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Abstract

Roughly a decade ago, machine learning-based (ML) assistance solutions for

air-traffic control (ATC) became a research focus. Since then, many publications

aim to reduce the workload of air-traffic controllers (ATCOs). Especially works

targeting automatic speech recognition (ASR) and natural language processing

have shown drastic improvement in recent years. However, most of the research

is focused on the improvement on ATC benchmark datasets and not on key

requirements for real-world ML ATC systems such as robustness, explainability

and privacy. Addressing these mitigates the risks of incidents and ensures that

models are aligned with data protection laws.

This thesis therefore focuses on addressing these requirements within an ATC

speech processing pipeline. Starting at the beginning of the pipeline, we investigate

the influence of acoustic and lexical differences between ATC datasets on ATC-ASR

models. Going further in the pipeline, we compare the robustness of combined ASR

and speaker role detection architectures. At the end of the pipeline, we propose

robust call-sign recognition methods and show how to train a read-back error

detection system that generalizes well to unseen airspaces. Finally, we demonstrate

at the example of ACTO stress detection that implementing privacy measures in

the pipeline does not hurt its performance. The new insights, training procedures

and architectures of this thesis bring ML based ATC support systems closer to

operation.
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Zusammenfassung

Vor einem Jahrzehnt rückten maschinell lernende (ML) Assistenzlösungen für

die Flugverkehrskontrolle (ATC) in den Forschungsfokus. Seitdem zielen Veröf-

fentlichungen darauf ab, die Belastung von Fluglotsen (ATCOs) zu reduzieren.

Besonders bei der automatischen Spracherkennung (ASR) und der Verarbeitung

natürlicher Sprache gab es zuletzt drastische Verbesserungen. Jedoch liegt hier

der Fokus auf der Verbesserung auf ATC-Benchmark-Datensätzen und nicht auf

Schlüsseleigenschaften von ML-ATC-Systemen wie Robustheit, Erklärbarkeit und

Datenschutz. Die Berücksichtigung dieser Aspekte vermindert Zwischenfällen und

harmonisiert Modelle mit den Datenschutzgesetzen.

Diese Arbeit adressiert diese Eigenschaften innerhalb einer ATC-Sprachverarbei-

tungspipeline. Am Anfang der Pipeline untersuchen wir den Einfluss akusti-

scher und lexikalischer Unterschiede zwischen ATC-Datensätzen auf ATC-ASR-

Modelle. Anschließend vergleichen wir die Robustheit kombinierter ASR- und

Sprecherrollenerkennungsarchitekturen. Am Ende der Pipeline schlagen wir robus-

te Methoden zur Rufzeichenerkennung vor und zeigen, wie man ein Read-back-

Fehlerdetektionssystem trainiert, das auf unbekannte Lufträume generalisiert.

Schließlich demonstrieren wir am Beispiel der ACTO-Stresserkennung, dass Da-

tenschutzmaßnahmen nicht die Leistung der Pipeline beeinträchtigen. Die neuen

Erkenntnisse, Trainingsverfahren und Architekturen bringen ML-basierte ATC-

Unterstützungssysteme näher an den operationellen Einsatz.
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Science is a collaborative effort.

The combined results of several people

working together is often much more effective

than could be that of an individual scientist

working alone.

— John Bardeen
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Additional publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

Artificial neural networks (ANN) are already an normal part of our lives, but took

a long time from their invention to mature to a useful technology. The history of

ANNs dates back to the first half of the last century. The neuron as logical element

was already introduced in 1943 and modeled after a real neuron. It outputs either

true or false, depending on the summation of the inputs reaching a threshold

(McCulloch et al., 1990). The first implemented ANN, the perceptron followed

a few years later in 1957 (Frank, 1958). Despite these early inventions, it took

nearly 50 years until the development of ANN gained momentum. Although further

important inventions were made in this period. In fact, John Hopfield and Geoffrey

Hinton have been rewarded with the Nobel Prize in Physics in 2024 for setting

foundations for machine learning, respectively neural networks. They used physics

to train NNs, by describing the training process as a search for the state with

1



2 Introduction

minimum energy (Hopfield, 1982; Ackley et al., 1985). Other important inventions

are for example the long short-term memory (LSTM) network (Hochreiter et al.,

1997) or the backpropagation algorithm, the basis for efficient ANN training

(Rumelhart et al., 2019), but further development stalled due to the missing

hardware. The introduction of more powerful graphics processing units (GPUs) in

the new millennium and the compute unified device architecture (CUDA) in 2007,

as parallel computing platform, allowed to accelerate the ANN training process,

by parallelizing it. This enabled the development of bigger and more importantly

deeper models, heralding the era of deep learning (Lecun et al., 2015).

The introduction of deep convolutional neural networks (CNNs) like AlexNet

(Krizhevsky et al., 2012) drastically enhanced the image recognition capabilities

of of deep neural networks (DNNs). An even bigger paradigm shift was caused

by the introduction of transformers (Vaswani, Shazeer, Parmar, Uszkoreit, Jones,

Aidan N Gomez, et al., 2017a), which led to a drastic increase in performance

in natural language processing (NLP) (Devlin, M. W. Chang, et al., 2019). An

even bigger impact from today’s perspective was the improvement of language

modeling (LM) (OpenAI et al., 2023), leading tho large language models (LLMs).

Another task that benefited from transformers is automatic speech recognition

(ASR) (Radford et al., 2022). The general performance improvement of DNNs

in the late 2010s and early 2020s resulted in them surpassing humans in several

task, from playing Go (Silver et al., 2017) to more practical tasks like image

classification or English understanding (Perrault et al., 2024).

At least since the upcoming of ChatGPT, DNNs reached the general public

(Ray, 2023). Simultaneously, they are also becoming increasingly important for

multiple industry sectors (Jan et al., 2023). In the manufacturing industry, DNNs

are the main accelerator for production optimization (De Simone et al., 2022). The

automotive industry would not be able to sell autonomous driving cars without

neural networks (Bathla et al., 2022). But probably the most impactful utilization

of DNNs happened in the medical industry, where neural network based vaccine

engineering ended the global Covid-19 pandemic (Sharma et al., 2022). Apart
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from these popular applications, there are also lesser-known machine-learning

applications. One field, where DNNs are already used is the air-traffic control

(ATC) domain.

Air-traffic controllers (ATCOs) manage hundreds of flights every day. A

typical en-route controller, which manages flights during the cruise phase, handles

for example roughly 30 flights simultaneously (Request et al., 2006). An ATCO

is therefore responsible for a save journey of thousands of people every day. The

amount of ATC traffic was and will be continuously increasing for decades (Zhang

et al., 2012). Since higher traffic correlates with higher mental workload (Corver

et al., 2016), the performance of an ATCO decreases and the probability for errors

increases (Muñoz-de-Escalona et al., 2024). With 6-10% of plane crashes being

related to ATC errors (Nikšić et al., 2022), avoiding errors in ATC is critical. This

can be done by either increasing the amount of ATCOs to keep up with the higher

traffic or by enhancing their support systems by machine learning (ML) to take

of workload from them (Helmke, Kleinert, Ahrenhold, et al., 2023).

The development of such systems already started in parallel with the devel-

opment of the first DNNs by using dynamic lattice rescoring to improve ASR for

ATC (Shore et al., 2012a). The context for the rescoring comes from an an arrival

manager (AMAN), a system which assists ATCOs during arrival. In AcListant,

one of the first ATC projects using DNNS, an AMAN is fed with the output of

an automatic speech recognition (ASR) system that transcribes spoken ATCO

commands to text (Ohneiser, Helmke, et al., 2021). This optimizes the landing

sequence provided by the AMAN and takes workload of the ATCO. Since then,

there have been many works proposing ASR or NLP solutions for ATC (Chen

et al., 2017; Pellegrini et al., 2019; Nigmatulina et al., 2021; Zuluaga-Gomez, S. S.

Sarfjoo, et al., 2023; Zuluaga-Gomez, Prasad, Nigmatulina, S. S. Sarfjoo, et al.,

2023a). The majority of these works targets however the improvement in given a

task in comparison to preceding works. But the challenge of developing support

systems for ATC lies however not only in the improvement of their accuracy but

especially in the high demand on their reliability. That is why the European Union
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Figure 1.1: Overview of the different topics of this thesis within an ATC speech

processing pipeline. Dotted lines represent open research topics.

Aviation Safety Agency (EASA) proposed a guideline to develop trustworthy ML

systems for ATC (European Union Aviation Safety Agency, 2021).

The main goal of this thesis to provide analyses and ATC ML solutions,

that help to build trustworthy ML systems for ATC. We focus on three mayor

key words of the guidelines. The major focus lies on robustness. We develop

two robust systems for call-sign recognition and understanding (CRU) and a

robust method for read-back error detection (RED). Our second focus lies on

explainability. This is addressed by investigating how lexical and acoustic factors

influence ASR for ATC and how the architectural choice of ASR and speaker-role

detection (SRD) algorithms influences their performance on ATC dataset. Our

third focus lies on privacy. An analysis is done on the impact of including privacy

measures in ATCO stress detection.

1.2 Contributions

A speech processing pipeline in ATC consists of multiple different modules. For this

thesis, we focus on some of the most common tasks, respectively most anticipated

tasks in such a pipeline. This maximizes the utility of the results for industrial

implementation. Figure 1.1 shows where the contributions of this thesis are located

in an ATC speech processing pipeline. In the following, we will elaborate each of

the contributions:
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1 Stress & Anonymization Stress detection and anonymization are two

important topics for ATC. Stress, respectively mental workload is a major factor

for ATCO errors as already explained in Section 1.1. In recent years, different

methods for predicting stress and workload have been applied, ranging from

exterior signals such as traffic density or trajectory uncertainty (Corver et al.,

2016) to internal signals like brain activity (Borghini et al., 2020) over pupil

size (Muñoz-de-Escalona et al., 2024). There have also been two early works on

communication-based workload detection. The first idea is to use communication

duration to estimate workload (Uclés et al., 2014). A different approach is taken

by Luig et al., who define a roadmap for a speech-based workload monitoring

system for ATC, based on different speech features, such as Mel-frequency cepstral

coefficients (MFCC) or pitch (Luig et al., 2010). The general problem in ATC

is the availability of training data for such a system, since air navigation service

providers (ANSPs) cannot share their data, due to privacy concerns. One way

to overcome this, is using speaker anonymization, which removes the individual

characteristics from the speech. There exist numerous anonymization techniques

(Panariello et al., 2024). For the common x-vector based systems exist already

multiple evaluations on how to reach the highest privacy (Mohan et al., n.d.).

The focus of Chapter 3, is to evaluate if stress detection in anonymized

ATCO speech is possible. Stress detection of ATC speech is a nontrivial task, since

ATCOs are trained to always stay calm and keep a similar speech style. But our

results show that speech-based stress detection for ATCOs is working. The same

holds true for anonymized ATCO speech. In case of a low resource or cross-domain

scenario, anonymization leads even to higher detection scores. We suggest that

the anonymization acts here as a data augmentation method. When it comes to

input features of the tested networks, MFCCs seem to generalize better, while the

usage of a log-mel spectrogram leads to better results in the in-domain scenario.

Our findings open the gate for further research in ATCO stress recognition, which
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could not be conducted before due privacy concerns. The content presented in

Chapter 3 is based on:

Viswanathan, Janaki, Blatt, Alexander, Konrad Hagemann, and Dietrich Klakow

(Dec. 2022). “Less Stress, More Privacy: Stress Detection on Anonymized Speech

of Air Traffic Controllers.” In: Innovation im Fokus 2, pp. 43–50. url: https:

//www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.

pdf?cid=hrf.

As second author, Alexander Blatt has written the paper together with Janaki

Viswanathan. Alexander Blatt led the experiment design. All experiments were

conducted by Janaki Viswanathan. Konrad Hagemann and Dietrich Klakow pro-

vided feedback and advised.

2 ASR ATC Pretrained transformer-based ASR models such as Whisper

(Radford et al., 2022), wav2vec 2.0 (Baevski et al., 2020) or XLS-R (Babu et al.,

2022) show a good performance over a wider range of datasets. This is not the

case for ATC datasets. It has been found, that pretraining transformer-based

models with unlabeled target domain data can significantly improve their cross-

domain performance (Hsu et al., 2021). But even when wav2vec 2.0 or XLS-R

are finetuned on multiple ATC datasets, the models reach less than half of their

training accuracy when tested on the unseen ATC datasets (Zuluaga-Gomez,

Prasad, Nigmatulina, S. Sarfjoo, et al., 2022). This raises the question of the

reason for this poor generalization within the ATC domain.

In Chapter 4, we are targeting this question. We investigate how much lexical

and acoustic differences between the ATC datasets influence wav2vec 2.0. We do

this by evaluating the model on three different datasets with different properties.

We find that both, lexical and acoustic differences equally influence the performance

of the transformer-based model. We identify that adding Gaussian noise with a

specific signal to noise ration (SNR) to clean speech data and performing ASR

gives a lower bound for what can be achieved on real-noise data with the same

https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
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SNR. We additionally show that adding a target data language model (ML) on

top of wav2vec 2.0 does improve the WER, even for noisy data. Analyzes of the

wav2vec 2.0 layer outputs show that the feature encoder is agnostic to lexical

changes. We identify features in the transformer encoder layers that could indicate

a good transferability of a finetuned model. Finally, we provide evidence that

the ASR performance on an unseen ATC dataset could be predicted via the

ratio between the source-target language model perplexity and the source-target

SNR-ratio. This allows to better predict the performance of an ASR model simply

by comparing source and target data. The content presented in Chapter 4 is based

on:

Blatt, Alexander, Badr M. Abdullah, and Dietrich Klakow (2023). “Ending

the Blind Flight: Analyzing the Impact of Acoustic and Lexical Factors on

WAV2VEC 2.0 in Air-Traffic Control.” In: 2023 IEEE Automatic Speech Recogni-

tion and Understanding Workshop (ASRU), pp. 1–8. doi: 10.1109/ASRU57964.

2023.10389646.

As first author, Alexander Blatt designed and conducted all experiments. Badr

M. Abdullah helped with the experiment design and the paper writing. Dietrich

Klakow provided feedback and advised.

3 ASR&SRD In an ATC speech processing pipeline, ASR is one of the

most important steps, which allows text-based downstream natural language

processing (NLP) tasks such as read-back error detection (RED). Many of those

tasks also benefit from or require the knowledge of the speaker role. In RED

for example, the read-back of the pilot is compared with the instruction of the

ATCO to detect mismatches. Therefore, it is important that the input transcripts

of the algorithm are labeled with the speaker roles PILOT and ATCO. State-of-

the-art (SOTA) algorithms for ATC speaker-role detection (SRD) are text-based

(Zuluaga-Gomez, S. S. Sarfjoo, et al., 2023). They therefore do not have access

to acoustic features. Standard speaker diarization (SD) methods extract however

https://doi.org/10.1109/ASRU57964.2023.10389646
https://doi.org/10.1109/ASRU57964.2023.10389646
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features from the audio, for example speaker embeddings to differentiate between

the different speakers (Park et al., 2022; Dawalatabad et al., 2021). Although SD

slightly deviates from SRD, since it aims to label its input with speaker labels,

instead of speaker roles, acoustic information is valuable in both cases. Novel SD

algorithms take both, lexical and acoustic information as input by simultaneously

transcribing and diarizing the audio input (Kanda et al., 2022; Xia et al., 2022),

but these architectures are often quite complex.

In Chapter 5 we propose a novel approach for joint speaker-role detection

and automatic speech recognition. Our approach builds on (Shafey et al., 2019),

but we use simpler transformer-based ASR models instead of transducers. We

evaluate our approach against two cascaded approaches, with separated ASR and

SRD models. Although the word error rates (WER) of our joint ASR&SRD model

are slightly higher than those reached with the best cascaded approach, we show

that our joint ASR&SRD model is superior to the cascaded approaches in terms

of SRD, while using fewer parameters than the other model. Our model is also

consistently better at adding the speaker-role token exactly at the correct position

in a sentence. Regarding the cascaded approaches, we can show that acoustic

SRD followed by ASR is robust against lexical differences between training and

target data, while applying text-based SRD after ASR seems to be the method

that gives the lowest WER. This and our joint method can also utilize lexical

similarities the best. We can also show that lexical differences between training

and target data seem to have a bigger influence on the ASR&SRD models than

acoustic differences. Our joint ASR&SRD approach eases the SRD task for ATC

since it can be applied to most SOTA ASR architectures and leverage them into

an ASR&SRD system. The content presented in Chapter 5 is based on:

Blatt, Alexander, Aravind Krishnan, and Dietrich Klakow (2024). Joint vs

Sequential Speaker-Role Detection and Automatic Speech Recognition for Air-

traffic Control. url: https://www.isca-archive.org/interspeech_2024/

blatt24_interspeech.pdf.

https://www.isca-archive.org/interspeech_2024/blatt24_interspeech.pdf
https://www.isca-archive.org/interspeech_2024/blatt24_interspeech.pdf


1.2 Contributions 9

As first author, Alexander Blatt designed and conducted all experiments with the

SRD-ASR and Joint architecture. Aravind Krishnan assisted with the experiment

design and performed all experiments with the ASR-SRD architecture. Alexander

Blatt has written the paper and Aravind Krishnan revised it. Dietrich Klakow

provided feedback and advised.

4 Noise robust call-sign recognition Since a call-sign is the unique identifier

for each flight, it is the most crucial entity in a message from an ATCO to a pilot.

Multiple works therefore target call-sign recognition. They can be divided into text-

based methods (Pellegrini et al., 2019), and speech-based methods (Nigmatulina

et al., 2021). Text-based methods mainly identify the call-sign via named-entity

recognition (V. Gupta et al., 2019), thus tagging each word of the call-sign to

extract it from the transcript. But there are also other works that use fuzzy

string matching between the transcript and the list of call-signs of airplanes in

the surrounding area (surveillance call-signs) (Kasttet et al., 2024). Speech-based

call-sign recognition can be done by injecting the surveillance call-signs into the

language model, and thus improving the call-sign recognition. It should be noted

however that a follow-up string matching is needed to really recognize the call-sign.

All these methods have the downside that they rely on a good ASR prediction,

otherwise the matching does not work, respectively just parts of the call-sign are

extracted via tagging. Furthermore, half of the methods heavily depend on the

surveillance data and only work if the call-sign is present in the surveillance data.

In Chapter 6 we propose a new call-sign recognition and understanding system

(CRU) and data augmentation method. Our data augmentation method allows us

to produce training data from unseen airports just by using the surveillance call-

signs from the new airport and we can additionally simulate low SNR conditions.

The results show that this makes our system more robust against ASR errors.

Our model is able to extract a call-sign from a transcript and convert it in

a standardized format in one step. In contrast to previous architectures, our

proposed model works with, but importantly also without surveillance call-signs.
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We investigate our system in different noise conditions and also variate the quality

of the surveillance call-signs and can show that system is robust over a wide

operation range. This closes the gap further between research and an operational

speech-processing pipeline for ATC. The content presented in Chapter 6 is based

on:

Blatt, Alexander, Martin Kocour, Karel Veselý, Igor Szöke, and Dietrich Klakow

(2022). “Call-Sign Recognition and Understanding for Noisy Air-Traffic Tran-

scripts Using Surveillance Information.” In: ICASSP 2022 - 2022 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 8357–8361. doi: 10.1109/ICASSP43922.2022.9746301.

As first author, Alexander Blatt designed and conducted all experiments. Martin

Kocour, Karel Vesely and Igor Szöke provided the audio transcripts for the ex-

periments that were labeled with call-signs by the first author. Dietrich Klakow

provided feedback and advised.

5 Call-sign recognition for edge cases Although we mentioned above

that there exist several methods for call-sign recognition. None of them is robusti-

fied for all the different edge cases that happen in ATC. This is a problem, since

the European Union Aviation Safety Agency specifically states in its guides that

systems that are build for operation must be tested and also be robust at edge

cases (European Union Aviation Safety Agency, 2021).

In Chapter 7, we identify three main edge cases that influence text-based

call-sign recognition: Firstly, high WER transcripts that are due to noisy speech.

Secondly, clipped transcripts that are due to a wrong usage of the push-to-talk

button by an ATCO and thirdly completely missing transcripts due to low SNR

values. We optimize or SOTA CRU system from above for these edge-cases and

show that this improves its performance even further over a broad operational

range. We additionally introduce two new architectures. One architecture, called

CallSBERT, which is significantly smaller and faster than SOTA CRU models,

https://doi.org/10.1109/ICASSP43922.2022.9746301
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while only lacking a fraction of their performance. The other architecture is called

call-sign-command recovery model (CCR) and can be combined with different

CRU architectures and enables them to also utilize plane coordinates for CRU.

This shift to a multimodal input allows to even recognize call-signs, when an ASR

system does not produce a transcript. This further robustifies CRU and brings it

a step closer to be used in operation. The content presented in Chapter 7 is based

on:

Blatt, Alexander and Dietrich Klakow (2024). Utilizing Multimodal Data for

Edge Case Robust Call-sign Recognition and Understanding. arXiv: 2412.20467

[cs.CL]. url: https://arxiv.org/abs/2412.20467.

As first author, Alexander Blatt designed and conducted all experiments. Dietrich

Klakow provided feedback and advised.

6 Read-back error detection Air-traffic controllers issue up to one command

every two minutes in addition to their monitoring work (Lehouillier et al., 2014).

This accumulates in an eight hour shift to 240 commands. These commands have

to be read back by the pilot, to ensure the correct understanding of the command.

A not correctly read back command is a read-back error. If not detected by

the ATCO (hear-back error), the miscommunication can lead to incidents (Yang

et al., 2023). At the example of clearance commands, it has been shown, that

this miscommunication only happens in 0.1% of the commands uttered. (Morrow

et al., 1993). Projected to the 240 commands, this still leads to a wrong pilot

behaviour every four days per controller, which is not negligible. To support the

ATCO in detecting all read-back errors, read-back error detection (RED) systems

have been in the focus of research in the last decade.

In recent years, different architectures of RED methods have been proposed.

One idea is to extract a semantic vector representation from the ATCO and the

pilot transcript and feed them as input into a classifier network. Long short-term

memory networks (LSTMs) (JIA et al., 2018a) and convolutional neural networks

https://arxiv.org/abs/2412.20467
https://arxiv.org/abs/2412.20467
https://arxiv.org/abs/2412.20467


12 Introduction

(Cheng et al., 2018) have both been shown to be able to extract meaningful

representations. Another ML-based approach utilizes BERT (Devlin, M.-W. Chang,

et al., 2018) to differentiate between read-back or no read-back (Helmke, Ondřej,

et al., 2022).

In Chapter 8, we suggest the first purely machine-based algorithm that is able

to detect multiple read-back error classes. We identify a two-stage training, that

first fine-tunes the RED classifier on noisy data and then on clean+augmented

data as the superior method for handling the high class imbalance in RED. We

can show that our method is also robust when confronted with unseen airspaces,

which opens the door for RED support systems for every airport, even without

available training data. The content presented in Chapter 8 is based on:

Bashyam, Lakshmi Rajendram, Blatt, Alexander, and Dietrich Klakow (2023).

“Enabling Noisy Label Usage for Out-of-Airspace Data in Read-Back Error

Detection.” In: 2023 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU), pp. 1–8. doi: 10.1109/ASRU57964.2023.10389759.

As second author, Alexander Blatt led the paper writing and experiment design.

All experiments were conducted by Lakshmi Rajendram Bashyam who helped

writing the paper and participated in the experiment design. Dietrich Klakow

provided feedback and advised.

1.3 Additional publications

In addition to the contributions outlined above, during my PhD, I have contributed

as a coauthor to the following publications and preprints which are beyond the

scope of this thesis:

https://doi.org/10.1109/ASRU57964.2023.10389759
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Kocour, Martin, Karel Veselý, Igor Szöke, Santosh Kesiraju, Juan Zuluaga-Gomez,

Alexander Blatt, Amrutha Prasad, Iuliia Nigmatulina, Petr Motlíček, Dietrich

Klakow, Allan Tart, Hicham Atassi, Pavel Kolčárek, Jan Černocký, Claudia

Cevenini, Khalid Choukri, Mickael Rigault, Fabian Landis, Saeed Sarfjoo, and

Chloe Salamin (Dec. 2022). “Automatic Processing Pipeline for Collecting and

Annotating Air-Traffic Voice Communication Data.” In: Engineering Proceedings

2.1, p. 8. doi: 10.3390/engproc2021013008.
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and Ethical Challenges in Recording Air Traffic Control Speech.” In: Proceedings

of the Workshop on Ethical and Legal Issues in Human Language Technologies
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This chapter contains the necessary background information for the following

chapters. Despite the purpose of self-containment, we also give here additional

information that goes beyond the scope of the main chapters. Firstly, we introduce
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Figure 2.1: Different flight phases of a plane.

the basics of air traffic control in Section 2.1 to improve the understanding of the

target domain of this thesis. Next, we shift to the ML-based background, starting

with the ML fundamentals in Section 2.2. This is followed by Section 2.3, where

we discuss the different ML architectures used in this thesis. Lastly, in Section

2.4, we introduce the ML tasks that are targeted within the following chapters.

