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Abstract

This dissertation presents a comprehensive study on the characterization of
mechanical behavior and numerical modeling of auxetic sheet metals exhibit-
ing a negative Poisson’s ratio designed for lightweight and high-performance
structural applications. Focusing on rotating unit structures fabricated from
AlMg3 aluminum alloy, the research combines experimental characterization
with advanced computational techniques to understand and predict the ma-
terial response under various loading conditions.

The experimental work includes uniaxial and biaxial tensile tests, supported
by Digital Image Correlation (DIC) and Infrared Thermography (IRT) for
in-situ strain and temperature analysis. Parametric studies were performed
to investigate the influence of pattern size, aspect ratio and orientation angle
on the global auxetic effect, stiffness and strength of the perforated sheet.
A representative volume element (RVE) was identified for effective property
evaluation and anisotropic behavior was characterized based on the struc-
tural geometry at different orientation angles.

On the numerical side, fully resolved finite element simulations and homog-
enization techniques were employed to extract effective mechanical proper-
ties from the microscale. A macroscopic anisotropic elasto-plastic material
model was developed, derived from microscale behavior and implemented in
ABAQUS® using a user-defined material subroutine (UMAT). This model
accurately captures both the anisotropy and pressure-sensitive plasticity ob-
served in experiments and was validated through comparison with test data,
including uniaxial loading scenarios.

The findings provide a validated framework for the design and analysis of
auxetic structures and contribute to the broader understanding of metama-
terials in engineering.






Zusammenfassung

Diese Dissertation befasst sich umfassend mit der Charakterisierung des
mechanischen Verhaltens und der numerischen Modellierung auxetischer
Bleche mit negativem Querkontraktionszahl fiir den Einsatz in innova-
tiven, gewichtsoptimierten Strukturen. Im Fokus stehen ,Rotating-Unit“-
Strukturen aus der AlMg3-Aluminiumlegierung, deren Verhalten unter ver-
schiedenen Belastungsbedingungen sowohl experimentell als auch numerisch
untersucht wurde.

Die experimentellen Untersuchungen umfassen einachsige und biaxiale
Zugversuche, die durch Digitale Bildkorrelation (DIC) und Infrarot-
Thermografie (IRT) zur in-situ Analyse von Dehnungen und Temperatur-
feldern unterstiitzt wurden. Parametrische Studien wurden durchgefiihrt, um
den Einfluss von Mustergréfle, Seitenverhéltnis der Perforationen sowie der
Orientierung des Musters auf globale Eigenschaften wie den auxetischen Ef-
fekt, die Steifigkeit und die Festigkeit der perforierten Bleche zu analysieren.
Ein représentatives Volumenelement (RVE) wurde zur Ermittlung effektiver
Materialkennwerte definiert und das anisotrope Materialverhalten wurde in
Abhéangigkeit von der strukturellen Geometrie unter verschiedenen Orien-
tierungswinkeln charakterisiert.

Auf numerischer Ebene wurden vollstandig aufgeloste Finite-Elemente-
Simulationen sowie Homogenisierungstechniken eingesetzt, um effektive
mechanische Eigenschaften auf der Mikroskala zu bestimmen. Basierend
auf dem mikroskopischen Materialverhalten wurde ein makroskopisches,
anisotropes, elasto-plastisches Materialmodell entwickelt und mittels einer
benutzerdefinierten Materialsubroutine (UMAT) in ABAQUS® implemen-
tiert. Das Modell bildet sowohl die Anisotropie als auch die in den Ex-
perimenten beobachtete druckabhéngige Plastizitat realitatsgetreu ab und
wurde erfolgreich anhand experimenteller Ergebnisse, einschlieflich einach-
siger Zugversuche, validiert.

Die Ergebnisse dieser Arbeit liefern ein zuverléssiges und tibertragbares Rah-
menwerk zur Beschreibung und Auslegung auxetischer Strukturen und leis-
ten einen wesentlichen Beitrag zum Verstandnis von Metamaterialien in der
Technik.
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Introduction

1.1 Motivation

The development and exploration of novel materials have always been at the
forefront of engineering and scientific research. Among these, auxetic ma-
terials have attracted significant attention due to their unique mechanical
properties, which include a negative Poisson’s ratio, high energy absorption,
high indentation resistance and large fracture toughness. The implications of
this behavior are profound, offering potential advancements in a wide range
of applications such as biomedical implants, vibration dampers, protective
equipment and aerospace structures. Sheet metal, a fundamental component
in manufacturing and structural engineering, presents an interesting candi-
date for auxetic transformation. By integrating auxetic properties into tra-
ditional sheet metal, we can unlock a new spectrum of mechanical behaviors
that can significantly enhance performance under various loading conditions.
Characterizing and modeling the mechanical behavior of auxetic sheet metal
is imperative to understanding and harnessing these advanced materials. Ac-
curate characterization ensures that the unique properties of auxetic sheet
metals are well documented and can be consistently reproduced. A reliable
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material model and its implementation in a FE software (simulation) can
serve as an excellent alternative to experiments, resulting in significant time
and cost savings.

In the current work, a comprehensive experimental and numerical investiga-
tion was conducted on auxetic rotating unit structures, including variations
in the geometry parameters of the perforations, as well as different load-
ing conditions. Furthermore, a macroscopic anisotropic elasto-plastic ma-
terial model for auxetic sheets was developed derived from a corresponding
micro-model. This was achieved through application of various experimental
techniques including in situ characterization via Digital Image Correlation
(DIC) and thermography, accompanied with various numerical approaches
such as homogenization and implementation of periodic boundary condi-
tions (PBCs), all within the framework of continuum mechanics theory. The
methodology used to develop this material model can also serve as a general
approach for other anisotropic perforated materials with other repetitive mi-
crostructural patterns.

1.2 Thesis Outline

This study, from the introductory chapter to the final conclusions, has been
structured and organized into 8 chapters as follows:

After a brief introduction to the motivation, objectives and relevance of the
present research in Chapter 1, a general overview of auxetic metamaterials
is provided in Chapter 2. This chapter includes a literature review of typical
auxetic structures such as re-entrant, chiral and rotating unit mechanisms,
followed by a specific focus on auxetic sheet metals and their characteristic
deformation behaviors. The engineering significance and application poten-
tial of such structures are also highlighted. In Chapter 3, detailed experi-
mental investigations are presented. This includes the design and fabrication
of auxetic samples with varying geometric parameters, such as aspect ratio,
pattern size and orientation angle. The mechanical behavior is character-
ized through quasi-static uniaxial and biaxial tensile tests using advanced
measurement techniques like Digital Image Correlation (DIC) and Infrared
Thermography (IRT). The fundamentals of continuum mechanics relevant
for the development of a material model are discussed in Chapter 4. This
chapter introduces key concepts including kinematics, balance equations and
constitutive relations, particularly for anisotropic elastic and plastic mate-
rial behavior. In Chapter 5, fully resolved finite element simulations and
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numerical homogenization methods are employed to analyze the deformation
response of auxetic structures specially at the microscale. This includes the
investigation of representative volume element (RVE), implementation of pe-
riodic boundary conditions and extraction of effective mechanical properties.
The derivation of a macroscopic anisotropic elasto-plastic material model is
carried out in Chapter 6. Based on the previously described numerical and
experimental insights, a tetragonal elastic formulation is combined with a
pressure-sensitive plasticity model, extended to account for anisotropy. The
parameters of this model are based on the numerical simulations on the ho-
mogenized RVE. In Chapter 7, the implementation of the material model
in ABAQUS® via a user-defined material subroutine (UMAT) is discussed.
Numerical schemes and validation results are provided, demonstrating strong
agreement with experimental observations. Finally, Chapter 8 summarizes
the key findings and contributions and potential directions for future research
are proposed.



