
RESEARCH PAPER

Learning from the Data to Predict the Process

Generalization Capabilities of Next Activity Prediction Algorithms

Peter Pfeiffer • Luka Abb • Peter Fettke • Jana-Rebecca Rehse

Received: 31 July 2024 / Accepted: 27 January 2025 / Published online: 22 March 2025

� The Author(s) 2025

Abstract Predictive process monitoring (PPM) aims to

forecast how a running process instance will unfold in the

future, e.g., which activity will be executed next. For this

purpose, PPM techniques rely on machine learning models

trained on historical event log data. Such models are

assumed to learn an implicit representation of the process

that accurately reflects the behavior contained in the data, so

that they can be used to make correct predictions for new

traces with unseen behavior. This capability, called gener-

alization, is fundamental to any machine learning applica-

tion. However, researchers currently have a limited

understanding of what generalization means in a PPM

context and how it relates to the characteristics of event logs.

In the paper, the authors discuss the generalization capa-

bilities of PPM approaches, focusing on next activity pre-

diction. They develop a framework for generalization in

PPM, derived from the understanding of the term in general

machine learning. The framework is applied to next activity

prediction by developing concrete prediction scenarios,

creating corresponding event logs, and using these logs to

empirically evaluate the generalization capabilities of state-

of-theart models. The evaluation shows that next activity

prediction models generalize well in almost all scenarios.

Keywords Process prediction � Predictive process

monitoring � Next activity prediction � Generalization �
Validity issues

1 Introduction and Motivation

Predictive process monitoring (PPM) is a branch of process

mining that aims to forecast how a running process

instance will unfold in the future (Di Francescomarino and

Ghidini 2022). This may concern what the outcome of the

process instance will be, how long it will take to complete,

or which activities will be executed next (Rehse et al.

2018). The first approaches to PPM relied on explicit

models of process behavior, such as transition systems (van

der Aalst et al. 2011) or probabilistic automata (Breuker

et al. 2016). However, the vast majority of recent research

treats PPM as a self-supervised machine learning prob-

lem (Neu et al. 2021; Rama-Maneiro et al. 2021;

Pasquadibisceglie et al. 2022; Pfeiffer et al. 2021) and

aims to solve it with deep neural networks (Evermann et al.

2017).

In contrast to many other process mining techniques,

PPM is forward-facing: It aims to identify process execu-

tion problems like delays or compliance violations before

they occur (Di Francescomarino and Ghidini 2022). Based

on these predictions, a process manager can preemptively

take actions to avoid and mitigate the problems, enabling a

real-time management of the business process (Evermann

et al. 2017). However, this capability hinges on the quality

of the predictions that the machine learning model makes.

If they are wrong, the manager might take unnecessary or

even harmful actions, which can impede a smooth execu-

tion of the business process instead of supporting it.

Accepted after one revision by the editors of the Special Issue.

P. Pfeiffer � P. Fettke
German Research Center for Artificial Intelligence (DFKI),

Campus D3 2, 66123 Saarbrücken, Germany

P. Pfeiffer (&) � P. Fettke
Saarland University, Campus D3 2, 66123 Saarbrücken,

Germany

e-mail: peter.pfeiffer@dfki.de

L. Abb � J.-R. Rehse
University of Mannheim, L 15, 68161 Mannheim, Germany

123

Bus Inf Syst Eng 67(3):357–383 (2025)

https://doi.org/10.1007/s12599-025-00936-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-025-00936-4&domain=pdf
https://doi.org/10.1007/s12599-025-00936-4

To make correct predictions about ongoing process

executions, the machine learning model creates an implicit

representation of the process, which is learned from the

data seen during training (Evermann et al. 2017). This

representation is meant to accurately cover the underlying

process (Pfeiffer 2022). In particular, it is expected to

precisely fit the data it was trained on while still being

flexible enough to make correct predictions for traces not

part of its training data. This capability of machine learning

models to handle unseen samples is known as generaliza-

tion. Considered a fundamental goal in machine learning

literature (Goodfellow et al. 2016; Bishop 2006), general-

ization is motivated by the observation that training con-

ditions often differ from the real-world application

conditions in which a model needs to perform effectively.

In PPM, several factors can cause discrepancies between

training and application settings. For example, because

event logs are typically assumed to be incomplete (Buijs

et al. 2014), the training data will not capture all possible

control flow variants. It is therefore crucial for prediction

models to generalize from the limited exampled in the

training data to the unseen variants in the application.

Furthermore, processes are executed in dynamic environ-

ments, so that both the process itself and environmental

factors (e.g., the involved resources) can change over time.

The models need to cope with these changes to perform

well in an application setting. These factors underscore the

importance of generalization: To make correct predictions

in an application setting, the machine learning model needs

to learn a good representation of the process instead of

merely a good representation of the training data. To

achieve this, researchers need a conceptual understanding

of what generalization means in a PPM context and how it

relates to the characteristics of the event logs used for this

task.

Despite its importance, however, the concept of gener-

alization has received minimal attention in existing PPM

literature. In this paper, we aim to address this by dis-

cussing the generalization capabilities of PPM approaches,

with a specific focus on next activity prediction. This

prediction task, which is the focus of most state-of-the-art

PPM approaches (Neu et al. 2021), intends to determine

the most likely next activity in an ongoing process exe-

cution. Next activity prediction is typically seen as a

classification task (Rama-Maneiro et al. 2021): Based on

historical execution data of the business process in ques-

tion, a machine learning model is trained to predict the

most likely next activity for a given trace prefix. Therefore,

the model is shown incomplete traces from historical data

so that it learns to predict the correct label among a set of

known activity classes (Abb et al. 2024).

In the following, we first show that our limited under-

standing of generalization in PPM has lead to validity

issues in previous experiments on next activity prediction.

To address these issues, we then derive a conceptual frame

for generalization in PPM, which is based on the under-

standing of the term in broader machine learning research

as well as the specific nature of event data. Applying this

frame to the concrete task of next activity prediction, we

develop concrete prediction scenarios in which models

would need to generalize. We create event logs for each

scenario and empirically evaluate state-of-the-art predic-

tion models to assess their generalization capabilities.

Finally, we validate our findings on more complex as well

as real-world event logs and discuss the transferability to

other PPM tasks.

This article is an extended and revised version of our

original conference publication (Abb et al. 2024). We have

significantly extended the alignment between generaliza-

tion in machine learning with generalization in process

prediction by conceptually discussing the aim and chal-

lenges of generalization in next activity prediction. The

generalization scenarios have been revised and expanded

with scenarios that combine multiple single-source sce-

narios. Further, experiments using simulated event logs

based on the generalization scenarios as well as on real-

world event logs have been performed to evaluate the

ability of state-of-the-art next activity prediction models to

generalize on unseen process behavior. Lastly, related

work and the validity issues have been revised and

extended.

The remainder of the paper is structured as follows: In

Sect. 2, we discuss relevant preliminaries, background, and

related work. In Sect. 3, we explain the generalization-re-

lated validity issues that exist in many experiments on next

activity prediction. Next, we discuss the concept of gen-

eralization, first in the general machine learning context

(Sect. 4) and then specifically for PPM (Sect. 5). Focusing

on next activity prediction, we then derive concrete gen-

eralization scenarios in event logs in Sect. 6 and perform

experiments to assess the generalization capabilities of

existing next activity prediction algorithms in Sect. 7. We

discuss the results in Sect. 8, before concluding the paper

in Sect. 9.

2 Foundations

In this section, we introduce the foundations for our work.

We describe the preliminaries in Sect. 2.1, discuss the

scientific background in Sect. 2.2, and review related work

in Sect. 2.3

123

358 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

2.1 Preliminaries

2.1.1 Log Data

The input to PPM is event log data, gathered from the

execution of business processes in information systems. An

event log L is a collection of cases, each representing a

complete process execution. A case is represented by a

trace c, i.e., a sequence of events he1; . . .; eni of length n.

An event e is a tuple of attribute values and has two

mandatory attributes: the activity and the case ID. In

addition, events can have additional attributes, such as a

timestamp or an executing resource, which provide further

details about them. We refer to these attributes as context

attributes. We write hA;B; . . .;Hi to indicate the trace with

events which possess the activity attribute values A, B to H.

In PPM, we are interested in predicting the future behavior

of running cases, which are represented by trace prefixes. A

trace prefix of a trace c of length p is defined as a subse-

quence he1; . . .; epi, with 1� p\n.

2.1.2 Next Activity Prediction

The goal of next activity prediction is to predict which

activity will be performed next in a running case. Formally,

this problem is framed as a multi-class classification task,

where each class represents one activity. For each trace c in

a given event log, pairs (x, y) of features x and labels y are

created. For a running case, x represents the prefix of c with

length p containing the features that are given to the model.

The activity at position pþ 1 of c, i.e., the next activity,

which should be predicted by the model, is represented by

the label y. These pairs (x, y) are provided to a machine

learning model so that it learns a probability distribution

q(y) over next activities.

To train and evaluate the prediction model, the event log

is split into two parts, the training split Ltrain and the test

split Ltest. The model is trained on the prefix-label pairs

from the training split Ltrain and evaluated on those from

the test split Ltest. For evaluation purposes, for each prefix

x, the associated prediction ŷ, i.e., the activity with the

highest probability in q(y), is compared with the ground

truth label y, which then informs the computation of

aggregated performance measures such as accuracy and F1

score.

2.2 Background

In this section, we provide the necessary background for

generalization in PPM. We first distinguish generalization

in a machine learning context from generalization in

process discovery. We then dive deeper into the topic of

PPM and how generalization is addressed there.

2.2.1 Generalization in Process Discovery

A fundamental task in process mining is process discovery,

which generates a process model from event log data (van

der Aalst 2022). These process models are often formal

conceptual models, such as Petri nets. Discovered models

are typically evaluated along four quality dimensions:

Fitness, precision, simplicity, and generalization (Buijs

et al. 2014). The idea behind this generalization is similar

to generalization in machine learning. It is defined as ‘‘the

likelihood that the process model is able to describe yet

unseen behavior of the observed system’’ (Buijs et al.

2014). Similar to machine learning, a process model gen-

erated with process discovery techniques should not overfit

the event log, but generalize from the recorded data (van

der Aalst 2016). However, unlike in machine learning,

there is no loss function involved in discovering a (sym-

bolic) conceptual model. The data is also not split into a

train and test set (Tax et al. 2018), which is why general-

ization is measured differently. Instead of test set perfor-

mance, the generalization of process models is evaluated

through properties of the discovered process model such as

the visiting frequency of model parts (Buijs et al. 2014) or

anti-alignments (van Dongen et al. 2016). When measured

in the machine learning way, discovered process models

have been found to generalize less well than their predic-

tive counterparts based on machine-learning (Tax et al.

2018).

2.2.2 Generalization in PPM

Since generalization is a fundamental part of machine

learning, it is discussed in many textbooks. We refer to

Goodfellow et al. (2016); Bishop (2006); Bishop and

Bishop (2024) and Murphy (2022) for a general overview.

More detailed discussions and specific definitions for

generalization, paying attention to challenges and require-

ments of different machine learning tasks, are given in

various task-specific papers, such as Zhou et al. (2023); Lu

et al. (2024) or Jiralerspong et al. (2024). In the following,

we focus on generalization in the domain of PPM.

Generalization in early PPM approaches In contrast to

traditional process discovery, PPM does not rely on sym-

bolic models. Rather, a machine learning model is trained

to predict characteristics of process instances, thereby

learning an implicit process representation (Evermann

et al. 2017; Pfeiffer 2022). Ruta and Majeed (2011) were

among the first to present a generic framework for PPM

that includes the questions of ‘‘what will happen next’’ as

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 359

well as ‘‘how and when’’ a process instance will end. Since

then, researchers have defined a set of PPM tasks (Di

Francescomarino and Ghidini 2022), which mainly differ

in terms of their prediction target: Some approaches predict

the remaining time until the completion of the process

instance (van der Aalst et al. 2011). Others predict the

outcome of a process instance (Kratsch et al. 2021) or

whether the process instance will deviate from the pre-

scribed behavior (Grohs et al. 2025). The majority of work

focuses on the prediction of the next activity (Neu et al.

2021), which is also the focus of this paper.

Shortly after the initial work of Ruta and Majeed (2011),

Le et al. (2012) presented an approach specifically focused

on next activity prediction. They extended the approach

presented in (Ruta and Majeed 2011), building upon

Markov models, but combining them with alignment

techniques to handle unseen prefixes that have no occur-

rence in the transition matrix of the Markov model. This

avoids predicting the default value for unseen prefixes,

which is usually less accurate. Interestingly, the authors of

this early PPM approach already acknowledged the need

for generalization capabilities, as in real-life applications

‘‘the number of unique workflows (process prototypes) can

be enormous, their occurrences can be limited, and a real

process may deviate from the designed process when

executed in real environment and under realistic con-

straints’’ (Le et al. 2012). They concluded that an efficient

prediction would need to be able to cope with ‘‘the diverse

characteristics of the data’’ (Le et al. 2012). Note that this

reflects the motivation of generalization in machine

learning (see Sect. 4).

