Bus Inf Syst Eng 67(3):357-383 (2025)
https://doi.org/10.1007/512599-025-00936-4

®

Check for
updates

RESEARCH PAPER

Learning from the Data to Predict the Process

Generalization Capabilities of Next Activity Prediction Algorithms

Peter Pfeiffer - Luka Abb - Peter Fettke - Jana-Rebecca Rehse

Received: 31 July 2024/ Accepted: 27 January 2025/ Published online: 22 March 2025

© The Author(s) 2025

Abstract Predictive process monitoring (PPM) aims to
forecast how a running process instance will unfold in the
future, e.g., which activity will be executed next. For this
purpose, PPM techniques rely on machine learning models
trained on historical event log data. Such models are
assumed to learn an implicit representation of the process
that accurately reflects the behavior contained in the data, so
that they can be used to make correct predictions for new
traces with unseen behavior. This capability, called gener-
alization, is fundamental to any machine learning applica-
tion. However, researchers currently have a limited
understanding of what generalization means in a PPM
context and how it relates to the characteristics of event logs.
In the paper, the authors discuss the generalization capa-
bilities of PPM approaches, focusing on next activity pre-
diction. They develop a framework for generalization in
PPM, derived from the understanding of the term in general
machine learning. The framework is applied to next activity
prediction by developing concrete prediction scenarios,
creating corresponding event logs, and using these logs to
empirically evaluate the generalization capabilities of state-
of-theart models. The evaluation shows that next activity
prediction models generalize well in almost all scenarios.

Accepted after one revision by the editors of the Special Issue.

P. Pfeiffer - P. Fettke
German Research Center for Artificial Intelligence (DFKI),
Campus D3 2, 66123 Saarbriicken, Germany

P. Pfeiffer (0<]) - P. Fettke

Saarland University, Campus D3 2, 66123 Saarbriicken,
Germany

e-mail: peter.pfeiffer@dfki.de

L. Abb - J.-R. Rehse
University of Mannheim, L 15, 68161 Mannheim, Germany

Keywords Process prediction - Predictive process
monitoring - Next activity prediction - Generalization -
Validity issues

1 Introduction and Motivation

Predictive process monitoring (PPM) is a branch of process
mining that aims to forecast how a running process
instance will unfold in the future (Di Francescomarino and
Ghidini 2022). This may concern what the outcome of the
process instance will be, how long it will take to complete,
or which activities will be executed next (Rehse et al.
2018). The first approaches to PPM relied on explicit
models of process behavior, such as transition systems (van
der Aalst et al. 2011) or probabilistic automata (Breuker
et al. 2016). However, the vast majority of recent research
treats PPM as a self-supervised machine learning prob-
lem (Neu etal. 2021; Rama-Maneiro etal. 2021;
Pasquadibisceglie et al. 2022; Pfeiffer et al. 2021) and
aims to solve it with deep neural networks (Evermann et al.
2017).

In contrast to many other process mining techniques,
PPM is forward-facing: It aims to identify process execu-
tion problems like delays or compliance violations before
they occur (Di Francescomarino and Ghidini 2022). Based
on these predictions, a process manager can preemptively
take actions to avoid and mitigate the problems, enabling a
real-time management of the business process (Evermann
et al. 2017). However, this capability hinges on the quality
of the predictions that the machine learning model makes.
If they are wrong, the manager might take unnecessary or
even harmful actions, which can impede a smooth execu-
tion of the business process instead of supporting it.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-025-00936-4&domain=pdf
https://doi.org/10.1007/s12599-025-00936-4

358 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

To make correct predictions about ongoing process
executions, the machine learning model creates an implicit
representation of the process, which is learned from the
data seen during training (Evermann et al. 2017). This
representation is meant to accurately cover the underlying
process (Pfeiffer 2022). In particular, it is expected to
precisely fit the data it was trained on while still being
flexible enough to make correct predictions for traces not
part of its training data. This capability of machine learning
models to handle unseen samples is known as generaliza-
tion. Considered a fundamental goal in machine learning
literature (Goodfellow et al. 2016; Bishop 2006), general-
ization is motivated by the observation that training con-
ditions often differ from the real-world application
conditions in which a model needs to perform effectively.

In PPM, several factors can cause discrepancies between
training and application settings. For example, because
event logs are typically assumed to be incomplete (Buijs
et al. 2014), the training data will not capture all possible
control flow variants. It is therefore crucial for prediction
models to generalize from the limited exampled in the
training data to the unseen variants in the application.
Furthermore, processes are executed in dynamic environ-
ments, so that both the process itself and environmental
factors (e.g., the involved resources) can change over time.
The models need to cope with these changes to perform
well in an application setting. These factors underscore the
importance of generalization: To make correct predictions
in an application setting, the machine learning model needs
to learn a good representation of the process instead of
merely a good representation of the training data. To
achieve this, researchers need a conceptual understanding
of what generalization means in a PPM context and how it
relates to the characteristics of the event logs used for this
task.

Despite its importance, however, the concept of gener-
alization has received minimal attention in existing PPM
literature. In this paper, we aim to address this by dis-
cussing the generalization capabilities of PPM approaches,
with a specific focus on next activity prediction. This
prediction task, which is the focus of most state-of-the-art
PPM approaches (Neu et al. 2021), intends to determine
the most likely next activity in an ongoing process exe-
cution. Next activity prediction is typically seen as a
classification task (Rama-Maneiro et al. 2021): Based on
historical execution data of the business process in ques-
tion, a machine learning model is trained to predict the
most likely next activity for a given trace prefix. Therefore,
the model is shown incomplete traces from historical data
so that it learns to predict the correct label among a set of
known activity classes (Abb et al. 2024).

@ Springer

In the following, we first show that our limited under-
standing of generalization in PPM has lead to validity
issues in previous experiments on next activity prediction.
To address these issues, we then derive a conceptual frame
for generalization in PPM, which is based on the under-
standing of the term in broader machine learning research
as well as the specific nature of event data. Applying this
frame to the concrete task of next activity prediction, we
develop concrete prediction scenarios in which models
would need to generalize. We create event logs for each
scenario and empirically evaluate state-of-the-art predic-
tion models to assess their generalization capabilities.
Finally, we validate our findings on more complex as well
as real-world event logs and discuss the transferability to
other PPM tasks.

This article is an extended and revised version of our
original conference publication (Abb et al. 2024). We have
significantly extended the alignment between generaliza-
tion in machine learning with generalization in process
prediction by conceptually discussing the aim and chal-
lenges of generalization in next activity prediction. The
generalization scenarios have been revised and expanded
with scenarios that combine multiple single-source sce-
narios. Further, experiments using simulated event logs
based on the generalization scenarios as well as on real-
world event logs have been performed to evaluate the
ability of state-of-the-art next activity prediction models to
generalize on unseen process behavior. Lastly, related
work and the validity issues have been revised and
extended.

The remainder of the paper is structured as follows: In
Sect. 2, we discuss relevant preliminaries, background, and
related work. In Sect. 3, we explain the generalization-re-
lated validity issues that exist in many experiments on next
activity prediction. Next, we discuss the concept of gen-
eralization, first in the general machine learning context
(Sect. 4) and then specifically for PPM (Sect. 5). Focusing
on next activity prediction, we then derive concrete gen-
eralization scenarios in event logs in Sect. 6 and perform
experiments to assess the generalization capabilities of
existing next activity prediction algorithms in Sect. 7. We
discuss the results in Sect. 8, before concluding the paper
in Sect. 9.

2 Foundations

In this section, we introduce the foundations for our work.
We describe the preliminaries in Sect. 2.1, discuss the
scientific background in Sect. 2.2, and review related work
in Sect. 2.3

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 359

2.1 Preliminaries
2.1.1 Log Data

The input to PPM is event log data, gathered from the
execution of business processes in information systems. An
event log L is a collection of cases, each representing a
complete process execution. A case is represented by a
trace c, i.e., a sequence of events (e, ...,e,) of length n.
An event e is a tuple of attribute values and has two
mandatory attributes: the activity and the case ID. In
addition, events can have additional attributes, such as a
timestamp or an executing resource, which provide further
details about them. We refer to these attributes as context
attributes. We write (A, B, ..., H) to indicate the trace with
events which possess the activity attribute values A, B to H.
In PPM, we are interested in predicting the future behavior
of running cases, which are represented by trace prefixes. A
trace prefix of a trace c of length p is defined as a subse-
quence {ei,...,e,), with 1 <p<n.

2.1.2 Next Activity Prediction

The goal of next activity prediction is to predict which
activity will be performed next in a running case. Formally,
this problem is framed as a multi-class classification task,
where each class represents one activity. For each trace ¢ in
a given event log, pairs (x, y) of features x and labels y are
created. For a running case, x represents the prefix of ¢ with
length p containing the features that are given to the model.
The activity at position p + 1 of ¢, i.e., the next activity,
which should be predicted by the model, is represented by
the label y. These pairs (x, y) are provided to a machine
learning model so that it learns a probability distribution
q(y) over next activities.

To train and evaluate the prediction model, the event log
is split into two parts, the training split L., and the test
split L. The model is trained on the prefix-label pairs
from the training split L., and evaluated on those from
the test split L. For evaluation purposes, for each prefix
x, the associated prediction y, i.e., the activity with the
highest probability in g(y), is compared with the ground
truth label y, which then informs the computation of
aggregated performance measures such as accuracy and F1
score.

2.2 Background
In this section, we provide the necessary background for

generalization in PPM. We first distinguish generalization
in a machine learning context from generalization in

process discovery. We then dive deeper into the topic of
PPM and how generalization is addressed there.

2.2.1 Generalization in Process Discovery

A fundamental task in process mining is process discovery,
which generates a process model from event log data (van
der Aalst 2022). These process models are often formal
conceptual models, such as Petri nets. Discovered models
are typically evaluated along four quality dimensions:
Fitness, precision, simplicity, and generalization (Buijs
et al. 2014). The idea behind this generalization is similar
to generalization in machine learning. It is defined as “the
likelihood that the process model is able to describe yet
unseen behavior of the observed system” (Buijs et al.
2014). Similar to machine learning, a process model gen-
erated with process discovery techniques should not overfit
the event log, but generalize from the recorded data (van
der Aalst 2016). However, unlike in machine learning,
there is no loss function involved in discovering a (sym-
bolic) conceptual model. The data is also not split into a
train and test set (Tax et al. 2018), which is why general-
ization is measured differently. Instead of test set perfor-
mance, the generalization of process models is evaluated
through properties of the discovered process model such as
the visiting frequency of model parts (Buijs et al. 2014) or
anti-alignments (van Dongen et al. 2016). When measured
in the machine learning way, discovered process models
have been found to generalize less well than their predic-
tive counterparts based on machine-learning (Tax et al.
2018).

2.2.2 Generalization in PPM

Since generalization is a fundamental part of machine
learning, it is discussed in many textbooks. We refer to
Goodfellow et al. (2016); Bishop (2006); Bishop and
Bishop (2024) and Murphy (2022) for a general overview.
More detailed discussions and specific definitions for
generalization, paying attention to challenges and require-
ments of different machine learning tasks, are given in
various task-specific papers, such as Zhou et al. (2023); Lu
et al. (2024) or Jiralerspong et al. (2024). In the following,
we focus on generalization in the domain of PPM.

Generalization in early PPM approaches In contrast to
traditional process discovery, PPM does not rely on sym-
bolic models. Rather, a machine learning model is trained
to predict characteristics of process instances, thereby
learning an implicit process representation (Evermann
et al. 2017; Pfeiffer 2022). Ruta and Majeed (2011) were
among the first to present a generic framework for PPM
that includes the questions of “what will happen next” as

@ Springer

360 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

well as “how and when” a process instance will end. Since
then, researchers have defined a set of PPM tasks (Di
Francescomarino and Ghidini 2022), which mainly differ
in terms of their prediction target: Some approaches predict
the remaining time until the completion of the process
instance (van der Aalst et al. 2011). Others predict the
outcome of a process instance (Kratsch et al. 2021) or
whether the process instance will deviate from the pre-
scribed behavior (Grohs et al. 2025). The majority of work
focuses on the prediction of the next activity (Neu et al.
2021), which is also the focus of this paper.

Shortly after the initial work of Ruta and Majeed (2011),
Le et al. (2012) presented an approach specifically focused
on next activity prediction. They extended the approach
presented in (Ruta and Majeed 2011), building upon
Markov models, but combining them with alignment
techniques to handle unseen prefixes that have no occur-
rence in the transition matrix of the Markov model. This
avoids predicting the default value for unseen prefixes,
which is usually less accurate. Interestingly, the authors of
this early PPM approach already acknowledged the need
for generalization capabilities, as in real-life applications
“the number of unique workflows (process prototypes) can
be enormous, their occurrences can be limited, and a real
process may deviate from the designed process when
executed in real environment and under realistic con-
straints” (Le et al. 2012). They concluded that an efficient
prediction would need to be able to cope with “the diverse
characteristics of the data” (Le et al. 2012). Note that this
reflects the motivation of generalization in machine
learning (see Sect. 4).

Generalization in deep learning PPM approaches Inspired
by the success of deep learning models for language
modeling, Evermann et al. (2017) used a Long Short-Term
Memory (LSTM) model (Hochreiter and Schmidhuber
1997) for next activity predictions. By design, neural net-
works always produce a prediction regardless of whether a
prefix has been seen before, avoiding the problem of
symbolic techniques, which predict a default value for
unseen samples. Hence, they generalize better to unseen
data and are more accurate. The LSTM model by Ever-
mann et al. (2017) included regularization in the form of
dropout. Further, it was validated using a 10-fold cross-
validation procedure to measure whether the model gen-
eralizes to the test set and to prevent overfitting. The results
showed that their LSTM model performed better or com-
parable to the state-of-the-art results of probabilistic
automatons for the same task (Breuker et al. 2016). Fol-
lowing work improved the performance of neural-network-
based prediction models, e.g., through the use of additional
context attributes and specialized network architectures
(Tax et al. 2017; Pfeiffer et al. 2021; Pasquadibisceglie

@ Springer

et al. 2024) or training procedures (Taymouri et al. 2020).
An overview of the field is given by Rama-Maneiro et al.
(2021) and Neu et al. (2021).