Auxetic Metamaterials

2.1 Auxetic Structures

Generally, a microstructure can be designed in several manners to achieve
different mechanical behaviors at the macroscale and this is the concept em-
bodied by the term metamaterials. Auxetic materials, derived from the Greek
word obZnuixoe (auxetikos), meaning "that which may be increased', are a
unique class of metamaterials that exhibit negative Poisson’s ratios. This
means that they exhibit an unusual property in which they expand laterally
when stretched, instead of contracting like most materials. In contrast, un-
der compressive loading, they exhibit lateral contraction [30, 70, 56].

From a continuum mechanics perspective, there is no strict requirement for
the Poisson’s ratio (v) to be positive. However, materials with a negative
Poisson’s ratio are still a rare exception. Almost all isotropic materials ex-
hibit a positive Poisson’s ratio. Based on the principle that the strain en-
ergy of an isotropic elastic solid cannot become negative, it is deduced that
the Poisson’s ratio theoretically lies between —1 and 0.5. For anisotropic
materials, the physically possible range is even broader. The upper limit,
v = 0.5, corresponds to incompressible materials. For a smaller Poisson’s
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ratio, the volume increases under tensile loading and decreases under com-
pressive loading. Therefore, a negative Poisson’s ratio is always associated
with some degree of compressibility in the material and can theoretically oc-
cur in isotropic materials with a very high shear modulus and a low elastic
modulus.

Auxetic materials have been known for over a hundred years. The first de-
scription of auxetic behavior was made by Voigt in 1888 regarding pyrite
[97]. However, interest in auxetic materials was renewed about 40 years ago
by significant contributions from researchers such as Almgren (1985) [84],
Lakes (1987) [56], Evans (1989) [30], and Alderson (1999) [3]. Recent de-
velopments in the field of auxetics can be found in the review articles by
Stavroulakis [93], Evans & Alderson [31], and Prawoto [80]. These studies
demonstrate that auxetic behavior can arise at different scales, both at the
molecular level and at the macroscale. Pyrolytic graphite [97], a-cristoblaite
[32] and some biological tissues [60] are examples of such naturally occurring
molecular auxetics. Artificial auxetic materials, or the so-called man-made
auxetics, are found much more frequently than natural ones, often as cellular
materials such as honeycomb structures and foams [59].

All auxetic materials share the characteristic that their behavior is always
based on a special internal structure. For example, a folded microstructure
that unfolds under tensile stress can macroscopically lead to a material with
a negative Poisson’s ratio. This is referred to as non-convex microstruc-
tures with re-entrant mechanism [28, 53, 31] (See Fig. 2.1-a). Both two-
dimensional planar and three-dimensional re-entrant structures are described
in this context, see, for example, Shokri Rad et al. [82] or Wang et al. [98].
Another possibility involves so-called unrolling mechanisms or chiral struc-
tures. The deformation mechanism of auxetic chiral structures involves the
unrolling of rigid or semi-rigid units (often resembling nodes or arms) con-
nected by flexible ligaments or hinges. When these structures are stretched,
the units unroll in a coordinated manner, leading to an overall expansion
in both the longitudinal and lateral directions [4, 8, 9, 27, 65, 85](See Fig.
2.1-b). A third approach describes microstructures that are composed of ro-
tating triangles and quadrilaterals. The deformation mechanism of auxetic
rotating units structures relies on the rotation of interconnected rigid units
or "nodes" around flexible hinges or joints. When the structure is stretched,
these rigid units rotate relative to each other. Instead of the structure con-
tracting laterally (as would happen in a conventional material), the rotation
causes the connected units to push outward, leading to lateral expansion
[19, 34, 38](See Fig. 2.1-c).



6 Chapter 2. Auxetic Metamaterials

(a) (b)

;
v
)

el
[ —
=
[ —

s
5
B
=l B

\YAY

[ —
—
[ —
e

JAYA

/I\/I\

1

Figure 2.1: Typical auxetic structures; a) re-entrant ; b) chiral; ¢) rotating
units. Top: undeformed state; bottom: deformed under vertical uniaxial
tension.

Auxetic materials exhibit superior mechanical properties compared to con-
ventional materials, including excellent indentation resistance, shear resis-
tance, fracture toughness, and energy absorption [67, 33, 39, 56]. Their
enhanced indentation resistance results from two key factors: high shear
stiffness and the ability of auxetic materials to move toward the region of
impact, increasing local density. Research has also shown that more energy
is required to propagate cracks in auxetic materials, contributing to their
greater fracture toughness [70]. In addition, auxetic materials offer improved
damping and sound absorption properties [64, 102], making them ideal for
applications where vibration reduction is essential to prevent fatigue under
cyclic stresses [102].

The unique properties of auxetic materials make them suitable for a
wide range of applications, particularly in industries such as automotive,
aerospace, and marine [87, 33]. So far, there are only a few references in
the literature to successful technical applications of auxetic materials and
structures. For example, macroscopic auxetic structures have been used by
Obrecht et al. [77, 76] to enhance load-bearing capacity in lightweight con-
struction. The goal of these developments is to achieve high load-bearing
capacity with the lowest possible weight. Due to their high energy absorp-
tion capacity and low density, it has also been proposed to use auxetic struc-
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tures in lightweight construction as "crash absorbers" [33, 39]. In addition
to lightweight construction applications, other potential uses are described
by Evans & Alderson [31] and Stavroulakis [93]. For instance, safety vests
made from auxetic fabrics can distribute the force of a projectile over a large
area, thereby reducing its penetrating power. In sports applications, research
has demonstrated potential benefits in comfort and protection gear [86]. In
medical technology, the insertion of stents to keep blood vessels open can be
made easier if the stents become thinner rather than thicker when subjected
to lateral pressure.

2.2 Auxetic Sheet Metal

The auxetic structure investigated in this study is an auxetic sheet made of
aluminum alloy (AIMg3) with rectangular perforations. The perforations are
arranged orthogonally and are regularly repeated throughout the sheet in a
continuous pattern. The perforations are cut out using a micro-water jet cut-
ting machine, which is available at the Chair of Applied Mechanics (AM) at
Saarland University and funded by DFG (Deutsche Forschungsgemeinschaft).
The machine provides absolute precision, as well as the possibility of using
the entire range of abrasive nozzles from 0.2 to 1.0 mm on the microcutting
scale. Due to their deformation mechanism, these auxetic sheets belong to
the group of auxetic "rotating units structures." In the next chapter, this
behavior will be examined and discussed in more detail. As a result of the
periodicity in the structure, a unit cell can be defined that repeats uniformly
throughout the entire sheet in both the horizontal and vertical directions, as
can be seen in Fig. 2.2.
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Figure 2.2: Auxetic sheet and the cut-out unit cell including geometry pa-
rameters

The mechanical behavior of such auxetic structures is mainly characterized
by two key parameters, namely the volume fraction of the perforations or the
so-called porosity (V},) as well as the aspect ratios of the perforations (AR).
To calculate the porosity, only a single unit cell needs to be considered due
to the periodicity. The porosity and aspect ratio can be determined as:

A 4ab

=4 P — 2.1

Vo Awe  (a+b+2c)? (2.1)
a
b

AR — (2.2)

where a is the length, b the width and ¢ the distance of the perforations. A,
and A,. represent the area of a single perforation and the area of the unit
cell, respectively.