2.1 Air-traffic control

Air-traffic control (ATC) ensures safe flight operation in all flight phases shown

in Figure 2.1. The most visible ATC structure at each airport is the control

tower. The air-traffic controllers (ATCOs) in the control tower, the tower

controllers, are mainly responsible ground control and take-off. This involves

e.g. giving instructions for taxiing to the runway or giving take-off clearances.

Similarly, during landing, a landing clearance and taxi commands are given. In the

approach, climb and descend zone, an approach controller handles an airplane.

This includes giving specific heading commands to an airplane or assigning flight

levels. In contrast to the tower controllers, the approach controllers do not need to

have visual contact with the planes, therefore they can be located outside of the

airport. The same holds true for area or en-route controllers which handle the

cruise phase of a plane. Since there occur not many direction changes during the

cruise phase, the airspaces controlled by an en-route controller are much larger

than the airspaces controlled by approach and tower controllers. The Maastricht
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Upper Area Control Centre (MUAC)1 controls for example Belgium, Luxembourg,

the Netherlands and the northwest of Germany. In this work, we focus mainly on

approach and tower communications. An exhaustive description of the entire ATC

and the air-traffic management (ATM) structure can be found at SKYbrary2.

2.1.1 Communication modalities

Depending on the flight phase, different types of communication are used. During

the en-rout phase, the commands issued by the controller are not as time-critical

as the commands during landing. Therefore, many European en-route control

centers are using the controller–pilot data link communications (CPDLC)

system. This text-based system solves two problems of the traditional speech-

based communication. During the normal very high frequency (VHF) band

communication, an ATCO controls several pilots via a 50 KHz band between

108 and 137 MHz (Raab et al., 2002). Since all pilots controlled by one ATCO

are tuned in on the same frequency, they all hear the ATCO issuing commands,

despite the command being just addressed to one pilot. This not only affects the

attention of the pilots, but can also lead to misunderstandings. Additionally one

pilot could accidentally override another pilot speaking, if they try to communicate

at the same time. Text-based communication avoids these problems (Ďurčo et al.,

2017).

During, landing, take-off and approach, fast reaction times are needed, voice

communication is here still superior to text-based communication. However, voice-

based communication is prone to errors due to miscommunications, noise, and

different accents (Tiewtrakul et al., 2010). To avoid errors, ATC communication

is based on a strict phraseology.

1 https://www.eurocontrol.int/muac
2 https://skybrary.aero/

https://www.eurocontrol.int/muac
https://skybrary.aero/
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Figure 2.2: ATC conversation during the take-off of American seven seven (AAL77)

and Dulles taxi (yellow), tower (blue) and departure (red) (Gregor,

2001).

2.1.2 Phraseology and important entities

The goal of the ATC phraseology is to standardize the communication and

avoid misunderstandings. An example of the applied phraseology in an ATC

communication is shown in Figure 2.2. The messages of the different ATCOs are

shown on the left, and the answers of the pilot of flight AMERICAN SEVEN SEVEN

(AAL77) are shown on the right. Each ATCO message starts with the call-sign

AAL77. This is a unique identifier for the flight. Since several pilots can be tuned

into the same frequency, as described in the previous section, it is crucial to make

clear which pilot is addressed by the ATCO. The short form AAL77, standardized

by the International Civil Aviation Organization (ICAO)3 consists of the three

letter long airline identifier AAL, which is the short form of AMERICAN and stands

for American Airline. The airline identifier is followed by the call-sign number, an

alpha-numerical code. For vocalization of the call-sign number, the ICAO phonetic

3 https://www.icao.int

https://www.icao.int
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alphabet4 is used. The call-sign DLH1LT is therefore vocalized as LUFTHANSA ONE

LIMA TANGO.

The call-sign is followed by the command. Command examples from Fig-

ure 2.2 are CLIMB, TAXI TO, TURN LEFT and CLEARED FOR TAKE OFF. The com-

mand specifies what the pilot should do next and is typically followed by a value.

The value further refines the command. In TAXI TO RUNWAY 30, the value RUNWAY

30 specifies to which runway the plane must taxi. The same holds true for TURN

LEFT HEADING 200, where the HEADING 200 makes clear by how far the plane

should turn to the left. In the ATCO2 project 5, we have labeled hundreds of

ATC communication transcripts with the main ATC entities call-sign, command

and values, resulting in the ATCO2 corpus (Zuluaga-Gomez, Veselý, Szöke, et al.,

2022). This corpus can for example be used to train a neural networks for ATC

named-entity recognition (NER).

The sentence structure of the pilot utterances differs from the ATCO utter-

ances. For safety reasons, a pilot is obligated to read back the command uttered

by the ATCO. The read-back usually starts with the command and the value and

is terminated by the call-sign. If the read-back is incorrect, like the heading com-

mand in Figure 2.2, the ATCO can identify the misunderstanding and repeat the

instruction until the pilot gives the correct read-back. This measure, if conducted

correctly, prevents accidents and incidents (Alharasees et al., 2023).

2.1.3 Surveillance Technologies

The term surveillance information in ATC is often still associated with radar

information, but the usage of radar to determine the position of airplanes has

disadvantages. In high traffic airspaces, for example Frankfurt Airport, the radar

display can get crowded. Furthermore, the radar system only provides positional

information. Since radar is also highly affected by obstacles between the radar

4 https://skybrary.aero/articles/icao-phonetic-alphabet
5 https://www.atco2.org/

https://skybrary.aero/articles/icao-phonetic-alphabet
https://www.atco2.org/
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antenna and the plane, which unfortunately also includes clouds, the system

is not very reliable. Therefore, Automatic Dependent Surveillance–Broadcast

or in short ADS-B has been introduced and is already mandatory for many

aircrafts in Europe and America (Rekkas, 2014). There are two components

of an ADS-B system: ADS-B IN (receiving) and ADS-B OUT (transmission).

Aircrafts are broadcasting their position, velocity, status information and an their

aircraft identifier (call-sign) every second via ADS-B OUT. Other aircrafts, ATC

providers, respectively everyone with an ADS-B IN system is capable of receiving

that information. Aircraft-to-aircraft information transmission enables planes

to detect other nearby planes, increasing situational awareness, which prevents

incidents (Kožović et al., 2023). The quality of the information is also greatly

enhanced, in comparison to radar, by the additional velocity information. The

call-sign in the ADS-B data also allows us to link the positional information to

ATC speech, respectively their transcripts. This leverages the ADS-B data to

an important surveillance information for ATC speech related tasks as shown in

Chapter 6 and Chapter 7. This is facilitated by the OpenSky Network6 (OSN)

database (Schäfer et al., 2014). This database stores ADS-B information from the

whole world and allows to extract the ADS-B data from the target airspace via

coordinates and time stamps.

2.2 Machine learning fundamentals

Finding a mathematical function f that generates the outputs yn given the inputs

xn for ∀n = 0, 1, 2, ..N in the way that

yn = f(xn) (2.1)

6 OSN Homepage: https://opensky-network.org/

https://opensky-network.org/
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can be a non-trivial task. Training neural networks (NN) allows to iteratively

find or closely approximate such a function. A NN can be described as a function

fθ, with θ as trainable network parameters. The network maps xn to ypn:

ypn = fθ(xn) . (2.2)

The goal of training or fine-tuning a neural network is to find the optimal network

parameters θopt so that yn = ypn, which is equivalent to fθ(xn) = f(xn). This goal

can be achieved by minimizing a loss function L(θ) that measures the difference

between the target and predicted outputs:

θopt = argmin
θ

L(yn − ypn) (2.3)

= argmin
θ

L(yn − fθ(xn)) . (2.4)

A common loss function is e.g. the mean squared error (MSE),

MSE =
1

n

N∑
n=1

(yn − ypn)² , (2.5)

which is used in regression problems. Choosing the right loss function for each task

is crucial for the model performance (Q. Wang et al., 2022). Instead of finding

a closed form solution for Equation 2.4, the optimal parameters can be found

iteratively via training the network with gradient descent. The training process

can be described as follows:

1. Initializing of the network with (random) parameters θ0

2. Calculating the gradient of the loss function ∇θtL at step t

3. Updating of the network parameters in negative gradient direction weighted

with the learning rate η via:

θt+1 = θt − η∇θtL . (2.6)

4. Starting again at step 2
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The goal of gradient descent is to update the parameters so that the loss gets

smaller, therefore the update is done in negative gradient direction with respect to

the parameters. For the standard gradient descent, the gradient is calculated across

the entire training dataset at each step. To reduce the computational burden,

the stochastic gradient descent (SGD) (Amari, 1993) can be used, which

calculates the gradient over a subset of the data, named batches. SGD variants

that improve the convergence behaviour are for example RMSProp or ADAM

(Kingma et al., 2015). The training process can be terminated if the network

results do not improve anymore. This can be either measured via loss decrease, or

with another target metric, for example the word error rate (WER) (Klakow

et al., 2002). The termination can be implemented with early stopping (Caruana

et al., 2001), which terminates the training if the model results do not improve

for a certain number of full train dataset iterations epochs.

2.3 Machine learning architectures

In this chapter, we introduce the basics of the architectures used in this work.

For the sake of understanding, we focus on the most important architectures and

architecture layers.

2.3.1 Feedforward neural networks

Feedforward neural network (FNN), shown in Figure 2.3, are one of the

first neural networks used and rely on a simple architecture without loops. The

parameters for the layer i are:

ai = W ix+ bi (2.7)

hi = φ(ai) (2.8)
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Figure 2.3: Feedforward neural network (FFN) with two three neuron layers and one

final output layer with one neuron.

with x ∈ Rl×1 either being the network input or the output of the previous layer

hi−1. The network parameters consists of the layer weight matrix W i ∈ Rd×l and

the layer bias vector bi ∈ Rd×1. The activation function φ in an FNN introduces

non-linearity and therefore allows to find more complex mappings between input

and output. Common activation functions are relu, sigmoid or tanh (Dubey et al.,

2022; Apicella et al., 2021).

The connectivity between subsequent layers is so high that each neuron

gets its input from all neurons of the previous layer as shown in Figure 2.3. This

allows the network to explore various combinations to find the optimal mapping

between input and output. Therefore, FNNS can be found in numerous complex

architectures in the form of fully connected layers (Devlin, M.-W. Chang,

et al., 2018; Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Aidan N. Gomez, et al.,

2017b), and they are generally used as the final classification layer for a network

(Basha et al., 2020). The drawback of the high connectivity of FNNs is the amount

of network parameters that needs to be stored. This results in a high memory

demand and long training times.

2.3.2 Convolutional neural networks

While an FNN contains many parameters because of its connectivity, a convolu-

tional neural network (CNN) is based on a different approach. The trainable
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Figure 2.4: Convolutional neural network (CNN) architecture consisting of a convolu-

tional and a pooling layer.

parameters of a convolutional layers are convolutional kernels, which are

matrices, with the dimension M ∈ Rm×n×k for 2D and 1D convolutions. n and m

define the size of the kernel and k equals the number of different kernels learned.

The convolutional layer in Figure 2.4 shows for example quadratic 2D kernels of

the size n = m. For 1D convolutions, either n or m equals 1. 1D convolutions can

only detect one-dimensional features, therefore they are for example used for 1D

inputs like single sensor outputs (Kiranyaz et al., 2021). 2D convolutions are on

the other hand used for 2D inputs like pictures or spectrograms (Z. Li et al., 2022).

Depending on the features learned, a kernel can be used to detect for example

high frequency features, like sharp edges or other features. In a CNN, the kernel

is shifted over the image and the dot product between the kernel and the input

is calculated at each position to identify the kernel-specific features all over the

input. This makes this network architecture very efficient because even for a large

input, only a significantly smaller kernel function needs to be learned. Stacking

multiple convolutional layers increases the field of view of the upper kernels with

respect to the input. This allows the extraction of bigger, respectively high level

features. To detect different features, k different kernels are learned instead of
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a single one. Convolving each of these kernels with the input results in the k

feature maps shown in Figure 2.4.

The second most important layer in a CNN after the convolutional layer

is the pooling layer. The pooling layer decreases the dimension of the feature

maps by pooling features in a defined window of the previous layer. Figure 2.4

shows for example a 1× 3 pooling kernel. Different pooling methods, like mean,

max or min pooling, give different weights to the original features during pooling

(Zafar et al., 2022). Max pooling extracts for example the dominant feature of the

pooling window. If a CNN is used as a standalone classifier, the final layers are

mostly fully connected layers (Basha et al., 2020). In modern speech recognition

architectures, CNNs are mostly used as basal feature extraction layers (Baevski

et al., 2020).

2.3.3 Transformers

The introduction of transformers by (Vaswani, Shazeer, Parmar, Uszkoreit,

Jones, Aidan N Gomez, et al., 2017a) has led to a paradigm shift in multiple

language, speech and vision tasks. The original transformer architecture is shown in

Figure 2.5 and consists of an encoder and a decoder block. In contrast to recurrent

networks like long short-term memory (LSTM) networks (Greff et al., 2017), the

input sequence is not fed in sequentially, from start to end, put in parallel. This

allows a much faster processing. The sequential order of the input sequence is

preserved via the addition of positional encoding to the input embedding. This

modified input is fed into the transformer encoder block, specifically the first

multi-head attention layer. Each head of the multi-head attention layer learns

to ”give attention” to specific positions of the input (more details about the

attention mechanism can be read-up in (Vaswani, Shazeer, Parmar, Uszkoreit,

Jones, Aidan N Gomez, et al., 2017a) since attention is not in the focus of this

work). In a text-based input, one head could for example learn to focus on the

beginning of the sentence, to find the subject of the sentence. The multi-head
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Figure 2.5: Transformer architecture consisting of an encoder and a decoder block

as introduced in (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Aidan N

Gomez, et al., 2017a).

attention layer is followed by a residual connection that allows the input to bypass

the multi-head attention layer and a layer normalization step that stabilizes the

training process (L. Huang et al., 2023). This is followed by a position-wise 3

layer FNN as described in Section 2.3.1 and again an ”Add&Norm” layer. This

structure is repeated N times as shown in Figure 2.5.

The decoder has a similar structure, but it also takes in the output of the

encoder as input. The masked multi-head attention allows the decoder only to

attend to positions that are ”left” of the the current position it should predict.

The decoder therefore predicts the next token based on the encoder output

and the previously predicted output. This makes the transformer decoder an

autoregressive model, while the transformer encoder is a bidirectional model.

Bidirectional architectures based on the transformer encoder are BERT, ALBERT

or wav2vec 2.0 and autoregressive models are GPT1-4, LLaMa or Bart (Kalyan

et al., 2021). While the bidirectional models are mainly used for natural language
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Figure 2.6: The transformer encoder-based architectures wav2vec 2.0 (left) and BERT

(right) while pretraining via masking.

processing (NLP) tasks, autoregressive models are used for sequence-to-sequence

tasks like translation or question answering.

In Chapter 6 and Chapter 7, we use the full transformer architecture for

call-sign recognition. In Chapter 7, we use additionally BERT, shown in Figure 2.6

(right) as bidirectional model for call-sign recognition. BERT is also used in Chap-

ter 8 for read-back error detection. BERT or bidirectional encoder representations

from transformers is a pretrained transformer encoder-based architecture. BERT

is pretrained on unlabeled data via masked language modeling (MLM) by

masking 15% of the input tokens (words) and predicting them as output. This

pretraining step is the key of the success of transformer architectures, since it does

not require labeled data and can therefore be performed on large databases like

Wikipedia or web Common Crawl data (Kalyan et al., 2021). Pretraining allows

the model to adapt to a certain language or domain, like for example the air-traffic

control domain. Finetuning BERT on the final task, e.g. call-sign recognition,

can then be done on a smaller labeled corpus, by adding a classification head,

based on a FNN on top of the encoder.

Another encoder based architecture is wav2vec 2.0 (Baevski et al., 2020),

shown in Figure 2.6 (left). Wav2vec 2.0 is used in Chapter 4 for ASR and in

Chapter 5 for speaker role detection. During fine-tuning, wav2vec 2.0 also consists

of an encoder-FNN stack, similar to BERT. But since wav2vec 2.0 gets audio as
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input, it possesses a CNN based feature encoder that converts the continuous speech

signal into a discrete signal. This makes the pretraining step, shown in Figure 2.6

(left) more complicated. The CNN produces feature vectors Z0,Z1,Z2..ZT for

every 20 ms of speech. These feature vectors are fed into the transformer encoder

and the quantization module. The transformer encoder produces the projected

context vectors c0, c1, c2..cT out of the input. The quantization module converts

the feature vectors to quantization vectors q0, q1, q2..qT . These quantization

vectors are sampled from a finite codebook, which allows to produce a finite

vocabulary, similarly to a language processing task (A detailed description of the

quantization module, which is beyond the scope of this chapter, can be found in

(Baevski et al., 2020)). During pretraining, a feature vector ZM is masked and

the transformer encoder is trained by contrastive loss to distinguish between the

correct quantization vector (qM in Figure 2.6) and the distractors (q0 and q3 in

Figure 2.6). During the contrastive loss calculation, the cosine similarity between

the quantization vectors and the projected context vector at the masked position

(cM) is calculated with the goal to reduce the distance between cM and qM and

increase the distance between cM and q0, q3. Roughly 50% of the feature vectors

are replaced with the masked feature vector ZM and for each masked position

100 distractors are sampled over the input sequence positions during pretraining.

The quantization module is dropped before finetuning as already explained

above. For ASR, a language modeling head on top of the transformer encoder is

used for connectionist temporal classification (CTC) (Graves, Fernández, et al.,

2006a). CTC is an algorithm that allows to train a network without knowing

the alignment between an input sequence x1, x2, ..., xn and an output sequence

y1, y2, ..., yn. Since the speech rate varies between speakers and even for one speaker,

overcoming the alignment problem is crucial. Figure 2.7 shows how CTC overcomes

this problem by first continuously predicting a letter for a fixed timeframe. In the

next step, repeated characters, which allow to accommodate to different speech

rates, get merged. In the last step, the blank token ε, which allows silence but also
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Figure 2.7: CTC algorithms steps, After the initial sequence prediction (1), repeated

characters are merged, followed by the removal of the blank token.

double consonants, is removed. An in-depth view of the CTC is given in (Graves,

Fernández, et al., 2006a).

2.3.4 Multimodal networks

All models introduced in the previous sections are based on one input. In reality,

models often rely on multiple input modalities (Sleeman et al., 2021). These

multimodal networks can utilize speech, text, radar, sensor data or other

modes to either enhance prediction accuracy or increase robustness, if one of the

input modalities is not available, or the measurements are noise (Ngiam et al.,

2011). Improving ASR by including visual features is an example of this. In

Chapter 7, we use ADS-B information to improve the robustness and accuracy

of call-sign recognition and understanding (CRU) in edge cases. Depending on

when the information of the different modes is merged, one can differ between the

two main scenarios shown in Figure 2.8 (Sleeman et al., 2021). In the late fusion

approach, a model is trained for each modality, for example a separate speech and

text classifier. This gives the benefit that already finetuned single-modality models

can be utilized. The early fusion approach relies on training a model based on

both modalities. Just a feature extractor is used to preprocess each modality, this

could be for example a pretrained wav2vec 2.0 model (speech) or a pretrained

BERT model (text). This approach allows the model to be optimally adapted to

both modalities.
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Figure 2.8: Different fusion approaches based on the point of fusion. In late fusion

(top), individual models are trained for each modality and in early fusion

(bottom) a single model is trained for both modalities.

Our CRU architecture in Chapter 7 is a combination of both approaches.

The joining of the features themselves, can be realized via a simple concatenation,

or a DNN based feature merging.

2.4 Machine learning tasks

This section introduces speech and language processing related machine learning

tasks, that are relevant for the following chapters.

2.4.1 Named-entity recognition

named-entity recognition (NER) is a common natural language processing

(NLP) task. The goal is to identify named entities in a text document. Common

named entities are for example LOCATION, PERSON or ORGANIZATION

(Nadeau et al., 2007). These entities vary however depending on the domain.

Important named entities for ATC are CALL-SIGN, COMMAND and VALUE as

described in Section 2.1.2. A good overview of NER algorithms and datasets is

given in (J. Li et al., 2022). There exist also multiple tagging schemes for named

entities. A widely used scheme is the IOB scheme introduced by Ramshaw et al.
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American seven  seven Dulles    taxi       to    runway  thirty

B-Cal   I-Cal   I-Cal B-Com I-Com B-Val    I-Val O

Figure 2.9: IOB tagged sentence with the named entities call-sign (Cal), command

(Com) and value (Val).

(Ramshaw et al., 1999). In this scheme, a token, respectively word is marked to be

either at the beginning (B), inside (I) or outside (O) of a named entity. An IOB

labeled ATCO instruction is shown in Figure 2.9. Despite the IOB scheme, there

exist also other schemes, for example the IOBES scheme which also explicitly

tags the end of a named entity. This additional information can lead to a higher

accuracy, respectively F1 score (Alshammari et al., 2021).

The F1 score is a measure, used in classification, that combines precision,

defined as

precision =
tp

tp+ fp
(2.9)

and recall, defined as

recall =
tp

tp+ fn
(2.10)

in one metric via:

F1 = 2
precision · recall
precision+ recall

. (2.11)

With tp beeing the true positive, fp beeing the false positive and fn beeing the

false negative classified instances. All three measures, F1, recall and precision

range from 0 (low) to 1 (high). Assuming a binary NER task, where a token either

belongs to a named entity or not, precision measures how many of the tokens

that are labeled as part of a named entity are correct. Recall on the other hand

measures how many of all tokens that are part of a named entity are detected by

the classifier. In a scenario with a highly unbalanced class distribution, the F1

score is preferable over the accuracy, which overfits the majority class

In this work, we focus on detecting the call-sign as named entity in ATCO,

respectively pilot transcripts. We go however a step further and also automatically

convert the detected call-sign to the standard ICAO format as shown in Chapter 6.

We therefore call this task call-sign recognition and understanding (CRU).
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Figure 2.10: ASR converts an audio recording to text.

2.4.2 Automatic speech recognition

Automatic speech recognition (ASR) or speech-to-text (STT) systems tran-

scribe an audio recording to text as shown in Figure 2.10. An introductory overview

of ASR models and techniques can be found in (Malik et al., 2021). Traditional

ASR models are based on a cascaded structure. An acoustic model, that maps

the audio input to phonemes, is followed by a language model, which maps the

phonemes to words (Derouault et al., 1986). The important information of the

audio input lies within the frequency range of the human voice which ranges

roughly from 50-20000 Hz (Monson et al., 2014). Within this range, humans are

able to differentiate pitch differences better for lower than for higher frequencies,

which is the basis of the mel scale (Vergin et al., 1999):

mel = 2595 log10(1 +
f

700
). (2.12)

This scale is embedded in the calculation of the mel-frequency cepstral co-

efficients (MFCCs) (Zheng et al., 2001). The mel scale is used in the MFCC

calculation to generate a filterbank, which contains vectors, that are evenly spaced

in the mel, but not in the frequency scale. These vectors are used to downsample

the frequency range of a spectrum. After calculating the logarithm of the resulting

filterbank coefficients, they are uncorrelated via discrete cosine transform (DCT)

to get the MFCCs. The MFCCs contain therefore the information of a spectro-

gram in a condensed form. Since the whole frequency range is condensed in a

small amount of coefficients, this number needs to be sufficiently high to preserve
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the relevant frequency information. Despite the dependence on the language, 25

coefficients are a good general choice (Hasan et al., 2021).

In traditional ASR systems, MFCCs are the input of the acoustic model.

The acoustic model maps the MFCCs to phonemes, more precisely to a probability

distribution over phonemes, respectively characters for chunks (windows) of the

input data. The language model, which is trained on text data, scores the

output of the acoustic model based on the statistics learned during training.

State-of-the-art transformer-based large language models (LLMs) like GPT-4

are trained on a hundreds of GB up to TB of text data, reaching human-level

performance in several tasks (OpenAI et al., 2023).

Modern ASR systems rely on a ML-based end-to-end architectures, first

introduced in 2014 (Graves and Jaitly, 2014). The model input can consists of

raw audio data, as it is the case for wav2vec 2.0 (Baevski et al., 2020), introduced

in Section 2.3.3. But one of the most successful end-to-end models, whisper, still

relies on the mel scale by using the log-mel spectrogram as input (Radford et al.,

2022). The breakthrough of these models lies within the capability to be pretrained

on a massive amount of unlabeled speech data. End-to-end ASR systems are in

most cases trained via CTC loss, which is further explained in Section 2.3.3.

To evaluate the performance of an ASR method, the word error rate

(WER) is used. The WER measures the distance between the reference transcript

and the ASR transcription by adding up the changes between the reference and

the prediction:

WER =
I +D + S

N
. (2.13)

The sum of the inserted I, deleted D and substituted S words in the prediction is

divided by the sum of all words in the reference N .

The ATC domain poses a challenge for ASR models due to noisy recordings,

accented and multilingual speech and domain specific vocabulary. We further

investigate this in Chapter 4 and Chapter 5.
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Figure 2.11: Labeling of a utterance and its transcript with speaker role labels.