In order to improve generalization in PPM, researchers
have employed different techniques that have shown to
improve generalization in other domains, e.g., multi-task
learning, adversarial training, or transfer learning. As
events in traces include additional attributes besides the
activity, many approaches perform multi-task learning by
predicting multiple attribute values of the next event at
once (Evermann et al. 2017; Tax et al. 2017; Pfeiffer et al.
2021; Nolle et al. 2018). Since such models also use other
attributes in the input, they are tasked with a much larger
variability during training, which should improve their
generalization capabilities. Prediction models have also
been trained with augmented data or adversarial samples,
relying on model-agnostic trace augmentations (Kippel
et al. 2023), trying Generative Adversarial Networks
(GANSs) (Taymouri et al. 2020) or training with adversarial
samples (Pasquadibisceglie et al. 2024; Stevens et al.
2023). Others try to improve generalization by adapting the
loss function to balance the performance of the predictive
model across multiple environments instead of performing
best in only one (Venkateswaran et al. 2021). Transfer
Learning from one event log to another has shown to be
beneficial when training next activity prediction models
(Jiralerspong et al. 2024). Further, knowledge gained from
the event log of one organization can be transferred to the
same process in another organization (Liessmann et al.
2024), indicating that such models may be able to gener-
alize beyond the distribution in one event log. Besides that,
others have developed train-test-split strategies that ensure
no data leakage between the train and test set caused by
traces with temporal overlap (Weytjens and Jochen De
Weerdt 2021) or event log sampling approaches that pre-
serve the performance of predictive approaches but allow
for more efficient training on a subset of traces (Fani Sani
et al. 2023).

2.3 Related Work

In addition to the concrete measures for a higher general-
ization, some existing works already provide definitions
and exemplary assessments of generalization in PPM,
particularly in next-activity prediction. This work is
reviewed in the following.

Tax et al. (2018, 2020) first concretely addressed the
question of generalization in PPM. They compared process
discovery approaches to sequence modeling techniques in
terms of how well they generalize for next activity pre-
diction. Sequence modeling techniques generate a proba-
bility distribution of all activities, which discovery
approaches cannot do. To avoid that non-fitting traces

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 361

result in zero probability for the next activity, they devel-
oped a procedure to generate a probability distribution over
next activities by aligning the prefix to the discovered
model and sampling from the reachable transitions. With
this, they were able to compare discovery methods to other
sequence modeling techniques using a loss function. They
found that the machine learning approaches are much more
accurate than the discovery approaches, at the cost of not
being communicable and traceable by humans. As neural
approaches reach a lower test error than their discovery
counterparts, the authors conclude that they also generalize
better.

In comparing the generalization of discovery techniques
to neural approaches, Tax et al. (2020) did not consider
unseen prefixes specifically. Using standard splitting
strategies results in a majority of prefixes in the test set
being duplicates of the training set (see Sect. 3). Further, a
prefix that cannot be replayed by a discovered model does
not necessarily need to be a prefix that has not been seen. If
a discovered model does not reach perfect fitness, it is not
able to describe all the behavior it has seen in the event log.
Thus, it can also happen that seen samples cannot be
handled by a discovered process model, a fact that influ-
ences the interpretation of the performance in handling
unseen behavior. In the following, we discuss the few
papers that have investigated generalization with respect to
unseen prefixes.

Gerlach et al. (2022) split the log by variants into train
and test sets so that not all variants are part of the training
set and others are only present in the test set. They trained
this model to predict the activity and other context attri-
butes in the next event. After training they used this model
to build a likelihood graph to capture and visualize its
behavior, by iteratively predicting next steps. They found
that their approach can generate unseen variants, mani-
fested in the likelihood graph, which are also valid with
respect to the underlying process. They conclude that the
next activity prediction model can generalize beyond the
event log it was trained on.

Peeperkorn et al. (2022) followed a similar method.
They aimed to research whether models trained to predict
the next activity in a trace learn the structure of a process
model, even if they have not seen all variants during
training. For this, they trained the prediction models in the
leave-one/some-variants-out fashion and let them generate
traces again. In their experimental setting, they used pro-
cess models of varying size and complexity, obtained a set
of traces through simulation, and split the traces such that
some process variant(s) were only present in the test split.
To measure generalization, they expected that the trained
prediction models could generalize the missing vari-
ants(s) from the event log, avoid creating variants that are
not part of the original log, but generate all variants present

in the training log. They found that regularization is
required to ensure that the model does not overfit the
training log, i.e., that it does not only generate variants it
has seen before but also new ones, even for relatively
simple models.

In a follow-up work, Peeperkorn et al. (2024) proposed
validation set sampling approaches to enhance the gener-
alization capabilities of prediction models in the same
setting as their previous work. They found that the sam-
pling techniques can have a strong positive impact on the
generalization capabilities but that process structures such
as concurrency and long-term dependencies pose chal-
lenges for predictive approaches as they do not generate all
expected variants. As for other approaches, the complete-
ness of the log with respect to the behavior of the model is
a limitation.

While Gerlach et al. (2022) concluded that their model
does generalize, Peeperkorn et al. (2022, 2024) conclude
that process prediction models do not generalize as they do
not generate all (unseen) variants of the original process
model. We suspect these differences to come from different
settings and techniques being used as well as different
expectations being placed on the abilities of the models.
For instance, Gerlach et al. (2022) use context attributes as
input for their predictive model while Peeperkorn et al.
(2022, 2024) use the activity only. Furthermore, the pro-
cedure to generate traces from a model that predicts only
one next step at a time, (i.e., how to sample from the
predicted probability distribution) and the metrics to
evaluate the generalization capabilities differ. We will
discuss the differences in their definition of generalization
to our definition of generalization in Sect. 5.

3 Validity Issues in Next Activity Prediction

In this section, we examine two phenomena that pose
threats to the validity of next activity prediction experi-
ments, particularly for their assumed generalization capa-
bilities. The first phenomenon, described in Sect. 3.1, is
example leakage, i.e., the presence of the same prefixes in
both the train and the test split. The second phenomenon,
described in Sect. 3.2, is the accuracy limit, i.e., the
observation that the maximally reachable accuracy of a
next activity prediction can be less than 100%. Along a
typical evaluation setup for next activity prediction, we
propose two new metrics to quantify these phenomena. By
relating the performance of state-of-the-art next activity
prediction models to these metrics, we can identify
potential threats to validity. In Sect. 3.3, we discuss our
findings with regard to their impact on the generalization
capabilities of next activity prediction models.

@ Springer

362 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

In the following, we present empirical evidence gener-
ated in a setting that is representative of the typical eval-
uation setup used in the field. We employ five commonly
used event logs (Helpdesk,' BPICI2® (complete log),
BPIC13 Incidents,” BPIC17,* MobIS®) and two common
splitting strategies:

1. 5 random splits: We split the traces in the event log
randomly such that 80% of them are part of the
training set and 20% are part of the test set

2. Temporal split: The split is time-based so that the 20%
of traces with the most recent start timestamps end up
in the test set.

For all traces in each of the 6 splits, we generate all prefix-
label pairs (x, y) with prefix lengths p € [1,n — 1], which
constitute our training and test samples. We do not apply
log preprocessing or make any other changes to the data.
The code and data needed to reproduce the validity issue
experiments are available online.®

3.1 Example Leakage

In machine learning, leakage refers to exposing a model to
information during training that it should not legitimately
have access to (Kaufman et al. 2012). This can lead to an
unrealistic assessment of the model’s performance with
respect to the trained prediction task. One particular type of
leakage is example leakage, which occurs when the same
example (more specifically, the same feature vector) is
present in both the training and the test set. In this case, the
prediction is trivial, as the model is not required to learn a
general relationship between features and labels for the
prediction to be correct. Due to the repetitive nature of the
process executions, which naturally leads to a high portion
of duplicate traces, example leakage can be a considerable
problem when making predictions on event logs. By
building prefixes of traces, the portion of duplicates can
increase even further.

In next activity prediction, we denote example leakage
as the portion of prefixes in the test split where the test
prefix is a duplicate of a prefix in the training split. To
quantify this example leakage, we first need to establish
when two prefixes are duplicates. When considering the
context attributes of events, such as the timestamp, almost
every prefix will be unique. However, many prediction
approaches do not use the timestamp itself, encode it, e.g.,

! 10.4121/uuid:0c60edf1-6f83-4¢75-9367-4c63b3e9d5bb.
2 10.4121/uuid:3926db30-712-4394-acbc-75976070e911.
3 10.4121/uuid:500573e6-acce-4b0c-9576-aa5468b10cee.
4 10.4121/uuid:5£3067df-f10b-45da-b98b-86ae4c7a310b.
> Baier et al. (2020).

6 https://github.com/ppfeiff/BISEGenPPM.

@ Springer

as the weekday or the duration between events. Further,
many approaches are restricted to certain types of attributes
(Pfeiffer et al. 2021). As the control flow is the most
decisive feature for predicting the next activity (the target
label is largely subject to the sequence of previous events),
and many prediction models use the control flow only, we
(for now) determine equality of prefixes based on control
flow: Two prefixes are considered duplicates if they exhibit
the same sequence of activities. In the following, we use
this equality criterion to approximate example leakage.
We can now quantify example leakage on the common
event logs and splitting strategies. Let Xj,,;, be the multiset
of prefixes with control flow only of the training set Ly,
and X, be the respective multiset of control flow only test
prefixes. The portion of leaked examples is calculated as:

‘erain N Xrest |

Example Leakage =
Xirest|

where X, N Xy contains those prefixes that are found in
both the training and the test split.

Figure 1 shows the amount of example leakage in the
event logs commonly used for the evaluation of next
activity prediction. We observe that, across all datasets and
splits, example leakage is close to or above 80%, with
almost 100% in the Helpdesk and MoblIS event logs. This
means that most of the predictions made on the test split
should be trivial ones, such that from this evaluation set-
ting, we cannot draw valid conclusions about how well a
prediction model would perform on unseen data.

Observation 1
The portion of duplicates between training and test splits
is dangerously high.

3.2 Baseline and Accuracy Limit

Another issue relates to the way of reporting and com-
paring predictive performance in next activity prediction.
Commonly, the top-1 accuracy, or simply accuracy, is used
for this purpose, evident through its widespread use in
papers on next activity prediction (e.g., Le et al. 2012; Ruta
and Majeed 2011; Breuker et al. 2016; Evermann et al.
2017; Neu et al. 2021; Pfeiffer et al. 2021; Pasquadibis-
ceglie et al. 2022; Weinzierl et al. 2024). The accuracy is
computed as the portion of samples (x, y) that were cor-
rectly classified, i.e., the number of samples in which the
model assigns the highest probability to the class with the
label equal to the ground truth label y = y. A predictor is
considered accurate if it achieves high accuracy values
when predicting the next activity for the given prefixes.
Without further knowledge of the data, we would also
expect that a predictor that has accurately learned the target
label distribution reaches high accuracy values. If a

https://github.com/ppfeiff/BISEGenPPM

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 363

1.0

T - W WU WU oe
08 = = = = = = = _ = e
N - b Moy Mo U
[I} E m g M oM
]] |]]]
0.6
0.4
Prefix Leakage
0.2 Accuracy
— limit
m Ngram
MPPN
0.0 T T T T T T T T T T T T T T T T
1 2 3 4 5 T 1 2 3 4 5 T 2 3 4 5 T 1 3 4 5 T 1 2 3 4 5 T
BPIC_2012_complete BPIC_2013_incidents BPIC_2017 Helpdesk MobIS

Fig. 1 Example leakage, accuracy limit, and the accuracy of the naive baseline and the MPPN on the test split for the 5 random splits (1-5) and

the temporal split (T) on the real-life logs

predictor instead achieves a mediocre accuracy value, e.g.,
below 80%, we would conclude that it did not perform well
and there is room for improvement.

However, certain characteristics of the data and the task,
e.g., incomplete information in the input features or the fact
that the system is intrinsically stochastic, can make it
impossible to achieve a high accuracy, even with an opti-
mal prediction model (Goodfellow et al. 2016, p.442).
Goodfellow et al. (2016) refer to this as Bayes error,
defined as the minimum error rate one can hope to achieve
in a perfect setting by making predictions according to the
true probability distribution. For prefixes of running pro-
cess instances, previous work has found that a large share
of samples has multiple valid continuation options and
often no attribute that determines which activity follows
(Pfeiffer et al. 2023). Therefore, next activity prediction is
likely also subject to the Bayes error.

We illustrate this phenomenon with an experiment,
which shows that the maximally reachable accuracy in next
activity prediction is often much lower than 100%, even if
using an oracle that has access to the target probability
distribution. Usually, if the target distribution in the test
split is known to a machine learning model, it should be
capable of reaching almost perfect accuracy by always
predicting the class with the highest probability according
to the test split. We calculate the accuracy limit for next
activity prediction as the maximum accuracy one can hope
to achieve when employing such an oracle model. This
theoretical value is compared to the actual accuracy that a
naive, frequency-based baseline and a context-aware neural
network reach, when being trained on the training split and
without access to the test split.