Generalization in deep learning PPM approaches Inspired

by the success of deep learning models for language

modeling, Evermann et al. (2017) used a Long Short-Term

Memory (LSTM) model (Hochreiter and Schmidhuber

1997) for next activity predictions. By design, neural net-

works always produce a prediction regardless of whether a

prefix has been seen before, avoiding the problem of

symbolic techniques, which predict a default value for

unseen samples. Hence, they generalize better to unseen

data and are more accurate. The LSTM model by Ever-

mann et al. (2017) included regularization in the form of

dropout. Further, it was validated using a 10-fold cross-

validation procedure to measure whether the model gen-

eralizes to the test set and to prevent overfitting. The results

showed that their LSTM model performed better or com-

parable to the state-of-the-art results of probabilistic

automatons for the same task (Breuker et al. 2016). Fol-

lowing work improved the performance of neural-network-

based prediction models, e.g., through the use of additional

context attributes and specialized network architectures

(Tax et al. 2017; Pfeiffer et al. 2021; Pasquadibisceglie

et al. 2024) or training procedures (Taymouri et al. 2020).

An overview of the field is given by Rama-Maneiro et al.

(2021) and Neu et al. (2021).

In order to improve generalization in PPM, researchers

have employed different techniques that have shown to

improve generalization in other domains, e.g., multi-task

learning, adversarial training, or transfer learning. As

events in traces include additional attributes besides the

activity, many approaches perform multi-task learning by

predicting multiple attribute values of the next event at

once (Evermann et al. 2017; Tax et al. 2017; Pfeiffer et al.

2021; Nolle et al. 2018). Since such models also use other

attributes in the input, they are tasked with a much larger

variability during training, which should improve their

generalization capabilities. Prediction models have also

been trained with augmented data or adversarial samples,

relying on model-agnostic trace augmentations (Käppel

et al. 2023), trying Generative Adversarial Networks

(GANs) (Taymouri et al. 2020) or training with adversarial

samples (Pasquadibisceglie et al. 2024; Stevens et al.

2023). Others try to improve generalization by adapting the

loss function to balance the performance of the predictive

model across multiple environments instead of performing

best in only one (Venkateswaran et al. 2021). Transfer

Learning from one event log to another has shown to be

beneficial when training next activity prediction models

(Jiralerspong et al. 2024). Further, knowledge gained from

the event log of one organization can be transferred to the

same process in another organization (Liessmann et al.

2024), indicating that such models may be able to gener-

alize beyond the distribution in one event log. Besides that,

others have developed train-test-split strategies that ensure

no data leakage between the train and test set caused by

traces with temporal overlap (Weytjens and Jochen De

Weerdt 2021) or event log sampling approaches that pre-

serve the performance of predictive approaches but allow

for more efficient training on a subset of traces (Fani Sani

et al. 2023).

2.3 Related Work

In addition to the concrete measures for a higher general-

ization, some existing works already provide definitions

and exemplary assessments of generalization in PPM,

particularly in next-activity prediction. This work is

reviewed in the following.

Tax et al. (2018, 2020) first concretely addressed the

question of generalization in PPM. They compared process

discovery approaches to sequence modeling techniques in

terms of how well they generalize for next activity pre-

diction. Sequence modeling techniques generate a proba-

bility distribution of all activities, which discovery

approaches cannot do. To avoid that non-fitting traces

123

360 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

result in zero probability for the next activity, they devel-

oped a procedure to generate a probability distribution over

next activities by aligning the prefix to the discovered

model and sampling from the reachable transitions. With

this, they were able to compare discovery methods to other

sequence modeling techniques using a loss function. They

found that the machine learning approaches are much more

accurate than the discovery approaches, at the cost of not

being communicable and traceable by humans. As neural

approaches reach a lower test error than their discovery

counterparts, the authors conclude that they also generalize

better.

In comparing the generalization of discovery techniques

to neural approaches, Tax et al. (2020) did not consider

unseen prefixes specifically. Using standard splitting

strategies results in a majority of prefixes in the test set

being duplicates of the training set (see Sect. 3). Further, a

prefix that cannot be replayed by a discovered model does

not necessarily need to be a prefix that has not been seen. If

a discovered model does not reach perfect fitness, it is not

able to describe all the behavior it has seen in the event log.

Thus, it can also happen that seen samples cannot be

handled by a discovered process model, a fact that influ-

ences the interpretation of the performance in handling

unseen behavior. In the following, we discuss the few

papers that have investigated generalization with respect to

unseen prefixes.

Gerlach et al. (2022) split the log by variants into train

and test sets so that not all variants are part of the training

set and others are only present in the test set. They trained

this model to predict the activity and other context attri-

butes in the next event. After training they used this model

to build a likelihood graph to capture and visualize its

behavior, by iteratively predicting next steps. They found

that their approach can generate unseen variants, mani-

fested in the likelihood graph, which are also valid with

respect to the underlying process. They conclude that the

next activity prediction model can generalize beyond the

event log it was trained on.

Peeperkorn et al. (2022) followed a similar method.

They aimed to research whether models trained to predict

the next activity in a trace learn the structure of a process

model, even if they have not seen all variants during

training. For this, they trained the prediction models in the

leave-one/some-variants-out fashion and let them generate

traces again. In their experimental setting, they used pro-

cess models of varying size and complexity, obtained a set

of traces through simulation, and split the traces such that

some process variant(s) were only present in the test split.

To measure generalization, they expected that the trained

prediction models could generalize the missing vari-

ants(s) from the event log, avoid creating variants that are

not part of the original log, but generate all variants present

in the training log. They found that regularization is

required to ensure that the model does not overfit the

training log, i.e., that it does not only generate variants it

has seen before but also new ones, even for relatively

simple models.

In a follow-up work, Peeperkorn et al. (2024) proposed

validation set sampling approaches to enhance the gener-

alization capabilities of prediction models in the same

setting as their previous work. They found that the sam-

pling techniques can have a strong positive impact on the

generalization capabilities but that process structures such

as concurrency and long-term dependencies pose chal-

lenges for predictive approaches as they do not generate all

expected variants. As for other approaches, the complete-

ness of the log with respect to the behavior of the model is

a limitation.

While Gerlach et al. (2022) concluded that their model

does generalize, Peeperkorn et al. (2022, 2024) conclude

that process prediction models do not generalize as they do

not generate all (unseen) variants of the original process

model. We suspect these differences to come from different

settings and techniques being used as well as different

expectations being placed on the abilities of the models.

For instance, Gerlach et al. (2022) use context attributes as

input for their predictive model while Peeperkorn et al.

(2022, 2024) use the activity only. Furthermore, the pro-

cedure to generate traces from a model that predicts only

one next step at a time, (i.e., how to sample from the

predicted probability distribution) and the metrics to

evaluate the generalization capabilities differ. We will

discuss the differences in their definition of generalization

to our definition of generalization in Sect. 5.

3 Validity Issues in Next Activity Prediction

In this section, we examine two phenomena that pose

threats to the validity of next activity prediction experi-

ments, particularly for their assumed generalization capa-

bilities. The first phenomenon, described in Sect. 3.1, is

example leakage, i.e., the presence of the same prefixes in

both the train and the test split. The second phenomenon,

described in Sect. 3.2, is the accuracy limit, i.e., the

observation that the maximally reachable accuracy of a

next activity prediction can be less than 100%. Along a

typical evaluation setup for next activity prediction, we

propose two new metrics to quantify these phenomena. By

relating the performance of state-of-the-art next activity

prediction models to these metrics, we can identify

potential threats to validity. In Sect. 3.3, we discuss our

findings with regard to their impact on the generalization

capabilities of next activity prediction models.

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 361

In the following, we present empirical evidence gener-

ated in a setting that is representative of the typical eval-

uation setup used in the field. We employ five commonly

used event logs (Helpdesk,1 BPIC122 (complete log),

BPIC13 Incidents,3 BPIC17,4 MobIS5) and two common

splitting strategies:

1. 5 random splits: We split the traces in the event log

randomly such that 80% of them are part of the

training set and 20% are part of the test set

2. Temporal split: The split is time-based so that the 20%

of traces with the most recent start timestamps end up

in the test set.

For all traces in each of the 6 splits, we generate all prefix-

label pairs (x, y) with prefix lengths p 2 ½1; n� 1�, which
constitute our training and test samples. We do not apply

log preprocessing or make any other changes to the data.

The code and data needed to reproduce the validity issue

experiments are available online.6

3.1 Example Leakage

In machine learning, leakage refers to exposing a model to

information during training that it should not legitimately

have access to (Kaufman et al. 2012). This can lead to an

unrealistic assessment of the model’s performance with

respect to the trained prediction task. One particular type of

leakage is example leakage, which occurs when the same

example (more specifically, the same feature vector) is

present in both the training and the test set. In this case, the

prediction is trivial, as the model is not required to learn a

general relationship between features and labels for the

prediction to be correct. Due to the repetitive nature of the

process executions, which naturally leads to a high portion

of duplicate traces, example leakage can be a considerable

problem when making predictions on event logs. By

building prefixes of traces, the portion of duplicates can

increase even further.

In next activity prediction, we denote example leakage

as the portion of prefixes in the test split where the test

prefix is a duplicate of a prefix in the training split. To

quantify this example leakage, we first need to establish

when two prefixes are duplicates. When considering the

context attributes of events, such as the timestamp, almost

every prefix will be unique. However, many prediction

approaches do not use the timestamp itself, encode it, e.g.,

as the weekday or the duration between events. Further,

many approaches are restricted to certain types of attributes

(Pfeiffer et al. 2021). As the control flow is the most

decisive feature for predicting the next activity (the target

label is largely subject to the sequence of previous events),

and many prediction models use the control flow only, we

(for now) determine equality of prefixes based on control

flow: Two prefixes are considered duplicates if they exhibit

the same sequence of activities. In the following, we use

this equality criterion to approximate example leakage.

We can now quantify example leakage on the common

event logs and splitting strategies. Let Xtrain be the multiset

of prefixes with control flow only of the training set Ltrain
and Xtest be the respective multiset of control flow only test

prefixes. The portion of leaked examples is calculated as:

Example Leakage ¼ jXtrain \ Xtestj
jXtestj

where Xtrain \ Xtest contains those prefixes that are found in

both the training and the test split.

Figure 1 shows the amount of example leakage in the

event logs commonly used for the evaluation of next

activity prediction. We observe that, across all datasets and

splits, example leakage is close to or above 80%, with

almost 100% in the Helpdesk and MobIS event logs. This

means that most of the predictions made on the test split

should be trivial ones, such that from this evaluation set-

ting, we cannot draw valid conclusions about how well a

prediction model would perform on unseen data.

Observation 1

The portion of duplicates between training and test splits

is dangerously high.

3.2 Baseline and Accuracy Limit

Another issue relates to the way of reporting and com-

paring predictive performance in next activity prediction.

Commonly, the top-1 accuracy, or simply accuracy, is used

for this purpose, evident through its widespread use in

papers on next activity prediction (e.g., Le et al. 2012; Ruta

and Majeed 2011; Breuker et al. 2016; Evermann et al.

2017; Neu et al. 2021; Pfeiffer et al. 2021; Pasquadibis-

ceglie et al. 2022; Weinzierl et al. 2024). The accuracy is

computed as the portion of samples (x, y) that were cor-

rectly classified, i.e., the number of samples in which the

model assigns the highest probability to the class with the

label equal to the ground truth label ŷ ¼ y. A predictor is

considered accurate if it achieves high accuracy values

when predicting the next activity for the given prefixes.

Without further knowledge of the data, we would also

expect that a predictor that has accurately learned the target

label distribution reaches high accuracy values. If a

1 10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
2 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
3 10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee.
4 10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
5 Baier et al. (2020).
6 https://github.com/ppfeiff/BISEGenPPM.

123

362 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

https://github.com/ppfeiff/BISEGenPPM

predictor instead achieves a mediocre accuracy value, e.g.,

below 80%, we would conclude that it did not perform well

and there is room for improvement.

However, certain characteristics of the data and the task,

e.g., incomplete information in the input features or the fact

that the system is intrinsically stochastic, can make it

impossible to achieve a high accuracy, even with an opti-

mal prediction model (Goodfellow et al. 2016, p.442).

Goodfellow et al. (2016) refer to this as Bayes error,

defined as the minimum error rate one can hope to achieve

in a perfect setting by making predictions according to the

true probability distribution. For prefixes of running pro-

cess instances, previous work has found that a large share

of samples has multiple valid continuation options and

often no attribute that determines which activity follows

(Pfeiffer et al. 2023). Therefore, next activity prediction is

likely also subject to the Bayes error.

We illustrate this phenomenon with an experiment,

which shows that the maximally reachable accuracy in next

activity prediction is often much lower than 100%, even if

using an oracle that has access to the target probability

distribution. Usually, if the target distribution in the test

split is known to a machine learning model, it should be

capable of reaching almost perfect accuracy by always

predicting the class with the highest probability according

to the test split. We calculate the accuracy limit for next

activity prediction as the maximum accuracy one can hope

to achieve when employing such an oracle model. This

theoretical value is compared to the actual accuracy that a

naive, frequency-based baseline and a context-aware neural

network reach, when being trained on the training split and

without access to the test split.

Again, we consider the control flow only, meaning that

the accuracy limit is an approximation to its true value

based on Xtrain and Xtest. It is realized through a perfect

prediction model with access to the test split Xtest. For each

prefix x of the samples (x, y) in the test split, we predict the

activity label ŷ that we most commonly observe for this

prefix in the test split Xtest. If this label equals the ground

truth label y found in the sample, we say this is a correct

prediction. Averaged over all samples in Xtest, we report the

model’s accuracy as the accuracy limit. Clearly, such a

prediction model is considered illegitimate in machine

learning research (as it can optimize on the target distri-

bution) and is used exclusively for demonstrating the issues

with accuracy in next activity prediction.