2.4.3 Speaker Role Detection

The goal of speaker role detection (SRD), also known as speaker role recogni-

tion, is to detect the speaker role belonging to a word sequence, respectively a

portion of an audio recording. Figure 2.11 shows this at the example of the speaker

roles ATCO and Pilot. SRD differs from diarization, which can be best explained

by looking at the tagging. In diarization, there consists a speaker-tag for each

speaker, in SRD, the speaker role tag is not bound to a single speaker. This makes

SRD for example interesting for dialog-based tasks that are based on specific

speaker roles like: doctor - patient (Flemotomos et al., 2020), interviewer -

guest (Bellagha et al., 2020) or, as mentioned above, ATCO - Pilot (Zuluaga-

Gomez, S. S. Sarfjoo, et al., 2023). In case of SRD tagged speech, speaker role

specific ASR algorithms can be applied, which leads to optimal adaptation to

the role specific vocabulary. Similarly, for SRD tagged text data, speaker role

specific NLP technologies, like NER can be applied. Since diarization and SRD

are closely related, algorithms and NNs for diarization can often also be used for

SRD. Therefore, these two diarization reviews give also a good overview of SRD

architectures: (Serafini et al., 2023; Park et al., 2022).

We investigate SRD in the ATC domain, with the speaker roles ATCO and

Pilot. In Chapter 5, we evaluate how SRD and ASR can be optimally combined

to produce SRD-tagged transcripts.
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Figure 2.12: Speaker anonymization pipeline. The anonymization network is tuned to

reduce the WER reached by an ASR system on the anonymized speech

and simultaneously increase the EER of the ASV system.

2.4.4 Speaker Anonymization

The training of neural networks requires large amounts of data. Especially when

large amounts of data are scraped from the internet, for example for training LLMs,

or data is sent to the cloud for processing, as it is done in ChatGPT, data protection

and privacy concerns arise (Sebastian, 2023). In Europe, there are two main

legislative texts that regulate AI, the general data protection regulation (GDPR)

(Aridor et al., 2020) and the EU AI act (Neuwirth, 2022). These legislative texts

forbid, among others, to use biometric data for model training without a permit.

Biometric data is data that can be used to unambiguously identify a person. This

includes for example voice and image samples of a person. In case of voice data,

speaker anonymization is an effective method to anonymize the data, which

renders it useless for biometric identification, but still allows it to be used for

training ML systems (Yoo et al., 2020). This is done by altering speaker-unique

features, such as pitch of the speech. In x-vector anonymization, the extracted

speaker embedding (x-vector) is altered to achieve anonymization (Srivastava

et al., 2022). Figure 2.12 visualizes a general speaker anonymization pipeline.

In most cases, the objective of a speaker anonymization training is to decrease

the WER reached by an ASR system on the anonymized data. Simultaneously

the equal error rate (EER) reached by an automatic speaker verification
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system (ASV) on the anonymized data should be increased. The equal error

rate is defined by

EER = FAR + FRR, (2.14)

with the false acceptance rate (FAR) and the false rejection rate (FRR) (Franzreb

et al., 2023). A better overview of the anonymization task and different speaker

anonymization networks is beyond the scope of this chapter and can be found

in the description of the VoicePrivacy Challenge 2024 (Tomashenko, Srivastava,

et al., 2022).

Data protection is also a big hindrance, when it comes to collecting training

data from air navigation service providers (ANSPs). In Chapter 3, we investigate

therefore, if anonymized ATCO speech can be used for stress detection.

2.4.5 Low-resource learning

The basis of supervised learning is the availability of labeled data. If labeled data

is not available, the data must be labeled manually. This labeling process can be

very time and cost intensive (Fredriksson et al., 2020). To overcome this, there are

multiple approaches. Approaches that focus on generating more training data are

for example classic data augmentation, active learning and noisy labeling.

A standard data augmentation technique is to apply noise (Mumuni et al., 2022).

In case of text data, LLMs can be utilized to produce similar samples (Ding et al.,

2024). In contrast to data augmentation, noisy labeling utilizes unlabeled data

(Song et al., 2023). The idea behind this is, that even if there is just a small

amount of labeled data available, there exists usually a high amount of unlabeled

data. To utilize this data, rule-based labeling can be applied. ”Label every sentence

with the word happy in it as positive emotion” would be one simple rule. This

rule would for example produce a wrong label for ”I am not happy”. Therefore,

the labels produced by such a rule-based system are noisy. The first networks that

trained on noisy labels relied on noise adaptation layers to counteract the noise. It

has however been shown, that transformer-based architectures do not need these
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measures (D. Zhu et al., 2022). After training on noisy labeled data, a model can

be further finetuned on clean data.

Active learning is a technique, that is not based on producing a high amount

of samples, like the aforementioned methods, but on selecting the best samples for

labeling (Ren et al., 2022). To achieve this, a model is trained on an initial pool

of labeled data. This model is then used to predict the label of a small part of the

unlabeled data. Good candidates for further labeling are the samples, at which

the model has the highest uncertainty. Those samples have a high chance to lie,

in a classification problem, close to the decision boundary between two classes.

They are therefore the samples that have the highest information content. After

labeling those samples, the model can be trained again on the now bigger labeled

pool.

If there is just little data available, class imbalance often becomes a common

problem. Class imbalance in a classification scenario leads to overfitting on the

majority class. This can be avoided by data distribution or loss function adjustment.

Under-sampling the majority class or over-sampling the minority class leads

to more equally distributed classes and therefore avoids overfitting (Johnson et al.,

2019). Introducing class-specific weights in the loss function is another way to avoid

overfitting on specific classes. An example of this is the weighted cross-entropy

function (Aurelio et al., 2019).

In Chapter 6, we use data augmentation to enhance call-sign recognition. In

Chapter 8, we investigate the usage of data augmentation, noisy labeling and loss

function weighting in read-back error detection.
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Air-traffic control (ATC) demands multitasking under time pressure with

high consequences of an error. This can induce stress. Detecting stress is a key

39



40 Less Stress, More Privacy: Stress Detection on Anonymized Speech of Air-traffic Controllers

point in maintaining the high safety standards of ATC. However, processing

ATC voice data entails privacy restrictions, e.g. the General Data Protection

Regulation (GDPR) law. Anonymizing the ATC voice data is one way to comply

with these restrictions. In this chapter, different architectures for stress detection

for anonymized ATCO speech are evaluated. Our best networks reach a stress

detection accuracy of 93.6% on an anonymized version of the Speech Under

Simulated and Actual Stress (SUSAS) dataset and an accuracy of 80.1% on our

anonymized ATC simulation dataset. This shows that privacy does not have to

be an impediment in building well-performing deep learning-based models.

The content of this chapter is based on:

Viswanathan, Janaki, Blatt, Alexander, Konrad Hagemann, and Dietrich Klakow

(Dec. 2022). “Less Stress, More Privacy: Stress Detection on Anonymized Speech

of Air Traffic Controllers.” In: Innovation im Fokus 2, pp. 43–50. url: https:

//www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.

pdf?cid=hrf.

3.1 Introduction

Air-traffic controllers (ATCOs) constantly deal with a lot of information and need

to choose the right procedure based on the circumstances and make quick decisions.

The high level of responsibility along with the potentially fatal consequences of

an error and working in shifts are known as prime sources of occupational stress

(Costa, 1996). Measures taken to prevent burn-outs and ATC-related incidents

(Nikšić et al., 2022) include mandatory recovery breaks and continuous training

of the ATCOs to handle stress and infrequent scenarios (Costa, 1996). However,

people cope with stress differently, which includes the behaviour during stress

as well as the recovery time needed after stress. ATCO stress detection is an

https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
https://www.dfs.de/homepage/de/medien/publikationen/internet-fokus2202.pdf?cid=hrf
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effective way to prevent incidents (Loewenthal et al., 2000). Monitoring ATCOs’

mental state can be done in several ways. One approach is to use physiological

measures like heart rate or respiration rate (Sammito et al., 2016). This has the

drawback that these methods are intrusive and therefore not suitable for daily

use in ATC. A less intrusive approach is to use operational speech data that

is recorded anyway and is regularly deleted. Although stress detection for ATC

speech is complicated by the fact that ATCOs are trained to remain calm even

in stressful situations, Luig et al. (Luig et al., 2010) have already shown with

simulated data that speech can be used to measure the workload of an ATCO. In

their work, the authors argue that “stress” can be used as a term that describes

“an individual’s subjective capacity […] influenced by a multitude of factors” such

as working conditions as well as “remarkable events and changes in private life”

(Luig et al., 2010). Single influences on this mental state are regarded as “stressors”.

There exist several works which describe stress as a factor that affects workload

(Costa, 1996; Sillard et al., 2000; Hagmüller et al., 2006; John H.L. Hansen et al.,

2007; Luig et al., 2010). According to Luig et al., the workload level is describing

the subjective capacity utilization, which cannot be directly derived from the

taskload level (related to the task complexity or size, e.g. traffic type or amount of

traffic). They are targeting the development of a speech analysis system for ATCO

voice that indicates different factors of human stress with the goal to estimate

the ATCOs workload level from the stress level. In contrary to that, in this work,

we use subjective ISA workload measurements to estimate levels, which are then

used for ATC speech-based binary stress classification. A major restriction for

any ATCO monitoring activities is privacy laws and regulations. Since ATC is

a worldwide business, global and also local privacy laws must be met. With the

rising collection of speech-assisted tools, there are also new guidelines that have to

be met (Politou et al., 2018). One way to avoid privacy- related issues is to remove

personal information from the collected data. This can be done either on a text or

speech level. On the text level, entities which are linked to private information, for

example, birth dates or phone numbers, can be masked or replaced (Adelani et al.,
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2020). Since ATC speech is standardized and relies on a fixed phraseology1, private

entities are not as common as in normal speech. Therefore, we focus on speech in

this work. On the speech level, anonymization assures that the original speakers -

ATCOs or pilots, cannot be tracked back (Tomashenko, X. Wang, et al., 2022).

In the scope of this work, therefore, a stress recognition model for anonymized

ATCO speech is proposed. In addition, a multiclass speaking style classification

task is implemented to show that privacy does not have to be a barrier for speech

processing.

3.2 Related work

Traditional speech-based stress or emotion identifying methods are rule-based

or use Hidden Markov Models (HMMs) (Nogueiras et al., 2001). More recent

approaches rely on deep learning methods. Tomba et al. (Tomba et al., 2018)

show that mean energy, mean intensity and mel frequency cepstral coefficients

(MFCC) can be used to detect stress. Luig et al. (Luig et al., 2010) investigate

different speech features for ATCO workload prediction. They use the frequency

of utterances spoken per minute as an indirect indicator of stress. Borghini et

al. propose to measure ATCO stress directly from brain activities using methods

such as electroencephalography (EEG) (Borghini et al., 2020). In (Shin et al.,

2020), the authors propose different model architectures based on deep learning

algorithms. They use convolutional layers to embed the relevant spectral input

features and propose to add a long short-term memory (LSTM) network on top of

the convolutional layers to capture the temporal components. The final multi-head

attention layer can give more weight to the important parts of the input. This

design is taken as the basis for our stress recognition model. Xu et al. (Xu et al.,

2021) propose a similar architecture for emotion recognition and identify vocal

tract length perturbation (VTLP) as a useful augmentation method for emotion

1 ATC phraseology examples from the Federal Aviation Administration: https://www.faa.

gov/air_traffic/publications/atpubs/aim_html/chap4_section_2.html

https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap4_section_2.html
https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap4_section_2.html
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recognition. Speaker anonymization methods are benchmarked since 2020 in the

Voice Privacy Challenge (VPC) (Tomashenko, X. Wang, et al., 2022). For privacy

evaluation, the VPC2020 considers various attack scenarios depending on the

knowledge of the attacker. In the first task, unprotected, both the users and the

attackers use original data. In the second task, ignorant attacker, users anonymize

their data but the attackers are unaware of it and assume original data. In the

third task, lazy-informed,both, the users and attackers, use anonymized data and

the attacker also has access to the speaker identities. For the work at hand, the

speaker anonymization method of Kai et al. (Kai et al., 2021) was used since it

reaches equal error rates (EERs) above 40% on task II of the VPC2020 which

indicates a high anonymization capability. The automatic speech recognition

(ASR) method of the VPC2020 reaches a low word error rate (WER) of up to

10% on the anonymized speech, which indicates that the anonymization of Kai et

al. still allows the recognition of the spoken words. However, other downstream

tasks, i.e. applications of anonymized speech, are not investigated in the VPC2020.

Therefore, an evaluation of emotion recognition has been included in this work.

3.3 Experimental Setup

3.3.1 Datasets

Our experiments are performed on the SUSAS (John HL Hansen et al., 1997)

and DFS Munich approach simulation (DFS-MAS) datasets. The SUSAS dataset

contains speech samples for different speaking styles. Nine speaking styles are

considered: anger, fast, Lombard (involuntarily increase of the voice level when

there is background noise (Zollinger et al., 2011)), loud, clear, neutral, slow, soft

and question. Each speaking stile has 630 samples each except for neutral with

631 samples. Hence, the considered SUSAS dataset consists of 5671 samples in
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total. To enable binary stress detection, the following grouping of the speaking

styles is suggested:

• STRESS: anger, fast, Lombard, loud

• NO-STRESS: clear, neutral, slow, soft

The label question has been left out for our binary classification since it could

occur in both stress and no-stress scenarios. Hence, there are 5041 samples for

the stress detection task. An 80:20 split is done to create train and test sets and

the train set is split again as 80:20 to create train and validation datasets. This

is based on the approach used by Shin et al. (Shin et al., 2020) and results in a

train |val |test split of 64% |16% |20%. This data split is used for all experiments.

The DFS-MAS dataset was produced by Deutsche Flugsicherung GmbH (DFS). It

consists of ATC simulation data for Munich approach. Two male and two female

ATCOs, each with more than ten years of work experience, have been recorded for

this dataset. Following the approach by Luig et al. (Luig et al., 2010) described

above, the workload level is used here as an approximation for the stress level of

an ATCO. During the 90-minute simulation run, the workload of the ATCOs was

measured every five minutes via an electronically presented pop-up questionnaire

using the instantaneous self- assessment of workload technique (ISA) (Jordan

et al., 1992; Kirwan et al., 1997). For binary stress detection on the DFS-MAS

dataset, the stress labels are grouped according to the ISA workload labels:

• STRESS: high, excessive

• NO-STRESS: boring, relaxed, comfortable

The DFS-MAS data is highly imbalanced with 60 stress and 678 no-stress samples.

Therefore, data augmentation methods such as VTLP and white noise addition

are applied. To ensure that the distribution of the augmented data is the same

across labels, the same number of augmented samples are generated for both

classes. The standard parameters in the nlpaug package (Ma et al., 2020) are

used. We generate ten different augmented versions of the stress samples - five
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Table 3.1: Summary of the augmented DFS-MAS dataset. The multiplication factors

of the [train, validation, test] splits represent the number of different copies

created per clean sample.

Augmentation Stress No-stress

method [39, 9, 12] [435, 108, 135]

None [39, 9, 12] [45, 18, 15]

VTLP [39, 9, 12] * 5 [195, 45, 60] * 1

White noise [39, 9, 12] * 5 [195, 45, 60] * 1

Total [429, 99, 132] [435, 108, 135]

using VTLP and five using white noise addition, while the majority class (No-

Stress) is just augmented once per sample. Table 3.1 gives an overview of the data

augmentation. To test the performance of stress detection on anonymized data,

an anonymized version of both datasets is created. The anonymization method

is described in the next section. The classification tasks are performed on both,

anonymized and non- anonymized data.

3.3.2 Anonymization

As mentioned above, the lightweight voice anonymization (LVA) of Kai et al.

(Kai et al., 2021) is used as the speaker anonymization method. Due to the high

overall performance in the VPC2020 Tasks I, III, and V, waveform resampling is

used as the anonymization method for the experiments if not stated otherwise.

Moreover, the gender-specific parameters are used for all samples. Resampling is

based on the Waveform Similarity Overlap-Add (WSOLA) algorithm, which allows

stretching the original speech signal by a factor �, while maintaining the correct

pitch. Resampling this stretched signal by an �-times faster sampling frequency



46 Less Stress, More Privacy: Stress Detection on Anonymized Speech of Air-traffic Controllers

leads to the anonymized signal, which is of equal length as the original signal but

varies, for example, in the pitch and formants.

3.3.3 Speech Preprocessing

The ATC utterances are pre-processed before they are fed through the classification

network. A Wiener filter (Benesty et al., 2005) is first applied to remove noise.

Furthermore, a pre-emphasis filter is applied which boosts the signal-to-noise

ratio of the higher frequency components since they are more susceptible to noise.

Short-time Fourier transformation (STFT) is applied to generate the spectrogram.

Then the log-amplitude spectrogram is obtained by taking the logarithm of

the amplitude component of the spectrogram. It is further converted to a mel

spectrogram (MS) using the mel frequency conversion formula (Stevens et al.,

1937) together with a filter bank of 128 filters. Two different speech representations

are compared. The first one is obtained by applying the logarithm to the MS. This

results in the log mel spectrogram (LMS) as network input. The second speech

variant is generated by applying the discrete cosine transformation (DCT) to

the LMS to generate the mel frequency cepstral coefficients (MFCC) (Chadawan

Ittichaichareon et al., 2012). Using MFCC has the advantage that the input

data can be compressed without losing too much information by using the most

informative DCT coefficients and dropping the rest. For our experiments, 20

coefficients are used.

3.3.4 Stress Detection Networks

Our stress detection networks are based on (Shin et al., 2020). Three different

architectures are investigated with increasing complexity - CNN, CRNN, and

CRNN+Attention. They are built using different parts of the stack: CNN +

LSTM + multi-head attention. Figure 3.1 shows the architecture of the models.
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Figure 3.1: Stress detection network depicting all three architectures. The network

is built incrementally. The blue dotted box represents the CNN, CNN

along with the black dotted box represents the CRNN, and the CRNN

along with the pink dotted box represents the CRNN+Attention model

architecture.

Table 3.2: Comparison of architecture sizes for different speech representations.

Model architecture
Number of trainable parameters

MFCC LMS

CNN 7,435,906 8,114,818

CRNN 9,012,866 9,691,778

CRNN+Attention 10,063,490 10,742,402

Multi-head attention with four heads is used since this is the best performing

architecture of Shin et al. (Shin et al., 2020). The experiments are repeated thrice

and the mean and the standard deviation of the accuracies are calculated to check

for robustness of the models.

3.4 Results

3.4.1 Architecture Comparison

The different architectures vary largely in their number of trainable parameters

as shown in Table 3.2. This raises the question whether the additional parameters
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Table 3.3: Emotion and stress recognition accuracies on the SUSAS and DFS-MAS

test sets. The standard deviation scores are given in brackets.

SUSAS DFS-MAS

Anonymized Feature Model architecture 9 Emotions Stress Stress

No

CNN 75.6% [0.008] 93.0% [0.009] 74.2% [0.013]

MFCC CRNN 75.8% [0.008] 93.1% [0.006] 73.5% [0.012]

CRNN+Attention 70.6% [0.029] 93.9% [0.006] 75.6% [0.039]

CNN 76.8% [0.004] 93.6% [0.002] 66.9% [0.027]

Log mel spectrogram CRNN 77.7% [0.006] 94.4% [0.004] 66.9% [0.054]

CRNN+Attention 73.9% [0.022] 93.0% [0.005] 71.6% [0.042]

Yes

CNN 73.7% [0.006] 91.2% [0.002] 71.8% [0.042]

MFCC CRNN 72.3% [0.008] 91.5% [0.005] 69.5% [0.046]

CRNN+Attention 71.5% [0.009] 91.9% [0.004] 75.9% [0.044]

CNN 74.9% [0.008] 92.5% [0.005] 71.4% [0.006]

Log mel spectrogram CRNN 75.6% [0.015] 93.6% [0.003] 74.8% [0.036]

CRNN+Attention 74.1% [0.003] 93.6% [0.002] 80.1%[3.384]

lead to an increased accuracy. The architecture comparison in Table 3.3 shows that

either the CRNN or CRNN+Attention models have the highest accuracy for most

of the experiments. The highest scores on the speaking style and stress classification

tasks on the SUSAS dataset are reached by the CRNN architecture in combination

with the LMS feature. This holds true for anonymized and non-anonymized data

where the CRNN model outperforms the 11% larger CRNN+Attention model. In

contrast, on the DFS-MAS dataset, the benefit of the additional attention layer

of the CRNN+Attention model leads to a significant increase in accuracy of more

than 5% in comparison with the CRNN model.

Replacing MFCC with LMS as input feature leads to an average performance

gain of 1-2%. This comes with the trade-off that the input dimension is increased

by a factor of 6.4. Therefore, using MFCC as input is a valid alternative for devices

with lower computational power.
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3.4.2 Stress Detection for ATC

ATC speech differs substantially from normal speech. It consists of a set of

phraseologies that allow for handling different situations, such as landing, take-off,

and emergencies. In addition to that, ATCOs are supposed to give clear and calm

instructions even under stressful situations. Furthermore, it is difficult to obtain a

properly labeled, well-balanced dataset specific to the ATC scenario. This makes

stress detection in this domain challenging. Table 3.3 shows the difference in

the accuracy of stress detection between the SUSAS and the DFS-MAS dataset.

Due to the challenges mentioned above, the mean accuracy on the DFS-MAS

dataset is about 20% lower. In contrast to the SUSAS data, the more complex

CRNN+Attention model reaches the highest accuracies independent of the input

features and the anonymization. This is another indicator of the difficulty level of

the DFS-MAS dataset. However, our best model reaches a performance of 80.1%

on the DFS-MAS dataset.

3.4.3 Anonymization Impact

Table 3.3 allows the comparison of the model performance of anonymized and

non-anonymized datasets trained using different model architectures and different

speech features. On the SUSAS dataset, the models trained on the anonymized

version have a mean average accuracy that is 1-2% less than its non- anonymized

counterpart. For the CRNN+Attention network, anonymization even leads to a

performance increase. Figure 3.2 gives a more detailed insight into the classification

accuracy for each class. For both anonymized and non-anonymized data, the CRNN

model with LMS feature classifies the majority of the classes correctly, with an

accuracy of over 70%. On both datasets, the model has problems distinguishing

similar classes, such as clear, neutral, and slow from another. The majority of

the performance drop from non-anonymized to anonymized data is due to the
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Figure 3.2: Confusion matrices of the CRNN model with LMS as feature on the non-

anonymized (at the top) and anonymized (at the bottom) SUSAS dataset.

misclassification of neutral speech, where the accuracy drops from 70% to 57%.

For the other classes, the accuracy difference is 7% or less.

The anonymization method of the target data for stress detection might not

always be known. Therefore, the question is, how would the performance decrease

if the inference data is anonymized while the model is trained on non- anonymized

data. Comparing the first row of Table 3.4 with the best-performing models in

Table 3.3 shows that the model performance decreases substantially for both

model architectures. While the accuracy of the CRNN+Attention model using

MFCC drops from 93.9% to 80.1%, the accuracy of the CRNN model using LMS

features has an almost 19% drop - from 94.4% to 75.7%. The results are similar

when the model is trained on raw SUSAS data and tested on anonymized SUSAS

data.

On the ATC-relevant DFS-MAS dataset, the anonymization leads to an

increase in performance. The best performing network, CRNN+Attention, trained

and tested on anonymized data outperforms the best model for non-anonymized
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Table 3.4: Stress recognition cross-domain test accuracies. The best performing mod-

els of Table 3.3 are used for testing. (A) represents the corresponding

anonymized dataset.

Trained on Tested on MFCC LMS

SUSAS SUSAS (A) 80.1% 75.7%

[ATTN] [CRNN]

SUSAS (A) SUSAS 80.6% 78.7%

[ATTN] [ATTN]

SUSAS DFS-MAS 50.2% 50.2%

[ATTN] [CRNN]

SUSAS (A) DFS-MAS 64.8% 51.3%

[ATTN] [ATTN]

SUSAS DFS-MAS (A) 56.2% 45.3%

[ATTN] [CRNN]

SUSAS (A) DFS-MAS (A) 72.3% 52.1%

[ATTN] [ATTN]

data by 4.5%. Since the non-augmented DFS-MAS dataset is imbalanced, with

less than 100 stress utterances, the anonymization could act as an additional

augmentation method. It should be noted that the CNN and CRNN models do not

benefit from the anonymization, but they are also outperformed by the attention

model by 1.4% to 9.7%.

3.4.4 Cross-Domain Stress Detection

To the best of our knowledge, there are no publicly available stress-labeled ATC

datasets. Therefore, it is also evaluated if it is possible to reach high stress

recognition results on ATC data with a model that is trained on another domain.

The results are shown in Table 3.4. For this, the best-performing SUSAS models,



52 Less Stress, More Privacy: Stress Detection on Anonymized Speech of Air-traffic Controllers

as marked in bold in Table 3.3, are used on the out-of-domain ATC data. In

contrast to the results in Table 3.3, anonymizing the SUSAS dataset improves

the cross-domain performance significantly by over 14% for the CRNN+Attention

model with MFCC input features. The additional augmented data counteracts

domain overfitting and leads therefore to a better generalization of the model. By

adding anonymization also to the DFS-MAS test set, the performance increases

over 22% compared to the nonanonymized datasets. With an accuracy of 72.3%,

the difference to the best- performing model trained on the ATC data is below 8%.