Again, we consider the control flow only, meaning that
the accuracy limit is an approximation to its true value
based on X, and X,.. It is realized through a perfect

prediction model with access to the test split X;,.,,. For each
prefix x of the samples (x, y) in the test split, we predict the
activity label y that we most commonly observe for this
prefix in the test split X,.. If this label equals the ground
truth label y found in the sample, we say this is a correct
prediction. Averaged over all samples in X,,;, we report the
model’s accuracy as the accuracy limit. Clearly, such a
prediction model is considered illegitimate in machine
learning research (as it can optimize on the target distri-
bution) and is used exclusively for demonstrating the issues
with accuracy in next activity prediction.

For the naive baseline, we train a tri-gram prediction
model on the prefixes in the train split and report its
accuracy on the test split. Again, we use the control flow
only, i.e., the tri-gram model estimates the probability for
the next activity using the previous two activities. We use
Kneser-Ney smoothing (Kneser and Ney 1995) for unseen
prefixes, i.e., the probability for unseen prefixes is
approximated using a bi-gram model that considers the last
activity. We also report the accuracy of a state-of-the-art
prediction model namely the Multi-Perspective Process
Network (MPPN) (Pfeiffer et al. 2021). This neural-net-
work-based model is more flexible than the baseline model
as it can process any combination of event attributes in the
event log and prefixes of length up to 64 events. It has
shown to perform very well on different PPM tasks
(Pfeiffer et al. 2021; Grohs et al. 2025) and thus represents
potential performance gains that can be reached by com-
plex prediction models that are context-aware compared to
the naive baseline. We train it on the training split and
report the accuracy on the test split.

When comparing the two models to the accuracy limit,
we would expect that the accuracy limit is at least as high
as the share of leaked examples. Further, we expect the
prediction models to reach accuracies at least as high as the

@ Springer

364 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

prefix leakage, with the MPPN performing better than the
naive baseline, given that a lot of research has focused on
improving the performance of PPM models over the last
years. However, as the results in Fig. 1 show, those
expectations are not met. In contrast, the results reveal
some unexpected insights: First, and most importantly, the
accuracy limit, which in theory should be close to 100%, is
much lower in practice. Further, the naive baseline reaches
almost the same accuracy as the state-of-the-art MPPN
model on many logs with all models reaching lower
accuracies than the example leakage except for BPIC 17.
Even though the example leakage for the Helpdesk log is
almost 100%, the maximum achievable accuracy is below
80%. In general, the accuracy limit seems not to be related
to the example leakage as the values are very different and
sometimes even lower than the share of leaked examples,
questioning the meaningfulness of this metric for next
activity prediction.

Observation 2 The maximum accuracy one can hope to
achieve in next activity prediction is much lower than
assumed and seems not to be related to the portion of
leaked examples.

3.3 Implications

The results show that the widely used evaluation procedure
for next activity prediction models is problematic due to
the high amount of example leakage in combination with a
lower than expected accuracy limit and the questionable
meaningfulness of accuracy. Both observations are known
evaluation failures in machine learning research (Liao
et al. 2021). A high amount of example leakage, which
Liao et al. (2021) call “contaminated data”, leads to an
overestimation of the model’s performance and hence
poses a threat to its reliability. In contrast, using metrics
like accuracy, which do not meaningfully report the per-
formance of a model on a learning task, may underestimate
the model’s actual performance (Liao et al. 2021). The
observation that there is an accuracy limit has so far not
been considered in next activity prediction evaluation but
influences the interpretation of the models’ actual
performance.

Given that this evaluation setting has been widely
employed in existing publications on next activity predic-
tion, our findings question the reliability of the advance-
ments made in the field. As a research community, we now
have a large number of proposed next activity prediction
techniques that employ several different neural network
architectures, inductive biases, and strategies to incorporate
different types of features. However, these techniques have
only ever been evaluated in a problematic setting.

@ Springer

In conclusion, we do not know how such models per-
form on unseen data since most samples used to evaluate
their performance are duplicated from the training split and
the metric to quantify the performance does not report it
meaningfully. Therefore, we cannot say to what extent
these approaches would be able to generalize well enough
to make good predictions on unseen data — and conse-
quently, if they would be able to provide value in a real-
world application.

4 Generalization in Machine Learning

In this section, we reflect on the role of generalization in
general machine learning: its aim and challenges and its
different types. Based on this, we develop a framework for
generalization in PPM in Sect. 5.

4.1 Aim and Challenges of Generalization

Generalization describes the ability of a machine learning
model to perform well on unseen samples (see e.g.,
Goodfellow et al. 2016; Bishop 2006). A machine learning
algorithm is said to perform well if it is able to generalize
beyond the data it was trained on (Bishop and Bishop
2024). Achieving generalization is one of the most difficult
parts of machine learning, due to the following character-
istics of a machine learning task:

MCI1: The training data contains only a small fraction of
the feature variability found in practical applica-
tion (Bishop 2006, p.2).

The empirical distribution in the training data is
different from the distribution found in application
(Murphy 2022, p.121).

The machine learning model usually has enough
capacity to perfectly fit the training data which
would, without any countermeasures, not allow it
to have enough capacity left for unseen data
(Goodfellow et al. 2016, p.112).

For most tasks, we could build a machine learning model
that almost perfectly fits the training data (MC3). However,
as this data is incomplete with respect to the variability of
the application data (MC1) and the empirical distribution
of the data might be different in application (MC2), such a
model would very likely perform poorly when tasked with
samples that differ from the data it was trained on. Thus,
the task and data have to be studied in order to apply
techniques that ensure that the model also works for unseen
data. One has to “understand what kinds of distribution are
relevant to the real world that an Al agent experiences”
(Goodfellow et al. 2016, p. 118) and what kinds of algo-
rithms perform well on such distributions.

MC2:

MC3:

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 365

There are two factors that determine how well a
machine-learning model works: (1) its ability to perform
well on the training data and (2) its ability to minimize the
gap between the training and the test error, commonly
referred to as generalization error (Goodfellow et al. 2016).
If the model performs badly on the training data, corre-
sponding to (1), it is underfitting. If the model fits the
training data but cannot reduce the gap between the
training and the test error, corresponding to (2), it is
overfitting. When training a machine learning model, there
is a trade-off to make between its bias and its variance
(Goodfellow et al. 2016, p.129) which is associated with
overfitting and underfitting. The bias describes the ability
of a model to capture the relevant relations between input
features and the output. We want the model to have a low
bias to avoid underfitting. At the same time, its variance,
i.e., how much the predictions vary when the input changes
slightly, should be low. As the model capacity becomes
larger, the bias decreases while the variance increases,
leading to a higher generalization error. The point at which
the generalization error is the lowest is also the point where
the best trade-off between bias and variance of a model is
made.

Depending on the machine learning task, different
requirements and challenges arise for generalization. For
object detection, we expect the model to perform well
when the appearance of objects changes. Further, we might
also want to classify objects in different types of images,
e.g., in sketches instead of photos (Zhou et al. 2023), or to
classify new objects given only a few examples. In con-
trast, for time series prediction, we want the model to
generalize to future data (Lu et al. 2024), where the change
of distributions through time (non-stationarity) presents
challenges. In the following, we discuss two points that are
relevant for generalization on all types of machine learning
tasks.

Train-Test-Splitting Splitting the available data into train
and test sets allows researchers to estimate how the model
will perform on unseen data. To ensure that the test error is
reliable, the samples in the test set should not have been
seen during training (MC1 and MC2). In leave-one-out
cross-validation or k-fold cross-validation, one “variant”
or fold at a time is used for testing and the remaining splits
are used for training. Repeating this procedure k times,
each time using a different part of the data for testing, a
precise picture of the generalization capability can be
obtained. The model with the best generalization capabil-
ities is chosen as the best model. When splitting the data,
one has to ensure that no information about the test set is
leaked into the training set (Kaufman et al. 2012; Liao
et al. 2021), e.g., the training data should not contain
information about the target labels.

Regularization The ability of a machine learning model to
perfectly fit the training data (MC3) can lead to overfitting,
which means that the model is unable to make correct
predictions for unseen samples. One technique to avoid this
overfitting is regularization, i.e., modifications that reduce
the generalization but not the training error (Murphy 2022;
Goodfellow et al. 2016). For example, we can add artificial
noise during training to increase feature variability (tar-
geting MC1), mimic other changes (targeting MC2), or
stop the training procedure at an early point (targeting
MC3). Other regularization types aim to modify the
weights of the machine learning models through the loss
function or train on multiple tasks at once (Goodfellow
et al. 2016).

4.2 Types of Generalization

Many machine learning algorithms assume that the distri-
bution of samples in the test set is the same as in the
training set and samples are independent. Together, these
are commonly referred to as the independent and identi-
cally distributed assumption (Goodfellow et al. 2016).
Generalization under this assumption is also called In-
Domain or IID generalization and can be tackled with
regularization techniques. In practice, however, this
assumption is often violated. This has motivated the
development of deep learning models, which can deal
better with high-dimensional inputs and higher variability
(Goodfellow et al. 2016) and to generalization techniques
that enhance model capabilities in such situations.

In contrast to IID generalization, so-called OOD gen-
eralization aims to make a model perform well for samples
of unseen domains (Zhou et al. 2023). Such samples are
out-of-distribution, i.e., they differ from the samples used
for training, which is why this form is also called Out-of-
Domain generalization. This form of generalization
requires more advanced generalization techniques as In-
Domain generalization. For instance, we would like an
image classifier that was trained to detect objects in photos
to also detect the same set of objects in sketches. Different
methodologies have been developed to enable domain
generalization such as data augmentation, meta-learning, or
transfer-learning. For an overview, we refer to Zhou et al.
(2023).

5 Generalization in Predictive Process Monitoring

Based on the previous Sect. 4, we dedicate this section to
discussing generalization for PPM tasks. Although we
focus on next activity prediction, many points also apply to
other PPM tasks that use prefixes to represent running
process instances as input.

@ Springer

366 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

5.1 Aim and Challenges of Generalization
in Predictive Process Monitoring

The aim of generalization in PPM is to make the models
flexible when confronted with running process instances
that have not been seen so far, which are likely to occur in
application (Le et al. 2012; Peeperkorn et al. 2022). As a
machine learning task, characteristics MC1 - MC3 also
apply to PPM:

PC1: The traces trained on contain only a small fraction
of the process behavior

PC2: The empirical distribution of process variants
trained on can be different from the distribution
found in application

PC3: PPM models have enough capacity to perfectly fit

the data trained on, which would, without any
countermeasures, not allow it to make correct
predictions for unseen prefixes

To cope with these characteristics, the model has to gen-
eralize to unseen process behavior and accurately predict
how process instances will continue. However, existing
work, reviewed in Sect. 2.3, defines generalization differ-
ently as normally done in machine learning: They consider
generalization as the ability to generate unseen, valid
process variants from seen prefixes, such that the variants
represent the whole behavior of the original process model.
A prediction model with these abilities would be very
powerful and arguably highly valuable for a range of
process mining tasks. However, generating valid and
unseen traces is not the same as making valid predictions
for unseen process instances. The latter requires to make a
valid prediction for an unseen input, whereas the former
requires generating something unseen from a seen input,
which is much more challenging to achieve. It aims more
towards the general question of whether prediction models
“learn” and generate process model structure rather than
making correct predictions for unseen samples, similar to
generative language models generalization (Jiralerspong
et al. 2024).

In contrast, the view on generalization in PPM, specifi-
cally for next activity prediction, that we introduce follows
from the standard notion and the challenges MC1 - MC3 of
generalization in machine learning. Specifically, we focus on
the capability of PPM models to deal with unseen prefixes, as
existing evaluation procedures evaluate mostly on seen
prefixes. We argue that dealing with unseen prefixes is an
important ability of PPM models and a prerequisite for
researching more complex types of generalization. There-
fore, we define generalization as follows.

Next activity prediction generalization: Predict the cor-
rect continuation options for unseen prefixes

@ Springer

A PPM model generalizes well if it (1) performs well on
the training split and (2) minimizes the gap between the
training and test error, called generalization error. Both
factors follow from the definition of generalization in
machine learning as introduced in Sect. 4. For the task of
next activity prediction, this translates to model that
accurately predicts how processes continue and does this
equally well on the training split as well as on the unseen
samples in the test split. In this case, we say that the model
generalizes. If it does not perform well on the training split
or on both splits, it does not generalize.

To make accurate predictions for unseen prefixes, PPM
models need to learn process behavior beyond the behavior
contained in the event log. It is not sufficient to accurately
learn the prefixes and repeat the behavior found in the
training data. Rather, generalization for PPM requires
extrapolating from seen process behavior. This means that
the prediction model must learn generally valid patterns —
for example, how activities typically can follow one
another — rather than specific rules from the training data.
In the following, we discuss these characteristics as well as
additional challenges for generalization in PPM, which
have to be considered when evaluating generalization.
They are summarized in Fig. 2.