It should be noted that the sheet exhibits auxetic behavior only in the plane
with the corresponding pattern. The model is therefore a 2D model. In the
third direction, conventional behavior is present, but this is not relevant in
the following context.



Experimental Investigations

3.1 Fundamentals of Experimental Characteriza-

tion

When a material is subjected to a load, deformation inevitably occurs. The
material exhibits a certain resistance to this deformation which must be
overcome by external or internal forces. The relationship between the exter-
nal forces acting on the sample and the corresponding deformations typically
represented in force-deformation diagrams or so-called force-displacement di-
agrams characterizes the mechanical behavior of the material. Depending on
the type of external force applied and the resulting deformation, various test-
ing methods are used, including tensile, compression, bending, torsion and
shear tests. Each test type reveals specific aspects of the material’s behavior
under different forms of force and displacement, allowing for a comprehensive
understanding of its performance and potential applications.
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3.1.1 Uniaxial Tensile Test

The uniaxial tensile test is one of the most important material tests for
characterizing metallic materials. Normally, it is completely sufficient for
characterizing isotropic metallic materials. The method of tensile test on
metallic materials at room temperature was standardized by ISO 6892-1.
The test consists of stretching a sample with a defined shape and size by
applying a uniaxial tensile load until failure to determine the desired me-
chanical properties. During the test, the applied force and the elongation
(displacement) of the gauge length are captured. To ensure that the result-
ing force-displacement data reflect only material properties, independent of
geometry, two new terms are defined, namely stress and strain. These rep-
resent force and displacement relative to the initial cross-sectional area and
the initial length of the specimen, respectively, and are calculated through
the following equations:

F
_F A
0= /To (3.1) Lo LA L -
L-L, AL
F

where o and e denote stress and strain, F' applied force, AL elongation and
Ap and Ly initial cross-sectional area and length, respectively. The calculated
stress and strain from the uniaxial tensile test is then plotted as a so-called
stress-strain curve, which is shown in Fig. 3.1.
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Figure 3.1: Schematic representation of a typical technical stress-strain curve
(black) and the corresponding flow curve (blue) (E: Young’s modulus; op:
Yield point; R,,: Tensile strength)

The stress-strain diagram is divided into an elastic region and a plastic re-
gion. In the elastic region, the behavior follows Hooke’s law, represented
by Young’s modulus as the slope of the straight line. When the load is re-
moved in this region, the elastic strain completely disappears. Once a specific
critical stress for the material is reached, plastic deformation begins, which
persists even after the specimen is unloaded. The transition from elastic to
plastic behavior is marked by the yield stress or so-called yield point (o).
The plastic region can be divided into the uniform elongation phase and
the necking phase. The transition between these two phases is identified by
the tensile strength (R,,), which represents the maximum stress point in the
stress-strain diagram. During the uniform plastic strain phase, the material
undergoes hardening, driven microscopically by the movement and accumu-
lation of dislocations. When the tensile strength is reached, localized necking
starts, and further plastic deformation occurs only within the necked region.
Since the reduction in the cross-sectional area in the neck exceeds the local
hardening, this leads to a decrease in the stress in the diagram. Finally, when
the fracture strain is reached, the specimen breaks and the test comes to an
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end.

In addition to the technical stress-strain curve, the true stress-strain curve
or the so-called yield curve can also be defined, where the true stress o; is
plotted against the true strain or so-called logarithmic strain ¢. In contrast
to engineering stress, true stress is calculated based on the real-time value
(current value) of the specimen’s cross-sectional area, rather than on the
initial value. The true stress and true strain are determined as follows:

[

SN

L

Y= ln(L—O) (3.4)

The engineering (technical) and true stress and strain can be converted into
each other using equations 3.5 and 3.6 :

It should be noted that the nominal stress-strain curve and the true stress-
strain curve show small deviations only if small deformations are investigated.
By formation of a localized necking zone, both curves diverge. The true
stress-strain curve is mostly used in metal forming applications, as the elastic
range of the material is relatively too small and not of interest compared to
the plastic range and therefore can be neglected. Furthermore, in material
modeling, when hardening behavior needs to also be mapped, the hardening
parameters must be derived from the flow curve as well.

Another important material parameter to be determined by the uniaxial
tensile test is the Poisson’s ratio. This is defined as the negative ratio of
transverse strain to axial strain. Figure 3.2 illustrates a rectangle in its
undeformed state with dimensions dx and dy. Under uniaxial tensile loading,
it deforms to new dimensions dz + Adx and dy + Ady.
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Figure 3.2: Schematic representation of the transvers strain and axial strain
to determine of Poisson’s ratio in 2D case for conventional material behavior.

In this case, the Poisson’s ratio is calculated as follows:

Upy = —— = ——— (3.7)

This means that when a body becomes thinner, Adx becomes negative, re-
sulting in a positive Poisson’s ratio, like almost all conventional materials.
However, in auxetic materials, which expand laterally under tensile loading,
Adz becomes positive, leading to a negative Poisson’s ratio.

3.1.2 Biaxial Tensile Test

As discussed in the previous section, the uniaxial tensile test is sufficient
in most cases to characterize metallic materials. However, this is mainly
applicable to bulk metals with a fully homogeneous structure. For hetero-
geneous materials that display anisotropy (direction-dependent properties)
and experience volume changes during deformation, additional tests beyond
the uniaxial tensile test are required to accurately capture all material prop-
erties. This includes the biaxial tensile test, which is suitable for thin sheets
or applications involving plane stress conditions. The biaxial tensile test and
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its specimen are also standardized according to ISO 16842:2021(E) [1]. A
typical biaxial tensile testing machine, as illustrated in Figure 3.3, includes
two perpendicular axes, which can be operated either simultaneously or in-
dependently.

Figure 3.3: Typicall biaxial tensile testing machine, 1: electromechanical
actuator; 2: load cell; 3: grips; 4: load frame [ISO-16842:2021(E)].

When both axes move simultaneously, this is known as a "balanced" or equib-
iaxial test. Balanced biaxial tests and tests where the axes move at different
speeds (different strain rates) can induce unique multiaxial stress states in
the sample, which cannot be achieved with uniaxial tensile tests. Such varied
stress states are crucial for developing elastoplastic material models, partic-
ularly when the material exhibits complex behavior due to structural non-
homogeneity. This approach allows for the identification of multiple points
on the corresponding yield surface, resulting in a more precise approximation
of the material’s behavior.