For the naive baseline, we train a tri-gram prediction

model on the prefixes in the train split and report its

accuracy on the test split. Again, we use the control flow

only, i.e., the tri-gram model estimates the probability for

the next activity using the previous two activities. We use

Kneser-Ney smoothing (Kneser and Ney 1995) for unseen

prefixes, i.e., the probability for unseen prefixes is

approximated using a bi-gram model that considers the last

activity. We also report the accuracy of a state-of-the-art

prediction model namely the Multi-Perspective Process

Network (MPPN) (Pfeiffer et al. 2021). This neural-net-

work-based model is more flexible than the baseline model

as it can process any combination of event attributes in the

event log and prefixes of length up to 64 events. It has

shown to perform very well on different PPM tasks

(Pfeiffer et al. 2021; Grohs et al. 2025) and thus represents

potential performance gains that can be reached by com-

plex prediction models that are context-aware compared to

the naive baseline. We train it on the training split and

report the accuracy on the test split.

When comparing the two models to the accuracy limit,

we would expect that the accuracy limit is at least as high

as the share of leaked examples. Further, we expect the

prediction models to reach accuracies at least as high as the

Fig. 1 Example leakage, accuracy limit, and the accuracy of the naive baseline and the MPPN on the test split for the 5 random splits (1-5) and

the temporal split (T) on the real-life logs

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 363

prefix leakage, with the MPPN performing better than the

naive baseline, given that a lot of research has focused on

improving the performance of PPM models over the last

years. However, as the results in Fig. 1 show, those

expectations are not met. In contrast, the results reveal

some unexpected insights: First, and most importantly, the

accuracy limit, which in theory should be close to 100%, is

much lower in practice. Further, the naive baseline reaches

almost the same accuracy as the state-of-the-art MPPN

model on many logs with all models reaching lower

accuracies than the example leakage except for BPIC 17.

Even though the example leakage for the Helpdesk log is

almost 100%, the maximum achievable accuracy is below

80%. In general, the accuracy limit seems not to be related

to the example leakage as the values are very different and

sometimes even lower than the share of leaked examples,

questioning the meaningfulness of this metric for next

activity prediction.

Observation 2 The maximum accuracy one can hope to

achieve in next activity prediction is much lower than

assumed and seems not to be related to the portion of

leaked examples.

3.3 Implications

The results show that the widely used evaluation procedure

for next activity prediction models is problematic due to

the high amount of example leakage in combination with a

lower than expected accuracy limit and the questionable

meaningfulness of accuracy. Both observations are known

evaluation failures in machine learning research (Liao

et al. 2021). A high amount of example leakage, which

Liao et al. (2021) call ‘‘contaminated data’’, leads to an

overestimation of the model’s performance and hence

poses a threat to its reliability. In contrast, using metrics

like accuracy, which do not meaningfully report the per-

formance of a model on a learning task, may underestimate

the model’s actual performance (Liao et al. 2021). The

observation that there is an accuracy limit has so far not

been considered in next activity prediction evaluation but

influences the interpretation of the models’ actual

performance.

Given that this evaluation setting has been widely

employed in existing publications on next activity predic-

tion, our findings question the reliability of the advance-

ments made in the field. As a research community, we now

have a large number of proposed next activity prediction

techniques that employ several different neural network

architectures, inductive biases, and strategies to incorporate

different types of features. However, these techniques have

only ever been evaluated in a problematic setting.

In conclusion, we do not know how such models per-

form on unseen data since most samples used to evaluate

their performance are duplicated from the training split and

the metric to quantify the performance does not report it

meaningfully. Therefore, we cannot say to what extent

these approaches would be able to generalize well enough

to make good predictions on unseen data – and conse-

quently, if they would be able to provide value in a real-

world application.

4 Generalization in Machine Learning

In this section, we reflect on the role of generalization in

general machine learning: its aim and challenges and its

different types. Based on this, we develop a framework for

generalization in PPM in Sect. 5.

4.1 Aim and Challenges of Generalization

Generalization describes the ability of a machine learning

model to perform well on unseen samples (see e.g.,

Goodfellow et al. 2016; Bishop 2006). A machine learning

algorithm is said to perform well if it is able to generalize

beyond the data it was trained on (Bishop and Bishop

2024). Achieving generalization is one of the most difficult

parts of machine learning, due to the following character-

istics of a machine learning task:

MC1: The training data contains only a small fraction of

the feature variability found in practical applica-

tion (Bishop 2006, p.2).

MC2: The empirical distribution in the training data is

different from the distribution found in application

(Murphy 2022, p.121).

MC3: The machine learning model usually has enough

capacity to perfectly fit the training data which

would, without any countermeasures, not allow it

to have enough capacity left for unseen data

(Goodfellow et al. 2016, p.112).

For most tasks, we could build a machine learning model

that almost perfectly fits the training data (MC3). However,

as this data is incomplete with respect to the variability of

the application data (MC1) and the empirical distribution

of the data might be different in application (MC2), such a

model would very likely perform poorly when tasked with

samples that differ from the data it was trained on. Thus,

the task and data have to be studied in order to apply

techniques that ensure that the model also works for unseen

data. One has to ‘‘understand what kinds of distribution are

relevant to the real world that an AI agent experiences’’

(Goodfellow et al. 2016, p. 118) and what kinds of algo-

rithms perform well on such distributions.

123

364 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

There are two factors that determine how well a

machine-learning model works: (1) its ability to perform

well on the training data and (2) its ability to minimize the

gap between the training and the test error, commonly

referred to as generalization error (Goodfellow et al. 2016).

If the model performs badly on the training data, corre-

sponding to (1), it is underfitting. If the model fits the

training data but cannot reduce the gap between the

training and the test error, corresponding to (2), it is

overfitting. When training a machine learning model, there

is a trade-off to make between its bias and its variance

(Goodfellow et al. 2016, p.129) which is associated with

overfitting and underfitting. The bias describes the ability

of a model to capture the relevant relations between input

features and the output. We want the model to have a low

bias to avoid underfitting. At the same time, its variance,

i.e., how much the predictions vary when the input changes

slightly, should be low. As the model capacity becomes

larger, the bias decreases while the variance increases,

leading to a higher generalization error. The point at which

the generalization error is the lowest is also the point where

the best trade-off between bias and variance of a model is

made.

Depending on the machine learning task, different

requirements and challenges arise for generalization. For

object detection, we expect the model to perform well

when the appearance of objects changes. Further, we might

also want to classify objects in different types of images,

e.g., in sketches instead of photos (Zhou et al. 2023), or to

classify new objects given only a few examples. In con-

trast, for time series prediction, we want the model to

generalize to future data (Lu et al. 2024), where the change

of distributions through time (non-stationarity) presents

challenges. In the following, we discuss two points that are

relevant for generalization on all types of machine learning

tasks.

Train-Test-Splitting Splitting the available data into train

and test sets allows researchers to estimate how the model

will perform on unseen data. To ensure that the test error is

reliable, the samples in the test set should not have been

seen during training (MC1 and MC2). In leave-one-out

cross-validation or k-fold cross-validation, one ‘‘variant’’

or fold at a time is used for testing and the remaining splits

are used for training. Repeating this procedure k times,

each time using a different part of the data for testing, a

precise picture of the generalization capability can be

obtained. The model with the best generalization capabil-

ities is chosen as the best model. When splitting the data,

one has to ensure that no information about the test set is

leaked into the training set (Kaufman et al. 2012; Liao

et al. 2021), e.g., the training data should not contain

information about the target labels.

Regularization The ability of a machine learning model to

perfectly fit the training data (MC3) can lead to overfitting,

which means that the model is unable to make correct

predictions for unseen samples. One technique to avoid this

overfitting is regularization, i.e., modifications that reduce

the generalization but not the training error (Murphy 2022;

Goodfellow et al. 2016). For example, we can add artificial

noise during training to increase feature variability (tar-

geting MC1), mimic other changes (targeting MC2), or

stop the training procedure at an early point (targeting

MC3). Other regularization types aim to modify the

weights of the machine learning models through the loss

function or train on multiple tasks at once (Goodfellow

et al. 2016).

4.2 Types of Generalization

Many machine learning algorithms assume that the distri-

bution of samples in the test set is the same as in the

training set and samples are independent. Together, these

are commonly referred to as the independent and identi-

cally distributed assumption (Goodfellow et al. 2016).

Generalization under this assumption is also called In-

Domain or IID generalization and can be tackled with

regularization techniques. In practice, however, this

assumption is often violated. This has motivated the

development of deep learning models, which can deal

better with high-dimensional inputs and higher variability

(Goodfellow et al. 2016) and to generalization techniques

that enhance model capabilities in such situations.

In contrast to IID generalization, so-called OOD gen-

eralization aims to make a model perform well for samples

of unseen domains (Zhou et al. 2023). Such samples are

out-of-distribution, i.e., they differ from the samples used

for training, which is why this form is also called Out-of-

Domain generalization. This form of generalization

requires more advanced generalization techniques as In-

Domain generalization. For instance, we would like an

image classifier that was trained to detect objects in photos

to also detect the same set of objects in sketches. Different

methodologies have been developed to enable domain

generalization such as data augmentation, meta-learning, or

transfer-learning. For an overview, we refer to Zhou et al.

(2023).

5 Generalization in Predictive Process Monitoring

Based on the previous Sect. 4, we dedicate this section to

discussing generalization for PPM tasks. Although we

focus on next activity prediction, many points also apply to

other PPM tasks that use prefixes to represent running

process instances as input.

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 365

5.1 Aim and Challenges of Generalization

in Predictive Process Monitoring

The aim of generalization in PPM is to make the models

flexible when confronted with running process instances

that have not been seen so far, which are likely to occur in

application (Le et al. 2012; Peeperkorn et al. 2022). As a

machine learning task, characteristics MC1 - MC3 also

apply to PPM:

PC1: The traces trained on contain only a small fraction

of the process behavior

PC2: The empirical distribution of process variants

trained on can be different from the distribution

found in application

PC3: PPM models have enough capacity to perfectly fit

the data trained on, which would, without any

countermeasures, not allow it to make correct

predictions for unseen prefixes

To cope with these characteristics, the model has to gen-

eralize to unseen process behavior and accurately predict

how process instances will continue. However, existing

work, reviewed in Sect. 2.3, defines generalization differ-

ently as normally done in machine learning: They consider

generalization as the ability to generate unseen, valid

process variants from seen prefixes, such that the variants

represent the whole behavior of the original process model.

A prediction model with these abilities would be very

powerful and arguably highly valuable for a range of

process mining tasks. However, generating valid and

unseen traces is not the same as making valid predictions

for unseen process instances. The latter requires to make a

valid prediction for an unseen input, whereas the former

requires generating something unseen from a seen input,

which is much more challenging to achieve. It aims more

towards the general question of whether prediction models

‘‘learn’’ and generate process model structure rather than

making correct predictions for unseen samples, similar to

generative language models generalization (Jiralerspong

et al. 2024).

In contrast, the view on generalization in PPM, specifi-

cally for next activity prediction, that we introduce follows

from the standard notion and the challenges MC1 - MC3 of

generalization inmachine learning. Specifically, we focus on

the capability of PPMmodels to deal with unseen prefixes, as

existing evaluation procedures evaluate mostly on seen

prefixes. We argue that dealing with unseen prefixes is an

important ability of PPM models and a prerequisite for

researching more complex types of generalization. There-

fore, we define generalization as follows.

Next activity prediction generalization: Predict the cor-

rect continuation options for unseen prefixes

A PPM model generalizes well if it (1) performs well on

the training split and (2) minimizes the gap between the

training and test error, called generalization error. Both

factors follow from the definition of generalization in

machine learning as introduced in Sect. 4. For the task of

next activity prediction, this translates to model that

accurately predicts how processes continue and does this

equally well on the training split as well as on the unseen

samples in the test split. In this case, we say that the model

generalizes. If it does not perform well on the training split

or on both splits, it does not generalize.

To make accurate predictions for unseen prefixes, PPM

models need to learn process behavior beyond the behavior

contained in the event log. It is not sufficient to accurately

learn the prefixes and repeat the behavior found in the

training data. Rather, generalization for PPM requires

extrapolating from seen process behavior. This means that

the prediction model must learn generally valid patterns –

for example, how activities typically can follow one

another – rather than specific rules from the training data.

In the following, we discuss these characteristics as well as

additional challenges for generalization in PPM, which

have to be considered when evaluating generalization.

They are summarized in Fig. 2.

5.1.1 Incompleteness and Variability

The event log, as a collection of traces, is usually incom-

plete with regard to the process behavior (Buijs et al.

2014), referring to PC1. The training split Ltrain, as a subset

of the event log, hence represents an even smaller fraction

of the total process behavior. To still train well on this data,

the prediction model has to deduce higher-level process

behavior. The incompleteness of the event log data is in

general likely lower than the incompleteness of data in

other machine learning tasks. For example, it is unlikely

that two images used as input for object detection are

identical in RGB values. There is a very large variability in

images leading to a high incompleteness when training an

object detection model on real images. In contrast, there

are often multiple process trace prefixes with the same

control flow and attributes. Even a new, unseen process

variant can contain many prefixes that were seen before or

differ in one activity or attribute only, increasing the share

of samples that are identical in Ltrain and Ltest. Therefore,

the number of duplicates is naturally very high, which

explains the high example leakage discussed in Sect. 3.

These characteristics have to be considered for splitting the

data in anticipation of testing on unseen samples.

Considering context attributes in addition to the control

flow increases the variability found in event log data

(Evermann et al. 2017). The chance that two samples are

identical is much lower if the prediction model can

123

366 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

consider categorical attributes, e.g., resources. If it also

considers numerical attributes, e.g., prices, or temporal

ones, e.g., timestamps, each sample is almost certainly

unique. Thus, the more context attributes are considered,

the higher the variability of the data and its incompleteness.