Interestingly, using MFCC as input gives consistently better cross-domain scores

than using LMS as input. The higher information condensation in MFCC leads

to a better generalization and hence avoids overfitting to the training domain,

similar to anonymization.

3.5 Conclusion

Our experiments show that anonymization is not an obstacle to stress and speaking

style recognition. In fact, it is observed that anonymization causes just a minor

accuracy drop of 1-2% on the SUSAS dataset and even leads to a performance

increase on the target ATCO speech of more than 4%. This probably comes down

to the fact that anonymization can be seen as a data augmentation method,

which could be beneficial, especially for low-resource tasks. Furthermore, we see

that on the single speech style level, the performance drop is mainly due to the

misclassification of neutral speech samples with, for example, similar clear speech

samples. In other words, the classification results are stable through anonymiza-

tion in the majority of the classes. In the cross-domain setting, it is shown that

stress recognition models trained on out-of-domain data can be used to perform

stress prediction on ATC. In this case, one should rely on MFCC as input since

they generalize better than the LMS input. For our anonymization method, it is

shown that if the anonymization method for ATC data is known, anonymizing the

out-of-domain training data additionally improves the performance. Regarding



3.5 Conclusion 53

the architectures, it is shown that a combination of MFCC input and the CRNN

model outperforms the CRNN+Attention models using the LMS feature in the

speaking style recognition task, while having only 84% of its trainable parameters.

This makes this model interesting if computational power is a limiting factor.

Nevertheless, on the more demanding ATC data, the CRNN+Attention archi-

tecture outperforms the other networks by a margin, this holds also true for the

cross-domain experiments.

For future work, we would like to explore different data augmentation methods

that might increase accuracy. Furthermore, we would like to investigate MFCC

with a different number of coefficients as an input feature since we observed

equally good results as LMS. Another aspect to explore is transfer learning, since

it has proved to be as good as the trained models on the DFS-MAS dataset. With

transfer learning and the comparatively lower dimensional MFCC as an input

feature, we could expand our work to have more practical applications where we

could reduce the space and computational complexity to get live predictions and

also train on edge devices. By having a live stress detector, we could actively

reduce the workload stress of ATCOs and avoid any incidents.

In summary, it is strongly suggested to test the incorporation of anonymization

methods for privacy- critical tasks, especially for air traffic control.
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Transformer neural networks have shown remarkable success on standard

automatic speech recognition (ASR) benchmarks. However, they are known to be

less robust against domain mismatch, particularly with air-traffic control (ATC)

speech data. In the ATC domain, transformer-based ASR systems generally do

not transfer across different datasets. The reasons for the poor transferability

between ATC datasets remain unclear. In this chapter, we therefore investigate

the influence of acoustic variability and lexical differences on the ASR perfor-
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mance across various ATC datasets. By fine-tuning and evaluating wav2vec 2.0

on synthetic ATC datasets, we examine the effect of acoustic variability on the

model performance. Furthermore, we assess the effect of lexical differences by

correlating language model perplexity with performance. Our findings reveal that

a combination of acoustic and lexical mismatch causes the bad inter-dataset

transferability and give insights on how to improve future ASR models for ATC.

The content of this chapter is based on:

Blatt, Alexander, Badr M. Abdullah, and Dietrich Klakow (2023). “Ending

the Blind Flight: Analyzing the Impact of Acoustic and Lexical Factors on

WAV2VEC 2.0 in Air-Traffic Control.” In: 2023 IEEE Automatic Speech Recogni-

tion and Understanding Workshop (ASRU), pp. 1–8. doi: 10.1109/ASRU57964.

2023.10389646.

4.1 Introduction

Automatic speech recognition (ASR) is the first step in a speech-processing

pipeline for air-traffic control (ATC) communication. ATC communication consists

of instructions from an air-traffic controller (ATCO) to a specific pilot and a

read-back from that pilot 1. In recent years, several corpora for ATC-ASR have

been gathered (Zuluaga-Gomez, Motlicek, et al., 2020). However, apart from the

ATCOSIM corpus (Hofbauer et al., 2008) and a one hour chunk of the ATCO2

corpus (Zuluaga-Gomez, Veselý, Szöke, et al., 2022), datasets are either not

available without a fee or not publicly available at all. Since ATC communication

is formalized and has a unique phraseology (Helmke, Slotty, et al., 2018), out-of-

domain (OOD) trained ASR models transfer poorly to ATC data (Zuluaga-Gomez,

Prasad, Nigmatulina, S. S. Sarfjoo, et al., 2023b; Krishnan et al., 2023). Despite

1 Communication examples: https://wiki.flightgear.org/ATC_phraseology

https://doi.org/10.1109/ASRU57964.2023.10389646
https://doi.org/10.1109/ASRU57964.2023.10389646


4.2 Related Work 57

these challenges, some ATC-ASR models have been developed in recent years.

While earlier models rely on Kaldi (Kocour, Veselý, Blatt, et al., 2021), newer

approaches are based on pretrained transformer models such as wav2vec 2.0

(Zuluaga-Gomez, Prasad, Nigmatulina, S. S. Sarfjoo, et al., 2023b). Although

those models are built on several hours of training data that even incorporate

non-publicly available data, high word error rate (WER) variations in-between

different ASR benchmark corpora have been observed (Kocour, Veselý, Blatt,

et al., 2021; Zuluaga-Gomez, Motlicek, et al., 2020; Zuluaga-Gomez, Prasad,

Nigmatulina, S. S. Sarfjoo, et al., 2023b). Previous works on ATC-ASR focused

therefore on using newer or more parameter-rich models to increase the overall

performance on the benchmark datasets. In contrast to these works, we will

explore the causes of poor transferability across the different ATC datasets at the

example of wav2vec 2.0. This will not only give a better understanding on how to

interpret the WERs reached on the individual benchmark datasets, but also allow

one to develop better ATC-ASR models in the future. In the following sections,

we analyze the influence of the acoustic variability. Furthermore, we model the

acoustic variability by adding Gaussian noise of different levels to text-to-speech

(TTS) generated versions of the datasets. Regarding lexical differences, we analyze

intra and cross-dataset perplexities and out-of-vocabulary (OOV) rates. To gain

a better understanding of the wav2vec 2.0 adaptation to the ATC corpora, we

additionally analyze the internal changes of the wav2vec 2.0 architecture during

fine-tuning on the different ATC corpora. In the next section, we will elaborate

related studies in the fields of ATC and explainability of transformer-based ASR.

4.2 Related Work

Zuluaga-Gomez et al. have trained wav2vec 2.0 and XLS-R for ATC speech

recognition and provide results over different ATC datasets (Zuluaga-Gomez,

Prasad, Nigmatulina, S. S. Sarfjoo, et al., 2023b), the resulting WERs of their

best model still show a significant variation over the test datasets. One way to
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make wav2vec 2.0 more robust has been introduced by Zhu et al. (Q. S. Zhu et al.,

2022). They force the feature encoder to generate speech representations for a

noisy speech input that resemble representations for clean speech. The resulting

model has a superior noise tolerance in comparison to the baseline wav2vec 2.0

model. This shows, on the other hand, the sensitivity of the standard transformer-

based ASR models to noise. Hu et al. (Hu et al., 2023) have built on this work

to develop a wav2vec 2.0 based model that does speech enhancement without

introducing artifacts that deteriorate the ASR performance. A method to deal

with the low availability of labeled in-domain data has been proposed by Hsu et al.

(Hsu et al., 2021). They have shown that if there is no in-domain data available

for finetuning, using unlabeled in-domain data during pretraining can give a

significant performance improvement. For our wav2vec 2.0 feature analysis, we

build on the following two previous works. Phang et al. (Phang et al., 2021) have

shown that the centered kernel alignment (CKA) similarity scores of text-based

transformer models show same-similarity clusters along the diagonal after they

are fine-tuned. Choi et al. (Choi et al., 2022) have shown that the information

encoded in a wav2vec feature encoder is analogous to a spectrogram and that

closer latent representations imply acoustic similarity.

4.3 Experimental Setup

The ATC datasets used in the following experiments are listed in Table 4.1.

The ATCOSIM corpus (Hofbauer et al., 2008) consists of simulated conversations

between air-traffic controllers and pilots. Since the recordings were made in a

controlled environment, the speech is less noisy than for the following two corpora.

The ATCO2 corpus (Zuluaga-Gomez, Veselý, Szöke, et al., 2022) contains real

ATC conversations from various, mostly European airports and was recorded

during the ATCO2 project with VHF-receivers 2. The LiveATC corpus consists of

2 Receiver guide: https://ui.atc.opensky-network.org/intro
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Table 4.1: Dataset splits used for the experiments. The mean utterance length for each

dataset is roughly four seconds. In the last column, the mean SNR over the

full dataset is given.

Dataset Train Val Test SNR

ATCO2 2739 342 343 13.1

ATCOSIM 2286 286 286 29.4

LiveATC 512 - 518 7.2

two subcorpora, LiveATC1 and LiveATC2 (Zuluaga-Gomez, Veselý, Blatt, et al.,

2020a), both gathered during the ATCO2 project from the LiveATC web-page 3,

a web-page broadcasting live ATC conversations.

Fine-tuning wav2vec 2.0 on ATC data is done by training wav2vec2-base
4 for 40 epochs on the train-split of the datasets in Table 4.1. After fine-tuning,

the checkpoint model with the lowest WER score on the validation set is used for

testing.

To generate text-to-speech (TTS) versions of the aforementioned datasets

out of the transcripts, we use the VITS model (Variational Inference with adversar-

ial learning for end-to-end Text-to-Speech) (J. Kim et al., 2021) from the Coqui-AI

library 5. The model can be described as a conditional variational autoencoder and

produces natural sounding speech from text. The male speaker 226 is chosen from

the list of speakers, as it produces the most realistic ATC speech. To generate

our synthetic noisy ATC data, we add Gaussian noise to the TTS versions of the

datasets.

To overcome the problem of missing clean versions of the ATC datasets to

calculate the signal-to-noise ratio (SNR), we use the WADA-SNR approach

introduced by Kim et al. (C. Kim et al., 2008) to obtain a robust estimate for the

SNR. To ensure consistency, all SNR values mentioned in this work are based on

3 LiveATC webpage: https://www.liveatc.net/
4 Wav2vec 2.0 model: https://huggingface.co/facebook/wav2vec2-base
5 Coqui-AI webpage: https://github.com/coqui-ai/TTS
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Table 4.2: Word and character error rates across the different ATC datasets depending

on the training set. All scores are generated by finetuning and testing

wav2vec2-base on the datasets, except for the last row, where wav2vec2-

base-960h is used, which is already finetuned on LibriSpeech. Intra-dataset

scores are marked blue.

Training Data ATCO2 ATCOSIM LiveATC

WER (%) CER (%) WER (%) CER (%) WER (%) CER (%)

ATCO2 33.4 20.4 36.6 16.8 61.2 40.3

ATCOSIM 91.9 61.5 2.67 1.00 101.9 67.8

LibriSpeech 99.6 64.6 71.0 32.0 103.4 70.5

this method. Experimental validations on the synthetic noisy ATC datasets have

shown that the WADA-SNR scores show just small deviations from the actual

SNR values.

To measure the wav2vec 2.0 feature similarities, when fine-tuned on differ-

ent datasets, we apply the centered kernel alignment (CKA) method as similarity

measure, since it is well defined for small sample sizes, in contrast to other simi-

larity measures like CCA and pwCCA (Kornblith et al., 2019). The output-layer

features of the convolutional blocks of the feature encoder and the dense-layer

features of the transformer encoder are mean-pooled over the sentence length

before comparison.

4.4 Results

As already observed in previous works (Kocour, Veselý, Blatt, et al., 2021; Zuluaga-

Gomez, Motlicek, et al., 2020; Zuluaga-Gomez, Prasad, Nigmatulina, S. S. Sarfjoo,

et al., 2023b), the performance of an ASR model varies depending on the target

and training dataset. Even if all datasets come from the same domain, namely
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(a) ATCO2 (b) ATCOSIM

Figure 4.1: WER on the standard and TTS versions of the ATC datasets. All scores

are generated by fine-tuning and testing wav2vec2-base on ATCO2 (a)

and ATCOSIM (b) data. The border to clean speech SNR>30 is marked

(Grimaldi et al., 2018).

air-traffic control, the word error rate and character error rate (CER) vary, as

Table 4.2 shows.

However, WER and CER correlate across all datasets and there are no

dataset-specific WER/CER ratios. Without including intra-dataset scores, the

lowest WER/CER ratios are reached on ATCOSIM followed by ATCO2 and

LiveATC. This correlates inversely with the SNR values given in Table 4.1. The

last WER column of Table 4.2 shows the importance of in-domain fine-tuning.

Wav2vec 2.0 fine-tuned on ATCO2 reaches a WER 40-50% lower than the model

fine-tuned on the OOD LibriSpeech corpus. Surprisingly, if wav2vec 2.0 is fine-

tuned on ATCOSIM, this difference is much smaller. In the following, we will

evaluate this and analyze which acoustic and lexical differences exist between the

datasets and how wav2vec 2.0 reacts to them.

4.4.1 Acoustic Differences

As discussed above, there seems to be a correlation between the noise level and

the word error rate. To rule-out the influence of out-of-vocabulary (OOV) words

or other language, respectively lexical-based features, we generate text-to-speech
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Figure 4.2: WERs on the original and TTS data with Gaussian noise of different levels

applied. Wav2vec 2.0 is trained on the original ATCO2 (left) or ATCOSIM

(right) dataset.

(TTS) versions of the datasets, as described in Section 4.3, and compare the WERs

reached on the datasets. Since they share the same transcripts, all differences

between the TTS and non-TTS versions are due to acoustics. Figure 4.1 shows the

WERs reached on the TTS and non-TTS versions together with the SNR values

of the non-TTS versions taken from Table 4.2. For both training datasets, ATCO2

and ATCOSIM, the difference of the WERs between the TTS and non-TTS

versions correlates inversely with the SNR value. This shows that noise is a major

cause for the performance degradation of the ASR models on ATC datasets.

In order to evaluate the effect of the noise over a broad range, we add Gaussian

noise of different levels to the TTS versions of the datasets. The results are shown

together with the WERs reached on the original datasets in Figure 4.2. There

are four main observations. Firstly, the higher the noise, respectively, the lower

the SNR, the steeper is the gradient of the curves. For SNR levels greater than

25, the effect of the noise is negligible, which is consistent with the definition

of clean speech for SNRs>30 of Grimaldi et al. (Grimaldi et al., 2018). The

second observation is that the training dataset not only influences the overall

WER reached on the test set, but also the noise sensitivity (gradient). The model

trained on ATCO2 data (Figure 4.2 left) shows a significantly lower sensitivity

to noise than the model trained on less noisy ATCOSIM data (Figure 4.2 right).
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(a) LibriSpeech (b) ATCO2 (c) ATCOSIM

(d) LiveATC Gauss (e) LiveATC (f) LiveATC TTS

Figure 4.3: Overlay of spectrograms from 100 samples of the the different ATC datasets

and LibriSpeech as reference. The LiveATC Gauss spectrogram is based

on TTS data with Gaussian noise with an average SNR of 6.5 dB, which

is close to the original noise level of LiveATC with 7.2 dB.

The third observation is that for high noise levels with a SNR<10, the model

trained on ATCO2 outperforms the ATCOSIM model on the ATCOSIM test data.

This indicates that for high-noise target datasets, matching the noise distribution

during training can become more important than lexical similarities between the

training and test set. The last observation is that wav2vec 2.0 reaches slightly

higher WERs on the non-TTS test sets of ATCO2 and LiveATC than on the TTS

versions with the same noise level.

To examine this difference further, we overlay the spectrograms of 100 samples

from each ATC dataset. To allow an overlay, each recording is trimmed to the

same length and the spectrograms are normalized. Figure 4.3 shows the resulting
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Table 4.3: Lexical diversity of the ATC datasets, measured with the moving average

type-token ratio (MATTR) and the measure of textual lexical diversity

(MTLD)

Dataset MATTR MTLD

ATCO2 0.635 29.5

ATCOSIM 0.585 26.6

LiveATC 0.581 23.3

spectrograms. The comparison of the datasets shows that each dataset has a unique

noise characteristic. In the ATCO2 dataset, the harmonics of the voice stand far

less out against the background noise than the harmonics in the ATCOSIM dataset.

Furthermore, the LiveATC and ATCO2 dataset spectrograms show a low-pass

characteristic, with a loss of signal power over 4 kHz. Additionally, the LiveATC

dataset shows a narrow-band signal loss exactly at 4 kHz. The spectrogram of

the LiveATC TTS data with Gaussian noise (SNR = 6.5), noticeably differs from

the standard LiveATC spectrogram (SNR =7.2). Meaning that the WADA-SNR

scores do not reveal the complexity of the noise. This explains why the WER

curves on the TTS datasets in Figure 4.2 are lower bounds for the WERs reached

on the original datasets. To reproduce the original noise for each dataset, more

complex noise types, such as band-pass or low-pass filters, must be included. In

the next section, we will evaluate the lexical differences between the datasets.

4.4.2 Lexical differences

We have shown that there exists a correlation between the noise and the WER

reached on the datasets. In this section, we will evaluate whether there is a

similar correlation for the lexical features. To get a better understanding for the

complexity of the datasets, the lexical diversity (LD) is measured via moving

average type-token ratio (MATTR) and the measure of textual lexical diversity
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Table 4.4: Cross (black) and intra-dataset (blue) perplexities. 4-gram language models

are generated for each training dataset.

Training Data Perplexity on test data

ATCO2 ATCOSIM LiveATC

ATCO2 24.8 138.0 88.2

ATCOSIM 417.2 4.8 276.5

LiveATC 144.6 120.4 25.6

(MTLD), which are better estimates for the lexical diversity than other measures,

as shown by Tager-Flusberg et al. (Tager-Flusberg, 2015). Table 4.3 shows the

diversity scores of the datasets. The LiveATC dataset has the lowest MATTR

and MTLD score, indicating that it has the lowest lexical diversity. But the small

difference of just 9% to the highest MATTR score, measured on the ATCO2

dataset, shows that the three datasets have a quite similar lexical diversity.

To find more substantial lexical differences, we calculate the cross and intra-

dataset perplexities using 4-gram language models (LM). All LMs are generated

on the train-splits and tested on the test-splits of the datasets, Table 4.4 shows

the results. The highest cross-dataset perplexities are found on the ATCO2 test

dataset, indicating the worst transferability of an ASR model trained on the other

datasets to this dataset. For the intra-dataset perplexities, the LiveATC and

ATCO2 dataset have similar scores, while the ATCOSIM → ATCOSIM perplexity

is five times lower. This shows, that the simulated scenarios in ATCOSIM do

not have the variability of the operational recordings found in the ATCO2 and

LiveATC corpora. This could also be due to the fact that the ATCO2 and LiveATC

datasets cover multiple airspaces as stated in Section 4.3. If ATC conversations are

recorded in different airspaces for different datasets, this has consequences on the

vocabulary. Each airspace has different waypoints, is targeted by different airlines

and uses different communication frequencies, to just name a few differences. This

also shows in the OOV rates, which can be seen in Table 4.5. The comparison of

Table 4.4 and Table 4.5 shows that the perplexities and the OOVs are correlated,
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Table 4.5: Cross and intra-dataset (blue) out-of-vocabulary OOV rates in percent.

Training Data OOV rate on test data (%)

ATCO2 ATCOSIM LiveATC

ATCO2 2.05 7.24 5.20

ATCOSIM 27.0 0.65 18.02

LiveATC 11.17 12.90 3.23

with one exception. On the ATCOSIM test data, lower OOV rates are reached

with ATCO2 source data, than with LiveATC source data, while it is the other

way around for the perplexity. An inspection of the OOVs shows that in the

case LiveATC → ATCOSIM, the OOVs contain many German words, like airline

names, city names and greetings. These OOVs are missing in the ATCO2 →

ATCOSIM case, likely due to the recordings from Swiss airspaces in the ATCO2

dataset.

Since both, perplexity and OOV rates show a lexical mismatch, we want to

quantify to which extend this can be fixed by using a 4-gram LM trained on the

train-split of the target dataset. Table 4.6 shows the mean results over all source

and target dataset combinations, using ATCO2 and ATCOSIM as source data

Table 4.6: Relative WER drop in percent (%), when using a 4-gram LM generated on

the train-split of the target dataset. Testing is done on the test-splits of the

target datasets. Mean scores over all target-source dataset combinations

are given for TTS and non-TTS versions. The absolute difference is given

in brackets.

Source Data rel. WER drop on target data (%)

normal TTS

normal 21.6 (53.42-44.95) 27.6 (36.4-27.3)

TTS 11.9 (89.01-79.71) 22.8 (19.55-15.58)
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Figure 4.4: WER depending on the relative difference between test and training SNR

and the perplexity of a LM generated from training data and evaluated

on test data.

and ATCO2, ATCOSIM and LiveATC as target data. For both, source a target

data, either TTS or non-TTS versions of the datasets are used.

The resulting scores show that adding the LM on top of wav2vec 2.0 results

in the highest improvement for the non-TTS (train) → TTS (test) setting. Inter-

estingly, the relative improvement for TTS → TTS and non-TTS → non-TTS is

nearly equivalent. This shows that even if there is an acoustic mismatch, adapta-

tion to the target airspaces via LM can bring a big improvement. In the worst

case scenario, TTS → non-TTS, where wav2vec 2.0 has never seen noisy data

during training, there is still more than 11% improvement.

Since the influences of lexical differences and noise variability have been

laid out, the question is, if there is an overall clear dependency of the WER on

the ratio between the lexical differences and the noise differences. To evaluate

this, we plot the WER in dependence of the ratio between the source-target

LM perplexity and the source-target SNR-ratio. The resulting Figure 4.4 shows

that the aforementioned dependency exists. This explains the different WERs

reached on the datasets, depending on the selection of the training and test set.

It furthermore opens the door for future research on predicting the WER for
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unknown (ATC) benchmark datasets. While we have focused mostly on dataset

features until now, we will look also at wav2vec 2.0 features in the next section.

4.4.3 wav2vec adaption

To better understand how wav2vec 2.0 adapts to the lexical differences and the

acoustic variability between the different ATC datasets, we use CKA to compare

the features of the different parts of the model. We examine four different cases.

In the first two cases, we look at the feature similarity between two models, when

one of them encounters a dataset with new acoustic properties during testing.

For the positive acoustic transfer, we compare the CKA scores of wav2vec 2.0

fine-tuned on ATCO2 and ATCO2 TTS data and tested on ATCO2 TTS data.

This is labeled as positive transfer case, since wav2vec 2.0 trained on ATCO2

reaches a WER of 21.5% on the unseen ATCO2 TTS data, which is a significant

decrease from the 33.4 % WER on ATCO2 test data. For the negative acoustic

transfer, the wav2vec 2.0 model fine-tuned on ATCO2 TTS data encounters a

new dataset. Wav2vec 2.0 trained on ATCO2 TTS reaches a WER of 5.6 % on

ATCO2 TTS test data but the score increases about a factor of 17 to a WER of

96.7% on the unseen ATCO2 dataset.

Figure 4.5 shows the CKA similarity scores of the wav2vec 2.0 feature encoder

in the positive (a), respectively, negative acoustic transfer case (b).Interestingly,

the initial and intermediate layers show even a higher similarity for the negative

acoustic transfer case. But the similarity score on the final layer of the feature

encoder reaches 0.21 in the positive scenario, while for the negative scenario,

the similarity score is considerably lower with just 0.09. This difference also

propagates through the dense transformer encoder layers as Figure 4.6 (a) and (b)

show. Even in the first layer of the transformer encoder, the scores differ already

significantly with 0.95 and 0.69. Towards the final layer, the difference further

increases. Additionally, the CKA plot of the negative acoustic transfer does not

show the typical clusters of similar representations, which can be found along the
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(a) pos. acoustic transfer (b) neg. acoustic transfer

(c) pos. lexical transfer (d) neg. lexical transfer

Figure 4.5: CKA analysis on the adaptation of the wav2vec feature encoder to acoustic

and lexical changes. The CKA scores in (a) are produced on ATCO2 TTS

data and the scores on (b) on ATCO2 data. The CKA scores in (c) are

produced on ATCOSIM TTS data and the scores in (d) ATCO2 TTS data.

All scores are given on the output layers of each convolutional layer of the

feature encoder.

diagonal after fine-tuning, as observed by Phang et al. (Phang et al., 2021). For

the positive acoustic transfer, there are three non-symmetric clusters visible. This

higher similarity shows, that if wav2vec2.0 is trained on noisier data, it is still

able to produce good output features on the cleaner dataset.

For the last two cases, we look at the similarity scores for the case, that

one model encounters a dataset with different lexical properties during testing.