It should be noted that conducting reliable biaxial tests is a challenging
task. In recent years, numerous studies have focused on improving the biax-
ial testing process, particularly the design of the specimen [42, 24, 35], which
ultimately led to the development of the cruciform specimen outlined in ISO
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16842:2021(E) [1], which is shown in Fig. 3.4.

-Uq- Jrl
| 1 { I R=(0,0034~0,1)B
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Figure 3.4: The modified cruciform specimen for biaxial tensile testing, 1)
gauge area; 2) arm; 3) grips; 4) slit; a) thickness of a test piece; B) arm
width; C) grip length; L) slit length; R) corner radius; ws) slit width [ISO
16842:2021(E)).

3.2 Characterization of Bulk AIMg3

The experiments were started with a displacement controlled and quasi-static
uniaxial tensile test on a bulk AlMg3 sample at room temperature. The
bulk sample is taken from the same AlMg3 sheet that will later be used
to cut the corresponding auxetic sheets. The mechanical properties of the
bulk sample provided the input values for the fully resolved FE-simulation
of the associated auxetic sample. They also present basic values for later
comparison with their auxetic counterparts. The resulting stress-strain curve
is shown in Figure 3.5.



16 Chapter 3. Experimental Investigations

250 . ] ‘ T A
200

= 150

IMP

& 100

50

L

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e [%)

Figure 3.5: Stress-strain curve of the bulk AIMg3 sample with noisy experi-
mental data (red) and low-pass filtered data (blue).

All important material parameters for bulk AlMg3 are summarized in Table
3.1, where F, v, op, R,, and A denote Young’s modulus, Poisson’s ratio,
Yield stress, Ultimate stress and Fraction strain, respectively.

FE v or R, A
60.04 GPa | 0.33 | 119.6 MPa | 233.86 MPa | 13.87%

Table 3.1: The most important material parameters of the bulk AIMg3 sam-
ple, identified from the experimental tests.

3.3 Auxetic Sample Design

3.3.1 Uniaxial Samples

To perform uniaxial tensile tests, the samples were designed as shown in
Fig. 3.6. The sheets comprise an auxetic region at the center flanked by two
bulk areas at the extremities, each with five holes to clamp the sample to
the testing machine. To examine the existing anisotropy and to achieve a
locally combined tension-shear stress state within the structure, the uniaxial
specimens were designed and cut with different pattern orientation angles 6,
namely with 6=0°, 15°, 30° and 45°.
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134
90

Figure 3.6: Refernce auxetic sheet sample with AR = 5 and geometry pa-
rameters @ = 5, b = 1 and ¢ = 1 (left) and the same sheet with pattern
orientation angle () (right), subject to uniaxial tensile tests. All dimensions

are in mm.
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3.3.2 Biaxial (Cruciform) Sample

Designing a suitable auxetic biaxial sample was significantly more challenging
than a uniaxial one. To ensure reliable biaxial characterization, a cruciform
specimen must yield fully symmetric strain and stress fields under equibiaxial
loading. This is only achieved when (i) the specimen geometry is symmetric,
(ii) both loading axes are driven uniformly, and (iii) boundary conditions
and clamping are perfectly aligned. Under these conditions undesired stress
gradients are minimized, and a homogeneous biaxial stress state can be es-
tablished in the gauge area. A homogeneous biaxial stress state refers to a
region within the specimen where the normal stresses in both principal load-
ing directions are uniformly distributed and remain nearly constant over the
gauge area. Another requirement was to minimize stress concentration at the
corners between the arms to prevent premature failure of the sample in those
areas. Various cruciform samples were designed for this purpose, inspired by
ISO 16842:2021(E). The samples differed from each other in the number of
slits in the arms, as well as in the completeness of the perforations at the
boundaries. The samples were then numerically analyzed using commercial
FE software ABAQUS® (Dassault Systems) by subjecting all samples to an
identical balanced biaxial tensile test.
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Figure 3.7: Auxetic cruciform sample with AR = 5 subject to biaxial tensile
tests. All dimensions are in mm.
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After evaluation of simulation results, it was determined that the sample in
Fig. 3.7 best met the desired requirements compared to the other designed
samples. The first noticeable feature of the simulation results under balanced
biaxial loading with a total applied displacement of 6 mm in each direction, as
shown in Fig. 3.8, is the clear symmetry of both the von Mises stress and the
total displacement fields with respect to the x- and y-axes. The large number
of slits in the arms helps to facilitate the rotation of the squares surrounded by
the perforations at the edges during the pull, which leads to the elimination
of boundary effects and to the minimization of stress concentrations at the
boundaries.
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Figure 3.8: Simulation’s results in terms of von Mises stress- and total dis-
placement field subjected to the balanced biaxial tensile test.

3.4 Experimental Setup

The experimental studies for this thesis were conducted using a biaxial test-
ing machine. This rig comprises four axes arranged at 90-degree angles to
each other, each equipped with a linear motor. A pair of opposite axes can
move synchronously, apart or together, and each is fitted with a force trans-
ducer capable of measuring up to 25 kN (ME Measuring Systems KD9363s,
Hennigsdorf, Germany), allowing for uniaxial and biaxial specimen testing.
Synchronous movement ensures that the center of the sample remains sta-
tionary. Specimen deformation is captured by an optical camera with a
resolution of 1920x1200 pixels (Manta MG-235B, Allied Vision, Stadtroda,
Germany), equipped with a 12.5 mm lens (Fujifilm HF12.5SA-1, Minato,
Japan) for digital image correlation. The specimen’s side is illuminated with
an LED spotlight. Temperature fields are measured using a thermographic
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camera with a resolution of 1024x768 pixels (Infratec Variocam HD, Dres-
den, Germany), which covers a spectral range of 7.5 - 14 ym. This camera
faces the specimen’s other side, directly across from the optical camera, with
their optical axes intersecting at the specimen’s center. A glass pane shields
the thermographic camera from interfering with thermal radiation, such as
from the environment or the optical camera. In addition, during tests, the
area around the testing machine is covered with black fabric to minimize dis-
turbances, especially since the expected temperature changes are minimal.
Figures 3.9 and 3.10 schematically illustrate the setup subjected to the uni-
axial and biaxial tensile tests, respectively. The PC connected to the testing
machine controls the testing routine, triggers both cameras and records cur-
rent positions and forces with each trigger. This enables for an effective later
analysis of the measurements.

electric axis Ay

load cell
Sample i
\ DIC camera
’ ’
Thermography %y
camera Yo

9,
o@

Welectric axis

Figure 3.9: Experimental setup of an auxetic uniaxial tensile sample (black),
clamped on two sides of one axes. Thermal and optical cameras are aligned
to the center of the sample.
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Figure 3.10: Experimental setup of an auxetic biaxial tensile sample (black),
clamped on all four sides by actuators at right angles. Thermal imaging (red)
and optical (blue) cameras are aligned to the center of the sample (green line).