The prediction model must be capable of dealing with this

higher variability and potentially incomplete attribute val-

ues (combinations) if using context attributes. While con-

text attributes offer additional information for predictions,

considering more context attributes significantly increases

the number of unseen combinations that can occur in pre-

fixes, making generalization also more challenging.

5.1.2 Distributions

The distribution of control flow variants in the event log is

typically skewed towards a Pareto distribution: Around

80% of traces follow the same few process variants,

whereas the other 20% follow a large number of different

variants (van der Aalst 2020). The Pareto distribution is

also found in the prefixes (with significantly more different

variants), but usually not in the target labels, e.g., the next

activities in next activity prediction. We can assume this

distribution to also be present in application. However, the

most frequent variants are not necessarily the same ones as

in the training data since processes are typically not

assumed to be stationary (Back et al. 2019). The distribu-

tion of variants can change and new process instances with

new process variants, containing new behavior, are likely

to emerge over time (Le et al. 2012; Peeperkorn et al.

2024). This changes the distribution of prefixes (PC2) in

application. Tailoring the prediction model for certain

variants is thus problematic as we cannot foresee, in gen-

eral, which variants will be most frequent ones in the later

application.

5.1.3 Train-Test-Splitting

To measure the generalization error, we need to split the

data in such a way that the test split Ltest reflects the con-

ditions to be expected in the application. This includes that

the training samples do not leak information about the test

conditions. The characteristics discussed in the previous

paragraphs make it challenging to split the event log

realistically. As shown in Sect. 3, splitting the data ran-

domly or by time causes a high example leakage, such that

the test error might not reflect the error to be expected in

application. Previous work has suggested splitting the tra-

ces by variants such that certain variants will only be

present in the test split (Peeperkorn et al. 2024). Although

this ensures that at least a share of samples in the test split

will be unseen, it does not prevent the occurrence of

duplicates for next activity prediction, as two different

traces can share many identical prefixes.

Following characteristic PC2, we can be certain that

new process variants will occur. However, we do not know

which variants will occur and with what frequency. Thus,

we argue that splitting by time is the most realistic setting

as it naturally maintains such distribution changes in time.

For this, all traces before a certain point in time t are part of

the training split Ltrain and all other traces are put in the test

split Ltest. Afterwards, to keep the example leakage at a

reasonably low level, duplicates between the training and

test splits, which are created when building prefixes (or

windows) from the samples, have to be removed. By doing

so, the test split Ltest will consist of samples where the

prefix x has not been seen and qualifies for measuring a

meaningful generalization error.

Fig. 2 Overview of

generalization in process

prediction

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 367

5.1.4 Regularization

When training a PPM model, regularization is required to

prevent the model from overfitting the training split Ltrain
PC3. The capacity of a neural-network-based prediction

model can quickly surpass the variability found in the

training data and the number of distinct samples available

for training (Goodfellow et al. 2016). If training a predic-

tion on the control flow only, the low variability in the

event log can be challenging for the generalization of the

model as its capacity is higher than the complexity in the

data. Previous work has already pointed out that strong

regularization for next activity prediction is required as the

models tend to overfit otherwise (Peeperkorn et al. 2024).

When designing a PPM model, one should therefore bal-

ance the capacity of the model with the number of distinct

training examples and the complexity of the process, e.g.,

in terms of variants. Increasing the variability by using

additional attributes can also help to better align the

capacity of the model with the variability of the data.

Additionally, regularization techniques such as dropout, L1

and L2 regularization, and early stopping are easy to

implement and can prevent overfitting effectively.

5.1.5 Evaluation Metrics

Meaningful metrics are important for obtaining validity in

the conducted evaluations (Liao et al. 2021). As seen

through the analysis in Sect. 3, there are several issues with

the use of the accuracy and its interpretation in the next

activity prediction task, which affects the model’s perfor-

mance perception. When using a next activity prediction

model in application, we are interested in the share of

samples where the prediction of the model matches the

ground truth. While accuracy reports this share, it focuses

exclusively on the prediction with the highest probability

and assesses it in an all-or-nothing manner. Thereby, it

does not fit the variability of how processes can continue.

For a reliable generalization assessment, we need a metric

that accurately quantifies how close the predictions of the

PPM model on unseen prefixes are to the behavior of the

process in the data, valuing that there is not always a single

valid next activity. Instead of relying on accuracy, we

suggest a probabilistic interpretation that can deal with the

variability and considers all continuation options the model

has learned q(y) rather than the single most likely

prediction.

We motivate the probabilistic assessment on a simple

example. Consider a situation where, e.g., due to parallel

execution (as shown in Fig. 4), a prefix x has two valid next

activities D and E. As processes are not stationary, there

may also be a change in the distribution of the very next

activities D and E between training and application as

exemplified in Table 1. Note that still both activities are

executed and only the distribution in their order has

changed. We can assume that a machine-learning-based

prediction model learns that both activities can happen,

which it expresses by giving both activities a high proba-

bility, e.g., qðDÞ ¼ 47% and qðEÞ ¼ 51%, based on the

frequency found in the training data. If evaluating with

accuracy, we only use the most probable prediction of the

model which always is E. To compute the accuracy, it is

compared to the ground truth. If the samples (x, y) in the

test split would follow the same probability as the samples

in the training split, only around 52% of all predictions will

be evaluated correctly. The remaining samples, containing

D as ground truth will be evaluated as wrong predictions.

From the accuracy value, one would conclude that the

model performs badly. This ignores that the probability

distribution learned by the model accurately reflects how

the process behaves. Further, a higher accuracy is impos-

sible to achieve.

In case the distribution in the application setting changes

such that E is executed half as often as during training, the

model would reach a significantly lower accuracy with a

drop from around 52% to 35%, although its learned prob-

ability distribution has not changed. In both scenarios, the

performance of the model would be rated much worse than

it actually is. When assessing the generalization capabili-

ties of the model, we would conclude that it cannot gen-

eralize. However, the model makes accurate predictions in

both scenarios which can be shown if measuring in a

probabilistic way on q(y).

For this, we opted for using cross-entropy as the error

measure, as commonly done in other classification and next

element prediction problems (Jurafsky and Martin 2025).

In particular, this idea is based on cross-entropy estimation

for the next word prediction task in language modeling

(Jurafsky and Martin 2025, p. 210), which has motivated

deep-learning-based next activity prediction. The cross-

entropy formulation for a single sample in context of next

word prediction is

Table 1 A example with parallel activities D and E to clarify the

conceptual issues with accuracy

Train Setting Application

Target activity y D E D E

Number of examples x 450 500 450 250

Learned prob. distr. q(y) 0.47 0.51 0.47 0.51

Cross-entropy (CE) 0.309 0.315

Accuracy 52.63% 35.71%

123

368 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

CEbasic ¼ �
X

w2V
pðwÞ � logðqðwÞÞ; ð1Þ

where w 2 V are the possible classes, p(w) is the observed

ground truth probability distribution, and q(w) is the pre-

dicted probability distribution returned by the model. Note

that, for next activity prediction, the real probability dis-

tribution of next activities p(y) in the process that generated

the event log is unknown to us. We can therefore, as in next

word prediction, only estimate it based on q(y).

Since next activity prediction is a multi-class and single-

label classification task and p(y) thus always a one-hot

vector, this calculation for a predicted sample (x, y) can be

simplified to taking the logarithm of the probability that the

model predicts for the true class (Jurafsky and Martin

2025, p.210). For an event log split Lsplit (train or test split)

with N samples, where i indexes each sample, the cross-

entropy of a next activity prediction model that estimates

the probability qðyiÞ for the true next activity yi given the

prefix x is therefore calculated as

CEðLsplitÞ ¼ �
XN

i¼1

logðqðyiÞÞ: ð2Þ

With cross-entropy, the prediction error is thus calculated

as the logarithm of the probability that the model assigns to

the ground truth activity, whereas with accuracy, we would

only determine whether this probability is higher than those

assigned to the other activities. When aggregated over all

predictions in the event log split, cross-entropy gives a

more realistic interpretation of how well the model has

learned to predict process behavior, because it more

accurately reflects whether the predicted probability of a

next activity occurrence is equal to its true probability of

occurring. This measure is also in line with the general idea

of machine learning to replicate the distribution by giving

probabilistic rather than ‘‘entirely certain’’ rules (Good-

fellow et al. 2016).

For our above example, the change in cross-entropy

between train and application is only minimal and much

smaller than the change in accuracy, as shown in Table 1.

This is because cross-entropy acknowledges that the model

gives a certain probability for D for the samples containing

D as it does for samples with E. Note that due to the

variability in processes, the cross-entropy might never

become 0: Even if having learned the probabilities accu-

rately, it is bound by the variability of the process which is

the minimal error that cannot be avoided (Goodfellow

et al. 2016). For instance, the cross-entropy for the exam-

ple is around 0.3 even if the prediction model has learned

the probabilities accurately. This is justified as the model

gives activity D a reasonably high probability in the sam-

ples containing E which accuracy does not value. For next

activity prediction, the interpretation of the model using

cross-entropy gives an additional perspective on its per-

formance which is more accurate for assessing its gener-

alization performance. Nevertheless, the usage of cross-

entropy might not be universally beneficial for all PPM

tasks and should be considered per task.

5.2 Types of Generalization

For process prediction, we can also differentiate between

In-Domain and Out-of-Domain generalization. The In-

Domain setting occurs in situations where the distribution

of samples in the test split is identical to the training split.

Considering only the control flow, an unseen prefix that is

In-Domain can be caused by loops or parallel activities.

Such situations do not cause significant changes to the

distributions and data. If considering context attributes, we

can differentiate between an unseen combination of seen

attribute values or completely new attribute values. An

unseen combination of context attributes, e.g., a new

combination of resource and cost, would still be In-domain.

Further, we argue that even unseen attribute values are not

necessarily Out-of-Domain, as long as there is no signifi-

cant change to the process.

If changes are more significant, they require general-

ization to out-of-distribution samples. As process data is

known to be non-stationary (Back et al. 2019), i.e., prob-

abilities change over time, prediction models should be

capable of generalizing in such settings. There can also be

other situations that cause more significant changes to the

process and the distribution of the data, e.g., if an unseen

variant becomes the most frequent one. Other examples

could be a new decision point, the introduction of new

activities or subprocesses, or an event log from the same

process in a different company. Other types of general-

ization include generating unseen and valid process vari-

ants from seen prefixes (Peeperkorn et al. 2022, 2024).

6 Generalization Scenario Examples

In this section, we present nine example scenarios that

exemplify the aim of generalization for the task of next

activity prediction. The scenarios require different abilities

from PPM models in order to achieve generalization and

are inspired by typical situations faced when dealing with

process data in event logs. Each scenario presents a situ-

ation where the prediction model is faced with an unseen

sample (x, y), i.e., where the prefix x has not been seen

before. For each scenario, we discuss what we expect a

generalizing prediction model to predict, i.e., what a valid

prediction ŷ would be. In the following section, we will

simulate event logs that implement the scenarios and

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 369

evaluate how well existing next activity prediction models

generalize.

An overview of the scenarios is shown in Fig. 3. We

structure the scenarios based on the process perspective

that is involved (only control flow or including context

attributes) and whether the prefix contains unseen combi-

nations of previously seen values or whether it contains

values never seen before. A prefix can be unseen if certain

values appear in an unseen combination. For instance, if a

certain person performs an activity for the first time (in the

log) while both the activity and person have been seen in

the samples before. A prefix can also be unseen if a value

appears that it has never seen before, e.g., a completely

new activity or completely new resources. All scenarios

relate to the characteristics PC1 and PC2. Five scenarios

(CF1-5) cover generalization to unseen control flow vari-

ants in the prefix, further divided into the possible process

execution patterns sequence, concurrency, and loop. The

other four refer to unseen (combinations of) context attri-

butes that can either determine the continuation of the

process (e.g., as the condition of a choice; ATT2 and

ATT4) or be ‘‘noise’’, i.e., not relevant for the prediction of

the next activity (ATT1 and ATT3). In the following, we

introduce the scenarios conceptually and illustrate them

using minimal example event logs.

6.1 Scenarios with Unseen Control Flow

The event logs L1, L2 and L3 cover scenarios that are

created by parallel activities or loops. Log L1 in Table 2

shows an example of three activities C1, C2 and C3 that

can occur in any order. L2 in Table 3 shows a similar, yet

more complex scenario with C, D, E, F, G, H in any order.

This is typically caused by parallel activities and is a

common phenomenon in real-world event logs. Another

common scenario is the appearance of activities that can be

executed multiple times after another as shown in L3. For

event logs with such patterns, four interesting scenarios

(CF1-4) can occur:

• CF1: L1 and prefix hA, B, C1, C3, C2, Di. Expected
prediction: E. Although the model has not seen this

prefix due to a new order of C1, C2 and C3, it should

have learned that the case always continues with E after

D, regardless of the order of the previous activities. The

same holds for predicting D after having seen C1, C2

and C3.

Table 4 CF3 and CF4 - prediction after and within loops

Event Log L3

hA, B, C, Di
hA, B, B, C, Di

Fig. 3 Structure of the

generalization scenarios

Table 2 CF1 - prediction after

parallel activities
Event Log L1

hA, B, C1, C2, C3, D, Ei
hA, B, C2, C1, C3, D, Ei
hA, B, C2, C3, C1, D, Ei
hA, B, C3, C1, C2, D, Ei
hA, B, C3, C2, C1, D, Ei

Table 3 CF2 - prediction

within parallel activities
Event Log L2

hA;B;C;D;E;F;G;Hi
hA;B;C;F;D;G;E;Hi
hA;B;C;D;F;E;G;Hi
hA;B;F;C;D;G;H;Ei

123

370 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

• CF2: L2 and prefix: hA, B, C, D, F, Gi. In this

scenario, we are making a prediction during the

execution of concurrent activities, where more than a

single activity is possible. As seen in L2, both E and

H have been observed immediately after G and are thus

valid continuations and valid predictions.