To exclude acoustic influences, we purely use TTS data. For both, negative and

positive lexical transfer, we plot the CKA similarity scores for wav2vec 2.0 fine-
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(a) pos. acoustic transfer (b) neg. acoustic transfer

(c) pos. lexical transfer (d) neg. lexical transfer

Figure 4.6: CKA analysis: Adaptation of the wav2vec transformer encoder layers to

acoustic (a) and (b) and language changes (c) and (d). The test datasets

are equal to Figure 4.5.

tuned on ATCOSIM TTS and ATCO2 TTS. If wav2vec 2.0 gets fine-tuned on

ATCO2 TTS, the WER on ATCO2 TTS is 5.6%, while the WER on ATCOSIM

TTS is 17.4%, which is an increase of a factor of 3, but still an above average

WER for an ATC dataset as Table 4.2 and Figure 4.1 show. We therefore use this

scenario as positive lexical transfer. In contrast, if wav2vec 2.0 gets fine-tuned on

ATCOSIM TTS, the WER on ATCOSIM TTS is 2.1%, while the WER on ATCO2

TTS is 47.0%, which is more than 20 times higher. This case is therefore labeled

as negative lexical transfer. The comparison of the similarity scores of the feature

encoder, Figure 4.5(c) and (d), shows that there is no significant difference between

the positive and negative case. In other words, the feature encoder is agnostic to

lexical differences. For the transformer encoder layers, there are evident visual



4.5 Conclusion 71

differences between the positive and negative lexical transfer. The fact, that the

differences are not as big as for the acoustic transfer needs further investigation.

The comparison between lexical and acoustic transfer however shows, that without

the presence of noise, a cluster of similar representations in the intermediate layers

of the transformer encoder is forming, which is more prominent for the positive

transfer case. Since this cluster is also partially forming in the positive, but not in

the negative acoustic transfer, it could be a possible candidate to indicate a good

lexical and acoustic transferability.

4.5 Conclusion

Pretrained transformer-based speech recognition models, such as wav2vec 2.0, have

shown remarkable performance in low-resource domains. However, for the air-traffic

control domain, a highly variable transferability across different datasets has been

observed. In this paper, we have presented an empirical study to identify the causes

of this phenomenon. We demonstrated that each ATC dataset has specific noise

characteristics. Nevertheless, adding Gaussian noise to clean air-traffic control data

can be used to get a lower WER bound for different noise levels. This is an effective

way to estimate the robustness of the ATC-ASR model. We have furthermore

shown that there are significant lexical differences between the datasets and that

the transferability correlates with cross-dataset language model perplexities as

well as with the OOV rates. Dominant OOV entities are airspace-dependent cities,

greetings and airlines. A target-dataset specific language model on top of wav2vec

2.0 was identified as an effective method to significantly reduce lexical mismatch

and therefore the WER, even for very noise target data. With various source

and target-dataset pairings, we have provided evidence for the dependency of the

WER on the ratio between the source-target LM perplexity and the source-target

SNR-ratio. A final wav2vec 2.0 feature analysis demonstrated, that the feature

encoder is agnostic to lexical changes while adapting to different noise scenarios.

Finally, we identified a same similarity cluster between the intermediate-layer-
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transformer-encoder features of the target and source-data-fine-tuned wav2vec 2.0

models as indicator for a good transferability of the source-model to the target

data. The insights of this work not only allow the development of better ATC-ASR

models, but also better ASR models for other domains, where poor cross-dataset

transferability is observed.
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Utilizing air-traffic control (ATC) data for downstream natural-language

processing tasks requires preprocessing steps. Key steps are the transcription
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of the data via automatic speech recognition (ASR) and speaker diarization,

respectively speaker role detection (SRD) to divide the transcripts into pilot and

air-traffic controller (ATCO) transcripts. While traditional approaches take on

these tasks separately, we propose a transformer-based joint ASR-SRD system

that solves both tasks jointly while relying on a standard ASR architecture. In

this chapter, we compare this joint system against two cascaded approaches for

ASR and SRD on multiple ATC datasets. Our study shows in which cases our

joint system can outperform the two traditional approaches and in which cases

the other architectures are preferable. We additionally evaluate how acoustic and

lexical differences influence all architectures and show how to overcome them for

our joint architecture.

The content of this chapter is based on:

Blatt, Alexander, Aravind Krishnan, and Dietrich Klakow (2024). Joint vs

Sequential Speaker-Role Detection and Automatic Speech Recognition for Air-

traffic Control. url: https://www.isca-archive.org/interspeech_2024/

blatt24_interspeech.pdf.

5.1 Introduction

A standard speech processing pipeline starts with a speaker diarization (SD)

module, which removes the unvoiced parts of the audio and leaves speaker labeled

voiced chunks. These chunks are fed into an automatic speech recognition (ASR)

system for transcription. The transcribed audio can then be further processed,

for example with a natural language processing (NLP) module for information

extraction. Recent architectures that combine SD and ASR show however, that

they can outperform this traditional pipeline (Sarkar et al., 2018; Shafey et al.,

https://www.isca-archive.org/interspeech_2024/blatt24_interspeech.pdf
https://www.isca-archive.org/interspeech_2024/blatt24_interspeech.pdf
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2019; Xia et al., 2022; Z. Huang et al., 2022; Cornell et al., 2023) by jointly

utilizing acoustic and linguistic information during diarization.

The acoustic and linguistic information of air-traffic control (ATC) datasets

however differs significantly from standard ASR and diarization datasets (Blatt,

Abdullah, et al., 2023). ATC recordings typically have a low signal-to-noise ratio

(SNR) (Blatt, Abdullah, et al., 2023) and a strict phraseology1, which ensures an

effective communication between air-traffic controllers (ATCOs) and pilots. Pilot

and ATCO utterances differ in the noise level as well as in the sentence structure.

This can be utilized by a SD system to differentiate between the two speaker roles

ATCO or PILOT, which effectively leverages it to a speaker role detection (SRD)

system.

In this work, we study how an SRD system can effectively utilize the acoustic

and linguistc differences between pilot and ATCO speech by analyzing the perfor-

mance, respectively robustness of different ASR&SRD architectures on multiple

ATC datasets. We investigate a correlation with acoustic and linguistic properties

as well as a correlation between the ASR and SRD performance. We compare three

different architectures for ATC-ASR&SRD. The first method, SRD-ASR, consists

of an acoustic-based speaker-role detection step followed by the ASR step. The

second method, ASR-SRD first transcribes the audio before doing text-based SRD.

Our proposed Joint method performs SRD and ASR simultaneously.

5.2 Related work

Park et al. give good general overview of speaker diarization methods (Park et al.,

2022). Our Joint system is inspired by Shafey et al. which have first introduced

a joint ASR&SD system based on a recurrent neural network transducer (Shafey

et al., 2019). In contrast to Shafey et al., our system performs SRD and does

not require transducers, but relies on standard transformer-based ASR models

1 ATC examples: https://wiki.flightgear.org/ATC_phraseology
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(Baevski et al., 2020; Babu et al., 2022) and can be trained with traditional CTC

loss (Graves, Fernández, et al., 2006b). Recent joint ASR&SD systems require even

more complex architectures than the approach of Shafey et al. (Xia et al., 2022;

Z. Huang et al., 2022; Cornell et al., 2023). Our text-based SRD system is based

on BERTraffic (Zuluaga-Gomez, S. S. Sarfjoo, et al., 2023), which shows a 7.7 %

improvement over a classical variational Bayesian hidden Markov model (VBx)

(Landini et al., 2022) based approach and is to the best of our knowledge the

most recent SRD model for ATC. The fact that acoustic and linguistic differences

between ATC datasets negatively correlate with the performance of pretrained

transformer-based ASR models has been shown by Blatt et al. (Blatt, Abdullah,

et al., 2023). We investigate if there is a similar correlation for SRD.

5.3 Datasets

We use the ATCO2 (Zuluaga-Gomez, Veselý, Szöke, et al., 2022), LiveATC

(Zuluaga-Gomez, Veselý, Blatt, et al., 2020a) and the LDC-ATCC corpus (Godfrey,

1994) for our experiments, since they all contain speaker labels that allow assigning

each speaker either to the ATCO or PILOT class. All three corpora contain ATC

communication recordings. The LDC-ATCC corpus contains solely recordings from

American airports, namely Dallas Fort Worth International Airport (KDFW),

Logan International Airport (KBOS) and Ronald Reagan Washington National

Airport (KDCA), while the ATCO2 and LiveATC datasets contain mainly samples

from European airports. They both contain samples from Václav Havel Airport

Prague (LKPR) and Zurich Airport (LSZH). The ATCO2 dataset contains ad-

ditionally samples from Sion Airport (LSGS), Bratislava Airport (LZIB), Bern

Airport (LSZB) and Sydney Airport (YSSY) as only non-European airport. The

Live ATC dataset contains additionally samples from Stockholm Västerås Airport

(ESOW), Göteborg Landvetter Airport (ESGG), Dublin Airport (EIDW), Ams-

terdam Airport Schiphol (EHAM) and Hartsfield–Jackson Atlanta International

Airport (KATL) as only American airport. All airport locations are marked in
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(a) Noise Distribution (b) Geographical Distribution

Figure 5.1: Dataset dependent distributions

Figure 5.1(b). The ATCO2 corpus and the LiveATC corpus were recorded during

the ATCO2 project2. While the ATCO2 data was recorded with VHF-receivers3,

the LiveATC corpus, consisting of the two subcorpora LiveATC1 and LiveATC2

(Zuluaga-Gomez, Veselý, Blatt, et al., 2020a), was recorded from the LiveATC web-

page4 which broadcasts ATC conversations. The ATCO2 and LiveATC dataset

audio samples are recorded with a sampling frequency of 16 kHz and 16-bit, while

the LDC-ATCC data is recorded with 16 kHz and 16-bit.

2 ATCO2 project: https://www.atco2.org/
3 Receiver guide: https://ui.atc.opensky-network.org/intro
4 LiveATC webpage: https://www.liveatc.net/

Table 5.1: Number of samples for the train|test|val split and the mean WADA-SNR (C.

Kim et al., 2008), mean number of speaker turns and the mean (chunked)

audio duration for each dataset.

Dataset Train Val Test SNR Turns Duration

size size size (dB) (s)

ATCO2 856 107 108 15.8 2.28 9.4

LDC-ATCC 1000 500 500 16.8 3.26 13.1

LiveATC 413 42 41 18.9 2.15 12.9
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Several preprocessing steps are necessary to prepare the datasets for the

SRD task. To reduce the training time to a few hours per run, the original audio

is chunked to samples with a target duration of 2-19 seconds. The mean chunk

duration can be found in Table 5.1. This results in 2-3 speaker turns on average, as

Table 5.1 shows. Samples that just contain one speaker, respectively one speaker

role, are sorted out. Using the timestamps for the speaker IDs, each speaker

turn is labeled with one of the two speaker roles, ATCO or PILOT. This results

in transcripts, where word sequences belonging to one speaker role are tagged

with either ATCOTAG or PILOTTAG as shown in Figure 5.2. For fine-tuning the ASR

models, the tags are removed from the transcripts.

5.4 ASR&SRD architectures

For the ASR task of all ASR&SRD architectures, we fine-tune the Hugging Face

(HF) models wav2vec 2.05 (w2v2) (Baevski et al., 2020) and xlsr6 (Babu et al.,

2022) on the train split of each ATC dataset. Each ASR&SRD architecture is

visualized in Figure 5.2 and explained in the following sections.

5.4.1 SRD-ASR

For the SRD task of the SRD-ASR model we use the SD of Pyannote.audio 3.07

(Bredin23; Plaquet23) which combines speaker segmentation with speaker

embedding-based clustering for SD. The SD tool is used out-of-the-box without

further fine-tuning. Only the max_speakers argument is set to 2, restricting

diarization to two speakers. To leverage this SD to a SRD system, the extracted

speakers are matched to the speaker roles by extracting the speaker embeddings

5 HF model: facebook/wav2vec2-base-960h
6 HF model: jonatasgrosman/wav2vec2-large-xlsr-53-english
7 HF model: pyannote/speaker-diarization-3.0
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LUFTHANSA FOUR SEVEN TURN LEFT ATCOTAG
 TURNING LEFT LUFTHANSA FOUR SEVEN PILOTTAG

LUFTHANSA FOUR SEVEN 
TURN LEFT ATCOTAG TURNING LEFT 
LUFTHANSA FOUR SEVEN PILOTTAG

LUFTHANSA FOUR SEVEN TURN LEFT TURNING LEFT LUFTHANSA FOUR SEVEN
B-AT          I-AT  I-AT     I-AT  I-AT  B-PI      I-PI   I-PI            I-PI    I-PI

LUFTHANSA FOUR SEVEN 
TURN LEFT TURNING LEFT 
LUFTHANSA FOUR SEVEN  

SRD

SRD

ASR
&

SRD

ASR

ASR

Figure 5.2: ASR&SRD architectures; left: acoustic SRD followed by ASR (SRD-ASR);

center: Joint ASR&SRD (Joint); right: ASR followed by linguistic-based

SRD (ASR-SRD)

of the identified speaker with the Pyannote speaker embedding extraction model8.

The classification into PILOT and ATCO is done via measuring the cosine similarity

between the speaker embeddings and the cluster centers of the two speaker roles

for the current training data set. The cluster centers are extracted with a nearest

centroid classifier9 for each training data set by randomly selecting 50 samples

for PILOT and ATCO. The speaker role-tagged utterance chunks that are produced

by the SRD system are then fed into the ASR model to generate the tagged

transcripts.

5.4.2 ASR-SRD

In this approach, we train a text-based diarizer using token-level speaker labels,

similar to (Zuluaga-Gomez, S. S. Sarfjoo, et al., 2023). Each word in an utterance

is assigned an ATCO or PILOT tag and a binary classifier is trained to predict the

8 HF model: pyannote/embedding
9 scikitlearn: Nearest centroid classifier
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tag of each token. We encode ATCO and PILOT tags consistently across utterances

to let the model learn speaker roles in addition to speaker turns. For training,

ground-truth transcripts from the train set are used. Testing is done on the ASR

transcripts generated from the test audio.

5.4.3 Joint

In the Joint approach, the ASR models are directly fine-tuned on the speaker

role-tagged transcripts instead of transcripts without tags. Since fine-tuning is

done without modifying the CTC-loss function, this approach can be applied to

any transformer-based ASR model with CTC loss.

5.5 Experimental setup

All experiments are performed on an NVIDIA V100 GPU. The ASR and the

Joint model are trained for 2000 steps, 1000 warm-up steps, a learning rate of

4e-4 and a batch size of 4 and 8 gradient accumulation steps. We choose steps

instead of epochs to ensure the same number of training steps despite different

sized training sets. ASR fine-tuning takes roughly 4-5 hours with these parameters.

The text-based diarizer is a BERT10 (Devlin, M. Chang, et al., 2019) model with

a binary classification head on top. It is trained with a learning rate of 2e-5,

25 warm-up steps and a batch size of 16. Training is terminated with an early

stopping mechanism, with a patience of 5. The models with the the lowest WER

(for ASR), respectively word diarization error rate (WDER) (for SRD) on the

validation data are used for testing. The WDER is implemented based on Shafey

at al. (Shafey et al., 2019). We additionally measure the position error rate (PER)

of the speaker role tokens. This PER allows us to measure if a speaker role token

10 HF model: https://huggingface.co/google-bert/bert-base-uncased
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in placed in the correct position in the sentence independently of the speaker role.

We define the PER as follows:

PER = 1− tc
tp

(5.1)

where tp is the number of ground truth speaker role tag positions and tc is the

number of correctly placed tokens at all ground truth speaker role tag positions

(class independent).

High WERs can result in missing parts of the transcripts, which not only

influences the WER but also the WDER and PER. To uncouple these, we align the

target and predicted transcript with the Needleman-Wunsch algorithm (Needle-

man et al., 1970) and add placeholder tokens for non-transcribed words before

calculating the WDER and PER. All experiments given in the following section

are repeated thrice with different seeds and the mean and standard deviation are

given over those three runs if not mentioned otherwise.

5.6 Results

5.6.1 Inter-and intra-dataset evaluation

The ASR&SRD models are tested in an inter-dataset scenario, where the train

and test splits come from different datasets and an intra-dataset scenario, with

the train and test splits are from the same dataset. The fact that pretrained

transformer-based ASR models are susceptible to inter-dataset acoustic and

linguistic variabilities (Blatt, Abdullah, et al., 2023) allows to investigate the

WDER and PER scores over a wide range of WERs. The inter-dataset scores in

Table 5.2 show that the ASR-SRD architecture outperforms the other architectures

on the ATCO2 and LDC-ATCC dataset in terms of WDER when the wave2vec

2.0 model is used. On the LiveATC dataset, the SRD-ASR model reaches the lowest

WDER despite having the highest WER. Switching from wave2vec 2.0 to xlsr

results in the lowest WDER for the Joint model on ATCO2. The Joint model
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Table 5.2: Inter-dataset scores: WDER,PER and WER in case the models are fine-

tuned and tested on different datasets. Mean values over three runs and

two training datasets are given with the standard deviation in brackets

Architecture ASR
ATCO2 LDC-ATCC LiveATC

WDER PER WER WDER PER WER WDER PER WER

SRD-ASR

w2v2

38.0 (0.5) 32.8 (4.0) 71.7 (4.2) 42.9 (0.1) 37.3 (8.8) 68.5 (2.7) 32.0 (0.6) 52.2 (4.2) 82.1 (4.1)

ASR-SRD 37.4 (0.4) 70.5 (1.0) 69.4 (1.5) 40.7 (1.0) 71.7 (1.7) 58.7 (1.0) 39.8 (1.1) 71.4 (3.9) 72.5 (2.2)

Joint 39.1 (4.2) 19.8 (2.1) 70.0 (1.1) 63.4 (3.8) 13.8 (1.9) 64.8 (1.0) 38.5 (10.3) 46.3 (4.0) 76.7 (3.0)

SRD-ASR

xlsr

38.6 (0.5) 31.5 (5.1) 66.9 (5.1) 43.0 (0.3) 35.7 (9.2) 64.6 (9.1) 31.3 (0.5) 52.0 (3.9) 76.5 (3.9)

ASR-SRD 36.7 (0.7) 68.4 (1.7) 60.8 (0.8) 39.0 (0.8) 70.8 (2.0) 53.3 (1.4) 37.8 (2.5) 69.1 (1.8) 65.3 (1.4)

Joint 36.6 (4.3) 16.9 (1.7) 61.3 (1.9) 57.9 (3.1) 10.6 (2.8) 59.7 (1.1) 33.8 (2.3) 41.3 (1.3) 71.0 (2.2)

also benefits the most from the model change in the other metrics. Regarding the

WER, the ASR-SRD model outperforms the others on all datasets, while the Joint

model has the lowest PER score on all datasets by a margin.

This holds also true for intra-dataset scores, as shown in Table 5.3. The Joint

model additionally has the lowest WDER on all datasets, for both the xlsr and

the wave2vec 2.0 model. Although the WER scores of the Joint and ASR-SRD

architecture are close in all datasets, the ASR-SRD model still reaches the lowest

WERs in all scenarios tested. In contrast to the SRD-ASR architecture, the other

two ASR&SRD models can more than half their WDER scores on the ATCO2

Table 5.3: Intra-dataset scores: WDER,PER and WER in case the models are fine-

tuned and tested on the same dataset. Mean values over three runs are

given with the standard deviation in brackets

Architecture ASR
ATCO2 LDC-ATCC LiveATC

WDER PER WER WDER PER WER WDER PER WER

SRD-ASR

w2v2

27.4 (0.4) 25.5 (7.9) 34.8 (3.1) 27.4 (0.1) 27.2 (5.0) 36.2 (3.1) 23.7 (0.4) 51.0 (3.6) 55.8 (4.3)

ASR-SRD 11.4 (0.8) 33.5 (3.3) 25.9 (0.4) 12.6 (0.2) 42.1 (1.0) 20.2 (0.1) 30.7 (0.5) 80.8 (1.6) 43.3 (0.4)

Joint 6.5 (0.4) 4.8 (0.8) 24.1 (0.3) 8.0 (1.1) 9.3 (0.5) 27.5 (1.1) 19.2 (7.3) 9.3 (0.5) 45.5 (1.8)

SRD-ASR

xlsr

27.4 (0.5) 26.6 (9.0) 32.0 (3.3) 27.5 (0.3) 25.9 (4.7) 34.4 (1.6) 24.7 (0.4) 50.7 (2.1) 53.1 (0.8)

ASR-SRD 10.4 (0.2) 28.6 (3.4) 22.1 (0.6) 12.3 (0.3) 41.0 (0.1) 17.6 (0.4) 30.2 (0.2) 81.8 (0.6) 41.0 (0.2)

Joint 9.9 (3.0) 4.0 (1.0) 23.1 (1.5) 6.2 (0.3) 2.6 (0.3) 23.9 (1.1) 19.1 (0.5) 12.7 (2.9) 43.5 (0.9)



5.6 Results 83

and LDC-ATCC dataset compared to the inter-dataset scenario. This indicates

that they can utilize the fact that the lexical features do not change significantly

between the training and testing scenario. This is further analyzed in the next

chapter.

5.6.2 Relation and causation analysis for ASR&SRD

To decouple/correlate the ASR and SRD performance, we analyze the confusion

matrices for WDER, PER and WER in Figure 5.3. Additional matrices for the

out-of-vocabulary (OOV) rates and the perplexities allow us to draw a connection

to linguistic differences between the datasets. The perplexities are calculated by

building a 4-gram language model (LM) on the training data and calculating

the perplexity with this LM on the test data. The acoustic influences can be

investigated by analyzing the SNR train/test ratio confusion matrix. The SNR

values are estimated with the WADA-SNR algorithm (C. Kim et al., 2008).

All three architectures have similar WER confusions matrices, the fact that

SRD-ASR transcribes already speaker role chunked audio files just shows in the

absolute values. The PER matrices differ however significantly. The SRD-ASR

model seems to mostly underperform when tested on the LiveATC dataset while

the ASR-SRD model produces high PERs when trained on the LiveATC dataset.

The Joint model shows a balanced performance except for the case when trained

on LDC-ATCC and tested on LiveATC. This corresponds with the perplexity and

OOV rate matrices, which also show a high value for this pairing.
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(a) Perplexity (b) OOV rate (c) SNR ratio

(d) WDER SRD-ASR (e) WDER Joint (f) WDER ASR-SRD

(g) PER SRD-ASR (h) PER Joint (i) PER ASR-SRD

(j) WER SRD-ASR (k) WER Joint (l) WER ASR-SRD

Figure 5.3: Confusion matrices for different metrics (a)-(l) and different ASR&SRD

methods (d)-(l) run with the xlsr model. The columns correspond to the

test datasets and the rows to the training dataset. The SNR train/test

ratio is calculated based on the values of Table 5.1. The datasets are

abbreviated as follows: AT: ATCO2, LD: LDC-ATCC, Li: LiveATC.

The WDER matrices show that the SRD-ASR architecture has the most

balanced performance while only producing high WDERs on the liveATC - LDC-

ATCC pairing, which is also the case for the other architectures. This could be due

to the fact that this pairing shows also a high perplexity, OOV rate and SNR ratio.

The confusion matrix on the Joint model highlights the performance gap between

the inter and intra-dataset scenario. The WDER, WER and PER matrices of

the ASR-SRD value show a high similarity, indicating a correlation between the



5.6 Results 85

Figure 5.4: Few-shot learning on LDC-ATCC of a Joint-xlsr model finetuned previ-

ously on Live ATC data. All experiments are just conducted once.

three measures. Overall, the perplexity and OOV rates seem to have a higher

influence on the ASR&SRD metrics than the SNR ratio. But it should be noted,

that the WADA-SNR values of the datasets are quite similar as Table 5.1 shows.

However, the distribution of the SNR values are quite different as Figure 5.1 (a)

indicates. An additional noise analysis is therefore necessary to draw noise-related

conclusions.

5.6.3 Few-shot learning

The difference between the inter- vs intra-dataset WDER scores for the Joint

architecture is quite large as shown above. To ameliorate this with domain familiar-

ization, we resort to few-shot training. As an example case, we use the LDC-ATCC

data to further train a Joint-xlsr model finetuned on Live ATC data. Figure 5.4

shows that the WDER on LDC-ATCC drops to 42% by just using 10 samples

from the LDC-ATCC data for fine-tuning. This is already the level that the other

architectures reach on this dataset. By using 50 samples, the WDER is already

below 20%. There is however a noticeable increase in the WDER/WER on the Live

ATC dataset. At 25 samples, the model shows a balanced inter-and intra-dataset
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performance. This shows that adaptation to the cross-dataset scenario is possible

by using few-shot training.

5.7 Conclusion

Recently proposed joint diarization and ASR models outperform traditional sequen-

tial approaches. The air-traffic control (ATC) domain differs however acoustically

and linguistically from standard diarization and ASR datasets. In ATC, iden-

tifying the speaker role, pilot or air-traffic controller, is often more important

than identifying the speaker. We have therefore proposed a joint speaker-role

detection (SRD) and ASR system for ATC (Joint). This system purely relies

on transformer-based ASR models. We have compared this architecture against

two traditional cascaded approaches, which either first perform ASR, then text

based SRD (ASR-SRD), or first acoustic-based SRD and then ASR (SRD-ASR).

