UNIVERSITAT
DES
SAARLANDES

Relating Space and Time in
Cryptography

Jesko Dujmovié

Dissertation
zur Erlangung des Grades
des Doktors der Naturwissenschaften
der Fakultat fur Mathematik und Informatik
der Universitat des Saarlandes

Saarbriicken, 2025

Tag des Kolloquiums:
Dekan:

Prifungsausschuss:

10. Oktober 2025

Prof. Dr. Roland Speicher

Vorsitzende:
Berichterstattende:

Akademischer Mitarbeiter:

Prof. Dr. Martina Maggio
Dr. Nico Dottling

Prof. Dr. Abhiskek Jain
Prof. Dr. Markus Blaser
Dr. Hendrik Waldner

Abstract

This thesis studies the interplay between space and time in cryptography. It explores trade-
offs between these two resources for honest parties and shows how fine-grained constraints
on an adversary’s capabilities can unlock new cryptographic functionalities. Adopting this
perspective, we present results in four subfields of cryptography:

2PC: We prove tight lower bounds on the cost of oblivious transfer protocols, a central
primitive for two-party computation, revealing a fundamental trade-off between com-
munication and public-key operations.

SNARG: We construct designated-verifier SNARGs with very short proofs, highlighting a
novel trade-off between proof size and verifier efficiency.

Incompressible Encryption: We construct a new incompressible encryption scheme. In-
compressible encryption remains secure even after key exposure, assuming adversaries
had limited space when the ciphertext was transmitted. This offers a lightweight
alternative to forward secrecy for long messages.

Space-Hard Functions: We define and construct verifiable space-hard functions and space
lock puzzles, space-based analogues of verifiable delay functions and time-lock puzzles.
These enable new applications such as deniable proofs and leverage space limitations
of the adversary.

Together, these results demonstrate how a careful study of space-time trade-offs yields both
foundational insights and practical cryptographic tools.

Zusammenfassung

Diese Arbeit untersucht das Zusammenspiel von Raum und Zeit in der Kryptographie. Sie
analysiert Kompromisse zwischen diesen Ressourcen fiir ehrliche Parteien und zeigt, wie
gezielte Beschrankungen der Fahigkeiten eines Angreifers neue Moglichkeiten eréffnen. Aus
dieser Sicht liefern wir Beitrage in vier Bereichen:

2PC: Wir beweisen untere Schranken fiir die Kosten von Oblivious-Transfer-Protokollen,
einem zentralen Primitive fiir Zwei-Parteien-Berechnung, und zeigen einen grundle-
genden Trade-off zwischen Kommunikation und Public-Key-Operationen.

SNARG: Wir konstruieren Designated-Verifier-SNARGs mit sehr kurzen Beweisen und
demonstrieren einen neuen Trade-off zwischen Beweisgrofie und Verifizierer-Effizienz.

Inkomprimierbare Verschliisselung: Wir stellen ein neues Schema vor, das auch nach
Schliisselkompromittierung sicher bleibt, solange der Angreifer beim Empfang nur be-
grenzten Raum hatte. Es bietet eine leichte Alternative zur Vorwértsgeheimhaltung
bei langen Nachrichten.

Raum-Harte Funktionen: Wir definieren und konstruieren die ersten verifizierbaren raum-
harte Funktionen und Raum-Lock-Rétsel, raumbasierte Gegenstiicke zu Time-Lock-
Réatseln. Diese erméglichen neue Anwendungen wie ableugbare Beweise und nutzen
Raumbeschrankung des Angreifers.

Diese Resultate zeigen, dass eine gezielte Analyse Kompromissen zwischen Raum und
Zeit sowohl theoretische Einsichten als auch praxisnahe Werkzeuge liefert.

Acknowledgments

First and foremost, I would like to thank my advisor, Nico Dottling. Your passion for
research has been a constant source of inspiration. The time I spent during my PhD has
profoundly shaped my life, and I am deeply grateful for your guidance and support.

I also want to thank Rachit Garg and Gal Arnon—you quickly went from conference
acquaintances to friends and collaborators. I was very fortunate to have the opportunity to
visit Giulio Malavolta and Eylon Yogev for an internship and a scientific visit, respectively.
I learned a great deal about how to do research from both of you.

I'm grateful to my other collaborators as well: Mohammad Hajiabadi, Maciej Obrem-
ski, Divesh Aggarwal, Pedro Branco, Rachit Garg, Antoine Joux, Julian Loss, Gal Arnon,
Yuval Ishai, Wei Qi, Christoph Giinther, and Krzysztof Pietrzak. Our thought-provoking
discussions and shared struggles with challenging problems made the collaborations not only
intellectually rewarding but also personally enjoyable. It was a true pleasure to work with
each of you.

My gratitude extends beyond my collaborators. Working in cryptography has been an
extraordinary experience—not only because of the fascinating research, but also thanks to
the vibrant community behind it. I'm thankful to everyone who has helped shape and
nurture the field into what it is today.

I’'m especially grateful for the warm and welcoming environment within the CISPA crypto
groups. Special thanks to Giacomo Santato, Riccardo Zanotto, Willy Quach, Benedikt
Wagner, Anne Miiller, and Eugenio Paracucci, who brought camaraderie to the long days,
especially during intense deadline seasons. You made the office feel like a second home.

To my partner, K—your presence has brought immense joy and brightness into my life.
To my close friend, N—thank you for consistently going to the gym with me. The routine
has had a profoundly positive impact. D, I always look forward to our climbing and yapping
sessions, and D and K, thank you for being such great friends and roommates. Together,
you made the hard times bearable and the good times unforgettable.

Lastly, I want to thank my loving family for providing such an amazing environment to
grow up in. My parents and my brother are a true joy to be around. I especially want to
acknowledge my grandfather, Borna, to whom I dedicate this thesis. He has been a great
inspiration to me and taught me many life lessons through his example.

Contributions

This thesis is comprised of four parts, each corresponding to one of the following papers,
each of which I was the main author of:

[DH24|: Lower-Bounds on Public-Key Operations in PIR
Jesko Dujmovic, Mohammad Hajiabadi
Eurocrypt 2024

[ADI25]: Designated-Verifier SNARGs with One Group Element
Gal Arnon, Jesko Dujmovic, Yuval Ishai
Crypto 2025

[BDD22]: Rate-1 Incompressible Encryption from Standard Assumptions
Pedro Branco, Nico Doéttling, Jesko Dujmovic
Theory of Cryptography Conference 2022

[DDJ24]: Space-Lock Puzzles and Verifiable Space-Hard Functions from Root-
Finding in Sparse Polynomials
Nico Déttling, Jesko Dujmovic, Antoine Joux
Theory of Cryptography Conference 2024

For [DH24, ADI25, BDD22] I am the main author and significantly contributed to all aspects
of the work. These works are unchanged up to minor modifications. [DDJ24] contains
sections, to which I didn’t contribute significantly, which is why these sections are not
contained within the thesis.

During my time as a PhD student, I was also a main author of the following papers:

[DD22]: Maliciously Circuit-Private FHE from Information-Theoretic Princi-
ples
Nico Dottling, Jesko Dujmovic
Information Theoretic Cryptography 2022

[DGM24]: Time-Lock Puzzles with Efficient Batch Solving
Jesko Dujmovic, Rachit Garg, Giulio Malavolta
Eurocrypt 2024

[DDLO25]: Minicrypt PIR for Big Batches
Nico Dottling, Jesko Dujmovic, Julian Loss, Maciej Obremski
Under Submission

[DMQ24]: Registration-Based Encryption in the Plain Model
Jesko Dujmovic, Giulio Malavolta, Wei Qi
Public Key Cryptography 2025

10

[DGP25]: Space-Deniable Proofs
Jesko Dujmovic, Christoph U. Giinther, Krzysztof Pietrzak
Theory of Cryptography Conference 2025

Furthermore, I significantly contributed to the paper:

[ADD*22]: Algebraic Restriction Codes and their Applications
Divesh Aggarwal, Nico Déttling, Jesko Dujmovic, Mohammad Hajiabadi, Giulio Mala-
volta, Maciej Obremski
Innovations in Theoretical Computer Science 2022 and Algorithmica 2023

Contents

1 Introduction
2 Preliminaries
2.1 Notation and Basics L s
2.1.1 Imteractive Protocols oo
2.1.2 Finite Fields
2.1.3 Polynomials
2.2 Statististical Notions L
2.3 Proof Systems
2.3.1 Linear PCPs and Strong Linear MIPs
2.3.2 Linear PCPs for this Work
2.3.3 Linearity Testing L oo
2.4 Cryptographic Primitives oo o
2.4.1 Public-Key Encryption. o oL
2.4.2 Oblivious Transfer,
2.4.3 Private-Information Retrieval (PIR)
2.4.4 HILL-Entropic Encodings
2.4.5 Polynomial Commitment Schemes
2.5 Assumptions and Associated Notation
2.5.1 Decisional Diffie-Hellman (DDH)
2.5.2 Cryptographic Group Actions
2.5.3 Learning with Errors (LWE)
2.6 Generic Models and Applications L.
2.6.1 Random Oracle Model
2.6.2 Ideal Cipher Model
2.6.3 Generic Group Model L
2.6.4 Distributed Discrete Logarithm
2.6.5 Designated-Verifier SNARGs
3 Lower-Bounds on Public-Key Operations in PIR
3.1 Imtroduction
3.1.1 Results
3.2 Technical Overview e
3.2.1 Generic Group Model L
3.2.2 Proof Sketch of Main Theorem
3.2.3 PIR Related Protocolso
3.24 Oracles e

15

21
21
21
21
22
22
23
23
25
26
26
27
28
29
30
31
31
31
32
32
33
33
34
34
34
35

12

CONTENTS

3.3 Related Work 43
3.4 Protocols that Imply Non-Trivial PIR 44
3.4.1 Oblivious Transfer L 45
3.4.2 Unbalanced Private-Set Intersection 47
3.5 Lower-Bounds on the Oracle Queriesin PIR 48
3.6 Communication Lower-Bounds for OT Extension 51
Designated-Verifier SNARGs 53
4.1 Introduction e 53
411 OurResults 54
4.1.2 Open Problems and Future Directions 56
4.1.3 Related Work 58
4.1.4 Organization 59
4.2 Technical Overview e 59
4.2.1 Designated-Verifier SNARGs Blueprint 59
4.2.2 Packed ElGamal oo 62
4.2.3 Improved Proof Length by Reducing Malleability 64
4.3 Compressible Encryptions Schemes 66
4.3.1 Packed ElGamal 67
4.3.2 Packed ElGamal with Hash Check 70
4.4 Targeted Malleability 72
4.4.1 Malleability Notions o 72
4.4.2 TIsolated Homomorphism of Packed ElGamal 73
4.4.3 Bound-Limited Homomorphism of Packed ElGamal with Hash Check 80
4.5 Constructing Linear PCPsand MIPs 84
4.5.1 Linear PCPs to Strong Linear MIPs 84
4.5.2 Modded LPCPs. e 88
4.6 Dv-SNARGs from Compressible Encryption 91
4.6.1 Construction from Isolated Homomorphism 92
4.6.2 Construction from Bound-Limited Homomorphism 96
Incompressible Encryption 101
5.1 Imtroduction L 101
5.1.1 Our Results 102
5.1.2 Comparison with Previous Work 103
5.2 Technical Overview 104
5.2.1 The Scheme of GWZ 105
5.2.2 The Big Picture 105
5.2.3 Rate-1 Incompressible Symmetric-Key Encryption 105
5.2.4 From Symmetric-Key to Public-Key Incompressible Encryption via
Hash Proof Systems 108
5.2.5 Extension to CCA security, 113
5.2.6 Incompressible Encryption in the ICM 114
5.3 Incompressible Symmetric-Key Encryption 114
5.3.1 Definition 114
5.3.2 Construction 115
5.4 Programmable Hash Proof Systems 120
5.4.1 Definitions L 121

5.4.2 Programmable Hash Proof System from DDH 122

CONTENTS

5.4.3 2-Smooth Hash Proof System from DDH

5.5 Incompressible PKE
5.5.1 CCA Incompressible Encryption
5.5.2 Construction
5.6 Dangers of Using Idealized Models
5.6.1 Construction
5.6.2 Attack L
6 Space-Hard Functions
6.1 Imtroduction.
6.1.1 OurResults
6.1.2 Our Techniques
6.1.3 Open Problems
6.1.4 Related Work
6.2 Space-Hardness of Root-Finding
6.3 Space-Lock Puzzle from SRF
6.4 Verifiable Space-Hard Function from SRF
7 Final Remarks
7.1 Conclusion
72 Outlook
A Appendix: Incompressible Encryption
A.1 Programmable HPS from wPR-EGA
A.1.1 Construction
A.2 Programmable HPS from LTWE
A.21 Construction
A.2.2 Incompressible Encryption.

Appendix: Designated-Verifier SNARGs
B.1 On Measuring Concrete Security

13

126
128
128
129
136
136
141

143
143
144
145
147
148
148
152
154

159
159
160

181
181
181
182
183
184

189

14

CONTENTS

Chapter 1

Introduction

Cryptography is the study of designing protocols that are secure against adversarial be-
haviour. Crucial to this goal are precise definitions of what it means to be secure and which
resources the adversary has access to. We aim to minimize the resources required by honest
parties while maximizing the resources an adversary must invest in compromising security.

In theoretical cryptography, many of these resources are traditionally modelled qualita-
tively. For example, a common question in the security of an encryption scheme is whether
the adversary has access to a decryption oracle.

In this thesis, we instead adopt a quantitative perspective, focusing on fine-grained re-
source bounds. Among the most important quantitative resources in cryptography are the
running time of algorithms, the memory usage of the parties, and the amount of communica-
tion required by a protocol. We group these into two fundamental categories: time (running
time) and space (memory and communication).

This perspective motivates the central theme of this thesis: the relationship between
space and time in cryptographic protocols. We investigate how these resources interact
and demonstrate that, for specific protocols, there is an inherent trade-off between com-
munication and computation. In some cases, we uncover previously unknown trade-offs. In
others, we design protocols that leverage these trade-offs, made possible only through careful
quantitative modelling of the adversary’s capabilities.

Communication-Computation Trade-Offs in 2PC

The first topic of this thesis concerns secure two-party computation (2PC). In 2PC, two
parties, typically referred to as Alice and Bob, jointly aim to compute a function f on their
respective inputs a and b. At the end of the protocol, Alice should learn only the value
f(a,b), while Bob should learn nothing about Alice’s input.

A central 2PC primitive is oblivious transfer (OT). In OT, Bob’s input consists of two
messages mg and my, and Alice’s input is a choice bit b € {0,1}. At the end of the protocol,
Alice learns my, but nothing about mj_;, and Bob stays oblivious to which of its two
messages was transferred. OT occupies this central role due to two key properties:

1. OT is relatively easy to construct due to its simplicity.

2. Given a protocol for OT, there are ways to construct a 2PC protocol for evaluating
any Boolean circuit f [Yao82, Yao86].

15

16 CHAPTER 1. INTRODUCTION

The two primary resources relevant to OT protocols are communication and computa-
tion. Significant progress has been made in optimizing each of these individually: some
constructions minimize the amount of data exchanged, while others focus on reducing local
computational effort.

Optimizing Communication To evaluate the communication efficiency of OT protocols,
it is instructive to compare them to insecure baselines that implement the same functionality.

There are two natural approaches: Bob can send his choice bit b, and Alice replies
with my, resulting in 1 bit of Bob-to-Alice communication and |mg| bits from Alice to Bob.
Alternatively, Alice can send both messages (mg, m1), requiring 2|my| bits of communication
from Alice and no message from Bob. In both cases, the total communication is at least
|mo| + 1 bits when |mg| = |mq].

For long messages, there has been significant progress in designing protocols that com-
municate |mg| + o(Jmy|) bits [IP07, DGIT19, GHO20, CGH*21, ADD*22]. Even more
impressively, protocols now exist that perform n parallel instances of OT on single-bit mes-
sages with just 2n + o(n) bits of total communication [BDGM19, BBDP22, BDS23|. These
protocols achieve near-optimal communication, but their main drawback is their substantial
computational cost: they require numerous public-key operations.

Optimizing Computation To understand the direction another line of work took to
make OT concretely fast, we will have to detour through the foundation of cryptography.

Cryptographic constructions are often divided into two very broad classes: symmetric-
key cryptography, which includes all tools that can be built from random-like functions,
and public-key cryptography, which enables tasks such as key agreement and requires more
structure than a random function. Symmetric-key cryptography is generally much faster in
practice, as it can leverage unstructured primitives optimized for efficient implementation.
In contrast, public-key cryptography tends to be much slower due to reliance on structured
mathematical problems that are inherently harder to implement efficiently. For example,
the most popular symmetric-key encryption AES can be a factor of 1000 faster than one of
the most popular public-key encryption schemes, RSA [RSA78|. Famously, Impagliazzo and
Rudich [TR89] proved that one can not build key agreement from unstructured functions in
a black box way.

Oblivious transfer belongs to the class of public-key primitives, as it can be used to
implement key agreement. Consequently, it is typically expensive to implement directly.
Since Yao’s 2PC protocol requires a large number of OT instances, this cost becomes a
severe bottleneck. To address this, a powerful technique known as OT extension was devel-
oped [Bea96, IKNP03]. The idea is to reduce the number of expensive public-key operations
by generating many OT instances from a small number of base OTs, using only symmetric-
key techniques for the bulk of the computation.

However, all known OT extension protocols trade faster evaluation against more com-
munication, leading to the following natural question:

Are there communication-efficient OT protocols with very few public-key opera-
tions?

In Chapter 3, we answer this question negatively. We relate OT to a primitive called
private information retrieval and prove that the space-time trade-off between communication
and computation (i.e. space and time) in private information retrieval is inherent.

17

Designated-Verifier SNARGs

One of cryptography’s major success stories is the development of proof systems. Proof
systems allow a prover to convince a verifier of the validity of a statement z. Their study
has led to influential advances in theoretical computer science, including interactive proofs
(IP) and probabilistically checkable proofs (PCP).

In IPs [GMR&9], a prover and an efficient verifier interact until the verifier is convinced
of the statement x. Famously, it is possible to prove statements from PSPACE languages
interactively [Sha90]. These are languages for which solutions can be computed using poly-
nomial space. Without interaction, only statements in NP can be proven, languages that
can be efficiently verified.

In the same work, Goldwasser et al. [GMR&9] introduced the concept of zero-knowledge
proofs. Zero-knowledge enables a prover to convince a verifier of an NP statement without
revealing any information about the witness. More precisely, it means that a simulator with-
out access to the witness can produce a transcript that is computationally indistinguishable
from one generated by an prover-verifier interaction.

In PCPs [BFLS91, FGM*89], In contrast, the prover encodes the statement z into a long
string, and the verifier only reads a few positions to check its validity. This line of research led
to the PCP theorem [AS92, ALM™92], which states that any NP statement can be encoded
into a string of polynomial length; the verifier only reads a constant number of positions and
is convinced of the validity of the statement with a constant probability. PCPs have influence
far beyond proof systems, like establishing the hardness of approximation problems.

Inspired by these results and the work of Kilian [Kil92], Micali [Mic94] explored the
question of an efficient prover with access to a witness w for an NP statement x can con-
vince an efficient verifier while sending one message, which is often called a proof whose
size is polylogarithmic in the size of the witness w. In this setting, however, we can only
guarantee soundness against a computationally bounded prover. For this reason, it is called
an argument system instead of a proof system. Such a primitive is known as a succinct
non-interactive argument (SNARG). A popular variant of SNARGs requires proving that
the prover knows a witness w for the statement instead of just proving the validity of the
statement. These argument systems are then called succinct non-interactive arguments of
knowledge (SNARK).

Previous SNARGs Kilian [Kil92] built a three-move interactive proof system using the
Merkle commitments and PCPs. Micali [Mic94] then turned this protocol non-interactive
using the Fiat-Shamir transform. Since then a lot of effort has gone into optimizing this
approach of building SNARGs [BCS16, RRR16, BBHR18, ACFY24b] resulting in argument
systems with excellent prover and verifier runtime and proofs of size > 40 KiB for a reason-
able security level'.

The other major way of constructing practical SNARGs is based on combining linear
PCPs with cryptographic objects which work well with linearity [[KO07, BCIT13, GGPR13,
DFGK14, Grol6, BBB™18, Lip24]. In linear PCPs, the proof is a linear function that is
evaluated on the verifier’s query. While there are different trade-offs, these proof systems
generally have higher proving and verification costs and rely on pairing groups but can reach
much smaller sizes. The smallest of these, currently, is a system called “Pari” by [DMS24],
who reach a size of 1280 bits for a reasonable security level.

1We defer a discussion of what security level precisely means to later sections.

18 CHAPTER 1. INTRODUCTION

Dv-SNARGs In this work, we explore a closely related object called designated-verifier
SNARGs (dv-SNARGs/dv-SNARKs). These are argument systems where the verifier first
sends a message to the prover that is independent of the statement =, and the prover responds
with a short proof. Any SNARG can be seen as a dv-SNARG in which the verifier’s initial
message is empty.

Dv-SNARKSs have many applications, like verifying delegated computation. Here, we
highlight applications of zero-knowledge dv-SNARKS to E-cash [Cha82]. The goal of E-cash
is to maintain a balance at a bank while ensuring that spending cannot be linked to the
owner. For this application, we require the dv-SNARK to be zero knowledge. Dv-SNARKSs
can be modified to also have zero knowledge by composing them with a non-interactive proof
system that has zero knowledge.

Using zero-knowledge dv-SNARGs, there is a very flexible E-cash protocol with very
little communication. In this protocol, the user commits to random strings and sends the
commitment to the bank. The bank signs the commitment. To retrieve some of the balance
from the bank, the user then proves to the bank using a zero-knowledge dv-SNARK. That
they know a signed commitment and open an opening to that commitment.

Previous Dv-SNARGs The works of [BCIT13, BIOW20] lay out an approach to how to
combine linearly homomorphic encryption schemes with variants of linear PCPs to construct
dv-SNARGs/dv-SNARKs. Barta et al. [BIOW20] manage to construct a dv-SNARG that
has a size of 512 bits while not having to rely on pairing groups. A major downside of their
construction is a relatively high soundness error: a malicious prover can convince the verifier
of a false statement with probability 1/poly.

These are the smallest known SNARGs not relying on indistinguishability obfuscation
(i0). Sahai and Waters [SW14] construct a SNARG with 128-bit sized proofs based on iO.
This construction, however, is very far from practical.

This state of affairs poses two natural questions:

Are there group-based dv-SNARKs that are smaller than known publicly verifiable
SNARGSs without significant soundness error?

and

Are there group-based dv-SNARKs much smaller than 512 bits, even with signif-
icant soundness error?

Our Result We answer both of these questions positively. We provide a construction
of a group-based dv-SNARG, which has a low soundness error and a size of 695 bits. We
also construct a group-based dv-SNARG with constant soundness error and only 263 bits.
In both regimes, our constructions reduce the proof size by approximately a factor of two
compared to the smallest known prior works.

Verification vs. Proof Size This reduction in proof size does not come for free. The des-
ignated verifier must perform relatively heavy computation to verify the proof. All SNARG
constructions we compare against, but Barta et al. [BIOW20] have a verifier that only needs
to do very little computation after receiving the proof. We show a new trade-off between
space and time in the SNARG design space.

19

Incompressible Encryption

In the second part of this thesis, we show that by simultaneously restricting an adversary’s
time and space resources, it is possible to give security guarantees that would be impossible
under a limitation on just one resource alone.

A major goal of cryptography is to ensure privacy and integrity of communication. The
main tool to ensure privacy in communication is encryption. Encryption allows one party to
encrypt a message into a ciphertext. Now, it should be close to impossible for an adversary to
determine the encrypted message. However, a party with the secret key for this ciphertext,
the decryptor, should easily be able to retrieve the correct message.

Because encryption is such an important primitive, we want encryption schemes to be
as secure as possible. Significant effort has gone into extending the security guarantees of
encryption schemes in various directions. This helps secure communication against powerful
adversaries in more situations. The most notable examples that go beyond semantic security
are CCA security and post-quantum security. In this vein, we consider the following question

Can an encryption scheme be secure against an adversary that has the secret key,
just like the decryptor?

If the adversary has unrestricted access to the ciphertext and the secret key, it can just
decrypt; therefore, the answer is: “No!”. But indeed, incompressible encryption [Dzi06b,
GWZ22, BDD22, GWZ23] can guarantee some security even if the adversary learns the key.
If the adversary is restricted from ever being able to access the entire ciphertext and the
secret key simultaneously, security may hold.

Instead of having the ciphertext and the key simultaneously, the adversary first has the
ciphertext and has to compress that ciphertext by just a little bit. Then, based on the
compressed ciphertext and the secret key, the adversary wants to learn some information
about the encrypted messages. We call an encryption scheme incompressible if it is secure
even against these kinds of adversaries.

Incompressible encryption increases security guarantees by enforcing a space and time
bound on the adversary. If we don’t restrict one of the two resources in this setting, any
security is lost.

Prior to our work, the best-known constructions of the incompressible encryption scheme
either required long ciphertexts encrypting little amounts of data or relied on very heavy
cryptographic machinery, namely indistinguishability obfuscation [GWZ22]. In Chapter 5,
we construct incompressible encryption based on basic cryptographic building blocks (a
variant of lossy trapdoor functions) while providing the ability to send long messages with
very little communication overhead.

Space-Hard Functions

Time-hard cryptography underpins powerful applications, including unbiased randomness
generation and fairness enforcement in multi-party protocols [LW15, TCLM21, SLM*23].
These applications provably can only be achieved with a more fine-grained control of the
adversary’s resources [Cle86, BBCE25]. Motivated by such applications, the cryptographic
community has shown increasing interest in time-hard cryptography [RSW96, BGL™15,
BDGM19, Wes19, Piel9, SLM 23, DGM24, BG25]. The fundamental building block in this
area is the delay function, which requires a fixed amount of wall-clock time to evaluate even
for massively parallel adversaries. Built upon delay functions, more advanced primitives
have emerged notably, proofs of sequential work, verifiable delay functions, and time-lock
puzzles.

20 CHAPTER 1. INTRODUCTION

While non-algebraic delay functions suffice for proofs of sequential work, practical con-
structions of verifiable delay functions and time-lock puzzles crucially rely on the delay
function’s algebraic structure.

Space-hard cryptography [Per09, DFKP15, AS15a, AB16, ACP*17] mirrors the goals of
time-hard cryptography but targets an adversary’s memory capacity rather than its sequen-
tial runtime. The core idea is to design functions that cannot be efficiently computed unless
the adversary uses a large amount of memory.

Numerous constructions of memory-hard functions and proofs of space have been pro-
posed 2 which serve as analogues to delay functions and proofs of sequential work, respec-
tively. Previous to our work, there had not been any efficient construction of verifiable
space-hard functions or space-lock puzzles, the primitives corresponding to verifiable delay
functions and time-lock puzzles.

Subsequent work [DGP25] to this provides an interesting application to verifiable space-
hard functions, namely deniable proofs. Say a user wants to identify themselves with a
smartcard to be able to enter a building but doesn’t want to leave cryptographic evidence
that they entered the building. The solution is to prove to the opening mechanism that
the user knows a secret key that identifies themselves or that they used a lot of space.
Because the verifier (the opening mechanism) knows through physical restrictions that the
computation was run on a smartcard, it can be sure that the smartcard does not have a
lot of space and, therefore, the user is successfully identified. Given the transcript of this
interaction, however, the verifier can not convince anyone else that the user entered the
building because the verifier has a lot of space and could simulate such a transcript.

The lack of efficient verifiable space-hard functions and space-lock puzzles comes down
to a shortage of algebraic structures that provide space-hardness while being easy to work
with. This state of affairs raises the question:

Is there an algebraic structure that allows for efficient construction of verifiable
space-hard functions and space-lock puzzles?

In this work, we propose an algebraic foundation for space-hard cryptography: the prob-
lem of finding roots in sparse polynomials. We conjecture that this problem exhibits strong
space-hardness properties and use it to construct, for the first time, verifiable space-hard
functions and space-lock puzzles that are both efficient and practical.

This shows that, like time, space can serve as a meaningful and verifiable resource in
cryptographic design.

2Both these primitives have variants with slightly differing functionality and ways to measure space.

Chapter 2

Preliminaries

2.1 Notation and Basics

We use the Landau notation to describe the asymptotic behavior of functions. We write
f(z) € O(g(z)) if there exists a constant ¢ such that |f(z)| < c|g(z)| for all = larger than
some constant xg. Further, we write f(x) € o(g(x)) if lim,_ o f(x)/g(x) = 0. We denote
the security parameter by A\. We say a function negl is negligible if for any polynomial poly
we have negl(\) € o(m).

The acronym PPT denotes “probabilistic polynomial time”. If A is an algorithm, we

denote by y < A(x) the output y after running A on input z. If S is a (finite) set, we
denote by x &S the experiment of sampling uniformly at random an element = from S. If
D is a distribution over S, we denote by = & D the element sampled from S according
to D.

For two integers m and n, we define [m,n] = {m,m +1,...,n}. Further, We define let
[n] = [1,n]. For a vector a € F’, we let a[i] be the i-th entry.

2.1.1 Interactive Protocols

For i € {r,s}, denoting receiver (r) and sender (s), we let view; (1*,z,%) denote the view of
Party i in an honest execution of the protocol IT on 1* and on the parties’ respective inputs
x and y, where the view contains the private input and the random coins of the respective
party, the protocol’s transcript, and the transcript of oracle queries and their responses. We
may omit the security parameter 1* whenever it is clear from the context.

2.1.2 Finite Fields

For a prime-power ¢ = p* we denote the finite field of size ¢ by F,. We call p the characteristic
of Fy;. Recall a few basic facts about finite fields. For a field I, of characteristic the
polynomial functions z — 2" are called Frobenius automorphisms and it holds that z9 =
2P =z for all z € F,. Hence, the ¢ roots of the polynomial X9 — X are precisely all the
elements in F,. Consequently, if z is in an extension field of F, and 2? — 2 = 0, then it
must hold that x € F,. Likewise, the ¢ — 1 roots of the polynomial X771 — 1 are exactly all
non-zero elements in .

21

22 CHAPTER 2. PRELIMINARIES

Sometimes equate prime order fields [F, with the congruence class Z,. For a € Z, we
define the absolute value |a| to be the minimun distance of an element in the congruence
class of a to 0, more specifically |a| = min{|b| | b € Z,b mod p = a mod p}. Further we
define an operation that lifts a € Z, to the integers Z(a) = minj,{b | b € Z,b mod p = a
mod p} and similarly an operation that moves a to some Z,/, namely Z, (a) = {b | Z(a)
mod p’ = b mod p'}. Notice, if p’ > p then for a € Z, we have a = Z,(Z, (a)).

2.1.3 Polynomials

We call the variable for polynomials X and a polynomial is usually denoted like this f(X) or
in explicit form, e.g. X + X2. We call a value z a root of a polynomial f(X) if f(z) = 0. The
degree of a polynomial f(X) is the highest power of X that appears in f(X). A polynomial
is called monic if the coefficient of the highest power of X is 1.

Recall that a univariate polynomial f(X) is square-free if and only if it holds that
ged(f(X), f/(X)) =1, where f/(X) is the formal derivative of f(X) in X.

Lemma 2.1.1 (Bézout’s Identity for Polynomials). Let f(X) and g(X) of degree d1 and ds
be two polynomials with greatest common divisor d(X). Then there exist polynomials a(X)
and b(X) such that

a(X) f(X) +b(X)g(X) = d(X)

and deg(a(X)) < dy and deg(b(X)) < d1. Moreover, for all a(X), b(X) then polynomials
+b

a(X)f(X) +b(X)g(X) are exactly the multiples of d(X).

Lemma 2.1.2 (Vandermonde Matrix Invertible). Owver any field F the Vandermonde matriz
1 o 27 - a2ttt
1 xy x3 - it
1z, 22 zn=t

1s invertible if the x; are distinct.

2.2 Statististical Notions

We define the statistical distance of two probability distributions X, Y with finite domain D
tobe 33 cp | PrlX =a] —=Pr[Y = a]|. Wesay X and Y are statistically indistinguishable
if their statistical distance is negligible in the security parameter \. We use the notation
X =, Y to state that the distributions are statistically indistinguishable.

A list of useful definitions and lemmas about statistics follows.

Definition 2.2.1 (Average Min-Entropy [DORSO08]). For two jointly distributed random
variables (X,Y), the average min-entropy of X conditioned on Y is defined as

H (X|Y) = flog(Eyﬁy[maazx Pr[X = z|Y =y])).

Lemma 2.2.2 (Lemma 2.2 (b) of [DORS08]). For random variables X,Y,Z where Y is
supported over a set of size T, we have

Hoo(X|(Y, Z)) > Hoo((X,Y)|Z) = log(T) > Hoo(X|Z) — log(T).

2.3. PROOF SYSTEMS 23

Definition 2.2.3 (Average-Case Extractor [DORS08]). Let n,d,m € N. A function Ext :
{0,1}™ x {0,1}¢ — {0,1}™ is a (k,¢) strong average-case min-entropy extractor if, for all
random variables (X,Y) where X takes values in {0,1}" and Hu(X|Y)) > k, we have that
(Ug, Ext(X,Uy),Y) is e-close to (Ug,U,,,Y), where Uy and Uy, are independent uniformly
random strings of length d and m respectively.

Lemma 2.2.4 (Generalized Leftover Hash Lemma 2.4 of [DORS08]). Let n,m € N. Let
{H, :{0,1}" = {0,1}™},.cr be a family of universal hash functions, then Ext(x,r) — H,(z)
is an average-case (k,€)-strong extractor whenever m < k — 2log(L) + 2.
Lemma 2.2.5 (Hoeffding’s Inquality). Let Xi,..., X, be independent random wvariables
where X; € [—B, B] for B> 0 and let X =) . X;. Then for every t > 0,

t2

Definition 2.2.6 (Universal Hash Functions [WC81]). H is family of strongly universal;

hash functions that map from X to Y if for any distict z1,...,z; € X, and any possibly
non-distinct yi,...,y: € Y, we have that

Pr [h(z1) = y1,...,h(z) =y = |Y| 7"
h(iH

We describe the first two Bonferroni inequalities, where the first one is commonly referred
to as the union bound.

Lemma 2.2.7 (Bonferroni Inequalities [Bon36]). Let Ay, ..., A, be events. We have
Eze[n] PI‘[AJ — Zie[n],je[ifl] PI‘[AZ' n AJ] S PI‘[UZE[H]AJ S Zie[n] PI‘[AL]

Lemma 2.2.8 (Polynomial Identity Lemma [Sch80, Zip79, DL78]). Let f(X) be a polyno-

mial of degree d over a field F,. Let S C Fy be a set of size s. Then for a random x s
we have f(x) =0 with probability at most d/s.

2.3 Proof Systems

Throughout the document we use different proof systems. We introduce these systems in
the following section.

In our setting we are mostly concerned with proof systems for NP languages. We define
these languages via a relation R. This relation is a set of instance-witness pairs {(x,w)} such
that the NP verifier of these languages accepts the input (x,w). For a relation R := {(x,w)},
we let L(R) :={z | Jw, (z,w) € R}.

2.3.1 Linear PCPs and Strong Linear MIPs

Probabilistically checkable proofs (PCPs) [BFLS91, FGLT96] are an extremely powerful tool
from theoretical computer science. They have been very useful in proving inapproximability
results and lead to the first succinct non-inteactive arguments (SNARGs). More on that
topic later. Here we consider a variant thereof; linear PCPs.

A linear PCP is a proof system where a proof is a (affine) linear function on a verifier’s
queries. In standard PCPs the function is arbitrary.

24 CHAPTER 2. PRELIMINARIES

Definition 2.3.1. A linear PCP (P, (V,,,V,)) for a relation R = {(z, w)} over a finite field
F is defined as follows:

e Syntaxr. We describe a linear PCP with input length n, proof length ¢, and query
complexity ¢:

— The verifier query algorithm V,, receives as input = € F". It outputs a state
st € {0,1}*, and ¢ queries ay,...,a, € F’.

— The (honest) prover algorithm P receives an input x € F" and witness w € F".
It outputs a proof w € F¢.

— The verifier decision algorithm V,, receives as input a state st € {0,1}*, an input
xz € F", and query answers by, ...,b, € F. It outputs a bit b € {0,1}.

e Perfect completeness. A linear PCP has perfect completeness if for all (z, w) € R:

7+ Pz, w)
Pr |Vp (st,z,b1,...,b4) = 1| (st,ay,...,aq) <« Vo(z) | =1.
Vi e [q]a bl: <7T7ai>

e Soundness. A linear PCP has soundness error (against affine strategies) ¢ if for every
r¢ L(R), T €F' and ¢1,...,cq € F:

(st,ag,...,aq) + Vo(x)

Pr [VD (st, 2,01, ,bg) = 1) € [q], bi = (ma;) +¢

50

e Knowledge. A linear PCP satisfies knowledge soundness « if there exists a PPT ex-
tractor Ext such that for every x, 7 € F*, and ¢1,...,¢, € F if,

_ (styar,...,aq) < Vo(o)
Pr [VD (st, 2, b1,onibg) = 1) . lql, b = (ma)) +e; |

then (x, Ext(z,m,¢1,...,¢4)) € R.

We say that a linear PCP is smooth if every query a; is l-wise uniform (i.e. it is uni-
form when only looking at one query at a time) over F’, and we say that it is instance-
independent if V,(z) is a function only in the size of the instance z, in which case we
specify the verifiers input by 1171,

We additionally consider a strong variant of linear multiple prover interactive proofs
(MIPs), where the honest prover is restricted to a single linear function, while the malicious
adversary can reply to any query with an arbitrary (stateless) function. The name is inspired
by the fact that in the malicious case one can think of the verifier sending the queries to
different non-communicating provers.

Definition 2.3.2. A strong linear MIP (P, (V,,V,)) for a relation R = {(z,w)} over a
finite field F is defined as follows:

e Syntar. We describe a linear PCP with input length n, proof length ¢, and query
complexity g:

— The verifier query algorithm V,, receives as input x € F". It outputs a state
st € {0,1}*, and ¢ queries ay,...,a, € F’.

2.3. PROOF SYSTEMS 25

— The (honest) prover algorithm P receives an input x € F" and witness w € F".
It outputs a proof = € F¢.

— The verifier decision algorithm V,, receives as input a state st € {0,1}*, an input
x € F", and query answers bq,...,b, € F. It outputs a bit b € {0, 1}.

e Perfect completeness. A linear PCP has perfect completeness if for all (z, w) € R:

7+ Pz, w)
Pr |Vp (st,z,b1,...,b4) = 1| (st,ar,...,aq) <« Vo(z) | =1.
Vi e [q]7 bl = <7T7ai>

e Soundness. A g-query strong linear MIP has soundness error § if for every = ¢ L(R),
and functions f1,..., fg:

st,ag, ...

_ 1l (yag) < Vo(x)
Pr {VD(st,x,bl,...,bq)l Vi ¢ [ql, b =

fi(aq)
e Knowledge. A g-query strong linear MIP has knowledge soundness & if there exists

a an expected polynomial-time oracle-aided extractor Ext such that for every x and
every set of functions f1,..., fg if

50

| (styag, ... ay) < V(o)
Pr [VD(St,I,bla--'abq)l b; « fi(a;) T

then (z, Ext/f(z)) € R.

As with linear PCPs, a linear MIP is is instance-independent if V,,(z) is a function in
the size of x.

We also consider bounded variants of PCPs and (strong) MIPs:

Definition 2.3.3. A g-query LPCP (resp. strong LMIP) (P, (V,,Vy)) over a relation R
and finite field F,, with proof length ¢ is B-bounded with error « if for all (z,w) € R:

7w Pz, w)
Pr |by,...,b, € [-B, B] (styar,...,aq) <« Vo(z) | >1—a.
Vi € [q], bi = (Z(w),Z(a;)) € Z

Note that any LPCP is (p? - £)-bounded with error 0, in which case we either say that it
is trivially bounded. Whenever we do not give an explicit bound, the LPCP is assumed to
be trivially bounded.

Furthermore, observe that (by the union bound) if an LPCP is B-bounded with error «,
then its t-wise repetition is B-bounded with error ¢ - a.

2.3.2 Linear PCPs for this Work

In this work, we use the following linear PCPs known in the literature: For our results, we
utilize the existence of the following linear PCPs for arithmetic circuits:

Theorem 2.3.4 ([BIOW20], Appendix B.1). Let C: F x Fi — F, be an arithmetic cir-
cuit of size s over finite field F,. There exists a 2-query instance-oblivious LPCP over F),
for Re = {(z,w) e F* x F" | C(x,w) = 1} with perfect completeness, knowledge soundness
error 2/p against affine strategies, and proof length s + s* (field elements).

If we restrict to Boolean circuits, then there is an LPCP with the same parameters which
for any X € N with is O(p?s\)-bounded with error 2.

26 CHAPTER 2. PRELIMINARIES

Theorem 2.3.5 ([BHI™24], Theorem 1.2). Let C: Fy xFh — F,, be an arithmetic circuit of
size s over finite field F, with p > 2. There exists a 1-query instance-oblivious LPCP over
I, for the relation

Re = {(z,w) €F" x F" | C(z,w) = 1}
with perfect completeness, knowledge soundness error O(1/,/p) against affine strategies, and
proof length s - poly(p) (field elements).

By applying a transformation given in [IKOO07, Section 5] from LPCPs to strong LMIPs
to Theorem 2.3.5 we get the following:

Corollary 2.3.6. Let C': F x IE‘Z — F, be an arithmetic circuit of size s over finite field
F, with p > 2. There ezists a O(1)-query instance-oblivious strong LMIP over F,, for Rc =
{(z,w) € F" x F" | C(z,w) = 1} with perfect completeness, knowledge soundness error O(1)
against affine strategies, and proof length O(s - poly(p)) (field elements).

In Section 4.5.1 we give an alternate transformation from LPCP to strong LMIP which
has better concrete parameters, which we apply to the LPCP described in Theorem 2.3.4.

In the upcoming open problems in Section 4.1.2, we add a conjecture that the LPCP of
Theorem 2.3.5 is bounded. We stress that this conjecture is included here purely to formally
define what we mean in the discussion, and is not used in this thesis.

Conjecture 2.3.7. The LPCP from Theorem 2.3.5 is O(Ap?\/s)-bounded with error 27*.

2.3.3 Linearity Testing

In our construction of strong linear MIPs (Section 4.5.1) we utilize a variant of the [BLR90]
linearity test for linear-consistent functions.

Definition 2.3.8. A triple of functions fi, fo, f3: F¢ — F is linear-consistent if there exists
a linear function g: F* — F and ¢y, ¢z, c3 € F so that ¢; + ¢2 = c3 and for every i € [3] and
z € F, fi(2) = g(2) + .

Theorem 2.3.9 ([AHRSO01], Theorem 2). Let fi, fa, f3: F* — F. If

d:= Pr_[fi(z1) + fa(22) # fa(21 + 22)] < 2

)
21,294 ¢ 9

then there exist a triple of linear-consistent functions gi,gs,gs: F¢ — F so that for every
i €3], A(fi,gi) < 6.

2.4 Cryptographic Primitives

For two probability distributions X, Y with domain D, we sometimes use the notation X =
Y to state that the distributions are computationally indistinguishable. This means that
for any PPT distinguisher A : D — {0,1} we have), |Pr[D(X) = 0] — Pr[D(Y’) = 0]
is negligible in .

Definition 2.4.1 (Pseudorandom Generator). Let m € poly(A) with m > A. A function
G : {0,1}* — {0,1}™ is a pseudorandom generator if, for uniformly random s & {0,1}*
and r & {0,1}™, we have

2.4. CRYPTOGRAPHIC PRIMITIVES 27

Definition 2.4.2 (Collision-Resitant Hash Function). Let n,m € poly(\). A collision-
resistant hash function is a seeded function CRHF : {0,1}* x {0,1}" — {0,1}™ with the
property that for all PPT adversaries A, uniformly random seed s € {0,1}* we have A(s)
outputs z,a’ with x # 2’ and CRHF¢(z) = CRHF¢(2’) with negligible probability.

2.4.1 Public-Key Encryption

Definition 2.4.3 (Public-Key Encryption). A public-key encryption (PKE) scheme is a
triple of PPT algorithms

(pk, sk) - KeyGen(1*): Given the security parameter A the key-generation algorithm out-
puts a public key pk and a secret key sk.

ct < Enc(pk,m): Given a public key pk and a message m encryption outputs a ciphertext
ct.

m < Dec(sk, ct): Given a secret key sk and a ciphertext ct decryption outputs a message m.

Correctness. For all A\, S € N, messages m and (pk,sk) in the range of KeyGen we have
that m = Dec(sk, Enc(pk, m)).

IND-CPA security. For all A € N and all adversaries A = (A1, A2) we have that

(pk, sk) + KeyGen(1*)
(mo, my,st) « A (pk)
b {0,1}
ct < Enc(pk, mp)

1
Pr b« Aa(st,c): < 3 + negl[)].
We now provide the definition of homomorphic encryption scheme.

Definition 2.4.4 (Homomorphic Encryption Scheme). A homomorphic encryption scheme
for function class F is PKE scheme with the following additional algorithm:

ct « Eval(pk, f, (ct1,...,cte): Given public key pk, a function f € F and ciphertexts (cty,. .., cte)

the evaluation algorithm outputs a new ciphertext ct.

IND-CPA is defined in a analogous way as for PKE. We now present the definitions of
homomorphic correctness and compactness.

Homomorphic correctness. For all A € N, messages my, ..., mg, any function f, (pk, sk)
in the range of KeyGen we have that

f(my,...,my) = Dec(sk, Eval(pk, f, (Enc(pk,my), ..., Enc(pk, mg)))).

Compactness. There exists a polynomial p such that for all A € N, all functions f € F,
all inputs my, ..., my, all (sk, pk) in the support of KeyGen(1%), and all ct; in the support of
Enc(pk, b;) it holds that |Eval(pk, f, (ct1,...,cte))| = p(A, | f(m1, ..., me)]).

Remark 2.4.5. We call an encryption scheme fully homomorphic (FHE) if F is the set of
all poly sized circuits. We call an encryption scheme linearly homomorphic if F is the set
of linear functions over the message space.

28 CHAPTER 2. PRELIMINARIES

2.4.2 Oblivious Transfer

Oblivious transfer is a basic interactive protoco in which a sender and a receiver interact.
In its most basic form the sender’s input to the protocol are two bits m(®) and m® and the
receiver’s input is the so call choice bit b € {0,1}. At the end of the protocol the receiver is
supposed to learn m® but not m(1~? | also the sender is not supposed to learn b.

There are a few generalizations of this primitive two of which we are going to cover here.
First, instead of bits m(®) and m) are sometimes k bit strings. Also, if we run ¢ instances
of OT at the same time we call it /-batch OT. These two can also be combined into ¢-batch
k-bit string OT.

Definition 2.4.6 (Oblivious Transfer (OT)). An ¢-batch k-bit string OT protocol OT is a
protocol between two interactive PPT programs (OTR, OTS), where OTR and OTS denote,
respectively, the receiver and the sender.

OTR(1*,4,k,s) : An interactive algorithm that takes in a security parameter 1*, batching
parameter £, message length k, and choice vector s € {0,1}¢, and outputs m € {0,1}*.

OTS(l)‘,€7k,m(O)7m(1)) : An interactive algorithm that takes in a security parameter 1%,
batching parameter 1¢, message length 1% and two message vectors m(®), m(Y) € M¢,
for M = {0,1}*, and outputs L

We require the following.

Correctness. OT is a(:)-correct if for any A, s € {0, 1}, (mgo),m(»l))ie[g] € (M x M)*, the

7
probability over an honest interaction between OTR(1*, &, ¢, s) and OTS(1*, k, £, m0, m(l))
that OTR outputs (mgsl) e mése)) is > a(A). The protocol is perfectly correct if « = 1. By
default we require prefect correctness.

Semi-Honest Receiver Security. For any strings so, s1 € {0,1}¢, m(®, m(Y) € M¢ we
have that view9 (so, (m©, m1)) and view®T (s1, (m(®, m™)) are computationally indistin-
guishable.

Semi-Honest Sender Security. For any s € {0,1}* and m(©), m® 2 (1) ¢ M* such
that {(m;")} = {(2]")}, we have that the two views

oT

OT (s, (m®, mM)) and view® (s, (20, 2(1))

view ,

are computationally indistinguishable.

OT Terminologies. We may sometimes refer to an ¢-batch single-bit OT as an ¢-batch
OT. Also, whenever we say a k-bit string OT we mean ¢ = 1.

We define notions of rate as asymptotic ratios between the actual communication under a
given protocol and the best achievable communication under a (possibly) insecure protocol;
i.e., for ¢-batch single-bit OT the sender must communicate at least ¢ bits to the receiver,
if perfect correctness is required. Therefore, the optimal download communication is £.
Similarly, the optimal total communication is 2¢.

2.4. CRYPTOGRAPHIC PRIMITIVES 29

Expected Download Rate. An /-batch single-bit OT protocol has expected download
rate c if for all A, s, m©®, m(®) and all but finitely many ¢

where d()\, £) is expected communication from the sender OTS(1*, £, m(®) m™)) to the re-
ceiver OTR(1%, 74, s).

Expected (Overall) Rate. An ¢-batch single-bit OT protocol has expected (overall) rate
cif for all A, s, m(®, m() and all but finitely many ¢

where t(, ¢) is the expected total communication.

2.4.3 Private-Information Retrieval (PIR)

Private information retrieval (PIR) is a protocol between a user and servers. The servers
have a database DB and the user wants to learn an entry of the database without revealing
to the servers which entry it wants to learn.

This task is trivially achieved by a server just sending the entire database to the user.
Therefore, we call a PIR protocol non-trivial if the communication to be significantly lower
than the size of the entire database. In this work, we only consider PIR protocol with only
one server.

Definition 2.4.7 (Non-Trivial PIR). A non-trivial (single-server) private information re-
trieval ntPIR is an interactive protocol between two interactive PPT programs (PIRU, PIRS),
where PIRU and PIRS denote, respectively, the client (user) and the server.

PIRU(1*,1™,7) : An interactive algorithm that takes in a security parameter 1*, the database
size n, and a choice index i € [n], and at the end of the interaction outputs y € {0,1}.

PIRS(1*,1",DB) : An interactive algorithm that takes in a security parameter 1*, database
size n and a database DB € {0, 1}", and outputs L.

We require the following properties.

Correctness. The PIR protocol is a(-)-correct if for any A, n, ¢ € [n] and DB € {0,1}",
the probability over an honest interaction between PIRU(1*,17,4) and PIRS(1*, 1", DB) that
PIRU outputs DB; is > (). The protocol is perfectly correct if @« = 1. By default we require
perfect correctness.

Semi-Honest Client Security. For any n, i, i’ € [n], databasis DB € {0,1}", we have

view" PR (. DB) and view™"'R(i’, DB) are computationally indistinguishable.

Non-Trivial Expected Download Communication. There exists a polynomial poly
such that for all sufficiently large A, for all n > poly(}), for all ¢ € [n], and DB € {0,1}",
the expected communication from PIRS(1*,1",4) to PIRU(1*,17,DB) is d(A,n) < n.

30 CHAPTER 2. PRELIMINARIES

The following result shows that non-trivial PIR implies public-key cryptography in a
black-box way. We use this theorem for our lower-bound results.

Theorem 2.4.8 ([DMOO00]). There ezists a black-box construction of OT from a non-trivial
PIR protocol.

2.4.4 HILL-Entropic Encodings

We recall the notion of HILL-entropic encodings from [MW20]. Intuitively they are a way
to encode a message such that it is easy to decode while the encoding itself having a lot of
pseudo-entropy.

Definition 2.4.9 (HILL-Entropic Encodings). An (a, 8)-HILL-entropic encoding scheme
with selective security in the CRS setting consists of two PTT algorithms:

e ¢+ Engs(1*, m): An encoding algorithm that takes a common random string crs and
a message m producing an encoding c.

e m < Degs(c): A decoding algorithm that takes a common random string crs and an
encoding ¢ and produces a message m.

Correctness. There is some negligible p such that for all A € N and all m € {0,1}* we
have
Pr[Decrs(Encrs(l)‘, m)) =m] =1— u(N).

a-Expansion. For all A,k € N and all m € {0, 1}* we have |Engs(1*,m)| < a(), k).

B-HILL-Entropy. There exists an algorithm SimEn s.t. for any polynomial k£ = k(\) and
any ensamble of messages m = {my} of length |[my| = k(}\), consider the following ”real”
experiment:

o crs & {0, 131K
o Encrs(lA, my)

and let CRS,C denote the random variables for the corresponding values in the ”real”
experiment. Also consider the following ”simulated” experiment:

e (crs',c/) + SimEn(1*, m,)

and let CRS’, C’ denote the random variables for the corresponding values in the ”simulated”
experiment. We require that (CRS,C) =, (CRS’,C") and

H..(C'|CRS") > B(\, k).

We call a (a,8)-HILL-entropic encoding good if a(A k) = k(1 4 o(1)) + poly[A] and
B(A k) = k(1 — o(1)) — poly[A]. Moran and Wichs [MW20] provide good HILL-entropic
encodings from DCR, [Pai99, DJ01] or LWE [Reg05] in the CRS model. They also show that
the CRS must be as big as the encoded message.

2.5. ASSUMPTIONS AND ASSOCIATED NOTATION 31

2.4.5 Polynomial Commitment Schemes

We recall the notion of polynomial commitment schemes.

Definition 2.4.10 (Polynomial Commitment). A polynomial commitment scheme in a
tuple four algorithms:

e crs < Setup(1*,d): Gets as input the security parameter A and a degree d. It outputs
a common reference string crs.

e (com,st) + Commites(f): Gets as inputa polynomial f and outputs a commitment
com and a state st.

e 7 < Open.(f,x,st): Gets as input a position and a state st and outputs an opening
for f(z) on x.

e {0,1} + Verify_(com,z,y,7): Gets as input a commitment com, a position x, a value
y, and an opening 7.

Completeness. A polynomial commitment is called complete if for any d,\ € N, z € F,
polynomial f of degree d, crs from the support of Setup(1*,d) we have that if (com,st)
Commites(f) we have

Verify(com, z, f(z), Open(f, z,st)) =1

Knowledge Soundness. There exists a PPT extractor Ext such that for every d € N,
PPT adversary .4 we have that

crs + Setup(1*, d)
[Alcrs)
Pr | f'# f AVerify,(com,z,y,7) =1 | (com,st) < Commites(f)
f! + Ext*(crs, com)
(7,2, y) < Alst)

is negligible.

2.5 Assumptions and Associated Notation

In this subsection we elaborate on the cryptographic assumptions required to prove some of
our results. We also explain some of the tools required in our use of the these assumptions.

