmental potential of cells.

RNA velocity analysis using scVelo. RNA velocity analysis was performed using
the dynamical model of the scVelo (v0.2.3) package®. Partition-based graph
abstraction (PAGA) was performed using the sc.tl.paga function in scVelo. To find
genes with differentially regulated transcriptional dynamics compared to all other
clusters, a Welch t-test with overestimated variance to be conservative was applied
using the sc.tl.rank_velocity_genes function. Genes were ranked by their likelihood
obtained from the dynamical model grouped by treatment.

Pseudotime analysis using Monocle. Monocle3 (v0.2.1.2) was applied to con-
struct pseudotime trajectories for individual cells along their aggregate spatial
manifold. Cell transcriptional states were first projected onto a reduced-
dimensional space in a manner to minimize information loss using a modified
UMAP implementation®?. The Louvain community detection algorithm was then
used to group mutually similar cells, and nearby groups were categorized into
‘supergroups8485, The paths and trajectories of individual cells and the locations of
branches were then resolved within each supergroup®®. To create pseudotime
heatmaps, we created subsets of the regenerative or fibrotic trajectory cells and
assigned pseudotime values to each subset. We used the function graph_test to
identify the 200 genes with the strongest correlations with pseudotime and plotted
their expression along pseudotime using Monocle2.

Western blotting. Protein isolation, quantification, and western blot analysis were
performed on fibroblasts within collagen scaffolds®”. The scaffolds were minced
with scissors and then combined with a solution of cold RIPA buffer
(Sigma-Aldrich) containing 1 mM Phenylmethanesulfonyl Fluoride (PMSF; Cell
Signaling) and Proteases Inhibitor Cocktail (Sigma-Aldrich). Following repeated
freeze-thaw cycles, vortexing, and sonication, samples were centrifuged, and the
supernatant was collected for protein quantification and western blot analysis. Each
total protein sample was prepared for loading with NuPAGE LDS sample buffer
and NuPAGE reducing agent according to manufacturer’s instructions (NuPage,
Life Technologies). Protein samples were electrophoresed on NuPAGE Bis-Tris
precast polyacrylamide gels (ThermoFisher) and transferred onto PVDF mem-
brane (Immunoblot, Biorad, CA). Inmunoblotting analysis was performed using
primary rabbit antibodies of YAP (1:200 dilution; Cell Signaling, 4912), EGR1
(1:500 dilution; Cell Signaling, 4153), MFGES (1:500 dilution; Sigma-Aldrich,
SAB1408603), MMP1 (1:1000 dilution; abcam, ab38929), and alpha-Tubulin
(1:1000 dilution; Cell Signaling, 2125). A horseradish peroxidase-conjugated sec-
ondary anti-rabbit was used (1:2000 dilution; Cell Signaling, 7074). Immunoblotted
proteins were visualized by enhanced chemiluminescence western blot reagents
(Sigma-Aldrich) and film (Amersham Biosciences). Densitometry analysis of
electrophoretic bands was performed using the Image] software program (NIH)
and normalized to the loading control (alpha-tubulin). All western blot images
shown are representative of multiple experiments.

Realtime PCR (qPCR). We performed qPCR using validated and predesigned
TaqMan Gene Expression Assays (Sigma, 4331182) to quantify GAPDH
(Hs02786624_gl), MMP1 (Hs00899658_m1), EGR1 (Hs00152928_m1), YAP1
(Hs00217433_m1), AKT1 (Hs00178289_m1), MFGES (Hs00983890_m1),
COL3A1 (Hs00943809_m1), and POSTN (Hs01566750_m1) (Supplementary
Table 1). We used a total reaction volume of 20 yl that contained 10 ul of TagMan
Universal Master Mix II, no UNG (Thermo Fisher Scientific, 4444963), 0.2 uM
forward and reverse primers, 0.25 uM hydrolysis probe, and the appropriate
amount of genomic DNA (40 ng per reaction), on an Applied Biosystems 7900
instrument (Thermo Fisher Scientific). SuperScript cDNA Synthesis Kit was used
(Thermo Fisher Scientific, 11754050). qPCR conditions were 1 cycle of 95 °C for
10 min, followed by 50 cycles of 95 °C for 15s, 56 °C for 30 s, and 72 °C for 30 s. All
samples were run as triplicates.

Small interfering RNA (siRNA). We performed siRNA experiments according to
established protocols. Briefly, subconfluent cells were transfected with a combi-
nation of (A) 8 uL siRNA duplex in 100 puL siRNA transfection medium (Santa
Cruz Biotechnology, sc-36868) with (B) 8 uL siRNA transfection reagent (Santa
Cruz Biotechnology, sc-29528) in 100 puL siRNA transfection medium. For siRNA
duplex, we used either control (scrambled) siRNA (Santa Cruz Biotechnology, sc-
37007), YAP1 siRNA (Santa Cruz Biotechnology, sc-38637), or EGR1 siRNA
(Santa Cruz Biotechnology, sc-29303). Cells were incubated with this siRNA
transfection reagent mixture for 7 h before normal growth medium containing 2x
the normal serum and antibiotic concentrations were added. After an additional
24 h, cells were then used for collagen hydrogel scaffold experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The authors declare that the source data supporting the findings of this study are
provided with the manuscript and supplementary information files. The scRNA-seq data
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