• CF3: L3 and prefix: hA, B, B, B, Ci. Expected predic-

tion: D. In this scenario, the model should have learned

that the case always continues with D after C, no matter

how often B has happened.

• CF4: L3 and prefix: hA, B, B, Bi. In this scenario, we

are essentially predicting whether the loop continues

(prediction B) or stops (prediction C). Similar to

scenario CF2, both would be valid continuations.

The training data can be incomplete, e.g., with respect to

the activities that can occur in the process. For instance, if

obtaining an event log from the same process but a dif-

ferent system that records one additional activity. Another

reason could be that a process change may lead to a new

activity being introduced between training and prediction

time, which would then be unknown to the prediction

model:

• CF5: L3 and prefix hA, F, Ci. As F is an activity the

prediction model has never seen before, there is no

evidence from the event log how to continue. One

option would be to predict a label from the event log

that could potentially follow, e.g., D, as this has

occurred after C in all traces in the training data.

Otherwise, the model could also indicate that it does

not know, e.g., by making a special prediction

UNKNOWN.

6.2 Scenarios with Unseen Context Attributes

In some situations, the context attributes like involved

resources, timestamp or cost carry important information to

determine the continuation of the process instance (Brunk

et al. 2020). Considering this contextual information is

therefore an important capability when dealing with event

logs as the next element to predict is often not determined

by the previous activities only. In scenarios ATT1 and

ATT2, we expect the prediction model to generalize in the

presence of context attributes. Note that in these scenarios,

the models have seen the context attribute values before,

i.e., they are not completely new. It is only the combination

of activity and a context attribute that has not been

observed in the training data. The first example, L4 in

Table 5, shows a situation in which different resources are

involved in the activities, but do not influence the way the

process continues. In contrast, Log L5 in Table 6 shows an

example in which the next activity to execute depends on

the cost value observed in a previous one. If cost is lower

than 500€ then C follows. If it’s higher than 500€ then D

follows. In this scenario, the model has to learn to make

predictions based on the cost attribute.

• ATT1: L4 and prefix hðA;R1Þ; ðB;R1Þi. Expected

prediction: C. In L4, different resources are involved

in activity B. However, C follows B every time. Thus,

the prediction model should know that regardless of the

resource R in activity B, C always follows.

• ATT2: L5 and prefix\(A, 2€), (B, 499€)[. Expected

prediction: C. While this exact combination of activ-

ities and cost values has not been observed before, the

model should have learned that with a cost of 499€ in

the second event, C follows.

Similar to the unseen activities discussed in the previous

section, prefixes may also contain unseen context attribute

values, such as a new resource due to a new employee

becoming involved in the process after the model has been

trained. To demonstrate these scenarios, we also employ

logs L4 and L5 but discuss other prefixes.

• ATT3: L4 and prefix h(A, R1), (B, R37)i. In this

scenario, resource R37 in the second event has never

been seen before. Similar to the situation with an

unseen activity in CF5, the model could predict any

label on a positional basis, e.g., C or indicate that it

does not know.

• ATT4: L5 and prefix\(A, 200€), (B, 200€)[. Though

200€ is an unseen value for the quantitative attribute

cost, it is between the seen values 2€ and 499€. Thus,
we argue that an optimal prediction model should have

learned to predict C.

Table 5 ATT1-different resources R performing B

Event Log L4

hðA;R1Þ; ðB;R100Þ; ðC;R2Þi
hðA;R1Þ; ðB;R101Þ; ðC;R2Þi
hðA;R1Þ; ðB;R101Þ; ðC;R2Þi

Table 6 ATT2-decision depending on cost after B

Event Log L5

\(A, 2€), (B, 2€), (C, 2€)[
\(A, 499€), (B, 499€), (C, 499€)[
\(A, 501€), (B, 501€), (C, 501€)[

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 371

7 Experiments

Based on the generalization scenarios introduced in the

previous section, we will now evaluate if, and to what

extent, existing next activity prediction models can gen-

eralize, according to the definition given in Sect. 5. We use

an evaluation setup following the requirements and

observations made in previous sections. Specifically, we

simulate event logs that are based on the scenarios pre-

sented in Sect. 6. The event logs are split, per scenario,

such that all samples in the test split are unseen, which

allows us to compute a meaningful generalization error. In

addition to the single scenarios, we experiment with

combinations of these scenarios to increase the complexity

and difficulty for generalization. Further, we also evaluate

the PPM models on real-life event logs, containing real

scenarios with presumably different characteristics and

different variability, to validate the findings made in the

simulated settings. Based on the results, we can assess

whether and to what extent existing methods can generalize

in which scenarios.

We present the process models, event logs and scenario

splits in Sect. 7.1, the prediction models and training setup

in Sect. 7.2, and discuss how to measure the performance

in Sect. 7.2.5. The experiments on the single scenarios are

discussed in Sect. 7.3, on the combinations in Sect. 7.4,

and on the real-life event logs in Sect. 7.5.

7.1 Process Models and Event Log Data

for the Simulated Single Scenarios

We create a set of 5 process models and accompanying

event logs that implement the generalization scenarios

CF1-5 and ATT1-4 introduced in the previous section,

allowing to test the generalization in a controlled envi-

ronment. Note that not all process models have the same

activities or attributes as the sample logs presented before.

Nevertheless, they are used to generate event logs for these

scenarios, as they implement the scenarios on a conceptual

level.

In addition to the separation between control flow and

context attributes, as shown in Fig. 3, we evaluate all

scenarios with two complexity levels: simple and

advanced. This is intended to make the evaluation more

representative and account for the different levels of

complexity that can occur in real-world processes. The 5

process models (Figs. 4, 5 and 6) are used to generate event

logs for the 9 scenarios and both complexity levels. In total,

we evaluate on 18 event logs. The event logs are split

manually by a ratio of 80/20 such that there are no dupli-

cates between the prefixes in the training and the test split.

Further, the manual split ensures that we evaluate in each

log one specific scenario. Table 7 shows an overview of the

scenarios, process models, and prediction targets. Each of

the 18 settings that we evaluate is characterized by a sce-

nario that it replicates, the process model used to generate

Fig. 4 BPMN models 1 (top) with concurrency simple and model 2 (bottom) for concurrency advanced version for scenarios CF1 and CF2

123

372 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

the event log, the prediction targets that we evaluate gen-

eralization on, and a complexity level.

7.1.1 Process Models

Figures 4, 5 and 6 show the BPMN models used to gen-

erate the event logs:

• BPMN models 1 and 2 (Fig. 4) feature parallel

activities for scenarios CF1 and CF2. BPMN model 1

is simpler with 5 single parallel activities (leading to a

total of 120 possible activity permutations), whereas the

advanced one features 9 activities with a partial order

among 3 sets of 3 activities (leading to a total of 1680

possible permutations). Model 1 is used for the simple

setting and model 2 for the advanced setting.

• BPMN models 3 and 4 (Fig. 5) feature loops for

scenarios CF3 and CF4. In the simple model 3, a single

activity can repeat up to 25 times (which leads to

25 possible variants), whereas in the advanced model,

two sequences of two activities can independently

repeat up to 10 times (leading to 100 possible variants).

These models are used for the simple and advanced

setting respectively.

• BPMN model 5 (Fig. 6) features a context attribute-

dependent choice and is used for scenarios ATT1-4 and

CF5. Depending on the value of attribute price in

activity C, either D or E is executed next. Because

scenarios ATT1-4 are related to the context perspective,

the control flow of the process remains constant for

these. For ATT1 and ATT2, we instead increase

complexity by expanding the domain of the relevant

attributes (attribute resource for ATT1 or attribute price

Fig. 5 BPMN models 3 (top) with loops simple and model 4 (bottom) for loops advanced for scenarios CF3 and CF4

Fig. 6 BPMN model 5 with attribute-dependent exclusive choice for scenarios ATT1-4 and CF5

Table 7 Overview of generalization scenarios and the respective prediction targets

Simple Advanced

Scenario Description Targets Model Targets Model

CF1 Unseen concurrent permutation, prediction after concurrent block I, J, K 1 M, N, O 2

CF2 Unseen concurrent permutation, prediction within concurrent block D, E, F, G, H 1 D, E, F, G, H, I, J, K, L 2

CF3 Unseen loop count, prediction after loop F, G 3 I 4

CF4 Unseen loop count, prediction of loop D, E 3 C, D, E, F, G, H 4

CF5 Unseen activity D, E, F, G, H 5 D, E, F, G, H 5

ATT1 Unseen combination of activity and resource D, E, F, G, H 5 D, E, F, G, H 5

ATT2 Unseen combination of activity and price D, E 5 D, E 5

ATT3 Unseen resource D, E, F, G, H 5 D, E, F, G, H 5

ATT4 Unseen price D, E 5 D, E 5

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 373

for ATT2) from 100 possible values in the simple

process to 1000 in the advanced one. For ATT3 and

ATT4, we assign unseen attribute values to one event

(activity C) in the simple process and to two events

(activities B, C) in the advanced one. We also use this

process model to generate training data for scenario

CF5. For the test data, we then replace one activity

(C) in the simple setting and two activities (B, C) in the

advanced setting with new, unseen ones (X and Y).

7.1.2 Scenario-Specific Prediction Targets

To measure the generalization properties that we are

interested in as specifically as possible, we only evaluate

on a subset of prefix-label pairs in each event log. If we

want to assess the ability of a prediction model to gener-

alize to unseen activity orderings in the process with par-

allel activities (Fig. 4), for example, it would not be

meaningful to measure predictive performance on the

prefix-label pair [A, B] - C, because it occurs before the

concurrent activities. Instead, the meaningful activities to

predict for scenario CF1 simple (prediction after concur-

rent block) would be I, J and K, and for scenario CF2

simple (prediction in concurrent block) they would be D, E,

F, G and H. We call the labels of interest prediction targets.

A summary of the 9 prediction scenarios and the prediction

targets for the simple and advanced versions of each is

shown in Table 7.

7.1.3 Event Log Generation and Splits

For each event log, we generate 10,000 cases following the

respective process model. Each event has the same five

attributes: case_id, activity, timestamp, resource, price.

The start timestamp of each case is randomly sampled from

an interval from January 2015 to December 2019. The

timestamps of following events are then iteratively sam-

pled from 48-hour windows beginning with the timestamp

of the previous event. The resource and price per event are

sampled independently from a set of possible values (100

for the simple settings, 1000 for the advanced settings),

We manually split each event log into 80% training and

20% test data so that there are no prefix samples leaked

from the training split to the test split, with regard to the

generalization characteristic that is evaluated in that log.

For instance, in scenario CF1, we split in such a way that

the permutations of the parallel activity execution in the

test split have not been seen in the train split. Each sample

(x, y) in the test split has an ordering of activities that is not

present in the training split. For scenario ATT1, traces and

prefixes in both splits may have the same control flow, but

the split instead ensures that all combinations of activity

C and resource in the test split are not included in the train

split. As a consequence of this approach, we must split the

event logs for scenarios CF2 (prediction in parallel block)

and CF4 (prediction in loop) by prefixes instead of traces.

Otherwise, it would be impossible to avoid leakage among

prefix-label pairs in these scenarios. Consider, for example,

the variant [A, B, C, D, D, D, E, F, G] generated from the

simple loop process model (Fig. 5). Even if this full exe-

cution variant only exists in the test split, the prefix [A, B,

C, D] that it entails would also be part of any other variant

that this model may generate, and thus always be found in

both training and test split if we were to split on trace level.

By splitting on prefixes we can ensure that there are no

duplicates.

The result is two splits – training and test – where the

samples (x, y) in the test split have not been seen during

training and make up 20% of all variants. For instance, for

CF1 we test on 72 unique prefix variants in the simple

setting and 1008 unique prefix variants in the advanced

setting. This test setting is more extreme than found in

reality, but it ensures an accurate assessment of general-

ization capabilities because the model is trained on a

fraction of the variability of the data (see PC1). Further, as

no test prefix has been seen during training, their distri-

bution is different from the training data (see PC2).

7.2 PPM Models and Training Setup

For the experiments, we aim at having a representative set

of prediction models that reflect the current landscape of

PPM approaches, which is mainly driven by deep neural

networks (Weinzierl et al. 2024). Aligned with the two

types of generalization scenarios (control flow and context

attributes), we use two next activity prediction models: one

that uses the sequence of activities only and another one

that uses additional attributes. For the control-flow-only

model, we use an LSTM model. LSTM models, developed

for sequential data, have shown to be a good fit for PPM

tasks where prefixes and traces are considered as sequences

of events (Weinzierl et al. 2024; Neu et al. 2021).

The context-aware model has to deal with all attribute

types that are included in the scenarios ATT1-4, i.e., re-

source and price. Given that resource is usually encoded as

a categorical attribute while price is a numerical one, the

model must be flexible in dealing with categorical and

numerical attributes. The number of next step prediction

models that can deal with categorical and numerical attri-

butes at once is very limited (we refer the interested reader

to Rama-Maneiro et al. (2021, Tab. 3) and Pfeiffer et al.