2.5.1 Decisional Diffie-Hellman (DDH)

In the following we elaborate on one of the most popular assumptions for public-key cryptog-
raphy. In fact, in the paper introducing public-key cryptography [DH76] Diffie and Hellman
implicitly make this assumption. The assumption has held up to a lot of cryptoanalysis on
certain groups.

32 CHAPTER 2. PRELIMINARIES

Notation In the following, let G be a (prime-order) group genmerator, that is, G is an
algorithm that takes as an input a security parameter 1* and outputs (G, p, g), where G is
the description of a multiplicative cyclic group, p is the order of the group which is always
a prime number unless differently specified, and g is a generator of the group. Sometimes
we denote the size of the group by |G]|.

When it is convenient we write [a] for the value g¢. Similarly, if A € Zy*™ is a matrix
with entries a; j then [A] denotes the matrix where each (7, j)-entry is the value g% . Note
that given x € Z7, y € Z" and [A], we can compute x” [A] = [x"A] and [A]y = [Ay].

In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

Definition 2.5.1 (Decisional Diffie-Hellman Assumption). Let the description of the group

be (G, p,g) & G(1*). We say that the DDH assumption holds (with respect to G) if for any
PPT adversary A

[Prl < A((G, p, 9), ([a], o], [ab]))] — Pr[1 <= A((G, p, 9), ([a], [b], [¢]))]| < negl[A]

$
where a,b,c < Z,,.

2.5.2 Cryptographic Group Actions

While DDH and related assumptions have seem to be classically secure over certain groups it
is known that they will not resist any attack by a sufficiently good quantum computer [Sho94,
BL95, EG24]. To protect against the looming threat of quantum computers have suggested
to move to isogeny based cryptography.

In this work, we use part of isogeny based cryptography which can be abstracted away
as group actions. [ADMP20] explain and explore this connection well.

We quickly recap what group actions are to understand our notation. We had to slightly
modify the notation of [ADMP20] to match our group notation.

Definition 2.5.2 (Group Action). A group G is said to act on a set X if there is a map
*: G x X — X that satisfies the following two properties:

Identity : If [0] is the identity element of G, then for any « € X, we have [0] xz =z

Compatibility : For any [g],[h] € G and any = € X, we have ([g] + [h]) *x = [g] * ([h] * z)
In this work the require the group action to be regular and to be a weakly pseudorandom

effective group action. A group action is regular if for any = € X we have that g — g% x is

a bijection between G and X.

Definition 2.5.3 (Weak Pseudorandom Group Action). A group action is weakly pseudo-
random if the permutations {x +— g * 2} 4cc are weakly pseudorandom permutations.

2.5.3 Learning with Errors (LWE)

One of the most popular assumption that has held up to all quantum cryptanalysis is
Learning with Errors [Reg05]. Intuitively, it relies on linear algebra being hard if the the
equations are approximate.

2.6. GENERIC MODELS AND APPLICATIONS 33

Gaussian Distribution For any o € Ry let p,(x) = exp(—n||x||>/c?) be the Gaussian
function on R™ with deviation o. Let x7' be the discrete Gaussian distribution over Z™
with deviation o.

Definition 2.5.4 (Learning with Errors Assumption). The LWE assumption states that

for A <& Zg*™, s & Zq', and b & Zy being uniformly random and e < x;; being sampled
from a small gaussian distribution. We have that

(A;As+e)=~. (A,b)
Definition 2.5.5 (Lattice Trapdoor). A lattice trapdoor consists of two PPT algorithms

e (A, T) < TrapSamp(1",1™,¢) on inputs n,m,q € N outputs matrices A € Zy*™,T €
mem
q

e r < SampleD(A, T, u, s) on inputs A € Z*™, T € Z;*™, u € Zy

q» S € and outputs
re’z’
q

For any n > 1, ¢ > 2, sufficiently large m = Q(nlog(q)), and sufficiently large o =
Q(y/nlog(q)) these two distributions producing (A, T, u,r) are statistically close.

e (A, T) < TrapSamp(1",1™,q); u <= Zy ; r < SampleD(A, T, u,0).
e (A, T)« TrapSamp(1™,1™,q); r + X7 ; u + Ar.

Also, A is statistically close to uniformly random.

2.6 Generic Models and Applications

In cryptography it is sometimes useful to model certain cryptographic primitives as an oracle,
which implements an idealized version of the given primitive. This allows to prove certain
results with regards to the idealized version that one might not be able to prove by using
the actual primitive.

When proving a result with respect to an oracle the hope is that this translates naturally
into a protocol in the real world by just replacing the oracle by the primitive it is trying to
replace. This heuristic can run into issues, some of which we are going to address later in
this work.

Here, we detail some of the oracle we use and some of their applications.

2.6.1 Random Oracle Model

The random oracle [BR93] is the most popular idealized model in cryptography. It is often
used in practice as it allows for efficient design of signatures [FS87], non-malleable encryp-
tion [FO99] and much more [Mic94, DN93].

The random oracle is an idealization of a hash function as a random function.

Definition 2.6.1. The random oracle model provides access to a random function H :
{0,1}* — {0,1}.

Remark 2.6.2. By subdividing the input space correctly the ROM can also me made to
output a string instead of just a bit.

34 CHAPTER 2. PRELIMINARIES

2.6.2 Ideal Cipher Model

In our constructions we use the ideal cipher model (ICM), which can be dated back to
Shannon [Sha49, HKT11, RSS11]. As the name suggests it is supposed to idealize the
properties of a perfect block cipher (a keyed permutation).

Definition 2.6.3. For any n € N the ideal cipher model provides oracle access a keyed per-
mutation P : {0,1}* x {0,1}" — {0,1}", which for each key k we have Py is an independent
random permutation.

2.6.3 Generic Group Model

The generic group model (GGM) is a model that idealizes a cryptographically hard group [Nec94].
There are different variants of the GGM. We use Shoup’s [Sho97] version of the generic group
model.

Definition 2.6.4. The generic group model models cryptographic group operations via an
oracle. For a prime p’ the oracle holds a permutation f : £+ Z, that maps from the label
space £ which are just binary representations of the numbers 0,...,p" — 1, to the group
(Zy,+). At the beginning of a security game f is sampled uniformly at random from all
permutations and all parties are provided with the label g +— f~1(1). Throughout security
games the parties have oracle access to the oracle G, which take two labels x1, x2 as input
and responds with f=1(f(x1) + f(x2)). We denote by G < GGM()) the act of sampling a
random GGM oracle of size > 2.

Remark 2.6.5. Our constructions in Construction 4.3.9 and Corollary 4.6.2 additionally
use a random oracle H, which is a uniformly random function with specified output length
x bits, sampled at the same time as the GGM oracle. For simplicity, in our constructions
we always set x = A\ and always count total oracle calls to both oracles.

If an algorithm P has access to an oracle O we denote this by PC. Further, y <, P (z)
means y is the output of evaluating the algorithm P® on x and tr is the trace of P’s
interactions with the oracle O, i.e., it contains all the queries to the oracle and its responses.

2.6.4 Distributed Discrete Logarithm

In our work we use the distributed discrete log algorithm:

Lemma 2.6.6 ([BGI16, BGI17]). Let § > 0, B € N, p’ be a prime with B,T < p', and
0 =4B/T. There exists an algorithm DDL that does T GGM queries such that for all GGM
labels h € L,

DDLY, 5(h)

Pr |Vz € [-B, B, .
—DDLE 5(h-g") =z

G+ GGM®) | >1-4 .

Further, Vo & [—T,T] we have

h- gDDLgB’(S(h) £ gx-i-DDLgB’(s(h-g“”).

Remark 2.6.7. Previous work on distributed discrete logarithms are in the plain model.
They require a large group and a function that maps elements of this group to random
bit-strings. The generic group model provides both of these properties.

2.6. GENERIC MODELS AND APPLICATIONS 35

2.6.5 Designated-Verifier SNARGs

Succinet non-inteactive arguments (SNARGs) allow a prover to succinctly convince a verifier
of a statement. Here, we consider a variant, where only a verifier with specific information
can verify these statements. These prove systems are called designated-verifier SNARGs.

Definition 2.6.8. A designated-verifier succinct non-interactive argument (dv-SNARG) in
the generic group model, (Setup, P, V) for a relation R = {(z,w)} is defined as follows:

e Syntax. We describe a dv-SNARG with message length /:
— The setup algorithm Setup receives an input size parameter 1. It outputs a

common reference string crs and a verification state st.

— The (honest) prover algorithm P receives as input a common reference string crs,
instance x € {0,1}", and witness w € {0,1}™. It outputs a proof pf € {0, 1},

— The verifier algorithm V receives as input a verification state st, and instance
z € {0,1}", and a proof pf € {0,1}*. It outputs a bit b € {0,1}.

o Completeness. A dv-SNARG has completeness error « if for all (z,w) € R and A € N:

G <+ GGM())
Pr | VY(st,z,pf) = 1| (crs,st) < Setup?(11=1) | > 1 —a(), |z]) .
pf < PY(crs, z,w)

e Soundness. A dv-SNARG has (adaptive) soundness with error ¢ if for every A € N,
n € N, and prover P’ that makes at most ¢ queries to the GGM oracle:

G+ GGM())
(crs, st) < Setup? (1121 | <5\, |2, t) .
(z, pf) < P"9(crs)

x ¢ L(R)

Pro VY(st,x,pf) =1

e Succinctness. For every large enough A\, GGM oracle G in the image of GGM()),
(z,w) € R and (crs,st) in the image of Setup?(11%]), we have |pf| = o(w) for pf =
PY(crs, z, w).

A SNARG with the following additional knowledge property is known as a SNARK:

o (Straight-line) Knowledge soundness. A dv-SNARG has (adaptive) knowledge sound-
ness (in which case we refer to it as a dv-SNARK) with knowledge « if there exists
an expected polynomial time PPT extractor Ext so that for every A € N, n € N, and
prover P’ that makes at most ¢ queries to the GGM oracle,

G + GGM(X)
(z,w) ¢ R (crs,st) « Setupg(1")
AVI(st,a.pf) =1 | (a,pf) <y PO(ars) | = "I
w + Ext(zx, pf, tr)

Pr

36

CHAPTER 2. PRELIMINARIES

Chapter 3

Lower-Bounds on Public-Key
Operations in PIR

3.1 Introduction

Secure Multi-Party Computation (MPC), allows two parties to jointly evaluate a function
f while leaking nothing about their input to the other party beyond the output of f. A
central goal of modern cryptography is to construct efficient MPC protocols. This goal is
important not only from a theoretical but also from a practical viewpoint. The computa-
tional efficiency of all MPC protocols is typically bottlenecked by public-key operations (e.g.,
group operations, oblivious transfers (OT)). OT extension is a technique toward reducing
public-key operations [Bea96, IKNP03], allowing one to get the results of many OTs at the
cost of performing only a few OTs and some symmetric-key operations. This technique has
revolutionized the practical development of MPC, leading to protocols which employ a small
number of public-key operations for sophisticated tasks.

A significant limitation of existing OT extension techniques is their high communication
cost: for performing ¢ 1-out-of-2 bit OTs, the sender communicates at least 2¢ bits. This
severely limits the use of OT extension in MPC settings where a low amount of communica-
tion is required ‘by design’ (e.g., Private-Information Retrieval (PIR)). The overarching goal
of our paper is to understand communication-computation tradeoffs in such MPC settings.
We show that in many such situations, performing many public-key operations is provably
unavoidable. To put our results in context, let us illustrate how communication efficient OT
would impact private information retrieval.

PIR. Private information retrieval (PIR) [CGKS95, KO97] is a fundamental cryptographic
primitive that allows a user to fetch a database entry without revealing to the server which
database entry it learns. PIR becomes non-trivial if the server-to-user communication is
strictly less than the database size (and ideally growing sub-linearly or even polylogarithmi-
cally in the database size). In some applications, one may need extra properties, such as an
overall (as opposed to server-to-user) sub-linear communication or server privacy. Through-
out the paper, we require neither of these unless otherwise stated. Since we prove lower
bounds, this makes our results stronger. A truly efficient PIR protocol has significant real-
world applications such as private certificate retrieval or private DNS lookups. By now, we
know how to build PIR with communication complexity polylogarithmic in n from a wide

37

38 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

range of assumptions [CMS99, IP07, DGI*T19, CGH*21, HHC"23]. While the amount of
communication is attractively low, the computation overhead leaves much to be desired.

Computational complexity of PIR. In (single-server) PIR protocols, the running time
of the server cannot be sub-linear in n, the database size, without preprocessing [BIMO0O].
If it was sub-linear the server could not read all the entries, leaking information about the
user’s index ¢. Faced with this lower-bound, and the fact that PIR requires public-key
assumptions [DMOO00], one may wish to settle for the next best thing: making the number
of public-key operations independent of n. Somehow curiously, in all existing PIR protocols
based on Diffie-Hellman or OT related assumptions [[P07, DGI*19, CGH*21], not only the
server’s running time, but the number of public-key operations performed by the server
grows at least linearly with n. There is no evidence, however, if this is inherent, and in fact,
it has remained an open problem whether one can build a PIR protocol where the number
of public-key operations is sub-linear in n.

Is it possible construct a single-server non-preprocessing PIR with a sub-linear amount of
public-key operations and an arbitrarily large number of symmetric-key operations?*

OT Extension. A major tool used for minimizing computation is OT extension. Existing
OT extension techniques induce at least a linear amount of communication for the sender,
making them unsuitable for PIR applications. Specifically, under existing constructions, an
extended OT sender needs to communicate at least as many bits as its total input length.
Beaver’s seminal construction [Bea96] works by encoding all the sender messages into a gar-
bled circuit, which the receiver can evaluate only on the labels that correspond to her choice
bits; the IKNP protocol [IKNPO03] establishes correlated randomness between the sender
and the receiver, allowing the sender to XOR his messages with the corresponding masks
such that the receiver can only de-mask the correct messages. In both these protocols, the
sender’s outgoing protocol messages information-theoretically determine the entire sender’s
input, causing the communication overhead. This state of affairs raises the following natural
question.

Is it possible construct OT extension where the sender communication is close to optimal?

In the above question, by ‘optimal sender communication’ we mean the best information-
theoretically achievable communication: which is ¢ bits for the sender for performing ¢
1-out-2 single-bit OTs. Since OT extension is crucially used in many MPC protocols, un-
derstanding its communication complexity is of both practical and theoretical value.

Having optimal sender communication for OT extension is reminiscent of rate-1 string
OT: building 1-out-of-2 string OTs for a pair of ¢-bit strings, where (roughly speaking)
the sender communication grows as ¢ + A (as opposed to 2¢ 4+ X), where X is the security
parameter. Two-round rate-1 OT has found a number of applications, notably in the con-
struction of PIR protocols with polylogarithmic communication [IP07, DGI*19, GHO20,
CGH™21, ADD*22, BBDP22]. We know how to build rate-1 OT from a wide variety of as-
sumptions [IP07, DGIT19, GHO20, CGH 21, ADD%22], but all these constructions make at
least a linear number of public-key operations. In particular, computational efficiency (e.g.,
a sub-linear number of public-key operations) and communication efficiency (e.g., sub-linear
communication) seem to have largely been in conflict with each other — for reasons we have
not been to justify so far. The goal of our paper is to elucidate this conflicting situation.

IThroughout this paper, when we say PIR, we mean a single-server non-preprocessing PIR.

3.1. INTRODUCTION 39

3.1.1 Our Results

We answer both of the above questions, and several other related ones, negatively. In
particular, we give a lower-bound on the number of public-key operations that need to be
performed by servers in PIR protocols, and use this lower-bound to derive similar results
for related primitives. Our core idea is based on a compilation technique that allows one
to remove public-key operation queries from a PIR protocol at the cost of proportionally
increasing the communication complexity in the public-key operation free protocol. As
applications of our main theorem, we obtain results that settle several open problems in
MPC.

In the statement below, by an SO oracle we mean a simulatable oracle: roughly speaking,
one that can be simulated via lazy sampling (aka, on the fly). Examples of such oracles
include generic-group oracles, public-key encryption oracles, etc. See Section 3.2 for more
details. Also, we use the term a “party’s SO bit complexity” to indicate the total bit size of
all SO queries made by the party.

Theorem 3.1.1 (Informal Main Theorem). If there exists a PIR for n-bit databases (de-
noted as n-bit PIR) with oracle access to simulatable oracle SO, arbitrary oracle O, server
communication of n < cn for ¢ < 1, r € o(n) rounds of interaction with the user, and
q € o(n) bits of communication with the SO oracle, then there exists a PIR with oracle
access to O, server communication T < ¢n for ¢ < 1, and no calls to SO.

We derive the following corollary.

Corollary 3.1.2. There exists no n-bit PIR protocol built solely? from a simulatable oracle
SO and a random oracle O with o(n) round complexity, with o(n) server’s SO bit complezity
and with n < cn server’s communication for ¢ < 1.

For example, letting SO be a generic group oracle (GGM), we rule out all n-bit PIR
protocols that have o(n) rounds and where the server’s communication and the server’s total
number of GGM queries are, respectively, en and o(n) for ¢ < 1. This holds irrespective
of the number of random oracle (RO) queries the protocol is allowed to make. This closely
matches the known upper-bounds, as [0S07, DGI*19] give n-bit PIR protocols based on
the DDH assumption with server communication of O(X) and with the sever making O(n)
group operations.

The strength of the main theorem lies in its flexibility in instantiating the oracle SO: for
example, one may let SO be an FHE oracle, and obtain similar results as long as the amount
of server’s communication with the FHE oracle respects the bounds. The work of [0S07]
shows how to obtain PIR generically from (additively) homomorphic encryption, where the
sever performs O(n) homomorphic additions. Our work shows that this is close to optimal.

We will show that our computational lower-bounds for PIRs give rise to communication
lower-bounds for OT extension.

Corollary 3.1.3 (OT Extension: Communication Lower-Bounds). There ezxists no £-batch
k-bit OT extension protocol with round complexity r € o(kf) and with server communication
n < 2kl for ¢ < 1.

In the above corollary, by ¢-batch k-bit OT we mean performing ¢ OTs for pairs of
k-bit strings. The IKNP protocol [IKNPO3] in the ¢ single-bit OT case achieves sender

2By ”solely” we mean that the parties also have access to a PSPACE-complete oracle. This stops the
party from using any hardness assumptions other than the ones provided by the oracles.

40 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

communication of > 2¢. Our result shows that the IKNP’s sender communication complexity
is close to optimal.

Finally, we relate PIR to other MPC protocols such as rate-1 OT to arrive at the following
corollary. For brevity, we describe the statements when O is the GGM oracle, and only for
rate-1 OT. In fact, we can show that achieving any rate strictly greater than 1/2 (measured
as the information-theoretically optimal sender communication size divided by the sender’s
communication size in the actual protocol) requires making an almost linear number of
group operations.

Corollary 3.1.4 (String OT Corollary). There exists no £-bit string OT protocol in the
GGM+RO model with sender communication of n < c2€ and o(€) calls to the generic group
fore < 1.

Similar results can be proven for unbalanced PSI and in general for MPC with unbalanced
inputs (aka, asymmetric MPC); see Section 3.4 for details.

Pre-Processing PIR. Our techniques also apply to the setting of single-server pre-
processing PIR (for example, offline/online [CK20], doubly efficient PIR [LMW23]) in the
sense that by merging the offline and online phases together, we will get a PIR without pre-
processing. So, our results will imply non-trivial lower-bounds in the pre-processing setting
as well.

In particular, for any constant ¢ < 1 and for n-bit databases, our results rule out pre-
processing PIRs with O(n¢) “total” public-key operations for the server and a total cn
server-side communication. Here by total we mean offline4online together. Again this holds
irrespective of the number of symmetric-key operation calls. Such pre-processing PIRs will
imply single-server PIR without pre-processing and with the same properties, which we have
already ruled out.

For example, the pre-processing single-server PIR of Corrigan-Gibbs and Kogan [CK20,
Theorem 20] induces O(n?/?) total server communication, with the server performing, re-
spectively, O(n) and zero public-key operations in the offline and online phases. Our lower-
bounds show that the number of public-key operations of [CK20] is close to optimal.

3.2 Technical Overview

First, we will give a quick example of how to simulate a generic group efficiently to illustrate
the concept of simulatable oracles. Then, we sketch the proof of the main theorem. We
proceed by showing why the main theorem is useful by demonstrating a few MPC protocols
which imply non-trivial PIR, allowing us to apply our lower-bounds to them.

3.2.1 Generic Group Model

The generic group model models cryptographic group operations via an oracle. For a prime
p’ the oracle holds a permutation f : £ — Z, that maps from the label space £ which
are just binary representations of the numbers 0,...,p’ — 1, to the group (Z,,+). At the
beginning of a security game f is sampled uniformly at random from all permutations and
all parties are provided with the label g < f~!(1). Throughout security games the parties
have oracle access to the oracle G, which take two labels x1, x2 as input and responds with
FY(f(x1)+ f(x2)). We denote by G <+ GGM()\) the act of sampling a random GGM oracle
of size > 2.

3.2. TECHNICAL OVERVIEW 41

A generic group of order p is the group Z, together with a random injective encoding
function f: £ — Z,, where £ = {0,...,p — 1}. The algorithms can access this group via
the oracle Add which decodes two encoded elements, computes a linear combination of them
and gives back the encoded result. More formally, Add : Z?, x L2 = L, (a1,a9,01,03)
7 (a1v1 + agve), where v; = f(¢;) for i € {1,2}.3 This way the algorithms interacting with
the oracle can manipulate the encodings of group elements via the oracle Add.

To simulate a GGM oracle efficiently, the simulator dynamically generates the encoding
function f. More specifically, it maintains a partial set L of Z,-label pairs sampled by
the simulator so far. (It is initially empty.) Whenever a query (a1, as,f1,%2) is made,
the simulator checks if (x,¢;) € L (meaning that if for some vy, (v1,41) € L); if not, the
simulator samples a random v, from Z, subject to (vq,*) ¢ L, and adds (v, 4;) to L. The
simulator does the same thing for /5. Now assuming (v, ¢1) € L and (vg,¥¢s) € L, letting
as = a1v1+azvs if (as, f3) € L for some £3, the simulator responds to the query with ¢3; else,
the simulator samples a random /3 subject to (x,¢3) ¢ L, adds (as, ¢3) to L, and responds
to the query with ¢3. L can be thought of a lazily sampled version of f.

Other simulatable oracles that are useful in our main theorem are black-box oblivi-
ous transfer [GKM™00], black-box public-key encryption [GKM™00], and ideal obfusca-
tion [JLLW23].

3.2.2 Proof Sketch of Main Theorem

The observation that leads to the main theorem is that in PIR protocols the server does not
need to have privacy. This means the protocol would still be secure if the user learned all
of the server’s oracle queries. Also, the user knows all of its own oracle queries. Therefore,
the user can just simulate the oracle for both of the parties. For this the server just has
to send all of its queries to the user. This modification increases the server communication
roughly by the amount that the server would have communicated to the oracle. We will
prove that this transformation preserves user security. Since we require the server’s ‘oracle
communication’ to be o(n) and the server’s protocol communication to be < cn for some
¢ < 1, the modified protocol will have no oracle queries and the server communication will
be < én for ¢ < 1. Moreover, in the actual compiled protocol, to enable the compiled user
to distinguish query messages from normal protocol messages, we append a flag bit to the
end of each server’s protocol messages — causing a dependency on 7, the number of rounds,
in Theorem 3.1.1.

3.2.3 PIR Related Protocols

Now we exhibit a few protocols which imply non-trivial PIR, allowing us to apply our PIR
impossibility results to these protocols.

Low Sender-Communication OT We show that an ¢-batch k-bit OT protocol with
sender communication < c2kf for ¢ < 1 implies a PIR. The folklore transformation works
as follows: suppose w.l.o.g the database size is 2k¢. The server runs the OT protocol and

encodes the first half of the database into the messages (m(»o))ie[g] and the second half into

7

(mz(-l))iem. Now, if a user wants to look up the j-th element of the database, it acquires
0
(m;

))ie[E] if j < k£ and (mgl))iem otherwise. The database entry that the client wants to

30ne may set S to be a random subset of size p of a larger set {0,1}* for u > logp. Our analysis will
remain unchanged, so we simply assume S = {0,...,p — 1}. See [Zha22] for differences between various
models.

42 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

oT
S $
T<—{071} ,7m1@m0 L mo
r {
TO
rdos—
(s (m1 dmy)) m

Mg ——

r @ (s-(my & mo)) B mo

Figure 3.1: Similar to [WWO06] a visual representation of how to build an oblivious transfer
OT from an oblivious transfer TO that goes in the opposite direction.

learn is contained in the OT output. The server communication is < ¢2kf and the user’s
input j is hidden from the server by the OT’s receiver security.

Low Total Communication OT. We next attempt to prove lower-bounds for the case
where the OT protocol has low total communication (as opposed to low sender communi-
cation). For convenience we focus on ¢-batch single-bit OT. By low total communication
we mean an amount that is close to the information-theoretically optimal communication,
which is 2¢ bits. The techniques for low sender-communication as above do not apply out-
right because the sender might cause the bulk of communication itself, an amount close
to 2¢ bits (e.g., suppose the sender’s communication is 2¢ + A bits and the receiver’s com-
munication is A bits). We get around this issue via the following intuitive idea: When an
OT protocol has low total communication it must have either low sender communication,
from which we already showed how to obtain a non-trivial PIR, or it must have low receiver
communication. In the latter case, we swap the roles of the two different parties with a
role-flipping trick, implicitly used in IKNPO03] and explicitly in [WWO06]. This role flipping
trick turns the low receiver communication into low sender communication, which we can
then turn into a non-trivial PIR. Figure 3.1 depicts the construction for £ = 1. In essence,
we show how to turn a communication-efficient OT into a sender-communication-efficient
OT by introducing an additioal round.

OT Extension. The above results immediately imply communication lower bounds for
OT extension: showing that performing OT extension for ¢-batch k-bit OTs with c2k?¢ bits
of sender communication for ¢ < 1, and with an O(\) (and even o(k¢)) number of public-key
operations is impossible.

Unbalanced PSI. Private set intersection (PSI) is an MPC protocol between two parties
each holding a set and the party called the receiver learns the intersection of the two sets. No
other information should be revealed to is to any of the parties. In Unbalanced PSI, a special
case of PSI, the receiver set is much smaller than the sender set and the communication
should only scale with the receiver set. To build a non-trivial PIR from such a protocol, for
a client index 4, the client sets z := ¢ (padding it out if necessary), and for a database DB,
the server forms the set {i | DB[i] = 1}. An answer to x € S reveals DB[i]. This observation
allows us to prove that in unbalanced PSI with sub-linear communication, the sender should
perform close to linear public-key operations. This shows that the large number of public-key

3.3. RELATED WORK 43

operations used in unbalanced PSI protocols of [DGIT19, GHO20, CGH*21] is inherent.

Non-Trivial PIR implies Oblivious Transfer We know that non-trivial PIR implies
oblivious transfer [DMOO00], and this is used to get our final impossibility results. The
transformation utilizes the user security of the PIR protocol and deploys a compression
argument to argue information loss. The entropy garnered from the information loss is
then fed into a randomness extractor, the output of which can be used to guarantee sender
security in the resulting oblivious transfer protocol.

3.2.4 Oracles

Notice that all these transformations only make black-box use of the protocols they trans-
form. This means that if the starting protocol uses some oracle other than the one we
want to remove, say the random oracle [BR93], then the resulting protocol will also use the
random oracle even if we remove other oracle queries.

3.3 Related Work

Techniques Our ‘compiling-out’ techniques bear some similarities to ideas used by Gen-
naro and Trevisan [GT00] for giving lower-bounds on the query complexity of PRGs from
OWPs. Essentially, they showed that if the number of queries is ‘small’, they can be en-
coded as part of the input, hence getting rid of OWP calls in the construction of a PRG.
Gennaro et al. [GGKO03] built on that idea to give lower-bounds on the efficiency of various
cryptographic primitives. These works mostly deal with non-interactive primitives. Our
techniques are used in a different way in that we leverage the lack of security requirements
for a party to get rid of oracle calls of an interactive protocol.

Private-Information Retrieval. In all but this section of the paper we talk about non-
trivial single-server private information retrieval, which is why we will sometimes leave out
the descriptor “single-server”. Traditionally, PIR [CGKS95, KOO00] is a protocol between
one user and possibly multiple servers. Just like in the non-trivial single-server case the
user with an index i € [n] learns the i-th element of a database DB € {0,1}™ held by all
the servers without disclosing ¢ to the servers. If the caveat of non-triviality is not made,
then not only the server communication needs to be sub-linear in n, but also the total
communication. Thus, a non-trivial PIR (requiring only the server-to-user communication
to be small, as ruled out in our lower-bounds) is a weaker primitive than PIR. Multi-server
PIR protocols assume some kind of non-collusion between the servers, which allows them to
achieve statistical security as opposed to computational security.

By now PIR is a well studied primitive; here we focus on the single server setting. We
know how to build PIR with communication complexity polylogarithmic in n from a wide
range of assumptions [CMS99, IP07, DGI19, CGH*21]. In the last few years, we have also
made progress towards practically efficient PIR [CK20, KC21, SACM21, CHK22, ZLTS23,
7ZP7S24, HHC23] and asymptotically efficient PIR [CHR17, BIPW17, LMW23] when the
server and the client (or sometimes only the server) are allowed to preprocess the database.
We even know some lower bounds for different preprocessing settings [BIM00, CK20, CHK22,
PY22, Yeo23].

44 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

OT Extension. The intuition behind OT extension is that it only uses very few calls to
an OT functionality to implement many more OTs. An equivalent description is that an
OT extension protocol is an OT protocol that can make calls to an OT functionality. The
protocol becomes valuable if the number of OT calls in the protocol is much less than the
‘size’ of the OT being implemented. OT calls are typically modelled as oracle calls to an
OT functionality or the OT hybrid model.

Beaver [Bea96] constructed the first OT extension protocol, which makes non-black-box
use of pseudorandom generators and which has two rounds. Ishai et al. [[KNPO03] give the
first OT extension protocol only making black-box use of symmetric-key cryptography while
increasing the rounds to three. Garg et al. [GMMM18] show that three rounds are necessary
in the OT hybrid model when only making black-box use of symmetric-key cryptography.

Rate-1 String OT. The notion of rate-1 OT has applications beyond the construction
of PIR with polylog communication. In particular, a generalization of this notion, called
trapdoor hash, has been used as a building block to build non-interactive zero knowledge
for NP [BKM20]. This has made the notion of rate-1 OT appealing from both a theoretical
and practical points of view.

Unbalanced Private-Set Intersection (PSI). Private keyword search allows a receiver,
with a single element z, to learn whether x is a member of a large set .S held by a sender, or
sometimes called PIR for keywords [CGN98]. This is an instance of the so-called unbalanced
PSI problem, defined earlier. A desirable feature of such unbalanced PSI protocols is sub-
linear communication: the total amount of communication must be sub-linear the larger set
size. We have protocols, from a wide variety of cryptographic assumptions, for unbalanced
PSI whose communication complexity grows only polylogarithmically with the larger set
size [IP07, DGIT19, GHO20, CGH*21].

Again, the Diffie-Hellman-based protocols come with a high sender computation cost:
the number of group operations grows at least linearly in the bigger set size. As in PIR, one
can prove that the strict running time of the sender in unbalanced PSI cannot be sub-linear
in |S1|, but that does not mean the number of public-key operations must also grow with
n — especially, if the sender is allowed to make an arbitrarily-large number of symmetric-
key operations. In fact, while the protocols in [DGIT19, GHO20, CGH"21] induce little
communication, the large number of public-key operations involved is a major bottleneck.

In the absence of the sub-linear communication requirement, one may use oblivious-
transfer (OT) extension techniques [Bea96, IKNPO03] to design unbalanced PSI protocols
with a number of public-key operations independent of |S;|. These protocols can be made
concretely efficient as well (e.g., [CM20]). However, all these OT-extension-based protocols
fail to achieve sub-linear communication, and our lower-bound results explain this situation.

Subsequent Work In subsequent work, [LMW25] built upon our techniques to prove
that black-box use of cryptography does not help with building doubly efficient PIR. This
provides a strong indication that the heavy non-black box use of Ring-LWE in [LMW23]
was necessary.

3.4 Protocols that Imply Non-Trivial PIR

We substantiate the relevance of non-trivial PIR by proving that communication-efficient
versions of some popular MPC protocols can be transformed into non-trivial PIR in a black-

3.4. PROTOCOLS THAT IMPLY NON-TRIVIAL PIR 45

box manner. These transformations later let us transfer the lower-bounds regarding PIR to
these protocols.

In the following, we focus on different variants of oblivious transfer and unbalanced
private set intersection to demonstrate the concept. The same ideas apply to many other
protocols such as vector oblivious linear evaluation and oblivious polynomial evaluation.

3.4.1 Oblivious Transfer

We show how to transform a protocol for k-bit string oblivious transfer OT = (OTR,OTS)
that makes calls to an oracle O into a PIR protocol (PIRU, PIRS) with database size n = 2k
that makes calls to the same oracle O in a black-box manner. The construction is folklore
and works by splitting the database in half, using each half as one of the two strings, and
choosing the OT choice bit based on the PIR client’s index accordingly.

e PIRU®(1*,1%,4): For n = 2k, set the choice bit b < | (i — 1)/k|. Run the OT receiver
mp < OTRE(17,b) to get the chosen string my. Return my[i — kb

. PIRSO(lA, 17, DB): Let strings mg < DBJ[1,..., k] and m; «+ DB[k 4+ 1,...,2k]. Run
the OT sender OTS? (1%, mg, m1).

Lemma 3.4.1 (Folklore). The PIR protocol (PIRU,PIRS) has the same correctness error,
the same sender/receiver query complezity, and the same sender/receiver communication as
those of the OT protocol OT.

That means if the expected sender communication in OT is less than n = 2k, then
(PIRU, PIRS) is a non-trivial PIR protocol.

Proof of Correctness. Correctness follows from the correctness of the OT protocol and
for b= |(i — 1)/k] we have my[i — kb] = DB[kb+ 1,..., kb+ k][i — kb] = DBJ[i]. O

Proof of Client Security. Suppose there exists i,i’ € [N], DB € {0,1}¥ such that an
adversary A can distinguish view?'?(i, DB) from view"'}(i’, DB) with non-negligible prob-
ability. Then |(i — 1)/k| # [(i — 1)/k| else view"'®(i,DB) and view"'R(i’, DB) follow

the exact same distribution. The same adversary A distinguishes between view® (| (i —

1)/k], (DBI[L,...,k],DB[k+1,...,2k])) and view? T (| (i 1) /k], (DB[L, ..., k], DB[k+1,..., 2k]))
with the same non-negligible probability since the views are exactly the same as view" '~ (i, DB)
and view?'R(i', DB) respectively. O

S

Remark 3.4.2. One can transform any ¢-batch k-bit OT protocol into a kf-bit string OT
protocol by reusing the same choice bit across all the ¢ batches. This works without any
issues because we only talk about semi-honest security.

OT With Low Total Communications. Using the symmetric nature of OT we trans-
form an OT protocol with low communication (not just low sender communication) into a
low sender communication OT protocol in a black-box manner. This allows us to apply our
PIR lower-bounds to OT with low expected communication. Our transformation works by
noting that every communication efficient OT protocol has either low sender or low receiver
communication; if the receiver communication is low, our transformation will swap the roles
of the sender and receiver, to obtain an OT protocol with low sender communication, as
desired.

46 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

The following transformation was implicitly used in [[KNPO03] and explicitly in [WWO06].
The transformation works as follows: Let OT = (OTR,OTS) be an ¢-batch single-bit
OT with expected total communication ¢(A,£), expected download communication d(\, ¢),
expected upload communication u(\,£), and oracle accesses to O. We define a OT' =
(OTR',0TS’) as follows

OTRC(1*,14,s) :

1. If the expected download communication of OT is d(X,£) < u(X,£) + £:
(a) Run (mf,...,m}) < OTRZ(1*,1¢,s), the f-batch OT receiver on the choice
string s.
(b) Return (mf,...,m})
2. Else:

(a) Sample r & {0, 1}* uniformly at random.

(b) Run OTSP(1*,1¢,7, s & r), the f-batch OT sender on messages mg = r and
mip=1ros.

(¢) Receive v in the round after OTS is done.

(d) Return v @ r

OTS/O(I)‘, 14, m© mM)y -

1. If the expected download communication of OT is d(\,£) < u(A,£) + ¢
(a) Run OTSO(l/\7 14, m© m)) the f-batch OT sender on messages mgy = m)
and m1 =m
(b) Return
2. Else:
(a) Run z «+ OTRO(1>‘, 14, m™ @ m(©), the f-batch OT receiver on the choice
string m(*) @ m(® to receive the string z.
(b) Send z @ m(® in the round after OTR is done
(¢) Return

Lemma 3.4.3. The constructed OT protocol OT' = (OTR’,OTS’) has the same correctness
as the base OT OT = (OTR,0OTS). Moreover, OT' = (OTR',0TS') is secure if OT =
(OTR,OTS) is secure.

Assuming OT = (OTR,OTS) has expected overall rate r > 2/3, the constructed OT has
expected download rate w > 1/2.

Correctness. If d(),¢) < u(X, £)+£ then both parties behave exactly like OT and therefore
correctness is inherited.

If d(\, €) > u(\, ¢) + £ the sender OTS’ learns

<r1 D sy - (m(ll) @ m(lo)), BN VICETE (mgl) D méo)))
it then sends back

(7“1 b st (mgl) D mg())) D m§0)’ s Te D Se (mgl) ® mé())) @ mém)

3.4. PROTOCOLS THAT IMPLY NON-TRIVIAL PIR 47

then the receiver OTR’ computes
(sl mPemem” s, (mél) ® m§°>)) méo))
= (mgsl), e ,mésl))

O

Security. The security in the case that d(\,¢) < u(A,¥¢) + ¢ directly follows from the
security of OT.

In the other case it follows from the security of OT and the work of [WWO06] which
proves that this exact construction is secure. For receiver security we have that the sender
(according to sender security of OT) only learns z. Each bit z; is either r; or s; & ry,
in both cases it is uniformly random because r is uniformly random. Sender security of
OT’ follows because the execution of OT leaks nothing to the receiver (according to the
receiver security of OT). That means all the receiver learns is z ® m(®. By correctness of

OT' this is exactly (mgsl) ery,... ,mésﬂ) @ 1) and therefore contains no information about
(1=s1) (1—s¢) O
(my ey).

Expected Download Communication. Let r be the rate, t(A,n) be the expected total
communication which is the sum of the expected receiver-to-sender communication u(A, ¢)
and the expected sender-to-receiver communication d(X,£). Then for all but finitely many
£ we have t(\, 0) < 274. In the following, the expected sender-to-receiver communication of
OT’ will be called d’(\, /).

If d(A, £) < u(A, £) + £ then

d' (M 0) = d(X 0) = t(X 0) —u(\ £) <t) —d(\0) + ¢ &
d’()\ 0) < W
T 2

Else the new expected sender-to-receiver communication is

d' (0 0) = u(\0) + € = t(\, £) — d(\ £) + £ < t(\, £) — u(\,£) — L+ ¢ &

, t(N\,0) + ¢
< N
d'(\0) < =75

Either way, d'(\,£) < W which means that for all but finitely many ¢ we have d’'(\,¢) <

(1 + 1)¢. Therefore, the expected download rate is %—kl) which is > 1/2 for r > 2/3. O
I3 2

3.4.2 TUnbalanced Private-Set Intersection

In unbalanced private set intersection we have a set A of n A-bit messages, held by a sender
PSIS(1*,17, A), and a singleton set B, held by a receiver PSIR(1*, 1", B). The goal is for the
receiver to learn A N B while the sender should learn nothing. Semi-honest receiver security
can be defined along the lines of receiver (client) security of PIR (Definition 2.4.7).

We show how to transform a protocol for unbalanced private-set intersection PSI =
(PSIS, PSIR) that makes calls to oracle O into a PIR protocol (PIRU,PIRS) that makes
calls to the same oracle O in a black-box manner. We do this by simply encoding the
PIR-database and the PIR-query as sets.

48 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

e PIRUZ(1*,17,i): Set A := {i}. Run the PSI receiver I < PSIRCO(1*, A) to get the
intersection I. Return 1 if {i} = I and 0 otherwise.

e PIRS?(1*,1",DB): Form the set B := {z | DB[z] = 1}. Run the PSI sender
PSIS®(1*, B).

Lemma 3.4.4 (Folklore). The PIR protocol (PIRU,PIRS) has the same correctness error,
sender and receiver communication and sender and receiver query complexity as those of PSI.
Moreover, the resulting PIR protocol has client security if PS| provides receiver security.

That means if the sender communication in PSI is less than n, then the protocol (PIRU, PIRS)
s a non-trivial PIR protocol.

Proof of Correctness. Correctness follows from the correctness of the PSI protocol and
the intersection of {i} and B being {i} if i € B < DBJi] = 1 and) otherwise.

Proof of Client Security. Suppose there exists i,i’ € [n], DB € {0,1}"™ such that an ad-
versary A can distinguish view" (i, DB) from view" '~ (i’, DB) with non-negligible probability.

The same adversary A distinguishes between view">'({i}, B) and view">'({i'}, B) with the
same non-negligible probability since the views are exactly the same. O

3.5 Lower-Bounds on the Oracle Queries in PIR

In this section we show how to transform a private information retrieval (PIR) protocol
with access to some simulatable oracle SO into one that does not query that oracle. To have
something concrete in mind one may imagine SO being the generic group model, though the
technique is more general. We will later go into common instantiations of the oracle SO.
This transformation allows us to transfer lower-bounds from PIR without oracle access to
PIR with oracle access.

Simulatable Oracles. A simulatable oracle is an oracle SO which can efficiently be sim-
ulated by a stateful simulator Sim. More formally, a computationally unbounded adversary
A cannot win the following game with a non-negligible advantage in polynomially many
rounds r, where Sim is a PPT algorithm:

1. Sample random bit b & {0,1}.
2. Initialize the state of the oracle as st +— L.
3. Initialize the state of the adversary ast <— L.

4. The adversary produces a first query qu.

5. For i € [r]:
(a) Ifb=0:
e Let the response be resp < SO(qu)
(b) Else:

e Let response and new oracle state be (resp,st) <— Sim(qu, st)

(c) Let new query and adversary state be (qu, ast) < A(ast, resp)

3.5. LOWER-BOUNDS ON THE ORACLE QUERIES IN PIR 49

6. Let the adversary output its guess b’ < A(ast).
7. The adversary wins if b = b'.

Typical examples of simulatable oracles include the random oracle and the generic group
oracle.

Construction 3.5.1. Let PIR := (PIRUS®° PIRS®%:°) be a bit PIR protocol that uses a
simulatable oracle SO and another oracle O. We show how to compile out the SO-calls of
(PIRUSO’O, PIRSSO’O), obtaining an SO-free PIR protocol PIR := (WO,WRSO).

For notational convenience, in the following whenever calling PIRU or PIRS, we omit the
private-state part of the input.

The protocol messages sent from PIRU to PIRS are tagged with either ‘protocol’ (or bit
zero) signifying a normal protocol message, or with ‘query’ (or bit 1) signifying a query
message.

PIRUC (1}, 17,4) -
e Initialize the state of the simulatable oracle st <— L.

e Run the interactive PPT PIRU° with the following interactions:

1. When PIRUS° calls O on a query qu forward the query to O and respond
with the received response.

2. When PIRU%9° calls SO on a query qu, simulate the response and update
the oracle simulators state (resp,st) <— Sim(qu, st).

3. Upon PIRU receiving a message of the form (‘query’, msgs), interpret msgs
as a query qu, simulate the oracle response and update the oracle simulators
state as (resp,st) <— Sim(qu,st) and return resp to the sender PIRS. If the
message has the form (‘protocol’, msgs), run PIRU®© on the protocol mes-
sage msgs until it produces the next message msgr and send that to PIRS.
The oracle queries are handled as described above.

PIRS’ (1,17, DB) :

e Run the interactive PPT PIRS®®© with the following interactions:
1. When PIRS®9:° calls O on a query qu, forward the query to O and respond
with the received response.

2. When PIRS*®-° calls SO on a query qu, send a tagged query pair (‘query’, qu)
to PIRU and use the response msgr as a query response for qu to PIRS.

3. Else, run PIRS®C until it produces a message msgs and sends the tagged
message (‘protocol’, msgs) to PIRU, then wait for the response msgr and
continue.

Theorem 3.5.2. If PIR is a non-trivial private information retrieval with server commu-
nication of n < cn for ¢ < 1, r € o(n) rounds of interaction with the user, and q € o(n) bits
of communication with the SO oracle then PIR is a non-trivial private information retrieval
with server communication 11 < ¢n for ¢ < 1 and no calls to SO.

Server communication. The server’s additional communication overhead includes 1 bit
per round as well as a total of O(g) bits. Since the number rounds is o(n), the total server
communication complexity becomes cn 4 o(n), which is less than én for some ¢ < 1. O

50 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

Correctness. Notice that the above protocol will have different output from an execution
of PIR either

1. if a with Sim simulated oracle behave differently from the real oracle behaviour or
2. if a message in the execution of PIR happens to start with ¢.

Both of these events happen with negligible probability. Therefore, if PIR has statistical
correctness then so does PIR. O

Client Security. Suppose there exists i,i’ € [n], DB € {0,1}" such that an adversary
A can distinguish view?'? (i, DB) from view?'R(i, DB) with non-negligible probability. We
construct a new adversary A to distinguish between view"?'? (i, DB) and view?'?(i', DB). The
new adversary A gets as input a view v either from view"?'R(i,DB) or view!'R(i’,DB) and

does the following: (

1. Generate an empty view ©.
2. Copy all O-oracle calls from v to .

3. Run PIRS on the randomness and DB as defined in the view v and simulate its inter-
action as follows:

(a) For PIRS’s calls to the SO oracle with query qu and gets response resp enter
("query’,qu) as a server message into U and resp as a user message.

(b) For PIRS’s messages msgs enter ('protocol, msgs) in the transcript T as a server
message and enter the users response msgr as a users message.

4. Run b <+ A(), on the view ¥ produced by PIRS
5. Return b
A will distinguish view?'R (i, DB) and view’'? (i, DB) with negligibly close to the probability

as A can distinguish vievLE'R(i, DB) from view!'R(i’,DB). This is because T follows the

same distribution as view’'"(i, DB) (except that the SO queries are produced by the real

oracle, not the simulator) if v was from view"' X (i, DB) and 7 follows the same distribution

as view"'R(i’, DB) (same caveat here) if v was from view"'R(i’, DB). If the adversary could

notice the simulation of SO then it would break its simulatability. O

Remark 3.5.3. Theorem 3.5.2 is applicable to any two-PC protocol with one-sided receiver
security. Of course, in the absence of further restrictions, such protocols are trivial to realize
(e.g., by the sender sending its input in the clear to the receiver). One restriction that makes
the problem non-trivial is to require the sender-to-receiver communication to be sub-linear
in the sender’s input size, as in PIR.

The utility of Theorem 3.5.2, beyond PIR itself, becomes apparent when one considers
other protocols that imply non-trivial PIR while instantiating their underlying oracles via
ideal forms of powerful primitives. We first discuss the implications of the theorem in terms
of particular instantiations of the oracle, and in the next section we consider protocols that
imply PIR.

Theorem 3.5.2 allows us to also rule out powerful non-black-box techniques for building
PIR. We demonstrate this by letting SO include an OT oracle and an ideal obfuscation oracle
that can obfuscate circuits with generic OT gates and random oracle gates. (See [AS15b,
GHMM18] for capturing similar non-black-box techniques via oracle-aided circuits.)

3.6. COMMUNICATION LOWER-BOUNDS FOR OT EXTENSION ol

Corollary 3.5.4. For any constants ¢ < 1, there exists no n-bit PIR protocol with server
communication n < cn, round complexity r € o(n), and with oracle access to a PSPACE-
complete oracle, a random oracle, a generic OT oracle, and an obfuscation oracle for circuits
with OT and random oracle gates, and where the server only communicates q € o(n) bits to
the ideal obfuscation and OT oracles.

Proof. In Lemma 3.4.1 we show an OT protocol with the above mentioned characteristics
implies a non-trivial PIR. Let SO consist of an OT oracle [GKM*00] and an ideal obfuscation
oracle [AS15b, JLLW23] for obfuscating circuits with OT/RO gates. (Such an SO oracle
is simulatable.) By invoking Theorem 3.5.2 one gets a non-trivial PIR with oracle access
to the random oracle and an PSPACE-complete oracle. This in turn can be transformed
into an OT protocol (while retaining the O oracles) via [DMOO00]. The existence of such an
object however was ruled out by [GKM™00]. O

Back to the black-box setting, other illustrative examples include the use of GGMs for
building non-trivial PIR.

Corollary 3.5.5. For any constants ¢ < 1, a non-trivial n-bit PIR protocol with server
communication of cn, round complexity r € o(n) and where the server makes sublinear in n
many generic group queries requires MPC-hard assumptions, beyond the generic group.

Proof. In Theorem 3.5.2, if one instantiates SO by a generic group [Sho97] and let the O
oracle be empty, then one gets a non-trivial PIR without any oracle calls. This in turn can be
transformed into an OT protocol without any oracles via [DMO00]. OT is an MPC-complete
protocol. O

The above corollary is almost tight as there exists GGM-based PIR protocols with a
linear number of GGM queries.

Lemma 3.5.6 ([DGIT19]). Based on the DDH assumption, there exists a non-trivial n-bit
PIR protocol with server communication of O(\) and with the sever making O(n) group
operations.

Finally, we may derive a statement for FHE oracles.

Corollary 3.5.7. For any constants ¢ < 1, a non-trivial n-bit PIR protocol with server
communication of en, round complexity r € o(n) where the server makes q € o(n) black-box
use of fully homomorphic encryption* requires MPC-hard assumptions, even beyond the fully
homomorphic encryption.

Proof. Let SO be an FHE oracle [GMM17] (defined similarly to a generic PKE oracle
of [GKM100]). Let the O oracle be empty. Invoking Theorem 3.5.2 one gets a non-trivial
PIR without any oracle calls. This in turn can be transformed into an OT protocol without
oracles via [DMOO00]. OT is an MPC-complete protocol. O

3.6 Communication Lower-Bounds for OT Extension

Theorem 3.5.2 provides lower-bounds on the computational complexity of PIR protocols.
In this section, we show that these computational lower-bounds give rise to communication
lower-bounds for OT extension (i.e., the number of bits that an extended OT sender needs
to communicate). The result of this section implies that the communication complexity of
the sender in the IKNP OT extension protocol IKNPO03] is close to optimal.

4This means the server communicates at most g bits to the FHE oracle

52 CHAPTER 3. LOWER-BOUNDS ON PUBLIC-KEY OPERATIONS IN PIR

Corollary 3.6.1 (OT Extension: Sender Communication Lower-Bound). For any constants
c < 1, there exist no £-batch k-bit OT extension protocol with sender communication n <
c2kl, round complezity r € o(kl), and with the sender making q € o(kf) OT calls.

Proof. OT extension is just an OT protocol that makes use of only a black-box OT and a ran-
dom oracle. An ¢-batch k-bit OT naturally gives rise to a kf-bit string OT. In Lemma 3.4.1
we show that such an OT protocol implies a non-trivial PIR for databases of 2¢k bits. Un-
der the resulting PIR protocol, the server communication is n < ¢2k¢, round complexity
r € o(kf), and the server communicates a total of o(k¢) bits with the OT oracle. Invoking
Theorem 3.5.2, by instantiating SO with a generic OT oracle [GKM100] and O with the
random oracle [BR93] and by also including a PSPACE-complete oracle, we get a non-trivial
PIR with oracle access to the random oracle and a PSPACE-complete oracle. This in turn
can be transformed into an OT protocol (while retaining the O oracles) via [DMOO00]. The
existence of such an object however was ruled out by [GKM™00]. O

Corollary 3.6.2 (OT Extension: Total Communication Lower-Bound). For any constants
c < 1, there exist no £-batch k-bit OT extension protocol with total communication n <
3c(€ + kt), round complezity r € o(kl), and with the sender making q € o(k€) OT calls.

Proof. Follows from Lemma 3.4.3 and Corollary 3.6.1. O

Chapter 4

Designated-Verifier SNARGs

4.1 Introduction

Interactive proofs [GMRS&9] is a central tool in cryptography and complexity. In an inter-
active proof system for an NP language L, a prover holding an instance-witness pair (z, w)
wants to convince a polynomial-time verifier that € L, and they do so over multiple rounds
of back-and-forth communication. If the statement is true, the verifier should accept; if false,
it should accept with probability at most 277, no matter what the prover does.

Here, we consider such proof systems with two natural relaxations. First, we only require
soundness against computationally bounded provers [BCC88]. Such proof systems are often
referred to as arguments. Second, we allow the prover and the verifier to engage in an
(instance-independent) preprocessing protocol. In this setting, we ask the following basic
question:

How succinct can a practical proof system be?

By succinctness, we refer to the total number of bits exchanged between the prover and
the verifier, excluding the preprocessing phase. Originating from the works of Kilian [Kil92]
and Micali [Mic94], an enormous body of works studied succinct proof systems that have
sublinear communication in the length of the NP-witness.

By practical, we loosely refer to proof systems that are practically feasible in the sense
that they can run in a “reasonable” amount of time for non-trivial NP-statements, such as
proving the satisfiability of a circuit with a few thousand gates. This excludes optimally-
succinet proof systems based on general-purpose obfuscation techniques [SW21], which are
not yet practical in this sense. To give a more precise notion of practicality, we consider
proof systems that can be cast in simple generic models, such as the random oracle model
(ROM) [BR93], the generic group model (GGM) [Sho97], or a generic bilinear group model.
This is general enough to capture the most succinct proof systems from the literature that
are practical in the above informal sense.!

Finally, in the above generic models one can typically obtain a non-interactive proof
system with little to no loss of succinctness. We will therefore restrict our attention to such
proof systems, referred to as succinct non-interactive arguments (SNARGs) [Mic94, GW11].

1The generic models we consider exclude practical lattice-based proof systems, e.g., [BISW17, BS23,
SSE+24, AFLN24] and many more. However, such proof systems are not competitive with group-based
systems in terms of concrete succinctness.

93

54 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Here, the preprocessing phase may produce a (possibly long and structured) common refer-
ence string (CRS), which can be used by any prover. SNARGs where the verifier generates
the CRS and may keep a secret verification key are referred to as designated-verifier SNARGs
(dv-SNARGsS).