3.4.1 Methods

Infrared thermography (IRT), commonly referred to as thermography, is a
non-invasive imaging technique that captures the infrared radiation emit-
ted by objects to ascertain their temperature distribution. This technique
is extensively utilized in materials science due to its capability to deliver
real-time thermal images of surfaces under various conditions. Digital Image
Correlation (DIC) is another robust non-contact optical method employed
to measure full-field displacements and strains on material surfaces. DIC
functions by analyzing images of the material surface taken before and after
deformation, facilitating the computation of displacement fields and strain
maps. To enhance deformation tracking, the sample surface must be coated
with a speckle pattern. When used in conjunction with thermography, DIC
offers a thorough insight into the thermomechanical properties of materi-
als. The integration of IRT and DIC has been extensively explored in the
literature for its numerous benefits [20, 89, 61].

For example, the combination of these techniques allows the simultaneous
measurement of temperature and strain fields, providing a more detailed
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analysis of the behavior of the material under various loading conditions.

3.4.2 Sample Preparation

Following the initial preparation of the samples with their respective patterns
by waterjet cutting, the samples undergo a cleaning process. This cleaning
involves the use of an ultrasonic bath with isopropanol, ensuring the removal
of any debris or contaminants that might have adhered during the cutting
process. This step is crucial in preparing the surface for subsequent treat-
ments and measurements. Given the specific requirements for surface treat-
ment imposed by DIC and IRT techniques, each side of the sample is coated
differently. For the side intended for DIC, a homogeneous background with
a stochastically distributed speckle pattern is necessary. To achieve this, we
first applied a white primer (Maston, Veikkola, Finland) to create a uniform
base. Subsequently, a black Color Spray Paint (Maston, Veikkola, Finland) is
used to add the speckle pattern and the speckles must be distributed stochas-
tically and as finely as possible on the surface to achieve higher resolution.
In order to have the correct gray value contrast, the ratio of 30%-black 70%-
white should be kept. This contrasting color scheme enhances the accuracy
of the DIC by facilitating the tracking of deformation [58, 63, 26].

Figure 3.11: The side of the sample intended for DIC (left), the side of the
sample intended for thermography (right).

On the side intended for thermography, a nonreflective surface with high
emissivity is advantageous. For this purpose, the surface is coated with
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Metal Expert Heat Resistant Metal Spray Paint in black (Rust-Oleum Eu-
rope, Zelem, Belgium). Preliminary tests were conducted to determine the
emissivity of this coating at room temperature. These tests revealed an emis-
sivity value € = 0.964, indicating the suitability of the coating for accurate
thermographic measurements [96, 103].

3.5 Deformation Mechanism and Properties

To investigate the deformation mechanism of the auxetic sheet metal, a
quasi-static, strain-controlled uniaxial tensile test was carried out using the
in-house developed biaxial test rig (described in detail in 3.4) at room tem-
perature, with a strain rate of ¢ = 0.0025 s~!. For this purpose, an aux-
etic sheet (reference auxetic sheet) was used with geometry parameters of
a = bmm, b = Imm and ¢ = Ilmm as shown in Fig. 2.2 and a thickness of
Imm. These parameters result in an aspect ratio AR = 5 and a porosity
Vp = 31% according to equations 2.2 and 2.1, respectively. As discussed in
section 2.1, the auxetic structure examined in this research falls under the
category of 'rotating unit structures' due to its unique deformation mech-
anism. As illustrated in Fig. 3.12, when the auxetic sheet is subjected to
tension, the squares surrounded by perforations rotate while preserving their
original shape. To examine this behavior in greater detail, a unit cell located
at the center of the sample was analyzed during the uniaxial tensile test. The
central unit cell was chosen because the edge effects have the least impact
on the deformation behavior in that region. The local displacement field and
the strain field of the unit cell were tracked from the beginning up to 10%
global strain via DIC, as shown in Fig. 3.13.
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Figure 3.12: Representation of rotating squares responsible for the auxetic
behavior in deformed state.

The resulting strain field illustrated in Fig. 3.13 demonstrates that the
squares remain undeformed throughout the test. The calculated local prin-
cipal strains, €; and e, within the squares are zero, confirming that they
undergo a pure rigid body rotation during the test. Actually, the deforma-
tion occurs only in the struts between the perforations, which enable the rigid
rotation of the squares during the experiment in a way that allows the sheet
to expand in both directions, resulting in the characteristic auxetic behavior
of the sheet metal.
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Figure 3.13: Local displacements and principal strains of the unit cell at the
center of the sheet during the tensile test until 10% global strain using DIC.

The next step involved determining the global (effective) stress-strain curve
from the uniaxial tensile test. For greater accuracy, the global strain, which
refers to the elongation of the entire sheet, was calculated based on the total
displacement measured with DIC, rather than using the machine displace-
ment. In this context, the global stress also represents the total force exerted
by the machine on the reference surface, defined by the sheet’s width. The
special feature of the resulting stress-strain curve plotted in Fig. 3.14 is the
smooth transition from the linear elastic to the plastic regime, without show-
ing any Luder strain, in contrast to the corresponding bulk AIMg3. The fact
is that the plasticized regions are so small that the effects are eliminated or
vanish at the macroscale. In addition, the curve exhibits an almost linear
hardening trend up to the fracture. No reliable statement can be made about
the resulting elongation at fracture, as this depends strongly on edge effects,
sheet size and the microstructure’s fineness. Finally, the resulting most im-
portant material properties such as Young’s modulus and yield point were
determined from the curve and are shown in Tab. 3.2.
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Figure 3.14: Global stress-strain curve (left) and local displacement field (us)
corresponding to the tensile direction using DIC (right).

In order to determine the effective Poisson’s ratio as the negative quotient
of transverse strain to the axial strain within the elastic regime, the dis-
placement field of a 2x2 unit cells at the center of the sheet was considered.
The 2x2 unit cells at the center of the sheet is chosen because this region
is the least influenced by edge effects. Although the displacement field of
the central unit cell in Fig. 3.13 was captured very well, the 2x2 unit cells
provided a more accurate basis for this analysis, as it was later identified (in
the simulation section) as the correct representative volume element (RVE)
for this auxetic structure.

As shown in Fig. 3.15, the local displacement field of the 2x2 unit cells was
determined using DIC regarding both directions during the experiment. The
transverse strain €17 and the axial strain 95 were obtained from the displace-
ment fields in both directions by dividing the average relative displacements
of all measurement points along the RVE edges by their corresponding initial
lengths, according to equation 3.7.
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Figure 3.15: Local Poisson’s ratio evaluated by a 2x2 unit cell in the center
of the sheet and plotted as a function of the global strain using DIC. u; and
uo refer to the displacement field in both directions.

To ensure that the determined Poisson’s ratio refers only to the elastic re-
gion, the calculated Poisson’s ratio was plotted as a function of global strain
together with the corresponding stress-strain curve (see Fig. 3.15). This
allowed only for the value of the Poisson ratio within the elastic range to be
considered, resulting in a Poisson ratio v = —0.77 up to €gopu = 0.6%.
Finally, all important material parameters for the auxetic structure with an
aspect ratio AR = 5 and a porosity P = 31% extracted from uniaxial tensile
test are summarized in Table 3.2, where F, v, o, R,, and A denote Young’s
modulus, Poisson’s ratio, Yield stress, Ultimate stress and Fraction strain,
respectively.