5.1.1 Incompleteness and Variability

The event log, as a collection of traces, is usually incom-
plete with regard to the process behavior (Buijs et al.
2014), referring to PC1. The training split L;,;,, as a subset
of the event log, hence represents an even smaller fraction
of the total process behavior. To still train well on this data,
the prediction model has to deduce higher-level process
behavior. The incompleteness of the event log data is in
general likely lower than the incompleteness of data in
other machine learning tasks. For example, it is unlikely
that two images used as input for object detection are
identical in RGB values. There is a very large variability in
images leading to a high incompleteness when training an
object detection model on real images. In contrast, there
are often multiple process trace prefixes with the same
control flow and attributes. Even a new, unseen process
variant can contain many prefixes that were seen before or
differ in one activity or attribute only, increasing the share
of samples that are identical in Ly, and L. Therefore,
the number of duplicates is naturally very high, which
explains the high example leakage discussed in Sect. 3.
These characteristics have to be considered for splitting the
data in anticipation of testing on unseen samples.
Considering context attributes in addition to the control
flow increases the variability found in event log data
(Evermann et al. 2017). The chance that two samples are
identical is much lower if the prediction model can

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 367
Fig. 2 Overview of Training
generalization in process
prediction =
S]
-—

Incompleteness

and Variability

consider categorical attributes, e.g., resources. If it also
considers numerical attributes, e.g., prices, or temporal
ones, e.g., timestamps, each sample is almost certainly
unique. Thus, the more context attributes are considered,
the higher the variability of the data and its incompleteness.
The prediction model must be capable of dealing with this
higher variability and potentially incomplete attribute val-
ues (combinations) if using context attributes. While con-
text attributes offer additional information for predictions,
considering more context attributes significantly increases
the number of unseen combinations that can occur in pre-
fixes, making generalization also more challenging.

5.1.2 Distributions

The distribution of control flow variants in the event log is
typically skewed towards a Pareto distribution: Around
80% of traces follow the same few process variants,
whereas the other 20% follow a large number of different
variants (van der Aalst 2020). The Pareto distribution is
also found in the prefixes (with significantly more different
variants), but usually not in the target labels, e.g., the next
activities in next activity prediction. We can assume this
distribution to also be present in application. However, the
most frequent variants are not necessarily the same ones as
in the training data since processes are typically not
assumed to be stationary (Back et al. 2019). The distribu-
tion of variants can change and new process instances with
new process variants, containing new behavior, are likely
to emerge over time (Le et al. 2012; Peeperkorn et al.
2024). This changes the distribution of prefixes (PC2) in
application. Tailoring the prediction model for certain
variants is thus problematic as we cannot foresee, in gen-
eral, which variants will be most frequent ones in the later
application.

Distributions

Process Prediction Training Error

Model

Generalization
Error

Application

Test Error

(L0

Train-Test-
Splitting

Regularization EEMEET

Metric

5.1.3 Train-Test-Splitting

To measure the generalization error, we need to split the
data in such a way that the test split L., reflects the con-
ditions to be expected in the application. This includes that
the training samples do not leak information about the test
conditions. The characteristics discussed in the previous
paragraphs make it challenging to split the event log
realistically. As shown in Sect. 3, splitting the data ran-
domly or by time causes a high example leakage, such that
the test error might not reflect the error to be expected in
application. Previous work has suggested splitting the tra-
ces by variants such that certain variants will only be
present in the test split (Peeperkorn et al. 2024). Although
this ensures that at least a share of samples in the test split
will be unseen, it does not prevent the occurrence of
duplicates for next activity prediction, as two different
traces can share many identical prefixes.

Following characteristic PC2, we can be certain that
new process variants will occur. However, we do not know
which variants will occur and with what frequency. Thus,
we argue that splitting by time is the most realistic setting
as it naturally maintains such distribution changes in time.
For this, all traces before a certain point in time ¢ are part of
the training split Ly, and all other traces are put in the test
split L. Afterwards, to keep the example leakage at a
reasonably low level, duplicates between the training and
test splits, which are created when building prefixes (or
windows) from the samples, have to be removed. By doing
so, the test split L, will consist of samples where the
prefix x has not been seen and qualifies for measuring a
meaningful generalization error.

@ Springer

368 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

5.1.4 Regularization

When training a PPM model, regularization is required to
prevent the model from overfitting the training split Ly,
PC3. The capacity of a neural-network-based prediction
model can quickly surpass the variability found in the
training data and the number of distinct samples available
for training (Goodfellow et al. 2016). If training a predic-
tion on the control flow only, the low variability in the
event log can be challenging for the generalization of the
model as its capacity is higher than the complexity in the
data. Previous work has already pointed out that strong
regularization for next activity prediction is required as the
models tend to overfit otherwise (Peeperkorn et al. 2024).
When designing a PPM model, one should therefore bal-
ance the capacity of the model with the number of distinct
training examples and the complexity of the process, e.g.,
in terms of variants. Increasing the variability by using
additional attributes can also help to better align the
capacity of the model with the variability of the data.
Additionally, regularization techniques such as dropout, L1
and L2 regularization, and early stopping are easy to
implement and can prevent overfitting effectively.

5.1.5 Evaluation Metrics

Meaningful metrics are important for obtaining validity in
the conducted evaluations (Liao et al. 2021). As seen
through the analysis in Sect. 3, there are several issues with
the use of the accuracy and its interpretation in the next
activity prediction task, which affects the model’s perfor-
mance perception. When using a next activity prediction
model in application, we are interested in the share of
samples where the prediction of the model matches the
ground truth. While accuracy reports this share, it focuses
exclusively on the prediction with the highest probability
and assesses it in an all-or-nothing manner. Thereby, it
does not fit the variability of how processes can continue.
For a reliable generalization assessment, we need a metric
that accurately quantifies how close the predictions of the
PPM model on unseen prefixes are to the behavior of the
process in the data, valuing that there is not always a single
valid next activity. Instead of relying on accuracy, we
suggest a probabilistic interpretation that can deal with the
variability and considers all continuation options the model
has learned ¢(y) rather than the single most likely
prediction.

We motivate the probabilistic assessment on a simple
example. Consider a situation where, e.g., due to parallel
execution (as shown in Fig. 4), a prefix x has two valid next
activities D and E. As processes are not stationary, there
may also be a change in the distribution of the very next
activities D and E between training and application as

@ Springer

Table 1 A example with parallel activities D and E to clarify the
conceptual issues with accuracy

Train Setting Application
Target activity y D E D E
Number of examples x 450 500 450 250
Learned prob. distr. g(y) 0.47 0.51 0.47 0.51
Cross-entropy (CE) 0.309 0.315
Accuracy 52.63% 35.71%

exemplified in Table 1. Note that still both activities are
executed and only the distribution in their order has
changed. We can assume that a machine-learning-based
prediction model learns that both activities can happen,
which it expresses by giving both activities a high proba-
bility, e.g., g(D) = 47% and g(E) = 51%, based on the
frequency found in the training data. If evaluating with
accuracy, we only use the most probable prediction of the
model which always is E. To compute the accuracy, it is
compared to the ground truth. If the samples (x, y) in the
test split would follow the same probability as the samples
in the training split, only around 52% of all predictions will
be evaluated correctly. The remaining samples, containing
D as ground truth will be evaluated as wrong predictions.
From the accuracy value, one would conclude that the
model performs badly. This ignores that the probability
distribution learned by the model accurately reflects how
the process behaves. Further, a higher accuracy is impos-
sible to achieve.

In case the distribution in the application setting changes
such that E is executed half as often as during training, the
model would reach a significantly lower accuracy with a
drop from around 52% to 35%, although its learned prob-
ability distribution has not changed. In both scenarios, the
performance of the model would be rated much worse than
it actually is. When assessing the generalization capabili-
ties of the model, we would conclude that it cannot gen-
eralize. However, the model makes accurate predictions in
both scenarios which can be shown if measuring in a
probabilistic way on g(y).

For this, we opted for using cross-entropy as the error
measure, as commonly done in other classification and next
element prediction problems (Jurafsky and Martin 2025).
In particular, this idea is based on cross-entropy estimation
for the next word prediction task in language modeling
(Jurafsky and Martin 2025, p. 210), which has motivated
deep-learning-based next activity prediction. The cross-
entropy formulation for a single sample in context of next
word prediction is

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 369

CEpasic = — »_ p(w) log(q(w)), (1)
weV

where w € V are the possible classes, p(w) is the observed
ground truth probability distribution, and g(w) is the pre-
dicted probability distribution returned by the model. Note
that, for next activity prediction, the real probability dis-
tribution of next activities p(y) in the process that generated
the event log is unknown to us. We can therefore, as in next
word prediction, only estimate it based on g(y).

Since next activity prediction is a multi-class and single-
label classification task and p(y) thus always a one-hot
vector, this calculation for a predicted sample (x, y) can be
simplified to taking the logarithm of the probability that the
model predicts for the true class (Jurafsky and Martin
2025, p.210). For an event log split Ly, (train or test split)
with N samples, where i indexes each sample, the cross-
entropy of a next activity prediction model that estimates
the probability ¢(y;) for the true next activity y; given the
prefix x is therefore calculated as

CE(Lyiir) = — Y _ log(q(y))- (2)
i=1

With cross-entropy, the prediction error is thus calculated
as the logarithm of the probability that the model assigns to
the ground truth activity, whereas with accuracy, we would
only determine whether this probability is higher than those
assigned to the other activities. When aggregated over all
predictions in the event log split, cross-entropy gives a
more realistic interpretation of how well the model has
learned to predict process behavior, because it more
accurately reflects whether the predicted probability of a
next activity occurrence is equal to its true probability of
occurring. This measure is also in line with the general idea
of machine learning to replicate the distribution by giving
probabilistic rather than “entirely certain” rules (Good-
fellow et al. 2016).

For our above example, the change in cross-entropy
between train and application is only minimal and much
smaller than the change in accuracy, as shown in Table 1.
This is because cross-entropy acknowledges that the model
gives a certain probability for D for the samples containing
D as it does for samples with E. Note that due to the
variability in processes, the cross-entropy might never
become 0: Even if having learned the probabilities accu-
rately, it is bound by the variability of the process which is
the minimal error that cannot be avoided (Goodfellow
et al. 2016). For instance, the cross-entropy for the exam-
ple is around 0.3 even if the prediction model has learned
the probabilities accurately. This is justified as the model
gives activity D a reasonably high probability in the sam-
ples containing E which accuracy does not value. For next
activity prediction, the interpretation of the model using

cross-entropy gives an additional perspective on its per-
formance which is more accurate for assessing its gener-
alization performance. Nevertheless, the usage of cross-
entropy might not be universally beneficial for all PPM
tasks and should be considered per task.

5.2 Types of Generalization

For process prediction, we can also differentiate between
In-Domain and Out-of-Domain generalization. The In-
Domain setting occurs in situations where the distribution
of samples in the test split is identical to the training split.
Considering only the control flow, an unseen prefix that is
In-Domain can be caused by loops or parallel activities.
Such situations do not cause significant changes to the
distributions and data. If considering context attributes, we
can differentiate between an unseen combination of seen
attribute values or completely new attribute values. An
unseen combination of context attributes, e.g., a new
combination of resource and cost, would still be In-domain.
Further, we argue that even unseen attribute values are not
necessarily Out-of-Domain, as long as there is no signifi-
cant change to the process.

If changes are more significant, they require general-
ization to out-of-distribution samples. As process data is
known to be non-stationary (Back et al. 2019), i.e., prob-
abilities change over time, prediction models should be
capable of generalizing in such settings. There can also be
other situations that cause more significant changes to the
process and the distribution of the data, e.g., if an unseen
variant becomes the most frequent one. Other examples
could be a new decision point, the introduction of new
activities or subprocesses, or an event log from the same
process in a different company. Other types of general-
ization include generating unseen and valid process vari-
ants from seen prefixes (Peeperkorn et al. 2022, 2024).

6 Generalization Scenario Examples

In this section, we present nine example scenarios that
exemplify the aim of generalization for the task of next
activity prediction. The scenarios require different abilities
from PPM models in order to achieve generalization and
are inspired by typical situations faced when dealing with
process data in event logs. Each scenario presents a situ-
ation where the prediction model is faced with an unseen
sample (x, y), i.e., where the prefix x has not been seen
before. For each scenario, we discuss what we expect a
generalizing prediction model to predict, i.e., what a valid
prediction y would be. In the following section, we will
simulate event logs that implement the scenarios and

@ Springer

370 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

Fig. 3 Structure of the
generalization scenarios

N

Sequence Parallel Loop

Unseen
combinations

Unseen values CF5

evaluate how well existing next activity prediction models
generalize.

An overview of the scenarios is shown in Fig. 3. We
structure the scenarios based on the process perspective
that is involved (only control flow or including context
attributes) and whether the prefix contains unseen combi-
nations of previously seen values or whether it contains
values never seen before. A prefix can be unseen if certain
values appear in an unseen combination. For instance, if a
certain person performs an activity for the first time (in the
log) while both the activity and person have been seen in
the samples before. A prefix can also be unseen if a value
appears that it has never seen before, e.g., a completely
new activity or completely new resources. All scenarios
relate to the characteristics PC1 and PC2. Five scenarios
(CF1-5) cover generalization to unseen control flow vari-
ants in the prefix, further divided into the possible process
execution patterns sequence, concurrency, and loop. The
other four refer to unseen (combinations of) context attri-
butes that can either determine the continuation of the
process (e.g., as the condition of a choice; ATT2 and
ATT4) or be “noise”, i.e., not relevant for the prediction of
the next activity (ATT1 and ATT3). In the following, we
introduce the scenarios conceptually and illustrate them
using minimal example event logs.

Table 2 CF1 - prediction after

oo Event Log L1
parallel activities

(A, B, Cl, C2, C3,D, E)
(A, B, C2,Cl, C3,D, E)
(A, B, C2,C3,Cl, D, E)
(A, B, C3,Cl, C2, D, E)
(A, B, C3,C2,Cl, D, E)

@ Springer

Process
Perspective

Control flow

Context attributes

Not Choice- Choice-

relevant relevant
------------------------------------ /A
CF1.2 CF3.4 ATT1 ATT2 | !
ATT3 ATT4 ||

Table 3 CF2 - prediction

v e Event Log L2
within parallel activities

(A,B,C,D,E,F,G,H)

(A,B,C,F,D,G,E,H

Table 4 CF3 and CF4 - prediction after and within loops

Event Log L3

(A, B, C, D)
(A, B, B, C, D)

6.1 Scenarios with Unseen Control Flow

The event logs L1, L2 and L3 cover scenarios that are
created by parallel activities or loops. Log L1 in Table 2
shows an example of three activities C1, C2 and C3 that
can occur in any order. L2 in Table 3 shows a similar, yet
more complex scenario with C, D, E, F, G, H in any order.
This is typically caused by parallel activities and is a
common phenomenon in real-world event logs. Another
common scenario is the appearance of activities that can be
executed multiple times after another as shown in L3. For
event logs with such patterns, four interesting scenarios
(CF1-4) can occur:

e CF1: LI and prefix (A, B, Cl, C3, C2, D). Expected
prediction: E. Although the model has not seen this
prefix due to a new order of C1, C2 and C3, it should
have learned that the case always continues with E after
D, regardless of the order of the previous activities. The
same holds for predicting D after having seen C1, C2
and C3.