Our system clearly outperforms the other systems in the intra-dataset scenario

in terms of the word diarization error rate (WDER). The position error rate

(PER) scores are lower in all scenarios. We can show that the WDER scores of

the (Joint) and (ASR-SRD) systems scale with a better ASR performance, while

the (Joint) models seems to benefit more from a potent ASR model. Few-shot

training results indicate that the inter-dataset scores of the Joint model can be

significantly improved with just 25 samples. The ASR-SRD architecture shows a

more balanced performance between the intra- and inter-dataset scenario, while

the SRD-ASR approach only seems to be superior if there is a high WER scenario.

These insights allow to pick the correct architecture for an individual ASR&SRD

task.
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Air-traffic control (ATC) relies on communication via speech between pilot

and air-traffic controller (ATCO). The call sign, as a unique identifier for each

flight, is used to address a specific pilot by the ATCO. Extracting the call-sign

from the communication is a challenge because of the noisy ATC voice channel

87
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and the additional noise introduced by the receiver. A low signal-to-noise ratio

(SNR) in the speech leads to high word error rate (WER) transcripts. In this

chapter, we propose a new call-sign recognition and understanding (CRU) system

that addresses this issue. The recognizer is trained to identify call-signs in noisy

ATC transcripts and convert them into the standard International Civil Aviation

Organization (ICAO) format. By incorporating surveillance information, we can

multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data

augmentation adds additional performance on high WER transcripts and allows

the adaptation of the model to unseen airspaces.

The content of this chapter is based on:

Blatt, Alexander, Martin Kocour, Karel Veselý, Igor Szöke, and Dietrich Klakow

(2022). “Call-Sign Recognition and Understanding for Noisy Air-Traffic Tran-

scripts Using Surveillance Information.” In: ICASSP 2022 - 2022 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 8357–8361. doi: 10.1109/ICASSP43922.2022.9746301.

6.1 Introduction

The classical communication between air-traffic controllers (ATCOs) and pilots is

voice-based (Eskilsson et al., 2020). This form of communication has the drawback,

that one ACTO talks to multiple pilots over a single frequency. The rising traffic

in the last years increased the number of pilots tuned in the same frequency. This

increases the chance, that two pilots speak simultaneously. To avoid responses from

multiple pilots, the ATCO addresses the target airplane by its call-sign. A call-sign

is a unique identifier that is assigned to each airplane (e.g. DLH83K). New systems

like controller–pilot data link communications (CPDLC), which use text-based

communication, reduce the load on the voice communication channels (Eskilsson

https://doi.org/10.1109/ICASSP43922.2022.9746301
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et al., 2020). Projects like AcListant and MALORCA1 aim to support the ATCO

by speech recognition systems (Kleinert, Helmke, Siol, Ehr, Cerna, et al., 2018;

Srinivasamurthy et al., 2018). The problem with developing such systems, is the

lack of training data in the ATC domain. Although there exist some datasets

(Zuluaga-Gomez, Motlicek, et al., 2020), a database is missing which covers a

multitude of locations and contains speech, transcripts, and meta-information like

call-signs and commands. This work is part of the ATCO2 project2, which aims,

among others, to build up such a database.

In this work we are investigating the benefit of including context information

for call-sign recognition and understanding. The context information in the form

of a list of surveillance call-signs is used as an additional input for our models. The

models recognize the call-sign in an ATC transcript and convert it to the standard

ICAO format. For the training of our models, we introduce a data augmentation

method, that is adjustable to the target airspace. We can show, that the models

trained on the augmented data predict the target call-signs with high accuracy.

We also find that the models which are incorporating surveillance information are

superior and show a high resistance to ASR noise and surveillance data variations.

6.2 Related Work

Various works have already investigated context incorporation in ASR (Shore

et al., 2012b; Schmidt et al., 2014; Oualil et al., 2015), which marks the prior

step in the ATC speech processing pipeline. Two other works of the ATCO2

project (Kocour, Veselý, Blatt, et al., 2021; Nigmatulina et al., 2021) show that

the combination of HCLG and lattice boosting using Kaldi (Povey et al., 2011),

reduces the ATC-ASR errors, especially for the call-signs. We build on top of

these works by extracting the (erroneous) call-signs from the ASR transcripts and

map them to the standardized ICAO format.

1 MALORCA Homepage: https://www.malorca-project.de/
2 ATCO2 Homepage: https://www.atco2.org/

https://www.malorca-project.de/
https://www.atco2.org/
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Table 6.1: Overview of the datasets. The last column marks the WER of the different

versions of the same dataset.

Datasets Samples WER Variants

LiveATC 500 0|28.4 (h)|28.9 (l)|33.1 (b)

Malorca 1130 0|6.42 (h)|7.27 (l)|8.47 (b)

Airbus 60000 0|7.00|30.0

In named-entity recognition (NER) the call-sign sequence is identified in the

input (Recognition), therefore it is related to our method, which additionally

converts the call-sign to the target ICAO format (Understanding). NER for call-

signs as single entity of interest is also part of the Airbus challenge (Pellegrini et al.,

2019). One of the top three contestants uses a Bi-LSTM-CRF architecture (V.

Gupta et al., 2019) for the call-sign recognition, reaching an F1 score of 80.17 on

the leader board. Newer pretrained transformer-based models like BERT typically

outperform recurrent architectures like LSTMs in natural language processing

(NLP) and natural language understanding (NLU) tasks (Devlin, M. Chang, et al.,

2019).

6.3 Data

Table 6.1 contains the datasets, that are used for training and testing. The Malorca

dataset (Kleinert, Helmke, Siol, Ehr, Cerna, et al., 2018; Srinivasamurthy et al.,

2018) consists of ATCO speech transcripts from the Vienna airport together

with surveillance call-signs for each transcript. The LiveATC dataset contains

transcripts of ATC speech from Zurich Airport (LSZH) and Dublin Airport

(EIDW) with some samples from Hartsfield–Jackson Atlanta International Airport

(KATL). The speech data is collected during the ATCO2 project from LiveATC3,

3 LiveATC Homepage: https://www.liveatc.net/

https://www.liveatc.net/
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which provides live ATC radio feeds. The Malorca and LiveATC transcripts are

generated by three different ASR methods (baseline (b), lattice-boosting (l) and

HCLG-lattice boosting (h)) (Kocour, Veselý, Blatt, et al., 2021) and by human

transcription for the ground-truth data (WER 0). All transcripts are manually

annotated with the correct ICAO call-sign. The generation of the augmented

Airbus datatset out of the Airbus development dataset (Delpech et al., 2019) is

described in Section 6.4.

A sample of the datasets consists out of the transcript (lufthansa eight

three kilo descend three thousand feet), the corresponding target ICAO

call-sign (DLH83K) and the surveillance call-signs (AIF44T, DLH83K, MAN47N, ...).

The surveillance data is drawn from the OpenSky Network4 (OSN) database

(Schäfer et al., 2014). We isolate the call-signs from the surveillance–broadcast

(ADS-B) data fetched for each transcript and use them as context information. On

average, a sample contains 26 (Malorca), respectively 30 (LiveATC) surveillance

call-signs.

The call-signs start generally with an airline identifier5 (lufthansa ↔ DLH)

followed by an alphanumeric call-sign number (eight three kilo ↔ 83K). The

call-sign number in the transcript is converted to its ICAO equivalent by using

the NATO phonetic alphabet6.

6.4 Data Augmentation

Each airspace has distinct characteristics like the occurrence of regional airlines.

The noise levels of the voice channel can also vary, resulting in different WERs of

the transcripts. Ideally, a CRU system could be fine-tuned to each new airspace

by training it on a database for this region. In reality, there exist only a handful

4 OSN Homepage: https://opensky-network.org/
5 A list of identifiers can be found here: https://en.wikipedia.org/wiki/List_of_

airline_codes
6 NATO phonetic alphabet: https://en.wikipedia.org/wiki/NATO_phonetic_alphabet

https://opensky-network.org/
https://en.wikipedia.org/wiki/List_of_airline_codes
https://en.wikipedia.org/wiki/List_of_airline_codes
https://en.wikipedia.org/wiki/NATO_phonetic_alphabet
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ASR Noise

 Addition

Call-sign
Exchange

Artificial Surveillance 

Data Addition

majan oh whiskey mike descend three thousand fleet

lufthansa eight three kilo descend five thousand feet

Surveillance: AUI10C,MJN94AW,MJN0WM,DLA29,EJU5043,EJU9D...

Figure 6.1: Scheme of the data augmentation pipeline.

of ATC databases (Zuluaga-Gomez, Motlicek, et al., 2020). But not all of them

contain labeled call-signs. In most cases, a timestamp as well as the location

of the recordings are also missing, which makes it impossible to retrieve the

corresponding surveillance information from the OSN database.

To overcome this issue, we propose a data augmentation pipeline, which is

shown in Figure 6.1. The basis for the pipeline is the Airbus training dataset

(Delpech et al., 2019), which contains approximately 28.000 transcripts with

labeled call-signs. In the first step of the augmentation, the call-sign (lufthansa

eight three kilo) is cut out of the transcript and replaced with an artificially

generated call-sign (majan oh whiskey mike).

The rule-based data augmentation also includes real-life variations from the

standard format. This includes missing identifiers, shortened call-sign numbers and

the usage of different identifier formats. Transcript equivalents of DLH72K are for

example lufthansa seven two kilo, seven two kilo, lufthansa, lufthansa

seventy-two kilo and dlh seven two kilo.

In the next step, surveillance call-signs are added with the same parameters

(number of call-signs with the same identifier, number of total call-signs, surveil-

lance length) as real surveillance. To match the noise level of the test datasets

(Malorca and LiveATC), simulated ASR noise (noisy distribution extracted from

noisy ASR output) is introduced in the last step for the two noisy datasets (WER

7.0 and WER 30.0) but not for the clean dataset (WER 0).
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Transcript Surveillance

Encoder-Decoder Model

ICAO Call-sign 

+

OSN

ADS-B

Figure 6.2: The CRU system. The dotted path marks the optional surveillance retrieval

via OSN with the aid of the transcripts timestamp and VHF receiver

location.

6.5 Context Integration

Context integration is necessary, since not all of the information loss through the

ASR system can be recovered. If for example five would be missing in Ryanair

eight five three kilo, the remaining Ryanair eight three kilo would be

the wrong, but valid call-sign. A conventional CRU system would therefore predict

RYR83K as target call-sign instead of RYR853K. Adding surveillance call-signs as

additional input, as shown in Figure 6.2, allows the model to compensate the

missing information in the transcript. With the timestamp of the transcript and

its recording location, surveillance information can be retrieved from OSN (dotted

path in Figure 6.2), like described in Section 6.3.

6.6 Experimental Setup

The basis of our CRU model is the EncoderDecoderModel from the Hugging Face

transformers library (Wolf et al., 2020), which showed superior performance over

other designs in prior experiments. The language model head of this architecture
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allows also to predict call-signs without surveillance information. For both, encoder

and decoder, the pretrained bert-base-uncased model is used, to make use of

the beneficial effect of using pretrained models for sequence-to-sequence tasks

(Rothe et al., 2020).

Since ATC speech transcripts differ highly from standard text, a domain

adaptation is performed by pretraining BERT (bert-base-uncased) on ATC

transcripts using masked language modeling. The CRU models are trained on the

augmented Airbus datasets. For each augmented dataset listed in Table 6.1 (WER

0, WER 7 and WER 30) a split of 40k/10k/10k for train/val/test sets is used. The

models are either trained with (Sur) or without (Van) surveillance information.

The transcript and the surveillance call-signs are concatenated and embedded into

a single vector. This single or cross-encoder design allows interactions between the

transcript and context from lower layers of the model on. The overall architecture

for the Sur and Van models is the same, to ensure a fair comparison. The trained

models are tested on the LiveATC and Malorca test sets listed in Table 6.1. The

performance of all models is measured as accuracy or call-sign accuracy (CSA).

6.7 Experimental Results

6.7.1 Surveillance Incorporation

Feeding the model surveillance call-signs not only allows recovering noisy ASR

transcripts, that are lacking e.g. the airline identifier. The surveillance allows the

model also to predict call-signs containing airline identifiers, that did not appear

in the training data. Additionally, the surveillance call-signs decrease the target

space for the model.

Table 6.2 and Table 6.3 show the comparison between CRU models incorporat-

ing surveillance (Sur) and not incorporating surveillance (Van). The models that

include surveillance call-signs outperform the vanilla models on every test set. On
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Table 6.2: Accuracy on the LiveATC test sets. The call-sign recognition models are

trained on the augmented Airbus dataset with different WERs. Underlined

accuracy scores symbolize the best vanilla recognition model, while bold

scores mark the best model overall.

Accuracy on LiveATC test sets

Taining WER 0 WER 28.4 WER 28.9 WER 33.1

sets Van Sur Van Sur Van Sur Van Sur

WER 0 39.8 89.4 31.0 74.0 27.8 70.3 11.2 45.2

WER 7 60.2 88.6 47.2 78.4 44.0 73.3 16.4 57.0

WER 30 56.0 85.6 46.6 73.6 42.8 68.5 15.4 47.4

the high-noise transcripts of the LiveATC dataset (WER 33.1), the benefit of the

additional information shows the best. The vanilla network is here outperformed

by a factor of 3-4. As an example of the recovery capabilities for noisy call-signs,

we are able to predict 57% of the ICAO call-signs from the LiveATC transcripts

(WER 33.1). Although they contain only 27% correct call-signs. This means an

increase of 30%.

6.7.2 Noisy Training Data

To give the models more robustness against ASR noise, they are trained on

different WER-level training data. On the Malorca data, the models trained on

noisy transcripts (WER 7 and WER 30) outperform the model trained on clean

transcripts (WER 0) on every test set as Table 6.3 shows. Both, the surveillance

and the vanilla models benefit on similar levels from the training on noisy data,

while the highest performance boost is reached on the noisiest test set (WER 8.47)

from 75.6% accuracy to 81.0%. On the noisier LiveATC test sets, the overall mean

accuracy of the vanilla model trained on WER 7 data is around 1.5 times higher

than the accuracy of the model trained on noise-free data as stated in Table 6.2.
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Table 6.3: Accuracy on the Malorca test sets. The call-sign recognition models are

trained on the augmented Airbus dataset with different WERs. Underlined

accuracy scores symbolize the best vanilla recognition model, while bold

scores mark the best model overall.

Accuracy on Malorca test sets

Taining WER 0 WER 6.42 WER 7.27 WER 8.47

sets Van Sur Van Sur Van Sur Van Sur

WER 0 49.5 85.6 50.6 82.4 47.4 79.5 44.2 75.6

WER 7 53.8 87.5 53.6 84.9 50.4 83.5 46.8 80.7

WER 30 54.8 87.3 54.7 85.0 50.9 83.7 47.2 81.0

Raising the WER of the training data further from 7 to 30 leads only to a small

improvement on the high WER Malorca test sets.

The results show the benefit of training the model on (simulated) noisy

transcripts if the target input of the model is the output of the ASR recognizer.

But more importantly, they also show, that even if there is just clean data available

for training, including the surveillance call-signs is a necessary condition to reach

maximum performance.

6.7.3 Surveillance Fluctuation Robustness

We investigate the robustness of our model against the three main surveillance

parameters: the number of call-signs in the surveillance, the number of airline

identifier duplicates and the number of call-sign number duplicates. The evaluations

are done on the LiveATC dataset by altering the surveillance information. The

model trained on the WER 7 dataset is used for these tests, since it performs the

best on the noisy LiveATC test sets.

A higher number of surveillance call-signs increases the search space for the

model. By increasing the surveillance size from 1 to 19, the accuracy decreases
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Figure 6.3: Change of accuracy depending on (left) the number of call-signs in the

surveillance data; (middle) the relative number of additional call-signs

in the surveillance information containing the same call-sign identifier

as the target call-sign; (right) the number of additional call-signs in the

surveillance information containing the same call-sign number as the the

target call-sign.

by 5% on the WER 28.4 test data, while there is a decrease of 12% on the WER

33.1 test set as Figure 6.3 shows. Intuitively, this is clear since on noisy data, the

model has to rely more on the additional context information.

Several airplanes of the same airline can be in the same airspace resulting

in call-signs with an identical identifier (e.g. DLH124, DLH9M, DLH69F). For the

LiveATC and Malorca test set, each identifier in the surveillance occurs 1.45

respectively 1.9 times. Figure 6.3 shows, that the recognizer is very robust against

airline identifier duplicates. Even with 80% of the surveillance call-sign identifiers

being identical to the target identifier call-sign, there is no drop in accuracy.

In contrast to identifier duplicates, having the same call-sign number in the

surveillance information (e.g. DLH83K, CSA83K, RYR83K) is quite rare. In the

LiveATC dataset, only in 2.7% of the cases, a call-sign number appears twice in

the surveillance information. With one duplicate of the target call-sign, which is

already higher than what can be expected in the real-life scenario, the accuracy

drop on the WER 28.4 and WER 28.9 dataset stays below 5% as Figure 6.3 shows.

For the high-noise dataset, the drop is around 10%.
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6.8 Conclusion

In this work, we have introduced a method for enhancing call-sign recognition

and understanding (CRU) by incorporating context information in the form of

surveillance call-signs without changing the model architecture. We have shown

that this improves the call-sign accuracy up to 4 times. Our data augmentation

pipeline allows to generate training data for specific airspaces, even if there are no

transcripts available for that region. We have shown that introducing ASR noise

in the data augmentation pipeline improves the vanilla model performance up to

1.5 times.

We can show that our models are robust against the occurrence of multiple

surveillance call-signs containing the same identifier. The number of included

surveillance callsigns should be kept as low as possible since the call-sign accuracy

decreases linearly with the number of the surveillance call-signs. For the rare case

of an additional call-sign occurring with the target call-sign number, we can show

that the accuracy drop stays below 5% for the low call-sign WER test sets and

under 10% for the high WER call-sign test set.

In the future, we want to also look at other context incorporation methods.

We additionally plan to adapt our model to other named entities appearing in

ATC transcripts, such as commands and values.
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Operational machine learning-based assistant systems must be robust in

a wide range of scenarios. This holds especially true for the air-traffic control

(ATC) domain. The robustness of an architecture is particularly evident in edge

99



100 Utilizing Multimodal Data for Edge Case Robust Call-sign Recognition and Understanding

cases, such as high word error rate (WER) transcripts resulting from noisy ATC

recordings or partial transcripts due to clipped recordings. In this chapter, we

therefore specifically focus on edge cases to get better insight on model robus-

tification for ATC. To increase the edge-case robustness of call-sign recognition

and understanding (CRU), a core tasks in ATC speech processing, we propose

the multimodal call-sign-command recovery model (CCR). The CCR architecture

leads to an increase in the edge case performance of up to 15%. We demonstrate

this on our second proposed architecture, CallSBERT. A CRU model that has

fewer parameters, can be fine-tuned noticeably faster and is more robust during

fine-tuning than the state of the art for CRU. Furthermore, we demonstrate that

optimizing for edge cases leads to a significantly higher accuracy across a wide

operational range.

The content of this chapter is based on:

Blatt, Alexander and Dietrich Klakow (2024). Utilizing Multimodal Data for

Edge Case Robust Call-sign Recognition and Understanding. arXiv: 2412.20467

[cs.CL]. url: https://arxiv.org/abs/2412.20467.

7.1 Introduction

Pilots rely on the guidance of air-traffic controllers (ATCO) for a safe take-off and

landing. Research projects targeting ACTO-pilot communication automation like

AcListant, Malorca (Srinivasamurthy et al., 2018) or ATCO² (Zuluaga-Gomez,

Veselý, Blatt, et al., 2020b) are enabling the development of fully automated

air-traffic control (ATC) speech processing pipelines and assistant systems. These

systems should be robust and tested in edge case scenarios, which the European

Union Aviation Safety Agency states specifically (European Union Aviation Safety

Agency, 2021). This contrasts with the fact that the majority of the developed mod-

https://arxiv.org/abs/2412.20467
https://arxiv.org/abs/2412.20467
https://arxiv.org/abs/2412.20467
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els are optimized for standard conditions on data sets like ATCOSIM (Hofbauer

et al., 2008), AIRBUS (Pellegrini et al., 2019) or ATCO2 (Kocour, Veselý, Szöke,

et al., 2022). These data sets are not designed for edge-case testing and often

lack edge-case samples, like for example high noise recordings. This is problematic

since high noise conditions with low SNR values are occurring during operation.

If a machine learning (ML) system is not properly adapted to those conditions,

hallucinations or drastic performance degradation can occur (Ji, Lee, et al., 2023).

We address this at the example of call-sign recognition and understanding

(CRU) (Blatt, Kocour, et al., 2022). Extracting the call-sign from ATC speech,

respectively transcripts, is one of the key tasks in ATC. ACTOs address their

commands to a specific pilot by starting each instruction with a call-sign1. A

misrecognized call-sign can lead to incidents or in the worst case accidents. Our

first contribution to this topic is the introduction of CallSBERT, a novel, smaller

and faster to train CRU model that can be used more flexible than the state

of the art (SOTA) for CRU. As a second contribution, we show that training

in edge cases like high WER, clipping and missing transcripts can significantly

improve the accuracy not only in these edge cases but throughout the operational

range. We propose the call-sign-command recovery model (CCR) which utilizes

commands and plane coordinates to recover additional call-sign accuracy (CA) in

edge cases and can even compensate for completely erroneous transcripts.

7.2 Related work

Related works focus on call-sign tagging (V. Gupta et al., 2019), call-sign transcrip-

tion (Nigmatulina et al., 2021) or call-sign recognition in the International Civil

Aviation Organization (ICAO) format from ATC conversation transcripts (Blatt,

Kocour, et al., 2022; Ohneiser, S. Sarfjoo, et al., 2021). Multimodal approaches

for automatic speech recognition (ASR) in ATC use surveillance call-signs from

1 ATC examples: https://wiki.flightgear.org/ATC_ phraseology



102 Utilizing Multimodal Data for Edge Case Robust Call-sign Recognition and Understanding

Automatic Dependent Surveillance–Broadcast (ADS-B) information to boost the

performance (Guo et al., 2021; Kocour, Veselý, Szöke, et al., 2022). In an earlier

work, we propose a call-sign recognition and understanding (CRU) model using

surveillance call-signs (Blatt, Kocour, et al., 2022). The surveillance model in this

work, called the EncDec model in the following, relies on ATC transcripts as input,

which allows to evaluate the CRU task independently from the ASR task. This

is the CRU reference model for our edge-case optimization. Plane locations are

also useful context information, since commands are given from ATCOs to pilots

usually at defined areas in the airspace. Kleinert et al. (Kleinert, Helmke, Siol,

Ehr, Finke, et al., 2017) include plane locations via binary 2D airspace command

distributions to improve their controller command prediction. We extend this

idea, by using more informative non-binary 3D distributions in our command

distribution module (CDM), which is one of the key components for our robust

edge-case CRU performance. Our CRU model CallSBERT is based on SBERT

(Reimers et al., 2019) and we adapt BERT (Devlin, M. Chang, et al., 2019) as

command classifier in our edge-case robust CCR architecture.

7.3 Data preparation

The CRU models are trained on ATC transcripts of the MALORCA data set

(Prague airport) and on transcripts of the AIRBUS data set. Both datasets

contain ATC transcripts labeled with the correct call-signs, e.g. ryanair one

two four (expanded format), respectively RYR124 (ICAO format). The AIRBUS

dataset, with artificial surveillance data added (Blatt, Kocour, et al., 2022), is

only used for pretraining. This pretraining is crucial since the MALORCA dataset

is relatively small. The train|val|test split consists of 0.9K|0.1K|0.1K samples for

the MALORCA dataset, respectively 8.9K|1.3K|1.3K samples for the AIRBUS

dataset. To generate samples for command classification, the data is multilabeled

with a key-word-based labeler that recognizes six command types: horizontal,
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vertical, ils, taxi, clearing and greeting. A transcript is tagged with horizontal if it

contains for example the key words turn right or change heading.

For each of the MALORCA transcripts, the ADS-B information of each

airplane in 100 km N-S and E-W distance of the Prague airport and 0-20 km

altitude is fetched from the OpenSky data base2 via the timestamp of the transcript.

From the ADS-B state vectors, the coordinates of the planes in the 200 km ·

200 km · 20 km bounding box are isolated and transformed to an xyz coordinate

system with its origin located at the airport. Approximately 30 planes are within

this bounding box at the same time. Therefore, a random baseline for call-sign

identification has a chance of 1/30 to identify the correct call-sign. For the different

edge cases in Section 7.5.2.1, Section 7.5.2.2 and Section 7.5.2.3, the transcripts

are altered accordingly. Versions of different WERs are produced by adding ASR

noise as described in (Blatt, Kocour, et al., 2022). Additionally, clipped versions

of the transcripts are produced by removing n words from the beginning of the

transcript. All experiments are run on a NVIDIA GeForce RTX 2060 GPU. All

experiments are run thrice and the mean and standard deviation are given. For

each run, the model with the lowest validation loss is chosen for testing.

7.4 Models

7.4.1 EncDec

As SOTA, we take the EncDec model from Blatt et al. (Blatt, Kocour, et al., 2022)

which uses a bert-base3 encoder-decoder architecture and has 66.3M parameters.