Concrete succinctness of known practical SNARGs. We briefly summarize the sate
of the art on practical succinctness and defer a more detailed overview to Section 4.1.3. When
referring to concrete proof size, we assume 2789 soundness at a 128-bit security level.?

e Using generic bilinear groups, there are SNARGs with 2 Gi-elements and 2 field ele-
ments [Grol6, Lip24, DMS24]. When instantiated, these yield 1280-bit proofs.

e In the GGM, [BIOW20] obtain a dv-SNARG with 2 G-elements that yields 512-bit
proofs, but whose soundness error is inverse-polynomial in the verifier’s running time.
Obtaining negligible soundness using the [BIOW20] construction requires a super-
constant number of G-elements.

This leaves open two questions: Can we obtain negligible soundness in the GGM with a
constant number of group elements? Can we obtain any practical proof system that meets
the above concrete soundness level using fewer than 1280 bits?

4.1.1 Our Results

We answer both questions in the affirmative. We construct the first designated-verifier
SNARGS in the generic group model with negligible soundness error and proof size equating
to a constant number of group elements. In fact, our proofs consist of a single group element
and an additive term that depends on the soundness error. In concrete terms, we can obtain
2780 soundness at a 128-bit security level using 695 bits, almost a 2x improvement over the
best pairing-based SNARGs [Grol6, Lip24, DMS24].

Settling for a constant soundness error (say, 1/2), which may be good enough for some
practical use cases, the total proof size is close to a single group element, almost a 2x
improvement over the best previous dv-SNARGs in this setting [BIOW20].

The above results are obtained via two variants of the same blueprint. We begin by
describing a SNARG with one group elements and O(7) additional bits, and then discuss
its construction.

Theorem 4.1.1 (1 G + O(7) bit dv-SNARG, informal). Let G = G be a generic group?
and T a soundness parameter. There exists a dv-SNARG for proving the satisfiability of a
Boolean circuit of size s with the following features:

e Soundness error: 277 + O(t? - 2_’\) against t-query adversaries;
e Proof size: 1 G-element (X bits) and O(T) additional bits;
o CRS size: O(1s) G-elements.

See Corollary 4.6.1 for a formal statement.

2By 2780 soundness at a 128-bit security level we refer to provable soundness error of 2730 against
polynomial-time malicious provers in the standard GGM, where we instantiate the group to have 256-bit
elements. A similar convention is used in prior related works, see Appendix B.1 for further discussion.

3Here Gy refers to a generic group of size ~ 2* and whose elements are described using X bits.

4.1. INTRODUCTION %)

In fact, we prove that our dv-SNARG has the stronger notion of knowledge soundness.
While the above O(7) term in proof size hides a large constant, we show that if we relax the
CRS size to O(7s?), the proof can include 1 G-element and 567 bits. Thus, for use-cases
where only a constant soundness error is required, the proof size in the above dv-SNARG
is smaller than 2 group elements. Finally, if we only require some constant soundness error
0 < 1, then we can get all the way down to 1 G-element and only 7 additional bits.

We note that even a quadratic CRS size may be tolerable when using our dv-SNARK
as an “inner system” for proving the correctness of a fast to verify proof generated by an
“outer” SNARG, such as Grothl6 [Grol6].

Our prover and verifier both make O()\TS) group operations (the prover time becomes
O(M7s%) when considering the quadratic CRS variant). We leave a more refined optimization
of asymptotic and concrete efficiency to future work, and discuss some possible routes for
improvement in Section 4.1.2.

Theorem 4.1.1 is proved by extending the BCIOP compiler [BCIT13], which combines
a “linear-only” encryption scheme and a linear PCP to construct dv-SNARGs, to com-
pressible encryption schemes, where ciphertexts can be compressed following homomorphic
evaluations. Specifically, we consider the packed ElGamal encryption scheme implied by
techniques developed in [BGI16, DGI*T19, BBD1T20]. We analyze the malleability of this
encryption scheme and design (variants of) linear PCPs that support instantiating the com-
piler with the packed ElGamal scheme. In more detail, we show that packed ElGamal in
the generic group model is isolated homomorphic, which is a form of limited homomorphism
which allows the adversary more ability than in the linear-only definition of [BCI*13]. We
then use packed ElGamal to construct a dv-SNARG using the compiler along with a strong
linear multi-prover interactive proof (strong LMIP). While in a standard MIP, the verifier
interacts with multiple provers which are unable to share information about the verifier’s
queries, a strong LMIP additionally requires the honest prover strategy to be linear while
retaining soundness against malicious provers with arbitrary strategies. To construct strong
LMIPs, we use a linear PCP (either the 1-query LPCP of [BHI"24] for linear CRS size or,
for better concrete succinctness with quadratic CRS, the Hadamard-based 2-query LPCP
from [BIOW20]) and transform it into a strong LMIP. Such a transformation was first used
in [IKOO7], and we give an alternate construction (for 2-query LPCPs) which achieves better
concrete parameters. See Section 4.2 for more details.

Improving concrete proof size via hashing. The primary difficulty in constructing
the dv-SNARG of Theorem 4.1.1 is to analyze precisely what power an adversary has in the
malleability of the packed ElGamal scheme, and this is the main limitation for achieving
smaller proof size. We show that by utilizing a random oracle (which we use only for its
collision-resistant properties) it is possible to restrict the adversary’s range of actions to a
more limited set of malleability attacks. By using this this variant of the packed ElGamal
scheme, we design a SNARG whose length is one group element, one output of the random
oracle, and a number of bits that tends towards 27:

Theorem 4.1.2 (1 G + 1 H + ~ 27 bit dv-SNARG, informal). Let G = G, be a generic
group, H = H\ be a random oracle with A output bits, T a soundness parameter, and p > 2
be a prime. There exists a dv-SNARG for proving the satisfiability of a Boolean circuit of
size s with the following features:

o Soundness error: 277 + O(t% - 27) against t-query adversaries;

e Proof size: 1 G-element (X bits), 1 H output (X bits), and floz;lfo(ga’(olﬂ additional bits;

56 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

e CRS size: O(1s - poly(p)) G-elements.
See Corollary 4.6.2 for a formal statement.

If we allow the CRS size to be quadratic in s, we can make the constant ©(1) in the proof
size equal to 1. Thus, for soundness error 2780 at a 128-bit security level (i.e., setting 7 = 80,
A = 256) and choosing p to be a 256-bit prime, the proof length is only 2\ + [fogﬁlﬂ =695
bits, almost a 2x improvement over the best pairing-based SNARGs.

As in Theorem 4.1.1, we rely on linear PCPs (again, using the linear PCPs of [BHI*24]
and [BIOW20]). However, due to the reduced malleability of the encryption scheme, we
do not have the additional overhead of compiling to strong LMIP. We still need to slightly
adapt the PCPs, but this adaptation significantly more efficient. It is due to this that
Theorem 4.1.2 achieves better concrete parameters than Theorem 4.1.1, at the cost of the
added random oracle output. See Section 4.2.3 for more details.

4.1.2 Open Problems and Future Directions

In this work, we establish the practical feasibility of dv-SNARGs in the GGM whose proof
size contains a single group element and a small number of additional bits that depends on
the level of soundness. While this proof size is not too far from optimal, our results leave
room for three kinds of improvement: (1) further improving succinctness, (2) improving
prover and verifier runtimes, and (3) making the CRS fully reusable. We elaborate on each
goal separately below.

Succinctness. There are two plausible approaches for further improving the proof size.

o Tighter analysis. In our analysis of packed ElGamal, we give a bound on the possible
malleability attacks a malicious party may do. However, we believe that our analysis
is quite loose, and conjecture that an even a slightly simpler construction can achieve a
better level of soundness. See Section 4.2.3 for further discussion, as well as an explicit
proposal for a dv-SNARG that we conjecture to achieve soundness 277 with proofs
consisting of only 1 group element and ~ 27 additional bits. For a soundness error of
2780 at a 128-bit security level, this would amount to a proof size of ~ 420 bits.

e Better PCPs. As with prior constructions [BCIT13, BIOW20, BHIT24], our dv-
SNARGs rely on different flavors of linear PCPs. However, unlike these previous
constructions, our apporach is less sensitive to the number of queries and depends
mainly on the ratio u between the total bit-length of the LPCP answers and the
soundness level 7. The LPCPs we use have p &~ 2, which is why the SNARG de-
scribed in Theorem 4.1.2 tends to 27, and explains the 27 additive term in our proof
length. As noted in [BHIT24], known hardness of approximation results for MAXLIN
[Has01, FJ12, ABCH19] imply 1-query LPCPs with p =~ 1. Using such a linear PCP
would result in a proof where the additive term is improved from ~ 27 to &~ 7. However,
these LPCPs have a non-negligible completeness error and seem practically infeasible.
The completeness error can potentially be eliminated by allowing more queries, com-
bining PCPs with optimal amortized query complexity [HK05] with the universal factor
graph technique from [ABCH19] to make the query distribution input-independent.
However, this approach too seems practically infeasible. We leave open the question
of designing practical LPCPs with p ~ 1.

The above two potential improvements could lead to the following dv-SNARG.

4.1. INTRODUCTION o7

Conjecture 4.1.3. Let G = G, be a generic group and 7 a soundness parameter. There
exists a dv-SNARG for proving the satisfiability of a Boolean circuit of size s with the
following features:

e Soundness error: 277HoslogA 4 O(¢2 /22) against t-query adversaries;
e Proof size: 1 G-element and 7 + o(7) additional bits;

e CRS size: O(7s) G-elements.

For a soundness error of 2789 at a 128-bit security level this would amount to a proof

size of ~ 340 bits, roughly half the proof size from Theorem 4.1.2.

Runtimes. Our new proof systems are practically feasible even for satisfiability problems
involving thousands of constraints. However, the concrete runtime of the prover and (espe-
cially) the verifier still leave much to be desired, and improving these overheads is a major
direction for future research.

Our packed ElGamal encryption is based on the distributed discrete logarithm algorithm
from [BGI17], which helps us achieve perfect completeness. With a more careful analysis,
one might be able to switch to the faster distributed discrete logarithm algorithm from
[DKK18] to quadratically reduce verification time.

An orthogonal improvement is a tighter analysis of the SNARG verification time. Our
analysis pessimistically assumes the magnitude of LPCP answers to scale linearly with the
proof length. However, for natural linear PCPs, a quadratic improvement could be poten-
tially obtained by using a concentration bound for a corresponding random walk. Similar
ideas have been explored in [BIOW20]. In Claims 4.5.5 and 4.5.10, we show that this analysis
is compatible with our transformations. See Conjecture 2.3.7 for a relevant conjecture.

Combining both of the above potential optimizations, the verifier’s runtime can grow
linearly with s'/# rather than linearly with s, potentially making our SNARGs practical for
much larger circuits.

Finally, there is a lot of room for improving the concrete efficiency of the LPCPs we
employ. In particularly, we rely on 1-query LPCPs from [BIOW20, BHI*24] that apply to
Boolean constraints or arithmetic constraints over small fields. Extending them to natively
accommodate arithmetic constraints over large fields remains open.

Reusability. Inevery dv-SNARG, the CRS setup can be safely reused an arbitrary number
of times as long the prover does not learn (too many times) whether the verifier accepts badly
formed proofs.* This may be good enough for many practical use cases, especially when there
are long-term relations between the prover and the verifier. In particular, the verifier can
replace the CRS after several rejections, or alternatively not reveal whether each individual
proof is accepted.

However, the standard (strong) notion of reusability for SNARGs requires that the CRS
can be safely reused even when a malicious prover can fully observe the verifier’s accep-
t/reject decisions. Our dv-SNARGs are not reusable in this sense, leaving the question of
achieving full reusability open. We explain the source of the problem below.

The BCIOP compiler [BCI*13] shows that by combining an LPCP that has reusable
soundness with a linear-only encryption scheme, one can obtain a dv-SNARG with (strong)

4In contrast, some interactive arguments in the preprocessing model, such as ones suggested in [IKOO07,
BHIT24], require an independent setup for each proof instance even when malicious provers cannot learn
the verifier’s decisions.

58 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

reusable soundness. However, the kinds of LPCPs and MIPs we use (concretely, “strong
linear MIPs” and “modded linear PCPs”) do not have reusable soundness. In the case of
strong linear MIPs, where malicious provers can employ an arbitrary strategy, the lack of
reusable soundness seems inherent. However, there is hope to construct reusably sound
modded LPCPs. Indeed, [BHI"24, Corollary 5.24] realized reusably sound bounded 1-query
LPCP over large fields, which is a strongly related notion.

4.1.3 Related Work

In this section, we give an overview of the concrete level of succinctness that can be achieved
in each of the main generic models: the random oracle model (ROM), the generic bilinear
group model, and the generic group model (GGM). For concreteness, we require here sound-
ness error of 2730 at a 128-bit security level for designated verifier SNARGs and 128-bit
soundness for publicly verifiable ones. See Appendix B.1 for an extended discussion about
the security notion and this choice of numbers for comparison.

Random Oracle Model. In the random oracle model, the most succinct hash-based
SNARGs [BBHR18, ACFY24a, ACFY24b] have proofs with size roughly 40Kib (for instances
of size 212). At a technical level, these (setup-free) SNARGs combine the blueprint of Kilian
and Micali with an interactive variant of classical PCPs known as an IOP [BCS16, RRR16].
See [CY24] for further details. Using classical PCPs instead of IOPs, one could potentially
obtain somewhat better succinctness at the expense of a much slower prover time. However,
even in this case, proofs would have length in the thousands of bits.

Generic Bilinear Group Model. Bilinear group-based SNARGs can obtain a much
better level of succinctness by incorporating a different relaxation of classical PCPs known
as a linear PCP [IKOOT]. The first practical SNARGs based on bilinear groups were given
by Groth [Grol0]. Following a sequence of works [Lip13, GGPR13, BCI*13, DFGK14],
the Groth1l6 SNARG [Grol6] was considered until recently to be the state of the art in
succinctness. Built on asymmetric pairings, a Groth16 proof has size 2 G1-elements and 1 Go-
element. For the popular group of choice, BLS12-381 (for 128-bit security), this corresponds
to 2-384 4 768 = 1536 bits. Recently, [Lip24] improved on the size of Groth16, achieving a
size of 3 G1-elements and 1 field element, which equates to 3-384+256 = 1408 bits. This was
reduced in [DMS24] to 2 Gy-elements and 2 field elements arriving at 2-384 +2-256 = 1280
bits. When instantiating [Mic94] with the linear map commitments of [LM19] and a 2-query
linear Reed-Solomon PCP implicit in [DFGK14] (see [BHI"24, Corollary D.6]), one also
gets a proof size of 2 Gp-elements and 2 field elements. If one is willing to use the full PCP
machinery instantiating [Mic94] with the subvector commitments of [LM19], one may get
a slightly lower proof size. However, as discussed above, such general-purpose PCPs have
poor concrete efficiency.

Generic Group Model. Most relevant to our work, another line of research [BCIT13,
BCC™16, BBBT18, BIOW20, BHI"24] considers minimizing proof size using generic pairing-
free groups, namely in the standard GGM. The simpler structure gives hope for more conser-
vative group instantiations with better concrete parameters. Unlike pairing-based SNARGs,
the most succinct GGM-based SNARGs apply only in the designated-verifier setting. Set-
tling for inverse-polynomial soundness error, Barta et al. [BIOW20], obtained dv-SNARGs
with proofs as short as 2 G-elements, which corresponds to 512 bits for Curve 25519, a pop-
ular group of choice. However, applying this construction with our soundness target of 280

4.2. TECHNICAL OVERVIEW 99

would make verification practically infeasible, unless the proof size is increased drastically
to amplify soundness.

4.1.4 Organization

The rest of this chapter is organized as follows. In Section 4.2, we give a high-level overview
of the ideas and techniques used in our work. In Section 4.3, we define compressible encryp-
tion schemes, and introduce the packed ElGamal encryption scheme, along with a variant
thereof. In Section 4.4, we define malleability security notions and prove that our compress-
ible encryption schemes meet these security guarantees. In Section 4.5, we show how to
transform linear PCPs to strong linear MIPs and to modded linear PCPs. In Section 4.6,
we combine compressible encryption schemes and suitable linear PCPs (or MIPs) to con-
struct dv-SNARGs.

4.2 Technical Overview

In this section, we give an overview of our results and the underlying techniques.

4.2.1 Designated-Verifier SNARGs Blueprint

We revisit a paradigm for constructing designated-verifier SNARGs by combining linearly
homomorphic encryption schemes with linear PCPs and related objects (such as linear IPs)
developed in [IKO07, BCI*13]. In a linear PCP (LPCP) over a field F,, the prover (whether
honest or malicious) commits to a proof 7 €]Fﬁ, and the verifier chooses queries a;,...,a, €
Ff). The verifier then receives answers (b1, ...,b,) € F,, to the queries, where b; = (7, a;) €
F,. To construct a designated-verifier SNARG from LPCPs, we have the verifier choose
its queries first and put them into the common reference string. To have any chance of
preserving soundness, we hide these queries from the prover by encrypting them, where only
the verifier is given the decryption key. Intuitively, this way the prover has a hard time
making its proof string depend on the queries. For completeness to still hold, we need this
encryption to enable linear computation on the encrypted messages.

We describe in more detail the transformation given an LPCP and an encryption scheme
(KeyGen, Enc, Dec) that is linearly homomorphic. For convenience of notation, for now, we
consider only 1-query LPCPs.

e Setup. Generate keys (pk,sk) < KeyGen for the encryption scheme, and PCP verifier
query a €]Ff,. Encrypt the queries, ct; = Enc(pk, afi]), where ali] is the i-th entry of
a. The verifier private state is sk, and the public reference string contains the public
key pk and ciphertexts (cty,...,cty).

e Prover. Given pk, and cty, ..., cty, the honest prover generates m € IFf, as in the linear
PCP. It then homomorphically evaluates (m, a) using the ciphertexts cty, ..., cts, thus
generating a new ciphertext ct’. The prover message is ct’.

e Verifier. Given the secret key sk, and ciphertext ct’, decrypt
b = Dec(sk,ct’) € F,

and check that the PCP verifier accepts given b as the query answer.

60 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Observe that in order to argue soundness, we need more properties from our encryption
scheme. Indeed, if a malicious prover can do non-linear operations on the encrypted mes-
sages, then it can essentially launch a non-linear attack on the linear PCP, in which case
we cannot rely on soundness of the PCP. Thus, we want the encryption scheme to be lin-
early homomorphic but the homomorphic operations to be restricted only to linear ones (or,
more generally, affine ones). Encryption schemes with this property are referred to as being
“linear-only” homomorphic.

Designated verifier SNARGSs from ElGamal. Following the [BCIT13] paradigm, Barta
et al. [BIOW20] construct dv-SNARGs by utilizing the ElGamal encryption scheme, which
is linearly homomorphic for small messages. Recall that, given a suitable group G of order
p’ with generator g, the ElGamal encryption scheme is:

e KeyGen: Sample random x & Zy . Set pk = ¢g* and sk = z.

e Enc: Given public key pk = h, to encrypt m € Z, pick r & Z, and output (¢", h"g™).

e Dec: Given secret key sk = = and a ciphertext (c1,c2), compute the message m =
DLog(ca - ¢1%).

Decryption, here, only works if m is small (i.e., so that discrete log can be computed by
polynomially bounded honest parties). [BIOW20] show that, in the generic group model
(GGM), the ElGamal encryption scheme satisfies linear targeted malleability, a variant of
linear-only encryption. They further design 1-query LPCPs over a field of size poly(A) with
soundness error 1/poly(\). By combining these two ingredients using the compiler described
above, they construct a dv-SNARG in the GGM whose argument consists of 2 group elements
and whose soundness error is 1/poly()\).
In the following, we explore how to push this idea to negligible soundness.

Adapting [BIOW20] for negligible soundness. The easiest way to achieve negligible
soundness using the previous approach is to repeat the proof ¢ times, where ¢ is super-
constant in A. This, however, would increase size of the proof to 2¢ = w(1) group elements,
which is too large.

Our first step to reduce the size is to reuse the ciphertext randomness of ElGamal with
multiple secret keys in order to encrypt a vector of messages my,...m,. In more detail:

o KeyGen: Sample random 1, ..., x4 & Zy . Set the public key pk = (¢™*,...,g") and
the secret key sk = (z1,...,24).

e Enc: Given public key pk = (h1,...,hy), to encrypt mq,...,my € Zy pick r & Ly,
and output (g", hig™*, ..., hyg™e).

e Dec: Given secret key sk = (z1,...,2,) and a ciphertext (co, ..., cq),
output (DLog(cy - cg™),...,DLog(cy - g *))-

Observe that this change preserves linear homomorphism: given the two ciphertexts
(97, hig™ . hig™) and (g7 hy'g™ ... by g™)
each encrypting a g-message vector we can compute a ciphertext

(979" hig™ Ry g™, hyg™ ki, g™)
:(QT+T/, h71”+r'gm1 +m'17 o h;—i—r/gmq-i-m;)?

4.2. TECHNICAL OVERVIEW 61

which decrypts to the sum of the message vectors. Thus, we can use it in the paradigm.

With this modification, we have already reduced our proof length from 2¢g to ¢+ 1 group
elements, which is a significant decrease but still requires a super-constant number of group
elements to achieve negligible soundness error. However, we have gained more power: the
malicious prover is restricted to computing the same linear function over all elements of the
vector. This allows us to move from a 1-query LPCP to a g-query one rather than repeat the
1-query LPCP ¢ times. Multi-query LPCPs are significantly easier to design than their 1-
query variant.® Revisiting our dv-SNARG construction, we use a g-query LPCP to generate
g queries ay,...,a,. The verifier then encrypts the queries ct; < Enc(ai[i],...,a4[i]). As
in the 1-query compiler described above, the common reference string contains all of these
ciphertexts. The prover then homomorphically computes a ciphertext encrypting the value
T (a1 aq) and sends it to the verifier. The verifier decrypts this ciphertext and
checks whether the LPCP verifier accepts given the decrypted values.

We have established that the paradigm can be made to work relatively efficiently for
g-query linear PCPs. However, this does not suffice to achieve negligible soundness with a
constant number of group elements, as we would need a linear PCP with constant query
complexity and negligible soundness, which we only know how to construct over large fields,
which is both incompatible with computing the discrete log, and would require a much larger
generic group.

Smaller proofs using compressible encryption. We make two observations. The first
is that because the messages need to be small to be able to compute the discrete logarithm,
most of the group is unused. In other words, in an amortized sense, one group element of
size O(A) only encodes polylog(\) bits of information. Our second observation is that the
homomorphic properties of the encryption scheme are used only once in the dv-SNARG.
Indeed, after computing the query answers under the encryption, the prover simply sends
the resultant ciphertexts to the verifier, who decrypts them immediately.

In order to utilize the above observations, we consider encryption schemes which are
compressible. In a (linearly homomorphic) compressible encryption scheme, the encryption
procedure Enc produces ciphertexts ct that are large and support homomorphism. The
scheme additionally has a compression algorithm Compress takes a ciphertext ct and com-
presses it into a smaller ciphertext cct, which might lose the homomorphic capabilities held
by ct.

We can now restate the transformation using the combined ideas of ¢g-query LPCPs and
compressible encryption schemes:

e Setup. Generate keys (pk,sk) < KeyGen for the encryption scheme, and PCP verifier
queries ay, ...,aq. Encrypt the queries,

ct; = Enc(pk, ai[i], ..., a4[i]).

The verifier private state is sk, and the public reference string contains the public key
pk and ciphertexts (cty,...,cty).

e Prover.
1. Given pk, and cty,...,cty, the prover generates 7 as in the linear PCP. It then
homomorphically evaluates (m, a;) up to (m, a,) using the ciphertexts cty, ..., cty,

thus generating a new ciphertext ct’.

5See [BIOW20, BHI124] for further discussion on the complications in designing 1-query LPCPs.

62 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

2. Compute a compressed ciphertext cct from ct’ using Compress. The prover mes-
sage is cct.

e Verifier. Given the secret key sk, and compressed ciphertext cct, decrypt (b1, ..., bq) =
Dec(sk, cct) and check that the PCP verifier accepts given by, ...,b, as the query an-
Swers.

In the next sections, we explore instantiating this extension of the [BCI*13] paradigm.

4.2.2 Packed ElGamal

We consider the packed ElGamal scheme implied by techniques developed in [BGI17, DGIT19]
and coined in [BBD%20]. The setup and encryption of the scheme are identical to multi-
message ElGamal, but now we also consider a compression algorithm and subsequent de-
cryption algorithm for compressed ciphertexts.

The main ingredient of the compression procedure is the “distributed discrete logarithm”
(DDL) algorithm. The DDL algorithm allows two parties that have group elements h; and
he = hy - g® (respectively), to convert these elements into integers y; and yo such that
y1 = Y2 + x, given that x is smaller than some fixed bound B. We describe a simple
distributed discrete logarithm algorithm (more efficient algorithms exist but are unnecessary
to understanding our results). Suppose the two parties are given access to a random function
¢: G — {0,1}*. Now, each party computes its DDL share as follows: compute h; - g for
every y < B’, and output the smallest y such that ¢(h;g¥) = 0°. Now, if B’ is much bigger
than B with respect to x then with high probability both parties will arrive at the same
element which maps to 0°, i.e., hig¥" = hog¥? = h1g*t¥2, and so y; = ya + .

We show how to use DDL to compress an ElGamal ciphertext that encrypts a message
Mmi,...,Mg € Lp:

e Compress: Given a ciphertext ct = (co,c1,...,¢q), compute v; = DDL(¢;) mod p for
all 7 € [g], and output cct = (¢g,v1, ..., Vq)-
e Dec: Given secret key sk = (z1,...,2,) and a compressed ciphertext (c,v1,...,vq),
compute
((DDL(¢**) —v1) mod p, ..., (DDL(c**) —v,) mod p)

Then, assuming the distributed discrete logarithm algorithm does not fail, computing the
compression and then the decryption procedures becomes,

Dec(Compress(g”, hig™", ..., hyg™)),
and for every i € [g] we get:

DDL(g*") mod p — DDL(g*""™) mod p
=(yi — (y: —m;)) mod p=m; mod p

Failures of the DDL algorithm can be prevented by the compressing party resampling the
randomness of the ciphertext. While the compressor cannot check whether a compression
error has occurred since it does not the decryption key, it can test whether there is a possible
value which leads to a failure (recall that we are considering here p which is small).

4.2. TECHNICAL OVERVIEW 63

Is packed ElGamal linear only? Recall that in order to use the paradigm to construct
dv-SNARGSs we needed an encryption scheme that is linear-only (or linear targeted mal-
leable), i.e., is capable of doing linear operations on the encrypted messages and nothing
else. Since Compress is a postprocessing procedure to the standard ElGamal ciphertexts, one
could naively expect that this encryption, too, is linear only. However, we show that this
is, in fact, not the case by demonstrating that one can homomorphically evaluate non-linear
functions by forcing a decryption error.

We demonstrate how to evaluate a non-linear function over a packed ElGamal encryption
with a ciphertext that encrypts a message m € {0,1,2}, and the compression happens
modulo 3. The adversary gets a ciphertext ct = (¢g, ¢1) and the public key (g, h). Further,
it knows h = g%, ¢ = ¢", and ¢; = g"™**™ for some r,z € Z, and m € {0,1,2}. In
order to attack the scheme, the adversary scales (co, c1) by a large random number s € Z, .
More specifically, it produces a new ciphertext (¢ = ¢§ = ¢",¢} = ¢ = g™*stsm). If
the adversary chooses the (malformed) compressed ciphertext (¢, e) for e € Zs, then the
decryption procedure Dec will output (DDL(cfF) —e) mod 3. Of course, the evaluator does
not know ¢, but it does know ¢j = c¢ff/¢g™. Therefore, it knows that Dec will output the
following:

e (DDL(¢}) —e) mod 3 if m = 0;
e (DDL(¢}/g°) —e) mod 3 if m = 1;
e (DDL(¢}/g*) —e) mod 3 if m = 2.

In other words, the adversary can homomorphically evaluate the function f; . defined as:

(DDL(¢}) —e) mod 3ifm=0
m i < (DDL(c}/g%) —e) mod 3if m=1
(DDL(c}/g?%) —€) mod 3 if m =2

Because ¢}, ¢} /g%, and ¢} /g?* are far apart, the value output of DDL given each as input
is independent (as they choose a different zero point of ¢), and random®. Therefore, for
example, with a constant probability we will have the function (DDL(c¢}) —e) mod 3 =
(DDL(¢}/g%) — e) mod 3 = 0 and (DDL(c}/g**) — €) mod 3 = 1, which is not a linear
function over Zs.

Because s and e are chosen by the adversary, and it can compute f; ., it can also use
rejection sampling until fs . is whatever function it wants.

This attack generalizes to bigger message spaces and multiple ciphertexts. It addition-
ally generalizes in the following sense to ciphertexts encrypting multiple messages: given a
ciphertext encrypting a vector (myq, ..., m;) the evaluator can evaluate non-linear functions
f1,-.., fn on the ciphertext, such it decrypts to fi(my),..., fn(my).

Isolated homomorphism of packed ElGamal. We prove in the generic group model
that the above-mentioned attack is the most a malicious party can do. More specifically,

we prove that for every adversary provided with ciphertexts cty,...,cty encrypting vectors
my,...,my € F? that outputs a compressed ciphertext cct, there are functions fi, ..., f; so
that

Dec(cct) = (fi(mq[1],...,mq[f]),. .., fo(my[1],...,my[f]))
In other words, the adversary can evaluate arbitrary functions, but it cannot share informa-
tion between different “slots” of the vectors. We call this property of the encryption scheme
isolated homomorphism.

61t is not uniformly random but the distribution has high enough entropy to make this attack work.

64 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Strong linear MIPs. Isolated homomorphism of the packed ElGamal encryption scheme
allows a malicious prover to apply an arbitrary function f; to the veifier’s i-th query a;.
However, since these functions are isolated, they cannot “share” information about between
different slots of the ciphertexts. Thus, isolated homomorphism translates to the soundness
of a multi-prover interactive proof (MIP) rather than of a PCP. In an MIP, a set of provers
Py,..., P, wants to convince a single verifier of a statement. The verifier sends a query
a; to each prover P; and receives a response b;. A malicious set of provers can answer
with (fi(a1),..., fy(ay)) for any arbitrary functions fi,..., f;. This exactly matches the
guarantees provided by the isolated homomorphism notion.

In fact, we need the additional property that the honest proof to be a single linear
strategy. We call an MIP where the honest prover computes a single linear function, but
the malicious provers are allowed to compute arbitrary (isolated) functions a strong linear
MIP7. Strong linear MIPs have been constructed (e.g., in [[KO07]) by starting with a linear
PCP with soundness against provers that (1) only apply linear strategies and (2) apply the
same strategy to each query. These requirements are relaxed by (1) adding a linearity test,
thereby removing the linearity assumption, and (2) adding a consistency check between the
queries, thereby removing the single strategy requirement.

This construction suffices to get strong linear MIPs with constant soundness, which
can then be boosted by repeating the protocol. Unfortunately, the concrete parameters
achieved by this process leave much to be desired. We give an alternate transformation that
is specific to 2-query linera PCPs which combines the linearity and consistency checks into
one combined check inspired by the linear-consistent test of [AHRS01], thus improving the
constants derived by this transformation. See Section 4.5.1 for further technical details.

Dv-SNARGSs from packed ElGamal. We combine the packed ElGamal encryption
scheme with strong linear MIPs to construct dv-SNARGs. Recall that we had compressed
ciphertexts of the form cct = (¢, v1,...,vq), such that cg is a group element, and v; €
Z,, where Z, is the message space. Thus, the dv-SNARG has proof length equal to one
compressed ciphertext of a message of length equal to the size of the query answers in the
MIP.

Thus, when instantiated with a linear MIP (small) field F,, with O(7) queries and
soundness error 27 (which can be constructed from ones with constant soundness via 7-
wise repetition), we get a dv-SNARG whose proof length is a single group element along
with O(7-log p) bits (Theorem 4.1.1). Figure 4.1 provides a summary of our transformations
from linear PCP to dv-SNARG.

4.2.3 Improved Proof Length by Reducing Malleability

The main issues described in the previous section are caused due to the malicious prover
having the ability to make DDL fail without being detected. We show that this behavior
of the malicious verifier can be limited at the cost of appending a hash of the points that
DDL synchronizes to (i.e., the locations where ¢ is zero which the DDL algorithm outputs).
Let H be a hash function, modeled by a random oracle. We change the compression and
decryption schemes in the following way:

e Compress(ct = (co,c1,...,¢q)):
1. Let v; < DDL(¢;) for ¢ € [g].

"In [IKOO7] this notion is called linear MIP. In more recent work [BISW18], linear MIP refers to a notion
in which the malicious prover also has to behave linearly.

4.2. TECHNICAL OVERVIEW 65

(Lemma 4.5.1 or [IKOOT7]) (Lemma 4.6.3)
Linear PCP Strong LMIP @ Theorem 4.1.1
Isolated Homomorphic
(Lemma 4.4.3)
Packed ElGamal
(Lemma 4.5.7) (Lemma 4.6.5)
Linear PCP | —————>| Modded LPCP) Theorem 4.1.2

Bound-limited Homomorphic
(Lemma 4.4.6)

Packed ElGamal w/hash

Figure 4.1: Summary of our transformations.

2. Let k < H(c1g",...,cng®).
3. Output (co,v1 mod p,...,v, mod p, k).

o Dec(sk = (z1,...,24),cct = (¢, e1,...,eq,k)):
1. Let v} «+ DDL(c¢*?) for i € [q].

2. If H(c””lg”ll, .. .,c“g”é) # k output L.
3. Otherwise, output ((vj —e1) mod p,..., (v, —e,) mod p)

Observe that compressed ciphertexts have size 1 group element, one hash output, and g logp
bits, as opposed to 1 group element and glogp bits, which seems worse than our previous
scheme.

However, we show that the protocol above is bound-limited homomorphic, a notion which
enables the prover only slight non-linear power (see Section 4.4.1 for a formal definition).
Importantly, a bound-limited homomorphism is significantly more restrictive than isolated
homomorphism. Thus, we do not have to divert to strong linear PCPs, and can model these
attacks as a slightly modified version of linear PCPs (which we call modded linear PCPs).
We show that standard linear PCPs can be adapted to this modified model with small loss
in the query complexity. Known linear PCPs can have significantly better parameters than
strong linear MIPs, translating to a smaller number of queries q.

This allows us to construct a dv-SNARG with proof size 1 group element, one hash
output, and bits approaching 27 (Theorem 4.1.2). This is a significant improvement over
our previous dv-SNARG when in the high-soundness regime (e.g., when we think of 7 = 80
and the size of a group element and a hash being 256 bits each). See Figure 4.1 for an
overview of these transformations.

“Fishing in the dark.” We believe that our approach can be pushed towards an even
smaller SNARG. As previously demonstrated, the packed ElGamal scheme can be used to
homomorphically evaluate non-linear functions. However, the class of non-linear functions
described in our attack is quite limited. Recall that in the evaluation, the adversary forces
a synchronization error of DDL to get non-linear behavior, meaning that c;g®°-(¢) (which

66 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

is run on the adversary side) is different from cggDD"(Cg) (which the decryptor computes).
In the hash-verified approach, we added a hash to stop such behavior.

We conjecture that it is possible to “integrate” the hash check into the ciphertext, thus
making it hard for an adversary to maul the ciphertexts even without the additional cost of
the hash output:

e Compress(ct = (cg,c1,...,¢q)):
1. Let v; < DDL(¢;) for ¢ € [g].
2. Let k1, ..., kg < H(c1g™,...,cq9").
3. Output (co,v1 + k1 mod p,...,vy +k; mod p).
o Dec(sk = (z1,...,24),cct = (c,e1,...,€q)):
1. Let v} <~ DDL(c¢*?) for i € [q].
2. Let ky,...,k, + H(cwlgvi, ... 7cc”"g”;).
3. Otherwise, output ((v; —e; — k1) mod p,..., (v, — e, —ky) mod p)

While we are currently unable to prove this, intuitively, this scheme should still be secure
when combined with a linear PCP over Z,,. To see why, suppose that the decryptor’s outputs
of ¢¥ gPPL(€™) have high entropy from the perspective of the adversary. In this case, it cannot
query H(c™ g“1 s, CF1 g”it)7 and the decryption output will seem truly random. Thus, this
attack reduces to a random attack function, i.e., a random attack on the underlying PCP
(to which all natural linear PCPs are secure).

If, however, the values ¢ gPPHe™") have relatively low entropy from the perspective of the
adversary, then each possible input to the hash function H defines an affine function over Z,,.
Our linear PCP will then provide soundness against each of the affine functions individually.
However, we cannot afford a union bound over all such affine functions. We believe that our
scheme is secure since the prover does not have full control of these functions, as they are
partially defined using the hash function.

Thus, in this approach, in either case, the prover must “fishing in the dark” for a random
function with which to attack the scheme. If we are correct, then the resultant dv-SNARG
could have length that approaches 1 group element and 27 bits. This improvement would be
the first step towards proving Conjecture 4.1.3. We leave further analysis of this encryption
scheme when used to compile a SNARG for exciting future work.

4.3 Compressible Encryptions Schemes

Our constructions of designated-verifier SNARGs will utilize linearly homomorphic encryp-
tion schemes that have compressible ciphertexts. In this section, we define compressible
encryption schemes. In subsequent sections we give constructions of such schemes: in Sec-
tion 4.3.1 we describe the packed ElGamal encryption scheme, and in Section 4.3.2 we show
a variant on this scheme that additionally uses a hash function.

Definition 4.3.1 (Compressible linearly homomorphic encryption). A compressible
bounded linearly homomorphic encryption scheme in the generic group model with
bounded message space and compressed ciphertext size o is a tuple of algorithms
(KeyGen, Enc, Dec, Eval, Compress) that must satisfy the following properties:

e Syntax. We describe an encryption scheme with homomorphism modulus p’, n € N
slots, plaintext moduli py, ..., p,, decryption bound B, ciphertext size o, compressed
ciphertext size o, encryption, decryption, and eval running times tenc, tdec, teval- All
algorithms have access to a GGM oracle of size A.

4.3. COMPRESSIBLE ENCRYPTIONS SCHEMES

ct. This is done in time tenc(N).

KeyGen: Outputs a public key pk and a secret key sk.

message m € Zy, X -+ X Z, U{L}. This is done in time tgec(N).

Eval(pk, cty, . .

., Ctp,):

On input a public key pk, ciphertexts cty,..

67

Enc(pk,m): On input a public key pk and a message m € Z,, outputs a ciphertext
Dec(sk, cct): On input a secret key sk and a compressed ciphertext cct, output a

.,Cty and

a linear function m € Zj,, outputs a new ciphertext ct’. This is done in time
teval()\»£)~

pressed ciphertext cct with |cct| = 0.

e (Correctness. The encryption has correctness error e, if for every A\, € N, my, ...

n 4
Ly, and m € Zy,

Dec? (sk, cct) =
Pr i
(Zm (¢,))
> 1_— Ecor(A) -

> i€[n]

G + GGM(\) 7
(pk, sk) « KeyGen?
Vi € [t], ct; + EncY(pk, m;)
ct’ + Evalg(pk, cty,...,Cty, M)
cct +— Compress? (pk, ct’)
m, [4]

Vi € [n], (m,) € [-B, B]

m, [i]

We say that it is correct if ecor(A) = negl(A).

Compress(pk, ct): On input a public key pk and a ciphertext ct, outputs a com-

Jmte

e Semantic security. The encryption scheme has semantic security advantage egem for
t-query adversaries if for any A € N and adversary 4 that makes at most ¢ queries to
the GGM oracle:

Pr

<

DN | =

Vi, mo,i, M1,; € ZZ
Ab=1V

+ sem(A, 1, 0) .

((mj,l, N

G + GGM(N)

(pk, sk) « KeyGen?

M) jeq0,1}sSta) < A9(pk)
b+ {0,1}
g(pk7 mb,i)
., Ctyp, StA)

ct; + Enc
b« .Ag<Ctl7 ..

We say that it is semantically secure if for ¢, £ = poly(\) we have esem(A, ¢, £) = negl(A).

Remark 4.3.2. Construction 4.3.9 has an additional random oracle with output length A.

It is straightforward to add sampling of the random oracle into the notation above.

4.3.1 Packed ElGamal

We describe the packed ElGamal compressible encryption scheme:

Theorem 4.3.3. The packed ElGamal encryption scheme described in Construction 4.3.4
s compressible bounded linearly homomorphic with the following properties:

68 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Homomorphism modulus: p’, the size of the generic group,

Number of Slots: n,

Correctness error: 0,

Semantic security advantage: csem(\,t,0) = 4t%/27.

Plaintext moduli: p =p1 = ... = pn,

Ciphertext size: n+ 1 G-elements,

Compressed ciphertext size: 1 G-element and [nlogp] bits,
Encryption time: (4n 4 2)log A group operations,

Evaluation time for £ linear combination: £(2log A + 1)(n + 1) group operations,
Decryption time: n(8Bn + log \) group operations,

Expected compression time: 32Bn? + 2(n + 1)log A group operations.

Construction 4.3.4 (Packed ElGamal). We specify the encryption scheme, parameterized
by a message-space p, B,n € N and number of supported additions £. Let § = 1/2n and
number of GGM queries per DDL T' = 8Bn.

KeyGen? :
1. Let p’ be the order of the generic group G and g its generator.
2. For every i € [n], sample x; & Ly
3. Output pk = (¢**,...,¢"") and sk = (z1,...,2,).

EncY (pk, m) :

1. Parse pk = (hi,...,hy,) and m € Z,.

2. Sample r & Ly .

3. Output ct = (¢", h} - g™ ,... AT - g™n).
Dec? (sk, cct) :

1. Parse sk = (21,...,2,) and cct = (¢, eq,...,ey).
2. For every i € [n], let m; = (DDLp s(c™) —e;) mod p.
3. Output m = (my,...,my,).

Evalg(pk,ctl,...,ctt,w) :
1. Parse pk = (hy,...,h,) and ct; = (a;, b;).
2. Let @’ =af" -...-aj* and b} = by[j]™ - ... by[j]™ for j € [n].

3. Output ct’ = (a/,b,...,0)).

Compress? (pk, ct) :

1. Parse pk = (hi,...,h,) and ct = (a,b1,...,by).
2. Do in a loop:

e Sample r & Zyy uniformly at random.
e Compute a < a-¢", and b; < b; - hl for every i € [n].
3. Until for every i € [n] and j € [B, B] it holds that

DDLY, 5(bi - g7) + j = DDL, 5(bs).
4. Output cct = (a, DDL%’é(bl) mod p, ..., DDL%’é(bn) mod p).

Lemma 4.3.5. Construction 4.5.4 satisfies correctness and the running times are as de-
scribed in Theorem 4.3.3.

4.3. COMPRESSIBLE ENCRYPTIONS SCHEMES 69

Proof. Fix parameters \,p, B,n,t € N, messages m1,...,m; € Zy, and m € Zt We follow
the correctness experiment, keeping track of what each value is:

e Setup. Fix any (pk,sk) sampled by KeyGen. Then letting sk = (z1,...,z,), we have
pk=(g"*,...,9"").

e Encryption. For every i € [¢], and any randomness r; sampled during the encryption
of ct;, and m;, it holds that

ty = (g7 B g™ g gmilnl)
= (g", gerritmill],._.,grn~m+mm[n]) = (a;,b;) .
e Linear evaluation. Following the evaluation step, we have a ciphertext ct’ = (a’, b}, ...,b!))
where
a = Ha = giclg T
1€[¢]

and for every k € [n],

H b Tr, =g ze[é] i Ty T+ my k))

i€[f]
e Compression. The compressed ciphertext is cct = (¢, v1,...,v,), where for some
r € Zy we have
c=d g = gr+zi€[e] T

and for every k € [n],
o = DDL(b} - hj) = DDL (g o+ Xuee morwantmiomilil)
and we know that for all j € [—B, B] we have

DDL (grwﬁzid 7T'i‘7'11‘$k+7711'mi[k]) +]
—DDL (gr-xk+zz‘e[£] “i'Ti'IkJrﬂ’i'mi[k]*j)

=DDL (gr'f’ﬁ'zie[l] T T Tt e T [k]—j>

e Decryption. For every k € [n] the decryptor computes

(DDL(¢"*) —vg) mod p
Z(DDL (g(r+2iem Tfi~r7t)~mk)

— DDL (g’“”*zief”i'”“’ﬁziem ’”“mi[’f])) mod p

70 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Because ;¢ m - my[k] € [~ B, B] we get
(DDL (g(TJrZiem ”i'ri)'gﬂk)
— DDL (QT'IHZH’”'”'”*Ziewl ’”"mi[k])) mod p

(DL (gr s Sermoroes s Sic meom) 4§]

—DDL (g”’ﬁzia’”'”'”*Ziem ’”"“”[k])) mod p

Z ;- my k] mod p ,
1€[{]

which is the correct value.

What is left is to analyze the running times of the algorithms. For everything except
Compress this is trivial. By Lemma 2.6.6 we get that for every i € [n]

Pr[Vj € [-B,B]:DDLgs(b; - g77) = DDLps(b;) —j] >1 -0
Therefore, by union bound it follows that
Pr[Vj € [-B,B],i € [n] : DDLps(b; - g7) = DDLp s(b;) — j] > 1 —nd =1/2

Therefore, Compress runs the loop a constant number of times in expectation.
O

Remark 4.3.6. As described above the Compress runs in polynomial time with overwhelm-
ing probability. To turn it into strict poly time one can limit the number of times the loop is
run. Further, to drastically speed up compression one can leave out the loop entirely. Both
of these changes result in imperfect correctness.

Lemma 4.3.7. The encryption scheme described in Construction 4.3.4 satisfies statistical
semantic security for multiple ciphertexts in the generic group model against adversaries
with t queries with a statistical distance of 4t /p’ < 4t2/2*.

Proof. Follows from arguments almost identical to Claim 4.4.4. O

4.3.2 Packed ElGamal with Hash Check
We describe the packed ElGamal compressible encryption scheme extended with a hash:

Theorem 4.3.8. The packed ElGamal with hash check encryption scheme described in Con-
struction 4.3.9 is compressible bounded linearly homomorphic with the following properties:

Homomorphism modulus: p’, the size of the generic group,

Number of Slots: n,

Correctness error: 0,

Semantic security advantage: esem(\,t, X, 1) = 4t2/2* for big enough t.
Plaintext moduli: p1, ..., pn,

Ciphertext size: n+ 1 G-elements,

Compressed ciphertext size: 1 G-element, 1 H hash and [Zie[n] log p;]| bits,

4.3. COMPRESSIBLE ENCRYPTIONS SCHEMES 71

Encryption time: (4n + 2)log A group operations,

Evaluation time for £ linear combination: £(2log A + 1)(n + 1) group operations,
Decryption time: n(8Bn + log \) group operations and 1 H hash operation,

Expected compression time: 32Bn? + 2(n + 1)log A group operations and 1 H hash
operation.

Construction 4.3.9 (Packed ElGamal with hash check). We specify the encryption scheme,
parameterized by n,p1,...,pn, B € N and number of supported additions ¢. Let § = 1/2n,
number of GGM queries per DDL T'= 8Bn, and H be a random oracle with output size y.

KeyGen? :
1. Let p’ be the order of the generic group G and g its generator.
2. For every i € [n], sample x; & Ly .
3. Output pk = (¢*t,...,¢%") and sk = (21, ...,2,).
Encg(pk, m) :
1. Parse pk = (h1,...,hy) and m € Z7,.
2. Sample r & Ly .
3. Output ct = (¢", b} N N hy - g™,
Evalg(pk, cty,...,Ctp,) :
1. Parse pk = (hq1,...,hy) and ct; = (a;, b;).
2. Let a’ = aj' -...-a;" and b; = by'[j] - ... - by‘[j] for j € [n].
3. Output ct’ = (a’,b),...,b)).
Compressg(pk, ct) :
1. Parse pk = (hi,...,h,) and ct = (a,by,...,by).
2. Do in a loop:
e Sample r & Z, uniformly at random.
e Compute a < a-¢", and b; < b; - hl for every i € [n].
3. Until for every i € [n] and j € [~ B, B] it holds that

DDLY, 5(b; - g7) + j = DDLY, 5(by).

>~

. For i € [n] let e; < DDL%(;(bi)
. Let k < H(a,by - g%,...,b, - g°).
. Output cct = (a,e; mod p1,...,e, mod p,,k).

(o203

DecY (sk, cct) :

1. Parse sk = (z1,...,2,) and cct = (¢, eq,...,e,, k).
For every i € [n], let d; = DDL%’(;(C‘“).
If k # H(c,c® - g%, ..., c% - g%) output L.
For every i € [n], let m; = (d; — e;) mod p;.
Output m = (mq,...,my).

A S

Lemma 4.3.10. The encryption scheme described in Construction 4.3.9 is correct and
statistically semantically secure for multiple ciphertexts in the generic group model with a
loss of 4t /p’ < 4t%/2>. Moreover, the running times are as described in Theorem 4.3.8.

Proof. This follows from the exact same arguments as in Lemmas 4.3.5 and 4.3.7. O

72 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

4.4 Targeted Malleability

In this section we define malleability notions, and prove that our encryption schemes satisfy
these notions in the generic group model. In Section 4.4.1, we define the two notions that
we consider: isolated homomorphism, and bound-limited homomorphism. Then, in Sec-
tion 4.4.2, we show that the packed ElGamal encryption scheme satisfies isolated homomor-
phism, and in Section 4.4.3 we show that packed ElGamal with hash satisfies bound-limited
homomorphism.

4.4.1 Malleability Notions

We define two malleability notions for compressible encryption schemes. The first says that
no adversary can mix information between different slots of the messages:

Definition 4.4.1 (Isolated homomorphism). An n-slot compressible encryption scheme
(KeyGen, Enc, Dec, Eval, Compress) is isolated linearly homomorphic with distinguishing error
ginh = €(A,t,m) in the generic group model if there exists a poly time simulator S such that
for every plaintext generator 7 and oracle machine 4 that makes ¢ queries to the GGM
oracle, the following distributions have statistical distance at most gj,:

e Real world:

1. Sample G + GGM(A).

Let (pk,sk) KeyGen?.
(a1,...,am,str) < T(pk).

ct; + EncY(pk, a;) for all i € [m].
(cct,sty) « A9(pk,cty,...,Cty).
If Dec? (sk, cct) = L output L
(ay,...,al) « DecY(sk,cct)
Output (sty,sta,al,...,al).

i B

e Ideal world:

1. Sample G < GGM(A).

Let (pk,sk) < KeyGenY.

(a1,...,am,sty) < T(pk).

ct; < Enc(pk, a;) for all i € [m).

(cct,sty) < AY(pk,cty, ..., cty), where tr is the trace of queries A made to the
generic group oracle and the oracle’s responses.

(f1y--, fn) < S(tr,pk,cty, ..., cty, cct).

If Dec? (sk,cct) = L output L.

a; = fi(aifi],...,an,li]) for all i € [n].

Output (str,sta,al,...,al).

r'n

G D

© N>

We say that the encryption scheme is isolated homomorphic if ¢ = poly(A) we have
gin(A, m, t) = negl(A).

The second notion is a notion of bound-limited linear-only encryption, which says that
any adversary can only apply linear functions to an encrypted message. These linear func-
tions may be over a large field F,,, but their results need to be within a bounded range.
If they are within that range the decryptor learns the values but modded by some smaller
modulus p. This will later match our definition of modded linear PCPs (see Section 4.5.2).

4.4. TARGETED MALLEABILITY 73

Definition 4.4.2 (Bound-limited homomorphism). A compressible encryption scheme
(KeyGen, Enc, Dec, Eval, Compress) is B’-bounded limited homomorphic with n slots and mod-
uli p', (pi)ic) With distinguishing error emp = emp (A, £, m) in the generic group model if there
exists a poly time simulator & such that that for every plaintext generator 7 and oracle
machine A makes t to the GGM oracle the following distributions have statistical distance
at most eqp:

e Real world:

1. Sample G < GGM(]A).

Let (pk,sk) < KeyGenY.
(ag,...,a,,styr) < T(pk).

ct; + EncY(pk, a;) for all i € [m)].
(cct,stq) < A9(pk,cti, ..., cCty).
If Dec? (sk, cct) = L output L
(a},...,al) « DecY(sk, cct)
Output (str,sta,a},...,al,).

PN O

e Ideal world:
1. Sample G + GGM(A).

2. Let (pk,sk) < KeyGen.

3. (a1,...,am,str) < T(pk).

4. ct; + EncY(pk, a;) for all i € [m].

5. (cct,sty) < AY(pk,cty,...,cty), where tr is the trace of queries A made to the
generic group oracle and the oracle’s responses.

6. (IL € Zy},b1 € Zp,,...,b1 € Zp,) < S(tr,pk,cti, ..., Cty, cct).

7. 1f DecY (sk,cct) = L output L.

8. a; =Ly, (Zje[m] 1I; -aj[i]) + b; for all i € [n].

9. If there exists an ¢ such that o} ¢ [-B’, B'] output L.

10. Output (sty,sta,a},...,al).

As with the definition of compressible encryption schemes, here we also allow a random
oracle H which is sampled together with G in Item 1. We say that the encryption scheme is
bound-limited homomorphic if ¢ = poly(\) we have e (A, m,t) = negl(A).

4.4.2 Isolated Homomorphism of Packed ElGamal

In this section, we prove that the packed ElGamal encryption scheme is isolated homomor-
phic.

Lemma 4.4.3. Packed ElGamal is isolated homomorphic in the GGM with a distinguishing
error ein(\, t,m) = 4% /p’ < 4t /2> for t > Atpec + 1, where tpec is the number of queries the
decryption algorithm does.

Proof. Let p’ be the size of the GGM group. We design a simulator for the isolated homo-
morphism experiment:

1. In the beginning of the security game, the simulator receives the trace tr, public key
pk := (hj)jem], and ct; := (ct; o, (ctij)jen)) for @ € [m]. The simulator initializes an
empty table T and for ¢ € [m] and j € [n] adds the expressions

g—1, hj — .i‘j7 Ctjo — i, and ct; ; — 721:12‘] + él[j}

74

CHAPTER 4. DESIGNATED-VERIFIER SNARGS

to the table where Z;, 7;, and &;[j] are formal variables representing secret key, ran-
domness and messages respectively.

. The simulator goes through the trace tr first to last entry and does the following for

each entry:

Each entry has two input labels handles &; and &5, the simulator checks whether there
are mappings T from &; and &> to polynomials over formal variables ®; and ®5 in the
table, respectively. If & does not map to a polynomial in the table T and the existing
formal variables are (1) ;e[then the simulator generates a new formal variable i1
and adds the mapping &; — 141 into the table T. Now, & and & both have mappings
in T to polynomials over formal variables ®1, ®,.

The simulator computes the polynomial ®3 := ®; + ®5. The simulator looks at the
output label of the trace entry &. If the table T contains an entry & — ®% for some
polynomial ®% then the simulator outputs L if ®} # ®j.