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 371

e CF2: [2 and prefix: (A,B,C,D,F,G). In this
scenario, we are making a prediction during the
execution of concurrent activities, where more than a
single activity is possible. As seen in L2, both E and
H have been observed immediately after G and are thus
valid continuations and valid predictions.

e CF3: L3 and prefix: (A, B, B, B, C). Expected predic-
tion: D. In this scenario, the model should have learned
that the case always continues with D after C, no matter
how often B has happened.

e CF4: L3 and prefix: (A, B, B, B). In this scenario, we
are essentially predicting whether the loop continues
(prediction B) or stops (prediction C). Similar to
scenario CF2, both would be valid continuations.

The training data can be incomplete, e.g., with respect to
the activities that can occur in the process. For instance, if
obtaining an event log from the same process but a dif-
ferent system that records one additional activity. Another
reason could be that a process change may lead to a new
activity being introduced between training and prediction
time, which would then be unknown to the prediction
model:

e CF5: L3 and prefix (A, F, C). As F is an activity the
prediction model has never seen before, there is no
evidence from the event log how to continue. One
option would be to predict a label from the event log
that could potentially follow, e.g., D, as this has
occurred after C in all traces in the training data.
Otherwise, the model could also indicate that it does
not know, e.g., by making a special prediction
UNKNOWN.

6.2 Scenarios with Unseen Context Attributes

In some situations, the context attributes like involved
resources, timestamp or cost carry important information to
determine the continuation of the process instance (Brunk
et al. 2020). Considering this contextual information is
therefore an important capability when dealing with event
logs as the next element to predict is often not determined
by the previous activities only. In scenarios ATT1 and
ATT2, we expect the prediction model to generalize in the
presence of context attributes. Note that in these scenarios,

Table 5 ATT1-different resources R performing B

Event Log L4

((A,R1), (B,R100), (C,R2))
((A,R1),(B,R101), (C,R2))
((A,R1), (B,R101), (C,R2))

Table 6 ATT2-decision depending on cost after B

Event Log L5

<(A, 2€), (B, 2€), (C, 26)>
<(A, 499€), (B, 499€), (C, 499€)>
<(A, 501€), (B, 501€), (C, 501€)>

the models have seen the context attribute values before,
i.e., they are not completely new. It is only the combination
of activity and a context attribute that has not been
observed in the training data. The first example, L4 in
Table 5, shows a situation in which different resources are
involved in the activities, but do not influence the way the
process continues. In contrast, Log L5 in Table 6 shows an
example in which the next activity to execute depends on
the cost value observed in a previous one. If cost is lower
than 500€ then C follows. If it’s higher than 500€ then D
follows. In this scenario, the model has to learn to make
predictions based on the cost attribute.

e ATTI1: L4 and prefix ((A,R1),(B,R1)). Expected
prediction: C. In L4, different resources are involved
in activity B. However, C follows B every time. Thus,
the prediction model should know that regardless of the
resource R in activity B, C always follows.

e ATT2: LS5 and prefix <(A, 2€), (B, 499€)>. Expected
prediction: C. While this exact combination of activ-
ities and cost values has not been observed before, the
model should have learned that with a cost of 499€ in
the second event, C follows.

Similar to the unseen activities discussed in the previous
section, prefixes may also contain unseen context attribute
values, such as a new resource due to a new employee
becoming involved in the process after the model has been
trained. To demonstrate these scenarios, we also employ
logs L4 and LS5 but discuss other prefixes.

e ATT3: L4 and prefix ((A, Rl), (B, R37)). In this
scenario, resource R37 in the second event has never
been seen before. Similar to the situation with an
unseen activity in CF5, the model could predict any
label on a positional basis, e.g., C or indicate that it
does not know.

e ATT4: LS and prefix <(A, 200€), (B, 200€)>. Though
200€ is an unseen value for the quantitative attribute
cost, it is between the seen values 2€ and 499€. Thus,
we argue that an optimal prediction model should have
learned to predict C.

@ Springer

372 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

7 Experiments

Based on the generalization scenarios introduced in the
previous section, we will now evaluate if, and to what
extent, existing next activity prediction models can gen-
eralize, according to the definition given in Sect. 5. We use
an evaluation setup following the requirements and
observations made in previous sections. Specifically, we
simulate event logs that are based on the scenarios pre-
sented in Sect. 6. The event logs are split, per scenario,
such that all samples in the test split are unseen, which
allows us to compute a meaningful generalization error. In
addition to the single scenarios, we experiment with
combinations of these scenarios to increase the complexity
and difficulty for generalization. Further, we also evaluate
the PPM models on real-life event logs, containing real
scenarios with presumably different characteristics and
different variability, to validate the findings made in the
simulated settings. Based on the results, we can assess
whether and to what extent existing methods can generalize
in which scenarios.

We present the process models, event logs and scenario
splits in Sect. 7.1, the prediction models and training setup
in Sect. 7.2, and discuss how to measure the performance
in Sect. 7.2.5. The experiments on the single scenarios are
discussed in Sect. 7.3, on the combinations in Sect. 7.4,
and on the real-life event logs in Sect. 7.5.

7.1 Process Models and Event Log Data
for the Simulated Single Scenarios

We create a set of 5 process models and accompanying
event logs that implement the generalization scenarios
CF1-5 and ATTI-4 introduced in the previous section,
allowing to test the generalization in a controlled envi-
ronment. Note that not all process models have the same
activities or attributes as the sample logs presented before.
Nevertheless, they are used to generate event logs for these
scenarios, as they implement the scenarios on a conceptual
level.

In addition to the separation between control flow and
context attributes, as shown in Fig. 3, we evaluate all
scenarios with two complexity levels: simple and
advanced. This is intended to make the evaluation more
representative and account for the different levels of
complexity that can occur in real-world processes. The 5
process models (Figs. 4, 5 and 6) are used to generate event
logs for the 9 scenarios and both complexity levels. In total,
we evaluate on 18 event logs. The event logs are split
manually by a ratio of 80/20 such that there are no dupli-
cates between the prefixes in the training and the test split.
Further, the manual split ensures that we evaluate in each
log one specific scenario. Table 7 shows an overview of the
scenarios, process models, and prediction targets. Each of
the 18 settings that we evaluate is characterized by a sce-
nario that it replicates, the process model used to generate

g g el W o B

A

}_. L
J}—. R

Fig. 4 BPMN models 1 (top) with concurrency simple and model 2 (bottom) for concurrency advanced version for scenarios CF1 and CF2

@ Springer

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 373

A

Fig. 5 BPMN models 3 (top) with loops simple and model 4 (bottom) for loops advanced for scenarios CF3 and CF4

ice of C < 500

.

pi

A o

500

price of C>

—ail

o

Fig. 6 BPMN model 5 with attribute-dependent exclusive choice for scenarios ATT1-4 and CF5

Table 7 Overview of generalization scenarios and the respective prediction targets

Simple Advanced
Scenario Description Targets Model Targets Model
CF1 Unseen concurrent permutation, prediction after concurrent block I J K 1 M, N, O 2
CF2 Unseen concurrent permutation, prediction within concurrent block D, E, F, G, H 1 D EF GHIJ KL 2
CF3 Unseen loop count, prediction after loop F, G 3 1 4
CF4 Unseen loop count, prediction of loop D, E 3 C, D EF GH 4
CF5 Unseen activity D EF GH 5 D EF G H 5
ATTI1 Unseen combination of activity and resource D EF GH 5 D E F GH 5
ATT2 Unseen combination of activity and price D, E 5 D, E 5
ATT3 Unseen resource D E F, G H 5 D E F, G H 5
ATT4 Unseen price D, E 5 D, E 5

the event log, the prediction targets that we evaluate gen-
eralization on, and a complexity level.

7.1.1 Process Models

Figures 4, 5 and 6 show the BPMN models used to gen-
erate the event logs:

BPMN models 1 and 2 (Fig. 4) feature parallel
activities for scenarios CF/ and CF2. BPMN model 1
is simpler with 5 single parallel activities (leading to a
total of 120 possible activity permutations), whereas the
advanced one features 9 activities with a partial order
among 3 sets of 3 activities (leading to a total of 1680
possible permutations). Model 1 is used for the simple
setting and model 2 for the advanced setting.

BPMN models 3 and 4 (Fig. 5) feature loops for
scenarios CF3 and CF4. In the simple model 3, a single
activity can repeat up to 25 times (which leads to
25 possible variants), whereas in the advanced model,
two sequences of two activities can independently
repeat up to 10 times (leading to 100 possible variants).
These models are used for the simple and advanced
setting respectively.

BPMN model 5 (Fig. 6) features a context attribute-
dependent choice and is used for scenarios AT7T1-4 and
CF5. Depending on the value of attribute price in
activity C, either D or E is executed next. Because
scenarios ATT1-4 are related to the context perspective,
the control flow of the process remains constant for
these. For ATTI and ATT2, we instead increase
complexity by expanding the domain of the relevant
attributes (attribute resource for ATT1 or attribute price

@ Springer

374 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

for ATT2) from 100 possible values in the simple
process to 1000 in the advanced one. For AT73 and
ATT4, we assign unseen attribute values to one event
(activity C) in the simple process and to two events
(activities B, C) in the advanced one. We also use this
process model to generate training data for scenario
CFS. For the test data, we then replace one activity
(O) in the simple setting and two activities (B, C) in the
advanced setting with new, unseen ones (X and Y).

7.1.2 Scenario-Specific Prediction Targets

To measure the generalization properties that we are
interested in as specifically as possible, we only evaluate
on a subset of prefix-label pairs in each event log. If we
want to assess the ability of a prediction model to gener-
alize to unseen activity orderings in the process with par-
allel activities (Fig. 4), for example, it would not be
meaningful to measure predictive performance on the
prefix-label pair [A, B] - C, because it occurs before the
concurrent activities. Instead, the meaningful activities to
predict for scenario CF1 simple (prediction after concur-
rent block) would be I, J and K, and for scenario CF2
simple (prediction in concurrent block) they would be D, E,
F, G and H. We call the labels of interest prediction targets.
A summary of the 9 prediction scenarios and the prediction
targets for the simple and advanced versions of each is
shown in Table 7.

7.1.3 Event Log Generation and Splits

For each event log, we generate 10,000 cases following the
respective process model. Each event has the same five
attributes: case_id, activity, timestamp, resource, price.
The start timestamp of each case is randomly sampled from
an interval from January 2015 to December 2019. The
timestamps of following events are then iteratively sam-
pled from 48-hour windows beginning with the timestamp
of the previous event. The resource and price per event are
sampled independently from a set of possible values (100
for the simple settings, 1000 for the advanced settings),
We manually split each event log into 80% training and
20% test data so that there are no prefix samples leaked
from the training split to the test split, with regard to the
generalization characteristic that is evaluated in that log.
For instance, in scenario CF1, we split in such a way that
the permutations of the parallel activity execution in the
test split have not been seen in the train split. Each sample
(x, y) in the test split has an ordering of activities that is not
present in the training split. For scenario ATT1, traces and
prefixes in both splits may have the same control flow, but
the split instead ensures that all combinations of activity

@ Springer

C and resource in the test split are not included in the train
split. As a consequence of this approach, we must split the
event logs for scenarios CF2 (prediction in parallel block)
and CF4 (prediction in loop) by prefixes instead of traces.
Otherwise, it would be impossible to avoid leakage among
prefix-label pairs in these scenarios. Consider, for example,
the variant [A, B, C, D, D, D, E, F, G] generated from the
simple loop process model (Fig. 5). Even if this full exe-
cution variant only exists in the test split, the prefix [A, B,
C, D] that it entails would also be part of any other variant
that this model may generate, and thus always be found in
both training and test split if we were to split on trace level.
By splitting on prefixes we can ensure that there are no
duplicates.

The result is two splits — training and test — where the
samples (x, y) in the test split have not been seen during
training and make up 20% of all variants. For instance, for
CF1 we test on 72 unique prefix variants in the simple
setting and 1008 unique prefix variants in the advanced
setting. This test setting is more extreme than found in
reality, but it ensures an accurate assessment of general-
ization capabilities because the model is trained on a
fraction of the variability of the data (see PC1). Further, as
no test prefix has been seen during training, their distri-
bution is different from the training data (see PC2).

7.2 PPM Models and Training Setup

For the experiments, we aim at having a representative set
of prediction models that reflect the current landscape of
PPM approaches, which is mainly driven by deep neural
networks (Weinzierl et al. 2024). Aligned with the two
types of generalization scenarios (control flow and context
attributes), we use two next activity prediction models: one
that uses the sequence of activities only and another one
that uses additional attributes. For the control-flow-only
model, we use an LSTM model. LSTM models, developed
for sequential data, have shown to be a good fit for PPM
tasks where prefixes and traces are considered as sequences
of events (Weinzierl et al. 2024; Neu et al. 2021).