(2021, Tab. 4)). To ensure consistency in the results, we

choose one context-aware model, the MPPN, as it can

process both types of attributes. The MPPN is very flexible

in the number and types of context attributes that can be

123

374 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

considered and has shown to perform very well on a range

of PPM tasks that require context information, including

next step and outcome prediction (Pfeiffer et al. 2021), task

abstraction (Rebmann et al. 2023) or deviation prediction

(Grohs et al. 2025). In the following, we will elaborate on

the prediction models, training strategy, and hyperparam-

eter settings.

7.2.1 Prediction Model Architecture

LSTM model We used a simple LSTM model that is similar

to the model proposed by Evermann et al. (2017), featuring

an embedding layer for the activities, a single LSTM layer

(16 neurons), followed by one fully connected layer for

classification.

MPPN model The MPPN is a process representation

learning model designed to solve a variety of PPM tasks

while being flexible with respect to the attributes in events

to use for prediction. It consists of three parts: A single

CNN model that extracts features for each perspective, i.e.,

the sequence of attribute values; a fully connected part that

pools and combines the features extracted per perspective;

and a configurable number of prediction heads which can

be used to solve a variable number classification or

regression tasks. More details about its architecture can be

found in Pfeiffer et al. (2021). In all experiments with

synthetic data, the MPPN uses the attributes activity, re-

source, timestamp, and price in the input, even if the

attributes are not relevant for the next activity nor being

predicted. The CNN part got pre-trained on variant clas-

sification as described in Pfeiffer et al. (2021), while the

fully connected part for pooling consists of a single layer

with 16 neurons followed by a single classification head for

next activity prediction.

7.2.2 Event Log Preprocessing

For all 18 event logs and both splits, we created prefixes of

length 64. Shorter prefixes were padded with a distinct

token.

7.2.3 Hyperparameter Setting and Tuning

Since the synthetic scenarios are rather simple (in order to

be comprehensively evaluable) and much simpler than

real-life event logs, the prediction models are at risk of

overfitting, as their capacity easily surpasses the variability

in the event log (see PC3). For instance, CF1 simple fea-

tures 120 permutations of parallel activities, resulting in

288 unique samples (x, y) of prefixes and targets in the

training log. The number of parameters of the LSTM

model is at least an order of magnitude larger. Thus, we

performed a hyperparameter search for the number of

neurons (4, 8, 16, 32, 64) per layer (embedding layer and

LSTM layer for the LSTM model; fully connected layer in

the MPPN model) and found that increasing the number of

neurons beyond 16 did not lead to better performance in the

single scenario experiments. For the experiments with

combinations of scenarios and on real-life event logs, the

number of neurons per layer had to be increased as detailed

in the respective paragraph. In result, both the LSTM and

MPPN feature around 5000 - 10,000 trainable parameters

in the single scenario experiments, depending on the

number of activities in the event log.

7.2.4 Training Procedure

We trained all models on all event logs on the respective

training split using AdamW as optimizer on the cross-en-

tropy and a learning rate of 1e-4. The training log was split

into a training and evaluation part. Note that the training

split contains all prefixes, i.e., the model is trained also on

prefixes with other target values indicated in Table 7. For

instance, while we evaluate in CF2 only predictions within

concurrency (activities D, E, F, G, H) and report the per-

formance on samples with those target labels only, we still

train the prediction model on samples with target labels B,

C and I, J, K to ensure that they learn the whole process

and not only a part of it.

Regularization In addition to using small model sizes, we

used regularization techniques to prevent overfitting,

addressing PC3. First, we used early stopping to stop

training when the evaluation loss did not reduce any further

(which has shown to be the most effective countermeasure

against overfitting in previous work (Peeperkorn et al.

2024)). Further, we used dropout with 10% in both models.

7.2.5 Generalization Performance Evaluation

We evaluate the generalization performance of the pre-

diction models as motivated in Sect. 5. We primarily asses

the prediction models with the cross-entropy estimation, as

defined in Eq. 2. In addition, we also report the accuracy,

since it has been frequently used in next activity prediction.

To evaluate whether the models generalize in predicting

next activities, we use the following criteria, which follow

from the conceptualization in Sect. 5.

1. The prediction model reaches a low training error

2. The prediction model reaches a low generalization

error

To assess criterion (1), we inspect the absolute values of

cross-entropy and accuracy. To assess criterion (2), we

measure the generalization error as the difference between

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 375

the error on the training and test split. If both are fulfilled,

i.e. the model performs very well and almost identically on

the test split as on the training split, it generalizes well. If

the differences between training and test error are more

significant or the performance on the training or test split

bad, the model generalize less well. We argue that gener-

alization is a capability that should be quantified. We

cannot say that a model does generalize if and only if the

generalization error is smaller than a certain value. Rather,

the smaller the error and the smaller the generalization

error, the better the model generalizes. The higher the error

or delta, the less the model can generalize. Thus, we refrain

from using a fixed threshold to quantify generalization.

Remember that the test splits contain only unseen pre-

fixes with the target next activities specified in Table 7. In

contrast, the training and evaluation splits contain prefixes

with all activities as target values. If reporting the perfor-

mance on the whole training set, the numbers would not be

comparable to the numbers obtained on the test set.

Therefore, we report the cross-entropy and accuracy of the

models reached on the training split as training perfor-

mance, limited to prefixes with the same set of activities as

used in the test split. This ensures that the training and test

performance can be compared adequately. All PPM models

are trained and tested 5 times in all scenarios and the

results are averaged.

7.3 Single Scenarios

Table 8 shows the cross-entropy estimation and accuracy

that the models achieve on the train and test split in each of

the 18 evaluation event logs. In most scenarios there is at

least one model that generalizes well if considering the

specifics of the scenario. Scenario CF5 is the only scenario

where the performance of all models decreases consider-

ably, suggesting insufficient generalization. We will dis-

cuss the results in the following in detail.

7.3.1 Results per Scenario

In CF1 and CF3 the prediction models generalize very well

with perfect accuracy and cross-entropy - both in simple as

in the advanced setting. This shows that they have learned

that always the same activity follows behind the block of

concurrent or looping activities, no matter in which order

the activities occur. In scenario CF2, the LSTM performs

as good on the test split as it performs on the training split

while the MPPN performs a little worse on the test split.

The high cross-entropy and low accuracy suggest that the

models do not perform well and, thus not fulfill criteria (1).

As this scenario involves predictions within concurrency

only, it is strongly affected by having multiple valid con-

tinuation options that induce a minimal error that cannot be

avoided. In these conditions, the performance has to be

considered good as we will show and discuss in depth

Table 8 Cross-entropy (CE)

according to Eq. 2 and accuracy

(ACC) for the samples with the

respective target labels given in

Table 7 on the training and test

split

LSTM MPPN

Train Test Train Test

CE ACC CE ACC CE ACC CE ACC

Simple CF1 0.001 100.00% 0.002 100.00% 0.0 100.00% 0.0 100.00%

CF2 0.841 52.28% 0.844 52.60% 0.800 56.11% 1.037 49.51%

CF3 0.000 100.00% 0.000 100.00% 0.0 100.00% 0.0 100.00%

CF4 0.256 92.19% 0.236 93.47% 0.253 92.32% 1.253 82.85%

CF5 0.177 88.63% 0.266 85.74% 0.009 99.72% 0.926 84.16%

ATT1 0.176 88.62% 0.177 88.05% 0.040 97.51% 0.041 97.41%

ATT2 0.702 50.41% 0.700 61.26% 0.026 99.15% 0.090 96.16%

ATT3 0.177 88.70% 0.177 88.67% 0.007 99.78% 0.009 99.71%

ATT4 0.700 54.00% 0.698 55.26% 0.087 96.91% 0.326 90.91%

Advanced CF1 0.001 100.0% 0.001 100.0% 0.0 100.0% 0.0 100.0%

CF2 0.829 55.76% 0.895 53.22% 0.798 57.52% 1.491 48.06%

CF3 0.000 100.0% 0.000 100.0% 0.0 100.0% 0.001 99.43%

CF4 0.205 92.04% 0.205 92.45% 0.200 92.26% 0.231 91.20%

CF5 0.177 88.53% 0.821 75.00% 0.007 99.80% 2.720 56.12%

ATT1 0.176 88.72% 0.176 88.66% 0.014 99.56% 0.014 99.54%

ATT2 0.701 51.03% 0.702 50.75% 0.104 96.18% 0.145 94.15%

ATT3 0.177 88.31% 0.177 88.60% 0.005 99.83% 0.006 99.78%

ATT4 0.699 54.24% 0.697 55.18% 0.055 98.05% 0.321 91.92%

123

376 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

along Table 9. Similar observations can be made for CF4.

In this scenario, the prediction model has to choose

between two activities (D or E) while in CF2 there are up

to five alternative activities (D, E, F, G, H) per sample. We

argue that this explains why the accuracy in CF4 is much

higher than in CF2 and cross-entropy lower.

Scenario CF5 is the scenario with the strongest increase

in generalization error (both in cross-entropy and accu-

racy). In the simple version, the LSTM model still per-

forms well with little differences between training and test

performance. This means that the model is still able to

make correct predictions if one activity is replaced by a

unseen one. In the advanced version of CF5, the general-

ization error is much higher. Following our definition of

generalization, we have to conclude that both models do

not generalize well in this scenario. Nevertheless, the

LSTM still reaches an accuracy of 75%, meaning that

although the cross-entropy is much higher (caused by

higher variance in the model’s predictions), the model still

gives the correct activity the highest probability in most of

the unseen samples.

We assume that the models can make predictions on

positional basis, i.e., they know that a certain activity

appears in a certain position even if an unseen activity is

introduced, but assigning this activity a little lower prob-

ability as normally which explains the higher cross-en-

tropy. This means, that the models have learned that after

seeing hA;UNK;UNKi (UNK represents the encoded

unknown activity) in the fourth position either D or E

follows. Further, even if seeing unknown activities in the

prefix, they have learned that after F always G follows.

Given the difficulty of this task, the results are remarkable

and suggest that generally valid patterns have been learned

to a certain extent.

In the scenarios ATT1 to ATT4 that require context

attributes, the MPPN performs, as expected, much better

than the LSTM, which does not consider these attributes. In

the scenarios ATT1, ATT2, and ATT3, the MPPN general-

izes well. Scenario ATT4 (unseen price attribute) is the

most challenging scenario among the context-aware ones,

and we see strong increase in cross-entropy and a drop in

accuracy. Nevertheless, the performance is still reasonably

high, which is why we argue that the model still general-

izes in this scenario, too. This means that the model can

deal with unseen combinations of attribute values and also

unseen attribute values and predict the correct activity (D

or E) based on the context attributes.

7.3.2 Differences Between Models and Capacities

Comparing the models reveals that the LSTM model per-

forms better on the scenarios with control flow only (CF1-

5) and the MPPN performs better on the scenarios with

context attributes. For CF1-4, the LSTM performs almost

equally well on the training and test split, but the MPPN

cannot reduce the generalization error as far as the LSTM

can. In scenarios CF4, ATT1, ATT3, and ATT4, the models

perform better in the advanced setting than in the simple

setting. We attribute this to a better fit of the capacity of the

prediction models to the complexity of the prediction task.

The prediction models used for all scenarios are very small

in terms of models size and the number of neurons. For

some scenarios, the capacity of the model might still be too

high in the simple setting while the advanced settings,

featuring higher variability, fits the capacity better.

7.3.3 Probability Distribution in Predictions

In scenarios like CF2, the prediction model reaches a low

generalization error, but the overall performance, at first,

seems not to be that good. As described above, we attribute

this to the high number of parallel activities. We will show

that next activity prediction models actually learn that

multiple activities can follow, which they express by giving

them certain probabilities in q(y), showing that they make

accurate predictions in such scenarios. For this, we show

the probabilities q(y) that the LSTM model gives to dif-

ferent next activities y, i.e., the result after applying the

softmax function on the output of the classification layer

(these probabilities sum up to 1).

Table 9 shows the probability distribution over the

activities for some prefixes in the test split (note that they

are all unseen) of CF2. As we can see, the predicted

probabilities resemble the process behavior accurately. The

Table 9 Probability distribution q(y) learned by the LSTM for activities with an unseen prefix on CF2 simple. Probabilities in bold are those

assigned to the ground truth activities y

Unseen prefix A B C D E F G H I J

hA;B;C;Ei 0.00 0.00 0.00 0.22 0.01 0.30 0.23 0.24 0.00 0.00

hA;B;C;F;Di 0.00 0.00 0.00 0.01 0.28 0.00 0.36 0.35 0.00 0.00

hA;B;C;D;E;Gi 0.00 0.00 0.00 0.01 0.00 0.49 0.01 0.48 0.00 0.00

hA;B;C;D;E;F;Gi 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.97 0.00 0.00

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 377

LSTM model gives reasonably high probabilities to all next

activities that are possible. For instance for the prefix

hA;B;C;Ei it gives activities D, F, G, H high probabilities

and all other activities very low probabilities. While the

probabilities for D, G and H are almost identical, F is given

a higher probability. This might represent the distribution

found during training, i.e., that in more situations during

training F did follow compared to the other three activities.

7.4 Scenario Combinations

In addition to evaluating prediction models’ generalization

capabilities on models with isolated characteristics, we also

evaluate them in settings where several characteristics

occur at the same time, as is typically the case in real-world

processes. To this end, we combine parts of the previous

process models into a new one that features concurrency, a

loop, and an attribute-dependent choice (Fig. 7). We then

generate 3 combination scenarios with progressively

increasing complexity and evaluate the same two PPM

models on them:

• Comb1: This scenario combines CF1 and CF3, featur-

ing an unseen permutation of concurrent activities and a

loop.