1) v or R, A
1750 MPa | —0.75 | 14.4 MPa | 41.5 MPa | 14.9%

Table 3.2: The most important material parameters of auxetic sheet with
AR =5.
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3.6 Variation of Pattern Size

After detailed analysis of the mechanical behavior of the auxetic sheet with
an aspect ratio of AR = 5, this section examines how the size of the pattern
affects the overall mechanical properties. For this purpose, an auxetic sheet
with the same aspect ratio and porosity but with varying pattern sizes was
designed, as illustrated in Fig. 3.16. The second sheet is defined by the
geometry parameters a = 10 mm, b = 2 mm and ¢ = 2 mm, which result in
the same aspect ratio (AR = 5) and porosity (Vp = 31%) as the reference
sheet according to the equations 2.2 and 2.1.

Figure 3.16: Auxetic sheets with the same aspect ratio AR = 5 and porosity
Vp = 31% and different pattern size.

Quasi-static uniaxial tensile tests with the same test parameters were carried
out on the samples. As shown in the stress-strain curve in Figure 3.17, the two
sheets exhibit nearly identical mechanical properties. The only distinction
lies in the fracture strain, where the sheet with the coarser pattern fails sooner
than the reference sheet. This phenomenon can be interpreted to mean that
the finer pattern can minimize the harmful edge effects. This is actually due
to how far the rotating squares near the top and bottom edges can rotate.
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Actually, by refining the pattern, we allow the rotating squares on edges to
rotate even further, leading to a greater fracture strain while maintaining the
same effective transverse strain.
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Figure 3.17: Stress-strain-curve and local displacement field (u9) of the aux-
etic sheets after ca. 10% global strain with the same aspect ratio AR = 5
and porosity Vp = 31% and different pattern size.

3.7 Variation of Aspect Ratio (AR)

Following the discussion on the influence of pattern size in the previous sec-
tion regarding the auxetic sheet with aspect ratio of AR = 5, this section
examines how the variation of aspect ratio affects the mechanical behavior of
auxetic rotating unit structures with rectangular perforations with the same
amount of porosity Vp = 31%. To achieve this, two additional auxetic sheets
with different aspect ratios were designed and cut, complementing the previ-
ously studied auxetic sheet with an aspect ratio of AR = 5. As illustrated in
Fig. 3.18, the first sheet has the geometry parameters of @ = 4 mm, b = 1.25
mm and ¢ = 1.375 mm, resulting in an aspect ratio of AR = 3.2, while the
other sheet has the geometry parameters of a = 6.25 mm, b = 0.8 mm, and
¢ = 0.5 mm, which yields an aspect ratio of AR = 7.8.
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Figure 3.18: Auxetic sheets with different aspect ratios from left to right:
AR =32, AR =5 and AR = 7.8. The dimensions are in mm.

Quasi-static uniaxial tensile tests were performed on the sheets. The de-
formed auxetic sheets after approx. 10% global strain for sheets with aspect
ratios of AR = 3.2 and AR = 7.8 are shown in Figures 3.19 and 3.20 respec-
tively. At first glance, even without analyzing the DIC results, it is evident
that the sample with AR = 3.2 shows less auxetic behavior (lower transverse
strain) compared to the sample with AR = 7.8. To accurately determine the
effective Poisson’s ratio, the displacement field of the 2x2 unit cells at the
sheet’s center was examined using DIC, as previously done for the reference
sheet with an aspect ratio of AR = 5. To calculate the transverse and axial
strains, the relative displacement of all measurement points on the edges was
divided by the corresponding initial length, according to equation 3.7.
Finally, the values of Poisson’s ratios (v) for all sheets are shown in Tab. 3.3,
which increases continuously in magnitude as the aspect ratio rises.

AR FE v o R,, A

3.2 | 2500 MPa | —0.55 | 34.4 MPa | 73.5 MPa | 15.7%
5 | 1750 MPa | —0.75 | 14.4 MPa | 41.5 MPa | 14.9%

7.8 | 620 MPa | —0.95 | 4.8 MPa | 14.5 MPa | 17.2%

Table 3.3: The most important material parameters of auxetic sheet with
different Aspect ratios (AR).
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Figure 3.19: The deformed auxetic sheet with AR = 3.2, subjected to uniax-

ial tensile test at approximately 10% global strain, including DIC evaluations
of the displacement field for the 2x2 unit cell at the center.
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Figure 3.20: The deformed auxetic sheet with AR = 7.8, subjected to uniax-
ial tensile test at approximately 10% global strain, including DIC evaluations
of the displacement field for the 2x2 unit cell at the center.

Interestingly, as shown in figure 3.21, the corresponding global stress-strain
curves show significant differences, despite all sheets being made of the same
material (AlMg3) and having the same porosity (Ve = 31%). This fact is due
to how much the squares surrounded by the perforations can rotate during
loading. As can be seen from the stress-strain curves illustrated in figure
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3.21, the sample with AR = 3.2 possesses the highest stiffness and strength,
while showing the lowest auxetic behavior compared to the other two samples
with larger AR.
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Figure 3.21: Stress-strain curves of the auxetic sheets with different aspect
ratios (AR).

This observation can also be interpreted in another way, namely the geom-
etry parameter ¢ (distance between perforations) significantly influences the
resulting mechanical properties. The results indicate that a lower value of
the parameter ¢ corresponds to improved auxetic behavior and reduced ma-
terial strength. However, to achieve the same porosity, the aspect ratio and
parameter c are related in such a way, that as the aspect ratio AR = § in-
creases, the value of ¢ must necessarily decrease according to the equation
2.1, resulting in a greater auxetic effect, i.e. auxetic effects and strength are
strongly coupled by the microstructure.

Finally, all important mechanical material parameters regarding auxetic
sheets with different aspect ratios (AR) were calculated and presented in
Table 3.3, where E, v, op, R,, and A denote Young’s modulus, Poisson’s

ratio, Yield stress, Ultimate stress and Fraction strain respectively.
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3.8 Variation of Pattern Orientation Angle (6)

This section discusses how the orientation angle of the patterns affects the
mechanical properties of auxetic sheets with rectangular perforations. For
comparable results, the reference auxetic sheet with an aspect ratio of AR =5
and a porosity of Vp = 31% was also considered here. The auxetic sheets vary
only in the orientation angle of the pattern (6), which represents the inclina-
tion of the pattern relative to the horizontal axis, as illustrated schematically
in Figure 3.6. The primary goal of designing auxetic sheets with varying pat-
tern orientations is to gain an initial understanding of the existing anisotropy
in the structure. Anisotropy refers to material properties that vary with di-
rection, a characteristic often found in heterogeneous structures. To achieve
this, in addition to our reference sheet, three other sheets with the same
aspect ratio AR = 5 and with orientation angles of 15°, 30° and 45° were
designed and cut, as shown in Figure 3.22.
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Figure 3.22: Auxetic sheets with the same aspect ratio AR = 5 and different
pattern orientation angel (6).