The context-aware model has to deal with all attribute
types that are included in the scenarios ATTI-4, i.e., re-
source and price. Given that resource is usually encoded as
a categorical attribute while price is a numerical one, the
model must be flexible in dealing with categorical and
numerical attributes. The number of next step prediction
models that can deal with categorical and numerical attri-
butes at once is very limited (we refer the interested reader
to Rama-Maneiro et al. (2021, Tab. 3) and Pfeiffer et al.
(2021, Tab. 4)). To ensure consistency in the results, we
choose one context-aware model, the MPPN, as it can
process both types of attributes. The MPPN is very flexible
in the number and types of context attributes that can be

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 375

considered and has shown to perform very well on a range
of PPM tasks that require context information, including
next step and outcome prediction (Pfeiffer et al. 2021), task
abstraction (Rebmann et al. 2023) or deviation prediction
(Grohs et al. 2025). In the following, we will elaborate on
the prediction models, training strategy, and hyperparam-
eter settings.

7.2.1 Prediction Model Architecture

LSTM model We used a simple LSTM model that is similar
to the model proposed by Evermann et al. (2017), featuring
an embedding layer for the activities, a single LSTM layer
(16 neurons), followed by one fully connected layer for
classification.

MPPN model The MPPN is a process representation
learning model designed to solve a variety of PPM tasks
while being flexible with respect to the attributes in events
to use for prediction. It consists of three parts: A single
CNN model that extracts features for each perspective, i.e.,
the sequence of attribute values; a fully connected part that
pools and combines the features extracted per perspective;
and a configurable number of prediction heads which can
be used to solve a variable number classification or
regression tasks. More details about its architecture can be
found in Pfeiffer et al. (2021). In all experiments with
synthetic data, the MPPN uses the attributes activity, re-
source, timestamp, and price in the input, even if the
attributes are not relevant for the next activity nor being
predicted. The CNN part got pre-trained on variant clas-
sification as described in Pfeiffer et al. (2021), while the
fully connected part for pooling consists of a single layer
with 16 neurons followed by a single classification head for
next activity prediction.

7.2.2 Event Log Preprocessing

For all 18 event logs and both splits, we created prefixes of
length 64. Shorter prefixes were padded with a distinct
token.

7.2.3 Hyperparameter Setting and Tuning

Since the synthetic scenarios are rather simple (in order to
be comprehensively evaluable) and much simpler than
real-life event logs, the prediction models are at risk of
overfitting, as their capacity easily surpasses the variability
in the event log (see PC3). For instance, CFI simple fea-
tures 120 permutations of parallel activities, resulting in
288 unique samples (x, y) of prefixes and targets in the
training log. The number of parameters of the LSTM
model is at least an order of magnitude larger. Thus, we

performed a hyperparameter search for the number of
neurons (4, 8, 16, 32, 64) per layer (embedding layer and
LSTM layer for the LSTM model; fully connected layer in
the MPPN model) and found that increasing the number of
neurons beyond 16 did not lead to better performance in the
single scenario experiments. For the experiments with
combinations of scenarios and on real-life event logs, the
number of neurons per layer had to be increased as detailed
in the respective paragraph. In result, both the LSTM and
MPPN feature around 5000 - 10,000 trainable parameters
in the single scenario experiments, depending on the
number of activities in the event log.

7.2.4 Training Procedure

We trained all models on all event logs on the respective
training split using AdamW as optimizer on the cross-en-
tropy and a learning rate of le-4. The training log was split
into a training and evaluation part. Note that the training
split contains all prefixes, i.e., the model is trained also on
prefixes with other target values indicated in Table 7. For
instance, while we evaluate in CF2 only predictions within
concurrency (activities D, E, F, G, H) and report the per-
formance on samples with those target labels only, we still
train the prediction model on samples with target labels B,
C and [, J, K to ensure that they learn the whole process
and not only a part of it.

Regularization In addition to using small model sizes, we
used regularization techniques to prevent overfitting,
addressing PC3. First, we used early stopping to stop
training when the evaluation loss did not reduce any further
(which has shown to be the most effective countermeasure
against overfitting in previous work (Peeperkorn et al.
2024)). Further, we used dropout with 10% in both models.

7.2.5 Generalization Performance Evaluation

We evaluate the generalization performance of the pre-
diction models as motivated in Sect. 5. We primarily asses
the prediction models with the cross-entropy estimation, as
defined in Eq. 2. In addition, we also report the accuracy,
since it has been frequently used in next activity prediction.
To evaluate whether the models generalize in predicting
next activities, we use the following criteria, which follow
from the conceptualization in Sect. 5.

1. The prediction model reaches a low training error
2. The prediction model reaches a low generalization
error

To assess criterion (1), we inspect the absolute values of
cross-entropy and accuracy. To assess criterion (2), we
measure the generalization error as the difference between

@ Springer

376 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

the error on the training and test split. If both are fulfilled,
i.e. the model performs very well and almost identically on
the test split as on the training split, it generalizes well. If
the differences between training and test error are more
significant or the performance on the training or test split
bad, the model generalize less well. We argue that gener-
alization is a capability that should be quantified. We
cannot say that a model does generalize if and only if the
generalization error is smaller than a certain value. Rather,
the smaller the error and the smaller the generalization
error, the better the model generalizes. The higher the error
or delta, the less the model can generalize. Thus, we refrain
from using a fixed threshold to quantify generalization.

Remember that the test splits contain only unseen pre-
fixes with the target next activities specified in Table 7. In
contrast, the training and evaluation splits contain prefixes
with all activities as target values. If reporting the perfor-
mance on the whole training set, the numbers would not be
comparable to the numbers obtained on the test set.
Therefore, we report the cross-entropy and accuracy of the
models reached on the training split as training perfor-
mance, limited to prefixes with the same set of activities as
used in the test split. This ensures that the training and test
performance can be compared adequately. All PPM models
are trained and tested 5 times in all scenarios and the
results are averaged.

7.3 Single Scenarios

Table 8 shows the cross-entropy estimation and accuracy
that the models achieve on the train and test split in each of
the 18 evaluation event logs. In most scenarios there is at
least one model that generalizes well if considering the
specifics of the scenario. Scenario CFS5 is the only scenario
where the performance of all models decreases consider-
ably, suggesting insufficient generalization. We will dis-
cuss the results in the following in detail.

7.3.1 Results per Scenario

In CF1 and CF3 the prediction models generalize very well
with perfect accuracy and cross-entropy - both in simple as
in the advanced setting. This shows that they have learned
that always the same activity follows behind the block of
concurrent or looping activities, no matter in which order
the activities occur. In scenario CF2, the LSTM performs
as good on the test split as it performs on the training split
while the MPPN performs a little worse on the test split.
The high cross-entropy and low accuracy suggest that the
models do not perform well and, thus not fulfill criteria (1).
As this scenario involves predictions within concurrency
only, it is strongly affected by having multiple valid con-
tinuation options that induce a minimal error that cannot be
avoided. In these conditions, the performance has to be
considered good as we will show and discuss in depth

Table 8 Cross-entropy (CE) LSTM MPPN

according to Eq. 2 and accuracy

(ACC) for the samples with the Train Test Train Test

respective target labels given in

Table 7 on the training and test CE ACC CE ACC CE ACC CE ACC

split Simple CF1 0.001 100.00% 0.002 100.00% 0.0 100.00% 0.0 100.00%
CF2 0.841 52.28% 0.844 52.60% 0.800 56.11% 1.037 49.51%
CF3 0.000 100.00% 0.000 100.00% 0.0 100.00% 0.0 100.00%
CF4 0256 92.19% 0236 93.47% 0253 92.32% 1253 82.85%
CF5 0.177 88.63% 0.266 85.74% 0.009 99.72% 0926 84.16%
ATT1 0.176 88.62% 0.177 88.05% 0.040 97.51% 0.041 97.41%
ATT2 0.702 50.41% 0.700 61.26% 0.026 99.15% 0.090 96.16%
ATT3 0.177 88.70% 0.177 88.67% 0.007 99.78% 0.009 99.71%
ATT4 0.700 54.00% 0.698 55.26% 0.087 96.91% 0.326 90.91%

Advanced CFl 0.001 100.0% 0.001 100.0% 0.0 100.0% 0.0 100.0%

CF2 0.829 55.76% 0.895 53.22% 0.798 57.52% 1.491 48.06%
CF3 0.000 100.0% 0.000 100.0% 0.0 100.0% 0.001 99.43%
CF4 0205 92.04% 0.205 92.45% 0.200 92.26% 0231 91.20%
CF5 0.177 88.53% 0.821 75.00% 0.007 99.80% 2720 56.12%
ATT1 0.176 88.72% 0.176 88.66% 0.014 99.56% 0.014 99.54%
ATT2 0.701 51.03% 0.702 50.75% 0.104 96.18% 0.145 94.15%
ATT3 0.177 88.31% 0.177 88.60% 0.005 99.83% 0.006 99.78%
ATT4 0.699 54.24% 0.697 55.18% 0.055 98.05% 0.321 91.92%

@ Springer

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 377

Table 9 Probability distribution g(y) learned by the LSTM for activities with an unseen prefix on CF2 simple. Probabilities in bold are those

assigned to the ground truth activities y

Unseen prefix A B C D E F G H I J

(A,B,C,E) 0.00 0.00 0.00 0.22 0.01 0.30 0.23 0.24 0.00 0.00
(A,B,C,F,D) 0.00 0.00 0.00 0.01 0.28 0.00 0.36 0.35 0.00 0.00
(A,B,C,D,E,G) 0.00 0.00 0.00 0.01 0.00 0.49 0.01 0.48 0.00 0.00
(A,B,C,D,E,F,G) 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.97 0.00 0.00

along Table 9. Similar observations can be made for CF4.
In this scenario, the prediction model has to choose
between two activities (D or E) while in CF2 there are up
to five alternative activities (D, E, F, G, H) per sample. We
argue that this explains why the accuracy in CF4 is much
higher than in CF2 and cross-entropy lower.

Scenario CFY5 is the scenario with the strongest increase
in generalization error (both in cross-entropy and accu-
racy). In the simple version, the LSTM model still per-
forms well with little differences between training and test
performance. This means that the model is still able to
make correct predictions if one activity is replaced by a
unseen one. In the advanced version of CF5, the general-
ization error is much higher. Following our definition of
generalization, we have to conclude that both models do
not generalize well in this scenario. Nevertheless, the
LSTM still reaches an accuracy of 75%, meaning that
although the cross-entropy is much higher (caused by
higher variance in the model’s predictions), the model still
gives the correct activity the highest probability in most of
the unseen samples.

We assume that the models can make predictions on
positional basis, i.e., they know that a certain activity
appears in a certain position even if an unseen activity is
introduced, but assigning this activity a little lower prob-
ability as normally which explains the higher cross-en-
tropy. This means, that the models have learned that after
seeing (A,UNK,UNK) (UNK represents the encoded
unknown activity) in the fourth position either D or E
follows. Further, even if seeing unknown activities in the
prefix, they have learned that after F always G follows.
Given the difficulty of this task, the results are remarkable
and suggest that generally valid patterns have been learned
to a certain extent.

In the scenarios ATTI to ATT4 that require context
attributes, the MPPN performs, as expected, much better
than the LSTM, which does not consider these attributes. In
the scenarios ATTI, ATT2, and ATT3, the MPPN general-
izes well. Scenario ATT4 (unseen price attribute) is the
most challenging scenario among the context-aware ones,
and we see strong increase in cross-entropy and a drop in
accuracy. Nevertheless, the performance is still reasonably

high, which is why we argue that the model still general-
izes in this scenario, too. This means that the model can
deal with unseen combinations of attribute values and also
unseen attribute values and predict the correct activity (D
or E) based on the context attributes.

7.3.2 Differences Between Models and Capacities

Comparing the models reveals that the LSTM model per-
forms better on the scenarios with control flow only (CF1-
5) and the MPPN performs better on the scenarios with
context attributes. For CFI-4, the LSTM performs almost
equally well on the training and test split, but the MPPN
cannot reduce the generalization error as far as the LSTM
can. In scenarios CF4, ATT1, ATT3, and ATT4, the models
perform better in the advanced setting than in the simple
setting. We attribute this to a better fit of the capacity of the
prediction models to the complexity of the prediction task.
The prediction models used for all scenarios are very small
in terms of models size and the number of neurons. For
some scenarios, the capacity of the model might still be too
high in the simple setting while the advanced settings,
featuring higher variability, fits the capacity better.

7.3.3 Probability Distribution in Predictions

In scenarios like CF2, the prediction model reaches a low
generalization error, but the overall performance, at first,
seems not to be that good. As described above, we attribute
this to the high number of parallel activities. We will show
that next activity prediction models actually learn that
multiple activities can follow, which they express by giving
them certain probabilities in g(y), showing that they make
accurate predictions in such scenarios. For this, we show
the probabilities g(y) that the LSTM model gives to dif-
ferent next activities y, i.e., the result after applying the
softmax function on the output of the classification layer
(these probabilities sum up to 1).

Table 9 shows the probability distribution over the
activities for some prefixes in the test split (note that they
are all unseen) of CF2. As we can see, the predicted
probabilities resemble the process behavior accurately. The

@ Springer

378 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

O
AL L e
HHJ

Fig. 7 BPMN model with a combination of concurrency, loop, and choice

LSTM model gives reasonably high probabilities to all next
activities that are possible. For instance for the prefix
(A, B, C,E) it gives activities D, F, G, H high probabilities
and all other activities very low probabilities. While the
probabilities for D, G and H are almost identical, F is given
a higher probability. This might represent the distribution
found during training, i.e., that in more situations during
training F did follow compared to the other three activities.