• Comb2: Extends scenario Comb1 by additionally

replacing 3 activities and resources in the prefix with

unseen ones. It is therefore a combination of CF1, CF3,

CF5, and ATT3.

• Comb3: Extends scenario Comb2 by additionally

assigning an unseen price value in activity N, so that

it additionally includes ATT4.

Like in the isolated scenarios, we evaluate performance

only for the prediction of generalization-relevant target

activities (activities N, O, P, Q for Comb1 and Comb2;

activities O, P, Q for Comb3). Due to the higher com-

plexity in the data, we increased the number of neurons in

the LSTM and MPPN layer to 32 and used the same

training and testing strategy as before, in which the test

split contains unseen prefixes only. We averaged the per-

formance values across 5 runs.

Results The results shown in Table 10 are very much in

line with the results of the single scenario experiments. The

LSTM reaches almost the same cross-entropy and accuracy

in the training as in the test split. This indicates that the

model performs equally well on the unseen prefixes as on

the seen ones. However, as the MPPN shows, higher per-

formance can be reached if using context attributes.

Although the MPPN reaches very good performance on the

training split, it performs less well on the test split. This

indicates that the model can make accurate predictions, but

not for all unseen prefixes. Interestingly, it still performs

well on Comb2, which includes unseen activities as in CF5

where the model did not perform well. However, on

Comb3, which additionally includes unseen price values

(as ATT4 where the model performed well), its general-

ization error increases drastically. This indicates that the

model cannot generalize well if these scenarios occur in

combination.

7.5 Real-Life Event Logs

The previous experiments have evaluated the generaliza-

tion capabilities of PPM models on specific scenarios

which allowed to assess their performance for individual

process characteristics. Although they exhibit a high vari-

ability, real-life processes might contain other or additional

characteristics in their traces. Therefore, we conduct an

additional experiment on real-life data to validate the

Fig. 7 BPMN model with a combination of concurrency, loop, and choice

Table 10 Cross-entropy (CE)

according to Eq. 2 and accuracy

(ACC) for the combinations of

scenarios on the samples with

respective target activity

LSTM MPPN

Train Test Train Test

CE ACC CE ACC CE ACC CE ACC

Comb 1 0.233 83.82% 0.233 83.85% 0.074 97.07% 0.169 93.05%

Comb 2 0.232 83.34% 0.251 83.60% 0.076 97.00% 0.324 87.63%

Comb 3 0.349 75.29% 0.379 75.45% 0.068 97.63% 2.319 56.96%

123

378 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

findings made in the previous experiments on simulated

data.

For this purpose, we chose the BPIC17 event log, due to

its size and the observation that many new variants appear

over time (Peeperkorn et al. 2024, Fig. 1). To force a

scenario where the test set contains many unseen samples,

we split the event log by time such that the first 50% of

traces are used for training and the last 50% for testing.

However, as Table 11 shows, there is still a significant

leakage of variants and prefixes from the training to the test

split if splitting that way. In detail, 50.89% of full-trace

variants are leaked from the training to the test set; the

prefix leakage (see Sect. 3) is even higher at 77.54%.

Therefore, as an additional setting, we removed all prefixes

from the test split that are also included in the training split.

This results in 29,861 unseen samples (x, y), which were

not seen during training and can be used for testing.

Evaluating both settings also allows to see how the per-

formance changes when being evaluated on only a portion

of unseen samples to unseen samples only. In addition, we

evaluate on the BPIC12 (complete) event log, which is an

earlier version of the same process as in BPIC17, using the

same setting, too.

In contrast to the experiments on simulated data where

we evaluated on prefixes with specific target activities only,

no such prefix sampling with specific target activities is

done. For the real-life event logs used in the experiments,

we do not know, e.g., which activities are executed con-

currently, in a loop, or in other specific circumstances.

Therefore, we report as training performance the cross-

entropy and accuracy reached on the hold-out evaluation

split in the last epoch of training. As test performance, we

report the cross-entropy and accuracy on the full test split

(setting ‘‘50:50‘‘) and on the test split with unseen prefixes

only (setting ‘‘unseen‘‘). Note that the training performance

therefore is the same in both settings, as we use the same

model after training for both test settings.

As the logs are much larger and the processes more

complex, we increased the capacity of the models. For the

LSTM model, we used 2 LSTM layers with 64 neurons

each and for the MPPN model, we used 2 layers in the

fully-connected part with 256 neurons each. Smaller

models have been found to reach a lower test performance

while increasing their size led to overfitting. We trained

each model 5 times and report the average of accuracy and

cross-entropy across all runs.

Results Similar to the experiments before, both prediction

models perform considerably well on both real-life event

logs and both settings. The generalization error is almost

zero in the 50:50 setting. When testing on unseen prefixes

only, the generalization error in cross-entropy and accuracy

increases while maintaining a high accuracy. Considering

the much higher complexity of real-life data, the perfor-

mance on the unseen samples in the unseen setting vali-

dates that PPM models can also generalize on challenging,

real-life settings.

7.6 Summary

We conclude that next activity prediction models gener-

alize well in almost all scenarios, from simulated to real

event logs. The results show that such models can make

correct predictions for unseen prefixes even in challenging

settings like high concurrency or completely unknown

activities. Further, the learned probability distribution

Table 12 Cross-entropy (CE)

according to Eq. 2 and accuracy

(ACC) for setting 50:50 (no

removal of leaked prefixes) and

setting unseen (all leaked

prefixed removed)

LSTM MPPN

Train Test Train Test

CE ACC CE ACC CE ACC CE ACC

BPIC 12 50:50 0.381 85.29% 0.394 84.55% 0.448 83.36% 0.448 83.13%

BPIC 12 unseen 0.381 85.29% 0.566 81.49% 0.448 83.36% 0.890 72.22%

BPIC 17 50:50 0.376 87.22% 0.349 87.20% 0.246 91.13% 0.241 91.21%

BPIC 17 unseen 0.376 87.22% 0.549 81.15% 0.246 91.13% 0.513 82.70%

Table 11 Variant leakage and prefix leakage if splitting BPIC event logs by time into train and test with a ratio of 50:50, i.e. such that the last

half of the traces is in the test split

Log Traces Variants Variant Leakage Unique Pref Example Leakage Unseen Test Pref

BPIC12 13,087 4,366 66.38% 60,866 78.69% 29,861

BPIC17 31,509 15,930 50.89% 279,796 77.54% 50,530

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 379

q(y) reflects how prefixes can continue in the process.

While the results are not always optimal and there is room

for improvement they definitely show that generalization

capabilities have been learned by the prediction models.

However, there are differences between the scenarios. In

general, scenarios where all values (regardless if activity or

any other attributes) have been seen before, e.g., CF1 -

CF4 and ATT1 and ATT2 work better than scenarios where

completely unknown values appear in the prefix, e.g., CF5,

ATT3, and ATT4. Unknown resource values (ATT3) are

handled more sophisticatedly than unknown price values

(ATT4) by the MPPN, hinting towards a better capability in

handling categorical values than numerical ones. However,

this could also be specific to the architecture of the pre-

diction model.

The detailed analysis of the learned probability distri-

bution in Table 9 also shows that the models learn all valid

continuation options, which cross-entropy does account

for. In such situations, the next activity to follow is arbi-

trary, causing a certain error that cannot be avoided. We

assume that the cross-entropy of the LSTM reached in CF2

is bound by the entropy, i.e., the cross-entropy of the

prediction model cannot become smaller than the respec-

tive entropy of the process (Pfeiffer and Fettke 2024).

In the more complex scenario combinations and real-life

event logs, the models still generalize well when being

tasked with unseen prefixes. However, certain combina-

tions of unseen categorical and numerical values in the

prefix seem to be challenging for state-of-the-art PPM

models. Since the generalization error increased the most

in scenarios where context is relevant, PPM models should

be enhanced in their ability to handle unseen context-at-

tribute combinations which will further increase their

overall performance.

8 Discussion

8.1 Discussion of the Experimental Results

As the experimental results show, next activity prediction

models generalize well in almost all scenarios with respect

to the definition given in Sect. 5. There are differences per

scenario and prediction models used. While the LSTM

model, which uses control flow information only, performs

better in CF1-5, the MPPN shows strong generalization in

the scenarios requiring context awareness. In addition,

there are differences in generalization depending on whe-

ther the prefixes contain entirely unseen attribute values or

not. The prediction models generalize less well when there

are completely unseen values in the prefix, e.g., unseen

activities (CF5) or unseen attribute values (ATT3 and

ATT4), than in scenarios where the values appear in unseen

constellations. Further, certain combinations of unseen

context attributes are more challenging than others. How-

ever, they generalize surprisingly well to unseen prefixes.

We observe that scenarios with unseen values (CF5,

ATT3, and ATT4) are harder to generalize. In scenario CF5

there are unseen values in the control flow, which is the

only dimension available. As the activities are out-of-dis-

tribution and not part of the training set, we argue that the

models show limited OOD generalization capabilities. The

unseen attribute values in ATT3 and ATT4 are also out-of-

distribution but do not necessarily constitute a significant

change from the original data. Further, the control flow

remains constant with no new activities being introduced.

Thus, they qualify less for OOD generalization.

The MPPN generalizes better than the LSTM on the

single scenarios involving context attributes. This could

validate our assumption that additional information in form

of context attributes supports generalization, which is in

line with previous work (Gerlach et al. 2022). In the more

complex scenarios, however, the picture becomes more

diverse. While the MPPN reaches a better training per-

formance and often overall higher accuracies, its general-

ization error is often much higher than the generalization

error of the LSTM. While the model can learn dependen-

cies between the attributes on the training set, as indicated

by a low error, it does not always seem to be able to

transfer this ability to the test set. Conversely, models

require more generalization capabilities to include addi-

tional context attributes.

The results also show that next activity prediction

models accurately learn how unseen prefixes continue by

assigning appropriate probabilities to next activities, as

seen in Table 9. We conclude that prediction models learn

how processes are structured, i.e., how activities are

structured and which activities follow next in which

situations.

Previous work has defined generalization differently

from our conceptualization as the ability to generate unseen

traces (Peeperkorn et al. 2022). As our work shows, next

activity prediction models can deal very well with unseen

prefixes. Thus, their limitations in generating unseen traces

must be tied to their generative ability rather than their

predictive ability. Although they are accurate in predicting

next activities (even for unseen prefixes), they might be

unable to accurately predict longer future behavior. From

this, it follows that they may not be able to generate unseen

variants as expected and measured by Peeperkorn et al.

(2022). To achieve this ability, a more forward-looking

training with a larger prediction horizon might help. It also

shows that our definition of generalization, focusing

specifically on next activity prediction, cannot be applied

universally to all PPM tasks.

123

380 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

8.2 Discussion of Limitations

Several limitations apply to this work. First, our definitions

of example leakage and accuracy limit do not consider the

context attributes found in event logs. Thus, they are only

approximations of the values that we would obtain if

considering, e.g., all decisive attributes for the next activ-

ities. However, as discussed, not all attributes are decisive

for the next activity which is why it is complicated to

compute the values on the respective attribute set.

Second, the scenarios used in the experiments are not

complete, meaning that there might be other situations that

require generalization. For instance, a concept drift that

changes the process after a certain date might require more

challenging forms of generalization which we have not

analyzed yet.

Third, although we tested different hyperparameter set-

tings for each experiment, the generalization performance

can differ in other settings. This might result in better

performance as reported, potentially resulting in better

generalization. For instance, the models might have over-

fitted in certain scenarios although countermeasures have

been implemented. Also, other PPM approaches, which we

have not explored so far, can perform very differently.

Fourth, the incompleteness of the training event log

could be higher than assumed. We trained the PPM models

on 50%-80% of all traces. While we found that even with a

split of 50% most prefixes (close to 80%) exhibit the same

control flow, this ratio could be much smaller in other real-

world applications. Thus, it remains open whether next

activity prediction models would also generalize when

having seen, e.g., only 30% of the total behavior.

Lastly, the conceptualization of generalization and the

experiments have been conducted with a focus on the task

of next activity prediction. PPM consists of many more

tasks that we have not analyzed yet. As many other tasks

also involve an unseen prefix but differ in the attribute to

predict, a similar procedure as suggested in this paper

might be applicable to those tasks, too. For instance, the

observation and characteristic that prefixes often recur in

training and application also applies to other PPM tasks.

Similarly, the training event log should always be assumed

to be incomplete and regularization applied. In contrast, the

distribution of target variables can differ in other PPM

tasks while cross-entropy cannot and should not universally

be applied to all PPM tasks. Therefore, more research is

required on generalization in other PPM tasks.

9 Conclusion

In this work, we analyzed generalization in PPM concep-

tually and empirically. We showed that the current

evaluation procedures used for next activity prediction

research are flawed and do not allow researchers to draw

valid conclusions about their generalization capabilities.

This follows from the observation that most samples used

for testing are duplicates and that these procedures are not

able to reliably communicate the actual performance of the

model regarding the prediction of what will happen next.

Following these observations, we introduce a novel con-

ceptualization of generalization for the task of next activity

prediction, which defines generalization based on the def-

inition of generalization in machine learning research: to

accurately predict the process behavior for unseen prefixes.

Further, we discuss challenges for generalization in next

activity prediction to guide adequate evaluation proce-

dures, such as variability and incompleteness of event logs,

adequate train-test-splitting, and the choice of evaluation

metric. While this conceptualization has been developed

focusing on next activity prediction, certain challenges for

generalization also apply to other PPM tasks that work with

trace prefixes.