. The simulator also has the adversary’s output cct := (ccto, (€})je[n). The simulator

checks whether T contains mappings ccty — D, where @ is a polynomial over formal
variables equivalent to Zie[m] ot + B for aq,...,am, B € Zy. If this is not the case,
then for each j € [n] the simulator samples a uniform label v; not used in T yet, and
outputs f1,..., f, functions that entirely ignore the input:

e fi(a1lj],...,an[j]): Output (DDL,(v;) —e;) mod q.

. If the simulator has reached this point it outputs the functions fi,..., f, defined

below. The functions have the labels for (cty))ie[m} hardcoded, which correspond to
the polynomials 7;Z; + a;[j]

L4 fj(al[j]a o 7am[jD:
(a) Let u; < >, a;a;[j].
(b) Compute a label v; for the polynomial over formal variables). o, (7, +
a.li)) + B, — ;.
(c) Output (DDL4(v;) —e;) mod gq.

We show the extracted function outputs the correct distribution if the output ciphertext
decrypts successfully with overwhelming probability. We prove this via hybrid argument.

Hybg: It is the same as the real distribution in Definition 4.4.1. In more detail:

1. In the beginning of the security game, for each j € [n] the experiment samples

x; & Zy . The experiment initializes an empty table T and adds the mapping
g — 1. For j € [n] the experiment checks whether there already exists a mapping
from to z;. If not the experiment samples a new distinct label h; and adds
h; — x; to the table T. It sets the public key pk := (h;);e[n and the secret key

sk := () jefn)-

2. Then the experiment samples the plaintexts and a state with the plaintext gener-
ator (ag,...,am,sty) < T(pk) and corresponding ciphertexts ct; «— Enc(pk, a;)
using the generic group for each i € [m]. More specifically, ct; + Enc(pk, a;)

samples r; ﬁ Zy uniformly at random and for the values r; and r;x; + a;[J]

4.4. TARGETED MALLEABILITY (0]

for j € [n] checks whether there already is a mapping in T if not it adds a ran-
dom label that is uniformly random from the label space £ and different from all
existing labels. Now, there are labels ct; 9 and ct; ; such that the mappings

Cti,O = Ty, and Ctiyj —> T + az[]]

are in the table T.

3. The experiment sends the public key pk and the ciphertexts cty, ..., ct,, to the
adversary A. When the adversary A uses its oracle access to the generic group
the experiment does the following:

When the adversary queries the generic group with the two handles &71,&> the
experiment checks whether there are mappings in the table T from & and & to
Zy elements ®q, ®, respectively. If for ¢ € {1,2} we have & does not map to a
Z, element in T then the experiment samples a new distinct Z, element u; and
adds the mapping &; — u; into the table T.

Now, & and & have mappings in T to Z, elements ®;, ®;. Compute @3 :=
®; + $y. If the table T contains an entry &3 — ®3 for some &3 the experiment
forwards &3 to the adversary A. Otherwise, there is no entry for ®3 in the table
T. The experiment then samples a new distinct label &5 from £ and adds an
entry &3 — ®3 to the table T and forwards &3 to the adversary A.

The adversary finally outputs a ciphertext cct, a state st4 and the trace of its
GGM queries tr.

4. The experiment sends the trace tr, the public key pk, the input ciphertexts
cty,...,cty,, and the output ciphertext cct to the simulator S. The simulator
outputs n functions (f;);em]-

5. Let (a})je(n) < Dec(sk,cct). The experiment outputs the states and messages

(str,sta,al,...,al). That is because for Packed ElGamal decryption algorithm

’'n

Dec never outputs L.

Hyb,: Same as Hyb, but keeps track of generic group queries with formal variables as in the
simulator S. More specifically, the experiment behaves in the following way:

1. In the beginning of the security game, the experiment samples distinct labels
9, (hj)jem) Er For j € [n] the experiment samples z; & Zy . The experiment
initializes an empty table T and adds the mappings g + 1 and h; — &, where
&; are formal variables. It sets the public key pk := (h;);c[n) and the secret key
sk = () je[n)-

2. Then the experiment samples the plaintexts and a state with the plaintext gener-
ator (ay,...,am,sty) < T(pk) and corresponding ciphertexts ct; «+— Enc(pk, a;)
using the generic group for each ¢ € [m]. More specifically, ct; + Enc(pk, a;)

samples r; ﬁ Z, uniformly at random and distinct labels ct; o and (cti,j)je[n]
that are uniformly random under the condition that they are not yet in T. The
experiment adds the mappings

Cti,O — f'i, and Ctiyj — 7%[%] + éli[‘]]

where j € [n] to the table T.

76 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

3. The experiment sends the public key pk and the ciphertexts cty, ..., ct,,. When
the adversary A also uses it oracle access to the generic group.
If the adversary queries the generic group with the two handles £;,&5 the ex-
periment checks whether there are mappings in the table T from &; and & to
polynomials over formal variables ®;, ®5 respectively. If for i € {1,2} we have
&; does not map to a polynomial over formal variables in T and the existing for-
mal variables are (i;);e[q then the experiment generates a new formal variable
w¢4+1 and adds the mapping &; — 141 into the table T. Further, the experiment
samples a new distinct Z,/ element ugy;.
Now, &; and & have mappings in T to polynomials over formal variables ®1, ®s.
Compute @3 := & + P5. If the table T contains an entry &3 — ®3 for some &3
the experiment forwards &3 to the adversary A. Otherwise, there is no entry for
®3 in the table T. The experiment then samples a new distinct label &5 from £
and adds an entry £3 — @3 to the table T and forwards £3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state st4 and the trace of its
GGM queries tr.

4. Then the experiment instantiates all the formal variables (%;);e(n), (7i)icim),
(a;[j]), and (;);epq by their respective Z, values (z;)jcm], (Ti)iepm]s (ailJ]),
and (u;);efg. Now T is a table that maps from labels to Z, elements. Continue
as in Hyb,.

Hyby: Same as Hyb; except that checking the well-formedness of the adversary’s output
cct := (ccto, (€})jen)) using the formal variables instead of the Z,, values. Instead of
the final step of Hyb; it does the following:

1. At the end of the simulation of the adversary A, it, among other things, outputs
a ciphertext cct := (ccto, (€})jen)). The experiment checks whether T contains
mappings cctg — Df, where ®f is a polynomial over formal variables equivalent
to Zie[m] a;7; + B for aq,...,qum, 8 € Zy. If this is not the case, for j € [n]
compute the experiment samples unused labels v; outputs the functions:

o fi(ai[jl],...,anlj]): Output (DDL,(v;) —e;) mod g.

2. Then the experiment instantiates all the formal variables (&;);epn), (7:)iepm,
(a;[j]), and (i;)iefq by their respective Z, values (2;)jem), (Ti)iepm), (ailJ]),
and (u;);ejg- Now T is a table that maps from labels to Z, elements.

3. The experiment outputs
(StTvst.Av fj(al[]-]a s 7am[1])7 BERE) fj(al[n]v s 7am[n])) . (41)

We argue Hyb, is identically distributed to the ideal distribution. This follows from the
decryption algorithm Dec(sk, cct := (ccto, (€;);je[m])) outputting DDL(cct;) — e; with j €
[n] and cct; being the label for the value ®q - z;, which exactly matches the simulator’s
output functions after instantiating (&;);epn); (7i)icim), (Aili])ieim),jem), and (@i)icg by
their corresponding values () je(n]; (74)iem]s (@il])ieim).jem] and (ui)icje. That is because

after instantiation
Z a; (725 + a;[j]) + Bz — Z ;a;]j
i

becomes

Z a;(rixy +agj]) + Bxj — Z a;a;[j ZOM%% + Bz — Z = o z;.
i

4.4. TARGETED MALLEABILITY 7

Therefore, f;(ai[j],...,an[j]) = @ and the distributions are the same.

Finally, we argue statistical distance of the hybrids for polynomial generic group queries.
Statistical distance between Hyb, and Hyb, is established in Claim 4.4.4 and the statistical
distance between Hyb; and Hyb, in Claim 4.4.5. The sum of these distances is < 4t?/p’ for
t > 4ipec + 1, where tpec is the number of queries the decryption algorithm does. O]

Claim 4.4.4. For any adversary A making ¢ many queries to the generic group oracle
Hyb,(A) has a statistical distance of 3t(t + 1)/p’ from Hyb, (A).

Proof. We show that the view of the adversary A is statistically close in the two hybrid if
it only makes polynomially many queries to the generic group oracle. We argue that the
public key pk, the ciphertexts cty,...,ct, and adversary’s queries to the generic group are
statistically close in Hyb, and Hyb;. We argue via a hybrid argument over each query to
the generic group. We start with Hyb, ; which is identically distributed to Hyb, and with
Hyb, ; the first s computed elements are as in Hyb; and all the rest are still as in Hyb,. We
then show that Hyb, ;_; and Hyb ; are statistically close. It suffices to consider the i-th
computed element: l

e The hybrids only differ in behavior if the label £ given to the adversary maps to
a polynomial over formal variables ® that has a non-zero linear term in (7);e[m]
(ij)ie(m],jefm)> or (ii)ie) monomials while ®((x;)jeln), (Ti)icpm]> (ailil)iem),jeln),
(ui)iepq) is already in the table T. This condition is equivalent to the condition
that there exists a constant ¢ € Z, in the table T such that ®((Z;);cn), (7i)icim),
(@[5 ieimy, jeln) ()ieig)—c # 0, but () jeln), (ri)icm)s (@ili])iem).jepms (wi)ieg)—
¢ = 0. We show this happens with negligible probability. In both, Hyb, ;_; and Hyb,
the first s — 1 elements are handled as in Hyb;. Therefore, these elements are indepen-
dent of (2;)e[n), (Ti)icim)> (@ilJ])icim],jein)> (Ui)iel- Fix an arbitrary constant ¢ € Z,
from the table T. We define a new polynomial

e ((d g) in]> (Ti)icim]» (i)icie)
=®((25)jen)s (Pi)icm)> (@ild])ie(m) jem), (Wi)iepg) —

Notice, that we instantiated (a;[j])icm],jein) by (Ailj])icim],jem)- In the polynomial
D((Z)jem)y (Po)iemm]s (@ild])iemm).jem), (4)iefg) we have monomial &;[j] always with
the same arity as the corresponding monomial 7;Z; for ¢ € [m],j € {0,1} because the
challenger initially only gives out labels for polynomials of the form 7;%; +4;[j] and the
oracles only allow the adversary to learn linear combinations. Therefore, if the polyno-
mial W, is the zero polynomial then so is ®(() jen], (7s)iem] (Aild])iciml,jem]s (Gi)ic) —
c.

Because V. is a polynomial of total degree 2 we derive by polynomial identity lemma
that

Pr[qlc((i'j)je[n]v (fi)iE[rn]? (al)zé[ﬂ) = 0] < 2/]9,

By union bound we get that
PI‘EC S Zp/ NT: \I/C((jfj)je[n], (’Fi)ie[m]a (ﬂi)ie[é]) = 0] < 2|T‘/p,.

Thus, with probability 2|T|/p’ for ® degree > 1 we have the value ®((x;)jen), (7i)icm]
(a;[j])1€[m] jelm)) is not in the table T. Therefore, Hyb, , ; and Hyb, ¢ have the same
behavior with probability 1 — 2|T|/p’.

78 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

If the number of queries to the generic group oracle is ¢ then Hyby , is identically
distributed to Hyb, and Hyb, , is identically distributed to Hyb,. Because every query
introduces at most 3 entries into T we get the statistical distance between Hyb, and
Hyb, is at most ;1 2(3¢)/p = 30(¢+1)/p".

O

Claim 4.4.5. For any adversary A making t 4 many queries and Dec making fpec queries
to the generic group oracle Hyb, (A) has a statistical distance of 3tpec(t.a4 + (tpec +1)/2)/p
from Hyb, (A).

Proof. The view of the adversary in Hyb; and Hyb, are identical, therefore, all that is
left to prove is that decryption of the output ciphertext is statistically close. Notice that
the adversary’s view is independent of (x;),cin), (7i)icim]> (AilJ])icim],jcm), and (us)ieqy,
therefore we can treat them as being sampled after the adversary outputs the ciphertext.
We analyze the following three scenarios:

e If the label in the output ciphertext ccty is not in the table T: Without loss of generality
this does not happen because one can always introduce a new formal variable g1,
where (1;);c[¢ are the variables that represent unknown elements, and add ccto +— 41
to the table T and this case reduces to the next one.

e The table T contains a mapping from the label of the output ciphertext cct :=
(ccto, (€])jefm)) to a polynomial ®f such that ©f # 3¢, ifi + 8 for ai,...ou, B €

Zp/ .

Now, we have that ®{ contains one of the following monomials: #;Z;, &, or (1)
for i € [m] and j € [n]. Therefore, the adversary interacted with the group oracle
involving the label ccty (either used is as input or received it as output) for @ -, with
t € [n] as it can only linearly combine 1, (Z;) cin), (7325 +a5[j])icim),jen) and () icqg-
Therefore, Hyb; and Hyb, only differ if in Hyb; the DDL(cct;) algorithm queries an
entry that has already been assigned to a value. We argue via a sequence of hybrids
that the probability of this happening is negligible. To prove this we use the property
that DDLg(cct;) only has access to g (the label for 1) and its input label cct;. We
start with Hyb, o which is identically distributed to Hyb; and then in Hyb, ; the first
i queries are handled with formal variables. We now show that Hyb, ;_; and Hyb, g
are statistically close. It suffices to consider the s-th computed element:

— The hybrids only differ in behavior if for some j € [n] a label ¢ that DDL(ccty’)
received from the generic group orale maps to a degree > 1 polynomial ® over
formal variables while ®((;);c(n), (Ti)icim], (@ilj])icim),jeln)s (Ui)ie) is already
in the table T. This condition is equivalent to the condition that there exists a
constant ¢ € Z, in the table T such that ®((Z;) e[n], (7i)icim] (Ail])icml,jem)s
(@i)ie) — ¢ # 0, but @((x;) e, (Ti)ieim), (@ild])iemm)jem)s (wi)ier) —c = 0.
We show this happens with negligible probability. In both, Hyb, ,_; and Hyb, ,
the first s — 1 elements are handled with formal variables.

Therefore, DDL(ccty) has only the adversary interacted with the group ora-
cle involving labels for linear combinations of 1, ®(- &, and formal variables
(Qite)ies—1)- So, the s-th query will be a linear combination of 1, & - 2y,
and formal variables (i;y¢)ie[s) (it might have introduced a new formal vari-
able). More precisely, this means that the query will output a label that maps
toa+ - - iy + Zie[s] Viliye for some o, B, € Ly . f f=vy1 = ... =7, =0

4.4. TARGETED MALLEABILITY 79

then the formal polynomial is not of degree > 1 meaning Hyb, ,_, and Hyb, , are
identically distributed.

Further, as they only depend on formal variables, these elements are independent

of (x5)jem]s (T4)iemm]s (@ild])icim),jem]> (Ui)icpe+s). Fix an arbitrary constant c €
Z, from the table T. We define a new polynomial

Ve i((Z5)jem> (Fi)icm)s (Gi)iciets])
=a+ B ((25) jen)s (Pi)icm)s (@i)iepers) (@il1])icm) jem)) - &t — c.

Notice, that we instantiated (a;[j])iem],jen) by (@ilj])icpm),jem)- The polynomial
(I)((ij)je[n]y (’Fl)ie[m]a (éi[j])ie[m],je[n]7 (ai)ie[é]) must at least contain one of the
following monomials:

(P2t)icim],j.ten] (T5%¢) e or (Ui %t)iclots],ten]-

Therefore, if the polynomial W, ; is the zero polynomial then so is ®((Z;);e[n]
(1) iem)s (@sli))iepm),jem)> (G)iejers) — c-

Because @ is an comes from an output of the adversary and the adversary only
knows polynomials of degree < 2 and can only compute linear combinations we
have ®f is also of degree < 2. It follows that ¥, , is < 3 degree polynomial. Then,
we derive by polynomial identity lemma that

Pr[qlc,t((xj)je[n], (Ti)ie[m]a (Uz')z'e[lz]) = O] < 3/]9/~

By union bound we get that
Pr(3c € Zy 0T : Wei((25)jem), (ri)iepm) (wi)iepg) = 0] < 3|T|/p".

Thus, with probability 3| T|/p’ for ® with degree > 1 we have the value ®((x;) je[n]
(74)ie[m)> (ailf])iem],jem)) is not in the table T. Therefore, Hyb, ;; and Hyb,
have the same behavior with probability 1 — 3|T|/p’.

We have Hyb, , is identically distributed to Hyb, . Let £4 be the number of generic
group oracle calls the adversary made and {pec. be the number of generic group
oracle call Dec makes.

Further, the statistical distance between Hyb, ; and Hyb, , s

> 3(ba+1)/p = 3lec(la + (fpec +1)/2)/p
ie[éDec]

because each query can introduce at most 3 terms.

Then Hyb, is identically distributed to Hyb, , = because as argued above the
adversary does not have access to the formal polynomial @ - Z¢, therefore, from
its perspective the corresponding label could also be chosen uniformly at random
from the labels the adversary has not seen yet.

e The table T contains a mapping from each label of the output ciphertext cct :=
(ccto, (€})jen)) to a polynomial @ such that & = Eie[m] ;7 + B for ay,...au,, B €
P’
Hyb; and Hyb, behave identically in that case.

80 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

4.4.3 Bound-Limited Homomorphism of Packed ElGamal with Hash
Check

In this section, we prove that Packed ElGamal with hash check has bound limited homo-
morphism.

Lemma 4.4.6. Packed ElGamal with hash check for has 8 Bn-bound-limited homomorphism
with distinguishability error emp(\,t,x,m) = 4t2/p' + 2t2/2%X < 6t2/2* for t > 4tpec + 1,
where tpec is the number of queries the decryption algorithm does.

Proof. For any adversary A and plaintext generator 7 in the bound-limited homomorphism
experiment we define an extractor Ext:

1. In the beginning of the security game, the extractor receives the trace tr, the public
key pk := (h1,h2), and ct; := (ct; o, (cti j)jem)) for i € [m]. The extractor initializes
an empty table T and for i € [m] and j € [n] adds the expressions

g—]., hj — i’j, Cti,O — f'i, and Cti’j — 727,1'] + EAli[‘]]

to the table where &;, #;, and Qi [7] are formal variables representing secret key, ran-
domness and messages respectively for ¢ € [m].

2. The simulator goes through the trace tr first to last entry and does the following for
each entry:

Each entry has two input labels handles &; and &, the simulator checks whether there
are mappings T from &; and &; to polynomials over formal variables ®; and ®5 in the
table, respectively. If & does not map to a polynomial in the table T and the existing
formal variables are (;);e[q then the simulator generates a new formal variable
and adds the mapping &; — ¢+ into the table T. Now, & and & both have mappings
in T to polynomials over formal variables @1, ®s.

The simulator computes the polynomial ®3 := ®; 4+ ®5. The simulator looks at the
output label of the trace entry &s. If the table T contains an entry & — @4 for some
polynomial @4 then the simulator outputs L if ®} # .

3. The simulator also has the adversary’s output cct := (ccto, (€;)je[n), k). The simulator
checks whether T contains mappings cctg — @, where ®{, is a polynomial over formal
variables equivalent to > ot + B for aq,...,am, B € Zy. If this is not the case,
the simulator outputs L.

i€[m]
4. For each j € [n] the simulator computes labels cct; corresponding to S&;+3 ;¢ () @ifiZ;.

5. For each j € [n] the simulator computes v; - DDL(cct;).

6. If the extractor has reached this point it outputs (II = (a1,...,qm),b = (v; — ¢€;
mod p)je[n))-

We show the simulated linear function outputs the correct value if the output ciphertext
decrypts successfully with all but negligible probability. We prove this via hybrid argument.

Hybg: It is the same as the real distribution in Definition 4.4.2. In more detail:

4.4. TARGETED MALLEABILITY 81

6.

. In the beginning of the security game, for each j € [n] the experiment samples

x; & Zy . The experiment initializes an empty table T and adds the mapping
g — 1. For j € [n] the experiment checks whether there already exists a mapping
from to z;. If not the experiment samples a new distinct label h; and adds
h; + x; to the table T. It sets the public key pk := (h;) e[and the secret key

sk := () jefn]-

. Then the experiment samples the plaintexts and a state from the plaintext gener-

ator (ap,...,am,sty) < T(pk) and corresponding ciphertexts ct; <= Enc(pk, a;)
using the generic group for each ¢ € [m]. More specifically, ct; < Enc(pk, a;)

samples r; i Z, uniformly at random and for the values r; and r;x; + a;[j]
for j € [n] checks whether there already is a mapping in T if not it adds a ran-
dom label that is uniformly random from the label space £ and different from all
existing labels. Now, there are labels ct; o and ct; ; such that the mappings

cty o — 7, and ctyj —= 1T + az[j]

are in the table T.

The experiment sends the public key pk and the input ciphertexts cty,...,ct,,
to the adversary A. When the adversary A uses its oracle access to the generic
group the experiment does the following:

When the adversary queries the generic group with the two handles &1, &> the
experiment checks whether there are mappings in the table T from & and & to
Z,y elements ®q, O, respectively. If for ¢ € {1,2} we have & does not map to a
Z, element in T then the experiment samples a new distinct Z, element u; and
adds the mapping &; — wu; into the table T.

Now, & and & have mappings in T to Z, elements ®;, ®;. Compute ®3 :=
®; + &,. If the table T contains an entry &3 — ®3 for some £3 the experiment
forwards &3 to the adversary A. Otherwise, there is no entry for ®5 in the table
T. The experiment then samples a new distinct label 5 from £ and adds an
entry &3 — ®3 to the table T and forwards &3 to the adversary A.

The adversary finally outputs a ciphertext cct, a state st4 and the trace of its
GGM queries tr.

. The experiment sends the trace tr, the public key pk, the input ciphertexts

cty,...,ct,, and the output ciphertext cct to the simulator S. The simulator
outputs I and b.

If Dec(sk,cct) = L the experiment outputs L. More specifically Dec(sk, cct :=
(ccto, (€})jein)s k")) checks if

k = H(co, (¢’ - gPPH0")) s)

If this is not the case the experiment outputs L.

Let (a})jepn) < Dec(sk, cct). The experiment outputs (str,sta,ay,...,ay,).

n

Hyb,: Same as Hyb, but keeps track of generic group queries with formal variables as in the
simulator §. More specifically, the experiment behaves in the following way:

1.

In the beginning of the security game, the experiment samples distinct labels

9, (hj)jem Er For j € [n] the experiment samples z; & Z, . The experiment

82

CHAPTER 4. DESIGNATED-VERIFIER SNARGS

initializes an empty table T and adds the mappings g — 1 and h; — I; where
&; are formal variables. It sets the public key pk := (h;);e[n) and the secret key

sk = () jefn)-

. Then the experiment samples the plaintexts and a state from the plaintext gener-

ator (ai,...,am,sty) < T (pk) and corresponding ciphertexts ct; < Enc(pk, a;)
using the generic group for each ¢ € [m]. More specifically, ct; + Enc(pk, a;)

samples r; & Zy uniformly at random and distinct labels ct; o and (ct; ;) e[n]
that are uniformly random under the condition that they are not yet in T. The
experiment adds the mappings

ctyo — i, and cty; — f’lfj + él[j]

where j € [n] to the table T.

. The experiment sends the public key pk and the input ciphertexts cty,...,ct,,.

When the adversary A also uses it oracle access to the generic group.

If the adversary queries the generic group with the two handles £;,&; the ex-
periment checks whether there are mappings in the table T from &; and & to
polynomials over formal variables ®;, ®5 respectively. If for i € {1,2} we have
&; does not map to a polynomial over formal variables in T and the existing for-
mal variables are (i) e[then the experiment generates a new formal variable
tg4+1 and adds the mapping &; +—> gy into the table T. Further, the experiment
samples a new distinct Z, element up4 ;.

Now, &; and & have mappings in T to polynomials over formal variables ®1, ®s.
Compute @3 := &7 + 5. If the table T contains an entry &3 — ®3 for some &3
the experiment forwards &3 to the adversary A. Otherwise, there is no entry for
®3 in the table T. The experiment then samples a new distinct label &5 from £
and adds an entry £3 — @3 to the table T and forwards £3 to the adversary A.
The adversary finally outputs a ciphertext cct, a state st4 and the trace of its
GGM queries tr.

. Then the experiment instantiates all the formal variables (&;);epn), (7)iepm,

(a;[j]), and (;)iefg by their respective Z, values (z;)jem), (Ti)iem), (ailJ]),
and (u;);efg. Now T is a table that maps from labels to Z, elements. Continue
as in Hyb,.

Hyb,: Same as Hyb; but instead of the last step the experiment does the following:

1. For the ciphertext cct := (ccto, (€;);e[n), k) if there is no mapping ccty — ®g in

the table T such that ®f = Zie[m] oty + B for aq, ... oum, B € Zy the experiment
samples n uniform unused labels (cct;) e

2. If H(ccto, (cct; - gDDL(CCti))je[n]) # k the experiment outputs L.

3. Otherwise, the experiment instantiates all formal variables (2;);cin), (7)igim),

(ai[j])iciml,jemn)s and (@;);cq in T by their respective values (2;) en], (7i)icim)
(ailj])icpmy,jem)s and (uq)iefg. Now T is a table that maps from labels to Z,
elements.

. The experiment computes (a’;);jcm) < Dec(sk,cct). The experiment outputs

(St7—7StA,a/1, .. .,a;).

Hybs: Same as Hyb, but instead of creating dummy variables if there is no mapping cctg +—

(), we simply output L.

4.4. TARGETED MALLEABILITY 83

1. For the ciphertext cct := (ccto, (€;);en], k) if there is no mapping ccty — ®f in
the table T such that ®f, = Zie[m] oty + B for ai, ... oy, B € Zy the experiment
outputs L.

2. If H(ccto, (cct; - gDDL(CCti))jE[n]) # k the experiment outputs L.

3. Otherwise, the experiment instantiates all formal variables (;);cn), (74)iepm,
(a;[j Dze[m] jemn)» and (1;);ep in T by their respective values () eqn, (74)ie[m,
(ai[j])icim],jemn)> and (u;)icrg.- Now T is a table that maps from labels to Z,
elements.

4. The experiment computes (a’);jcn) ¢ Dec(sk,cct). The experiment outputs

(St'7*,StA7(L/17 .. ,a'n).

Hyb,: Same as Hyb; but instead of the final step the experiment now does the following:

1. For a j € [n], with cct; being the label in T for 82 + 3¢ (,,,) i (725 +&;[j]), and
cct} being the label for 8 + 37;c(,) i(7id; + &;[j] — as[j]) if

i€[m]

CCt; . gDDL(cct;) ?é cct; .gDDL(cctj).

the experiment outputs L.

2. Otherwise, the experiment instantiates all formal variables (Z;);c[n], (7i)icm),
(a;[y Dze[m] jeln)» and (@;);epg in T by their respective values () ein), (74)ie[m),
(ai[j])icim],jem)> and (u;)icrg. Now T is a table that maps from labels to Z,
elements.

3. The experiment computes (a’)jcn) ¢ Dec(sk,cct). The experiment outputs
(StT,StA,all,. .. ,a;m).

We argue that in Hyb, the adversaries winning probability is 0. First, note that if for all
j € [n] we have cct} - gPPH(t) = cct; - gPPLHEY) then Y icpm) @idilj] € [~8Bn,8Bn| by
contrapositon of Lemma 2.6.6 because DDL does 8 Bn queries.

Then, we argue that decryption outputs exactly what the extractor outputs. cct] is a
label for Bjj"’Zze[m] o (Pidj+a;[j]—ai[j]). After instantiating (7;)ie(m), &;, and (&])ie[m]
by their values (r;)ie(m], %, and (a;[j])ie[m) this exactly corresponds to 3, c(,, ciriz; + fz;.
Therefore, Dec computes DDL(cct?) and outputs

(DDL(cct;) —ej) mod p = (DDL(cct;) Z a;a;[j] —e;) mod p.

This is exactly what the experiment outputs in the ideal world because DDL(cct}) and e;
are much smaller than the cryptographic group.

Finally, we argue statistical distance of the hybrids for polynomial generic group queries.
Statistical distance between Hyb, and Hyb, is established using the exact same arguments
as Claim 4.4.4 and the statistical distance between Hyb, and Hyb, is established using the
exact same arguments as Claim 4.4.5. The statistical distance between Hyb, and Hyb,
is established in Claims 4.4.7 and 4.4.8. The sum of these distances is < (¢ + 1)?/p’ for
t > 4tpec + 1, where tpec is the number of queries the decryption algorithm does. O

Claim 4.4.7. For any adversary A we have Hyb,(.A) and Hyb;(.A) are at statistical distance
27X,

Proof. Follows from H being a universal hash function with a codomain of {0, 1}X. O

84 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Claim 4.4.8. For any adversary A with ¢ queries to the ROM we have Hyb;(A) are at
statistical distance of 2 /2X to Hyb,(A).

Proof. We prove that checking equality between

(cety - g°PHE)) ey and (et - g7 jepmy

is statistically close close to checking the equality of their hashes. This follows from col-
lision resistance of H. More precisely, if (cct; -gDDL(CCtﬂ'))jE[n] # (cct} -gDDL(CCt;))je[n] but
H((cct; ~gDDL(C°tj))je[n]) = H((cct] ~gDDL(°°t;))je[n}) the adversary found a collision in the
hash function. If H is modeled with the random oracle then the collision resistance is with
probability ¢(¢ 4 1)/2X*1. O

4.5 Constructing Linear PCPs and MIPs

In this section, we show how to adapt known linear PCPs into the information-theoretic
objects underlying our dv-SNARG constructions. In Section 4.5.1 we show how to transform
2-query linear PCPs into 3-prover strong linear MIPs, and in Section 4.5.2, we show that
linear PCPs can be transformed into modded bounded LPCPs.

4.5.1 Linear PCPs to Strong Linear MIPs

[IKOO07] show that linear PCPs can be transformed into strong linear MIPs. However, their
transformation garners a large loss in soundness error, and so requires many repetitions to
achieve specific soundness errors. We give an alternate transformation for LPCPs with 2
queries which is more efficient in practice:

Lemma 4.5.1. Let R be a relation with a smooth LPCP over F, with length ¢, query
complezity 2, and knowledge soundness k against affine strategies. There exists a strong

LMIP for R over F, with length £, query complexity 3, and strong knowledge soundness
% + ﬁ, If the LPCP is input-oblivious, then so is the strong LMIP. If the LPCP is

B-bounded with error o, then the strong LMIP is (B + 4p\V/I\)-bounded with error v+ 2.

Proof. We begin by showing that an LPCP can be made smooth with the addition of a
single query:

Claim 4.5.2. Let R be a relation with an LPCP over F,, with length ¢, query complexity
g, and knowledge error x against affine strategies. Then R has a smooth LPCP over I,
with length ¢, query complexity ¢+ 1, and knowledge error x against affine strategies. If the
LPCP is input-oblivious, then so is the smooth LPCP. If the LPCP is B-bounded with error
a, then for every A € N, the smooth LPCP is (B + p2\/€7)\)—bounded with error o 4 272,

Proof. Let (P, (Vqy, Vp)) be the linear PCP for R. We give a smooth linear PCP (P, (VJ}, V}}))
for R:

o P/(z,w): Output m + P(z,w).
o V)(2):

1. Sample (st,ai,...,a,) < Vy(x) and aj &]Ff,.

2. Output (st,ag,al, ..., a;) where a; = a; + a,.

4.5. CONSTRUCTING LINEAR PCPS AND MIPS 85

o V)(st,z,bp,...,b;): Output b < Vi(st,z,by,...,b,) where b; = b} — b

The linear PCP (P, (V/,,V})) is smooth: a{, is uniform over F*, and so a} = a; + aj is
1-wise uniform over Ff’,. Observe that for every affine prover strategy = € Ff; and cg,...,cq €
Fp:

bi = b; 71)6 = <7r,ai +a6> +c; — <7T,&6> — Co = <7r,ai> +c¢—co .

Hence we can translate any prover strategy , co, . . ., ¢q in the new protocol to a prover strat-
egy T, (c1 — o), - - -, (cqg — co) in the original proof. Moreover, any set of queries (ay, ... ,a)
in the new scheme can be translated into (ai,...,a,), where the distribution of a random
set of these queries is the identical to the original protocol. Completeness and knowledge
soundness follow immediately from this fact.

To see that the smooth LMIP is 2B-bounded, notice that

(Z(r), Z(&}))| = [(Z(m), Z(a; + ap))| < [(Z(x), Z(ai))| + (Z(7), Zag))]

Since the PCP is bounded, |{Z(r),Z(a)>| > B with probability at most «. By Hoeffding’s
inequality, since (Z(r),Z(ay)) € [—£ - p?, £ - p?] for every t > 0 we have

2
Pll(z(r). 2] >] < 2-exp (-5)

Setting t = p?V/\, we get that we have that |(Z(r),Z(a})))| > p*V¢X with probability at
most 27221 < 272 Thus, |(Z(7), Z(a%))| > B+p*Vl\ with probability at most a+27*. O

Given Claim 4.5.2, we can safely assume that our linear PCP is smooth with 3 queries.
We use this to construct a 3-query strong LMIP. Let (P, (V,,Vys)) be the smooth LPCP.
We design a 3-query strong LMIP (P’, (V/,V])):

o P/(z,w): Output 7 < P(z,w).

o V) (x): Sample b < {0,1} from the Bernoulli distribution where 0 is sampled with

probability 8 = ﬁ. Then, do the following:

1. If b = 0: Sample (st,aj,as,a3) < Vp(z). Output (st’,a],al,a)) where st’ =
(b,st) and a] = a;.

2. If b=1: Sample z1, 2> & B¢ and set z3 = 21 + z2. Output (st’,al, aj, aj) where
st = (b, L) and a} = z,.

o V/(st/,x, b, b, bs): Parse st’ = (b,st), and

1. If b = 0: Output 1 if and only if Vj(st, x, b}, b5, b)) =
2. If b=1: Output 1 if and only if b} + b} = b}.

Completeness holds by perfect completeness of the smooth linear PCP in the case of b =0
and by linearity of the honest prover strategy in the case of b = 1. We now prove knowledge
soundness. Let Ext be the extractor for the LPCP. We construct an extractor Ext’ as follows:

1. On input = and given oracle access to functions f1, fs, f3: Ff; — Fp.

2. For every ¢ € [3] extract from f; an affine function m;, ¢; by doing standard local
correction of affine functions for distance at most 2/9 (note this can be done in time
poly(¢) with constant probability).

3. If m; # m; for some 1, j, then repeat the above.

86 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

4. Otherwise, output w + Ext(z, 7,1, c2, ¢3).

Fix x and functions fi,..., f3 so that V' accepts x when given access to fi, fo, f3 with
probability & > g + ﬁ. It is clear that if f1, fo, f3 are 2/9-close to affine shifts
(c1, ¢, c3) of the same linear function 7, where (7, (c1, ¢2,¢3)) causes V to accept on x with
probability greater than x, then Ext’ runs in expected polynomial time and outputs w so
that (z,w) € R. We therefore show that this holds.

Observe that:

Pr |V} (st 2, by, b5,b5) = 1| (st a},ah,a%) « V)(z)

v, = fi(aj)

= B-Pr |V, (st,x,b],05,05) = 1| (st,a;, az,a3) « Vy(z)
b; = fi(ai)

8 me
+(1—B) Pr | + 0y =by| 2022 <
Z3 = 71 + 23

b; = fi(zi)

We first show that due to the linearity check, there must be linear-consistent functions that
are 2/9-close to f1, f2, f3. Note that linear-consistent functions is simply a specific case of a
linear function with affine shifts.

Claim 4.5.3. There exist linear-consistent functions g1, g2, g3: F* — F, so that for every
€ [3}, 0; = A(fz,gz) < 2/9

Proof. Suppose that there are no linear-consistent functions g1, go, g3: Ff, — IF), so that for
every i € [3], §; = A(fi,9:) < 2/9. In this case, by Theorem 2.3.9,

/ /1l Z1Z2(§]FIZ
Pr |V} 4 b, = by | 20 <7/9 .
Z3 = 71 + Z3

b; = fi(z)

Therefore,

7
Pr |V} (st’,z, b, b5, 05) = 1| (st’,a),ah,ay) « Vi(z) | <+ 9 (1-08) <k,
b; = fi(aj)
which contradicts our assumption that V' accepts z when given access to fi, f2, f3 with
probability «'. O

Let m € IFf), and ¢y, ca,c3 € F be so that g;(a) = (m,a) + ¢; and ¢; + ¢ = ¢3. We now
show that these linear-consistent functions describe shifts of a linear function that cause V
to accept with probability greater than k:

. - (styag,...,aq) < Vo(x)
Claim 4.5.4. Pr |V, (st,z,b1,...,by) =1 Vi € [q], bs = (m,a5) + s

4.5. CONSTRUCTING LINEAR PCPS AND MIPS 87

Proof. Suppose towards contradiction that the claim did not hold. Since each query a; is
smooth, b; = f;(a;) = (7, a;) + ¢; with probability at least 1 — §; > 7/9. Thus,

Pr | Vy, (st,z, by, b5,b5) = 1| (st,a;,as,a3) « Vy(x)

b = fi(ai)

+ Pr |V (st,z, b, b5, b5) = 1| (st,a,as,a3) «+ Vo(x) | -
bi:<7r7al->+cl- 3

(1—4:)

3
=1

3 3

<t -[Ja-d)+x-JJ0-0)

i=1 =1

3
gl—(;) + K.

Thus, the probability that the verifier accepts is at most

Pr |V, (st', z, by, by, by) = 1| (st',], a5, a3) = Vi (x)
b; = Pi(ai)

7 3
<5.<1—<9) +/~c>+1—5</4.

Claim 4.5.5. The strong LMIP is (B + 4p*v/¢))-bounded with error o + 27>,

Proof. We consider each choice of b € {0,1}.
e If b = 0, then the smooth linear LPCP is (B + p?v/¢))-bounded with error a + 277

e If b =1, then two of the queries are uniformly random over F and the last is the sum
of the two. That is, for the first and second queries, (Z(7),Z(a;)) is uniform over
[—¢-p?,¢-p?]. By the Hoeffding inequality, for every ¢ > 0 and i € {1,2},

t2
PrE(), 2la)| > 1] < 20 (57—
For the final query, we have
(Z(7), Z(ag))| = (Z(7), Z(ay + a2))| < [(Z(r),a1) + (Z(), a2))|
and so when each of the queries above is within ¢, the final query is within bound

2t. Taking a union bound, with probability 1 — 4 exp (7%), all of the queries are
within bound 2t.

By choosing t = 4p - V{\ we get that all of the queries are within a range of [—4pV/{A,
4p\/€\] with probability at least 1 — 277

Putting both of these together, we have that all of the queries are within bound B + 4p?v/¢A
with probability at least 1 — o — 272, O

O

88 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

4.5.2 Modded LPCPs

We define modded linear PCPs, and show that any standard linear PCP can be transformed
into a modded one. Modded LPCPs are linear PCPs where each query needs to be within
a certain bound (over a large field) and, if it is within this bound, then the verifier receives
the query answer after being modded.

Definition 4.5.6. A (bounded) modded linear PCP (mod-LPCP) (P, (V,,V})) for a rela-
tion R = {(x,w)} S is defined as follows:

o Syntaz. We describe a mod-LPCP with input length n, proof length ¢, a big field size
P, query complexity ¢, small field sizes p1,...,pq € N, and a bound B’, B € N with
B > B:

— The verifier query algorithm V,, receives as input = € F". It outputs a state
st € {0,1}*, and ¢ queries ay,...,a, €]Ff;,.

— The (honest) prover algorithm P receives an input » € F” and witness w € F".
It outputs a proof & € Fﬁ,.

— The verifier decision algorithm V}, receives as input a state st € {0, 1}*, an input
x € F", and query answers by € Fp,,...,b, € F, . It outputs a bit b € {0,1}.

e Perfect completeness. A mod-LPCP has perfect completeness if for all (z,w) € R:

7w+ Pz, w)

Vi € [q],d; € [-B, B| (st,ag,... aq)<—VQ()
Vo (styz,b1,...,by) =1 Vi € [q], d; = (7, a;)
Vi € [q], b _Zpl(3)

Pr =1.

e Soundness. A mod-LPCP has soundness error ¢ if for every z ¢ L, 7 € Ff),, and
c1 €Fp,.. cq €Ty,

(st,ap,...,aq) < Vo(x)
Vi€ [q]a di:<ﬂ-aai> S(S .

Vi € [q],d; € [-B', B']

Pr V, (st,z,by,...,by) =1

o Knowledge. A mod-LPCP satisfies knowledge soundness « if there exists a PPT extrac-

tor Ext such that for every instance x, proof m € Ff;,, and shifts c; € Fy,,,..., ¢, €Fp,
if,
) I (styay,...,aq) < Vo(x)
Pr Vi€ lal,d; € [-5', B] Vielq), di = {(ma;) | >k,

Vo (st,x,bl,...,bq) =1

then (z, Ext(z, 7, c1,...,¢q)) € R.
We say that a mod-LPCP is instance-independent if V,(z) is a function only of |z|, in
which case we specify its input by 1/*! (i.e., the verifier query algorithm is V,,(11*1)).
We show that linear PCPs can be transformed into mod-LPCP:

Lemma 4.5.7. Let R be a relation with a LPCP over F), with soundness error § query
complezity q and proof length £, and let p’ > p be a parameter so that 524 > 2B'. Then R
has a mod-LPCP over moduli p’ and p with soundness error §, g+[— log 5] quemes and proof
length . The mod-LPCP moduli are p; = p fori € [q] andp; = 1 fori € [q+1,q+[—logd]].

If the LPCP is instance-oblivious, then so is the mod-LPCP. If the LPCP is B-bounded
with error «, then the mod-LPCP is max{B,2/pl\}-bounded with error o+ 2~ *[log1/5].

4.5. CONSTRUCTING LINEAR PCPS AND MIPS 89

Remark 4.5.8. Notice that in the resultant mod-LPCP of Lemma 4.5.7, the last [—log{]
queries have a modulus of 1. Therefore, V,, always receives 0 at those positions. They help
only with soundness because of the bounds check but do not communicate any information
to the verifier.

Proof. Let ¢’ = ¢+ [—1logd] and let (P, (Vg, Vp)) be the original LPCP. We define a mod-
LPCP (P, (V,,V},)) im the following construction:

o P'(z,w):

1. Let 7 + P(x,w) € Ff,.
2. Output ' = Zy/ (m) € Ff;,.

° Vé(l‘):

1. Let (st,aq,...,a,) + Vo(z).

2. We define a distribution D whose image is {—1,0, 1} which outputs:
— —1 with probability 1/4;
— 1 with probability 1/4;
— 0 with probability 1/2.

3. For i € [[—1logd]] sample a,; < D*.

4. Output queries (a})icg] = (Zp (as))ic[q-

o V/(st,x,by,..., bq/):
1. Output b < Vp(st,z,b1,...,b,). (Note that the verifier ignores b; for i > ¢.)

Completeness follows by the construction, we prove soundness and later explain knowledge
soundness. To prove soundness we distinguish two cases:

o If for every j € [], we have |7[j]| < 2?—};_[In this case, for all i € [¢], the magnitude of

(m,a;) when computations are done over the integers (rather than p’) is small:

(Z(m), Z(a))| = | D Z(xlj]) - Z(@ili])| < D 1Z(x[i])] - |Z(ail))]
jeld jeld

p /
p=9p/2 .
B SR

jeld

The above holds by triangle inequality. Since over the integers, the inner product is
smaller than p’, there is no wrap-around when computing over the integers versus over
Zy . Thus,

Zy((m,a))) = Zp((Z(), Z(2})) = Zyp | D Z(xlj]) - Z(a}[j])

JE[¢]

= > Zy(rlj)) - Zp(@li]) = (Zp(m), Zy(a)) = (Zy(r), ;)

JEl
Therefore,

Vi(st,x, Zy({m,a})) + c1,..., Zp({m,a5,)) + cgr)
=Vp(st,z,(Zy(m),a1) + c1,. .., (Zp(W),a4) + ¢4) -

90

CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Thus, this case reduces to LPCP soundness of (P, (V,,V},)) against the linear proof
(Zp(m),c1,- -, Cq)-

If there exists j € [¢] such that |7[j]| > 2.”—;.@. Fix this j for the remainder of the
proof. For the rest of the analysis we relax the malicious prover’s winning condition:
the prover wins if for every ¢ € [¢ + 1,¢'] it holds that (m, a;) € [-B’, B']. Since we
have removed restrictions from the probability that we need to bound, this can only
increase the probability. Thus by bounding this probability, we bound the probability
that the results are within range and the verifier accepts.

Fix an arbitrary ¢ € [¢+1,¢']. We analyze the probability that (7, a;) € [-B’, B’]. By
opening up the definition,

(moa;) =xlj]-alil+ Y, wl]-ali].
SN
We show that for every s € F,, we show that
Pr [(n[j] - alj] +si) € [-B, B]] < 1/2 .

a;[j]«D

Fix s € F,, and recall that |7[j]| > %;e > 2B’ and that a;[j] is chosen from D. Then,

— If |s| < B’ then |n[j] -1+ s| > B’ and |r[j] - —1 + s| > B’. Since a;[j] € {-1,1}
with probability 1/2, we have that |7[j] - a;[j] + s| > B’ with probability 1/2.
— If |s| > B’, then |r[j] - 0+ s| > B’. Since a;[j] = 0 with probability 1/2, we have
that |7[j] - a;[j] + s| > B’ with probability 1/2.
Thus, we have that

Pr [(m,a;) € [-B',B']]

a;+D¢
vi' e [\ {jtailj] < D
=Pr | (nlj]-a;lj] + 5) € [-B, B]| s = Zjepq\ 5y 7l -aili’l | <1/2

Finally, since the queries a41,...,a4 are all chosen independently,

Pr[Vi € [¢], (m,a;) € [-B',B']]| < Pr[Vi € [¢ + 1,¢], (m,a;) € [-B', B]]
S 27[7 logtﬂ
< 4.

Remark 4.5.9. If (P,(V,,V5)) has knowledge soundness § then (P’,(V/),V})) also has
knowledge soundness 8. This follows by the exact same argument as above using the same
extractor as the original LPCP.

Claim 4.5.10. The mod-PCP is max{B, 2y/pfA}-bounded with an error of a+2~*[log 1/4].

Proof. The first ¢ queries are B-bounded with error a by assumption. Each for a;, each
entry a;[j] is bounded within [—1, 1] and has expectation 0. Thus, [(Z(7),Z(a;))| < p-¢ and
has an expectation of 0. By Hoeffding’s inequality,

2
Pll(z(). 2] > 1 <2-exp (-5)

4.6. DV-SNARGS FROM COMPRESSIBLE ENCRYPTION 91

Since there are [log1/d] such queries, the probability that there exists a value that is out-
of-bound ¢ is at most [log1/d]-2-exp (—QJT:Q)‘ Setting t = 24/plA, we get that all of these

are within bounds with probability at least 1 — 2 *[log 1/4].
Thus, all together, we get the bound max{B, 2\/pfA} with an error of a +2~*[log 1/4].
O

O

4.6 Dv-SNARGs from Compressible Encryption

In this section, we show how to construct SNARGs (in fact, SNARKS) by combining com-
pressible encryption schemes with suitable information-theoretic protocols. In Section 4.6.1,
we show this from isolated homomorphism (Definition 4.4.1) and strong MIPs, and in Sec-
tion 4.6.2, we show this from bound-limited homomorphism (Definition 4.4.2) and modded
LPCPs.

We state here the dv-SNARKSs resultant as corollaries from our proofs and transforma-
tions.

e Derived by combining Lemma 4.6.3 with the packed ElGamal encryption scheme and
a strong linear MIP and making enough repetitions:

Corollary 4.6.1 (Dv-SNARKs from packed ElGamal). Let C: Fj x F!! — F, be
an arithmetic circuit of size s. For every A\,7 € N there are dv-SNARKs for Rc =
{(z,w) e F" x F" | C(z,w) = 1} in the GGM with of group size 2* with completeness
error negl(\), and the following parameters:

(Linear CRS.) Using the LMIP of Corollary 2.3.6:

— Message length: 1G element and O(7) bits;
— Knowledge soundness: 277 + 8t2/2* against t-query adversaries;
— CRS length: O(t - (s + poly(p))) G elements;
— Setup time: O(1 - (s + poly(p)));
— Prover expected runtime: O(AsT2poly(p));
— Verifier runtime: O(AsT2p?).
(Concrete efficiency.) Using the LMIP derived by combining the LPCP from The-
orem 2.3.4 and the transform from Lemma 4.5.1:

— Message length: 1G element and [37log, p| bits;

— Knowledge soundness: (g + 5052‘%’145’8)7 +8t2/2* against t-query adversaries;

— CRS length: (31 +1)- (s> + 5) G elements;
— Setup time: O(1s%); ~
— Prover expected runtime: O(As*12p?);

)

— Verifier runtime: O(As®72p®) (O(Ast2p?) if we only require to Boolean cir-
cuits).

Above, the knowledge soundness errors hold fort > 4-tvy+1 where tv is the verification
time.

e Derived by combining Lemma 4.6.5 with the packed ElGamal with hash scheme and
an LPCP transformed into a modded LPCP using Lemma 4.5.7 we get dv-SNARKSs
where the number of added bits approaches 27:

92

CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Corollary 4.6.2 (Dv-SNARKs from packed ElGamal with hash). Let C: F} x IFZ —
F, be an arithmetic circuit of size s with p > 2. For every \,7 € N there are dv-
SNARKs for the relation

Re = {(z,w) e F" x F"| O(z,w) = 1}

in the GGM with group size 2" and with random oracle output length \ with complete-
ness error negl(A) and the following parameters:

(Linear CRS.) Using the LPCP of Theorem 2.5.5:

— Message length: 1G group element, 1 ROM output (X bits), and [T logp] bits;

— Knowledge soundness: O(p~7/2) 4 10t2/2* against t-query adversaries (to
both the ROM and GGM);

— CRS length: O(1 - (s + poly(p))) G elements;

— Setup time: O(7 - (s + poly(p)));

— Prover expected runtime: O(AsT*poly(p));
— Verifier runtime: O(\sT%p?).

(Minimal length.) Using the LPCP of Theorem 2.5.4:

— Message length: 1G group element, 1 ROM output (X bits), and [27logp)|
bits;

— Knowledge soundness: (2/p)~"+10t2/2* against t-query adversaries (to both
the ROM and GGM);

— CRS length: O(1s%) G elements;

— Setup time: O(1s%);

— Prover expected runtime: O(\s*>72p?);

— Verifier runtime: O(\s>72p?) (If we restrict ourselves to Boolean circuits it
becomesO(AsT2p?)).

Above, the knowledge soundness errors hold fort > 4-tv+1 where tv is the verification
time.

4.6.1 Construction from Isolated Homomorphism

We show how to combine a strong LMIP with knowledge soundness, and an isolated homo-
morphic encryption scheme into a dv-SNARK:

Lemma 4.6.3. Suppose the existence of the following ingredients:

o An input-oblivious strong linear MIP over finite field I, for a relation R that is B-

bounded with error o, soundness d, knowledge soundness k, q queries, query length £,
prover running time tp, and verifier running time (tg,tp).

A compressible linearly-homomorphic encryption with q slots, plaintext moduli p, ci-
phertext size o, compressed ciphertext size o, decryption bound B, and encryption,
compression, evaluation, and decryption times (tenc,tcmp, teval, tdec). Furthermore, let
Ecor be its correctness error, e be its isolated homomorphism distinguishability error
and esem be its semantic security advantage.

Then there is a designated-verifier SNARK for R with:

e Completeness error: a+ € ecor(N);

4.6. DV-SNARGS FROM COMPRESSIBLE ENCRYPTION 93

Soundness: 6 + en(A,t,£) + Esem(A, 1, £) against t-query adversaries;

Knowledge soundness: k + ein(At,£) + £ - ceem(\, t) against t-query adversaries;
Message length: occt(N);

CRS length: € - o(N);

Setup time: O(tg + £ - tenc(N));

Prover runtime: O(tp + teval(A, €) + temp(N));

Verifier runtime: O(tp + tdec(A)).

Proof. Let (P, (V,,Vp)) be the linear MIP, and (KeyGen, Enc, Dec, Eval) be the homomorphic
encryption scheme. We construct a SNARK

Construction 4.6.4. The SNARK (Setup, P/, V') is defined as follows:

e Setup?(17):

1. Sample (pk,sk) « KeyGenY and (st’,ay, ..., a,) < Vo(1™).
2. For every i € [{] let z; = (a1]t], ..., a,4[i]) € F? and compute ct; < Enc(pk, z;).
3. Output crs := (pk,cty,...,cty) and st := (sk,st’).

o P'Y(crs,z,w):

1. Parse crs := (pk,cty,...,cty) and compute 7 + P(z, w).
2. Compute ct’ + Evalg(pk,ctl, ..., Ctp,).

3. Let cct := Compress? (pk, ct’).

4. Output pf := cct.

o V'9(st,x, pf):

1. Parse st = (sk,st’) and pf = cct.
2. Tf DecY(sk,cct) = L, then output 0. Otherwise, let (by, ... ,b,) = Dec’ (sk, cct).
3. Output 1 if Vp(st’,z,b1,...,by) = 1 and otherwise output 0.

Completeness, and the complexity parameters follow immediately from the construction.
We prove soundness and knowledge by first proving soundness, and then explaining the
(small) differences when proving knowledge.

Soundness. Fix A and a prover P’ for the dv-SNARK soundness experiment that makes
t queries. We show that the probability that V' outputs 1 is at most 0 + €gem + €in. Suppose
towards contradiction to the soundness error of the strong LMIP that P’ causes the verifier
to accept with probability 6" > § + ceem + €ih.

Let S be the simulator of the isolated homomorphism experiment of the encryption
scheme, and define a plaintext generator 7 and adversary A:

e T9(pk): Sample (st',ai,...,a;) « Vy(z). Output (st',(zi,...,z¢)) where z; =
(al [7’]7 cee 7afl[i])'

o AY9(pk,cty,...,cty): Let crs = (pk,cty,...,cty) and compute and output (z,cct)
P9 (crs).

By plugging in to the isolated homomorphism experiment this plaintext generator and ad-
versary, the outputs of the following two experiments have statistical distance at most ej,:

¢ Real:
1. Sample G + GGM(A).

94 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

Let (pk, sk) < KeyGen?.
(st';ag,...,ap) «+ Vo(1™).

z; = (ai[i],...,a,[i]) for all ¢ € [¢].
ct; + EncY(pk, z;) for all i € [{].
(w,cct) «+ P'9(pk,cty, ..., cty).