7.4 Scenario Combinations

In addition to evaluating prediction models’ generalization
capabilities on models with isolated characteristics, we also
evaluate them in settings where several characteristics
occur at the same time, as is typically the case in real-world
processes. To this end, we combine parts of the previous
process models into a new one that features concurrency, a
loop, and an attribute-dependent choice (Fig. 7). We then
generate 3 combination scenarios with progressively
increasing complexity and evaluate the same two PPM
models on them:

e Combl: This scenario combines CF1 and CF3, featur-
ing an unseen permutation of concurrent activities and a
loop.

e Comb2: Extends scenario Combl by additionally
replacing 3 activities and resources in the prefix with
unseen ones. It is therefore a combination of CF1, CF3,
CF5, and ATT3.

e Comb3: Extends scenario Comb2 by additionally
assigning an unseen price value in activity N, so that
it additionally includes ATT4.

Like in the isolated scenarios, we evaluate performance
only for the prediction of generalization-relevant target
activities (activities N, O, P, Q for Combl and Comb2,

activities O, P, Q for Comb3). Due to the higher com-
plexity in the data, we increased the number of neurons in
the LSTM and MPPN layer to 32 and used the same
training and testing strategy as before, in which the test
split contains unseen prefixes only. We averaged the per-
formance values across 5 runs.

Results The results shown in Table 10 are very much in
line with the results of the single scenario experiments. The
LSTM reaches almost the same cross-entropy and accuracy
in the training as in the test split. This indicates that the
model performs equally well on the unseen prefixes as on
the seen ones. However, as the MPPN shows, higher per-
formance can be reached if using context attributes.
Although the MPPN reaches very good performance on the
training split, it performs less well on the test split. This
indicates that the model can make accurate predictions, but
not for all unseen prefixes. Interestingly, it still performs
well on Comb2, which includes unseen activities as in CF5
where the model did not perform well. However, on
Comb3, which additionally includes unseen price values
(as ATT4 where the model performed well), its general-
ization error increases drastically. This indicates that the
model cannot generalize well if these scenarios occur in
combination.

7.5 Real-Life Event Logs

The previous experiments have evaluated the generaliza-
tion capabilities of PPM models on specific scenarios
which allowed to assess their performance for individual
process characteristics. Although they exhibit a high vari-
ability, real-life processes might contain other or additional
characteristics in their traces. Therefore, we conduct an
additional experiment on real-life data to validate the

Table 10 Cross-entropy (CE)

LSTM MPPN

according to Eq. 2 and accuracy

(ACC) for the combinations of Train Test Train Test

scenarios on the samples with

respective target activity CE ACC CE ACC CE ACC CE ACC
Comb 1 0.233 83.82% 0.233 83.85% 0.074 97.07% 0.169 93.05%
Comb 2 0.232 83.34% 0.251 83.60% 0.076 97.00% 0.324 87.63%
Comb 3 0.349 75.29% 0.379 75.45% 0.068 97.63% 2.319 56.96%

@ Springer

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

379

Table 11 Variant leakage and prefix leakage if splitting BPIC event logs by time into train and test with a ratio of 50:50, i.e. such that the last

half of the traces is in the test split

Log Traces Variants Variant Leakage Unique Pref Example Leakage Unseen Test Pref

BPIC12 13,087 4,366 66.38% 60,866 78.69% 29,861

BPIC17 31,509 15,930 50.89% 279,796 77.54% 50,530

Table 12 Cross-entropy (CE) LSTM MPPN

according to Eq. 2 and accuracy

(ACCQ) for setting 50:50 (no Train Test Train Test

removal of leaked prefixes) and

setting unseen (all leaked CE ACC CE ACC CE ACC CE ACC

prefixed removed) BPIC 1250:50 0381 8529% 0394 8455% 0448 8336% 0448 83.13%
BPIC 12 unseen 0381 8529% 0.566 81.49% 0448 83.36% 0.890 72.22%
BPIC 17 50:50 0376 87.22% 0349 87.20% 0.246 91.13% 0.241 91.21%
BPIC 17 unseen 0376 87.22% 0.549 81.15% 0246 91.13% 0513 82.70%

findings made in the previous experiments on simulated
data.

For this purpose, we chose the BPIC17 event log, due to
its size and the observation that many new variants appear
over time (Peeperkorn et al. 2024, Fig. 1). To force a
scenario where the test set contains many unseen samples,
we split the event log by time such that the first 50% of
traces are used for training and the last 50% for testing.
However, as Table 11 shows, there is still a significant
leakage of variants and prefixes from the training to the test
split if splitting that way. In detail, 50.89% of full-trace
variants are leaked from the training to the test set; the
prefix leakage (see Sect. 3) is even higher at 77.54%.
Therefore, as an additional setting, we removed all prefixes
from the test split that are also included in the training split.
This results in 29,861 unseen samples (x, y), which were
not seen during training and can be used for testing.
Evaluating both settings also allows to see how the per-
formance changes when being evaluated on only a portion
of unseen samples to unseen samples only. In addition, we
evaluate on the BPIC12 (complete) event log, which is an
earlier version of the same process as in BPIC17, using the
same setting, too.

In contrast to the experiments on simulated data where
we evaluated on prefixes with specific target activities only,
no such prefix sampling with specific target activities is
done. For the real-life event logs used in the experiments,
we do not know, e.g., which activities are executed con-
currently, in a loop, or in other specific circumstances.
Therefore, we report as training performance the cross-
entropy and accuracy reached on the hold-out evaluation
split in the last epoch of training. As test performance, we
report the cross-entropy and accuracy on the full test split

(setting “50:50°) and on the test split with unseen prefixes
only (setting “unseen*). Note that the training performance
therefore is the same in both settings, as we use the same
model after training for both test settings.

As the logs are much larger and the processes more
complex, we increased the capacity of the models. For the
LSTM model, we used 2 LSTM layers with 64 neurons
each and for the MPPN model, we used 2 layers in the
fully-connected part with 256 neurons each. Smaller
models have been found to reach a lower test performance
while increasing their size led to overfitting. We trained
each model 5 times and report the average of accuracy and
cross-entropy across all runs.

Results Similar to the experiments before, both prediction
models perform considerably well on both real-life event
logs and both settings. The generalization error is almost
zero in the 50:50 setting. When testing on unseen prefixes
only, the generalization error in cross-entropy and accuracy
increases while maintaining a high accuracy. Considering
the much higher complexity of real-life data, the perfor-
mance on the unseen samples in the unseen setting vali-
dates that PPM models can also generalize on challenging,
real-life settings.

7.6 Summary

We conclude that next activity prediction models gener-
alize well in almost all scenarios, from simulated to real
event logs. The results show that such models can make
correct predictions for unseen prefixes even in challenging
settings like high concurrency or completely unknown
activities. Further, the learned probability distribution

@ Springer

380 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

q(y) reflects how prefixes can continue in the process.
While the results are not always optimal and there is room
for improvement they definitely show that generalization
capabilities have been learned by the prediction models.

However, there are differences between the scenarios. In
general, scenarios where all values (regardless if activity or
any other attributes) have been seen before, e.g., CFI -
CF4 and ATTI and ATT2 work better than scenarios where
completely unknown values appear in the prefix, e.g., CF5,
ATT3, and ATT4. Unknown resource values (ATT3) are
handled more sophisticatedly than unknown price values
(ATT4) by the MPPN, hinting towards a better capability in
handling categorical values than numerical ones. However,
this could also be specific to the architecture of the pre-
diction model.

The detailed analysis of the learned probability distri-
bution in Table 9 also shows that the models learn all valid
continuation options, which cross-entropy does account
for. In such situations, the next activity to follow is arbi-
trary, causing a certain error that cannot be avoided. We
assume that the cross-entropy of the LSTM reached in CF2
is bound by the entropy, i.e., the cross-entropy of the
prediction model cannot become smaller than the respec-
tive entropy of the process (Pfeiffer and Fettke 2024).

In the more complex scenario combinations and real-life
event logs, the models still generalize well when being
tasked with unseen prefixes. However, certain combina-
tions of unseen categorical and numerical values in the
prefix seem to be challenging for state-of-the-art PPM
models. Since the generalization error increased the most
in scenarios where context is relevant, PPM models should
be enhanced in their ability to handle unseen context-at-
tribute combinations which will further increase their
overall performance.

8 Discussion
8.1 Discussion of the Experimental Results

As the experimental results show, next activity prediction
models generalize well in almost all scenarios with respect
to the definition given in Sect. 5. There are differences per
scenario and prediction models used. While the LSTM
model, which uses control flow information only, performs
better in CFI-5, the MPPN shows strong generalization in
the scenarios requiring context awareness. In addition,
there are differences in generalization depending on whe-
ther the prefixes contain entirely unseen attribute values or
not. The prediction models generalize less well when there
are completely unseen values in the prefix, e.g., unseen
activities (CF5) or unseen attribute values (AT73 and
ATT4), than in scenarios where the values appear in unseen

@ Springer

constellations. Further, certain combinations of unseen
context attributes are more challenging than others. How-
ever, they generalize surprisingly well to unseen prefixes.

We observe that scenarios with unseen values (CFS5,
ATT3, and ATT4) are harder to generalize. In scenario CF5
there are unseen values in the control flow, which is the
only dimension available. As the activities are out-of-dis-
tribution and not part of the training set, we argue that the
models show limited OOD generalization capabilities. The
unseen attribute values in ATT3 and ATT4 are also out-of-
distribution but do not necessarily constitute a significant
change from the original data. Further, the control flow
remains constant with no new activities being introduced.
Thus, they qualify less for OOD generalization.

The MPPN generalizes better than the LSTM on the
single scenarios involving context attributes. This could
validate our assumption that additional information in form
of context attributes supports generalization, which is in
line with previous work (Gerlach et al. 2022). In the more
complex scenarios, however, the picture becomes more
diverse. While the MPPN reaches a better training per-
formance and often overall higher accuracies, its general-
ization error is often much higher than the generalization
error of the LSTM. While the model can learn dependen-
cies between the attributes on the training set, as indicated
by a low error, it does not always seem to be able to
transfer this ability to the test set. Conversely, models
require more generalization capabilities to include addi-
tional context attributes.

The results also show that next activity prediction
models accurately learn how unseen prefixes continue by
assigning appropriate probabilities to next activities, as
seen in Table 9. We conclude that prediction models learn
how processes are structured, i.e., how activities are
structured and which activities follow next in which
situations.

Previous work has defined generalization differently
from our conceptualization as the ability to generate unseen
traces (Peeperkorn et al. 2022). As our work shows, next
activity prediction models can deal very well with unseen
prefixes. Thus, their limitations in generating unseen traces
must be tied to their generative ability rather than their
predictive ability. Although they are accurate in predicting
next activities (even for unseen prefixes), they might be
unable to accurately predict longer future behavior. From
this, it follows that they may not be able to generate unseen
variants as expected and measured by Peeperkorn et al.
(2022). To achieve this ability, a more forward-looking
training with a larger prediction horizon might help. It also
shows that our definition of generalization, focusing
specifically on next activity prediction, cannot be applied
universally to all PPM tasks.

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 381

8.2 Discussion of Limitations

Several limitations apply to this work. First, our definitions
of example leakage and accuracy limit do not consider the
context attributes found in event logs. Thus, they are only
approximations of the values that we would obtain if
considering, e.g., all decisive attributes for the next activ-
ities. However, as discussed, not all attributes are decisive
for the next activity which is why it is complicated to
compute the values on the respective attribute set.

Second, the scenarios used in the experiments are not
complete, meaning that there might be other situations that
require generalization. For instance, a concept drift that
changes the process after a certain date might require more
challenging forms of generalization which we have not
analyzed yet.

Third, although we tested different hyperparameter set-
tings for each experiment, the generalization performance
can differ in other settings. This might result in better
performance as reported, potentially resulting in better
generalization. For instance, the models might have over-
fitted in certain scenarios although countermeasures have
been implemented. Also, other PPM approaches, which we
have not explored so far, can perform very differently.

Fourth, the incompleteness of the training event log
could be higher than assumed. We trained the PPM models
on 50%-80% of all traces. While we found that even with a
split of 50% most prefixes (close to 80%) exhibit the same
control flow, this ratio could be much smaller in other real-
world applications. Thus, it remains open whether next
activity prediction models would also generalize when
having seen, e.g., only 30% of the total behavior.

Lastly, the conceptualization of generalization and the
experiments have been conducted with a focus on the task
of next activity prediction. PPM consists of many more
tasks that we have not analyzed yet. As many other tasks
also involve an unseen prefix but differ in the attribute to
predict, a similar procedure as suggested in this paper
might be applicable to those tasks, too. For instance, the
observation and characteristic that prefixes often recur in
training and application also applies to other PPM tasks.
Similarly, the training event log should always be assumed
to be incomplete and regularization applied. In contrast, the
distribution of target variables can differ in other PPM
tasks while cross-entropy cannot and should not universally
be applied to all PPM tasks. Therefore, more research is
required on generalization in other PPM tasks.

9 Conclusion

In this work, we analyzed generalization in PPM concep-
tually and empirically. We showed that the current

evaluation procedures used for next activity prediction
research are flawed and do not allow researchers to draw
valid conclusions about their generalization capabilities.
This follows from the observation that most samples used
for testing are duplicates and that these procedures are not
able to reliably communicate the actual performance of the
model regarding the prediction of what will happen next.
Following these observations, we introduce a novel con-
ceptualization of generalization for the task of next activity
prediction, which defines generalization based on the def-
inition of generalization in machine learning research: to
accurately predict the process behavior for unseen prefixes.
Further, we discuss challenges for generalization in next
activity prediction to guide adequate evaluation proce-
dures, such as variability and incompleteness of event logs,
adequate train-test-splitting, and the choice of evaluation
metric. While this conceptualization has been developed
focusing on next activity prediction, certain challenges for
generalization also apply to other PPM tasks that work with
trace prefixes.