Each sheet was then subjected to quasi-static uniaxial tensile test using iden-
tical test parameters, applied up to 8% global strain. After evaluating the
local transverse displacements of 2x2 unit cells at the center of the sheets
via DIC, it was observed that with increasing orientation angle (6), the ex-
pansions of the sheets or, in other words, the auxetic effect in the sheets



Chapter 3. Experimental Investigations

34

decreases, as can be seen in Figure 3.23. Evaluating the 2x2 unit cells at
the center of the sheet rather than the entire sheet offers the advantage that

these cells will later be defined as the RVE of the auxetic structures (see
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Figure 3.23: Local displacement fields (u) of 2x2 unit cells in center of the

sheet for auxetic sheets with AR = 5 at various orientation angel (0) after

8% global strain, evaluated by DIC.

To further investigate the impact of angle on the overall mechanical behavior

of the auxetic sheets, the corresponding stress

are presented in Figure 3.24.

strain curves were plotted and
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Figure 3.24: The stress-strain curves of auxetic sheets with AR = 5 at various
pattern orientation angels (9).

As can be seen in Figure 3.24, with increasing orientation angle () the cor-
responding Young’s modulus and yield strength decrease, indicating that the
strength of the sheets continuously decreases. These results based on the fact
that in sheets with a rotated pattern, the auxetic effect is localized. Con-
sequently, as the angle increases, the proportion of global transverse strain
calculated through transformation relations progressively decreases, result-
ing in a reduction of the overall effective auxetic effect. This phenomenon
will be discussed in more detail, both qualitatively and quantitatively, in the
following chapters.

Finally, the material properties of the sheets with different orientation angles
are summarized in Table 3.4.

0 E v oF Ry, A
0° | 1750 MPa | —0.75 | 14.4 MPa | 41.5 MPa | 14.9%
15° | 1680 MPa | —0.66 | 13.8 MPa | 31.8 MPa | 12.3%
30° | 1510 MPa | —0.53 | 12.4 MPa | 29.8 MPa | 16%
45° | 1255 MPa | —0.32 | 10.5 MPa | 31.5 MPa | 18.1%

Table 3.4: The most important material parameters of auxetic sheets with
AR =5 at various pattern orientation angels (6).
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3.9 Biaxial Tensile Tests

This section discusses the results of the biaxial tensile tests on the reference
auxetic sheet with aspect ratio AR = 5. The design and fabrication of
the auxetic biaxial specimen used here to perform the biaxial tensile tests
has already been discussed in detail in Section 3.3.2. The experiments were
carried out at three different rates of €11 /€92, where €1 represents the strain
rate along the e; axis and €95 the strain rate along the ey axis.

The test with £11/¢92 = 1, also known as the balanced biaxial tensile test,
is carried out with both axes at the same speed, keeping the center of the
sample stationary, as shown in Fig. 3.25. This configuration results in a
fully symmetrical total displacement field relative to both axes. The total
strain shown in Fig. 3.25 is a scalar value, derived from all in-plane strain
components using the following relationship:

Etotal = 5%1 + 5%2 + 25%2 (3'8)

Furthermore, the corresponding stress-strain curves for the e;- and es-axes
align perfectly on each other, confirming that the balanced biaxial tensile
test was performed reliably.

Subsequently, the experiment was conducted with a strain rate ratio of
£11/€22 = 1.5. The larger displacement field along the ej-axis, observed at
the left and right edges of the sample, confirms a greater elongation in this
direction compared to the es-axis. The corresponding stress-strain curves
reveal an interesting pattern. While the curve along the e;-axis follows a
typical tensile load progression, the curve along the es-axis reflects a more
complex behavior. Initially, both curves display linear elastic behavior up to
approximately 1% total strain. Beyond this point, the es-axis curve shows an
almost plateau behavior up to around 10% total strain before rising again.
The slower strain rate along the es-axis allows the sample to demonstrate its
auxetic effect, meaning expansion in the es-direction. The force generated
by the sample’s expansion nearly balances the force required by the testing
machine to maintain the specified strain rate, creating the plateau in the
curve. At some point, this balance is lost and the test machine must apply
more force to maintain the strain rate, causing the curve to rise again.

In the third experiment with a strain rate ratio of &11 /90 = 2 a similar sce-
nario occurs as in the experiment with €11 /é99 = 1.5, with the key difference
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Figure 3.25: The global stress-strain curves of auxetic sheets with AR = 5
subjected to biaxial tensile tests at various strain rate ratios.

being that the strain rate induced by the auxetic effect along the es-axis is
faster than the prescribed strain rate. This slower prescribed strain rate acts
as resistance to further expansion in the es-direction, resulting in increased
pressure on the sample in this direction, as shown in the stress-strain curve
for the es-axis. This phenomenon can also be mildly observed in Figure 3.25,
where the sheet shows a slight out-of-plane bending due to the induced pres-
sure in the ey direction.

The results of biaxial tensile tests with varying strain rate ratios enabled
conditions in the specimen to more accurately reflect real-world loading con-
ditions, providing insight into how the auxetic sheet responds to these loads.
Furthermore, the stress-strain curves obtained from the biaxial tests can serve
to validate the subsequently developed material model.



Fundamental of Continuum Mechanics

Continuum mechanics deals with the behavior of continuously distributed
and deformable bodies. It provides a phenomenological framework for de-
scribing the motion and deformation of these bodies under external forces and
environmental changes, independent of their atomic structure. The contin-
uum is actually a material body composed of an infinite number of infinites-
imally small points, which are evenly distributed in the body. Each mathe-
matical point in the continuum represents a material point having physical
properties that contribute to the properties of the bulk material. The ma-
terial points always stay within the body and cannot exceed its boundaries
during deformation. The uniform and continuous distribution of material
points within a material body as assumptions allows the application of vec-
tor algebra and differential calculations as analytical tools to develop such
material models.

In this chapter, the relevant parts of continuum mechanics have been ex-
plained serving as a foundation for the developed material model.

In general, continuum mechanical theory is divided into:

« Kinematics, describing the motion and deformation of a body inde-
pendent of its cause;

-38-
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« Balance equations, as axiomatic conservation laws governing mass,
momentum, energy and entropy;

o Constitutive laws, describing the material specific behaviour as cor-
relation between the stress state and the deformation state,

which are discussed in detail in the following sections.

4.1 Kinematics

As explained, kinematics focuses on the motion of a body without addressing
its causes, enabling the mathematical quantification of the body’s deforma-
tion. We consider a material body B at time t = t; as the reference con-
figuration, where the body is still in its undeformed state (Fig. 4.1). Once
the body is subjected to a stress vector t at time ¢t > ty, this leads to a
deformation of the body. The deformed state of the body is referred to as
the current configuration. In the context of continuum mechanics, a material
point is a mathematical point. This means that each material point within
the body can be associated with a position vector.

t =t

€1
€3

Figure 4.1: Reference and current configuration of a material body B.