If Decg(sk, cct) = L, output L.
(by,...,bg) < Dec?(sk,cct)
Output (st’,z,b1,...,bq).

e Ideal:

1. Sample G <— GGM(A).
Let (pk,sk) KeyGen?.
(st';ay,...,ap) « Vo(1™).
z; = (ai[i],...,a,[i]) for all i € [¢].
ct; + EncY(pk, z;) for all i € [m).
(cct,) ¢ P9 (pk,cty, ..., cty).
(f1s---, fq) < S(tr,pk,cty, ..., cty, cct).
If Decg(sk, cct) = L, output L.
9. b; = fi(a;) for all i € [q].
10. Output (st’,z, b1, ..., by).

©oOND O WN

S I

Consider the following predicate p(X): if X = L or X cannot be parsed as X = (st’, x,b1,...,bq),
then output 0. Otherwise, output 1 if |z| = n, x € L(R), and V,(st’,z,b1,...,by) = 1, and
otherwise output 0. Observe that after applying the predicate to the output of the real
experiment, we get the predicate of whether the SNARK verifier accepted in the adaptive
soundness experiment, which happens with probability §’. Thus, by &;, statistical indistin-
guishability of the real and ideal games, the probability of the predicate being satisfied in
the ideal game is at least 0’ — gjp:

G <« GGM(\) T

(pk, sk) « KeyGen?Y
(st’,al,.. ,ag) « Vo(1™)

pe| D) ¢ L i€l 5= @il
A Vi (st a,b b,) = Vi e [6], ct — Enc (pk Z;)

PASE P va T (cct,) < P'9(pk,cty,...,cty)
(fi,..., fq) < S(tr,pk,ctq, .. ct/,cct)
Vi€ ldl, bi — fi(ay)

> 5/ - <c:ih(Aatz) .

We can now remove the check that decryption is done correctly, thus making the predicate
independent of the encryption secret key. That is, the expression above is bounded from
above by

G + GGM(A) T

(pk, sk) « KeyGen?
(st',ag,...,ay) < V(1"
Pr x ¢ L(R) Vi€ [f], zi = (aild],. . ., ag[i]
A Vp(st', @, by,....by) =1 Vie[ﬁ], ct; eEnc (pkz
(cct,x) ¢ P'9(pk,cty,...,cty
(f1s---y fq) < S(tr,pk,cty, ..., cty, cct
Vi € [q], b; = fi(a;

)
)
)
)
)
)

4.6. DV-SNARGS FROM COMPRESSIBLE ENCRYPTION 95

We now utilize semantic security of the encryption scheme to change the encryptions to 09.

G + GGM(N)
(pk, sk) < KeyGen?
(st';ay,...,ay) < Vo(1™)

Pr A VD(st’xxgébf(?.z.) by) = 1 Vi € [¢], ct; < Enc(pk,07)
P TR (cct, x) < P'9(pk,cty, ..., cty)
(fi,..., fq) < S(tr,pk,cty, ..., cty, cct)
L Vi € [q], bi = fi(a;) |
[G+ GGM(\) 1
(pk, sk) « KeyGenY
(st',ay,...,ay) < Vo(1™)
- pr x ¢ L(R) Vi e [l), z; = (a1]t], ..., a4[d])
AVp(st',z,by,... by) =1 Vi € [0], ct; + EncY(pk, z;)
(cct, x) < P'9(pk,cty,...,cty)
(fi,--o, fq) < S(A, pk,ct, ..., cty)
L Vi € lq], bi = fi(ai) |
— sem(A, 1, 0) .
Indeed, otherwise we could run the above experiments to distinguish ciphertexts of (z1, ..., z¢)

from ciphertexts of the all-zeroes string. Thus, we have that

i G « GGM()\)
(pk, sk) < KeyGen?

(st',ay,...,ay) < Vo(1™

Vi € [f], ct; + EncY(pk, 04

(cct,z) < P'9(pk,cty, ..., cty
(fiy---y fq) < S(tr,pk,cty, ..., cty,cct
Vi € lq], bi = fi(a

z ¢ L(R)

Pr AVp(st',a,bi,...,by) =1

)
)
)
)
i)

>0 —en(M 1) — sem(N, 1, €) > 6.

Observe that, now the choice of z, fi,..., f; does not depend on ay, ..., a,. By an averaging
argument, there exist z, f1,..., fy so that:

(st',ag,...,ay) + Vo(1")

Vi€ [q], by = fi(a;) >0

Pr| Vp(st',a,b1,...,by) =1
which contradicts soundness of the strong LMIP.

Knowledge soundness. Let Ext be the extractor of the LMIP. We specify our SNARK
extractor Ext’:

1. On input crs = (pk, cty,...,cty), x, cct, and a trace tr.
2. Run (f1,..., fq) « S(pk,cct, tr).
3. Output w « Ext/Je(z).

It is immediate that Ext runs in expected time that is polynomial in A, n, and ¢. The proof
that our scheme has knowledge soundness K + €sem + €in closely follows that of standard

96 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

soundness. Indeed, the knowledge soundness game is:

G GGM()
Pr (z,w) ¢ R (crs, st) + Setup?(17)
A VY (st,z,pf) =1 (z, pf) < P'9(crs)
w + Ext(zx, pf, tr)
i G+ GGM(A) T
(pk, sk) « KeyGen?
(st',ag,...,a,) < Vo(1™)
(e,0) ¢ R Vil 7 — (@ulil,....ali)
=Pr A DecY (sk, cct) # L Vi €[], ct; Enc (pk z;)
AVp(st',z,by,...,by) =1 (cct,z) ¢ P'9(pk,cty,...,cty)
(f1,---5 fq) < S(tr, pk, cty, ... Ctg,CCt)
(by,...,by) < Dec? (sk cct)
i w Ext/Sa(z)]

By then following precisely the same arguments as in soundness, with this experiment we
end up at the fact that there exist and f,..., f; so that,

(st',aq,...,aq) «+ Vo(1™)
r,w) ¢ R .
Pr /\V(St’(xb)¢ by) = 1 Vi€l b= fila) | >,
D yLyUly.. .y Ug ,w<_Eth1;~-~qu(x)
which contradicts knowledge soundness of the strong LMIP. O

4.6.2 Construction from Bound-Limited Homomorphism

In this section we show how to combine a modded LPCP with knowledge soundness, and a
bound-limited homomorphic encryption scheme into a designated-verifier SNARK:

Lemma 4.6.5. Suppose the existence of the following ingredients:

o An input-oblivious mod-LPCP over big modulus p’ and moduli (p;) for a relation R
that is B-bounded with error o, soundness &, knowledge soundness Kk, q queries, query
length ¢, prover running time tp, and verifier running time (tg,tp). Let B’ be its big
moduli bound.

e A compressible linearly homomorphic encryption scheme over p' with q slots, plaintext
moduli (p;), ciphertext size oo, compressed ciphertext size ocet, decryption bound B,
and encryption, compression, evaluation, and decryption times (tenc,tcmps tevals tdec)-
Furthermore, let ecor be its correctness error, emp be its bound-limited homomorphism
error with bound B’ error and esem be its semantic security advantage.

Then there is a designated-verifier SNARK for R with:

Completeness error: £« ecor(\);

Soundness: 6 + emp(A, t,£) + sem(A, B, £) against t-query adversaries;

Knowledge soundness: k + emp(A, t,£) + € - sem(\, t) against t-query adversaries;
Message length: occt(N);

CRS length: £- o (N);

Setup time: O(tg + € - tenc(N));

4.6. DV-SNARGS FROM COMPRESSIBLE ENCRYPTION 97

e Prover runtime: O(tp + teval(A, £));
o Verifier runtime: O(tp + tdec(N)).

Proof. Let (P, (Vy,,V5)) be the linear MIP, and (KeyGen, Enc, Dec, Eval) be the homomorphic
encryption scheme. We construct a SNARK

Construction 4.6.6. The SNARK (Setup, P/, V') is defined as follows:

e Setup?(17™):
1. Sample (pk,sk) « KeyGenY and (st’,ay, ..., a,) < Vo(1™).
2. For every i € [{] let z; = (a1]t], ..., a,[i]) € F? and compute ct; < Enc
3. Output crs := (pk, cty,...,cty) and st := (sk,st’).

g(pk7 Z'L)~

e PY(crs, z,w):

1. Parse crs := (pk,cty,...,cty) and compute 7 + P(z, w).
2. Compute ct’ + Evalg(pk,ctl, .o, Cly,).

3. Let cct := Compressg(pk,ct’).

4. Output pf := cct.

o V'9(st,x, pf):
1. Parse st = (sk,st’) and pf = cct.

2. If Decg(sk, cct) = L, then output 0. Otherwise, let (by,...,bq) = Decg(sk,cct).
3. Output 1 if Vi, (st’,z,b1,...,by) = 1 and otherwise output 0.

Completeness, and the complexity parameters follow immediately from the construction.
We prove soundness and knowledge by first proving soundness, and then explaining the
(small) differences when proving knowledge.

Soundness. Fix A and a prover P’ for the dv-SNARK soundness experiment that makes ¢
queries. We show that the probability that V' outputs 1 is at most § + sem + Emp. Suppose
towards contradiction of the soundness error of the mod-LPCP that P’ causes the verifier
to accept with probability ¢’ > § + €sem + Emb-

Let S be the simulator of the bounded-restricted homomorphism experiment of the
encryption scheme, and define a plaintext generator 7 and adversary A:

e 79(pk): Sample (st’,ai,...,a;) < Vy(z). Output (st’,(z1,...,2¢)) where z; =
(an[d], ..., a4li]).

o AY9(pk,cty,...,cty): Let crs = (pk,cty,...,ct;) and compute and output (z,cct)
P’Y(crs).

By plugging in to the bound-limited homomorphism experiment this plaintext generator
and adversary, the outputs of the following two experiments have statistical distance at
most emp:

e Real:

1. Sample G + GGM(A).

Let (pk, sk) « KeyGen?.
(st';ap,...,ap) « Vo (1™).

z; = (a1]i,...,a4i]) for all i € [£].
ct; + EncY(pk, z;) for all i € [/].

AN

98 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

(z,cct) «+ P'9(pk,cty,...,cty).
If Decg(sk7 cct) = L, output L.
(by, ..., bg) < Dec?(sk,cct)
Output (st’,z,b1,...,by).

© XN

e Ideal:

Let (pk, sk) < KeyGenY.

(st';ay,...,ap) < Vo(1™).

z; = (ai[i,...,a,[t]) for all ¢ € [(].

ct; + Encg(pk,zi) for all ¢ € [m)].

(cct,) ¢ P9 (pk,cty, ..., cty).

(m,c1,...,¢q) < S(tr,pk,cty,...,cty,cct), where 7 € ZZ/ and ¢; € Zy,.
If Dec? (sk, cct) = L, output L.

bi < Zy, (Eje[q] 75250 D + ¢ =Ly, ((m, ;) + ¢;.

If there exists an 4 such that b; & [—B’, B’] output L.
Output (st’,z,by,...,by).

CO PN DU WD

—_

Consider the following predicate p(X): if X = L or X cannot be parsed as X =
(st’,z,b1,...,by), then output 0. Otherwise, output 1if |z| =n, z € L(R), and Vi (st’, z, b1, . ..
1, and otherwise output 0. Observe that after applying the predicate to the output of the real
experiment, we get the predicate of whether the SNARK verifier accepted in the adaptive
soundness experiment, which happens with probability ¢’. Thus, by ey, statistical indistin-
guishability of the real and ideal games, the probability of the predicate being satisfied in

the ideal game is at least ¢ — gmp:

I G« GGM(A) T
(pk, sk) « KeyGen?

z ¢ L(R) (st',ai,...,ay) < Vo(1™)

Pr A DecY (sk, cct) # L Vi € [0, z; = (ai]i], . .., a,[i])
AVYi € [q], b € [-B', B'] Vi € [0], ct; + EncY(pk, z;)
AVp(st',z,by,...,by) =1 (cct, x) < P'9(pk,cty, ..., cty)
(m,c1,...,¢q) < S(tr,pk,cty, ..., cte, cct)

Vi e [‘ﬂ? b; < sz‘ (<7raai>) +

> 5/ - 5mb(Aat7€) .

We can now remove the check that the decryption succeeds, thus making the predicate
independent of the encryption secret key. That is, the above expression is upper bounded

by:

G+ GGM(\) T

(pk, sk) KeyGen?
(st',aq,...,aq) « Vo (1"

Vi e [l), z; = (a1]i], ..., a,[d]

o L(R))
Vi e [€], ct; < Enc (pk,zi)
)
)

Pr| AVielq, le[B’,B’]
b =

b
A Vp(st',z,b
D(S L,015..-, q) (CCt,:E) o P/g(pk7Ct1;~~~7Ctl

(m,c1,...,¢q) < S(tr,pk, cty, ..., cty,cct
Vi € lql, bi < Zyp, ({7, 2;)) + ¢

bq)

4.6. DV-SNARGS FROM COMPRESSIBLE ENCRYPTION 99

We now utilize semantic security of the encryption scheme to change the encryptions to 09.

[G + GGM(\) 7
(pk, sk) < KeyGen?
x ¢ L(R) (st',ay,...,ay) < Vo(1™)
Pr| AVi€lq, b; € [-B, B Vi € [€], ct; + EncY(pk,07)
AVp(st',x, by, .. bq) =1 (cct, x) ¢ P'9(pk,cty, ..., cty)
(m,c1,...,¢q) < S(tr, pk,cty, ..., ct, cct)
L Vi € [q], bi < Zp, ({m,a;)) + ¢
[g« GGM()\)
(pk, sk) < KeyGen?
t',ag,...,a,) « Vo(1™)
v ¢ L(R) | (sthan...,a) Vo
>Pr| AVielq, b e[B', B/ Vi€ ll], 2 =(aild,. . aqli])
AVp(st,z,bi,....,b): Vi € [l], ct; + Enc (pk,z,)
PR D (cct, z) ¢ P'9(pk,cty, ..., cty)
(m,c1,. .. ¢q) = S(tr,pk,cty, ..., cty, cct)
I Vi€ [q], bi < Zp, ((m,23)) + ¢;
— sem(N\, 1, 0)
Indeed, otherwise we could run the above experiments to distinguish ciphertexts of (z1, . . ., zy)

from ciphertexts of the all-zeroes string. Thus, we have that

G+ GGM(A) T

(pk, sk) < KeyGen
x ¢ L(R) (st',ag,...,a,) « Vo(1")
Pr| AVielg, b; e[B’ B] Vi € [f], ct; « EncY(pk,09)
A Vp(st' by, ..., b) = (cct, x) < P'9(pk,cty, ..., cty)
(m,c1,...,¢q) < S(tr,pk,cty, ..., ctg, cct)

Vi e [q]v b; qut (<7Taai>) + ¢

> —emb(\ 4, t) — Esem (A 8, 0) > 5 .

Observe that, now the choice of x, m, and ¢y, ..., ¢, does not depend on ay,...,a,. By an
averaging argument, there exist x, 7, and ¢y, ..., ¢, so that:
Pr Vi€ [Q]v bie [7B/5Bq (Stlvala--'vaq)HVQ(ln) >4 ;

AVp(st',x,bi,....by) =1|Vielq], b < Zp, ((m,a;)) + ¢

which contradicts soundness of the LPCP.

Knowledge soundness. Let Ext be the extractor of the LPCP. We specify our SNARK
extractor Ext’:

1. On input crs = (pk,cty,...,cty), x, cct, and a trace tr.
2. Run (m,¢1,...,¢q4) ¢ S(tr,pk, cty,. .., cty, cct).
3. Output w + Ext(z, 7, c1,...,¢q).

It is immediate that Ext runs in expected time that is polynomial in A\, n, and ¢. The proof
that our scheme has knowledge soundness k + €sem + €mp closely follows that of standard

100 CHAPTER 4. DESIGNATED-VERIFIER SNARGS

soundness. Indeed, the knowledge soundness game is:

G <+ GGI\/I(/\)

(z,w) ¢ R (crs, st) + Setup? (1)

A VY (st,z,pf) =1 (z, pf) < P'9(crs)

w + Ext(z, pf, tr)
i G + GGM(A) T
(pk, sk) + KeyGenY
(st',al, oo ag) — V(1)
(z,w) ¢ R Vi€ 0], z = (ailil.....ali)
=Pr A DecY (sk, cct) # L Vie [l], ct; « Enc (pk Z;)
AVp(st',x,bi,...,by) =1 (cct,x) < P'9(pk,cty, ..., cty)
)
)
) |

Pr

(7, (ci)ie[q < S(tr,pk,cty, ... Ctg7CCt
(b1,...,by) < DecY(sk,cct
w + Ext(z,m c1,...,¢q

By then following precisely the same arguments as in soundness, with this experiment we
end up at the fact that there exist x, m, and ci, ..., ¢4 so that,

(x,w) ¢ R (st',ay,...,a,) < Vo(1™)
Pr| AVie]g ,bze["B | Vi€ lq], bi < Zp, (m,a;) +¢; | >k,
A Vp(st',z, by, .. q)zl w + Ext(z, 7, c1,...,¢q)

which contradicts knowledge soundness of the strong LMIP. O

Chapter 5

Incompressible Encryption

5.1 Introduction

Incompressible cryptography [Dzi06b, DGO19, GLW20, MW20, GZ21, GWZ22] is a flourish-
ing paradigm trying to leverage memory limitations of adversaries to achieve strong security
goals. While traditionally, the goal of cryptography in the bounded storage model [Mau93] is
to minimize the need for computational assumptions or even obtain information-theoretically
secure constructions, incompressible cryptography is geared more toward mitigating the con-
sequences of key exfiltration and key exposure attacks. In this work, we focus on the notion
of incompressible encryption [Dzi06b, GWZ22] ! recently coined by Guan et al. [GWZ22].
An incompressible encryption scheme produces large, incompressible ciphertexts and guar-
antees that any adversary who forgets even a small fraction of the ciphertext data will learn
nothing about the encrypted data, even if he is later given the corresponding secret key!

One motivation for incompressible encryption is to hamper adversaries conducting a
mass-surveillance operation by forcing them to store massive amounts of ciphertext data
even if they are just interested in a tiny fraction of the encrypted data. In a similar sce-
nario, an adversary trying to exfiltrate information encrypted under an incompressible en-
cryption scheme from a data-center will have to exfiltrate massive amounts of data, even if
his exfiltration target is just a small piece of information.

Encryption in the bounded-retrieval model [Dzi06a, DLW06] where the goal is to make
the secret key large and incompressible (to make it hard to exfiltrate) while keeping all other
system parameters small are orthogonal to incompressible encryption.

Encryption with High Rate. An important efficiency measure of encryption schemes
is their ciphertext expansion or rate. The rate of an encryption scheme is the ratio between
plaintext size and ciphertext size. The closer the rate is to 1, the more efficient a scheme
manages to pack information into a ciphertext. Conversely, the closer the rate is to 0, the
less information is encoded in potentially large ciphertexts. For incompressible encryption,
achieving a high rate (ideally converging to 1), especially if we think of the data center
application above, where a small rate would also put a massive burden on the data center.
Guan et al. [GWZ22] provided two constructions of incompressible encryption.

e One from public-key encryption that has ciphertext-rate approaching 0.

IDziembowski [Dzi06b] introduced this concept under the name forward-secure storage in the symmetric
key setting.

101

102 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

e The other from indistinguishability obfuscation (10) [BGIT01, GGH*13, JLS21] that
achieves ciphertext-rate 1.

We remark that their rate-1 construction relies on non-black-box techniques and iO, which
gives this result a strong feasibility flavor.
Given this state of affairs, this work is motivated by the following question:

Can we build a rate-1 incompressible encryption scheme based on standard assumptions
while only making black-box use of cryptographic primitives?

5.1.1 Our Results

In this work, we build a rate-1 incompressible encryption scheme from standard assump-
tions while only using black-box techniques. Our result uses what we call programmable
hash proof systems (HPS) (which are a variant of standard HPS [CS98, CS02] with some
additional properties), plain-model incompressible encodings [MW20] and a pseudorandom
generator (PRG). In particular, we prove the following theorem.

Theorem 5.1.1 (Informal). Let S be the storage capacity of the adversary and let n be the
size of the encrypted messages. Assuming programmable HPS, incompressible encodings and
PRGs exist, there is an incompressible encryption scheme fulfilling the following properties:

1. Cliphertexts are of size n + n® - poly[A] for some € > 0.
2. The public key is of size n® - poly[\] for some ¢’ > 1/2.

3. Moreover, the size of ciphertexts is only slightly larger than the adversary’s storage
space, that is, S + poly[A].

The ciphertext rate n/(n + n® - poly[\]) approaches 1 for large enough messages. Addi-
tionally, the public key is sublinear in the size of the encrypted message.

In terms of assumptions, incompressible encodings can be based on either decisional
composite residuosity (DCR) or learning with errors (LWE). The PRG can be based on
any one-way function. We also show that programmable HPS can be instantiated from the
decisional Diffie-Hellman (DDH) assumption by tweaking the famous HPS by Cramer and
Shoup [CS02]. Consequently, our final incompressible encryption scheme can be based solely
on standard assumptions.

Post-quantum construction. In our main construction we crucially use the DDH as-
sumption. It is well-known that DDH can be broken by quantum adversaries, so our con-
struction is prone to quantum attacks [Sho94].

To overcome this issue, we show that the HPS construction of [ADMP20], which is
based on isogeny-based assumptions, is also a programmable HPS. The drawback of this
construction is that it has large public keys. That is, the public key size grows linearly with
the size of the message.

Recall that isogeny-based assumptions are presumably post-quantum secure. By plug-
ging this HPS into our main construction, we obtain a classically secure incompressible
encryption scheme only based on post-quantum assumptions.

This does not necessarily mean that our construction is secure against quantum adver-
saries as we only allow the adversary to compress into classical (non-quantum) memory.
While we think limiting the adversary to classical long-term storage is reasonable as long-
term quantum storage seems to be even harder to achieve than quantum computation the

5.1. INTRODUCTION 103

scheme could still be insecure against quantum adversaries as demonstrated the cocurrent
work of [LMQW22].

Streaming encryption. Streaming encryption/decryption is a property of incompress-
ible encryption schemes which allows the honest encryptor/decryptor to perform operations
with very low storage capacity. It is easy to see that streaming decryption is an inherently
conflicting property with high rate ciphertexts [GWZ22]. This is because the honest decryp-
tor needs storage at least as large as the size of the message. Otherwise, an adversary can
essentially mimic the decryptor and learn something about the encrypted message (e.g., the
most significant bit).

However, we note that our scheme has stream encryption, i.e., the honest encryptor
does not need much space to perform encryption. This follows from the fact that the
incompressible encodings construction of [MW20] has stream encoding.

Extension to CCA security. In the security experiment for incompressible encryption
presented in [GWZ22] the adversary is never allowed to query a decryption oracle. In other
words, their work only considered IND-CPA incompressible encryption. In this work, we
also give the adversary access to an decryption oracle extending incompressible encryption
to IND-CCA2 incompressible encryption. We stress that IND-CCA2 security is usually
considered the right security definition to use in practice. We show that our construction
is, in fact, is IND-CCAZ2 incompressible secure.

Focus on the Plain Model. We demonstrate a concretely and asymptotically more
efficient construction in the ideal cipher model (ICM). However, we also show that incom-
pressible encryption, which is secure in the ICM, might be prone to attacks as soon as we
instantiate the ideal cipher by a specific keyed permutation. Similarly to [CGH04, Den02,
GKO03, BBP04, MRHO04, Bla06, BEM15, GKW17], we construct scheme that can be proven
secure in the ICM. However, when we instantiate the ideal cipher, the scheme turns out to
be insecure. These observations support our focus on the plain model.

5.1.2 Comparison with Previous Work

As mentioned previously, incompressible encryption was introduced in [GWZ22] where two
schemes are presented. The first one is based only on the minimal assumption of PKE.
However, the ciphertext rate is very far from 1. The second one achieves rate-1 but is based
on i0. We compare these schemes in Table 5.1.

Other related work. Some recent works made significant progress in the area of incom-
pressible cryptography. The works of [DGO19, GLW20, MW20] proposed constructions for
incompressible encodings either in the random oracle model or in the CRS model. The
work of [GZ21] used the BSM together with computational assumptions to propose con-
structions of primitives that are not known just from computational assumptions, such as
virtual grey-box obfuscation.

Incompressible cryptography is closely related to the bounded storage model (BSM)
[Mau92|. However, most works in the BSM (e.g. [CM97, AR99, Razl7, GZ19, DQW21])
focus on achieving unconditional security for primitives that are already known from com-
putational assumptions such as public-key encryption and oblivious transfer.

104 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Ciphertext Public key Hardness Securit

Rate Size Assumption y
GWZ22 1/poly[A] poly[A PKE CPA
GWZ22 1 poly[A i0 CPA
Our result 1 ne - poly[A] {D]élf?{i\;;E} CCA
Our result 1 n - poly[A] IS({)gDeg}gi?;/eg}—i— CCA
Our result 1 n¢ - w(polylog())) LWE CPA

Table 5.1: Comparison with previous work. Here, n denotes the size of the encrypted
messages and €’ is any constant between 1/2 and 1.

Open Problems. We leave the open problem of developing an incompressible encryption
scheme that combines concretely short public keys with small ciphertexts. A possible ap-
proach for this would be to find a programmable hash proof system where the size of the
public key is essentially independent of the size of the encapsulated key.

It might also be interesting if our construction only using post-quantum assumption is
post-quantum secure. If this is not the case, a construction that is also post-quantum secure
is of interest.

Subsequent Work. In subsequent work, [GWZ23] built upon incompressible encryption
schemes, including the ones presented in this work, to construct schemes that can be consider
a multi-user incompressible encryption scheme. It forces an adversary that wants to learn
information about ciphertexts by receiving the key to keep many ciphertexts around. I.e.
it can not hope to compress the ciphertexts from multiple users and still hope to learn
information about the contents of all of the ciphertexts.

5.2 Technical Overview

In this technical overview, we sketch the main techniques to build an IND-CPA incompress-
ible scheme. We later argue how these techniques can be tweaked to obtain a scheme that
is IND-CCA2 incompressible secure.

Security Notion The syntax and correctness notions for incompressible encryption are
identical to standard public-key encryption (PKE). The main difference is in the security
definition. Since the security notion of incompressible encryption is relatively new, we will
briefly detail its security experiment here. Consider the following security game between a
challenger C and a 3-stage PPT adversary A = (A, As, A3).

1. C creates a pair of public and secret keys pk, sk.

2. Given pk, the first stage A; chooses two messages mg, my.

3. C chooses b & {0,1} uniformly at random and encrypts ct + Enc(pk, m;).

4. Given the ciphertext ct and the state of A;, the second stage A3 produces a state st
of size S < |ct|. That is, the state st should be somewhat smaller than ct.

5.2. TECHNICAL OVERVIEW 105

5. Now, the third stage A3z receives as input the state st (produced by As) and the secret
key sk. The goal of A3 is to guess the bit b.

We say that an incompressible encryption is secure if, for any adversary, A the advantage
of winning the following game is negligible in the security parameter .

5.2.1 The Scheme of GWZ

Before we provide an outline of our construction, we will briefly discuss the underlying ideas
of the low-rate incompressible encryption scheme constructed in [GWZ22]. At the very core
is the following idea: The ciphertext essentially consists of a very long truly random random
string R and a short payload part ¢ = (¢1, ¢2), where ¢; is an encryption of a seed k for a
randomness extractor Ext, and co = Ext(k, R) @ m is essentially a one-time-pad encryption
of the message m under the key Ext(k, R). Clearly, if ¢; was not part of the ciphertext, then
security of this scheme follows routinely by the following observations:

e In the view of the third stage Az of the adversary R has high min-entropy, as R is
uniformly random and the state st is significantly shorter than R.

e Furthermore, as we assume c¢; is not part of the ciphertext, st is independent of k

e Hence by the extraction property of Ext the string Ext(k, R) is uniformly random in
the adversary’s view, and therefore m; is statistically hidden.

Now, the main idea of [GWZ22] to make this approach work even though ¢; is part of the
ciphertext is to encrypt k in such a way that ¢; can be made independent of the extractor
seed k. This is achieved by choosing a suitable encryption scheme for which ¢; can be chosen
independently of k, and a suitable secret key which decrypts ¢; to k can be chosen after the
fact, i.e. after the leakage st has been computed. [GWZ22] provide an elegant construction
of such a scheme from non-compact single-key functional encrytion, which can be built from
any public key encryption scheme [GVW12].

5.2.2 The Big Picture

While our construction departs significantly from the blueprint of [GWZ22] we use the same
high-level concept of an encryption scheme that allows delaying secret-key generation in the
security proof. Rather than constructing incompressible PKE directly, we first tackle the
intermediate and simpler task of realizing a rate-1 incompressible symmetric-key encryption.
In a second step, we will then transform any incompressible SKE scheme into an incom-
pressible PKE scheme in a rate-preserving way. It turns out that even constructing a rate-1
incompressible SKE from standard assumptions is a non-trivial task and does not follow,
e.g. from the (low-rate) public-key construction of [GWZ22].

Since our two steps are independent of one another, improvements of either in future
work will lead to better incompressible encryption schemes. For simplicity, in the following
outline, we will focus only on CPA security, whereas in the main body, we present a CCA
secure construction.

5.2.3 Rate-1 Incompressible Symmetric-Key Encryption

In the symmetric-key setting, the syntax and correctness of incompressible SKE are pretty
much that of standard symmetric-key encryption, whereas the security notion is similar to

106 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

DDH
Sec.5.4
App.A.2 A
LWE » Programmable HPS
l [MW20]
Rate-1 Rate-1 Rate-1
Incompressible ——— Incompressible =———— Incompressible
Encodings Sec.5.3 SKE Sec.5.5 pkg
IMW20]
DCR

Figure 5.1: Overview of the results in this work, bold arrows are contributions of this work.

that of incompressible PKE, just with the difference that the first stage A; of the adversary
is not given a public key (as there is none). Thus, the security notion we consider here is
the incompressible encryption-analogue of security against an eavesdropper (IND-EAV).

Failed Naive Attempts. As a (failed) very first attempt, one may try "make work” an
incompressible SKE construction from the One-Time-Pad (OTP), i.e. the secret key k is a
random bit-string as long as the message m and the ciphertext is ¢ = k @ m. However, the
obvious issue with this is that such a ciphertext ¢ decomposes into many one-bit ciphertexts
¢; = k; @ m;, and it is enough for As to leak a few bits of ¢ to enable A3 to partially
decrypt ¢ and thus distinguish encryptions of my from encryptions of m;. As a next idea,
one may try the following: Encryption chooses a (fresh) pseudorandom generator (PRG)
seed s, encrypt m into m = m @ G(s), use k to encrypt the seed s into a header ciphertext c,
i.e. the encryption of m is (Enc(k,s), m & G(s)). While this approach does look promising,
we observe that it is stuck at either leakage-rate 1/2 or ciphertext-rate 1/2, that is as soon
as Aj learns Enc(k, s) in its entirety and a few bits of m, @ G(s), he will be able to distinguish
encryptions of mg from mj.

Introducing Circularity. Clearly, we need some kind of mechanism to glue the two
ciphertexts components together, i.e. we want to make it such that if some parts of m are
missing, then ¢ will be useless (and vice versa). As a first, heuristic "hands-on” approach
to achieve this, we can try to use m as a source of randomness from which we extract a
key to mask the seed s. Thus, let Ext(-,:) be a seeded randomness extractor. We compute
a ciphertext (¢, m) by first computing m = m @ G(s) for a random seed s as before, but
then encrypt s into ¢ via ¢ = s @ Ext(k, m), i.e. we use k as an extractor seed to extract a
one-time-pad key Ext(k, m) from m. Clearly, given k and a ciphertext (¢, m), we can decrypt
by first computing s = ¢ @ Ext(k,m) and then m = m @ G(s). The rationale for why we
hope this construction to be secure is that as soon as a significant fraction of the bits of m
are lost, the output of the extractor Ext(k, m) should look uniform, and thus m = m @ G(s)
should hide m by the pseudorandomness of G. However, this circularity backfires when
trying to establish security of this construction just from the pseudorandomness of G and

5.2. TECHNICAL OVERVIEW 107

the randomness-extraction property of Ext: In order to use pseudorandomness of G, we first
need to remove the s from the view of the adversary, but ¢ = s @ Ext(k, m) is correlated
with s given k. On the other hand, in order to use the randomness extraction property of
Ext we need that m has high entropy given st. But all the entropy of m = m @ G(s) comes
from the seed s, which is very small. Hence &~ \ bits of m suffice to information-theoretically
determine s.

Consequently, while heuristically, this construction seems secure, it seems unlikely the
individual security properties of G and Ext suffice to prove this construction secure.

Breaking Circularity Hence, what we need is a mechanism to break the circularity, which
we have just introduced. Looking at where establishing security of the above construction
gets stuck, a natural point to start is to make it such that m looks like it has a large
amount of real entropy once a few bits of m are missing, i.e. L(m) being computationally
indistinguishable from L(7) for a high-entropy distribution 7 for any efficiently computable
leakage function L(-) 2.

Incompressible encodings. Fortunately, an encoding mechanism achieving this notion
called incompressible encodings was just recently introduced and constructed by Moran and
Wichs [MW20]. As a technical tool, they introduced the notion of HILL-entropic encoding
in their work, which will be sufficient, if not to say ideally suited for our construction. Such
a scheme consists of an encoding algorithm En and a decoding algorithm De, both of which

rely on a (large) common random string crs & {0,1}%

e The encoding algorithm En(m) is a randomized algorithm which takes a message m
and produces an encoding m

e The decoding algorithm Dec(72) is a deterministic algorithm which takes an encoding
m and returns a message m.

In terms of correctness, one naturally requires that encoding followed by decoding leads
to the original message. Security-wise, we require that there exists a simulator Sim which
on input a message m produces a pair (crs’,m), which is computationally indistinguishable
from a real pair of crs and encoding of m, i.e.

(crs, Engs(m)) = Sim(m),

where crs < {0,1}*. Additionally, we require that if (crs’,m) < Sim(m), then /m has almost
full true min-entropy given crs’, i.e. Huo(m|crs’) > (1 — €)n, where Ho, is the average
conditional min-entropy. The (very) high level idea how this can be achieved is that in
simulation the common random string and the encoded message switch roles, in the sense
that the simulated common random string crs’ encodes the message m, whereas the encoding
m now has room to have (very) high entropy.

Moran and Wichs [MW20] provide two instantiations of their construction, one from
DCR and one from LWE. These constructions achieve rate-1, i.e., the encoding is only
slightly larger than the encoded message. The conceptual idea behind the construction is
rather elegant: The encoding function Engs(m) generates a pair of public key and trapdoor
(pk, td) of preimage-sampleable surjective lossy function F (for which we have efficient con-
structions from DCR or LWE) and sets = to be a randomly sampled preimage of m & crs,

2In our case the leakage function L is described by the adversary’s second stage As

108 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

ie. 2 = F3'(m @ crs), and sets 1 = (pk,z). To decode 772, one computes m = Fp () @ crs.
The simulator Sim chooses a highly lossy public key ka, chooses z uniformly at random, and
sets crs’ = m @ Fp~k(x) and m = (p~k7x). Given that Fpy is regular for surjective keys pk,
meaning that if = is uniform then F,(z) is also (statisticalluy close to) uniform, we can
routinely establish that real pairs (crs,) are computationally indistinguishable from sim-
ulated (crs’,m) using the indistinguishability of surjective public keys pk and highly lossy
public keys pk. Moreover, for simulated pairs (crs =ma® Fy (z),m = (ka, x)) we can easily
argue that z (and hence) has high min-entropy given crs’ = m @ Fp~k(m), as I is highly
lossy and hence x has high min entropy given Fp~k(:v).

Moran and Wichs [MW20] go on to show that for any incompressible/HILL-entropic
encoding, the common random string crs must be as long as the message, if one wants to
establish security from a falsifiable assumption [Nao03] under a black-box reduction.

The Full Construction. We will now provide our complete construction of incompress-
ible SKE and sketch the security proof. For our scheme, the secret key K is a uniformly
random bit-string of suitable length which will be parsed as K = (crs, k), where crs is the
common random string for a HILL-entropic encoding (En, De), and k is the seed for a ran-
domness extractor Ext. Encryption and decryption work as follows.

e Enc(K = (crs, k), m): Choose a uniformly random PRG seed s & {0,1}* and compute
m = Engs(m@G(s)). Compute ¢ = s@Ext(k,m) and output the ciphertext ct = (¢, m).

e Dec(K = (crs, k), ct = (¢,m)): Compute s = ¢ ® Ext(k,m) and output m = De.s(m) ®
G(s).

Correctness of this scheme follows routinely.

Security of this scheme is established along the following lines. First we rely on the
security of the HILL-entropic encoding to replace (crs,m) with a simulated pair (crs’,m) =
Sim(m @ G(s)). By the security of the HILL-entropic encoding, this modification is (com-
putationally) unnoticeable to the adversary. However, now the encoding m has true high
min-entropy given crs’. Thus, using a min-entropy chain rule (e.g. by [DORS08]) we can
argue that m still has sufficiently high min-entropy given both crs’ and a leak L(m). Hence,
the randomness extraction property guarantees that Ext(k, m) will extract uniform random-
ness (given crs’ and L(m)). To establish this we need a mild extra property of the extractor
Ext that given a (uniformly random) extractor output y and m we can sample a key k' after
the fact such that (k',y) = (k,Ext(k,m)). Hence in the next hybrid modification, we can
thus replace ¢ = s® Ext(k, m) with a uniformly random and independent string ¢’. Now that
¢’ is independent of s, we can use the pseudorandomness property of G to replace m @ G(s)
in (crs’,m) = Sim(m @ G(s)) with a uniformly random string u, i.e. (crs’,m) = Sim(u). We
have finally arrived at an experiment where the ciphertext ct = (¢/, m) is independent of the
message m, and hence the adversary’s advantage is 0.

Concerning the rate of this scheme, note that a ciphertext ct = (¢, m) has rate 1, as ¢ is
just of size poly(\) (independent of the message length n), and the HILL-entropic encoding
m is rate 1.

5.2.4 From Symmetric-Key to Public-Key Incompressible Encryp-
tion via Hash Proof Systems

Now that we have a construction of incompressible SKE, we need a way to establish a long
key K between the sender and receiver. This is a job for a key encapsulation mechanism

5.2. TECHNICAL OVERVIEW 109

(KEM) [CS03]. A key-encapsulation mechanism consists of:

e A key-encapsulation mechanism consists of a key-generation algorithm KeyGen which
produces a pair of public and secret keys (pk, sk).

e An encapsulation algorithm which takes a public key pk and produces a symmetric
key K and a ciphertext header ¢y encapsulating K.

e A decapsulation algorithm Dec which takes a secret key sk and a ciphertext header ¢
and outputs a key K.

The correctness requirement is the obvious one, whereas the standard security requirement
is that K is pseudorandom given pk and c¢y. A symmetric key K generated via a KEM can
now be used to encrypt a message m into a payload ciphertext c¢; using a symmetric key
encryption scheme. The full ciphertext is ¢ = (co, ¢1).

However, to transform an incompressible SKE into an incompressible PKE not just any
key encapsulation mechanism will do. The simple reason is that in the incompressible (pub-
lic key) encryption security game, the adversary gets to see the secret key sk in the end,
which will allow him to decapsulate the (short) ciphertext header ¢y into the symmetric
key K. But the standard security notion of KEMs discussed above does not require that
the encapsulated key K follows a uniform distribution. Indeed, e.g. for simple PRG-based
KEMs, the encapsulated key is statistically far from uniform. However, recall that in our
construction of incompressible SKE above, we made critical use of the fact that the key K
follows a uniform distribution and that the security reduction can program it in a suitable
way.

Thus, we need a KEM which we can switch into a mode in which the ciphertext header ¢
encapsulates a truly uniform key K. As we need the ciphertext header ¢g to be substantially
shorter than the encapsulated key K, the entropy of K in this mode must come from the
secret key sk.

Enter Hash proof systems. This is where hash proof systems (HPS) [CS02] come into
play 2. Recall that HPS are defined relative to an NP-language £ C {0,1}¥. We have a
key-generation algorithm KeyGen which generates a public or projected key pk, and a secret
or hashing key sk. The hashing or decapsulation algorithm Decap takes the secret key sk
and any x € {0,1}* and produces a hash value K. The restricted hashing or encapsulation
algorithm Encap takes a public key pk, an z € £ and a witness w (with respect to a fixed
NP-relation for £) for membership of in £ and produces a hash-value K.

In terms of correctness or completeness, we require that Decap and Encap agree on L,
ie. if x € £ and w is a valid witness for z, then it holds that Decap(sk,) = Encap(pk, z, w).

In terms of security, we require smoothness, namely given that z ¢ L, it holds that
Decap(sk, z) is statistically close to uniform given pk.

HPS are especially useful for sparse pseudorandom languages £, such as the decisional
Diffie-Hellman (DDH) language) [CS02]. We define this language with respect to a pair of
(randomly chosen) generators g, h € G, where G is a cryptographic group of prime order p.
A pair z = (¢/,h') is in L, if there exists an r € Z, such that ¢ = ¢" and ' = h". The
DDH assumption states that a random element in £, i.e. a pair (¢", h") is computationally
indistinguishable from a pair of uniformly random group elements (u,v)

3HPS have been instrumental in many prior works on leakage resilience cryptography e.g. [ADNT10,
HLWW13]
4Note that such a pair is not in £, except with negligible probability 1/p.

110 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

In the Cramer-Shoup [CS02] scheme, the secret key sk = («,) consists of two uniformly
random values a, 3 € Z,, and the public key pk is computed as pk = g*h”. Given a public
key pk an instance ¢y = (¢", h") with witness r, we compute a key K = pk”. Given a secret
key sk = (o, 3) and an instance ¢y = (¢’,h’) we compute a key K = g“n". Tt follows
routinely that encapsulation and decapsulation agree on £. Moreover, for a (¢*,h*) ¢ L
it holds K* = g*o‘h"‘ﬁ is uniformly random given pk = g*“h® by a simple linear algebra
argument.

Hash Proof Systems, and in particular the Cramer-Shoup HPS (almost) give us a KEM
with the desired properties. Namely, given pk and (g, h), to encapsulate a key k we choose
a uniformly random r € Z, and compute ¢y = (9", h") and K = pk". To decapsulate K from
co = (¢, W) given sk = (a, 8), we compute K = g n".

A typical proof-strategy using HPS lets a reduction compute the encapsulated key (on
the sender’s side) via the decapsulation algorithm using the secret key. Correctness of the
HPS ensures that this does not change K. Hence this modification will not be detected
by an adversary. Now we don’t need the witness r anymore. We can replace ¢y with a
uniformly random ¢, and argue that this modification is computationally undetectable by
the adversary, thanks to the DDH assumption. Since now ¢ is outside of £ w.o.p, it holds
that K is uniform even given pk, as desired.

However, this is still not enough to make our security reduction go through. It turns out
we not only have to ensure that K is uniform given pk, but also that for any given K and
fixed pk and ¢y we can find a secret key sk (compatible with pk) such that Decap(sk, ¢g) = K.
Realizing this property using the Cramer-Shoup HPS directly seems hard, as in order to
sample an sk = (a, 8) with K = ¢“h'? we would need to compute a discrete logarithm of K.

Programmable Hash Proof Systems For this purpose, we will consider a notion of
programmable hash proof systems, which obey a stronger smoothness notion. In short, such
an HPS has the following property. Given a public key pk, a (fake) ciphertext header ¢
(not in £) and secret auxiliary information aux depending on both pk and ¢g, we can sample
a uniformly random secret key sk™ such that Decap(sk®,cf) = K, for which it holds that
(pk, cg, sk™) =5 (pk, ¢§, sk) if K is chosen uniformly random.

Our idea to achieve this is simple: We will concatenate Decap (and also Encap) with
a balanced small range hash function HC : G — {0,1}, i.e. we have Decap’(sk,cy) =
HC(Decap(sk, cg)) and Encap’(pk, co,r) = HC(Encap(pk,co,r)). Here balanced means that
if h € G is a uniformly random group element, then HC(h) is statistically close to a uni-
formly random bit. While there exist deterministic constructions of such extractors for
certain groups (e.g. [CFPZ09]) we can find such an HC for any group via the leftover-hash
lemma [HILL99]. For such a hash function, we can efficiently sample a uniformly random
pre-image h € G of K for which we do know the discrete logarithm (with respect to a gen-
erator ¢ € G). We achieve this via rejection sampling: Given a bit K € {0,1}, choose a
uniformly random z € Z, and test whether HC(¢g%) = K (which happens with probability
1/2), and reject and resample if the test fails.

Now let h = ¢¥, pk = g" and ¢, = (¢’ = g", ' = ¢%) be a public key and (fake) ciphertext,
for which the auxiliary information is (y,t,r,s), i.e. the discrete logarithms of pk and .
Given a key K € {0, 1}, we first sample a uniformly random z € Z, such that HC(¢g*) = K.
Now we have 2 linear constraints (over Z,) on sk = (a,) € Z2, namely

t=a+p-y

from pk = ¢g® - h? and
z=oar+ s

5.2. TECHNICAL OVERVIEW 111

from HC(g%) = HC(¢'“ - ’?). Since we now have two equations and two unknowns « and 3,
we can solve for « and /8 using basic linear algebra.

We do pay a price to get programmability: Instead of getting log(|G|) key bits per public
key pk, we only get a single bit. Naturally, this can be improved up to log()) key-bits while
keeping the above rejection sampling procedure expected polynomial time.

The Full Construction We are now ready to present our fully-fledged construction. This
construction will have a large public key. We will later discuss how the size of the public
key can be reduced.

Assume thus that (Enc, Dec) is an incompressible SKE scheme, and that (KeyGen, Encap, Decap)

is a programmable HPS for a decision-membership-hard language £, for concreteness assume
the DDH language. Our incompressible PKE construction is given by the following algo-
rithms.

e The key-generation algorithm KeyGen’ generates random group elements g, h € G and
n pairs of public and secret keys (pky,ski), ..., (pk,,sk,) using KeyGen (on g, h) and
set the public key PK = (g, h, pkq, ..., pk,,) and the secret key SK = (skq,...,skp).

e The encryption algorithm Enc’ proceeds as follows, given a public key PK = (g, h, pky, . . .

and a message m. First, generate a random DDH instance ¢ = (¢ = ¢",h’ = h")

using a random r ﬁ Z,. Now compute the key-bits Ky = Encap(pky,co,7),..., K, =
Encap(pk,,, co,) and set K = (Kq,...,K,). Next, we use K to encrypt m using the in-
compressible SKE scheme, i.e. we compute ¢; = Enc(K,; m) and output the ciphertext
¢ = (¢p,c1).

e The decryption algorithm Dec’ takes a secret key SK = (sk1,...,sk,) and a ciphertext
¢ = (¢p,c1), and proceeds as follows. First, it decapsulates the key K = (Ky,...,K,,)
by computing K; = Decap(sk, ¢p), ..., K, = Decap(sky,, cp). Next, it decrypts ¢; to m
via m = Dec(K, ¢1).

Correctness of this scheme follows routinely from the correctness of its components.

Note that if the incompressible SKE scheme (Enc, Dec) is rate-1, then so is our public-key
scheme (KeyGen', Enc’, Dec’), as the only additional information in ciphertexts ¢ = (cg, ¢1)
is the header ¢y, which consists of just two group elements. On the other hand, note that
the size of the public key of this scheme scales with the size n of the symmetric key K, which
in our symmetric-key construction scales with the size of the message m.

Security of the Full Construction We will now turn to sketching the security proof
for the main construction. In the first hybrid step (somewhat expectedly), we use the HPS
Decap algorithm instead of the Encap algorithm to compute the key-bits K; in the encryption
of the challenge ciphertext. That is, in the encryption of the challenge ciphertext we replace
K; = Encap(pk;, co,) with K; = Decap(sk;,cp) for all i = 1,...,n. Due to the correctness
property of the HPS, this modification does not change the distribution of K. Hence this
hybrid change goes unnoticed by the adversary. In the second hybrid step, since we don’t
need r anymore, we replace ¢y = (¢, h") with a uniformly random ¢f,. We can use the DDH
assumption to argue that this modification goes unnoticed.

The next hybrid step is the critical one: We choose g, h, the pk; and ¢, with auxiliary in-

formation, i.e. together with their discrete logarithms with respect to g, choose K & {0,1}"
uniformly at random and sample each sk; such that K; = Decap’(sk;, ¢j) using the program-
ming algorithm of the programmable HPS. We can argue statistical indistinguishability

. Pky,)

112 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

using the programmability property of HPS. The crucial observation now is that the public
key PK = (g, h, pky, ..., pk,) and the ciphertext header ¢y are computed independently of K
and SK, and in fact we choose SK depending on K, i.e. we can choose SK after everything
else.

This now allows us to turn an adversary 4 with non-negligible advantage in this hybrid
experiment into an adversary A’ with the same advantage against the incompressible SKE
scheme. A’ first generates PK as in the hybrid experiment and provides PK to the first stage
Ay of A, which will output mg, m;. Now the second stage A} gets to see a symmetric-key
encryption ¢; of my, and turns this into a public-key encryption by setting ¢ = (¢, ¢1),
where ¢y computed as in the hybrid experiment. This ciphertext ¢ is then given As, which
outputs a state/leak st, and A5 outputs the same state st.

Finally, A% given a symmetric key K and the state st proceeds as follows. Using the
auxiliary information aux®. and the key K, it samples a secret key SK = (ski,...,sk,) such
that for all i = 1,...,n it holds that K; = Decap’(ski,co), as in the hybrid experiment.
Then, A% runs Az on SK and st and outputs whatever Az outputs.

It is not hard to see that from the view of A, A’ simulates the hybrid experiment perfectly.
Hence, the advantage of A’ against the incompressible symmetric-key security experiment is
the same as that of A against the hybrid experiment, and we derive the desired contradiction.

Reducing the Public-Key-Size. As mentioned above, the construction we discussed in
the last two paragraphs has a near-optimal ciphertext size (i.e. increasing the size of the
symmetric-key ciphertext only by two group elements). In contrast, it has a very large public
key which scales linearly with the size of the encrypted messages/the ciphertexts.

We will now discuss a tradeoff which achieves a better balance between ciphertext size
and public key size. Concretely, we will provide a tradeoff which achieves a ciphertext size
of n.+ nfpoly(\) for an 0 < e < 1 and public key size n¢ poly()) for an 1/2 < ¢ < 1. Le. we
achieve ciphertext rate 1 — n€ !poly()\), which approaches 1 for sufficiently large n, while
having a key of sublinear size.

In order to declutter the presentation, we will switch from multiplicative notation of
group operations in G to additive notion in the following discussion. That is we will denote
group elements g® by [z], and write « - [x] instead of (¢*)*. Furthermore, we will consider
vectors and matrices of group elements, i.e. if x € Z’; is a vector, then [x] is its element-wise
encoding in the group G. Likewise, we write an encoding of a matrix A € ZE*! as [A].

In our discussion above we considered a HPS for the two-dimensional DDH language,
i.e. the language consisting of all 7 - [v] given two [v], where v € Z2 is a randomly chosen
2-dimensional vector over Z,,.

Thus let v € Z’; be a randomly chosen k-dimensional vector. The goal of the k-
dimensional DDH problem is to distinguish ([v],¢ - [v]) from ([v],[u]), where v and u are
chosen uniformly random from Z’; and r is chosen uniformly from Z,. It follows routinely
via a standard rerandomization argument that the k-dimensional DDH problem is hard,
given that the 2-dimensional DDH problem is hard.

We can construct an HPS for k-DDH analogously to the 2-dimensional case: Fix a vector

[v] € G*. The secret key sk is a random vector o € Z’; , whereas the public key is given by

5There is a technical subtlety in the security definition of incompressible SKE which we omitted before:
We allow the first stage A} of a symmetric-key adversary A’ to produce a large state (i.e. scaling with
the message size), which is provided to both A} and .Ag. This is to communicate a potentially large public
key PK from A; to A3z without putting a burden on the leakage-budget of the leaker-stage A}. One could
consider an alternative definition where this communication from A} to A} is not allowed. In such a setting
we could still prove our construction secure by compressing the auxiliary information aux from which PK
and co are generated using a PRG

5.2. TECHNICAL OVERVIEW 113

[pk] = @' [v], i.e. the inner product of a and [v]. Given a vector [w] = r-[v] and a witness 7,
the Encap algorithm computes [K] = r - [pk]. On the other hand, given any vector [w] € G¥
and a secret key sk = o, the Decap algorithm computes &' - [w]. Arguing correctness and
smoothness are again simple exercises in linear algebra. Furthermore, this HPS satisfies a

stronger notion of k — 1-smoothness: Given uniformly random [w1], ..., [Wk_1], it holds that
(pk7aT[W1]a cee aaT [Wk—l]) g (pk7 [ul}v D) [uk—l})7
where the [u1],...,[ug—1] are uniformly random in G. Establishing this is again routine

linear algebra.

We will first briefly discuss how the HPS can be made programmable. In essence, we
follow the same idea as above: We take a balance function HC : G — {0,1} and define the
Decap algorithm to compute HC(a" [w]). We claim this construction is k — 1-programmable.

That is, given [v], [pk] = [t], uniformly random [w1],...[wk_1] together with the witnesses
v, t and wy,...,w;_1, and a random K = (Ky,..., K1) € {0,1}*~!, we can efficiently
sample a uniformly random a € ZF such that t = a’v and K; = HC(a " [w;]) fori = 1,...,n.

We proceed as above: First we choose uniformly random z; € Z, such that K; = HC([z;])
for all i. Then we get the linear equation system

a v=t

CVTW1 =2z

T
@ Wi 1= Zg—1-

Since the w; are chosen uniformly random, this system has full rank w.o.p., and hence we
can find a matching secret key a via simple linear algebra.

Now, plugging this programmable HPS into our construction of incompressible PKE, we
obtain the following parameters.

e A single public pk consisting of one group element can be used to encapsulate k key
bits. Hence, to encapsulate n key bits we need n/k public keys amounting to n/k
group elements.

e The ciphertext header now contains k - (k — 1) < k? group elements (in the above
notation the vectors [w1], ..., [wg_1]).

Hence, if we want to strike a balance where the (additive) ciphertext overhead is of the same
size as the public key, we obtain the relation

which yields to k = n'/3. Hence, for this choice of parameters the public key consists of a
n?/3 group elements (which is sublinear), and the size of the ciphertext is n4n?/3log(|G|) =
n(1 —n~131log(|G|)) bits, which approaches rate 1.

5.2.5 Extension to CCA security

The scheme described so far achieves IND-CPA incompressible security. This work also
considers an IND-CCA2 incompressible security definition where the adversary gets oracle
access to a decryption oracle.

114 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

To achieve IND-CCA2 security, we follow the framework of [CS02]. We add a second
hash proof system that acts as integrity proof for ciphertexts. The second hash proof system
does not need to be programmable but universaly [CS02] or 2-smooth [ABP15]. It allows the
decryption oracle to only answer queries to honestly generated ciphertexts. This mechanism
ensures that the decryption oracle does not give up entropy of the programmable HPS’s
secret key.