To demonstrate what it means for a next activity pre-
diction algorithm to generalize, we presented various
example scenarios. We evaluated two state-of-the-art next
activity prediction models with regard to how they per-
formed in each scenario, which allowed for the evaluation
of generalization capabilities for each situation. As the
results show, existing models generalize well in predicting
the next activity in almost all scenarios, considering the
control flow only and when using context attributes. Fur-
ther, the models were also able to generalize very well in
more complex scenarios and on real event logs.

While the overall accuracy on, e.g., BPIC 12 and 17 is
already high, there is a decline between training and test
performance. In turn, overall better performance can be
achieved by developing context-aware models that can
generalize to unseen context attribute combinations. Con-
fidently handling unseen context attribute combinations
seems to be a limiting factor for state-of-the-art next
activity prediction models and potentially for PPM models
in general. Note that the combination of diverse attributes
of different types found in event logs is also a unique
challenge for machine learning in general. Further, as
processes are known to change over time, generalization in
PPM also requires developing models that can adapt to
changing process behavior in order to improve their gen-
eralization capabilities.

In the experiments, we have tested the PPM models on
unseen prefixes only, which we have argued to resemble
the to-be-expected conditions in application. However, our
analysis also revealed that, although new variants are
introduced over time, most prefixes of traces in the real
data are highly repetitive and only a small share of samples
contain unseen variants, even when 50% of the most recent

@ Springer

382 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025)

traces are used as test split. Thus, our experimental con-
ditions, which allowed us to measure a meaningful gen-
eralization error, might be stricter and more difficult than
real-life conditions. Nevertheless, we encourage the com-
munity to test their models specifically for generalization in
a setting with unseen prefixes only. This might reveal
larger performance differences between models and pro-
vide new insights. Further, aiming for better generalization
on the unseen traces should make the models robust for
various real-life conditions.

Finally, the ability of the tested models to make correct
predictions on unseen prefixes shows that they must have
learned a representation of the process from the data that
closely resembles process behavior. This representation
presumably contains high-level process features that
describe the behavior of the process.

In future work, we plan to tackle more sophisticated
instances of OOD generalization, i.e., investigate more
challenging prediction settings such as concept drifts that
introduce more significant changes to the process than
those present in the scenarios in this paper. Further, pre-
diction models that can adapt their learned probability
distribution after training to account for changes in the data
are of particular interest.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Abb L, Pfeiffer P, Fettke P, Rehse JR (2024) A discussion on
generalization in next-activity prediction. BPM workshops.
Springer, Heidelberg, pp 18-30

Back CO, Debois S, Slaats T (2019) Entropy as a measure of log
variability. J Data Semant 8:129-156

Baier S, Dunzer S, Fettke P, Houy C, Matzner M, Pfeiffer P, Rehse
JR, Scheid M, Stephan S, Stierle M (2020) The MoblIS-challenge
2019. Enterpr Model Inf Syst Archit 15:1-25

Bishop CM (2006) Pattern recognition and machine learning.
Springer, Heidelberg

@ Springer

Bishop CM, Bishop H (2024) Deep learning foundations and
concepts. Springer, Heidelberg

Breuker D, Matzner M, Delfmann P, Becker J (2016) Comprehensible
predictive models for business processes. MIS Q 40:1009-1034

Brunk J, Stottmeister J, Weinzierl S, Matzner M, Becker J (2020)
Exploring the effect of context information on deep learning
business process predictions. J Decis Syst 29:328-343

Buijs JCAM, van Dongen BF, van der Aalst WMP (2014) Quality
dimensions in process discovery: the importance of fitness,
precision, generalization and simplicity. Int J Coop Inf Syst
23(1440):001

Di Francescomarino C, Ghidini C (2022) Predictive process moni-
toring. Process mining handbook. Springer, Heidelberg,
pp 320-346

Evermann J, Rehse JR, Fettke P (2017) Predicting process behaviour
using deep learning. Decis Support Syst 100:129-140

Fani Sani M, Vazifehdoostirani M, Park G, Pegoraro M, van Zelst SJ,
van der Aalst WMP (2023) Performance-preserving event log
sampling for predictive monitoring. J Intell Inf Syst 61:53-82

Gerlach Y, Seeliger A, Nolle T, Miihlhduser M, Franch X, Poels G,
Gailly F, Snoeck M (2022) Inferring a multi-perspective
likelihood graph from black-box next event predictors.
Advanced information systems engineering. Springer, Heidel-
berg, pp 19-35

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT
Press, Cambridge

Grohs M, Pfeiffer P, Rehse JR (2025) Proactive conformance
checking: An approach for predicting deviations in business
processes. Inf Syst 127(102):461

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9:1735-1780

Jiralerspong M, Bose J, Gemp I, Qin C, Bachrach Y, Gidel G (2024)
Feature likelihood divergence: Evaluating the generalization of
generative models using samples. In: NeurIPS, Curran Associ-
ates, pp 33,095 — 33,119

Jurafsky D, Martin JH (2025) Speech and language processing: an
introduction to natural language processing, computational
linguistics, and speech recognition with language models, 3rd
draft edn. https://web.stanford.edu/ ~ jurafsky/slp3/, online
manuscript released 12 Jan 2025, accessed 13 Feb 2025

Kippel M, Jablonski S, Indulska M, Reinhartz-Berger I, Cetina C,
Pastor O (2023) Model-agnostic event log augmentation for
predictive process monitoring. Advanced information systems
engineering. Springer, Heidelberg, pp 381-397

Kaufman S, Rosset S, Perlich C, Stitelman O (2012) Leakage in data
mining: formulation, detection, and avoidance. ACM Transact
Knowl Discov Data 6:1-21

Kneser R, Ney H (1995) Improved backing-off for m-gram language
modeling. In: International conference on acoustics, speech, and
signal processing, IEEE, pp 181-184

Kratsch W, Manderscheid J, Roglinger M, Seyfried J (2021) Machine
learning in business process monitoring: a comparison of deep
learning and classical approaches used for outcome prediction.
Bus Inf Syst Eng 63:261-276

Le M, Gabrys B, Nauck D, Bramer M, Petridis M (2012) A hybrid
model for business process event prediction. Research and
development in intelligent systems. Springer, Heidelberg,
pp 179-192

Liao T, Taori R, Raji ID, Schmidt L (2021) Are we learning yet? a
meta review of evaluation failures across machine learning. In:
NeurIPS datasets and benchmarks, Curran Associates

Liessmann A, Wang W, Weinzierl S, Zilker S, Matzner M (2024)
Transfer learning for predictive process monitoring. ECIS

Lu W, Wang J, Sun X, Chen Y, Ji X, Yang Q, Xie X (2024)
Diversify: a general framework for time series out-of-

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://web.stanford.edu/%7ejurafsky/slp3/

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357-383 (2025) 383

distribution detection and generalization. IEEE Trans Patt Anal
Mach Intell 46(6):4534-4550

Murphy KP (2022) Probabilistic machine learning: an introduction.
MIT press, Cambridge

Neu DA, Lahann J, Fettke P (2021) A systematic literature review on
state-of-the-art deep learning methods for process prediction.
Artif Intell Rev 55:801-827

Nolle T, Seeliger A, Miihlhduser M (2018) Binet: Multivariate
business process anomaly detection using deep learning. Busi-
ness process management. Springer, Heidelberg, pp 271-287

Pasquadibisceglie V, Appice A, Castellano G, Malerba D (2022) A
multi-view deep learning approach for predictive business
process monitoring. IEEE Transact Serv Comput
15(4):2382-2395

Pasquadibisceglie V, Appice A, Castellano G, Malerba D (2024)
JARVIS: Joining adversarial training with vision transformers in
next-activity —prediction. IEEE Transact Serv Comput
17(4):1593-1606

Peeperkorn J, van den Broucke S, De Weerdt J (2022) Can recurrent
neural networks learn process model structure? J Intell Inf Syst
61:27-51

Peeperkorn J, van den Broucke S, De Weerdt J (2024) Validation set
sampling strategies for predictive process monitoring. Inf Syst
121(102):330

Pfeiffer P (2022) Business process representation learning. In: BPM
doctoral consortium, CEUR, Miinster, Germany

Pfeiffer P, Lahann J, Fettke P (2021) Multivariate business process
representation learning utilizing gramian angular fields and
convolutional neural networks. Business process management.
Springer, Heidelberg, pp 327-344

Pfeiffer P, Lahann J, Fettke P (2023) The label ambiguity problem in
process prediction. BPM workshops. Springer, Heidelberg,
pp 3744

Pfeiffer P, Fettke P (2024) Trace vs. time: Entropy analysis and event
predictability of traceless event sequencing. In: BPM forum,
Springer, Heidelberg, pp 72—-89

Rama-Maneiro E, Vidal J, Lama M (2021) Deep learning for
predictive business process monitoring: review and benchmark.
IEEE Transact Serv Comput 16:739-756

Rebmann A, Pfeiffer P, Fettke P, van der Aa H (2023) Multi-
perspective identification of event groups for event abstraction.
ICPM workshops. Springer, Heidelberg, pp 31-43

Rehse JR, Dadashnia S, Fettke P (2018) Business process manage-
ment for industry 4.0 - three application cases in the DFKI-
Smart-Lego-Factory. IT - Inf Technol 60:133-141

Ruta D, Majeed B (2011) Business process forecasting in telecom
industry. In: IEEE GCC conference and exhibition, IEEE,
pp 389-392

Stevens A, Peeperkorn J, De Smedt J, De Weerdt J (2023) Manifold
learning for adversarial robustness in predictive process

monitoring. In: International conference on process mining,
IEEE, pp 17-24

Tax N, Verenich I, La Rosa M, Dumas M (2017) Predictive business
process monitoring with LSTM neural networks. Advanced
information systems engineering. Springer, Heidelberg,
pp 477-492

Tax N, van Zelst SJ, Teinemaa I, Gulden J, Reinhartz-Berger I,
Schmidt R, Guerreiro S, Guédria W, Bera P (2018) An
experimental evaluation of the generalizing capabilities of
process discovery techniques and black-box sequence models.
Enterprise, business-process and information systems modeling.
Springer, Heidelberg, pp 165-180

Tax N, Teinemaa I, van Zelst SJ (2020) An interdisciplinary
comparison of sequence modeling methods for next-element
prediction. Softw Syst Model 19:1345-1365

Taymouri F, La Rosa M, Erfani S, Dasht Bozorgi Z, Verenich I
(2020) Predictive business process monitoring via generative
adversarial nets: The case of next event prediction. Business
process management. Springer, Heidelberg, pp 237-256

van der Aalst WMP (2016) Process mining: data science in action,
2nd edn. Springer, Heidelberg

van der Aalst WMP (2022) Process mining: a 360 degree overview.
Process mining handbook. Springer, Heidelberg, pp 3-34

van der Aalst WMP, Schonenberg MH, Song M (2011) Time
prediction based on process mining. Inf Syst 36:450-475

van Dongen BF, Carmona J, Chatain T (2016) A unified approach for
measuring precision and generalization based on anti-align-
ments. Business process management. Springer, Heidelberg,
pp 39-56

van der Aalst W (2020) On the pareto principle in process mining,
task mining, and robotic process automation. In: International
conference on data science, technology and applications,
SciTePress, pp 5-12

Venkateswaran P, Muthusamy V, Isahagian V, Venkatasubramanian
N (2021) Robust and generalizable predictive models for
business processes. Business process management. Springer,
Heidelberg, pp 105-122

Weinzierl S, Zilker S, Dunzer S, Matzner M (2024) Machine learning
in business process management: a systematic literature review.
Exp Syst Appl 253(124):181

Weytjens H, De Weerdt Jochen (2021) Creating unbiased public
benchmark datasets with data leakage prevention for predictive
process monitoring. BPM workshops. Springer, Heidelberg,
pp 18-29

Zhou K, Liu Z, Qiao Y, Xiang T, Loy CC (2023) Domain
generalization: a survey. IEEE Transact Pattern Anal Mach
Intell 45:4396-4415

@ Springer

	Learning from the Data to Predict the Process
	Generalization Capabilities of Next Activity Prediction Algorithms
	Abstract
	Introduction and Motivation
	Foundations
	Preliminaries
	Log Data
	Next Activity Prediction

	Background
	Generalization in Process Discovery
	Generalization in PPM

	Related Work

	Validity Issues in Next Activity Prediction
	Example Leakage
	Baseline and Accuracy Limit
	Implications

	Generalization in Machine Learning
	Aim and Challenges of Generalization
	Types of Generalization

	Generalization in Predictive Process Monitoring
	Aim and Challenges of Generalization in Predictive Process Monitoring
	Incompleteness and Variability
	Distributions
	Train-Test-Splitting
	Regularization
	Evaluation Metrics

	Types of Generalization

	Generalization Scenario Examples
	Scenarios with Unseen Control Flow
	Scenarios with Unseen Context Attributes

	Experiments
	Process Models and Event Log Data for the Simulated Single Scenarios
	Process Models
	Scenario-Specific Prediction Targets
	Event Log Generation and Splits

	PPM Models and Training Setup
	Prediction Model Architecture
	Event Log Preprocessing
	Hyperparameter Setting and Tuning
	Training Procedure
	Generalization Performance Evaluation

	Single Scenarios
	Results per Scenario
	Differences Between Models and Capacities
	Probability Distribution in Predictions

	Scenario Combinations
	Real-Life Event Logs
	Summary

	Discussion
	Discussion of the Experimental Results
	Discussion of Limitations

	Conclusion
	Open Access
	References