One mayor drawback of the EncDec architecture is the way, in which the model

is trained. The input of the model consists of a transcript concatenated with all

2 OpenSky: https://opensky-network.org/
3 Transformer library: https://huggingface.co

https://opensky-network.org/
https://huggingface.co
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Encoder & Decoder

Call1Transcript

SBERT SBERT SBERT

SimCall1 SimCall2 SimCall3Call2ICAO

Call2 Call3Call2Call2 Call3Call2Call1Transcript

Figure 7.1: Architecture comparison of the parallel EncDec (Blatt, Kocour, et al.,

2022) (left) and the sequential CallSBERT model (right).

surveillance call-signs to predict the target call-sign directly in the ICAO format

as Figure 7.1a shows.

7.4.2 CallSBERT

The CallSBERT model takes the transcript and only one matching or non-

matching surveillance call-sign for the contrastive loss training. This significantly

reduces the input size. In Figure 7.1, Call2 is an example of a matching call

signal (positive sample), while Call1 is a non-matching call-sign (negative sample).

The CallSBERT architecture is based one SBERT block4 (Reimers et al., 2019),

visualized in Figure 7.1b, and has only 37.1% (24.6M parameters) of the EncDec

model parameters. All this results in an increased training speed of a factor of

45 in comparison with the EncDec Model. If the models are applied to a bigger

airspace, with more surveillance call-signs present, this factor will further increase.

Since CallSBERT ranks the surveillance call-signs sequentially during inference

via cosine-similarity scores (Sim), its maximum input size does not need to be

defined beforehand, which is an advantage of this architecture. The production of

similarity scores also allows this architecture to be used in a sub-model, because

the similarity scores for each surveillance call-sign can be used as features. In

contrast, the EncDec architecture does only predict one call-sign and gives no

4 SBERT library: https://www.sbert.net
5 roughly 100 s vs 400 s for 10 epochs finetuning on the 0.9K MALORCA train split

https://www.sbert.net
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Figure 7.2: CCR architecture. The dotted lines mark the additional call-sign prediction

path via command distributions.

information about the other call-signs which is the main disadvantage of this

model.

7.4.3 CCR

The call-sign-command recovery model (CCR), displayed in Figure 7.2, combines

command with call-sign recognition to increase the CRU robustness. It consists of

a CallSBERT branch (solid lines) and the additional command branch (dotted

lines), which utilizes coordinates as additional input. The command branch consists

of three different modules, the command classifier, the command distribution

module (CDM) and the final call-sign identifier. The command classifier is a

transformer-based multilabel classifier. It can detect whether a transcript contains

one or multiple of the six command types described in Section 7.3. The predicted

command types are fed into the command distribution module (CDM). The CDM

consists of plane 2D/3D-coordinates → command probabilities (Dis) mappings for

each of the six command types. The CDM contains mappings for each command

type and they are selected based on the command types that are recognized

by the command classifier. Therefore, the Dis scores indicate which plane in
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(a) Plane coordinates (b) Binary filtered (c) Gaussian filtered

Figure 7.3: 2D coordinates of airplanes while receiving a vertical command (a) and

2D distribution maps (top view) of the vertical command in the 200 km ·

200 km Prague airspace (b),(d). Dark colored areas have a high probability

for vertical commands.

the airspace is most likely mentioned in the transcript based on its position

and the command uttered in the transcript. In the example in Figure 7.2, just

the horizontal command type is identified, therefore the CDM only uses the

probability distribution map of the horizontal command for the Dis generation. If

there is no transcript available, the coordinate → probability mappings for every

command type are considered and mean pooled. For generating the mappings,

a small set of coordinate-command pairs of the target airspace are filtered by

one of the following filter functions: Gaussian, binary, maximum or uniform. The

filtering, described in Section 7.4.4 allows one to generate command probability

distributions for the whole airspace out of just a few hundred samples as Figure 7.3

shows. The final call-sign identifier of the CCR model takes the Sim scores of

CallSBERT and the Dis scores of the CDM module for each surveillance call-sign

and generates a final weighted score for each surveillance call-sign and extracts the

most probable one. Our identifier consists of a fully connected five-layer network

with relu activations and batch normalization between the fully connected layers

and a sigmoid activation at the last layer.
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(a) 2D select (b) 3D select

(c) 2D naive (d) 3D naive

Figure 7.4: Maximum accuracy of call-sign prediction based on command distributions

with optimal filter parameters.

7.4.4 CDM optimization

To reduce the need for a large transcribed corpus to create the command probability

distributions of the CDM for a new airspace, we evaluate different filter functions

for the distribution generation in a low-resource scenario. The naive baseline

uses all command distributions for the call-sign prediction (naive mode). Using

only the relevant command distributions (select mode), which are selected by

the command classifier of the CCR, adds 10% accuracy to the naive baseline for

the Gaussian, maximum and uniform filter as Figure 7.4 shows. Switching from

2D coordinates to 3D coordinates, respectively incorporating the plane height,

additionally adds 10% accuracy. The highest accuracy for the low resource scenario

is achieved with a Gaussian filter. Using just 100 coordinate-command pairs to

generate the distributions via Gaussian filtering gives a similar accuracy as with

1000 samples for the 3D select case. For the final CCR model, we therefore use
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(a) EncDec (b) CallSBERT

Figure 7.5: Call-sign accuracy depending on the surveillance size per test transcript.

During fine-tuning, each transcript has either 4 or 24 corresponding surveil-

lance call-signs.

3D coordinate→probability mappings generated by a Gaussian filtering as shown

in Figure 7.3c.

7.5 Results

7.5.1 CallSBERT: Surveillance adaptation

Depending on the flight sector, the amount of surveillance call-signs available might

vary. The EncDec architecture has been proven to be robust against fluctuations

in the count of surveillance call signs during testing (Blatt, Kocour, et al., 2022).

The question remains how the EncDec architecture and CallSBERT react, when

they are fine-tuned with a different amount of surveillance call-signs. Figure 7.5

shows that the CA of the EncDec model, despite staying over 80%, depends on

the number of surveillance call-signs encountered during training. If the model is

finetuned on samples with 24 surveillance call-signs per transcript, it performs

better if the number of surveillance call-signs during testing is in the same range.

The same holds true for the model trained with 4 surveillance call-signs per

transcript. The CallSBERT model, however, seems to be agnostic against the

number of surveillance call-signs encountered during training and shows the
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(a) CallSBERT (b) EncDec

(c) CCR (d) CCR ablation study

Figure 7.6: Call-sign accuracy depending on the WER of the MALORCA test data.

expected behaviour of a reduced CA with an increasing number of surveillance

call-signs due to an increasing search-space.

7.5.2 Edge cases

7.5.2.1 High word error rate

The best performing SOTA ASR model of (Kocour, Veselý, Szöke, et al., 2022)

achieves a mean word error rate (WER) on their LiveATC data set (Kocour,

Veselý, Szöke, et al., 2022) of 26.8%. But we found that 24% of the transcripts

have a 40% WER or higher and 9% of the transcripts have even a WER over 60%.

For our experiments, we therefore generate test data sets with a mean WER of

up to 70%. Figure 7.6 shows that both, the EncDec and CallSBERT models show

a significant performance drop at high WERs, when trained on low WER data of

16%. Training on data with higher WERs allows the models to learn the noise
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distribution and reduces CA deterioration by up to 30%, with the larger EncDec

model adapting better to ASR noise. Incorporating the CallSBERT model into

the CCR architecture stabilizes the CA for a WER over 60% and adds up to 15%

to the accuracy of the pure CallSBERT model.

To further evaluate this, we conduct an ablation study on the CCR architec-

ture. In the CDMnaive case, the CDM mean pools the output of all 3D command

distributions to generate a score for each plane coordinate. Since this part of the

CCR is not depending on ASR output, the accuracy is stable over the whole WER

range as Figure 7.6d shows. By feeding the output of the command classifier into

the CDM (CDMcommand), the CDM selects the distribution map of the most prob-

able command for predicting the call-sign. This adds roughly 10% performance

as Figure 7.6d shows. The missing deterioration of the accuracy at high WERs

proves the robustness of the command prediction. Up to a test WER of 40%, the

call-sign accuracy of CallSBERTs is more than 20% higher than the CA of the

CDMcommand. At higher WERs the accuracy of CallSBERT drops significantly.

The full CCR architecture however outperforms the single CCR modules by com-

bining the CDMcommand and CallSBERTs output. The ablation study highlights

the importance of using multi-modal data, but also the importance of extracting

noise-robust text-based features.

7.5.2.2 Clipping

An ATC utterance can be clipped at the beginning if the transmission of the

utterance starts delayed after the ATCO or pilot starts talking. CRU algorithms

are quite sensitive to clipping, since the call-sign is either located at the begin-

ning or end of an utterance. Clipping for example the first three words of the

call-signs lufthansa one two four lima echo and ryanair three five four

lima echo results in the identical call-sign. Figure 7.7 shows that clipping just the

first four words reduces the CA of CallSBERT below 50%, which is comparable to

a WER higher than 70%. With the clipping of six words, the CA starts to plateau,

since the majority of call-signs at the beginning of utterances are cut off beyond
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(a) CallSBERT (b) CCR

(c) EncDec

Figure 7.7: Call-sign accuracy depending on the number of words clipped off at the

beginning of the transcripts.

recognition. Training specifically on those shortened utterances can recover up to

30% CA. The additional command branch of the CCR reduces the performance

drop by 10%, even for a CallSBERT model, which is trained on unclipped data.

The comparison between the CCR module and the EncDec architecture shows

that both architectures have a similar performance, when they encounter already

heavily clipped data during training. If however only one or no words are clipped

during training the CCR architecture outperforms the EncDec model significantly.

7.5.2.3 Missing transcript

The worst-case scenario for a CRU model is a missing transcript. In the ATCO²

project, utterances with an SNR < 0 dB, make up roughly 10% of all the recordings.

They are however discarded because they are too noisy for ASR. To still make use

of such samples, a CRU model has to work solely on surveillance data. Table 7.1
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Table 7.1: Call-sign accuracy on test data without transcripts.

WERtrain 16% 41% 64%

CallSBERT 0.03(±0.02) 0.07(±0.06) 0.06(±0.04)

EncDec 0.00(±0.00) 0.12(±0.04) 0.31(±0.05)

CCR 0.16(±0.04) 0.33(±0.03) 0.37(±0.04)

shows, that the CallSBERT model cannot utilize the surveillance call-signs to

reach a CA higher than 10% if the transcript is completely missing. The EncDec

model is capable of generating predictions, when trained on the 64% WER data

because the model utilizes the simultaneous processing of all surveillance call-signs

to draw a prediction from previous surveillance constellations. It falls however far

behind the CCR model for lower WER training data and fails completely at 16%

WER training data. The additional command distribution maps keeps the CCR

module still operational at 16% WER, where the other CRU models completely

break down.

7.6 Conclusion

In this work we have shown at the example of call-sign recognition and under-

standing models, that edge-case optimization leads to a more stable performance

over a broad operational range. Fine-tuning on noisy transcripts reduces the

noise-introduced accuracy drop significantly without degrading accuracy levels

on clean data. This holds true for high-WER transcripts and for word-clipped

transcripts. Our introduced CallSBERT model shows just a minor performance

decrease compared to the EncDec model introduced in (Blatt, Kocour, et al.,

2022) while having only 37.1% of the parameters and being faster and more robust

during fine-tuning. This performance gap is significantly reduced when CallS-

BERT is integrated in our newly proposed multimodal CCR architecture. The
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ablation study of the architecture shows that the additional context information

extracted by the command distribution module and the command classification

module of the CCR architecture ensures a stable performance for all investigated

edge-case scenarios. This makes this design also interesting for other domains,

where coordinates of communication targets are known, for example the nautical

or the military domain. Due to its command distribution module, the CCR model

can even produce nearly 40% accurate predictions when there is no transcript

available, making it the favorable choice for a robust call-sign prediction model.
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Developing language understanding (NLU) methods for low resource domains

is an ongoing challenge. The air-traffic control (ATC) domain is a paragon of

this. There is a high demand for automated solutions to ease the workload of

air-traffic controllers (ATCOs), but a low availability of open-source datasets.

The available datasets contain mostly unlabeled transcripts, targeting automatic

115
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speech recognition (ASR) and cover just one or a few airspaces. Models trained

on these airspaces might fail in an unseen target airspace. In this chapter, we

evaluate different methods to overcome this problem on the task of read-back

error detection (RED), which uncovers mistakes in ATCO-pilot communication to

prevent incidents. We generate noisy labels for our two stage RED approach, that

combines data augmentation and noisy labels. This allows the use of unlabeled

data of non-target airspaces to increase the performance on the target airspaces

with a relative improvement of 35% over the baseline method.

The content of this chapter is based on:

Bashyam, Lakshmi Rajendram, Blatt, Alexander, and Dietrich Klakow (2023).

“Enabling Noisy Label Usage for Out-of-Airspace Data in Read-Back Error

Detection.” In: 2023 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU), pp. 1–8. doi: 10.1109/ASRU57964.2023.10389759.

8.1 Introduction

There is a high demand for machine learning (ML) based solutions in air traffic

control to improve security, reliability, and safety. Degas et al. (Degas et al., 2022)

provide an overview of the research in this area. To ensure high-quality machine

learning tools, the European Union Aviation Safety Agency (EASA) published a

guide for machine learning applications (European Union Aviation Safety Agency,

2021). Assistant tools like auto-pilot or arrival manager (Ohneiser, Helmke, et al.,

2021) are already common tools to ease the daily work of pilots and air-traffic

controllers. The high workload of air-traffic controllers (ATCOs) can lead to errors

in communication and these errors can lead to incidents and accidents (Cardosi

et al., 1998). With air-traffic control (ATC) being responsible for 6-10% of aircraft

crashes (Nikšić et al., 2022), incidents not included, assistant tools can play an

https://doi.org/10.1109/ASRU57964.2023.10389759


8.1 Introduction 117

important role in crash avoidance. Research projects like Malorca1 or ATCO22

are focusing on developing such assistant tools and also databases to train them

on (Zuluaga-Gomez, Veselý, Szöke, et al., 2022). Promising approaches rely on

speech processing of ATCO and pilot communication. Outcomes of ATCO2 are

for example a pipeline for collecting and annotating air-traffic communication

(Kocour, Veselý, Szöke, et al., 2022) and a tool for recognizing call-signs in noisy

air-traffic transcripts by using surveillance information (Blatt, Kocour, et al.,

2022). These tools can reduce the ATCO workload and therefore indirectly reduce

the chances of accidents.

A more straightforward approach is to employ automatic read-back error

detection (RED) systems. The idea behind such a system is to directly detect

mistakes in ATCO-pilot communication. A standard procedure of ATC commu-

nication involves the pilot reading back the command the ATCO has given. A

pilot could for example answer with Turning right 20 degrees to the ATCO

command LUF674F turn right 20 degrees. Each ATCO utterance should ide-

ally start with the call-sign of the addressed plane, in the example, this would

be LUF674F. The call-sign is followed up by a command turn right and the

associated value 20 degrees. The read-back of the command and value by the

pilot is crucial, since it ensures, that there are no misunderstandings. To rule out,

that the wrong pilot follows a command, the call-sign of the plane is also read

back in most of these cases.

In longer conversations, the read-back can also miss the call-sign or include

abbreviated versions of the call-sign as stated by Blatt et al. (Blatt, Kocour, et al.,

2022), which complicates read-back error classification. To further complicate the

matter, read-back errors occur just in 1-4% of the uttered commands (Cardosis,

1994; Prinzo et al., 2009; Helmke, Kleinert, Shetty, et al., 2021). Additionally

there exist no publicly available datasets for RED. Furthermore, automatic speech

recognition (ASR) datasets for ATC that could be labeled, might not contain

data from desired the target airspaces. All this makes it difficult to train machine-

1 MALORCA Homepage: https://www.malorca-project.de/
2 ATCO2 Homepage: https://www.atco2.org/

https://www.malorca-project.de/
https://www.atco2.org/
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learning based methods for read-back error systems. This is one of the reasons,

why other ML based systems focus on binary read-back error classification (Chen

et al., 2017; Cheng et al., 2018; JIA et al., 2018b; Helmke, Kleinert, Shetty, et al.,

2021; Helmke, Ondřej, et al., 2022).

In this paper, we investigate methods to handle this low-resource problem and

propose to the best of our knowledge the first benchmarks for a fully ML-based

multi-class read-back error recognition system.

8.2 Related work

Because of the severe consequences, the causes of ATC errors are the target

of several studies. Marrow et al. (Morrow et al., 1993) identify amongst others

the length of an ATC message and the amount of traffic as causes for errors in

ATC communications. Cardosi et al. (Cardosi et al., 1998) uncover wrong pilot

expectations, pilots sharing the same frequency and a high controller workload

as additional factors. In a more recent work by Wu et al. (Wu et al., 2019) a

correlation between pilot accents and miscommunication is stated.

An early machine learning-based read-back error detection method is imple-

mented by Chen et al. (Chen et al., 2017). They propose an automatic speech

recognition (ASR) based system, that features a GUI to display read-back error

alerts. Jia et al. (JIA et al., 2018b) use an LSTM-based model for binary read-back

error detection of transcribed Chinese ATC utterances. They achieve an accuracy

of 94%. However, due to the seldom occurrence of read-back errors, the system is

evaluated on synthetically generated read-back error samples. A two-step approach

is taken by Helmke at al. (Helmke, Ondřej, et al., 2022). In the first step, the

ATC transcripts are converted, either rule-based or transformer-based (Vaswani,

Shazeer, Parmar, Uszkoreit, Jones, Aidan N Gomez, et al., 2017a), into a stan-

dardized ATC phraseology. They use a rule-based model for identifying individual

use cases which also include read-back error cases. Alternatively, a BERT-based

approach (Devlin, M. Chang, et al., 2019) is used for read-back error detection.
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However, due to the low occurrence of read-back errors and the resulting class

imbalances in the training data, they opt for binary classification in their machine

learning-based approach. On real-life ops-room recordings, they reach an F1 score

of 47% when combining the data-driven and rule-based read-back error detection

system.

In contrast to previous works, our system relies purely on a machine learning-

based approach. By employing techniques to handle class imbalance and using

out-of-airspace data, our system is able to effectively detect different read-back

error classes. The classes used in our RED are the result of grouping operational

scenarios with different degrees of severity by our ATC experts. They provide the

ATCO with more feedback than a binary RED.

One of those techniques is the generation of noisy labels. We especially build

on two previous noisy label works. Firstly, Zhu et al. (D. Zhu et al., 2022) have

shown that noisy labels can be used with BERT without using advanced noise

handling methods, such as noise matrices. Secondly, Goh et al. (Goh et al., 2018)

used a two-step approach, in which they fine-tune their model in a first step on

noisy labeled data and then fine-tune it a second time on clean data, to avoid

overfitting on the noisy labels.

8.3 Methods

In the following, we will describe how we build our dataset and describe the

methods used for read-back error detection.

8.3.1 Read-back Error Classes

In the scope of this paper, we focus on pairwise read-back error detection, meaning,

that we look at errors occurring in an answer from a pilot to an ATCO command.

We consider 5 different classes for read-back error detection. Examples of ATCO-
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Table 8.1: Read-back Error Classes

Error Class Example

Correct ATCO: AFR617 contact Maastricht 132.755 bye bye

PILOT: 132 755

Partial ATCO: 7AW climb flight level 300 and turn right by 10 degrees

PILOT: Turning right 10 degrees

Wrong ATCO: Beauty 4306 descend to flight level 250

PILOT: Descend flight level 350 confirm

Missing ATCO: Roger, call you back very shortly maintain 330

PILOT: thank you

Wrong Pair ATCO: KLM9F climb flight level 310

PILOT: did you just call DLH89F

pilot utterance pairs for each class are given in Table 8.1.If no read-back errors

are detected, the utterance pair is labeled as Correct. If there are two commands

given by an ATCO and just one is correctly read back, this is Partial read-

back. A pair is labeled as Wrong if a pilot reads an incorrect command back, for

example, the wrong turning angle. If there is no read-back at all, it is labeled as

Missing. Wrong Pair covers two possible cases. In one case, the pilot utterance

is completely unrelated to the ATCO command, this for example happens, when

a new plane enters the airspace and the pilot makes contact with the ATC just

after a command is spoken to another plane. The second, more problematic case

is that the wrong pilot answers a command which was not meant for him. The

analysis of our dataset has shown that this is the case for less than 10% of the

Wrong pair samples.
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8.3.2 Data Labeling

The ATC transcripts for building our corpus are collected from two ATC corpora,

namely the LiveATC and the LDC-atcc corpus. The LDC-atcc corpus (Godfrey,

1994) consists of ATC communication and transcripts from airspaces surrounding

the following airports: Dallas Fort Worth International (KDFW), Logan Interna-

tional (KBOS) and Washington National Airport (KDCA). The LiveATC dataset,

collected during the ATCO2 project (Kocour, Veselý, Szöke, et al., 2022), consists

of ATC radio transcriptions, recorded from the LiveATC website 3. LiveATC

provides live streams of ATC communications for different airport airspaces. For

the read-back error detection dataset, samples from Amsterdam Airport Schiphol

(EHAM), Dublin Airport (EIDW), Göteborg Landvetter Airport (ESGG), Zurich

Airport (LSZH), and Stockholm Västerås Airport (ESOW) are used.

Both datasets are pooled and ATCO-pilot pairs are extracted based on

timestamps. To label the pairs efficiently, a dataset of 952 samples is built by

manually categorizing these pairs into the classes listed in Table 8.1. The manual

labeling is performed by the author and supported by experts of the ATC domain

to ensure proper labeling and the selection of appropriate read-back error classes.

The rest of the samples is labeled using active learning (AL). We first train a

bert-base-uncased model on the initial data pool and then use the prediction

entropy technique (Holub et al., 2008) to select 20 additional samples from the

unlabeled pool. This cycle is repeated, with the training pool growing with each

iteration, until a total of 317 additional samples are acquired. This increases the

likelihood of discovering informative sample pairs within the data pool. After

active learning, the sample pool consists of 1232 samples as Table 8.2 shows.

It should be mentioned that the AL does not change the label distribution

significantly. The label distribution for the different airports after the active

learning step is displayed in Figure 8.1. As already discussed in previous works,

the distribution is unbalanced, with the Correct class making up more than

3 LiveATC website: https://www.liveatc.net/

https://www.liveatc.net/
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Table 8.2: Class distribution of samples in the initial pool, collected by active learning

(AL), data augmentation (Aug), and rule based system (Noisy)

Method Partial Missing Correct Wrong
Wrong

pair
Total

Initial 93 66 712 41 40 952

AL 84 58 138 6 31 317

Aug 763 499 0 514 0 1776

Noisy 1188 1143 4469 1898 1407 10105

60% of the samples. One way to address this is to perform data augmentation as

described in Section 8.3.4

8.3.3 Number Standardization

A closer look at Table 8.1 shows that the comparison of command values between

ATCO and pilot transcripts can be sufficient to classify the pair. For the Correct

read-back in Table 8.1 for example, the pilot and command utterance contain

the same value, 132755. To distinguish between the Wrong Pair class and the

other classes, the comparison of the call-signs in ATCO and pilot transcripts is

equally important. Since command values and call-signs contain both digits, a

classification could be further simplified by just matching digits between the pilot

and ATCO utterance.

The main problem with this concept is that numbers are not spelled out in

a standardized format. The number 444 could be uttered for example as four

four four, four hundred four or triple four. This makes matching difficult.

To overcome this issue, we format each number in a standard format by splitting

it into its individual digits using a tool provided by Brandhsu et al. (Brandhsu,

2022).
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(a) Label distribution across the different airport airspaces.

(b) Label distribution over airport airspaces after data augmentation.

Figure 8.1: Label distribution before (a) and after (b) data augmentation.

8.3.4 Data Augmentation

To address the low occurrence of read-back error cases, we augment the read-back

error classes in the training data. No augmentation is done for the test data, to

ensure a realistic testing scenario. For the Wrong and Missing class, we formulate

search patterns for the commands and the corresponding values, similar to regular

expressions. For Wrong read-back, the values in the pilot read-back of the Correct

pairs are altered by changing numbers via substituting, deleting or adding digits,

e.g turn 10 degrees is changed to turn 20 degrees. For Missing read-back,

the command and value in the Correct read-back pairs are completely removed.
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To augment Partial read-back, ATCO-pilot pairs are generated by combining

a call-sign with two of the isolated commands and values to create an ATCO

transcript. For the pilot read-back, just one of the issued commands is used. The

Correct and Wrong pair labels are not augmented, since the read-back error

classifier already works sufficiently well on these classes before augmentation.

Figure 8.1(b) shows the label distribution of each airport airspace after the

augmentation. In comparison with Figure 8.1(a), the higher frequency of read-back

error cases is clearly visible. This leads to a more balanced training data set, which

prevents overfitting on the Correct class.