In the main body of this work, we provide the full construction that achieves this level
of security.

5.2.6 Incompressible Encryption in the ICM

Finally, we present a scheme that is secure in the ideal cipher model (ICM) but insecure
when we use a concrete keyed permutation. The scheme is a simple hybrid encryption scheme
where the symmetric encryption is one huge block cipher. In previous versions of this paper
we claimed that the ICM is equivalent to the random oracle model. This, however, only
holds in single stage security games as pointed out by [GWZ23].

More concretely, the public key is composed of a pk of an IND-CPA scheme. To encrypt
a message, we first sample two strings r, k of size A and compute ¢ < Enc(pk, k). Then we
compute d = Py((r, m)) where P is modelled as an ideal cipher oracle.

The scheme is secure in the ICM by observing that: i) The adversary cannot query the
ideal cipher oracle with key k before receiving the secret key as it would break the IND-CPA
security of the underlying PKE scheme; and ii) Given the secret key, the last stage adversary
cannot query the ideal cipher oracle P, ! on d because the limitations of the state size make
sure d has high min-entropy. The adversary can also not query Py on (r,m) as it would have
to guess r. Therefore, the adversary has almost no information about the message.

However, if we use a fully-homomorphic encryption (FHE) scheme as a PKE and if we
instantiate the ideal cipher oracle with a specific block cipher P, it is the scheme becomes
breakable. The key idea is that as soon as the ideal cipher oracle is instantiated with a block
cipher P, the adversary has access to the code of P and can thus run it homomorphically
under the FHE. Concretely, the adversary chooses two messages mg, m; and, after receiving
the challenge encryption of mp, it can unmask my inside the FHE and compare it with
mg, m1. The resulting evaluated ciphertext contains a single bit which is much smaller
than the original ciphertext. After receiving the secret key, it can decrypt b and break the
IND-CPA incompressible security of the scheme.

[GWZ23] provide a simple incompressible SKE in the ROM (instead of the ICM) that
can be used to make the same point in the ROM.

5.3 Incompressible Symmetric-Key Encryption

In this section, we define incompressible symmetric-key encryption (SKE) and give a con-
struction from entropic encodings.

5.3.1 Definition

First, we recall the notion of forward-secure storage [Dzi06b] under the name of incompress-
ible symmetric-key encryption. For our purposes we only need IND-EAV style security but
this could be extended similar to what we did with incompressible public-key encryption.

5.3. INCOMPRESSIBLE SYMMETRIC-KEY ENCRYPTION 115

Definition 5.3.1 (Incompressible SKE). An incompressible symmetric-key encryption scheme
is a tuple of PPT algorithms using uniformly random keys k

¢ < Enc(k,m): Given a symmetric key k and a message m encryption it outputs a ciphertext
c.

m < Dec(sk, ¢): Given a symmetric key k and a ciphertext ¢ decryption it outputs a message
m.

We require size of message space, size of key space, and size of ciphertext space to be
polynomials over the security parameter A and the space bound S; that is, n = n(\,S),
k=k(XS), and I = I(A, S) respectively.

Correctness For all A\, S € N, messages m and keys k € {0,1}* we have that m =
Dec(k, Enc(k, m))

Security For security parameter A and space bound S, a symmetric-key encryption scheme
(Enc, Dec) has incompressible SKE security if for all PPT adversaries A = (A, Az, A3) the
probability of winning the following experiment is < 1 + negl[\].

DistﬂfﬁmSKE()\,S) Experiment :

e Run the adversary (mg, my,st;) < A;(1}) to receive two messages mg and m;
e Sample a bit b & {0, 1} uniformly at random

e Sample k & {0, 1}*5) uniformly at random

e Run ¢+ Enc(k,m;) to encrypt my,

e Run the adversary sty + As(sty, c¢) to produce a state sty smaller than S

e Run the final adversary b’ + Ajs(k, sty, sta, mg, my)

e The adversary wins if b =/

5.3.2 Construction

Now we show how to build incompressible symmetric-key encryption using HILL-entropic
encodings, extractors, and pseudorandom generators.

Construction 5.3.2. Let A be the security parameter, S be the space bound of the ad-
versary and n be the size of the message space. Let (En,De) be an («, 5)-HILL-entropic
encoding, Ext : {0,1}*™) x {0,1}¢™) — {0,1}* be a (B(\,n) — S, negl[\]) strong average-
case min-entropy extractor where d()\) is a polynomial and G : {0,1}* — {0,1}" be a
PRG.

Enc(k, m):

Parse k = (kq, ko, crs).

Sample s & {0,1}* uniformly at random.
Let ¢; < Engs(1*,G(s) @ m).

Let Co <SP EXJE(Cl7 kl) D kg.

Return ¢ = (c1, c2).

116 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Dec(k, ¢):

e Parse k = (kq, ko, crs).

e Parse ¢ = (c1, o).

o Let s «+ Ext(ci, ki) ® o @ ko.
e Return Degs(c1) @ G(s).

Parameters. The ciphertexts are of size A + a(\,n). The keys are of size d(\) + t(\, n),
where t(A\,n) is the size of the encoding’s crs. Notice that the extractor exists if S(A,n) —

S —2log (ﬁlm + 2) > X according to Lemma 2.2.4. So, the adversary is allowed a leakage

of size S < f(A\,n) — A —2log (ﬁl[k] —|—2).
Therefore, if we choose a ”good” entropic encoding we get a rate of

n(1+ o(1)) + poly[A]’

allowed leakage of S = n(1 — o(1)) — poly[}], and keysize of k = n(1 + o(1)) + poly[A].

Correctness. By the correctness of the entropic encoding
Decrs(Encrs(lA, G(s)®m)) =G(s) dm.
Since Ext is deterministic under a fixed key k; then
Ext(ci, ki) @ ca @ ko = Ext(ci, k1) @ s ® Ext(cq, ki) =s.
Therefore, Degs(c1) ® G(s) = m.

Theorem 5.3.3 (Security). The incompressible SKE presented in Construction 5.3.2 has in-
compressible SKE security if (En,De) is an («, §)-HILL-entropic encoding, Ext is a (B(\,n)—
S, negl[\]) strong average-case min-entropy extractor, and G is a pseudorandom generator
each with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrid and then argue their indis-
tinguishability. In each hybrid we highlight the changes compared to the previous one.

HO :
e Run the adversary mg, my,st; < Al(l’\) to receive two messages mg and my.
e Sample bit b & {0, 1} uniformly at random.

e Sample k & {0,1}" uniformly at random.

e Run ¢ + Enc(k, my) to encrypt my,.

e Run the adversary sty + As(sty, c¢) to produce a state sty smaller than S.
e Run the final adversary b’ « Ajs(k, sty, sta, mg, my).

e The adversary wins if b = 0'.
In H; we explicitly represent what happens in Enc.

Hli

5.3. INCOMPRESSIBLE SYMMETRIC-KEY ENCRYPTION

Run the adversary mg, my, sty < Al(l/\) to receive two messages mg and mg.

Sample bit b & {0, 1} uniformly at random.

Sample ki & {0, 1}4A") uniformly at random.

Sample ko & {0,1}* uniformly at random.
Sample crs < {0, 1}**™) uniformly at random.

Sample s & {0,1}* uniformly at random.
Let ¢; + Engs(1*,G(s) @ my).
Let ¢ < s® EXt(Cl, kl) D kg.

Let ¢ < (c1,¢2) and k < (kq, ka,crs).
Run the adversary sto + As(sty, ¢) to produce a state sty smaller than S.
Run the final adversary b’ < As(k, st1, sta, mg, my).

The adversary wins if b = b’

In Hs we switch the entropic encoding to the simulated code that has a lot of entropy.

HQZ

Run the adversary mg, my,st; < A;(1%) to receive two messages mg and m;.

Sample bit b & {0, 1} uniformly at random.
Sample kg & {0, 1} yniformly at random.

Sample ko & {0,1}* uniformly at random.

Sample s & {0,1}* uniformly at random.

Let (crs,c1) < SimEn(1*, G(s) @ my).

Let ¢y < s @ Ext(cy, ky) & ka.

Let ¢ < (c1,¢2) and k « (kq, ko, crs).

Run the adversary sto + Ax(sty, ¢) to produce a state sty smaller than S.
Run the final adversary b’ < Ajs(k, st1, sta, mg, my).

The adversary wins if b = b'.

I H3 we switch the order in which we sample ¢y and ks.

Hg:

Run the adversary mg, my,st; < A;(1%) to receive two messages mg and m;.

Sample bit b & {0, 1} uniformly at random.

117

118 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

e Sample ky & {0, 1}4") uniformly at random.

e Sample s & {0,1}* uniformly at random.

e Let (crs,c1) < SimEn(1*, G(s) ® my).

e Sample ¢, & {0,1}* uniformly at random.

o Let ¢+ (c1,¢2)

e Run the adversary sty + As(sty, ¢) to produce a state sto smaller than S.
o Let ko « co @ Ext(cy, k1) @s.

o Let k < (kq, ko, crs).

e Run the final adversary b’ < Ajz(k, sty, sta, mg, my).

e The adversary wins if b =¥'.
In H4 we replace the output of the extractor Ext by a uniformly random value.
Hy
e Run the adversary mg, my,st; < A; (1) to receive two messages mg and my.
e Sample bit b & {0, 1} uniformly at random.
e Sample k; & {0,134 yniformly at random.
e Sample s & {0,1}* uniformly at random.
e Let (crs,c1) < SimEn(1*, G(s) ® my).
o Sample ¢, <& {0,1}* uniformly at random.
o Let ¢+ (c1,¢2).

e Run the adversary sty + As(sty,c¢) to produce a state sty smaller than S.

e Sample ko & {0,1}* uniformly at random.

o Let k < (kq, ko, crs).
e Run the final adversary b’ < Ajz(k, sty, sta, mg, my).

e The adversary wins if b =¥'.
Finally we replace the output of G(s) by a uniformly random value.

H52

Run the adversary mg, my,st; < A;(1%) to receive two messages mg and m;.

Sample bit b & {0, 1} uniformly at random.

Sample ky & {0, 134" uniformly at random.

Sample s & {0,1}* uniformly at random.

5.3. INCOMPRESSIBLE SYMMETRIC-KEY ENCRYPTION 119

Sample r & {0,1}™ uniformly at random.

Let (crs,c1) < SimEn(17, 7).

e Sample cy & {0,1}* uniformly at random.
o Let ¢ + (c1,¢2).

e Run the adversary sty + Ax(sty, ¢) to produce a state sty smaller than S.

e Sample ko & {0,1}* uniformly at random.
o Let k < (kq, ko, crs).
e Run the final adversary b’ + As(k, sty, sta, mg, my).
e The adversary wins if b = b'.
HO ~ H1 :

The differences between Hy and H; are purely syntactical. In H; we just show more
detail of Enc.

Hl e HQ :
Instead of sampling the common random string for the entropic encoding uniformly at
random and then encoding G(s)®m we simulate both steps using SimEn. Assume there
exists a PPT adversary A = (A;, As, A3) that can distinguish the two hybrids H; and
H, with a non-negligible advantage of €. From this we construct a PPT adversary
A" = (A}, A}) that can break the 8-HILL-entropy of (En, De) with advantage e.

Ay (1) -
e Run the adversary mg, my,st; « A;(1*) to receive two messages my and m;

Sample bit b & {0,1} uniformly at random

Sample ky & {0, 1}¢") uniformly at random

Sample s & {0,1}* uniformly at random
Return G(s) ® my
Al (ers,eq) -

e Let co s @ Ext(ey, kq)

o Let ¢+ (c1,¢2)

e Run the adversary sty < As(sty, ¢) to produce a state st smaller than S
e Run the final adversary b’ < Ajs(k, st1, sta, mg, my)
e Return v/

If A can distinguish H; from Hjy then A’ can distinguish a uniformly random crs &
{0,137 and ¢; + En(1*,G(s) @ my) from (crs,c1) + SimEn(1*, G(s) @ my) as it
perfectly simulates Hy in the case that (crs,c1) < SimEn(1*, G(s) @ m;) and perfectly
simulates H; in the other case.

HQ ~ H3 :
In H3 we switch the order in which we sample co and ks. From the view of the
adversary this is statistically identical.

120 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Hg g H4 :
Let C1, C3, CRS, Ky, K5, and ST, denote the random variables for the correspond-
ing values in the experiment and U independent uniform randomness of length .
By the S-HILL entropy of the entropic encoding we know that H..(Ci|CRS) > .
Using Lemma 2.2.2 we deduce that Hu(C1|(CRS, K2, STs,C5)) > 8 — 2\ — log(S).
Therefore, the extractor gives us that (K, Ko, CRS, ST,, U,) is statistically close to
(K1, K3, CRS, STy, Ext(C1, K1)) which is exactly the view of Aj.

H3 e H4 :
In H4 we encode a uniformly random string instead of G(s) ® m;. Assume there exists
a PPT adversary A = (A, As, A3) that can distinguish the two hybrids Hs and Hy
with a non-negligible advantage of €. From this we construct a PPT adversary A’ that
can break the pseudorandomness of G with advantage e.

A'(r') -
e Run the adversary mg, my,st; « A;(1*) to receive two messages my and m;
e Sample bit b & {0,1} uniformly at random
e Sample k; & {0, 134" uniformly at random

e Sample s & {0,1}* uniformly at random
e Sample r < r’ @& m;, uniformly at random
e Let (crs,cy) < SimEn(1%,7)

e Sample ¢y & {0,1}* uniformly at random

o Let ¢+ (c1,¢2)

e Run the adversary sty < Aa(sty, ¢) to produce a state sto smaller than S
e Run the final adversary b + Aj3(k, sty, sta, mg, my)

e Return ¢’

If A can distinguish Hs from Hy then A’ can distinguish G(s) with uniformly random

s & {0,1}* from uniformly random 7’ & {0,1}™ as it perfectly simulates Hs in the
case that v’ < G(s) and perfectly simulates Hy in the other case.

H, :
In H, the winning probability of the adversary is % as it gets no information about b
at all.

5.4 Programmable Hash Proof Systems

In this work we think of a hash proof systems as a key encapsulation mechanism where the
encapsulated key is independent of the public key and the ciphertext under certain condi-
tions. This allows us to later resample the secret key in the incompressibility experiments.
For our construction we need two different hash proof systems. One that we call Y-
programmable and one that we call 2-smooth both using the same language.

5.4. PROGRAMMABLE HASH PROOF SYSTEMS 121

5.4.1 Definitions

First we define hash proof system that we will use as a mask in our encryption scheme.

Definition 5.4.1 (Y-Programmable Hash Proof System [CS02, Kal05]). A Y-programmable
hash proof system is defined over a NP language £ C X, where each element x in the
language £ has a witness w. Additionally there exist a subset Y C X \ £ and efficient ways
to sample a language £ with a corresponding trapdoor td,, an = € £ with its witness w and
an x € Y with a corresponding trapdoor td,

e (pp,tdz) + Gen(1*,1%): Given the security parameter A, the encapsulated key size
k the language generation algorithm that outputs public parameters pp defining a
language £ and a trapdoor td, to that language.

o (z € L,w) < sampL(pp): Given the public parameters, it outputs an element z € L
with the corresponding witness w.

e (x € Y,td,) < sampY (pp,td.): Given the public parameters and a trapdoor td., it
outputs x € Y and the corresponding trapdoor td,.

The hash proof system itself consists of these algorithms:

e (pk,sk) <+ KeyGen(pp): Given the public parameters, the key generation algorithm
outputs a public key pk and a secret key sk.

e k + Encap(pk, z,w): Given the public lye pk, en element 2 and a witness w. the key
encapsulation algorithm outputs an encapsulated key k.

e k « Decap(sk,z): Given the secret key sk and any = € X, the key decapsulation
algorithm outputs an encapsulated key. k. Notice z can be outside L.

e sk’ « Program(td,,td,, sk, z,k) Given two trapdoors td.,td,, a secret key sk, an
element x € Y, and an encapsulated key k, the programming algorithm outputs a new
secret key sk’.

Correctness. For all \,k € N, (pp,tdz) in the range of Gen(1*,1%), (pk,sk) in the range
of KeyGen(pp), = € L and for k + Encap(pk, 2, w), we have k = Decap(sk, z) with |k| = k.

Language Indistinguishability. For all A,k € N if we sample (pp,td;) < Gen(1*,1%),
L 3> z « sampL(pp), and (z* € Y,td,+) + sampY (pp,td;), we have the computational
indistinguishability: = ~. x*.

Programmability. For all A\,k € N, (pp,td) in the range of sampL(1*,1%), (pk, sk) in
the range of KeyGen(pp), k € {0,1}"™, and for (z,td,) in the range of sampY (pp,td.),
sk’ « Program(td, td,, sk, z, k), we have Decap(sk’, z) = k.

Y-Programmable Smoothness. For all \,k € N, (pp,td,) in the range of Gen(1*,1%),
(pk,sk) in the range of KeyGen(pp), (z,td,) in the range of sampY (pp,td.), k € {0,1}™,
and sk’ < Program(td.,td,,sk,z,k) we have statistical indistinguishability (pk,sk,z) =~
(pk,sk’,).

Notice, if Y = X \ £ then Y-programmable smoothness implies smoothness.

122 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Next we recall 2-smooth hash proof systems with our adjusted notation.

Definition 5.4.2 (2-Smooth Hash Proof System [CS02, ABP15]). A 2-smooth hash proof
system is defined over a NP language £ C X as above The hash proof system itself consists
of the following algorithms:

e (pk,sk) « KeyGen(pp): Given the public parameters, the key generation algorithm
that outputs a public key pk and a secret key sk.

e k « Encap(pk,z,w,7): Given public key pk, an element of the language = € L, its
witness w, and a tag 7, the key encapsulation algorithm outputs an encapsulated key
k.

e k < Decap(sk,z,7): Given the secret key sk, any = € X, and a tag 7. the key
decapsulation algorithm outputs an encapsulated key k. Notice x can be outside L.

Correctness. For all A,k € N, (pp,td.) in the range of Gen(1*,1%), (pk,sk) in the range
of KeyGen(pp), z € L, tags 7, and for k <— Encap(pk, z,w, T), we have k = Decap(sk, z, 7)
with |k| = k.

Language Indistinguishability. Exactly as above.

2-Smoothness. For all \,k € N, (pp,td.) in the range of Gen(1*,1%), 2,2’ € X \ L, two

tags 7,7’ such that (z,7) # (2/,7'), let (pk,sk) < KeyGen(pp) and sample k & {0,1}* we
have computational indistinguishability between (pk,Decap(sk,z, 7), Decap(sk,’,7')) and
(pk, Decap(sk, z, 7), k).

5.4.2 Programmable Hash Proof System from DDH

In our protocols we need programmable HPS with a big encapsulated key space (for classic
notation [CS02] this would be called the hash space).

Some smooth hash proof systems are easily transformed into programmable HPS with big
encapsulated keys by generating more public keys and using them on the same x € X. These
HPS include the one from weak pseudorandom effective group actions [ADMP20]. That
transformation causes the public key size to scale linearly with the size of the encapsulated
key and leave the size of the ciphertext indepent of the encapsulated key size.

We present a variant of the original [CS02] HPS with an interesting trade off. Here both
public key size and ciphertext size scale in the 2/3-power with k, the size of the encapsulated
key.

Construction 5.4.3. Let HC : G x {0,1}"9(CD — {0,1} denote a 1-bit randomness ex-
tractor over a group element; if this function is applied over a matrix of group elements,
then it means that the function is applied entry-wise with the same randomness. In the
following let ¢, s € N such that ¢-s = k. We get an interesting tradeoff for our application
when ¢ = k'/3 and s = k%/3.

Gen(1*,1F) :

e (G,p,g) & G(1*).

e Sample h & Z£ \ {0} uniformly at random.

5.4. PROGRAMMABLE HASH PROOF SYSTEMS 123

e Return pp = (G, p, g, [h]) and td; = h.

sampL(pp) :
e Parse pp = (G, p, g, [h]).
e Sample y & Zf’,_l uniformly at random.
e Return z = [y] and w =y.

sampY (pp,td) :

e Parse pp = (G, p, g, [h]).

e Let td;, = h.

e Sample E & Zf;x(g_l) such that (h E) is invertible uniformly at random.

e Return z = [E] and w = E.
KeyGen(pp):
e Parse pp = (G, p, g, [h]).
e Sample r < {0,1}99(%) the public randomness for a extractor.
e Sample A & Z;XZ uniformly at random.
o Return pk = (Afh],7) and sk = A.
Encap (pk,c = [hy'],w =y):
e Parse pp = (G, p, g, [h] € GY).
e Parse pk = ([f] € G*, 7).

e Let K < HC([f]y,r) the component-wise extractor of the outer product between
f and y.

e Return k = K.

Decap (sk,x = [E] € G**(¢~1).
e Parse pk = ([f],r)
e Parse sk = A € Z5*".

e Let K + HC(AJE],r) the component-wise extractor of the product between A
and [E].

e Return k = K.
Program(td., td,, sk, z, k):
o Parse pk = ([f],r), td; =h e Z, td, =E € Z,"" Y, sk = A, and k = K €
{O, 1}5><(271)'

e For each i € [(— 1], € [s] sample B; ; & Z, such that K; ; = HC([B;;],r) via
rejection sampling.

e Set B=(B);;. Let A’ « (Ah B)(h E) .

e Return sk’ = A’.

124 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Correctness. For any (pp = (G, p, g, [h]),td.) in the range of Gen, (pk = ([Ah],7),sk = A)
in the range of KeyGen, and [hy'] € £ we have Encap(pk, [hy']) outputs k = HC([Ah]y*,r) =
HC([Ahy!],r). Decapsulation then outputs k = HC(A[hy'],7) = HC([Ahy'], r).

Programmability. Since we choose h and E s.t. (h E) is invertible Program always
outputs a matrix A’ with the property that A’'E = B and k = HC([B], r).

Programmable Smoothness. If we first sample k uniformly random and then program
for the key k Program(td,td,, sk, x, k) the resulting distribution over B will be uniformly
random. And because (h E) is invertible then A’ is a uniformly random under the condi-
tion that A’h = Ah. The same holds for A. Therefore, (pk,sk = A, x) and (pk,sk’ = A’, z)
are identically distributed.

Theorem 5.4.4 (Language Indistinguishability). If DDH is hard for G then elements from
L= {[h]y'ly € Zf;_l} and

Y ={[E]EcZX“ VA (h E) is invertible}

of construction 5.4.3 are indistinguishable.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indis-
tinguishability. In each hybrid we highlight the changes compared to the previous one.

HO :

o Let (pp,tdz) <+ Gen(1*,1F).

e Let (pk,sk) < KeyGen(pp).

o Let (z,w) < sampL(pp).

e Let k < Encap(pk, z, w).

e Run the adversary A(pk, sk, x).
Hl :

e Sample a group (G, p, g) & G(1) .
e Sample 7 & {0,1}!290ED the randomness for the extractor .

e Sample h & Z5 \ {0} uniformly at random .

e Sample A & Z;XL) uniformly at random .

o Let pp = (G,p, g, [h]) .
o Let pk = ([Ah],r) and sk = A .

e Sample y & 257! uniformly at random .

e Let z = [hy']| =[C].
e Run the adversary A(pk, sk, x).

5.4. PROGRAMMABLE HASH PROOF SYSTEMS 125

HQ’,L‘ :

Hg:

H()%Hl :

Sample a group (G, p, g) & G(17).
Sample r & {0,1}1°8(CD the randomness for the extractor.
Sample h & Zf, \ {0} uniformly at random.

Sample A & Z;XZ uniformly at random.

Let pp = (G, p, g, [h]).
Let pk = ([Ah],r) and sk = A.

Sample y & ijl uniformly at random.
Let [C] = [hy!].

Sample E & Z;X(lfl) uniformly at random .

Replace the first ¢ entries of [C] by the first ¢ entries in [E] .
Let z = [C].
Run the adversary A(pk, sk, x).

Sample a group (G, p, g) & G(1%).
Sample & {0, 1}°8(CD the randomness for the extractor.
Sample h & Z4,\ {0} uniformly at random.

Sample A & Z;” uniformly at random.

Let pp = (G, p, g, [h]).
Let pk = ([Ah],r) and sk = A.

Sample E & Zi,x(lfl) uniformly at random such that (h E) is invertible .

Let x = [E].
Run the adversary A(pk, sk, x).

The differences between Hy and H; are purely syntactical. In H; we just show more
detail of Gen and Encap.

H1 =~ H270 :
The differences between H; and Hj o are purely syntactical.

Hy; ~. Hyiq1 :
In Hy ;11 we replace the n + 1st element of C by a random one. Assume there exists
a PPT adversary A that can distinguish the two hybrids Hy; and Hs ;11 with a non-
negligible advantage of €. From this we construct a PPT adversary A’ that can break
DDH with advantage e.

A" ((G,p,9), ([a], [0], [p])):

126 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

e Let u <4 mod !
o Let v« |i/l]
o Sample r < {0,1}1°8(8D the randomness for the extractor

e Sample h & Z4\ {0} uniformly at random
e Replace [z,] by [a]

e Sample A & Z‘;XE uniformly at random

o Let pp = (G>p7gv [hD
o Let pk = ([Ah],7) and sk = A

e Sample y & 245! uniformly at random
e Foru' € [l] and v/ € [l — 1]:
(o] if ' =u,v =w
Let Cyr v = 3 [b]Tu if u' # u,v =
[T]y else

e Sample E & Z;X(lfl)

e Replace the first ¢ entries of [C] by the first ¢ entries in [E]
o Let z = [C]

e Run the adversary b’ + A(pk, sk, x)

e Return ¢’

If A distinguishes between Hy; and Hj 41 then A’ distinguishes between p = ab and
p being uniformly random as A’ perfectly simulates Hs; in the case that p = ab and
Hj ;14 if r is uniformly random.

Hg)m g H3 :
H, ,, is statistically close to H3 because with probability 1 — negl[A] we have (h E)
is invertible.

O

Parameters. For an encapsulated key of size k this scheme roughly gets us public pa-

rameters of size k'/3 - poly[\], public key of size k2/ - poly[)\] and elements from X of size
k2/3 - poly[\].

5.4.3 2-Smooth Hash Proof System from DDH

The above hash proof system only is programmable if x € Y. To make our encryption
scheme CCA secure we need a efficient way to check whether x € £ or z € X \ £. To do this
we construct the 2-smooth hash proof system below that is defined over the same language.

Construction 5.4.5. We construct a 2-smooth hash proof system with a output size of
A using an extractor Ext : G'~1 x {0,1}? — {0,1}* and a collision resistant hash function

CRHF that maps into Z,. As a language description we use the same as in Construction
5.4.3.

KeyGen(pp):

e Parse pp = (G;p>ga [h])

5.4. PROGRAMMABLE HASH PROOF SYSTEMS 127

e Sample r & {0, 1}9UCD yniformly at random.

e Sample s & {0,1}* uniformly at random.

e Sample a,b & Zf, uniformly at random.

e Return pk = (a’[h], b’[h],7,s) and sk = (a, b).
Encap (pk,z = [hy'] € G~V w =y e Z!71, 7):

e Parse pp = (G, p, g, [h] € GY) and pk = ([f],[f'] € G,r,s).
o Let [d] = ([f]y) + (CRHFs(z, 7)[f']y)-
e Return k = Ext([d’],r).

Decap (sk,x = [E] € G~V 7):

e Parse pp = (G, p, g, [h] € G*) and pk = ([f],[f'] € G,r,s).
e Parse sk = (a € Zf,,b € Zﬁ).

e Parse z = [E] € G (=1,

e Return k = Ext(a’[E] + CRHF(z, 7)b![E], 7).

Correctness. For any (pp = (G, p, g, [h]),td.) in the range of Gen, (pk = (a’[h], bt[h],,s),
sk = (a, b)) in the range of KeyGen, and [hy'] € £ we have Encap(pk, [hy']) outputs

=Bt ((([f]y) + ([fICRHF(z. 7)y))" 7)
=Ext ([(a'h)y’ + CRHF,(z, 7)(b'h)y'],r) .

On the other hand, decapsulation outputs

k = Ext(a’[hy'] + CRHF,(z, 7)b[hy’], 7)
= Ext ([(a’h)y" + CRHF(z, 7)(b'h)y"],7) .

Language Indistinguishability. Since we use the same language as in construction 5.4.3
the language indistinguishability holds by the same argument.

2-Smoothness. For all \,n € N, (pp,td.) in the range of Gen(pp), xz,2’ € X \ L, two
tags 7,7’ such that (z,7) # (2/,7), let (pk,sk) < KeyGen(pp) and sample k & {0,1}™. Let
v + CRHF4(z, 1) and v/ + CRHFs(2’,7’). Using (z,7) # (2/,7') and the collision resistance
of CRHF we can assume that v # ~'.

In the following let d = a’[E] 4+ yb'[E] (computed in Decap(sk,z,7)) and d' = a'[E'] +
7'b!'[E’] (computed in Decap(sk,z’,7")). Then the following equation holds:

h 0 E E’
Gora = w30 B)

If x,2" € X \ L then there exists a column z with index i in E s.t. z is linearly independent
of h and z’ with index i’ in E’ s.t. 2z’ is Li. of h. Then the following equation also holds:

hOzz’>

(f f di dy)=(a" b <0 h vz oo

128 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Now, we argue that the matrix on the right side has rank 4. We have that G)l) and (E) are

linearly independent. Moreover, <;Z> is outside the span of (g) and (E) because h and

. . . 7z . . zZ h 0
z are linearly independent. Finally, (7/Z/) is outside the span of (’YZ)’ (O)’ and <h>

To see this, assume that this is not the case, i.e., that there exists a linear combination

()0 ()= ()=

Assume there exist ¢1,c2,c3 € NT such that z’ = ¢1z + coh and vz’ = ¢z + csh. Then we
replace z’ in the second equation

~'(c1z + coh) = ¢1vz + csh
& (Y — 7)1z = (3 —7'co)h
This however can only be true if v/ — v = 0 because z is linearly independent of h.
Since a and b are chosen uniformly at random then so are f,f’, d;, and d}. If d; and

d}; are uniformly random then Decap(sk, z,7) = Ext(d’,r) and Decap(sk,z’,7") = Ext(d’t,r)
are statistically close to uniformly random by the extractor property.

Parameters. For the same language as in Construction 5.4.3 with public parameters of
size k'/ - poly[)\] and elements of k/3 - poly[\] construction 5.4.5 roughly results in public
keys of size 2k'/3 - poly[A] and an encapsulated key of size .

5.5 Incompressible PKE

In this section, we show how to build incompressible PKE from incompressible SKE and a
hash proof system with extra properties.

First we extend the incompressible encryption security notion [GWZ22] to the chosen
ciphertext scenario and then we show a new construction paradigm using hash proof systems
and incompressible symmetric-key encryption.

5.5.1 CCA Incompressible Encryption

We use the definition of incompressible encryption by Guan et al.[GWZ22]. It defines a
public-key encryption scheme where the adversary has to know most of the ciphertext to
decrypt it even with access to the secret key.

Definition 5.5.1 (Incompressible PKE). An incompressible public-key encryption scheme
is a triple of PPT algorithms

(pk, sk) < KeyGen(1*,19): Given the security parameter A\ and a space bound S the key-
generation algorithm outputs a public key pk and a secret key sk.

¢ < Enc(pk,m): Given a public key pk and a message m the encryption algorithm outputs
a ciphertext c.

m < Dec(sk,c): Given a secret key sk and a ciphertext ¢ the decryption algorithm outputs
a message m.

Both size of message space and size of ciphertext space are polynomials over security
parameter A and space bound S, that is, n = n(X, S) and I = [(), S) respectively.

5.5. INCOMPRESSIBLE PKE 129

Correctness. For all A\, S € N, messages m and (pk,sk) in the range of KeyGen we have
that m = Dec(sk, Enc(pk, m)).

CCA Incompressible Security. Similar to standard IND-CCA (sometimes referred to
as IND-CCA2) security we extend incompressible encryption such that the adversary has
access to an encryption oracle.

For security parameter A and space bound S, a public key encryption scheme (KeyGen,
Enc, Dec) has incompressible CCA PKE security if for all PPT adversaries A = (A;, 43, A3)
wins the following experiment with probability < % + negl[\].

Dist%ﬁ'"COmPKE (A, S) Experiment :

e Run key generation algorithm KeyGen(1*,1°) to obtain (pk, sk).

e Run the adversary mg, my,st; « AP**(pk) on public key pk with oracle access
to Dec(sk, -) to receive two messages mg, m; and state st;.

e Sample bit b & {0, 1} uniformly at random.

e Run ¢ + Enc(pk, m;) to encrypt my.

e Run the adversary sty .AQD €k (pk, ¢, st;) with access to the decryption oracle
Dec(sk, -) for all inputs but ¢ to produce a state sto smaller than S.

e Run the final adversary b’ < As(sk, sty, sta, mg, my).

e The adversary wins if b =1b'.

Rate We define the rate by % the size of a message divided by a ciphertext en-

crypting the message. We say a scheme has rate-1 when the rate is 1 — o(1).

5.5.2 Construction

We construct a encryption scheme that very much resembles the classic Cramer-Shoup [CS02]
scheme. Instead of masking the ciphertext with the randomness that comes out of the hash
proof system we use it as a key for an incompressible symmetric-key encryption scheme.

Construction 5.5.2 (Incompressible PKE). Given security parameter A, space bound S,
and message length n let (KeyGen’, Encap’, Decap’, Program’) be a Y-programmable hash
proof system for a language £ C X (where you can sample x with according witness from
L and sample z with according trapdoor from Y') where the representation size of X is
p(A, S,n) and encapsulated keys of size k(), Ssym,n), (KeyGen”, Encap”, Decap”) is a 2-
smooth hash proof system for the same language with encapsulation key size of A and public
key size p'(X, S,n), and (Encsym, Decsym) be an incompressible SKE with messages of size
n, keys of size k(\, Seym,n) and ciphertexts of size {(A, Ssym,n) with incompressible SKE
adversary being allowed to leak a state of size Ssym = S + p(X, S,n) +p'(A, S, n).

KeyGen(1*,19):
e Generate language and corresponding trapdoor

(pp,tdz) « Gen(l)‘, 1m).

o Let (pk’,sk’) «+— KeyGen'(pp).

130 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

o Let (pk”,sk”) < KeyGen” (pp).
e Return pk = (pk’, pk”’) and sk = (sk’, sk”).

Enc(pk, m):

e Parse pk = (pk’, pk”)

o Let (z,w) < sampL(pp).

e Let k < Encap’(pk’, =, w).

o Let csym < Encgym(k, m).

e Let 7 < Encap”(pk”, z,w, coym)-

e Return ¢ = (z, Csym,).
Dec(sk, ¢):
o Parse sk = (sk’,sk”).

e Parse ¢ = (x, Csym, 7).
o If 7 = Decap”(sk”, z, Csym)
— Let k < Decap’(sk’, z)
— Return m = Decgym (K, Csym)-

e Return L.

Parameters. (KeyGen, Enc,Dec) is an incompressible PKE with messages of size n, ci-
phertexts of size [(A, Ssym,n) +p(A, S, n) +p'(A, S, n), the adversary is allowed a leak of size
S = Seym — (A, S,n) — p'(A, S, n), and the public key is of size p(A, S,n) + p'(A, S, n).

When instantiating the two hash proof systems with constructions 5.4.3,5.4.5 and the
incompressible SKE with construction 5.3.2 then (KeyGen, Enc,Dec) is an incompressible
PKE with messages of size n, ciphertexts of size (n + n?/3poly[\])(1 + o(1)), the adversary
is allowed a leak of size S = n(1 — o(1)) — poly[\](n(1 + o(1)))?/?, the public key is of size
n2/3(1 + o(1))poly[\], and the secret key is of size n(1 4 o(1))poly[)].

Correctness. Follows from the correctness of the hash proof systems (KeyGen’, Encap’,
Decap’, Program’), (KeyGen”, Encap”, Decap”), and symmetric-key encryption (Encsym,
Decgym).

Theorem 5.5.3 (Security). The PKE construction 5.5.2 has incompressible CCA PKE
security if (KeyGen’, Encap’, Decap’, Program’) is a programmable hash proof system with
the listed parameters, (KeyGen”, Encap”, Decap”) is a 2-smooth hash proof system with
the listed parameters, and (Enceym, Decsym) is an incompressible secure SKE with the listed
parameters.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indis-
tinguishability. In each hybrid we highlight the changes compared to the previous one.

Ho()\,S) :

e Run key generation algorithm KeyGen(1*,1%) to obtain (pk, sk).
e Run the adversary mg, my,st; < A?ec*(pk) on public key pk with oracle access
to Dec(sk, -) to receive two messages mg, m; and state st;.

5.5. INCOMPRESSIBLE PKE 131

Sample bit b & {0, 1} uniformly at random.

Run ¢ + Enc(pk, m;) to encrypt my,.

Run the adversary sty < AS*(pk, ¢, st;) with access to the decryption oracle
Dec(sk, -) for all inputs but ¢ to produce a state sto smaller than S.

Run the final adversary &’ < As(sk, sty, sta, mg, my).

e The adversary wins if b =0'.

In H; we explicitly represent what happens in KeyGen and Enc.
Hi(\S) -
e Generate language and corresponding trapdoor
(pp,td) < Gen(1*,1™).
o Let (pk/,sk’) «+ KeyGen'(pp).
o Let (pk”,sk”) < KeyGen” (pp).
o Let pk = (pk’, pk”) and sk = (sk’, sk”).

Run the adversary mg, mq,st; < A?ec*(pk) on public key pk with oracle access
to Dec(sk, -) to receive two messages mg, m; and state stj.

Sample bit b & {0,1} uniformly at random.
o Let (z,w) < sampL(pp).

o Let k + Encap’(pk’, z, w).

o Let coym < Enceym(k, mp).

e Let 7 < Encap” (pk”, z, w, csym).
o Let ¢ = (o, Csym,).

Run the adversary sty < .AQD €k (pk, ¢, st1) with access to the decryption oracle
Dec(sk, -) for all inputs but ¢ to produce a state sty smaller than S.

e Run the final adversary b’ < Ajs(sk, sty, sta, mg, my).

e The adversary wins if b = b’.

In Hs we use the decapsulation mechanisms to encrypt the challenge message instead of
encapsulation.

Hy(\, S)

e Generate language and corresponding trapdoor
(pp,tdz) < Gen(1*,1™).

Let (pk’,sk’) < KeyGen'(pp).

Let (pk”,sk”) «+— KeyGen" (pp).

Let pk = (pk’, pk”’) and sk = (sk’, sk”).

Run the adversary mg, my,st; < AP (pk) on public key pk with oracle access
to Dec(sk, -) to receive two messages mg, m; and state sty.

Sample bit b & {0, 1} uniformly at random.
o Let (z,w) < sampL(pp).

o Let k < Decap/(sk’, z).

o Let coym < Enceym(k, mp).

132 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Let 7 < Decap” (sk”, x, csym)-

Let ¢ = (z, coym, 7).

Run the adversary sty <« ,45’ °“k(pk, ¢, st;) with access to the decryption oracle
Dec(sk, -) for all inputs but ¢ to produce a state sty smaller than S.

Run the final adversary b’ < Ajs(sk, sty, sta, mg, my).

e The adversary wins if b =b'.

In H3 we sample = from Y C X \ £ instead of L.
H{g()\, S) :

e Generate language and corresponding trapdoor
(pp,tdz) + Gen(1*,1™).

Let (pk’,sk’) < KeyGen'(pp).

Let (pk”,sk”) «+— KeyGen” (pp).

Let pk = (pk’, pk”) and sk = (sk’, sk”).

Run the adversary mg, my,st; < AP (pk) on public key pk with oracle access
to Dec(sk, -) to receive two messages mg, m; and state sty.

Sample bit b & {0, 1} uniformly at random.

Let (x,td;) < sampY (pp, tdz).

Let k < Decap’(sk’, z).

Let csym Enceym(k, my).

Let 7 Decap” (sk”, z, Coym)-

Let ¢ = (z, coym, 7).

Run the adversary sty < AS=(pk, ¢, st;) with access to the decryption oracle
Dec(sk, -) for all inputs but ¢ to produce a state sto smaller than S.

Run the final adversary &’ « As(sk, sty, sta, mg, my).

e The adversary wins if b =0'.

In H4 we change the behaviour of the decryption oracle.

H4(>\,S) :

e Generate language and corresponding trapdoor
(pp,tdz) < Gen(1*,1™).

Let (pk’,sk’) < KeyGen'(pp).
Let (pk”,sk”) «+— KeyGen” (pp).
Let pk = (pk’, pk”) and sk = (sk’, sk”).

Define an inefficient decryption algorithm Dec’.

Dec'(c):

— Parse ¢ = (z, Coym, 7).
- Ifzel

* Let w be the witness for z.
% Let k + Encap(pk’, z,w).

% Return Decgym (K, Csym)-

5.5. INCOMPRESSIBLE PKE 133

— Else
* Return L.
Run the adversary mg, my,st; < A?ecl (pk) on public key pk with oracle access to
Dec’ to receive two messages mg, m; and state sty.
Sample bit b & {0, 1} uniformly at random.
Let (x,td;) < sampY (pp,tdz).
Let k < Decap’(sk’, z).
Let coym ¢ Enceym(k, mp).
Let 7 + Decap” (sk”, z, csym)-
Let ¢ = (2, Coym,).
Run the adversary sty < A9 (pk, ¢, st;) with oracle access to Dec’ for all inputs
but ¢ to produce a state sty smaller than S.

e Run the final adversary b’ < Ajs(sk, sty, sta, mg, my).
e The adversary wins if b = b'.

In Hs we program the secret key given to the adversary to decapsulate the ciphertext to the
randomly chosen key k.

I{5(A7 S) :

Generate language and corresponding trapdoor
(pp,tdz) « Gen(1*,1™).

Let (pk’,sk’) < KeyGen'(pp).
Let (pk”,sk”) « KeyGen” (pp).
Let pk = (pk’, pk”’) and sk = (sk’, sk”).
Define an inefficient decryption algorthim Dec’.
Dec’(c):
— Parse ¢ = (z, coym, 7).
—Ifzel
x Let w be the witness for x.
% Let k «+ Encap(pk’, z, w).
* Return Decoym (K, csym).
— Else
* Return L.

Run the adversary mg, my,st; < A?ecl (pk) on public key pk with oracle access to
Dec’ to receive two messages mg, m; and state sty.

e Sample bit b & {0, 1} uniformly at random.

Let (z,td,) < sampY (pp,td.).

Sample k & {0, 1160 Ssym:m)

Let coym < Enceym(k, m).

Let 7 + Decap” (sk”, z, csym)-

Let ¢ = (2, Coym,).

Run the adversary sty < AEeC’ (pk, ¢) with oracle access to Dec’ for all inputs but
¢ to produce a state sty smaller than S.

Let sk;,mg < Program(td,, td,, sk’, 2, k).

134 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

e Run the final adversary b’ < As(sk = ('sk},p.oq - k"), st1,st2, mg, my).

e The adversary wins if b = b’.
In Hg we switch the decryption oracle back to the original behaviour.
Hg(\,9) :
e Generate language and corresponding trapdoor
(pp,tdz) + Gen(1*,1™).

Let (pk’,sk’) < KeyGen'(pp).

Let (pk”,sk”) «+— KeyGen” (pp).

Let pk = (pk’, pk”) and sk = (sk’, sk”).

Run the adversary mg, mq,st; < A?ec“(pk) on public key pk with oracle access

to 'Dec(sk,) to receive two messages mg, m; and state st;.

e Sample bit b & {0, 1} uniformly at random.
Let (z,td,) < sampY (pp,tdyr).

Sample k & {0, 116 Semom)

Let csym ¢ Enceym(k, m).

Let 7« Decap”(sk”, z, csym)-

Let ¢ = (z, coym,).

Run the adversary sty < AS*(pk, ¢,st;) with access to the decryption oracle
Dec(sk,) for all inputs but ¢ to produce a state st smaller than S.

Let sk, < Program(td,, td,,sk’, z, k).

e Run the final adversary b’ < As(sk = (sk},,..,,
e The adversary wins if b =¥'.

"
Sk)7St175t2) m07 ml)'

HO =~ H1 :
The differences between Hy and H; are purely syntactical. In H; we just show more
detail of KeyGen and Enc.

H 1~ H2 :
In Hy we merely change how the challenge ciphertext is calculated. By the correctness
of the hash proof system these two hybrids look identical to the adversary.

H2 e H3 :
In Hj3 sample z from Y C X \ £ instead of £. These two hybrids are computationally
indistinguishable by the language indistinguishability. Assume there exists a PPT
adversary A = (A1, Az, A3) that can distinguish the two hybrids Hy and H3 with a
non-negligible advantage of e. From this we construct a statistical adversary A’ that
can break language indistinguishability of the HPS with advantage e.

A'(pp,) :

Let (pk’,sk’) + KeyGen’(pp).

Let (pk”,sk”) +— KeyGen” (pp).

Let pk = (pk’, pk”) and sk = (sk’, sk”).

Run the adversary mg, my,st; « AP (pk) on public key pk with oracle
access to Dec(sk, -) to receive two messages mg, m; and state st;.

5.5. INCOMPRESSIBLE PKE 135

e Sample bit b & {0,1} uniformly at random.

o Let k <+ Decap’(sk’, z).

o Let csym < Enceym(k, my).

e Let 7 < Decap”(sk”, , Csym)-

o Let ¢ = (z, csym, 7).

e Run the adversary sty « A5 (pk, ¢, st;) with oracle access to Dec(sk, -) for
all inputs but ¢ to produce a state sty smaller than S.

e Run the final adversary b’ + Aj3(sk, stq, sta, mg, my).
e The adversary wins if b =1'.

If A can distinguish Hy from Hj with advantage € then the advantage of A’ of distin-
guishing a x sampled from £ and sampling = from Y C X \ £ is also € as it perfectly
simulates Hs in the case that z € £ and perfectly simulates Hs in the other case.

H3 g H4 :
According to 2-smoothness of (KeyGen” Encap”, Decap”) in the decryption oracle for
¢ = (@, coym,m) if © ¢ L the decryption oracle fails with 27* probability even when
the adversary has access to the challenge ciphertext (z*,cy,, 7*) where z* € X \ L.
Simply not answering the query if z € X \ £ is statistically close to answering with

probability 277,

H4 g H5 :
According to programmable smoothness of (KeyGen’, Encap’, Decap’) if ¢ L then
(pk’, sk’, z) is statistically close to previous distribution (pk’, Program(td, td,, sk’, x, k),
x) for uniformly random k. Because this is exactly what we switch we get that Hy
and Hjy are statistically close.

H5 e H6 :
Again, According to 2-smoothness of (KeyGen”, Encap”, Decap”) in the decryption or-
acle for ¢ = (z,ceym,m) if 2 ¢ L the decryption oracle fails with 2=* probability
even when the adversary has access to the challenge ciphertext (z*,cf,,,7*) where
z* € X \ L. Simply not answering the query if x € X \ L is statistically close to
answering with probability 272.

:_IncomSKE |
H6 ~ DISt.A/,Hsym
Finally, given a mulit-stage adversary A = (A;, Az, A3) that wins experiment Hg(X, S)

with probability € we construct an adversary A" = (A}, A}, A}) that wins the experi-

ment Distiﬂ?f’ﬁff'z(/\, S+ p(A\) + p'(\)) with probability e.

AL(1A19)

e Generate language and corresponding trapdoor

(pp,tdr) < Gen(l)‘, 1m).

Let (pk’,sk’) < KeyGen'(pp).

Let (pk”,sk”) +— KeyGen” (pp).

Let pk = (pk’, pk”) and sk = (sk’, sk).

Run the adversary mg,my,st; « AP*(pk) on public key pk with oracle
access to Dec(sk, -) to receive two messages mg, m; and state st;.

136 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

o Let st} < (pk,sk,tdg,sty).
e Return mg, my, and st}
Ab(st], coym)
e Parse st} = (pk, sk, tdz,sty)
e Let (x,td,) < sampY (pp, tdy)
e Let m < Decap”(sk”, z)
o Let ¢ < (z, Coym,)
e Run the adversary sty .AQDeCSk(pk, ¢, st1) with oracle access to Dec(sk,) for
all inputs but ¢ to produce a state sty smaller than S
e Return state st} < (z,td,, st2) smaller than Ssym = S + p(X) +p'(X)
Al (k, st], sth, mg, my) :
e Parse st; = (pk,sk = (sk’,sk”),td,st})
e Parse sty = (x,td,,st})
prog < Program(td., td,, sk, z, k)
e Run the final adversary b’ < As(pk, (sk},,.og, k"), stz, mg, my)
e Return v’

e Program sk

A’ wins Distlﬂ??ﬁ‘jf'z(/\, S +p(N)) iff A wins in Hg(), S) because A’ perfectly simulates

Hg from the perspective of A.

O

5.6 Dangers of Using Idealized Models

In this section, we show that there is are very simple incompressible encryption scheme that
are secure in the ideal cipher model (ICM) or the random oracle model (ROM). However, as
soon as we instantiate the ideal cipher with a keyed permutation with a succinct description
or the random oracle with a hash function, the scheme is not secure anymore. Through
this we demonstrate a proof in the ICM/ROM might be meaningless in reality and extra
precautions must be taken before designing schemes in the idealized models. This provides a
fairly natural example on the uninstantiability of ideal models. The technique has similarities
to observations by [DMO04] about initial key generation for the bounded storage model.

5.6.1 Construction

First we show a construction of incompressible PKE in the ideal cipher model.

Construction 5.6.1. Let (KeyGen’,Enc’,Dec’) be an IND-CPA encryption scheme with
a secret key size p(A\) and Py : {0,1}* — {0,1}* be a random permutation indexed by k
modelled as an ideal cipher, where © = p(A) + A+ S.

KeyGen(1*):

e Compute (pk,sk) «+ KeyGen’(1*).
e Return pk and sk.

Enc(pk,m € {0,1}°):

5.6. DANGERS OF USING IDEALIZED MODELS 137

e Sample k & {0,1}*
e Encrypt ¢’ + Enc’(pk’, k).
e Sample r & {0,1}* uniformly at random
o Let d < Py((r,m)).
o Return ¢ = (¢, d).
Dec(sk, ¢):
e Parse ¢ = (¢, d)
e Decrypt k < Dec’(sk’,).
e Compute (r,m) = P, '(d).
e Output m.

Correctness Correctness follows trivially from the correctness of the underlying PKE and
by the fact that P, ' (Px(r,m)) = (r,m). We now analyze the security of the scheme.

Theorem 5.6.2. The scheme presented in Construction 5.6.1 has incompressible PKE se-
curity in the ideal cipher model.

Proof. We prove the theorem via the following hybrids.
Hy : This is the incompressible PKE security game.
e Run key generation algorithm KeyGen’(1*) to obtain (pk, sk).

e Run the adversary mg, mq, st; « A;(pk) to receive two messages mg and m; with
oracle access to P and P~1.

Sample bit b & {0, 1} uniformly at random.

o Sample k < {0,1}*.
e Encrypt ¢ + Enc’(pk, k).
e Sample 7 < {0,1}* uniformly at random.

e Compute d < Py(r, mp).

o Let c=(c,d).

Run the adversary sty < As(sty,c) to produce a state sty smaller than S with
oracle access to P and P~1.

e Run the final adversary o’ < As(sk, sty, sta, mg, m;) with oracle access to P and
p-L.
e The adversary wins if b =1b'.
In this hybrid, the experiment aborts if Py is ever queried by the first stage adversary.
H1 :

e Run key generation algorithm KeyGen’(1*) to obtain (pk, sk).

138

CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Run the adversary mg, my, sty < A;(pk) to receive two messages mg and m; with
oracle access to P and P~1.

Sample bit b & {0, 1} uniformly at random.
Sample k & {0,137
Encrypt ¢’ < Enc’(pk, k).

Sample & {0,1}* uniformly at random.
Compute d + Py(r, mp).
Let ¢ = (¢, d).

Run the adversary sty < As(sty,c) to produce a state sty smaller than S with
oracle access to P and P~1.

If Py is queried by A; or Ay, abort.

Run the final adversary b’ < As(sk, sty, sta, mg, my) with oracle access to P and
p-L.

The adversary wins if b = b'.

In this hybrid, the experiment aborts if the final stage adversary ever queries P, ! on the

value d.

HQ .
[}
[]
[]
[
[
[}

Run key generation algorithm KeyGen'(1*) to obtain (pk, sk).

Run the adversary mg, my,st; « A (pk) to receive two messages mg and m; with
oracle access to P and P~1.

Sample bit b & {0, 1} uniformly at random.
Sample k & {0, 1}

Encrypt ¢’ < Enc’(pk, k).

Sample r & {0,1}* uniformly at random.
Compute d + Py(r, mp).

Let ¢ = (¢, d).

Run the adversary sty < As(sty,c) to produce a state sty smaller than S with
oracle access to P and P~1.

If Py is queried by A; or A, abort.

Run the final adversary b’ + As(sk, sty, sta, mg, m;) with oracle access to P and
p-1,

If A3 queries P, '(d) before ever querying Py ((r, m;)) abort.

The adversary wins if b =1b'.

In this hybrid, the experiment aborts if the adversary queried Py on (r, m;p). This removes
almost all information about mj,.

Hg:

Run key generation algorithm KeyGen’(1*) to obtain (pk, sk).

5.6. DANGERS OF USING IDEALIZED MODELS 139

e Run the adversary mg, mq, st; « A;(pk) to receive two messages mg and m; with
oracle access to P and P~1.

e Sample bit b & {0,1} uniformly at random.

e Sample k & {0, 1}
e Encrypt ¢’ «+ Enc’(pk, k).

e Sample r & {0,1}* uniformly at random.
e Compute d < Py(r, mp).
o Let c=(c,d).

e Run the adversary sty + Ax(sty,c) to produce a state sty smaller than S with
oracle access to P and P~1.

e If Py is queried by A; or As, abort.

e Run the final adversary o’ < As(sk, sty, sta, mg, m;) with oracle access to P and
P,

e If A3 queries P, '(d) before ever querying Py((r, ms)) abort.

e If A3 queries Py((r, mp)) abort.

e The adversary wins if b =0'.
We now show indistinguishability of hybrids.

Hy=. H; :

The hybrids are identical except for the abort condition. The experiment aborts the
protocol if the ideal cipher Py or Pk_1 is ever queried by A; or As. We argue that the
winning probability in Hy and H; are negligibly close if (KeyGen’, Enc’, Dec’) is an
IND-CPA secure PKE.

Assume there is an adversary A;, Ay that queries k with probability . From this, we
construct an adversary A}, A} that breaks the IND-CPA security of the encryption
scheme (KeyGen', Enc’, Dec’).