To demonstrate what it means for a next activity pre-

diction algorithm to generalize, we presented various

example scenarios. We evaluated two state-of-the-art next

activity prediction models with regard to how they per-

formed in each scenario, which allowed for the evaluation

of generalization capabilities for each situation. As the

results show, existing models generalize well in predicting

the next activity in almost all scenarios, considering the

control flow only and when using context attributes. Fur-

ther, the models were also able to generalize very well in

more complex scenarios and on real event logs.

While the overall accuracy on, e.g., BPIC 12 and 17 is

already high, there is a decline between training and test

performance. In turn, overall better performance can be

achieved by developing context-aware models that can

generalize to unseen context attribute combinations. Con-

fidently handling unseen context attribute combinations

seems to be a limiting factor for state-of-the-art next

activity prediction models and potentially for PPM models

in general. Note that the combination of diverse attributes

of different types found in event logs is also a unique

challenge for machine learning in general. Further, as

processes are known to change over time, generalization in

PPM also requires developing models that can adapt to

changing process behavior in order to improve their gen-

eralization capabilities.

In the experiments, we have tested the PPM models on

unseen prefixes only, which we have argued to resemble

the to-be-expected conditions in application. However, our

analysis also revealed that, although new variants are

introduced over time, most prefixes of traces in the real

data are highly repetitive and only a small share of samples

contain unseen variants, even when 50% of the most recent

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 381

traces are used as test split. Thus, our experimental con-

ditions, which allowed us to measure a meaningful gen-

eralization error, might be stricter and more difficult than

real-life conditions. Nevertheless, we encourage the com-

munity to test their models specifically for generalization in

a setting with unseen prefixes only. This might reveal

larger performance differences between models and pro-

vide new insights. Further, aiming for better generalization

on the unseen traces should make the models robust for

various real-life conditions.

Finally, the ability of the tested models to make correct

predictions on unseen prefixes shows that they must have

learned a representation of the process from the data that

closely resembles process behavior. This representation

presumably contains high-level process features that

describe the behavior of the process.

In future work, we plan to tackle more sophisticated

instances of OOD generalization, i.e., investigate more

challenging prediction settings such as concept drifts that

introduce more significant changes to the process than

those present in the scenarios in this paper. Further, pre-

diction models that can adapt their learned probability

distribution after training to account for changes in the data

are of particular interest.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Abb L, Pfeiffer P, Fettke P, Rehse JR (2024) A discussion on

generalization in next-activity prediction. BPM workshops.

Springer, Heidelberg, pp 18–30

Back CO, Debois S, Slaats T (2019) Entropy as a measure of log

variability. J Data Semant 8:129–156

Baier S, Dunzer S, Fettke P, Houy C, Matzner M, Pfeiffer P, Rehse

JR, Scheid M, Stephan S, Stierle M (2020) The MobIS-challenge

2019. Enterpr Model Inf Syst Archit 15:1–25

Bishop CM (2006) Pattern recognition and machine learning.

Springer, Heidelberg

Bishop CM, Bishop H (2024) Deep learning foundations and

concepts. Springer, Heidelberg

Breuker D, Matzner M, Delfmann P, Becker J (2016) Comprehensible

predictive models for business processes. MIS Q 40:1009–1034

Brunk J, Stottmeister J, Weinzierl S, Matzner M, Becker J (2020)

Exploring the effect of context information on deep learning

business process predictions. J Decis Syst 29:328–343

Buijs JCAM, van Dongen BF, van der Aalst WMP (2014) Quality

dimensions in process discovery: the importance of fitness,

precision, generalization and simplicity. Int J Coop Inf Syst

23(1440):001

Di Francescomarino C, Ghidini C (2022) Predictive process moni-

toring. Process mining handbook. Springer, Heidelberg,

pp 320–346

Evermann J, Rehse JR, Fettke P (2017) Predicting process behaviour

using deep learning. Decis Support Syst 100:129–140

Fani Sani M, Vazifehdoostirani M, Park G, Pegoraro M, van Zelst SJ,

van der Aalst WMP (2023) Performance-preserving event log

sampling for predictive monitoring. J Intell Inf Syst 61:53–82

Gerlach Y, Seeliger A, Nolle T, Mühlhäuser M, Franch X, Poels G,

Gailly F, Snoeck M (2022) Inferring a multi-perspective

likelihood graph from black-box next event predictors.

Advanced information systems engineering. Springer, Heidel-

berg, pp 19–35

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT

Press, Cambridge

Grohs M, Pfeiffer P, Rehse JR (2025) Proactive conformance

checking: An approach for predicting deviations in business

processes. Inf Syst 127(102):461

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural

Comput 9:1735–1780

Jiralerspong M, Bose J, Gemp I, Qin C, Bachrach Y, Gidel G (2024)

Feature likelihood divergence: Evaluating the generalization of

generative models using samples. In: NeurIPS, Curran Associ-

ates, pp 33,095 – 33,119

Jurafsky D, Martin JH (2025) Speech and language processing: an

introduction to natural language processing, computational

linguistics, and speech recognition with language models, 3rd

draft edn. https://web.stanford.edu/*jurafsky/slp3/, online

manuscript released 12 Jan 2025, accessed 13 Feb 2025

Käppel M, Jablonski S, Indulska M, Reinhartz-Berger I, Cetina C,

Pastor O (2023) Model-agnostic event log augmentation for

predictive process monitoring. Advanced information systems

engineering. Springer, Heidelberg, pp 381–397

Kaufman S, Rosset S, Perlich C, Stitelman O (2012) Leakage in data

mining: formulation, detection, and avoidance. ACM Transact

Knowl Discov Data 6:1–21

Kneser R, Ney H (1995) Improved backing-off for m-gram language

modeling. In: International conference on acoustics, speech, and

signal processing, IEEE, pp 181–184

Kratsch W, Manderscheid J, Röglinger M, Seyfried J (2021) Machine

learning in business process monitoring: a comparison of deep

learning and classical approaches used for outcome prediction.

Bus Inf Syst Eng 63:261–276

Le M, Gabrys B, Nauck D, Bramer M, Petridis M (2012) A hybrid

model for business process event prediction. Research and

development in intelligent systems. Springer, Heidelberg,

pp 179–192

Liao T, Taori R, Raji ID, Schmidt L (2021) Are we learning yet? a

meta review of evaluation failures across machine learning. In:

NeurIPS datasets and benchmarks, Curran Associates

Liessmann A, Wang W, Weinzierl S, Zilker S, Matzner M (2024)

Transfer learning for predictive process monitoring. ECIS

Lu W, Wang J, Sun X, Chen Y, Ji X, Yang Q, Xie X (2024)

Diversify: a general framework for time series out-of-

123

382 P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://web.stanford.edu/%7ejurafsky/slp3/

distribution detection and generalization. IEEE Trans Patt Anal

Mach Intell 46(6):4534–4550

Murphy KP (2022) Probabilistic machine learning: an introduction.

MIT press, Cambridge

Neu DA, Lahann J, Fettke P (2021) A systematic literature review on

state-of-the-art deep learning methods for process prediction.

Artif Intell Rev 55:801–827

Nolle T, Seeliger A, Mühlhäuser M (2018) Binet: Multivariate

business process anomaly detection using deep learning. Busi-

ness process management. Springer, Heidelberg, pp 271–287

Pasquadibisceglie V, Appice A, Castellano G, Malerba D (2022) A

multi-view deep learning approach for predictive business

process monitoring. IEEE Transact Serv Comput

15(4):2382–2395

Pasquadibisceglie V, Appice A, Castellano G, Malerba D (2024)

JARVIS: Joining adversarial training with vision transformers in

next-activity prediction. IEEE Transact Serv Comput

17(4):1593–1606

Peeperkorn J, van den Broucke S, De Weerdt J (2022) Can recurrent

neural networks learn process model structure? J Intell Inf Syst

61:27–51

Peeperkorn J, van den Broucke S, De Weerdt J (2024) Validation set

sampling strategies for predictive process monitoring. Inf Syst

121(102):330

Pfeiffer P (2022) Business process representation learning. In: BPM

doctoral consortium, CEUR, Münster, Germany

Pfeiffer P, Lahann J, Fettke P (2021) Multivariate business process

representation learning utilizing gramian angular fields and

convolutional neural networks. Business process management.

Springer, Heidelberg, pp 327–344

Pfeiffer P, Lahann J, Fettke P (2023) The label ambiguity problem in

process prediction. BPM workshops. Springer, Heidelberg,

pp 37–44

Pfeiffer P, Fettke P (2024) Trace vs. time: Entropy analysis and event

predictability of traceless event sequencing. In: BPM forum,

Springer, Heidelberg, pp 72–89

Rama-Maneiro E, Vidal J, Lama M (2021) Deep learning for

predictive business process monitoring: review and benchmark.

IEEE Transact Serv Comput 16:739–756

Rebmann A, Pfeiffer P, Fettke P, van der Aa H (2023) Multi-

perspective identification of event groups for event abstraction.

ICPM workshops. Springer, Heidelberg, pp 31–43

Rehse JR, Dadashnia S, Fettke P (2018) Business process manage-

ment for industry 4.0 - three application cases in the DFKI-

Smart-Lego-Factory. IT - Inf Technol 60:133–141

Ruta D, Majeed B (2011) Business process forecasting in telecom

industry. In: IEEE GCC conference and exhibition, IEEE,

pp 389–392

Stevens A, Peeperkorn J, De Smedt J, De Weerdt J (2023) Manifold

learning for adversarial robustness in predictive process

monitoring. In: International conference on process mining,

IEEE, pp 17–24

Tax N, Verenich I, La Rosa M, Dumas M (2017) Predictive business

process monitoring with LSTM neural networks. Advanced

information systems engineering. Springer, Heidelberg,

pp 477–492

Tax N, van Zelst SJ, Teinemaa I, Gulden J, Reinhartz-Berger I,

Schmidt R, Guerreiro S, Guédria W, Bera P (2018) An

experimental evaluation of the generalizing capabilities of

process discovery techniques and black-box sequence models.

Enterprise, business-process and information systems modeling.

Springer, Heidelberg, pp 165–180

Tax N, Teinemaa I, van Zelst SJ (2020) An interdisciplinary

comparison of sequence modeling methods for next-element

prediction. Softw Syst Model 19:1345–1365

Taymouri F, La Rosa M, Erfani S, Dasht Bozorgi Z, Verenich I

(2020) Predictive business process monitoring via generative

adversarial nets: The case of next event prediction. Business

process management. Springer, Heidelberg, pp 237–256

van der Aalst WMP (2016) Process mining: data science in action,

2nd edn. Springer, Heidelberg

van der Aalst WMP (2022) Process mining: a 360 degree overview.

Process mining handbook. Springer, Heidelberg, pp 3–34

van der Aalst WMP, Schonenberg MH, Song M (2011) Time

prediction based on process mining. Inf Syst 36:450–475

van Dongen BF, Carmona J, Chatain T (2016) A unified approach for

measuring precision and generalization based on anti-align-

ments. Business process management. Springer, Heidelberg,

pp 39–56

van der Aalst W (2020) On the pareto principle in process mining,

task mining, and robotic process automation. In: International

conference on data science, technology and applications,

SciTePress, pp 5–12

Venkateswaran P, Muthusamy V, Isahagian V, Venkatasubramanian

N (2021) Robust and generalizable predictive models for

business processes. Business process management. Springer,

Heidelberg, pp 105–122

Weinzierl S, Zilker S, Dunzer S, Matzner M (2024) Machine learning

in business process management: a systematic literature review.

Exp Syst Appl 253(124):181

Weytjens H, De Weerdt Jochen (2021) Creating unbiased public

benchmark datasets with data leakage prevention for predictive

process monitoring. BPM workshops. Springer, Heidelberg,

pp 18–29

Zhou K, Liu Z, Qiao Y, Xiang T, Loy CC (2023) Domain

generalization: a survey. IEEE Transact Pattern Anal Mach

Intell 45:4396–4415

123

P. Pfeiffer et al.: Learning from the Data to Predict the Process, Bus Inf Syst Eng 67(3):357–383 (2025) 383

	Learning from the Data to Predict the Process
	Generalization Capabilities of Next Activity Prediction Algorithms
	Abstract
	Introduction and Motivation
	Foundations
	Preliminaries
	Log Data
	Next Activity Prediction

	Background
	Generalization in Process Discovery
	Generalization in PPM

	Related Work

	Validity Issues in Next Activity Prediction
	Example Leakage
	Baseline and Accuracy Limit
	Implications

	Generalization in Machine Learning
	Aim and Challenges of Generalization
	Types of Generalization

	Generalization in Predictive Process Monitoring
	Aim and Challenges of Generalization in Predictive Process Monitoring
	Incompleteness and Variability
	Distributions
	Train-Test-Splitting
	Regularization
	Evaluation Metrics

	Types of Generalization

	Generalization Scenario Examples
	Scenarios with Unseen Control Flow
	Scenarios with Unseen Context Attributes

	Experiments
	Process Models and Event Log Data for the Simulated Single Scenarios
	Process Models
	Scenario-Specific Prediction Targets
	Event Log Generation and Splits

	PPM Models and Training Setup
	Prediction Model Architecture
	Event Log Preprocessing
	Hyperparameter Setting and Tuning
	Training Procedure
	Generalization Performance Evaluation

	Single Scenarios
	Results per Scenario
	Differences Between Models and Capacities
	Probability Distribution in Predictions

	Scenario Combinations
	Real-Life Event Logs
	Summary

	Discussion
	Discussion of the Experimental Results
	Discussion of Limitations

	Conclusion
	Open Access
	References