8.3.5 Noisy Labeling

Transformer-based models require a sufficient amount of training data to achieve

competitive results, especially for an unseen domain. Annotating error classes for

RED on the other hand, requires a significant amount of effort and needs experts

from the air traffic control field, since ATCO utterances can contain multiple

commands. It is crucial to carefully verify the presence of all these commands in

order to identify the type of error correctly. An alternative to this time-consuming

labeling are noisy labels. For our noisy labeling approach, we collect the unlabeled

ATCO-pilot samples from the LDC-atcc corpus, namely from the Logan and DFW

airspaces in the United States. Our rule-based system for generating noisy labels

consists of the following steps:

1. First, we extract the command values from the ATCO commands in the form

of number groups and special word groups. For example, the command bizex

three twenty nine turn left heading one correction zero niner zero

would have left, and zero niner zero as extracted groups. The script is

carefully constructed to cover all possible ATCO commands.

2. In the next step, we match the extracted ATCO command values with the

pilot read-back. If all extracted command values are present in the read-back
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in the same order, it is classified as a Correct read-back. If none of the

command values are present, it is a Missing read-back, and if only a fraction

of several commands is read back by the pilot, it is a Partial read-back. If

the order of command values is shuffled or if one or more numbers/words

are missing, it is classified as a Wrong read-back.

3. To identify Wrong pair samples, we extract the call-sign from the ATCO

command, including the aircraft name and code and match it with the pilot

read-back. This helps to recognize if the pilots read-back contains complete,

partial or missing call-signs.

4. Wrong pair read-back classes occur when a different pilot than expected

responds to the ATCO command (see Table 8.1) or when a new pilot starts

communicating on a specific frequency. The missing call-sign along with

missing command values identified in the previous steps are an indicator

for a different pilot responding to the ATCO command. A greeting in a

pilot read-back indicates that a new pilot is speaking, since a greeting never

happens after an ATCO command is given.

For reproducibility, our noisy labeling method is made publicly available 4. In the

next section we will explain how we use the noisy labeled data and our rule-based

method for read-back error detection.

8.4 Experimental Setup

We are investigating the scenario, where the read-back error system is only tested

on unseen airspaces, to examine the inter-airspace transferability of the different

algorithms. We do not generate augmented data for the test airspace to ensure a

realistic test scenario. Figure 8.1 shows, that without augmentation, there exist

just a few samples for the majority of the read-back error classes per airport. For

4 https://github.com/uds-lsv/RulebasedRED
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each test airport, we use the (augmented) data for training data whereas the

validation data only consists of high quality manually annotated data. Both train

and validation data do not contain any data from the test airspace nor is it used

to perform augmentation. In the cross-validated experiments, we take the mean

of all airports for three seeds and present the mean and standard deviation of it.

BERT (bert-base-uncased) is used as read-back error classifier, similar to

Helmke et al. (Helmke, Ondřej, et al., 2022). The transcript pairs are fed into

the recognizer in the following format: [CLS] ATCO transcript [SEP] Pilot

transcript [SEP]. The recognizer is trained with the ADAM optimizer with a

learning rate of 2e−5 and cross-entropy loss with early stopping is used to avoid

overfitting.

We test six different methods to improve the RED. The first method is our

rule-based system to create the noisy labels, called ”Rule-based” in Table 8.3,

which is directly applied to the test data. The second method is a BERT-baseline

without any methods applied to handle the class imbalance, respectively the

low-resource scenario. In the third method, weighted cross entropy loss (w. CE) is

used to handle the class imbalance. The fourth method consists of augmenting the

training data as described in Section 8.3.4. The fifth method uses the noisy labeled

data, described in Section 8.3.5. Zhu et al. (D. Zhu et al., 2022) have shown that

special noise-handling methods like Co-teaching or noise matrices are not needed

for BERT models and can even harm the performance. However, if there is clean

data available for training, Goh et al. (Goh et al., 2018) have shown that using a

two-stage training process can increase the performance, if the model is finetuned

first on the noisy labels and then on clean data. This is due to the reason, that

in most cases there exists more noisy than clean labeled data. Experiments have

shown that models will overfit on the noisy labels, which degrades the system’s

performance. We therefore apply the two-step approach by Goh et al. (Goh et al.,

2018) to avoid overfitting.

In the sixth method, we make use of all the available datasets, including

manually annotated, augmented and noisy data, in a two-stage noisy + aug-
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Table 8.3: Scores for training without target airport for the different data handling

methods. Scores are given as the macro average of all read-back error classes.

The experiments are repeated thrice and the mean is given. The standard

deviation is given in brackets.

Method Precision Recall F1 Accuracy

Rule-based 38.46 45.26 38.46 61.21

Baseline 49.94 (±0.8) 44.05 (±0.9) 43.77 (±1.3) 73.6 (±0.3)

w. CE 45.8 (±3.6) 45.11 (±4.9) 42.97 (±3.9) 74.23 (±0.5)

Aug 49.5 (±0.2) 51.6 (±2.3) 45.28 (±1.1) 63.03 (±4.1)

Two-stage noisy 54.68 (±2.7) 49.73 (±0.8) 49.35 (±0.7) 75.90 (±0.2)

Two-stage noisy + aug 60.8 (±1.7) 66.98 (±2.5) 59.11 (±1.8) 73.98 (±7.1)

mented training. In this approach, the noisy labels are used to initially fine-tune

a pretrained BERT-base-uncased model, which is then further fine-tuned with

both augmented and manually annotated datasets. It should be noted, that the

augmented data is only included in the training, while the validation set consists

solely of manually annotated data. The precision, recall, F1-score and accuracy

metric for each of the model used in the experiment is calculated.

8.5 Results

We show in the following the results of training our RED system with the six

different methods explained in Section 8.4 to evaluate the inter-airspace trans-

ferability of the methods. Table 8.3 shows the precision, recall, F1 scores and

accuracies for each method.

The results show, that our rule-based system for producing noisy labels

performs reasonably well with a 5% lower F1 score than the baseline model. The

best F1, precision and recall scores are reached for the two-stage approach with

noisy labels and augmented data. This method outperforms the baseline with
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Table 8.4: Mean F1, recall and precision scores over all airports for the different data

handling methods with scores for each read-back error class. The experiments

are repeated thrice and the mean is given. The standard deviation is given

in brackets.

Method Correct (%) Partial (%) Wrong pair (%) Missing (%) Wrong (%)

Precision

Rule-based 86.14 66.85 27.01 15.82 32.74

Baseline 78.77 (±0.42) 33.90 (±5.5) 81.39 (±0.6) 52.85 (±3.9) 2.77 (±2.0)

w. CE 81.08 (±0.7) 18.7 (±4.1) 79.9 (±11.0) 40.21 (±19) 9.3 (±6.2)

Aug 82.3 (±1.8) 27.17 (±4.4) 84.33 (±2.2) 41.44 (±4.9) 12.30 (±0.4)

Two-stage noisy 82.72 (±1.1) 57.49 (±0.8) 74 (±1.4) 49.7 (±0.6) 20.69 (±11.1)

Two-stage noisy + Aug 88.13 (±0.5) 57.49 (±0.8) 82.94 (±0.9) 44.47 (±5.8) 31.24 (±1.8)

Recall

Rule-based 66.85 52.89 27.01 15.82 54.86

Baseline 87.2 (±0.8) 36.45 (±7.7) 53.6 (±7.5) 41.72 (±3.8) 1.2 (±0.8)

w. CE 87.58 (±2.3) 24.10 (±1.5) 64.54 (±2.1) 38.46 (±18.8) 10.09 (±8.1)

Aug 67.16 (±5.8) 31.75 (±3,4) 56.08 (±3.9) 63.41 (±6.9) 39.93 (±5)

Two-stage noisy 85.0 (±0.9) 50.6 (±5.3) 60.4 (±3.9) 46.9 (±2.5) 5.77 (±1.7)

Two-stage noisy + Aug 76.49 (±0.7) 62.25 (±3.2) 57.49 (±0.9) 78.24 (±8.1) 60.44 (±6.2)

F1

Rule-based 73.22 40.17 25.3 17.11 36.51

Baseline 82.48 (±0.61) 33.95 (±6.3) 57.3 (±5.7) 43.48 (±1.3) 1.65 (±0.1)

w. CE 83.5 (±8.0) 20.46 (±2.9) 66.33 (±4.6) 35.77 (±16.6) 8.73 (±7.1)

Aug 72.75 (±4.1) 27.57 (±1.6) 63.31 (±3.5) 45.11 (±1.8) 17.65 (±0.2)

Two-stage noisy 82.98 (±0.4) 47.53 (±4.2) 61.4 (±2.1) 46.79 (±1.7) 7.77 (±3.2)

Two-stage noisy + Aug 80.86 (±0.9) 58.77 (±0.3) 63.8 (±0.4) 52.3 (±5.7) 39.69 (±3.1)

over 15%. Even the second-best algorithm, the two-stage noisy approach, still

has a 10% lower F1 score than the best method. This is surprising since just

using augmented data gives less than 2% improvement over the baseline. These

findings underline the importance of combining the augmentation approach with

the two-step noisy approach.

To get a better understanding of the class-wise performance, the F1, recall

and precision scores for each class are shown in Table 8.4. Looking at the precision

scores, there is no model that clearly outperforms the others, but the rule-based

labeling approach performs best for two classes, namely Partial and Wrong This

indicates, that the rules for those classes are well designed, since they filter out the
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other classes effectively. This holds true especially for the Wrong class, where just

the two-stage noisy + augmented approach reaches a similar precision value. But

the main goal of RED is incident avoidance. When it comes to incident avoidance,

the recall values are more important than the precision values, since a high recall

value ensures that no error case is missed. For all the error cases, except for Wrong

pair, the two-stage approach with noisy labels and augmented data shows the

highest scores. For the Correct and Wrong pair class the weighted cross-entropy

reaches the highest score. The same pattern can be seen for the F1 scores. It should

be however noted, that the two-stage approach with noisy labels and augmented

data outperforms all other methods on the Wrong class by a considerable margin,

probably benefiting from the rule-based noisy labels. Interestingly, the pure two-

stage noisy labels approach cannot reach similar performance levels, probably due

to the small number of clean labels. To put the performance of our best method

into perspective, we compare it with the RED systems presented by Helmke et

al. (Helmke, Ondřej, et al., 2022). Their solely machine learning-based system in

(Helmke, Ondřej, et al., 2022) reaches for comparison on a dataset consisting of

Isavia ops-room transcripts, which even includes transcripts of the target airport,

an F1 score of 29% for the binary classification of read-back OK and read-back

ERROR. Their highest scoring hybrid system, which combines a rule-based and

ML approach, reaches an F1 score of 47%. Our two-stage approach with noisy

labels and augmented data reaches without ever having seen the target airport

an F1 score of 59.11% with a low standard deviation of 1.8%, but for multi-class

read-back error detection, instead for binary detection.

To better understand why the two-stage approach with noisy labels and

augmented data performs so well, the F1 scores for all methods are plotted for

each airport airspace in Figure 8.2. In the figure, the difference between the

American (KBOS, KDFW) and the European (EHAM, EIDW, ESGG, LSZH,

ESOW) airspaces is clearly visible. For the American airports, the performance

difference between the different methods is not as big as for the European airports,

but it should be mentioned that the baseline method performs already quite well
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Figure 8.2: F1 scores for the individual airport airspaces. The American airports are

marked in blue

on KBOS and KDFW, indicating, that the American corpora are less complex.

This could also be the result of the higher number of samples for read-back error

classes for the American airports compared to the European airports as seen in

the label distribution Figure 8.1. But the more important observation is, that the

F1 scores on the European airports drastically improve when using the two-stage

approach with noisy labels and augmented data. Interestingly, just for EHAM, the

two-step noisy approach reaches the same performance as the two-stage approach

with noisy labels and augmented data. This indicates that there is an influence of

the domain or air-space mismatch, between the European airspaces and the noisy

labels, obtained from the American airspaces. By using the augmented data in

the second step of the two-stage approach with noisy labels, the American bias

that is introduced by the noisy labels is cured.

8.6 Conclusion

In this work, we demonstrate the first fully machine learning-based model for

multi-class read-back error detection. In contrast to previous works who propose

machine learning-based models for binary read-back error classification, our model

is capable of distinguishing the classes Correct, Partial, Wrong, Missing
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read-back and Wrong Pair. We evaluate different methods to overcome the highly

unbalanced and low-resource scenario for the read-back error classes. We introduce

a class-wise data augmentation method and a rule-based noisy labeling approach

to generate noisy labeled data. We incorporate this data in our two-step training

approach using noisy labels in the first step and augmented data in the second

step. We show that this method reaches an F1 score of 59.11% on unseen airspaces

and outperforms the other investigated methods, like the two-step noisy label

training without augmented data, by at least 10%. Furthermore, we show that this

method performs consistently well over all error classes, while the other methods

show performance drops, especially for the Wrong read-back class. Additionally, we

can show that using augmented data in the second step of the two-step training

is crucial for out-of-airspace noisy labeled data, since it allows to overcome the

bias of the airspace-mismatch. Therefore, our proposed two-stage method with

noisy labels and augmented data is an effective way to improve read-back error

detection, even in low-resource scenarios. We additionally want to emphasize that

this method is not restricted to read-back error detection and could also be used

in other low-resource domains, where there is a domain mismatch between noisy

labels and the test data.

8.7 Future Work

Initial experiments with other evaluation metrics for imbalanced datasets, like

Focal loss (A. Gupta et al., 2020) did not show significant improvements over

weighted cross-entropy loss, but we will explore additional metrics in future

experiments. We also want to address the low scores of Wrong read-back by

improving our data augmentation method. To reduce the occurrence of false

alarms for read-back errors, an additional focus lies on improving the accuracy

scores, without compromising on the F1 scores. This is equivalent to reaching

higher F1 scores for the majority class Correct, which covers over 90% of the

samples in a real-life ATC communication. We additionally want to apply our
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two-stage method with noisy labels and augmented data to other low-resource

domains and evaluate it against pure data augmentation and pure noisy label

training.
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Summary and Outlook

9.1 Summary of contributions

This thesis contributes to several parts of the ATC speech processing pipeline.

Starting from the beginning of the pipeline, an analysis is performed if anonymiza-

tion harms stress detection for pilots (Chapter 3). Going further in the pipeline,

we investigate how lexical and acoustic differences between ATC datasets influence

the performance of transformer-based ASR models (Chapter 4). Following on from

that, a comparison is drawn between cascading ASR and SRD in the pipeline, by

using a joint ASR and SRD model (Chapter 5). After the ASR step, text-based

models build the end of the speech processing pipeline. For one of the most crucial

ATC task, call-sign recognition, two robust algorithms are proposed, which utilize

surveillance call-signs (Chapter 6) and additionally plane coordinates (Chapter 7)

as input for a more robust recognition. Another crucial task, read-back error

detection, is also investigated in terms of robustness and adaptation to unseen

airspaces (Chapter 8). In the following, we discuss the main contributions of this

thesis.

Robust & generalizing ATC-NLP - Our main focus lies on robustness and

generalization. There are two main challenges for any new algorithm developed

for ATC communication. The first challenge is the quality of speech, while highly

distorted speech is mostly sorted out in public training datasets, it cannot be

133
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sorted out in operation. The second challenge is that publicly available training

data covers only a small fraction of the global airspaces. Our contributions to

the first challenge target the task of call-sign recognition and understanding. In

Chapter 6, we show that injecting ASR noise in the transcripts improves the

performance of the CRU model significantly. Our proposal to additionally append

surveillance call-signs to the transcript leads to a performance increase that is even

multiple times higher. A rigorous analysis shows that this performance increase

is robust against unfavorable combination of surveillance call-signs, specifically

very similar call-signs or a large quantity of call-signs. Building on this work, we

analyze in Chapter 7 the most dominant edge cases, that an CRU system can

encounter, high WER transcripts, clipped transcripts and the complete loss of

the transcript. We show that the adaptation of a CRU model to the edge cases

not only increases its robustness, but also does not harm its performance on

normal transcripts. We also take it a step further from only including surveillance

call-signs, to additionally including surveillance coordinates. Our results show

that this further robustifies the predictions at edge-cases. It needs however an

architecture change to combine the different modalities.

To reduce the influence of the low airspace coverage, we propose in Chapter 6

a data augmentation pipeline for CRU which allows to produce realistic transcripts

by utilizing publicly available global surveillance call-sign lists. In Chapter 8 we

go a step further and explore how data augmentation and noisy labeling can

be combined at the example of read-back error detection. We can show that a

two-stage fine-tuning approach, first on noisy, then on clean and augmented data

outperforms other strategies on unseen airspaces. We furthermore introduce, to

the best of our knowledge, the first fully ML based RED system that is able to

distinguish between multiple read-back error classes. A task that is challenging

due to the highly imbalanced training data.

In summary, we propose several approaches that make NLP tasks in ATC more

robust and provide crucial insight into the importance of edge-case robustification.
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In combination with our proposed methods to overcome the low data availability,

we have paved the way for reliable ML-based assistance systems in ATC.

Understanding and improving ASR in ATC - Our secondary focus lies on

ASR. Since NLP algorithms for ATC are significantly influenced by the quality

of the ASR output, ASR is one of the most important steps in an ATC speech-

processing pipeline. With the upcoming of pretrained transformer-based ASR

models like whisper or XLSR, there have been attempts to utilize them also for

ATC. They show however a poor generalization behaviour when applied to unseen

ATC datasets. Our investigations show that lexical and acoustic differences between

the datasets both influence the ASR system. Based on our results, we suggest how

the ASR performance on unseen datasets can be predicted by measuring these

differences. Our separate noise analysis shows that clean speech combined with

Gaussian noise at a certain noise level gives a good estimate of a lower WER bound

for other noise types at this noise level. The lexical analysis, on the other hand,

demonstrates that dominant OOVs are airspace-dependent cities, greetings and

airlines. We identify a target-dataset-specific language model as a way to reduce

the influence of both types of differences. Finally, a feature analysis on wav2vec

2.0 itself is performed. The analysis reveals, amongst others, that the wav2vec 2.0

feature encoder is agnostic to lexical changes. We also identify a same-similarity

cluster in the transformer encoder which indicates good generalization.

Since the transcription task is in ATC often accompanied by a speaker

role detection (SRD) task, which separates the transcripts in PILOT and ATCO

transcripts, we propose a joint transformer-based ASR&SRD model and compare it

with traditional cascaded approaches. The joint system is superior in the majority

of the tested intra-dataset scenarios, but its performance decreases when applied

to new airspaces. We can show however, that few-shot training with a few dozen

samples can cure this decrease, making it a compact and efficient alternative to

the bigger cascaded architectures.

The result of these investigations is a better understanding of ASR in ATC

as well as a better understanding of how ASR and SRD should be combined
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depending on the available data. This allows to generate higher quality transcripts

for the downstream NLP tasks in the ATC speech-processing pipeline.

Influence on privacy measures speech-based ATC tasks - As discussed

above, there is a lack of training data in ATC regarding airspace coverage. There

exists however a lot of private speech data, for example recorded by ANSPs.

Unfortunately, they often can not share this data due to data protection regular-

ization. We therefore investigate in Chapter 3 whether speaker anonymization

techniques can be used to remove the speaker footprint from ATC voice data

without harming downstream tasks in the speech processing pipeline. We analyze

this at the example of stress detection for ATCOs since on one hand, this is

an important task to reduce incidences and on the other hand, it is a task that

relies on acoustic features, which are influenced by anonymization. Our results

show consistently that anonymization not only does not harm stress detection,

but also works as a data augmentation method and improves the results in the

cross-domain scenario. These results open the doors for ANSPs to make their data

publicly available, which would lead to a more robust database for training ML

support systems for ATC.

9.2 Future work

In the second part of this chapter, we discuss potential targets for future work in

the context of the ATC speech processing pipeline.

Explainability - Large language models like GPT-4 are widely used in chat-

bots, and are capable of producing elaborated answers to complex questions. The

problem is however, that they often hallucinate and produce wrong answers that

seem plausible. Especially for a safety critical industry like ATC, relying on LLMs

is a huge risk. There are however promising approaches that try to minimize

hallucinations in other domains such as the medical domain (Ji, Yu, et al., 2023).
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More research is needed to adapt these algorithms to the ATC domain. Another

way to mitigate errors is to correctly estimate the uncertainty of the model, which

allows one to cope with over-and under-confidence (Gawlikowski et al., 2023).

Incorporating these methods in ATC speech processing algorithms would allow us

to sort out uncertain predictions, thus resulting in a safer automation.

Robustness and Multimodality - Especially when it comes to proving that

a model is ready to be used in operation, it is crucial to show its robustness.

We therefore propose the development of a speech and text benchmark dataset

for edge-cases in ATC as a first necessary step. An additional edge case to the

ones mentioned in this thesis could be low-proficient speakers, since this is still

a problem among pilots (Lynch et al., 2021). Another interesting edge case are

emergencies, because the structure and vocabulary of emergency messages differ

significantly from the standard ATC phraseology, and emergencies are also a part

of language proficiency tests for pilots (Petrashchuk et al., 2019).

Equally important to adequate robustness testing is the robustification of the

algorithms themselves. We have shown that multimodality is one way to achieve

this. Including plane trajectory predictions (Zeng et al., 2022) into read-back error

detection would for example give the benefit of detecting potential erroneous flight

behaviour due to miscommunication before it leads to incidents. Robustifying

ATC ML models for the loss of modalities (McKinzie et al., 2023; Hazarika et al.,

2020) should be also taken into account to guarantee a stable operation of the

future algorithms.

Task Joining - We have shown that performing ASR and SRD in one step is

not only more efficient but can even outperform other two-step approaches. We

think that there are also other tasks that would benefit from a combination. The

next logical step from combined ASR&SRD would be combined ASR&RED, since

read-back error detection relies on differentiating Pilot and ATCO transcripts.

Another interesting task is named-entity recognition (NER) for ATC, with the
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entities call-sign, command and value, which is currently performed on tran-

scripts. Since the pilot and ATCO utterances differ in the sentence structure, but

also in their acoustic features, NER could benefit from being integrated in the

ASR tasks. Current approaches that combine ASR and NER, like WhisperNER

(Ayache et al., n.d.), show promising results. It is also worth investigating the

combination of multiple tasks with ASR, which would for example result in a

transcript that is enriched with SRD, RED and NER tags.

Adaptation and Generalization - While there exists a growing number of works

targeting ATC speech processing, there are still many blind spots when it comes

to data coverage. Common databases like ATCO2, LDC-ATCC, NATS or ISAVIA

cover European and American airspaces, but datasets for whole continents like

South America or Africa are, to the best of our knowledge, missing. Furthermore,

some of the existing datasets, such as NATS or ISAVIA, are private datasets,

which further reduces the general coverage. This poses the risk of performance

degradations at those unseen airspaces due to unknown regional way-points, call-

signs, accents or languages. There exist approaches to adapt models to a number

of unseen languages (Alabi et al., 2022), alternatively zero-shot accent adaptation

can be done (Owodunni et al., 2024) and we have presented augmentation methods

to adapt to regional call-sign via ADS-B data. Although these methods allow

adaptation to some degree, global data collection should not be neglected to

achieve a better generalization of the models.

Privacy in ATC - The availability of ATC speech data often depends on country-

specific laws. In Germany, it is for example forbidden to record others without

asking them for their permission, as stated in § 201 StGB. Such restrictions are

based on the right to individual privacy. There exist many works on speech and

text anonymization (Panariello et al., 2024; Sousa et al., 2023), but it must be

determined which privacy-preserving algorithms are suitable to allow (anonymized)

ATC speech recording despite the local legislation. Withing this research, the
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special phraseology of ATC speech must be considered to guarantee, that for

example pretrained algorithms can fulfill their privacy guarantees but also generate

useful data for downstream tasks in the new domain. We have already shown that

anonymization can improve generalization and therefore think that research in

this direction will not only lead to more, but also to better data.
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10
Abbreviations

AAL American airlines

ADS-B Automatic Dependent Surveillance–Broadcast

ALTAI assessment list for trustworthy AI

AMAN arrival manager

ANN artificial neural networks

ANSP air navigation service providers

ASR automatic speech recognition

ASV automatic speaker verification

ATC air-traffic control

ATCO air-traffic controller

ATM air-traffic management

BERT bidirectional encoder representations from transformers

Bi-LSTM bidirectional long short-term memory

CCR call-sign-command recovery model

CDM command distribution module

CNN convolutional neural network

CPDLC controller–pilot data link communications

CTC connectionist temporal classification

CUDA Compute Unified Device Architecture

DCT discrete cosine transform

DFS Deutsche Flugsicherung GmbH

DLH Deutsche Lufthansa
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EASA European Union Aviation Safety Agency

FAR false acceptance rate

FFN feedforward neural network

FRR false rejection rate

GD gradient descent

GDPR general data Protection regulation

GPU graphics processing unit

IOB inside,outside, beginning

LMS log mel spectrogram

LLM large language model

LSTM long short-term memory

MFCC Mel-frequency cepstral coefficients

MLM masked language modeling

MSE mean squared error

NER named-entity recognition

NLP natural language processing

NLU natural language understanding

NN neural network

RED read-back error detection

RNN recurrent neural network

SD speaker diarization

SGD stochastic gradient descent

SOTA state-of-the-art

SRD speaker role detection

StGB Strafgesetzbuch

STT speach-to-text

VHF very high frequency

WER word error rate
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