Al (pk) -

e Sample kg, kq & {0, 1}
e Run the adversary mg, my,st; «+ A;(pk) to receive two messages mg and m;
with oracle access to P and P~1.

e Return kg and k; as challenge messages.
As(pk, ')
e Sample r & {0, 1}* uniformly at random.

Sample b’ & {0,1} uniformly at random.

o Let k= kb/
o Let d < Py((r,mp)).
e Let c = (c,d).

Run the adversary sty < As(sty, ¢) with oracle access to P and P~L.
e If Ay or Ay ever queried Py or Pk_1 return 0 else 1.

140

H1%

HQ%

Hg:

CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

If b = b’ then (A], A}) outputs 0 with probability ¢ as this perfectly simulates Hy to
the adversary (Aj, As).

If b # b then (A}, A5) will output 1 with probability 1 — negl[A] as ¢ contains no
information about k beyond d = Py ((r, my/)).

Combining the two cases the probability of winning A’ winning the IND-CPA experi-
ment is 3¢ + 3 (1 — negl[A]). Which is a non-negligible advantage if ¢ is non-negligible.

H2 :

The hybrids are identical except for the new abort condition. We argue that the
winning probability in H; and Hs are negligibly close if the adversary can only poly-
nomially many queries g(\).

Let D, SK, STy be the random variables that reflect the occurrence of d, sk, sty in
the execution of the experiment.

We know that Hoo (D) = S + A + p(\) because without access to the permutation Py
(which A; and Ay don’t have) we have d is a uniformly random string.

We are going to show that H,,(D|SK,ST,) > X. We have that

>S4+ A+p\) —p(\) — S = A

where the first inequality follows from Lemma 2.2.2 and the last step follows from the
fact that D is a uniform vector over u =S + X + p(\).

Hence the adversary with ¢(\) queries can at most query P ! on d with probability
q()\)/2*. Therefore, the winning probability of H; only be better than that of H, by

g(A)/2*.

H3 :

The only difference between Hy and Hj is additional abort condition if A3 queries
Pr((r,mp)). We argue that the winning probability in Hy and Hj are negligibly close
if the adversary can only polynomially many queries g(\).

The abort condition, however, can only be reached if previous abort conditions are
not met. So the adversary needs to guess r, which is uniformly random in {0,1}*.
Therefore, if the adversary has g(\) queries to the ideal cipher, she has at most reached
the new abort condition of querying Py ((r, m;)) with probability of g(\)/2*.

In Hj3 the adversary learns no information about m; because it can never query
Pr((r,mp)) or P.'(d) and all other queries are uniformly random subject to being
different from all other queries and Py ((r,mp)) = d.

O

We also present this construction of an incompressible PKE in the ROM as described in

[GWZ23] Construction 9+10.

Construction 5.6.3. Let (KeyGen', Enc’, Dec’) be an IND-CPA encryption scheme with a
secret key size p(A) and H,, : {0,1}* — {0,1}"™ be a random function indexed by n modelled
as a hash function.

KeyGen(1*):

5.6. DANGERS OF USING IDEALIZED MODELS 141

e Compute (pk,sk) < KeyGen'(1*).
e Return pk and sk.

Enc(pk,m € {0,1}°):

e Sample k & {0,1}* uniformly at random

e Sample r & {0,1}* uniformly at random
e Encrypt ¢’ + Enc’(pk’, k).

e Let d < Hg(k,r) @& m.

o Let h < Hy(k,d)@®r

e Return ¢ = (¢, d, h).

Dec(sk, ¢):
e Parse ¢ = (¢, d, h)
e Decrypt k < Dec’(sk’,).
o Let 7 < Ha(k,d) ® h.
e Compute m < Hg(k,r) @ d.
e Output m.

Correctness and security of this scheme follows by the same proof as the incompressible
SKE in [GWZ23].

5.6.2 Attack

We instantiate the ideal cipher in Construction 5.6.1 with a specific keyed permutation P.
Moreover, the only condition we have on the underlying PKE is that it is IND-CPA secure.
Hence, we can instantiate it with an FHE scheme (KeyGen’, Enc’, Eval’, Dec). The idea of the
attack is that, as soon as the ideal cipher is a permutation Py with a succinct description, the
adversary can make non-black-box use of the permutation. It homomorphically evaluates
the permutation inside the FHE allowing it to compress the ciphertext into an encryption
of a single bit.
We now provide the description of the adversary A = (A;, A, As).

A1 (pk) : Output any distincit two messages mg, my.

As(e) -

Parse ¢ = (¢, d).
Consider the circuit C(x) = C(z)4,m, which computes the following:

1. Evaluate w = P *(d).
2. If w = mg, output 0. Otherwise, output 1.

Compute & < Eval'(pk,C,).

Output st = ¢.
As(st,sk) : Compute b’ <+ Dec'(sk,&). Output ¥'.

We can establish that o’ = b by the homomorphic correctness of the FHE.

142 CHAPTER 5. INCOMPRESSIBLE ENCRYPTION

Size of st. The state st of the adversary is composed by a single FHE ciphertext encrypting
one bit. Hence, by the compactness of the FHE |st| = poly[A].

Attack on Construction 5.6.3 The same attack concept also works for Construction 5.6.3.
We the sketch attack below

A;(pk) : Output any distincit two messages mg, my.
Ag (C) :
e Parse ¢ = (c/,d, h).
e Consider the circuit C(x) = C(x)q4,n,m, Which computes the following:
1. Let 7 < Hy(z,d) ® h.
2. Let w + Hg(x,r) @ d.
3. If w = mg, output 0. Otherwise, output 1.
e Compute ¢ < Eval’(pk,C,c).
e Output st = ¢.

As(st,sk) : Compute b' + Dec’(sk, ¢). Output b'.

Remark 5.6.4. Notice encrypting the key of any (plain model) incompressible encryption
scheme in an FHE and adding this to the public key removes the incompressibility by the
same argument. This observation demonstrates the dangers of using the ICM in incompress-
ible encryption and that incompressible encryption is a fairly delicate notion.

Chapter 6

Space-Hard Functions

6.1 Introduction

Timed Cryptography. Traditionally, in public key cryptography [DH76], the ability to
decrypt ciphertexts which have been generated with a public key pk is tied to the possession
of a secret key sk corresponding to pk. Likewise, generation of signatures with respect to
a verification key vk is tied to the possession of corresponding signing key. Timed cryp-
tography [May93, CLSY93, RSW96] adds a twist to this rigid paradigm: Rather than the
possession of a secret key, investing time facilitates the decryption of a ciphertext or gener-
ation of signature. In other words, time-lock encryption allows to encrypt to the future.
This enables new applications both in theory and practice: Timed commitments [BNOO]
facilitate e.g. fair exchange and fair coin-toss in the two party setting, notions which have
been shown to be beyond reach of standard cryptographic notions [Cle86]; Likewise, from a
more practical angle time-lock puzzles play a crucial role in the design of public randomness
beacons, a crucial component in the design of distributed ledgers (see e.g. [KWJ24]).

Verfiable Delay Functions Boneh et al. [BBBF18] introduced the notion of wverifiable
delay functions (VDFs), which can be loosely thought of as the timed analogue of digital
signatures: Computing a VDF output together with a certificate of its validity takes a
long time T, whereas verification of a certificate can be performed rapidly, that is in time
poly(A,log(T)). VDFs are likewise powerful tools in the construction of randomness beacons
and consensus protocols, as they e.g. facilitate techniques such as self-selection [CM16] and
proofs of replication [ABBK16].

Boneh et al. [BBBF18] provide both generic and concrete constructions of VDFs. They
obtain generic constructions by combining specific sequential functions, such as iterated
hashing, with incrementally verifiable computation [Val08, BCCT13].

Alas, when it comes to concrete assumptions, VDFs in particular and timed cryptog-
raphy in general rest on a rather narrow foundation; most candidates of time-lock puzzles
and verifiable delay functions are tied to the sequential squaring assumption in groups of
unknown order and related problems [Piel9, Wes19, DMPS19]. Bitansky et al. [BGJT16]
showed that by relying on indistinguishability obfuscation, timed primitives can be realized
assuming the minimal assumption that inherently sequential problems exist. As this con-
struction relies on very heavy theoretical tools, its appeal is currently limited to the domain
of pure theory.

143

144 CHAPTER 6. SPACE-HARD FUNCTIONS

Proofs of sequential work [MMV13, CP18, DLM19] can be seen as a more lightweight
alternative to VDFs and are achievable from potentially weaker assumptions. However,
PoSW lack a uniqueness property, which makes them unsuitable for many of the more
advanced applications of VDFs.

The concrete VDF candidates given in [BBBF18] constitute a notable exception from
the sequential squaring blueprint. These candidates are based on a novel family of hardness
assumptions relating to the inversion of rational functions of high degree.

Space-Hard Cryptography. Conceptually, there is nothing intrinsically special about
the computational resource of time. Hence, a natural conceptual next step is to consider
more general computational resources. In fact, there is a growing body of works investigating
the notion of memory or space-hard functions [Per09, AS15a, AB16, ACPT17, BP17, ABB22,
AGP24].

In this work, we are concerned with both space-lock puzzles, the space-analogue of time-
lock puzzles, and verifiable space-hard functions, the analogue of VDF's.

Syntactically, we define a space-lock puzzle to consist of two algorithm Gen and Solve.
Gen takes as input a space parameter S and a message m and outputs a puzzle p, whereas
Solve takes a puzzle p and outputs a message m. In terms of efficiency, we require that Gen
runs in time and space poly(),log(S)), whereas Solve runs in space S. In terms of security,
we require that any algorithm running in time poly()\,.S) having access to space of size at
most S'7¢ has at most negligible advantage guessing an encrypted bit.

A verifiable space-hard function syntactically consists of two algorithms Eval and Verify
(potentially along with a setup algorithm producing public parameters). Eval takes a space
parameter S and a value x and outputs a value y and a certificate w, whereas Verify takes
inputs x, y and a certificate 7w and outputs either accept or reject. In terms of efficiency, we
require that Eval runs in space S, whereas Verify runs in time and space poly(\, log(S)). In
terms of security, we require computational uniqueness and space-hardness. Computational
uniqueness requires that no algorithm running in time and space poly()\,S) can produce
a verifying tuple x,y’, 7’ with ¢’ # y, where (y,m) = Eval(S,z). Space-hardness requires
that no algorithm running in time poly(),S) and space S'~¢ finds y with non-negligible
probability.

In terms of assumptions and constructions, the design-space of space-hard cryptography
is comparatively much less explored than that of timed cryptography. In terms of generic
constructions, a closer look at the time-lock puzzle construction given in [BGJT16] reveals
that this construction can be adapted to space-lock puzzles, i.e. we can construct a space-lock
puzzles assuming iO and, additionally, the minimal assumption that inherently space-hard
computations exist.

However, critically, there are currently no algebraically structured candidates for efficient
space-lock puzzles.

6.1.1 Our Results

In this work, we take a first step in studying efficient space-hard primitives from algebraic
assumptions relating to the solvability of sparse univariate polynomials of large degree. The
contributions of our work are two-fold:

1. [DDJ24]! provide an efficient attack against the specific proposal of the “Inverting

1This is the paper that corresponds to this chapter. The attack is left out of the chapter as I did not
significantly contribute to it. The high level description of the attack remains in the chapter to outline the
problems with designing permutation polynomials.

6.1. INTRODUCTION 145

Injective Rational Maps” Assumption of Boneh et al. [BBBF18]. While we do not
break the assumption in its most general form, we demonstrate a full break on their
suggested candidate, which indicates that the assumption stands on brittle ground.
A major challenge towards instantiating the general assumption is finding suitable
families of injective rational maps, and [BBBF18] suggested a family of rational func-
tions of (large) degree d constructed by [GM97]. In [BBBF18] it was conjectured
that this family cannot be inverted in time and space poly(log(d)) (i.e. by circuits of
size poly(log(d))). [DDJ24] provides and implements an algorithm which inverts these
rational functions in time and space poly(log(d)), thus falsifying the main candidate
instantiation of the Inverting Injective Rational Maps assumption.

We remark that this VDF was a weak VDF to begin with, i.e. algorithms that
run in time poly(log(d)) and space O(d®) for some ¢ > 1 were known and discussed
in [BBBF18]. The main innovation of this part of our work is that our attack runs in
both time and space poly(log(d)).

2. In Section 6.2 we introduce and discuss a new algebraically structured space-hardness
assumption which we refer to as the sparse root finding (SRF) assumption. Building
on this, in Section 6.3 we provide a construction of spacelock puzzles from the SRF
assumption, whereas in Section 6.4 we construct a verifiable space-hard function from
the SRF assumption.

6.1.2 Our Techniques

Inverting Guralnick Miiller Polynomials As mentioned above, Boneh et al. [BBBF18]
provided a concrete candidate for a VDF based on Guralnick-Miiller permutation polyno-
mials [GM97]. These are defined via rational functions f,, over a finite field F,m and
parametrized by an element p € Fpm and a (large) degree parameter ¢ = p” (for some
r < m). Both p and ¢ need to obey some additional constraints to ensure that the function
is a permutation. The function f, 4(X) is then given by

(X7 — uX =) (X7 = puX +)7 + (X7 — puX + p)? + 4p>X) 0t/

fu,q(X): 2X4

Notice, that this function is neither linear nor affine, consequently at a first glance one may
reasonably conjecture that it takes space proportional to ¢ to invert it on random inputs. In
fact, [BBBF18] provide a survey of cryptanalytic techniques to invert rational functions and
argue why these techniques fail for the case of Guralnick-Miiller polynomials. This includes
inversion of extremely sparse polynomials, linear algebraic attacks, as well as attacks against
so-called exceptional polynomials, which remain permutations when considered as rational
functions over the extension field .. for infinitely many choices of the degree m’. Boneh
et al. [BBBF18] conjecture that inverting a function f, , for a randomly chosen p € Fpm
(under some constraints) takes time polynomial in the degree parameter g.

Yet, [DDJ24] fully break of this assumption. Interestingly, they draw the mathematical
tools for this attack from the original work of Guralnick and Miiller [GM97]. They observe
the following: While the function f, 4 itself is not affine, the problem of inverting f,, , on a
target ¢t € F,m can be embedded into a linear system of higher degree. Specifically, [GM97]
provides us with the following property of f, 4: If 0 is ¢ — 1-st root of u in the algebraic
closure of F,m, then there exist efficiently computable coefficients Ay, By, B1, B2 (depending

146 CHAPTER 6. SPACE-HARD FUNCTIONS

on p and t) in an extension of F,m such that

[T (Fua(X +i0) —t) = XT + BoXT + B1X + BoX + Ap. (6.1)
icF,

Consequently, any solution & € Fpm of f, 4(§) =t is also a solution to the right-hand side
of equation (6.1), i.e. such a solution satisfies

€7 4 Bot? 4+ B€7 + Bof + Ag = 0. (6.2)

Now observe that equation (6.2) is in fact a linear equation system (as exponentiation
with ¢ is a Frobenius action). Hence, we can efficiently compute a solution space using
standard linear algebra techniques. [DDJ24] provide a proof that this attack works with
overwhelming probability and a implementation of the attack in MAGMA that solves big
instances in milliseconds.

Space-Hardness from Inverting Sparse Polynomials Guralnick-Miiller polynomials
are one specific instance of the more general problem of finding roots of sparse polynomials 2,
a problem which we will refer to as Sparse Root Finding (SRF).

As [BBBF18] note, their root-finding-based candidate achieves only a mild form of se-
quentiality to begin with. In fact, a moderate polynomial increase in parallel computation
power will enable a solver to find roots significantly faster. On the other hand, the space-
hardness of these problems seems to be much more robust, as all known algorithms for this
type of problem consume a large amount of space. In fact, the amount of memory scales
linearly with the degree of the polynomial.

This is the starting point for the constructive results in this work. In a nutshell, we
consider the problem of inverting sparse, high degree polynomials but drop the requirement
that the polynomial needs to act as a permutation. Hence, the resulting problem carries
significantly less structure than e.g. inverting Guralnick-Miiller polynomials and does not
provide an obvious angle for cryptanalysis.

More importantly, by basing our constructions on the problem of root-finding for general
sparse polynomials, we can achieve a win-win scenario:

e If our assumptions hold, we obtain practically efficient candidates for space-hard cryp-
tography

e While we do not provide a worst-to-average case reduction, refuting our assumptions
would constitute a considerable advance in the algorithmic state-of-the art of poly-
nomial factorization algorithms, as it is a long open problem to design polynomial
factorization algorithms which leverage sparsity (in a non-extreme parameter regime).

Space-Lock Puzzle Building Space-Lock Puzzles from the assumption that SRF is space-
hard in sparse high-degree polynomials is fairly straight forward. To generate a puzzle for
a random message m, generate a random sparse polynomial f(X) with high degree and a
random constant coefficient. Now, we know that f(X) — f(m) has a root at m and can be
output as a space-lock puzzle for m. There are two minor problems with this construction.
First, we might want to create a puzzle for a non-random message, which we can resolve by
using hybrid encryption. Second, there might be polynomials f(X) — f(m) with multiple
roots. We can fix this problem by padding the message and checking for the correct padding
after solving the puzzle.

2More generally, we can consider this as finding roots of structured polynomials which can be evaluated
quickly.

6.1. INTRODUCTION 147

Verifiable Space-Hard Functions. We start by discussing our construction of verifiable
space-hard functions from SRF. As we let go of the permutation requirement of the polyno-
mials, we need to work harder to make this function verifiable. Our technical tool to achieve
this is a novel and efficient special-purpose proof system for certifying the greatest common
divisor (gcd) between the polynomial f(X) and X? — X. This is sufficient, as given this ged
one can quickly and space-efficiently find the roots of f(X).

For the purpose of this outline, assume that we have cheap way to prove equations over
high-degree and possibly dense polynomials. We will later explain how to carry out these
checks. We make use of the fact that the greatest common divisor between a polynomial
f(X) and XP— X is constant degree with high probability over the choice of a random sparse
polynomial f(X). Our proof system establishes that some constant degree polynomial g(X)
is the ged of f(X) and XP — X in two phases.

In the first phase, the prover computes f/(X) = X? — X mod f(X) via square and
multiply. Each step of this computation is defined by a simple polynomial equation

(X*" mod f(X))- (X*" mod f(X)) = (X*"" mod f(X))+h(X)f(X)

for some polynomial h(X).
In the second phase, we use that

ged(X? — X, f(X)) = ged(f'(X), f(X))

and compute g(X) = ged(f'(X), (X)) together with its Bézout coefficients a(X), b(X) via
the extended Euclidean algorithm. The greatest common divisor is unique, up to normaliza-
tion, hence we require the prover to normalize this polynomial. Bézouts identity guarantees
that for all a(X), b(X) we have a(X)f (X) + b(X)f(X) is a multiple of ged(f'(X), f(X)).
Further, the verifier can check whether g(X) = a(X)f(X) + b(X)f(X) is a divisor, by
making sure that f(X) mod g(X) =0 and X? — X mod g(X) = 0. Now we have verified
that g(X) is a divisor of f(X) and f/(X) and that g(X) is a multiple of the their greatest
common divisor, therefore, it is a greatest common divisor.

So far we have skipped over the issue of how we can verify polynomial equations, when
the polynomials have representations that are bigger than the verifier’s space. Instead of
the verifier checking these equations over the polynomials the prover commits to the polyno-
mials using a polynomial commitment scheme. The verifier then checks these equations by
evaluating the polynomials at a random location. The verifier can then check the equations
on the evaluated polynomials. Soundness follows from the Schwartz-Zippel lemma.

These polynomial commitment schemes can be instantiated with the popular pairing
based [KZG10], lattice based schemes like [CMNW24], or IOP based polynomial commitment
schemes [BBHR18, ACY23, ACFY24a, ACFY24b].

6.1.3 Open Problems

We consider it to be an interesting question to investigate whether it is possible to intrin-
sically and flexibly tie the resources of space and time in a puzzle or verifiable time-space
hard function. Specifically, is it possible to force the puzzle solver to spend S space for T
time? Here S and T are adjustable parameters. This concept may be most closely captured
by the concept of sustained space complexity [ABP18].

We believe any solution to this problem that goes beyond taking a sequential function
that has a scalable domain and generically applying incrementally verifiable computation
to it might be of big interest. An example for such a function is sequential squaring over a

148 CHAPTER 6. SPACE-HARD FUNCTIONS

modulus that scales with the space parameter. More specifically the function could be on
input x € [2*] compute h((N* — z)2° mod N*) where h is some compressing function to
reduce the size of the result.

6.1.4 Related Work

There are many works in memory restricted cryptography such as memory-hard functions
and various forms of proof of space. Memory-hard functions are functions that are only
computable with a large amount of memory accesses. The measure that many works use is
called cumulative memory complexity. These functions are used to reduce the effectiveness
of building application specific integrated circuits (ASICs) or field programmable gate ar-
rays (FPGA) for brute force attacks because these excell at computation and do not have a
faster way of accessing memory than off-the-shelf CPUs. Memory-hard functions are used in
password hashing, proof of work, and other applications where the goal is to make compu-
tation expensive. The first memory-hard function was proposed by Percival in 2009 [Per(09].
So far, all memory hard functions [Per09, AS15a, AB16, ACP™17] use graphs with special
structure and iteration of a function to force anyone trying to evaluate the function to do a
lot of memory accesses.

The notion of space-hardness we consider was coined “Transient Space” in the works
of Ren and Devadas [RD16]. We are trying to increase the amount of maximum storage
that is necessary to compute the function, which we call space hardness. A space-lock
puzzle closely resemble trapdoor memory-hard function [AGP24], asymmetrically memory-
hard functions [BP17] and memory-hard puzzles [ABB22], but under the notion of memory
hardness.

We introduce space-hard functions and their verifiable counter part. Verifiable space-
hard functions are a space-analogue of verifiable delay functions. We heavily deviate from
the design space of memory-hard functions as most constructions are based on the random
oracle model. Therefore, using incrementally verifiable computation to verify their evalu-
ation requires proving statements over random oracle, which is concretely inefficient and
conceptually unsatisfying. Indeed, [ABFG14] show how to verify that the function used
much memory, but not that the output is correct. [DFKP15] further extend the notion to
proof of space, where the prover executes a memory-hard function and then regularly gets
queried to prove that he maintains a large amount of the computation in his memory. For
an excellent overview on the topic, we refer to [RD16], as they detail the different notions
and their relations.

Our verifiable space-hard function follows a similar design principle as the weak verifiable-
delay function suggested by [BBBF18]. They suggest that inverting a fast to evaluate
high degree permutation polynomial requires a lot of sequential computation. We instead
conjecture and use the space-hardness of the same computation. Because we, however, want
to move away from permutation polynomials to less structured polynomials our constructions
require a special purpose proof system.

Indeed, verifiable space-hard functions can be though of as a space-analogue of verifiable
delay functions [LW17, BBBF18, Wes19, Pie19, HHK*22, HHKK23| and space-lock puzzles
as a space-analogue of time-lock puzzles [RSW96].

6.2 Space-Hardness of Root-Finding

We conjecture that root-finding for polynomials over a big finite field requires a lot of space.
As far as we are aware of, all root finding algorithms [Ber70, CZ381]

6.2. SPACE-HARDNESS OF ROOT-FINDING 149

[VZGS92, Sho93, KS95, KU11, GNU16] in a finite field F,, for large p and comparatively
smaller degree d, start by computing X? — X mod f(X). For a discussion of recent results,
see [GNU16]. In general, this polynomial X? — X mod f(X) is a dense polynomial of
degree d — 1, whose representation requires d elements in IF,,. For this reason, we conjecture
a minimal space of d for any algorithm with a runtime o(p). Proving this conjecture wrong
would greatly advance the state of the art concerning polynomial factorization.

Assumption 6.2.1 (Sparse Root-Finding (SRF)). We define the space-hardness of finding
a root in a polynomial from distribution D) g as follows: Root-Finding is hard with a gap
e < 1 if there exists a polynomial S(-) such that for all polynomials S(-) > S(-) and PPT
adversaries {Ay}reny with space bound S€(A) there exists a negligible function negl such

that for all A € N:
f(X) <Dy s

Pr {f(z*) =0 ot AA(f(X))} = negl(\)

We also define a space-hardness assumption for the problem of computing the greatest
common divisor of a polynomial and X? — X.

Assumption 6.2.2 (Sparse GCD Computation). We define the space-hardness of ged com-
putation from distribution D) g as follows: ged computation is hard with a gap ¢ < 1 if
there exists a polynomial S(-) such that for all polynomials S(-) > S(-) and PPT adversaries
{Ax}ren with space bound S¢(X) there exists a negligible function negl such that for all
AreN: (x)
J(X) < Dx s
Pr|g(X) =gcd(f(X),XP - X ’ = negl(A
9(X) = ged(f(X))g(X)<—A,\(f(X)) gl(\)

Lemma 6.2.3. If root-finding is hard with gap € < 1 then gcd computation is hard with gap
e <1

Proof. Given an adversary A that breaks Assumption 6.2.2 we construct an adversary A’
that breaks Assumption 6.2.1.

A (f(X)) -

o Let g(X) + A(f(X)) where g(X) is an n-degree polynomial.

e Factor ¢g(X) into degree 1 polynomials X — hy,..., X — h, using the Cantor-
Zassenhaus algorithm.

e Return h;.

The factors of g(X) can only be of degree 1 because X? — X only factors of degree
1. The Cantor-Zassenhaus [CZ81] algorithm has space-complexity O(nlogp) [Sho93]
and runs in poly(n,logp).

O

We require these assumptions for two different but related applications, which we will
detail in later chapters. One is a space lock puzzle and the other a verifiable space-hard
function. For the space lock puzzle we only really require that the polynomials by the
distributions are fast to evaluate and that root-finding is space-hard.

In general, we will stick with prime order fields because they tend to have less structure,
which might protect them against structural attacks. We will also try to impose as little
structure as possible on the polynomials. In order to make proofs over the these fields better
we choose FFT-friendly fields.

150 CHAPTER 6. SPACE-HARD FUNCTIONS

A natural candidate is the distribution of random sparse polynomials. We make sure
that the lowest two monomials are random for better estimation of number of roots. More
formally, we define the distribution D) g as follows:

Definition 6.2.4 (Random Sparse Polynomial (with Uniform Constant and Linear Coef-
ficient)). Pick a prime p € Q(2%), degree d € Q(S), and number of non-zero monomials
k € Q(\). Operations happen over F,,. Output the following univariate (the variable is X)
polynomial

ag + a1 X + Z aiXei'-i-Xd
i€lk—2]

For uniformly random a; & F, and e; & [d—1].
We prove these polynomials define a family of strongly universals hash functions [WC81].

Lemma 6.2.5. For any polynomial h(X), any distict z1,...,z, € Fp, and any possibly
non-distinct yi, ...,y € Fp, we have that

Pr [h(x1)+l($1) :yla"'7h<xt)+l(xt) :yt] :p_t
anwaatfl(iIFp
where 1(X) =3,c 4 a; 1 XL
Proof. The statment h(z1)+1(z1) = y1,...,h(x:)+1(x:) = y; is equivalent to the this linear
system of equations:

t—1 ao
1z ... 2 h(z1) . 1
SRR : : = <
t—1 at—1
1z ... x h(zx) 1 Yt
t—1 d
1 r1 ... xq ao Yy — X9
t—1
1z ... as_1 Yk — xﬁ

The matrix is a Vandermonde matrix, which is invertible. Therefore, multiplication by it
is a bijection. Because ag,...,a;—1 are uniformly random, the probability of the system of
equations to hold is p~t. O

Via a inclusion-exclusion argument, we can upper bound the probability of the polyno-
mial having no roots.

Lemma 6.2.6. For any polynomial h(X) and uniform ag, a; & F, we have ag+a1 X +h(X)
no roots with probability < 1/2.

6.2. SPACE-HARDNESS OF ROOT-FINDING 151

Proof. We have

Pr [Veer, (a0 + a1z + h(z) = 0)]

ao,a1

> Z Pr [ap + a1z + h(z) = 0] (63)

ap,a1
z€F,

— Y Pr [Aseferaay(a0 + a1z + h(x) = 0)]

ao,a1
r1<z2€F,

=1- > 1p (6.4)

z1<w2€F,

>1/2

Inequality 6.3 follows from a Bonferroni inequality 2.2.7 and equality 6.4 follows from
Lemma 6.2.5. O

We need the following basic fact.

Lemma 6.2.7. The size of the image of a polynomial h(X) corresponds to the number of
ap € F), for which the polynomial h(X) — ag has a root in Fy,.

Proof. If there exists an « € F), such that h(z) = a¢ then h(X) — ao has a root in F,, and
vice versa. O

Lemma 6.2.8. For any polynomial h(X) and uniform ay &), it holds with probability
>1—1/v/2 that h(X) + a1 X has a image of size > p(1 — 1//2).

Proof. Fix a polynomial h(X). By Lemma 6.2.6 we know that the number of ag, a1 € F,, for
which the polynomial f(X) = ag + a; X + h(X) has no root is at most p?/2. Therefore, by
a pidgeon-hole argument there are < p/ V/2 choices of for a; such that there exist > p/V?2
choices of ag such that ag+ a1 X + h(X) has no root. This means that there are > p —p/x/i
choices for a; such that < p/v/2 choices for ag such that ag + a3 X + h(X) has no root.
Therefore, there are > p — p/+/2 choices for a; such that > p — p/v/2 choices for ag such
that ap + a1 X + h(X) has a root. The statement follows by Lemma 6.2.7. O

Lemma 6.2.9. Fiz a polynomial h(X). The statistical distance between
(a1, h(z) + arx) and (a1,y)

where a1,z is uniformly random over F, and y is uniformly random from the image of
h(X) +a1X is < /2 —0.5.

Proof. By Lemma 6.2.8 h(X) + a; X has a image of size > p(1 — 1/v/2) with probability
1 — 1/4/2. For the rest of this analysis we assume to be in this case.

Picking a random z and evaluating h(X)+ a1 X on it is the same as sampling the output
uniformly random from the multiset image of h(X)+ a1 X (the multiset where each element
y has the multiplicity of the number of elements such that the element evaluates to y). This
multiset has size p.

We now convert the multiset image to set by enumerating the multiplicities of each
element and call this set M. E.g. a multiset {8,8,8,13,55,55} would turn into a set of
tuples {(8,1),(8,2),(8,3),(13,1),(55,1),(55,2)}. We do the same thing to the image of
h(X) + a1 X and call it D. However because it is a set it only ever has multiplicity one.

152 CHAPTER 6. SPACE-HARD FUNCTIONS

So we would turn the set {8,13,55} into {(8,1),(13,1),(55,1)}. By the definition of these
sets D C M. Because M is of size p and D is of size > p(1 — 1/+/2) sampling a random
element from M will be in D with probability > 1 — 1/v/2. Therefore, for a 1 — 1/v/2
fraction of random choices in sampling x at random and then evaluating h(x) 4+ a1z behaves
exactly as sampling uniformly random from the image. Thus, the statistical distance is

<1-(1-1/v/2%?=1-(1.5-2/v2)=+v2-0.5. O

For our verifiable space-hard functions, we also want to have tight bound on the number of
roots of these polynomials. A natural candidate for this is a distribution over permutation
polynomials. In previous chapters we showed how to efficiently invert the specific set of
Guralnick-Miiller permutation polynomials [GM97], which [BBBF18] suggested as a time-
lock puzzle. As we leveraged the specific structure of these polynomials for our attack, we
believe it to be prudent to stay away from permutation polynomials.

If we instead use random sparse polynomials in our verfiable space-hard functions, we
would want to have a good bound on the number of roots of these polynomials. The work
of [Kell6] conjectures that the number of roots in a random sparse polynomial is O(k log p),
which would be good enough for as this also implies that the probability of sampling a
polynomial without roots is not overwhelming.

To have a lower probability of sampling a polynomial without roots that we can even
prove, we suggest the distribution of polynomials which are the sum of a dense low-degree
polynomial and a single high-degree monomial. We define the distribution D) g as follows:

Definition 6.2.10 (Low-Degree Dense). Pick a prime p € ©(2*), degree d € (S), and
number of non-zero monomials k such that klogk — 2k > A. Operations happen over [F,,.

ag + Z aiXi+Xd
i€lk—1]

For uniformly random a; & F,.

Lemma 6.2.11. For a polynomial f(X) sampled from distribution Dy g we have f(X) has
at least k (as in Definition 6.2.10) roots with probability < 27>,

Proof. A polynomial having k roots equivalent to the statement that there exists a set
of A distinct points x1,...,x; € F, such that the polynomial evaluates to zero at these
points. There are (Z) much sets. For each of those sets, the probability that the polynomial
evaluates to zero at these points is p~* by Lemma 6.2.5. Therefore, by union bound the

p
probability that the polynomial evaluates to zero at any set of k distinct points is < (ka) <

%ﬁ*kﬂ) < % < 272, The last inequality follows from Stirling’s approximation and
our choice of k relative to A. O

6.3 Space-Lock Puzzle from SRF

We define space-lock puzzles analogously to time-lock puzzles but the resource we restrict
is not sequential time but space.

Definition 6.3.1 (Space-Lock Puzzle). A space-lock puzzle (SLP) with message space
{0,1}" is a tuple of three algorithms SLP = (Setup, Gen, Solve) defined as follows:

pp < Setup(1*,5) : The setup algorithm Setup takes as input a security parameter 1* and
a space bound S and outputs public parameters pp.

6.3. SPACE-LOCK PUZZLE FROM SRF 153

p < Gen(pp, m) : The puzzle generation algorithm Gen takes as input public parameters pp
and a message m and outputs a puzzle p.

m < Solve(pp, p) : The solving algorithm Solve takes as input a puzzle p and outputs a
message m.

Statistical Correctness : SLP = (Setup, Gen, Solve) is statistically correct if for all poly-
nomials S(-) there exists a negligible function negl s.t. for all n, A € N and m € {0,1}"

pp + Setup(1*, S(\))

p < Gen(pp,m) < negl(})

Pr |m = Solve(pp, p)’

Efficiency : There exists a polynomial poly such that for all n, A, S € N, and m € {0,1}"
the runtime (and therefore space usage) of pp < Setup(1*,S) and p + Gen(pp, m) is
< poly(A, n,log S).

Security : SLP is secure with gap € < 1 if there exists a polynomial S () such that all
polynomials S(-) > S(-) and PPT adversaries { Ay} xen with space bound S¢()\) there
exists a negligible function negl s.t. for all n, A € N:

pp < Setup(1*, S()\))
(mo, my,st) < Ax(pp)
b {01}

p < Gen(pp, ms)

Pr [b = Ax(st,p) <1/2 + negl(X)

We present the first space-lock puzzle based on the space hardness of finding roots of
polynomials.

Construction 6.3.2 (Space-Lock Puzzle). Let Dy g be a distribution of polynomial that
are fast to evaluate and where finding roots is space-hard. Further, H : F, — {0, 1A n,
where n is the size of the message space then the following defines a space-lock puzzle.

Setup(1*,9) : Return (A, S).
Gen(pp, m) :
o Sample a degree S polynomial f(X) € Dy g.

e Sample a uniformly random element z & F,.

o Let y = f(2).
* Return (f(X),y,H(2) & (0}]|m)).

Solve(p = (f(z),y,c¢)) :

e Compute Z, the set of roots of the polynomial f(X) —y.
e For z* € Z:

— Compute m + H(z*) ® c.

— If the first A bits of m are all 0 return the rest of m

Theorem 6.3.3. Construction 6.53.2 is a space-lock puzzle under the assumption that the
SRF assumption 6.2.1 holds for polynomials with uniform linear coefficient.

154 CHAPTER 6. SPACE-HARD FUNCTIONS

Proof. The proof follows from lemmas 6.3.4 to 6.3.6. O

Lemma 6.3.4 (Statistical Correctness). Construction 6.3.2 is statistically correct.

Proof. Because f(X) — y has degree S it has at most S roots. We know that f(z) = v,
therefore, z is a root of f(X) — y. Because H is a random oracle we have that for all
2* € Z \ {2z} the probability that the first A many bits of m are 0* is 27*. Therefore, Solve
outputs m with all but probability < S(\)-27*, which is negligible in \. O

Lemma 6.3.5 (Efficiency). Construction 6.3.2 is efficient.

Proof. The properties of Dy g tell us that evaluating f(X) on z can be done in poly(), log S).
It follows that Gen runs in time and space poly(\, log S). O

Lemma 6.3.6 (Security). Construction 6.3.2 is secure under the SRF assumption 6.2.1 for
polynomials with uniform linear coefficient.

Proof. To break security of the Construction 6.3.2 the adversary has to compute z given
f(X) and y otherwise he has no way of computing H(z).

We fix an f(X). In Construction 6.3.2 the adversary has to compute the root of a
polynomial following the distribution f(X)— f(z) for uniformly random z. In the assumption
the adversary has to compute a root of a polynomial f(X) — y, where y is uniformly at
random. Because of the polynomial identity lemma we have f(X) — f(x) can have at
most d roots, where d is the degree of f(X) — f(z). Therefore, for every y* we have
Prmﬁp[f(x) = y*] < d/|F| = d - Prly = y*]. Therefore, if an adversary compute a root for

f(X) — f(x) with probability € then it can compute a root for f(X) — y with probability
> e/d. O

6.4 Verifiable Space-Hard Function from SRF

The definition of verifiable space hard function is similar to the definition of verifiable delay
function but instead of a sequential time bound we have a space bound.

Definition 6.4.1 (Verifiable Space-Hard Function). A verifiable space-hard function (VSHF)
with domain space X, codomain Y, and proof space II has the following algorithms:

pp < Setup(1*,5) : The setup algorithm Setup takes as input a security parameter A and
a space bound S and outputs public parameters pp.

(y,m) < Eval(pp,z) : The evaluation deterministic algorithm Eval takes as input public
parameters pp and outputs a function output y and a proof 7 € II.

b < Verify(pp, x,y,m) : The verification algorithm Verify takes as input public parameters
pp, a function input z € X, a function output y and a proof m € II and outputs a bit
b.

it has the following properties:

Correctness : VSHF = (Setup, Eval, Verify) is correct if for all A, S € N and € X we have
Verify(pp, z,y,7) = 1 for pp < Setup(1*,S) and (y,) < Eval(pp,).

6.4. VERIFIABLE SPACE-HARD FUNCTION FROM SRF 155

Space Hardness : VSHF = (Setup, Eval, Verify) is sound with entropy F and a gap ¢ < 1
if there exists a polynomial S(-) such that for all polynomials S(-) > S(-) and PPT
adversaries {Ax}ren with space bound S¢()\) there exists a negligible function negl
such that for all A e N, z € X:

pp < Setup(1*, S()\))

(2.9) As(pp) | =2+ e

Pr |Eval(pp,z) = (y,)

Computational Uniqueness : VSHF = (Setup, Eval, Verify) is computationally unique if
for all PPT adversaries A there exists a negligible function negl s.t. for all A\ € N and
rzeX:

pp < Setup(1*, S()\))

)
Pr | Verify(pp, z, 3", 7") = L Ay* #y| (z,y",7*) + Ax(pp) | < negl(A)
(y,) < Eval(pp,)

Efficiency : There exists a polynomial poly such that for all A\,S € N, 7 € II, and z € X
the runtime (and therefore space usage) of pp < Setup(1*,S) and Verify(pp, z,y, 7) is
< poly(A, log S).

‘We now show how to construct a verifiable space-hard function. We follow the same basic
idea as the weak verifiable delay function of [BBBF18] but we require more care because we
do not rely on permutation polynomials.

We present the function as an interactive proof, but the proof can be made non-interactive
using the Fiat-Shamir heuristic.

Construction 6.4.2 (Verifiable Space-Hard Function). Let (Setup’, Commit, Open, Verify’)
be an extractable polynomial commitment scheme.

Setup(S, 17) :

e Output pp = Setup’(1*,d(S)), where d is the degree of polynomials required to
achieve space-hardness S.

Eval(S,z) :

o Let f(X)=H(x).

e Let the degree of f(X) be d.

e Let (pi)icqoyuf|logp)] Pe the binary decomposition of p.
e Let mp(X) = X and vo(X) = XPo.

e For i € [|logp]]:

— Compute m;(X) = m;_1(X) - m;—1(X) mod f(X).
— Compute ¢;(X) = (m;—1(X) 'mz 1(X) —mi(X))/f(X)
— Compute v;(X) = v;—1(X) -m¥*(X) mod f(X).

— Compute w;(X) = (v;—1(X) - m{" (X))/ f(X)
e Compute g(X), the ged of v|10g) (X) — X and f(X) together with their Bézout
coefficients a(X), b(X).

e Commit to

— the degree d — 1 polynomials

156 CHAPTER 6. SPACE-HARD FUNCTIONS

* (mi(X))ic{oyulllog p)]>
* (0i(X))ietoyultogp)1-
x and a(X),
— the degree d — 2 polynomials
* (ei(X))iefoyulogpl]s
* (wi(X))ieoyullogp)]s
* and b(X)

with Commit to get polynomial commitments

(1124(X))ie {03ulLog p)]»
— (0:(X))ie(oyulllog p)]+

(éz(X))ze{O}U[_logpj]a
- (wz(X))ze{O}u[Llong]’
— and b(X).
Further, send these commitments to the verifier.
e The verifier responds with a uniformly random field element r.

e Evaluate the polynomials at r and compute corresponding openings (0, ())ze{o}u[uog)]s

E)Ow(rﬂze{owumgpﬂa0a<r> (0c;(r))iefoyulltog pl]> (Ow;(r))ic{orulllog p))> a0 Op(r) Via
pen.

9(X)
Teading coefficient of 9(%X) and final round of the proof

system (mi(r))ie{O}U[Uong]v (Ui(r))iE{O}U[Uong]7 a(r), (ei(T))ie{O}U[_logpj]a (wi(r))ie{O}U[Uongh
b(T’), (Omi(r))ie{o}u[_logpj]v (Ov,i(r))iE{O}U[Llogpj]a Oa(r), (Oei(r))ie{o}u[_logpj]v (Owi(r))ie{o}u[l_logpj]a
and op(yy-

e Return function output y =

Verify(z,y = g(X)) :
o Let f(X) =H(x).
o If g(X) is not monic return 0.

e Run V to verify that ¢(X) is at a constant relative distance from a polynomial of
degree d.

Let (pi)icfoyufliogp)] Pe the binary decomposition of p.

Sample a random set R C L of size A.
For r € R:
— Read mo(r) and vg(r) from the prover string.
— If mo(r) # r return 0.
— If vo(r) # rP° return 0.
For i € [|logp]]:
— Forr € R:
x Read (m;—1, m;(r), e;(r), vi—1(r), v;(r), w;(r)) from the prover string.
x If m;_1(r)? # my(r) + e;(r) - f(r) return 0.
w I v;_1(r) - my(r)P # vi(r) + wi(r) - f(r) return 0.
For r € R:

6.4. VERIFIABLE SPACE-HARD FUNCTION FROM SRF 157

— If a(r) - (Vj1ogp) (1) —7) +b(r) - f(r) # g(r) return 0.
o If f(X) mod g(X)#0or X? — X mod ¢g(X) # 0 return 0.

e Return 1.

Remark 6.4.3. Note, the above function does not have high output entropy because f(X)
does not have any roots with < 1/2 probability. This is required by many applications and
can easily be fixed by repetition.

Theorem 6.4.4. Construction 6.4.2 is a verifiable space-hard function.
Proof. Follows from Lemmas 6.4.5 to 6.4.7 and Corollary 6.4.8. O
Lemma 6.4.5. [Correctness] Construction 6.4.2 is correct.

Proof. Because the prover divides g(X) by its leading coefficient it outputs a monic poly-
nomial. All the checks made by V pass, which follows from the correctness of (P,V). For
i € {0} U[|logp]] it holds that m;(X) = X2 mod f(X). We also have for i € [|logp]] it
holds m;_1(X)? = m;(X)+ f(X)e;(X). Similarly, for binary decomposition (p;);eo1uf|iog p)]
of p we have _
vui(X)= [X*" mod f(X)
ie{}U[llogp]]
and .
wi(X)= [X" ui(X).
ie{}u[[logp]]

Therefore, evaluating all these polynomial at the point r still makes these equations hold. [

By definition of a common divisor g(X) divides v|jogp (X) — X and f(X). Because
Vllogp) (X) — X = XP — X mod f(X) we get if g(X) divides v|jogp)(X) — X and f(X) it
also divides X? — X. The Bézout coefficients have the property that a(X) - (v|16gp|(X) —
X)+b(X) - f(X)=g(X). Therefore, each check passes if 7 is honestly generated.

Lemma 6.4.6. [Efficiency] Construction 6.4.2 is efficient.

Proof. The prover’s operations are all in poly(d, A). The rest of the proof regards itself with
the efficiency of the verfiier.

We require from D)y g that with all but negligible probability f(X) has a polynomial
number of roots. For polynomials where the X low-order monomials are dense (see Definition
6.2.10) this follows from Lemma 6.2.11. Therefore, the degree of g(X) is polynomial in A
with overwhelming probability. The verifier has to check polynomially many opening and
F, equations. Therefore, the verifier is polynomial in log(d) and X if checking an opening is
polynomial in log(d). O

Lemma 6.4.7. [Computational Uniqueness] The Construction 6.4.2 is computationally
unique.

Proof. First, we extract the polynomials
o (mi(X))ic{oyulllogp)];

. (Ui(X))iE{O}U[UngJ]7
e a(X),

158 CHAPTER 6. SPACE-HARD FUNCTIONS

e (&(X))ieforulliogp)»
o (wi(X))ie{oputogpl>
e and b(X)

from their respective commitments and openings at r.

Then we check each polynomial equation the polynomial identity lemma [2.2.8]. Each
polynomial equation we check is at most of degree 2d. Therefore, we get if a polynomial
equation does not hold then evaluating the polynomial at a random point on in F,, and then
catches this with probability 1 — 2d/|F,|, which is overwhelming.

From these equations follows that

Vplogp)(X) =X = XP — X mod f(X).

Therefore, ged(v)iogp)(X) — X, f(X)) = ged(XP — X, f(X)). By Bézout’s identity for all
a'(X), b'(X) we have

a'(X) - (Dl1og p) (X) = X) + V' (X) - f(X)

is a multiple of gcd(?|10g,|(X), f(X)). So, the check a(X) - (¥}10gp(X) — X) + b(X) -
f(X) = g(X) verifies that g(X) is a multiple of ged(X? — X, f(X)). The checks f(X)
mod g(X) = 0 and X? — X mod g(X) = 0 verify that ¢g(X) is a divisor of f(X) and
XP — X. Therefore, g(X) is a greatest common divisor of f(X) and X? — X. The gecd is
unique up to multiplication by a field element, which is why we require g(X) to be monic. [

Corollary 6.4.8 (Space Hardness). Construction 6.4.2 is space-hard.

Proof. Under Assumption 6.2.2 for polynomials that are dense in the low degrees Defini-
tion 6.2.10 space-hardness with entropy 1 follows directly from computational uniqueness
and the fact that the polynomial has a root with probability > 1/2 (Lemma 6.2.8). O

Chapter 7

Final Remarks

7.1 Conclusion

This thesis explored how space and time, two fundamental computational resources, inter-
act in cryptographic protocols. In contrast to standard perspective in which resources are
qualitatively, we adopted a quantitative perspective throughout, highlighting how simulta-
neous constraints on space and time give rise to new limitations, constructions, and security
notions.

We began by studying communication-computation trade-offs in secure two-party com-
putation. Focusing on the fundamental primitive of oblivious transfer, we showed that
reducing communication in OT protocols often necessitates increasing computational cost.
In Chapter 3, we formalized this intuition by proving a lower bound on the number of ex-
pensive public-key operations required by communication-efficient OT protocols, thereby
uncovering an inherent space-time trade-off in the OT and PIR domains.

In Chapter 4, we examined proof systems and developed designated-verifier SNARGs that
minimize proof size. We achieved proofs significantly shorter than existing SNARGs by using
techniques from trapdoor hashing. This results in a clear trade-off: reduced communication
(space) at the cost of increased verification time. Our constructions demonstrate that, even
within proof systems, the balance between time and space plays a critical role in practical
protocol design.

Chapter 5 investigated the security limits of encryption in adversarial models where the
attacker eventually learns the secret key. We constructed incompressible encryption schemes
that retain meaningful security by assuming the adversary cannot store the entire ciphertext
until the key is revealed. These schemes fundamentally rely on space-time asymmetry:
without bounding both resources, security collapses.

Finally, in Chapter 6, we introduced new primitives in the domain of space-hard cryp-
tography, analogous to well-known time-hard constructions such as time-lock puzzles and
verifiable delay functions. We conjectured the space-hardness of root-finding in sparse poly-
nomials and used it to construct the first verifiable space-hard functions and space-lock
puzzles. These results further support the thesis that space, like time, can serve as a mean-
ingful and verifiable resource in cryptographic design.

159

160 CHAPTER 7. FINAL REMARKS

7.2 Outlook

Taken together, these results enrich our understanding of how space and time interact in
cryptographic settings. They suggest a broader research agenda: to study cryptographic se-
curity under fine-grained resource models, and to ask not just whether something is possible,
but at what resource cost and under which trade-offs.

There remain many exciting open questions. For instance:

e Can we expand our techniques for lower bounds to other setting and use them to learn
more about different cryptographic protocols?

e Are our dv-SNARGsSs the limit? Is it possible to build even smaller dv-SNARGs or
drastically improve practicality of our constructions?

e [s it possible to build incompressible symmetric-key encryption just form symmetric-
key cryptography?

e Can we find exciting applications to our enhanced space-hard cryptographic primitives
and increase their functionality?

This thesis contributes to a growing line of work that asks the question: What remains
secure when adversaries and honest parties are bounded not just in computation, but in
space and time?

Bibliography

[AB16]

[ABB22]

[ABBK16]

[ABCH19]

[ABFG14]

[ABP15]

[ABP18]

[ACFY?24a]

Joél Alwen and Jeremiah Blocki. Efficiently computing data-independent
memory-hard functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 241-271, Santa Barbara,
CA, USA, August 14-18, 2016. Springer Berlin Heidelberg, Germany.

Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-
hard puzzles in the standard model with applications to memory-hard functions
and resource-bounded locally decodable codes. In Clemente Galdi and Stanislaw
Jarecki, editors, SCN 22, volume 13409 of LNCS, pages 45—68, Amalfi, Italy,
September 12—-14, 2022. Springer, Cham, Switzerland.

Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O.
Karame. Mirror: Enabling proofs of data replication and retrievability in the
cloud. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016,
pages 1051-1068, Austin, TX, USA, August 10-12, 2016. USENIX Association.

Per Austrin, Jonah Brown-Cohen, and Johan Hastad. Optimal inapproxima-
bility with universal factor graphs. ACM Transactions on Algorithms, 2019.

Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs
of space: When space is of the essence. In Michel Abdalla and Roberto De
Prisco, editors, SCN 1/, volume 8642 of LNCS, pages 538-557, Amalfi, Italy,
September 3-5, 2014. Springer, Cham, Switzerland.

Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for
hash proof systems: New constructions and applications. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 69-100, Sofia, Bulgaria, April 26-30, 2015. Springer Berlin Heidelberg,
Germany.

Joél Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complex-
ity. In Jesper Buus Nielsen and Vincent Rijmen, editors, FUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 99-130, Tel Aviv, Israel, April 29 —
May 3, 2018. Springer, Cham, Switzerland.

Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-
solomon proximity testing with fewer queries. In Leonid Reyzin and Douglas
Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages 380413,
Santa Barbara, CA, USA, August 18-22, 2024. Springer, Cham, Switzerland.

161

162

BIBLIOGRAPHY

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR: reed-

[ACP*17]

[ACY23]

[ADD*22]

[ADI25]

[ADMP20]

[ADN*10]

[AFLN24]

[AGP24]

[AHRSO1]

[ALM*92]

[AR99]

solomon proximity testing with super-fast verification. TACR Cryptol. ePrint
Arch., page 1586, 2024.

Joél Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tes-
saro. Scrypt is maximally memory-hard. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, FUROCRYPT 2017, Part III, volume 10212 of
LNCS, pages 33-62, Paris, France, April 30 — May 4, 2017. Springer, Cham,
Switzerland.

Gal Arnon, Alessandro Chiesa, and Eylon Yogev. IOPs with inverse polyno-
mial soundness error. In 64th FOCS, pages 752-761, Santa Cruz, CA, USA,
November 6-9, 2023. IEEE Computer Society Press.

Divesh Aggarwal, Nico Dd&ttling, Jesko Dujmovic, Mohammad Hajiabadi,
Giulio Malavolta, and Maciej Obremski. Algebraic restriction codes and their
applications. In Mark Braverman, editor, ITCS 2022, volume 215, pages 2:1—
2:15, Berkeley, CA, USA, January 31 — February 3, 2022. LIPIcs.

Gal Arnon, Jesko Dujmovic, and Yuval Ishai. Designated-verifier snargs with
one group element. CRYPTO 2025, 2025.

Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryp-
tographic group actions and applications. In Shiho Moriai and Huaxiong Wang,
editors, ASTACRYPT 2020, Part II, volume 12492 of LNCS, pages 411-439,
Daejeon, South Korea, December 7-11, 2020. Springer, Cham, Switzerland.

Joél Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel
Wichs. Public-key encryption in the bounded-retrieval model. In Henri Gilbert,
editor, FUROCRYPT 2010, volume 6110 of LNCS, pages 113-134, French Riv-
iera, May 30 — June 3, 2010. Springer Berlin Heidelberg, Germany.

Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh
Nguyen. SLAP: Succinct lattice-based polynomial commitments from standard
assumptions. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VII, volume 14657 of LNCS, pages 90-119, Zurich, Switzerland, May 26—
30, 2024. Springer, Cham, Switzerland.

Benedikt Auerbach, Christoph U. Giinther, and Krzysztof Pietrzak. Trap-
door memory-hard functions. In Marc Joye and Gregor Leander, editors, EU-
ROCRYPT 2024, Part III, volume 14653 of LNCS, pages 315-344, Zurich,
Switzerland, May 26—30, 2024. Springer, Cham, Switzerland.

Yonatan Aumann, Johan Hastad, Michael O. Rabin, and Madhu Sudan. Linear-
consistency testing. J. Comput. Syst. Sci., 62(4):589-607, 2001.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and hardness of approximation problems. In 33rd
FOCS, pages 14-23, Pittsburgh, PA, USA, October 24-27, 1992. IEEE Com-

puter Society Press.

Yonatan Aumann and Michael O. Rabin. Information theoretically secure com-
munication in the limited storage space model. In Michael J. Wiener, editor,

BIBLIOGRAPHY 163

[AS92]

[AS15a]

[AS15b)

[BBB*18]

[BBBF18]

[BBCE25]

[BBD+20]

[BBDP22]

[BBHR18]

CRYPTO0’99, volume 1666 of LNCS, pages 65—79, Santa Barbara, CA, USA,
August 15-19, 1999. Springer Berlin Heidelberg, Germany.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new char-
acterization of NP. In 338rd FOCS, pages 2—13, Pittsburgh, PA, USA, Octo-
ber 24-27, 1992. IEEE Computer Society Press.

Joél Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
47th ACM STOC, pages 595-603, Portland, OR, USA, June 14-17, 2015. ACM
Press.

Gilad Asharov and Gil Segev. Limits on the power of indistinguishability ob-
fuscation and functional encryption. In Venkatesan Guruswami, editor, 56th
FOCS, pages 191-209, Berkeley, CA, USA, October 17-20, 2015. IEEE Com-
puter Society Press.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-28 May 2018, San Francisco, California, USA, pages 315-334.
IEEE Computer Society, 2018.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757788, Santa Bar-
bara, CA, USA, August 19-23, 2018. Springer, Cham, Switzerland.

Joseph Bonneau, Benedikt Biinz, Miranda Christ, and Yuval Efron. Good
things come to those who wait - dishonest-majority coin-flipping requires de-
lay functions. In Serge Fehr and Pierre-Alain Fouque, editors, Advances in
Cryptology - EUROCRYPT 2025 - 44th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Madrid, Spain, May
4-8, 2025, Proceedings, Part VII, volume 15607 of Lecture Notes in Computer
Science, pages 225-253. Springer, 2025.

Zvika Brakerski, Pedro Branco, Nico Dottling, Sanjam Garg, and Giulio Mala-
volta. Constant ciphertext-rate non-committing encryption from standard as-
sumptions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I,
volume 12550 of LNCS, pages 5887, Durham, NC, USA, November 16-19,
2020. Springer, Cham, Switzerland.

Zvika Brakerski, Pedro Branco, Nico Déttling, and Sihang Pu. Batch-OT with
optimal rate. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 157-186, Trondheim,
Norway, May 30 — June 3, 2022. Springer, Cham, Switzerland.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Déniel Marx, and Donald Sannella, editors, I[CALP 2018,
volume 107 of LIPIcs, pages 14:1-14:17, Prague, Czech Republic, July 9-13,
2018. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

164

[BBPO4]

[BCCSS)

[BCC*16]

[BCCT13]

[BCI+13]

[BCS16]

[BDD22]

[BDGM19]

[BDS23]

[Bea96)

[Ber70]

BIBLIOGRAPHY

Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable
random-oracle-model scheme for a hybrid-encryption problem. In Christian
Cachin and Jan Camenisch, editors, FUROCRYPT 2004, volume 3027 of
LNCS, pages 171-188, Interlaken, Switzerland, May 2—6, 2004. Springer Berlin
Heidelberg, Germany.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. J. Comput. Syst. Sci., 37(2):156-189, 1988.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the dis-
crete log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, FURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 327-357, Vienna, Austria,
May 8-12, 2016. Springer Berlin Heidelberg, Germany.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 111-120, Palo Alto, CA, USA, June 1-4, 2013. ACM Press.

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315-333, Tokyo,
Japan, March 3-6, 2013. Springer Berlin Heidelberg, Germany.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 31-60, Beijing, China, October 31 — November 3,
2016. Springer Berlin Heidelberg, Germany.

Pedro Branco, Nico Déttling, and Jesko Dujmovic. Rate-1 incompressible en-
cryption from standard assumptions. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part II, volume 13748 of LNCS, pages 33-69, Chicago, IL,
USA, November 7-10, 2022. Springer, Cham, Switzerland.

Zvika Brakerski, Nico Dottling, Sanjam Garg, and Giulio Malavolta. Leveraging
linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.
In Dennis Hofheinz and Alon Rosen, editors, TC'C 2019, Part II, volume 11892
of LNCS, pages 407-437, Nuremberg, Germany, December 1-5, 2019. Springer,
Cham, Switzerland.

Pedro Branco, Nico Dottling, and Akshayaram Srinivasan. A framework for
statistically sender private OT with optimal rate. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS,
pages 548-576, Santa Barbara, CA, USA, August 20-24, 2023. Springer, Cham,
Switzerland.

Donald Beaver. Correlated pseudorandomness and the complexity of private
computations. In 28th ACM STOC, pages 479-488, Philadephia, PA, USA,
May 22-24, 1996. ACM Press.

Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics
of computation, 24(111):713-735, 1970.

BIBLIOGRAPHY 165

[BFLS91]

[BEM15]

[BG25]

[BGI*01]

[BGI16]

[BGIL7]

[BGJ*16]

[BGL*15]

[BHI*24]

[BIMO0O]

[BIOW20]

Laszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In 23rd ACM STOC, pages 21-31, New
Orleans, LA, USA, May 6-8, 1991. ACM Press.

Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle unin-
stantiability from indistinguishability obfuscation. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
428-455, Warsaw, Poland, March 23-25, 2015. Springer Berlin Heidelberg, Ger-
many.

Nir Bitansky and Rachit Garg. Succinct randomized encodings from laconic
function evaluation, faster and simpler. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 406—436.
Springer, 2025.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1-18, Santa
Barbara, CA, USA, August 19-23, 2001. Springer Berlin Heidelberg, Germany.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509-539, Santa
Barbara, CA, USA, August 14-18, 2016. Springer Berlin Heidelberg, Germany.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation:
Optimizing rounds, communication, and computation. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 163-193, Paris, France, April 30 — May 4, 2017. Springer, Cham,
Switzerland.

Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings.
In Madhu Sudan, editor, ITCS 2016, pages 345-356, Cambridge, MA, USA,
January 14-16, 2016. ACM.

Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.
Succinct randomized encodings and their applications. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 4/7th ACM STOC, pages 439-448, Portland, OR,
USA, June 14-17, 2015. ACM Press.

Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D. Rothblum, and David J.
Wu. Dot-product proofs and their applications. In 65th FOCS, pages 806—825,
Chicago, IL, USA, October 27-30, 2024. IEEE Computer Society Press.

Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation
in private information retrieval: PIR with preprocessing. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 55-73, Santa Barbara,
CA, USA, August 20-24, 2000. Springer Berlin Heidelberg, Germany.

Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct
arguments and witness encryption from groups. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,

166

[BIPW17]

[BISW17]

[BISW18]

[BKM20]

[BL95]

[Bla06]

[BLR90]

[BN0O]

[Bon36]

[BP17]

BIBLIOGRAPHY

pages 776-806, Santa Barbara, CA, USA, August 17-21, 2020. Springer, Cham,
Switzerland.

Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a
database both locally and privately? In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 662-693, Baltimore, MD,
USA, November 12-15, 2017. Springer, Cham, Switzerland.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs
and their application to more efficient obfuscation. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of
LNCS, pages 247-277, Paris, France, April 30 — May 4, 2017. Springer, Cham,
Switzerland.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs
via linear multi-prover interactive proofs. In Jesper Buus Nielsen and Vincent
Rijmen, editors, FEUROCRYPT 2018, Part III, volume 10822 of LNCS, pages
222-255, Tel Aviv, Israel, April 29 — May 3, 2018. Springer, Cham, Switzerland.

Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and
trapdoor hash via correlation intractability for approximable relations. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 738-767, Santa Barbara, CA, USA, August 17—
21, 2020. Springer, Cham, Switzerland.

Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear
functions (extended abstract). In Don Coppersmith, editor, CRYPTO’95, vol-
ume 963 of LNCS, pages 424-437, Santa Barbara, CA, USA, August 27-31,
1995. Springer Berlin Heidelberg, Germany.

John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-
based hash function. In Matthew J. B. Robshaw, editor, FSE 2006, volume
4047 of LNCS, pages 328-340, Graz, Austria, March 15-17, 2006. Springer
Berlin Heidelberg, Germany.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. In 22nd ACM STOC, pages 73-83,
Baltimore, MD, USA, May 14-16, 1990. ACM Press.

Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236-254, Santa Barbara, CA,
USA, August 20-24, 2000. Springer Berlin Heidelberg, Germany.

Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pub-
blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di
Firenze, 8:3-62, 1936.

Alex Biryukov and Léo Perrin. Symmetrically and asymmetrically hard cryp-
tography. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASITACRYPT 2017,
Part I, volume 10626 of LNCS, pages 417-445, Hong Kong, China, Decem-
ber 3-7, 2017. Springer, Cham, Switzerland.

BIBLIOGRAPHY 167

[BRY3]

[BS23]

[CFPZ09)

[CGHO4]

[CGH*21]

[CGKS95)

[CGNOS]

[Cha82]

[CHK22]

[CHR17]

[CK20]

[Cles6]

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages
6273, Fairfax, Virginia, USA, November 3-5, 1993. ACM Press.

Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS
from module-SIS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 518-548, Santa Bar-
bara, CA, USA, August 20-24, 2023. Springer, Cham, Switzerland.

Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zim-
mer. Optimal randomness extraction from a Diffie-Hellman element. In An-
toine Joux, editor, FEUROCRYPT 2009, volume 5479 of LNCS, pages 572-589,
Cologne, Germany, April 26-30, 2009. Springer Berlin Heidelberg, Germany.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557-594, jul 2004.

Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan
Miao. Amortizing rate-1 OT and applications to PIR and PSI. In Kobbi
Nissim and Brent Waters, editors, TCC 2021, Part I1I, volume 13044 of LNCS,
pages 126-156, Raleigh, NC, USA, November 8-11, 2021. Springer, Cham,
Switzerland.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In 36th FOCS, pages 41-50, Milwaukee, Wisconsin, Oc-
tober 23-25, 1995. IEEE Computer Society Press.

Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by
keywords. Cryptology ePrint Archive, Report 1998/003, 1998.

David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199-203,
Santa Barbara, CA, USA, 1982. Plenum Press, New York, USA.

Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server
private information retrieval with sublinear amortized time. In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 3-33, Trondheim, Norway, May 30 — June 3, 2022. Springer,
Cham, Switzerland.

Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly effi-
cient private information retrieval. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 694-726, Baltimore, MD,
USA, November 12-15, 2017. Springer, Cham, Switzerland.

Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with
sublinear online time. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 44-75, Zagreb, Croatia,
May 10-14, 2020. Springer, Cham, Switzerland.

Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364-369, Berkeley, CA,
USA, May 28-30, 1986. ACM Press.

168

[CLSY93]

[CM97]

[CM16]

[CM20]

[CMNW24]

[CMS99]

[CP18§]

[CS98]

[CS02]

[CS03]

[CY24]

[CZ81]

BIBLIOGRAPHY

J-Y Cai, Richard J Lipton, Robert Sedgewick, and AC-C Yao. Towards
uncheatable benchmarks. In [1993] Proceedings of the Figth Annual Structure
in Complezity Theory Conference, pages 2-11. IEEE, 1993.

Christian Cachin and Ueli M. Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski, Jr., editor, CRYPTQO’97, volume
1294 of LNCS, pages 292-306, Santa Barbara, CA, USA, August 17-21, 1997.
Springer Berlin Heidelberg, Germany.

Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34-63, Santa
Barbara, CA, USA, August 17-21, 2020. Springer, Cham, Switzerland.

Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, and Hoeteck Wee.
Polynomial commitments from lattices: Post-quantum security, fast verifica-
tion and transparent setup. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part X, volume 14929 of LNCS, pages 207-242, Santa Bar-
bara, CA, USA, August 18-22, 2024. Springer, Cham, Switzerland.

Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In Jacques Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402414, Prague, Czech
Republic, May 2-6, 1999. Springer Berlin Heidelberg, Germany.

Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In
Jesper Buus Nielsen and Vincent Rijmen, editors, FUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 451-467, Tel Aviv, Israel, April 29 — May 3, 2018.
Springer, Cham, Switzerland.

Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 13-25, Santa Barbara, CA,
USA, August 23-27, 1998. Springer Berlin Heidelberg, Germany.

Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 4564, Amsterdam,
The Netherlands, April 28 — May 2, 2002. Springer Berlin Heidelberg, Germany.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
Journal on Computing, 33(1):167-226, 2003.

Alessandro Chiesa and Eylon Yogev. Building cryptographic proofs from hash
functions. URL: https://github. com/hash-based-snargs-book, 2024.

David G Cantor and Hans Zassenhaus. A new algorithm for factoring polyno-
mials over finite fields. Mathematics of Computation, 36(154):587-592, 1981.

BIBLIOGRAPHY 169

[DD22]

[DDJ24]

[DDLO25]

[Den02]

[DFGK14]

[DFKP15]

[DGI*+19]

[DGM24]

[DGO19]

[DGP25)

[DHT76]

Nico Déttling and Jesko Dujmovic. Maliciously circuit-private FHE from
information-theoretic principles. In Dana Dachman-Soled, editor, ITC 2022,
volume 230 of LIPIcs, pages 4:1-4:21, Cambridge, MA, USA, July 5-7, 2022.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Nico Doéttling, Jesko Dujmovic, and Antoine Joux. Space-lock puzzles and ver-
ifiable space-hard functions from root-finding in sparse polynomials. In Elette
Boyle and Mohammad Mahmoody, editors, TCC 2024, Part III, volume 15366
of LNCS, pages 431-459, Milan, Italy, December 2—-6, 2024. Springer, Cham,
Switzerland.

Nico Déttling, Jesko Dujmovic, Julian Loss, and Maciej Obremski. Minicrypt
pir for big batches. Cryptology ePrint Archive, 2025.

Alexander W. Dent. Adapting the weaknesses of the random oracle model to
the generic group model. In Yuliang Zheng, editor, ASTACRYPT 2002, volume
2501 of LNCS, pages 100-109, Queenstown, New Zealand, December 1-5, 2002.
Springer Berlin Heidelberg, Germany.

George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square
span programs with applications to succinct NIZK arguments. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 532-550, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Springer
Berlin Heidelberg, Germany.

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 585-605, Santa
Barbara, CA, USA, August 16-20, 2015. Springer Berlin Heidelberg, Germany.

Nico Dottling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and
Rafail Ostrovsky. Trapdoor hash functions and their applications. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 3—-32, Santa Barbara, CA, USA, August 18-22, 2019.
Springer, Cham, Switzerland.

Jesko Dujmovic, Rachit Garg, and Giulio Malavolta. Time-lock puzzles with
efficient batch solving. In Marc Joye and Gregor Leander, editors, EURO-
CRYPT 2024, Part II, volume 14652 of LNCS, pages 311-341, Zurich, Switzer-
land, May 26-30, 2024. Springer, Cham, Switzerland.

Ivan Damgard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated stor-
age without timing assumptions. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 355-380,
Santa Barbara, CA, USA, August 18-22, 2019. Springer, Cham, Switzerland.

Jesko Dujmovic, Christoph U. Giinther, and Krzysztof Pietrzak. Space-deniable
proofs. Under Submission, 2025.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644-654, 1976.

170

[DH24]

[DJO1]

[DKK18]

[DL7S]

[DLM19]

[DLWO6]

[DMO4]

[DMO00]

[DMPS19]

[DMQ24]

[DMS24]

BIBLIOGRAPHY

Jesko Dujmovic and Mohammad Hajiabadi. Lower-bounds on public-key oper-
ations in PIR. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VI, volume 14656 of LNCS, pages 65-87, Zurich, Switzerland, May 26-30,
2024. Springer, Cham, Switzerland.

Ivan Damgard and Mats Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo Kim,
editor, PKC 2001, volume 1992 of LNCS, pages 119-136, Cheju Island, South
Korea, February 1315, 2001. Springer Berlin Heidelberg, Germany.

Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed discrete log
protocol with applications to homomorphic secret sharing. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 213-242, Santa Barbara, CA, USA, August 19-23, 2018. Springer,
Cham, Switzerland.

Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Inf. Process. Lett., 7(4):193-195, 1978.

Nico Dottling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs
of sequential work. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 292-323, Darmstadt,
Germany, May 19-23, 2019. Springer, Cham, Switzerland.

Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure
password protocols in the bounded retrieval model. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 225-244, New York,
NY, USA, March 4-7, 2006. Springer Berlin Heidelberg, Germany.

Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in
the bounded-storage model. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 126-137, Interlaken, Switzer-
land, May 2—6, 2004. Springer Berlin Heidelberg, Germany.

Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database
private information retrieval implies oblivious transfer. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 122-138, Bruges, Belgium,
May 14-18, 2000. Springer Berlin Heidelberg, Germany.

Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable
delay functions from supersingular isogenies and pairings. In Steven D. Gal-
braith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of
LNCS, pages 248277, Kobe, Japan, December 8-12, 2019. Springer, Cham,
Switzerland.

Jesko Dujmovic, Giulio Malavolta, and Wei Qi. Registration-based encryption
in the plain model. In Tibor Jager and Jiaxin Pan, editors, PKC 2025, LNCS.
Springer, Cham, Switzerland, May 10-13, 2024.

Michel Dellepere, Pratyush Mishra, and Alireza Shirzad. Garuda and pari:
Faster and smaller SNARKSs via equifficient polynomial commitments. Cryp-
tology ePrint Archive, Report 2024/1245, 2024.

BIBLIOGRAPHY 171

[DNO3]

[DORS08]

[DQW21]

[Dzi06a)

[Dzi06b]

[EG24]

[FGL*96]

[FGM™89]

[FJ12]

[FO99]

[FS87]

Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, CRYPTO0’92, volume 740 of LNCS, pages 139-
147, Santa Barbara, CA, USA, August 16-20, 1993. Springer Berlin Heidelberg,
Germany.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM Journal on Computing, 38(1):97-139, 2008.

Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember lit-
tle: Cryptography in the bounded storage model, revisited. Cryptology ePrint
Archive, Report 2021/1270, 2021.

Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
207-224, New York, NY, USA, March 4-7, 2006. Springer Berlin Heidelberg,
Germany.

Stefan Dziembowski. On forward-secure storage (extended abstract). In Cyn-
thia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 251-270,
Santa Barbara, CA, USA, August 20-24, 2006. Springer Berlin Heidelberg,
Germany.

Martin Ekera and Joel Géartner. Extending regev’s factoring algorithm to com-
pute discrete logarithms. In Markku-Juhani Saarinen and Daniel Smith-Tone,
editors, Post-Quantum Cryptography - 15th International Workshop, PQCrypto
2024, Part II, pages 211-242, Oxford, UK, June 12-14, 2024. Springer, Cham,
Switzerland.

Uriel Feige, Shafi Goldwasser, Laszl6 Lovasz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the
ACM (JACM), 43(2):268-292, 1996.

Martin Fiirer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis
Zachos. On completeness and soundness in interactive proof systems. Adw.
Comput. Res., 5:429-442, 1989.

Uriel Feige and Shlomo Jozeph. Universal factor graphs. In Automata, Lan-
guages, and Programming: 39th International Colloquium, ICALP 2012, War-
wick, UK, July 9-13, 2012, Proceedings, Part I 39, pages 339-350. Springer,
2012.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537-554, Santa Barbara, CA, USA, August 15—
19, 1999. Springer Berlin Heidelberg, Germany.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186-194, Santa Barbara, CA, USA, August 1987.
Springer Berlin Heidelberg, Germany.

172

[GGH*13]

[GGKO03]

[GGPR13]

[GHMMI18]

[GHO20]

[GKO3]

[GKM™*00]

[GKW17]

[GLW20]

[GMY7]

[GMM17]

BIBLIOGRAPHY

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th FOCS, pages 40-49, Berkeley, CA, USA,
October 26-29, 2013. IEEE Computer Society Press.

Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the
efficiency of encryption and digital signature schemes. In 35th ACM STOC,
pages 417425, San Diego, CA, USA, June 9-11, 2003. ACM Press.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626-645, Athens, Greece, May 26-30, 2013. Springer Berlin Heidelberg, Ger-
many.

Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer Mo-
hammed. Limits on the power of garbling techniques for public-key encryption.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I1I,
volume 10993 of LNCS, pages 335-364, Santa Barbara, CA, USA, August 19—
23, 2018. Springer, Cham, Switzerland.

Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-
trapdoor functions and applications: Rate-1 OT and more. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 88-116, Durham, NC, USA, November 16-19, 2020. Springer, Cham,
Switzerland.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In /4th FOCS, pages 102-115, Cambridge, MA, USA, Oc-
tober 11-14, 2003. IEEE Computer Society Press.

Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious
transfer. In 41st FOCS, pages 325-335, Redondo Beach, CA, USA, Novem-
ber 12-14, 2000. IEEE Computer Society Press.

Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
Chris Umans, editor, 58th FOCS, pages 612-621, Berkeley, CA, USA, Octo-
ber 15-17, 2017. IEEE Computer Society Press.

Rachit Garg, George Lu, and Brent Waters. New techniques in replica en-
codings with client setup. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part III, volume 12552 of LNCS, pages 550-583, Durham, NC,
USA, November 16-19, 2020. Springer, Cham, Switzerland.

Robert M Guralnick and Peter Miiller. Exceptional polynomials of affine type.
Journal of Algebra, 194(2):429-454, 1997.

Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds
on obfuscation from all-or-nothing encryption primitives. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 661-695, Santa Barbara, CA, USA, August 20-24, 2017. Springer, Cham,
Switzerland.

BIBLIOGRAPHY 173

[GMMM18] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On

[GMRS9)]

[GNU16]

[Grol0]

[Grol6]

[GT00]

[GVW12)

[GW11]

[GWZ22]

[GWZ23]

[GZ19]

the round complexity of OT extension. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 545—
574, Santa Barbara, CA, USA, August 19-23, 2018. Springer, Cham, Switzer-
land.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

Zeyu Guo, Anand Kumar Narayanan, and Chris Umans. Algebraic problems
equivalent to beating exponent 3/2 for polynomial factorization over finite
fields. arXiv preprint arXiv:1606.04592, 2016.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 321—
340, Singapore, December 5-9, 2010. Springer Berlin Heidelberg, Germany.

Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, FUROCRYPT 2016, Part II, vol-
ume 9666 of LNCS, pages 305-326, Vienna, Austria, May 8-12, 2016. Springer
Berlin Heidelberg, Germany.

Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st FOCS, pages 305-313, Redondo Beach,
CA, USA, November 12-14, 2000. IEEE Computer Society Press.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption with bounded collusions via multi-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 162-179, Santa Barbara, CA, USA, August 19-23, 2012. Springer Berlin
Heidelberg, Germany.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
48rd ACM STOC, pages 99-108, San Jose, CA, USA, June 6-8, 2011. ACM
Press.

Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Incompressible cryptogra-
phy. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 700-730, Trondheim, Norway, May 30 —
June 3, 2022. Springer, Cham, Switzerland.

Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Multi-instance randomness
extraction and security against bounded-storage mass surveillance. In Guy N.
Rothblum and Hoeteck Wee, editors, TCC 2023, Part III, volume 14371 of
LNCS, pages 93-122, Taipei, Taiwan, November 29 — December 2, 2023.
Springer, Cham, Switzerland.

Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model.
In Yuval Ishai and Vincent Rijmen, editors, FUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 500-524, Darmstadt, Germany, May 19-23, 2019.
Springer, Cham, Switzerland.

174

(Gz21]

[Has01]

[HHC+23]

[HHK +22]

[HHKK23]

[HILL99)

[HKO5]

[HKT11]

[HLWW13]

[IKNP03]

[TKOO7]

BIBLIOGRAPHY

Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded
storage model. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part 11,
volume 13043 of LNCS, pages 365-396, Raleigh, NC, USA, November 8-11,
2021. Springer, Cham, Switzerland.

Johan Hastad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798-859, 2001.

Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meik-
lejohn, and Vinod Vaikuntanathan. One server for the price of two: Simple and
fast single-server private information retrieval. In Joseph A. Calandrino and
Carmela Troncoso, editors, USENIX Security 2023, pages 3889-3905, Anaheim,
CA, USA, August 9-11, 2023. USENIX Association.

Charlotte Hoffmann, Pavel Hub&acek, Chethan Kamath, Karen Klein, and
Krzysztof Pietrzak. Practical statistically-sound proofs of exponentiation in
any group. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IT, volume 13508 of LNCS, pages 370-399, Santa Barbara, CA, USA, Au-
gust 15-18, 2022. Springer, Cham, Switzerland.

Charlotte Hoffmann, Pavel Hubacek, Chethan Kamath, and Toméas Krnak.
(Verifiable) delay functions from lucas sequences. In Guy N. Rothblum and
Hoeteck Wee, editors, TCC 2023, Part 1V, volume 14372 of LNCS, pages
336—362, Taipei, Taiwan, November 29 — December 2, 2023. Springer, Cham,
Switzerland.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364-1396, 1999.

Johan Hastad and Subhash Khot. Query efficient pcps with perfect complete-
ness. Theory Comput., 1(1):119-148, 2005.

Thomas Holenstein, Robin Kiinzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Lance
Fortnow and Salil P. Vadhan, editors, 48rd ACM STOC, pages 89-98, San
Jose, CA, USA, June 6-8, 2011. ACM Press.

Carmit Hazay, Adriana Lopez-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
resilient cryptography from minimal assumptions. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
160-176, Athens, Greece, May 26-30, 2013. Springer Berlin Heidelberg, Ger-
many.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 145-161, Santa Barbara, CA, USA, August 17-21, 2003. Springer
Berlin Heidelberg, Germany.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments with-
out short peps. In 22nd Annual IEEE Conference on Computational Complez-
ity (CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 278-291.
IEEE Computer Society, 2007.

BIBLIOGRAPHY 175

[IPO7]

[IR89]

[JLLW23]

[JLS21]

[Kal05]

[KC21]

[Kel16]

[Ki192]

[KO97]

[KOOO]

[KS95]

[KU11]

Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted
data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages
575-594, Amsterdam, The Netherlands, February 21-24, 2007. Springer Berlin
Heidelberg, Germany.

Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In 21st ACM STOC, pages 4461, Seattle, WA, USA,
May 15-17, 1989. ACM Press.

Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle
model and ideal obfuscation. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 233-262, Santa
Barbara, CA, USA, August 20-24, 2023. Springer, Cham, Switzerland.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In Samir Khuller and Virginia Vassilevska Williams,
editors, 58rd ACM STOC, pages 60-73, Virtual Event, Italy, June 21-25, 2021.
ACM Press.

Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 78-95, Aarhus, Denmark, May 22-26, 2005. Springer Berlin Heidelberg,
Germany.

Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with check-
list. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021,
pages 875—-892. USENIX Association, August 11-13, 2021.

Zander Kelley. Roots of sparse polynomials over a finite field. LMS Journal of
Computation and Mathematics, 19(A):196-204, 2016.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 2/th ACM STOC, pages 723-732, Victoria, BC, Canada, May 4-6,
1992. ACM Press.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th FOCS, pages
364-373, Miami Beach, Florida, October 19-22, 1997. IEEE Computer Society
Press.

Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permutations are
sufficient for non-trivial single-server private information retrieval. In Bart
Preneel, editor, FEUROCRYPT 2000, volume 1807 of LNCS, pages 104-121,
Bruges, Belgium, May 14-18, 2000. Springer Berlin Heidelberg, Germany.

Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials
over finite fields. In Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, pages 398-406, 1995.

Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and
modular composition. STAM Journal on Computing, 40(6):1767-1802, 2011.

176

[KWJ24]

[KZG10]

[Lip13]

[Lip24]

[LM19]

[LMQW?22]

[LMW23]

[LMW?25]

[LW15]

[LW17]

[Mau92]

[Mau93]

BIBLIOGRAPHY

Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. SoK: Public random-
ness. In 2024 IEEE European Symposium on Security and Privacy, pages 216—
234, Vienna, Austria, July 8-12, 2024. IEEE Computer Society Press.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASTACRYPT 2010, volume 6477 of LNCS, pages 177194, Singapore, Decem-
ber 5-9, 2010. Springer Berlin Heidelberg, Germany.

Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In Kazue Sako and Palash Sarkar,
editors, ASTACRYPT 2013, Part I, volume 8269 of LNCS, pages 41-60, Ben-
galore, India, December 1-5, 2013. Springer Berlin Heidelberg, Germany.

Helger Lipmaa. Polymath: Grothl6 is not the limit. In Leonid Reyzin and
Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS,
pages 170-206, Santa Barbara, CA, USA, August 18-22, 2024. Springer, Cham,
Switzerland.

Russell W. F. Lai and Giulio Malavolta. Subvector commitments with appli-
cation to succinct arguments. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530-560, Santa
Barbara, CA, USA, August 18-22, 2019. Springer, Cham, Switzerland.

Alex Lombardi, Ethan Mook, Willy Quach, and Daniel Wichs. Post-quantum
insecurity from LWE. In Eike Kiltz and Vinod Vaikuntanathan, editors,
TCC 2022, Part I, volume 13747 of LNCS, pages 3-32, Chicago, IL, USA,
November 7-10, 2022. Springer, Cham, Switzerland.

Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private infor-
mation retrieval and fully homomorphic RAM computation from ring LWE. In
Barna Saha and Rocco A. Servedio, editors, 55th ACM STOC, pages 595608,
Orlando, FL, USA, June 20-23, 2023. ACM Press.

Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Black box crypto is useless for
doubly efficient pir. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 65-93. Springer, 2025.

Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn,
and trx. Cryptology ePrint Archive, Report 2015/366, 2015.

Arjen K Lenstra and Benjamin Wesolowski. Trustworthy public randomness
with sloth, unicorn, and trx. International Journal of Applied Cryptography,
3(4):330-343, 2017.

Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53-66, January 1992.

Ueli M. Maurer. Protocols for secret key agreement by public discussion based
on common information. In Ernest F. Brickell, editor, CRYPT0’92, volume
740 of LNCS, pages 461-470, Santa Barbara, CA, USA, August 16-20, 1993.
Springer Berlin Heidelberg, Germany.

BIBLIOGRAPHY 177

[May93]

[Mic94]

[MMV13]

[MP12]

[MRH04]

[MS24]

[MW20)]

[Nao03]

[Nec94]

[0S07]

[Pai99]

Timothy C. May. Time-release crypto. https://
mailing-list-archive.cryptoanarchy.wiki/archive/1993/02/
ad21c6fc805dfbdaed197521e8a9e91dd456e3deab855f12af31adblccecctbeb/,
1993. (Accessed 2025-03-26).

Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436-453,
Santa Fe, NM, USA, November 20-22, 1994. IEEE Computer Society Press.

Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable
proofs of sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages
373-388, Berkeley, CA, USA, January 9-12, 2013. ACM.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, FURO-
CRYPT 2012, volume 7237 of LNCS, pages 700-718, Cambridge, UK, April 15—
19, 2012. Springer Berlin Heidelberg, Germany.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiabil-
ity, impossibility results on reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21-39, Cambridge, MA, USA, February 19-21, 2004. Springer Berlin Heidel-
berg, Germany.

Daniele Micciancio and Mark Schultz-Wu. Bit security: Optimal adversaries,
equivalence results, and a toolbox for computational-statistical security anal-
ysis. In Elette Boyle and Mohammad Mahmoody, editors, Theory of Cryp-
tography - 22nd International Conference, TCC 2024, Milan, Italy, December
2-6, 2024, Proceedings, Part II, volume 15365 of Lecture Notes in Computer
Science, pages 224-254. Springer, 2024.

Tal Moran and Daniel Wichs. Incompressible encodings. In Daniele Miccian-
cio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 494-523, Santa Barbara, CA, USA, August 17-21, 2020. Springer,
Cham, Switzerland.

Moni Naor. On cryptographic assumptions and challenges (invited talk). In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96-109, Santa
Barbara, CA, USA, August 17-21, 2003. Springer Berlin Heidelberg, Germany.

Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165-172, February 1994.

Rafail Ostrovsky and William E. Skeith, III. A survey of single-database private
information retrieval: Techniques and applications (invited talk). In Tatsuaki
Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages
393-411, Beijing, China, April 16-20, 2007. Springer Berlin Heidelberg, Ger-
many.

Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Jacques Stern, editor, FUROCRYPT’99, volume 1592 of LNCS,
pages 223-238, Prague, Czech Republic, May 2-6, 1999. Springer Berlin Hei-
delberg, Germany.

178

[Per09)]

[Piel9)]

[PY22]

[Raz17)

[RD16]

[Reg05]

[RRR16]

[RSATS]

[RSS11]

[RSW96]

[SACM21]

[Sch80]

[Sha49]

BIBLIOGRAPHY

Colin Percival. Stronger key derivation via sequential memory-hard functions,
20009.

Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor,
ITCS 2019, volume 124, pages 60:1-60:15, San Diego, CA, USA, January 10-12,
2019. LIPIcs.

Giuseppe Persiano and Kevin Yeo. Limits of preprocessing for single-server
PIR. In Joseph (Seffi) Naor and Niv Buchbinder, editors, 33rd SODA, pages
2522-2548, Virtual Conference / Alexandria, VA, USA, January 9-12, 2022.
ACM-SIAM.

Ran Raz. A time-space lower bound for a large class of learning problems. In
Chris Umans, editor, 58th FOCS, pages 732-742, Berkeley, CA, USA, Octo-
ber 15-17, 2017. IEEE Computer Society Press.

Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of
LNCS, pages 262-285, Beijing, China, October 31 — November 3, 2016. Springer
Berlin Heidelberg, Germany.

Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC;
pages 84-93, Baltimore, MA, USA, May 22-24, 2005. ACM Press.

Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round inter-
active proofs for delegating computation. In Proceedings of the 48th ACM
Symposium on the Theory of Computing, STOC 16, pages 49-62, 2016.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of
the Association for Computing Machinery, 21(2):120-126, February 1978.

Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487506,
Tallinn, Estonia, May 15-19, 2011. Springer Berlin Heidelberg, Germany.

Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. Technical Report, 1996.

Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce M. Maggs.
Puncturable pseudorandom sets and private information retrieval with near-
optimal online bandwidth and time. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNC'S, pages 641-669, Virtual Event,
August 16-20, 2021. Springer, Cham, Switzerland.

Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM (JACM), 27(4):701-717, 1980.

Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656—-715, 1949.

BIBLIOGRAPHY 179

[Sha90]

[Sho93]

[Sho94]

[Sho97]

[SLM*23]

[SSE+24]

[SW14]

[SW21]

[TCLM21]

[Valog]

[VZGS92]

[WC81]

Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11-15, St. Louis, MO, USA,
October 22-24, 1990. IEEE Computer Society Press.

Victor Shoup. Factoring polynomials over finite fields: asymptotic complexity
vs. reality. In Proc. IMACS Symposium, Lille, France. Citeseer, 1993.

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 85th FOCS, pages 124-134, Santa Fe, NM, USA, November 20-22,
1994. IEEE Computer Society Press.

Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256—266,
Konstanz, Germany, May 11-15, 1997. Springer Berlin Heidelberg, Germany.

Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kartik Nayak, Charalampos
Papamanthou, and Sri Aravinda Krishnan Thyagarajan. Transparent batch-
able time-lock puzzles and applications to byzantine consensus. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940
of LNCS, pages 554-584, Atlanta, GA, USA, May 7-10, 2023. Springer, Cham,
Switzerland.

Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert
Yassi, and Raymond K. Zhao. LUNA: Quasi-optimally succinct designated-
verifier zero-knowledge arguments from lattices. In Bo Luo, Xiaojing Liao, Jun
Xu, Engin Kirda, and David Lie, editors, ACM CCS 2024, pages 3167-3181,
Salt Lake City, UT, USA, October 14-18, 2024. ACM Press.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475-484, New York, NY, USA, May 31 — June 3, 2014. ACM Press.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. SIAM J. Comput., 50(3):857-908, 2021.

Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguillaumie,
and Giulio Malavolta. Efficient CCA timed commitments in class groups. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2663-2684,
Virtual Event, Republic of Korea, November 15-19, 2021. ACM Press.

Paul Valiant. Incrementally verifiable computation or proofs of knowledge im-
ply time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 1-18, San Francisco, CA, USA, March 19-21, 2008. Springer
Berlin Heidelberg, Germany.

Joachim Von Zur Gathen and Victor Shoup. Computing frobenius maps and
factoring polynomials. In Proceedings of the twenty-fourth annual ACM sym-
posium on Theory of computing, pages 97-105, 1992.

Mark N Wegman and J Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of computer and system sciences,
22(3):265-279, 1981.

180

[Wes19]

[WWO6]

[Yao82]

[Yao86]

[Yeo23]

[Zha22]

[Zip79]

[ZLTS23]

[ZP7S24]

BIBLIOGRAPHY

Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 379-407, Darmstadt, Germany, May 19-23, 2019. Springer, Cham,
Switzerland.

Stefan Wolf and Jiirg Wullschleger. Oblivious transfer is symmetric. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 222-232,
St. Petersburg, Russia, May 28 — June 1, 2006. Springer Berlin Heidelberg,
Germany.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 28rd FOCS, pages 160-164, Chicago, Illinois, November 3-5, 1982. IEEE
Computer Society Press.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162-167, Toronto, Ontario, Canada, October 27—
29, 1986. IEEE Computer Society Press.

Kevin Yeo. Lower bounds for (batch) PIR with private preprocessing. In Carmit
Hazay and Martijn Stam, editors, FUROCRYPT 2023, Part I, volume 14004
of LNCS, pages 518-550, Lyon, France, April 23-27, 2023. Springer, Cham,
Switzerland.

Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of
LNCS, pages 66-96, Santa Barbara, CA, USA, August 15-18, 2022. Springer,
Cham, Switzerland.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Inter-
national symposium on symbolic and algebraic manipulation, pages 216-226.
Springer, 1979.

Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. Optimal
single-server private information retrieval. In Carmit Hazay and Martijn Stam,
editors, FUROCRYPT 2023, Part I, volume 14004 of LNCS, pages 395-425,
Lyon, France, April 23-27, 2023. Springer, Cham, Switzerland.

Mingxun Zhou, Andrew Park, Wenting Zheng, and Elaine Shi. Piano: Ex-
tremely simple, single-server PIR with sublinear server computation. In 202/
IEEE Symposium on Security and Privacy, pages 4296-4314, San Francisco,
CA, USA, May 19-23, 2024. IEEE Computer Society Press.

Appendix A

Appendix: Incompressible
Encryption

A.1 Programmable HPS from wPR-EGA

We show that the hash proof system based on weak pseudorandom effective group actions
of [ADMP20] is programmable. Weak pseudorandom effective group actions can be instan-
tiated from isogeny based assumptions.

A.1.1 Construction

Construction A.1.1. Using weak pseudorandom effective group actions and a randomness
extractor Ext : X* x {0,1}* — {0,1} we get a programmable hash proof system with an
encapsulated key size of 1 bit.

Gen(1?) :

e Sample Ty Ex uniformly at random

Sample [z] &g uniformly at random
Let 71 <+ [Z] * o
Return pp = (Tp,71) and td; = [#]

sampL(pp) :
e Parse pp = (Tp,T1)

e Sample [g] &g uniformly at random
o Let (zo,21) < ([g] * To, [g] *T1)
e Return x = (x¢, 1) and witness w = ([g])

sampY (pp) :
e Parse pp = (T, T1)

Sample [go] e uniformly at random

Sample [¢1] e \ {[g0]} uniformly at random

Let (2o, 1) < ([90] * To, [91] * Z1)
Return @ = (zg, z1) and trapdoor td, = ([go], [91])

181

182 APPENDIX A. APPENDIX: INCOMPRESSIBLE ENCRYPTION

KeyGen(pp) :

e Sample [h] e uniformly at random
Sample b & {0,1}* uniformly at random

Sample s < {0,1}*

Let sk « ([h], b)

Let pk A ([hl] *Ebn sy [h)\] *Tbxﬂs)
Return pk and sk

Encap (pk,x = ([SC()], [xl])7w = [g]):

e Parse pk = (y1,...,41)
o Let k < Ext(([g] *v1,---,[g] *unr),s)
e Return k

Decap (sk,z = ([xo], [1])):
e Parse sk = ([h], b)
o Let k < Ext(([h1] * @by, - -, [ha] * 20,)5 S)
e Return k.

Program(td., td,, sk, z, k) :

e Parse td, = [z], td. = ([90], [91]), and sk = ([h], b)
e Repeat

— Sample b’ & {0,1}* uniformly at random
= Let ([pi],.., [13]) = (b @ 0y)[2] + [Pl - (ba © B))[2] + [2a])
— Let sk’ < (b, [h’])

e Until k = Decap(sk’, z)

e Return sk’

Correctness and Language Indistinguishability Correctness and language indistin-
guishability remain exactly the same as in [ADMP20]. We change nothing about the hash
proof system but adding the programmability. Therefore, we refrain from restating the
proof.

Programmability and Programmable Smoothness Because the Program is just re-
jection sampling a secret key in exactly the same way as the original sampling but under the
condition that Decap(sk’,) = k this follows from correctness and smoothness of the original
scheme. Rejection sampling is efficient because the key k only has size 1.

Beyond one bit To encapsulate a key of size m one can simply generate m public-key-
secret-key pairs and then encapsulation, decapsulation, and programming is done bitwise.
This modification makes public and secret keys m times as big while leaving the language
elements unchanged.

A.2 Programmable HPS from LWE

We present a programmable hash proof system using lattice the trapdoors by [MP12] and
rounding.?

IThis construction was suggested to us by Daniel Wichs.

A.2. PROGRAMMABLE HPS FROM LWE 183

A.2.1 Construction

Construction A.2.1. We construct a programmable hash proof system that is secure
assuming LWE with superpolynomial modulus-to-noise ratio.

Gen(1%) :

A) + TrapSamp(127,1™ q) with lattice trapdoor T and A, B €

e Sample matrix <B

anm.
q
e Return pp = A and td; = (B, T).
sampL(pp) :
e Parse pp = A.

Sample S & {0, 1}¥*™ uniformly from the binary matrices.
Sample E < x?*™ with small gaussian entries.
Return z = SA 4+ E and w = (S, E).

sampY (pp,tdz) :

e Parse td, = (B, T).
e Return z = B and td, = ().

KeyGen(pp) :
e Parse pp = A.

e Sample R & XD X% with small gaussian entries.

e Return pk = AR and sk =R

Encap(pk, z,w) :
e Parse pk = AR and w = (S, E).
o Let k< [SAR].
e Return k.

Decap(sk,) :
e Parse sk =R and + = SA + E.
e Let k<« [(SA+E)R].
o Return k.

Program(td., td,, sk, z, k) :
e Parse sk = R.
e Sample K € Zy** uniformly at random conditioned on [K| = k.
e Sample short R* + SampleD(A , T, AR ,0)
B K
e Return sk’ = R*.

Statistical Correctness With A, S, E and R as in the construction, we have that
Encap(pk,z,w) = [SAR]| which is statistically close to [(SA + E)R| = [SAR + ER| =
Decap(sk,) when using a superpolynomial modulus-to-noise ratio.

Language Indistinguishability By LWE assumption SA + E is indistinguishable from
uniformly random. The trapdoored matrix B is statistically close to uniform. Therefore,
language indistinguishability follows from LWE.

184 APPENDIX A. APPENDIX: INCOMPRESSIBLE ENCRYPTION

Programmability Using the correctness of the lattice trapdoor we have that the algo-
rithm Program(td., td,, sk, , k) returns a key sk’ s.t. [BR*| = k.

Programmable Smoothness sk = R are sampled from x"** with small gaussian entries

and R* is statistically close to being sampled from x7** conditioned on [BR*| = k where

k is uniformly random. Therefore, sk’ is statistically close to sk.

A.2.2 Incompressible Encryption

Since we do not have a 2-smooth hash proof system for the same language as the above
LWE programmable HPS, we do not achieve CCA incompressible PKE but only CPA in-
compressible PKE. The transfromation stays almost the same as in the CCA case.

Below we give the transfromation for CPA incompressible PKE.

Construction A.2.2 (Incompressible PKE). Given security parameter A, space bound S,
and message length n let (KeyGen’, Encap’, Decap’, Program’) be a Y-programmable hash
proof system for a language £ C X (where you can sample z with according witness from £
and sample z with according trapdoor from Y') where the representation size of X is p(}, S, n)
and encapsulated keys of size k(\, Ssym,n), and (Enceym, Decsym) be an incompressible SKE
with messages of size n, keys of size k(X, Ssym,n) and ciphertexts of size {(A, Ssym,n) with
incompressible SKE adversary being allowed to leak a state of size Seym = S + p(A, S, n).

KeyGen(1*,19):
e Generate language and corresponding trapdoor

(pp,tdz) < Gen(l)‘, 1m).

o Let (pk’,sk’) «+— KeyGen'(pp).
e Return pk = pk’ and sk = sk’.

Enc(pk, m):

o Parse pk = pk’

o Let (z,w) < sampL(pp).
e Let k < Encap’(pk’, z,w).
o Let coym EnCSym(k7 m).

e Return ¢ = (z, csym)-
Dec(sk, ¢):

e Parse sk = sk’
e Parse ¢ = (2, Csym)-
o Let k <+ Decap’(sk’, z)

e Return m = Decgym (K, Coym)-

A.2. PROGRAMMABLE HPS FROM LWE 185

Correctness Follows from the correctness of the hash proof system (KeyGen’, Encap’,
Decap’, Program’) and the symmetric key encryption scheme (Encsym, Decsym)-
The security proof is similar but simpler than the CCA case.

Theorem A.2.3 (Security). The PKE construction 5.5.2 has incompressible PKE security
if (KeyGen’, Encap’, Decap’, Program’) is a programmable hash proof system with the listed
parameters and (Encsym, Decsym) is an incompressible secure SKE with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indis-
tinguishability. In each hybrid we highlight the changes compared to the previous one.

H()()\, S) :

e Run key generation algorithm KeyGen(1*,1%) to obtain (pk, sk).
Run the adversary mg, mq, sty < A;(pk) on public key pk to receive two messages
mg, my and state st;.

Sample bit b & {0, 1} uniformly at random.

Run ¢ + Enc(pk, m;) to encrypt my,.

Run the adversary sty + .AQDeCS"(pk7 ¢,stq) to produce a state sty smaller than S.
Run the final adversary b’ < Aj3(sk, st1, sta, mg, my).

The adversary wins if b = b/'.

In H; we explicitly represent what happens in KeyGen and Enc.
Hi(\S) :

o Generate language and corresponding trapdoor
(pp,tdz) « Gen(1*,17™).
Let (pk’,sk’) + KeyGen'(pp).

Let pk = pk’ and sk = sk’.
e Run the adversary mg, my,st; < A; on public key pk to receive two messages
mg, my and state st;.

e Sample bit b & {0,1} uniformly at random.
o Let (z,w) < sampL(pp).

o Let k + Encap’(pk’, z, w).
o Let coym < Enceym(k, myp).

o Let ¢ = (x,coym).

e Run the adversary st + As(pk, ¢,st;) to produce a state sty smaller than S.
e Run the final adversary b’ < As(sk, st1, sta, mg, my).

e The adversary wins if b =¥'.

In Hy we use the decapsulation mechanisms to encrypt the challenge message instead of
encapsulation.

H2(>\, S) :

e Generate language and corresponding trapdoor
(pp,tdz) < Gen(1*,1™).

o Let (pk’,sk’) +— KeyGen'(pp).

186

APPENDIX A. APPENDIX: INCOMPRESSIBLE ENCRYPTION

o Let pk = pk’ and sk = sk’.
e Run the adversary mg, my, sty < A;(pk) on public key pk to receive two messages

mp, my and state st;.

e Sample bit b & {0,1} uniformly at random.

Let (z,w) < sampL(pp).

Let k < Decap’(sk’, x).

Let csym Enceym(k, my).

Let ¢ = (z, csym)-

Run the adversary sty + A2 (pk, ¢, st;) to produce a state sty smaller than S.
Run the final adversary b’ < Ajs(sk, sty, sta, mg, my).

The adversary wins if b = b'.

In Hj3 we sample = from Y C X \ £ instead of L.

Hg(A,S) :

Generate language and corresponding trapdoor

(pp,tdz) « Gen(l)‘, 1m).

o Let (pk’,sk’) «+ KeyGen'(pp).
o Let pk = pk’ and sk = sk’.
e Run the adversary mg, mq, sty < A;(pk) on public key pk to receive two messages

mp, my and state st;.

Sample bit b & {0,1} uniformly at random.

Let (x,td,) < sampY (pp, tdz).

Let k + Decap’(sk’, z).

Let coym < Enceym(k, mp).

Let ¢ = (z, coym)-

Run the adversary sty + Aa(pk, ¢, st1) to produce a state sto smaller than S.
Run the final adversary &’ < As(sk, sty, sta, mg, my).

The adversary wins if b = b'.

In H4 we program the secret key given to the adversary to decapsulate the ciphertext to the
randomly chosen key k.

H4()\, S) :

Generate language and corresponding trapdoor

(pp,tdz) < Gen(l)‘7 1m).

o Let (pk’,sk’) + KeyGen'(pp).
o Let pk = pk’ and sk = sk’.
e Run the adversary mg, my,st; < 4; on public key pk to receive two messages

mg, m; and state st;.

e Sample bit b & {0,1} uniformly at random.
e Let (x,td,) < sampY (pp,tdz).

Sample k & {0, 1}#Soym:n)

o Let csym <+ Encgym(k, m).
o Let ¢ = (z, csym)-

A.2. PROGRAMMABLE HPS FROM LWE 187

e Run the adversary sto +— As(pk, ¢) to produce a state sty smaller than S.

e Let ski,,, < Program(td, td,,sk’, z, k).

e Run the final adversary o’ < A3 (sk = sk

prog 7St175t27 mo, m1)~

e The adversary wins if b =¥'.

HQ ~ H1 :
The differences between Hy and H; are purely syntactical. In H; we just show more
detail of KeyGen and Enc.

H1 ~ Hg .
In H; we merely change how the challenge ciphertext is calculated. By the correctness
of the hash proof system these two hybrids look identical to the adversary.

H2 e H3 :
In Hj3 sample 2 from Y C X \ £ instead of £. These two hybrids are computationally
indistinguishable by the language indistinguishability. Assume there exists a PPT
adversary A = (A1, Az, A3) that can distinguish the two hybrids Hy and Hs with a
non-negligible advantage of e. From this we construct a statistical adversary A’ that
can break language indistinguishability of the HPS with advantage e.

A'(pp,) :
e Let (pk’,sk’) + KeyGen'(pp).
o Let pk = pk’ and sk = sk’.
e Run the adversary mg, my,st; < A;(pk) on public key pk to receive two
messages mg, m; and state stj.
e Sample bit b & {0, 1} uniformly at random.
e Let k <+ Decap’(sk’, z).
o Let csym < Enceym(k, mp).
o Let ¢ = (x, Csym)-
e Run the adversary sty < A2(pk, ¢,st;) to produce a state st smaller than S.
e Run the final adversary b’ < Ajz(sk, sty, sta, mg, my).
e The adversary wins if b =b'.

If A can distinguish Hs from Hjz with advantage € then the advantage of A’ of distin-
guishing a x sampled from £ and sampling = from Y C X \ £ is also € as it perfectly
simulates Hs in the case that x € £ and perfectly simulates Hs in the other case.

H3 g H4 :
According to programmable smoothness of (KeyGen’, Encap’, Decap’) if 2 ¢ L then
(pk’, sk’, x) is statistically close to the previously used distribution (pk’, Program(td,, td., sk’, z, k),)
for uniformly random k. Because this is exactly what we switch we get that H3 and
H, are statistically close.

H. ~ Di IncomSKE |

4~ IStA/,Hsym :
Finally, given an adversary A = (A1, Az, A3) that wins experiment in hybrid Hy(A, S)
with probability € we construct a multi-stage adversary A’ = (A}, A}, A%) that wins

the Dist[ﬂ?f’ﬁlSKE()\, S+ p(A)) experiment with probability e.

ym

Ay (12, 19) -

188

APPENDIX A. APPENDIX: INCOMPRESSIBLE ENCRYPTION

e Generate language and corresponding trapdoor
(pp,tdz) + Gen(1*,1™).

e Let (pk’,sk’) < KeyGen'(pp).

o Let pk = pk’ and sk = sk’.

e Run the adversary mg, mq,st; < Aj(pk) on public key pk to receive two

messages mg, m; and state sty.

o Let st} < (pk,sk,tdg,sty).

e Return mg, my, and st}
Ab(st], coym)

e Parse st} = (pk,sk,td.,st;)

e Let (z,td;) « sampY (pp,tdy)

o Let ¢ + (2, coym)

e Run the adversary sty < Aa(pk, ¢, st1) to produce a state sto smaller than S

e Return state st} < (z,td,, st2) smaller than Sgym = S + p(A)
Af(k,sth, sth, mg,my) :

e Parse st; = (pk,sk = sk’, td.,st})

e Parse sty = (z,td,, st})
vrog < Program(td., td,, sk’, z, k)
e Run the final adversary b’ < As(pk, sk
e Return ¢’

e Program sk

/

prog75t27 mo, ml)

A’ wins Distﬂ??r'}:f:E(/\, S+p(N)) iff A wins in Hy(A, S) because A’ perfectly simulates

H, from the perspective of A.

O

Appendix B

Appendix: Designated-Verifier
SNARGs

B.1 On Measuring Concrete Security

In this section we discuss in more detail our measures of concrete (as opposed to asymptotic)
proof length, which follow the standards of previous related works, and discuss an important
related distinction between public and designated verification.

Concrete proof length is only meaningful when specifying a concrete security level. While
there are several principled approaches for defining the exact “bit security” of cryptographic
primitives (see, e.g., [MS24] and references therein), the common practice in generic model
constructions is to simply refer to the bit-length of the oracle instantiation. For instance, a
garbled circuit construction in the ROM is referred to as having 128-bit security when the
random oracle is instantiated using (say) AES, even if the security reduction involves some
multiplicative polynomial loss (as opposed to quadratic loss required by collision resistance).
Similarly, in GGM constructions that rely on the hardness of computing discrete logarithms,
a 128-bit security level refers to an instantiation with suitable elliptic-curve groups whose
order is a 256-bit prime. This accounts for the quadratic speedup of fast algorithms for
computing discrete logarithm. We follow this convention here as well.

Finally, we would like to point out an important distinction between dv-SNARGs and
publicly verifiable SNARGs in the context of measuring concrete security. In publicly veri-
fiable proofs, the prover can test whether a proof they generate is accepted by the verifier.
It is therefore natural to only measure the expected time it takes for a malicious prover
to generate an accepted false proof. In contrast, in a designated verifier setting, where the
prover does not know whether they will be caught cheating, there is a natural separation
between the computational security level and the statistical soundness error.

For example, soundness as low as 27%* is more than enough in most use-cases of dv-
SNARGSs, when a malicious prover cannot verify their own proofs without access to a veri-
fication oracle. Indeed, an access to a verification oracle is typically much more costly than
just checking a publicly verifiable proof. Consider an extreme scenario in which it costs
$0.0001 to query a verification oracle, and if a prover manages to cheat, they gain the entire
earth’s GDP (= $10'* in 2022). With soundness error 2754, even in this extreme scenario a
malicious prover who tries to cheat has a negative expected utility.

Given the above, our concrete measures of proof size refer to the arguably conservative

189

190 APPENDIX B. APPENDIX: DESIGNATED-VERIFIER SNARGS

setting of 2789 soundness error at a 128-bit security level, where the latter refers to using a
256-bit group and ignores the small loss in the security reduction.