The material body B is enclosed by the boundary 0B, which consists of the
set of material points located on its surface. The motion and deformation
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of the material body B are characterized by the movement of these material
points. The material point P has the position vector X in the reference
configuration and the position vector x in the current configuration. The
displacement experienced by point P is calculated by the displacement vector
u. It applies:

x=X-+u(P,t)=X+u(X,t) (4.1)

A material point X is mapped from the reference configuration to the current
configuration under an external load through the motion function x(X,t).
This motion function is bijective, ensuring a one-by-one correspondence. The
position vectors X in the reference configuration and x in the current con-
figuration are related through this motion function:

x = x(X,t) <= X = x"'(x,t) (4.2)

The Lagrangian or material representation expresses kinematic quantities
relative to the reference configuration. In contrast, the Eulerian or spatial
representation defines kinematic quantities based on the position vector in
the current configuration. In the Lagrangian framework, the velocity x and
acceleration x of a material point P are determined as the first and second
time derivatives of the motion function with respect to time (eq. 4.2):

dx(X,t)
S dt

d*x(X, t)

(X, t
X( 7) dt2

and x(X,t) = (4.3)
In kinematics, two concepts are distinguished based on the magnitude of
deformations, namely geometric linearity and geometric nonlinearity. Geo-
metric linearity applies to situations involving small deformations, such as
linear elastic deformation or even metal plasticity, whereas geometric nonlin-
earity pertains to cases with large deformations, like viscoelastic behavior of
rubber or metal forming. Since this work focuses on metal plasticity, where
deformations can still be considered small-scale, the theory of geometric lin-

ear kinematics will be further explored [7, 44, 40].

4.1.1 Geometric Linear Kinematics

As previously explained, the displacement field of the entire body can be
determined by mapping all material points. However, this displacement field
alone is insufficient for calculating the deformation.

To achieve this, we must examine the displacements of the respective points
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within a small volume element. Since representing a 3D volume element is
highly complex, we will simplify the analysis by focusing on a 2D represen-
tation instead.

We pick out a small volume element from the entire body with the reference
points P, () and R, as shown in Figure 4.2.

t > 1o

v 1
[ |

AX, =1, €1 I, + Al

Figure 4.2: Material volume element in the reference and current configura-
tion .

The corresponding displacement vectors for the respective reference points
are also illustrated schematically in Fig. 4.2. The displacement of point P
is assumed to be known. Since the dimensions of the volume element are
infinitesimally small, the displacements of neighboring points can be approx-
imated using a Taylor series expansion.

ou(X)
0X,

ou(X)
0X,

u(Q) =u(P) + AX, u(R) = u(P) + AX, (4.4)
After approximating the displacement field, the changes in length can be
determined by calculating the difference between the corresponding lengths

in the current configuration and those in the reference configuration.

. aul . All . 8u1
All = a_)(lll = £11 = T = 6X1 (45)
Alg = %12 = E99 = % = 8U2 (46)

09X lL 00X,
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The shape of the rhombus or Rhombohedron in the three-dimensional case
is characterized not only by the changes in the length of the edges but also
by the changes in the angle of the originally right angles.

Ul(@) - Ul(P)
lo + Aly

uz(R) — us(P)
I, + Al

tan(a) = tan(f) = (4.7)
After applying Eq. 4.4 and linearization due to the small deformation frame-

work, where a = tan(«) and = tan(3), Eq. 4.22 results as follows:

. 8u2 aul

g= (48)

“Tax, X,

and then a mean angle change can be defined by:

1 - 1 8u1 8u2

ep=(a+p8)= 2(87)(2+87)(1)

5 (4.9)

When this concept is extended to 3D in a same way, the deformation can be
represented in matrix notation as follows:

€11 €12 €13
€= |€21 €22 €33 (4.10)
€31 €32 £33

In this matrix representation, the diagonal elements represent the changes
in length, while the off-diagonal elements indicate the changes in angles.
Finally, the deformation can generally be formulated as the strain tensor as
follows:

€= ;(Grad u + Grad"u) (4.11)
ou 8u,

= — = —¢; ; 4.12

Gradu oX T X, e X e, (4.12)

4.2 Balance Equations

While the kinematic considerations of the previous section establish a link be-
tween the displacement of the material points and the distortions, the balance
equations represent the mathematical formulation of the physical conserva-
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tion statements. In classical physics, the balance equations are introduced
axiomatically. In continuum mechanics, the balances of mass, momentum
and angular momentum are fundamental principles [7, 44, 40, 55]. These can
be expressed through the following axioms

e Mass balance: The mass of a material body remains constant during
its motion;

e Momentum balance: The momentum of a material body changes
due to the forces acting on the body;

e Angular momentum balance: The spin of a material body changes
due to the moments that act on the body.

The momentum balance equation will be discussed in greater detail, as it is
the most important balance equation in this work.

The core concept of momentum balance is Newton’s second law (f = ma),
which is valid for rigid bodies. However, in continuum mechanics, where
deformable bodies are considered, Newton’s second law must be generalized
to account for deformable materials. The force f acting on a body can be split
into short-range and long-range components. Short-range forces arise from
the immediate environment interacting with the body’s surface 0B, while
long-range forces, such as gravity, act within the body and are not affected
by immediate surroundings. This division leads to

f:/ tda +/pbdv (4.13)
oB B

Here, t represents the stress vectors on the body surface that are transmitted
by contact of the body with its environment, while pb is the volume force
density acting inside the body.

The term "ma" on the right-hand side of Newton’s second law represents the
momentum change of a rigid body:

I =mv=mx (4.14)

For deformable materials, the momentum change is given as the total con-
tribution of all material points within the body B:

. d _ .
I:&/Bpxdv—/gpxdv (4.15)
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Combining this with Eq. 4.13 leads to the global momentum balance:

/p)"cdv:/ tda—i—/pbdv (4.16)
B oB B

To transition from a global statement to a local one, the surface integral of
the short-range forces must be converted to a volume integral. This transfor-
mation is feasible if the Cauchy theorem applies to the surface force density
t on the body’s boundary

t=T-n (4.17)

if there is a stress tensor T that generates the stress vector t on the surface
with the normal vector n. The stress tensor T is called the Cauchy stress
tensor. In this case, Gauss’s theorem (divergence theorem) can be applied,
provided the stress tensor has the necessary continuity and differentiability
requirements. The following then follows

t da :/ T-nda :/diVTdv (4.18)
oB B B
where
3
oT;;
divT = ” (4.19)
o1 0X;
The combination of equations 4.16 and 4.18 leads to
/ (p% —divT — pb)dv =0 (4.20)
B

Since the momentum balance 4.20 also applies to any partial body, the in-
tegral itself must be zero. This leads to the local form of the momentum
balance

px =divT + pb (4.21)

In the static or quasi-static case, ignoring the inertia forces expressed by px,
the balance of momentum simplifies to

divT + pb =0 (4.22)
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4.3 Constitutive Equations

Kinematics and balance equations are universal, material-independent re-
lationships. In contrast, constitutive laws are formulated to describe the
specific behavior of a material by relating stresses to strains. The develop-
ment of constitutive laws is guided by principles from rational mechanics,
which provide several foundational rules for this process [74, 75, 95]. The
second law of thermodynamics plays a crucial role in the development and
formulation of these constitutive laws by ensuring that the material behavior
is physically realistic and thermodynamically consistent. Additional details
on constitutive modeling can be found in [41, 44, 55, 78].

Material behavior can generally be classified into four groups based on their
response to external forces, considering factors such as time dependence and
reversibility, as follows [18, 57, 79]:

« Elastic: Rate-independent without equilibrium hysteresis (reversible);

o Viscoelastic: Rate-dependent without equilibrium hysteresis (re-
versible);

« Plastic: Rate-independent with equilibrium hysteresis (irreversible);

» Viscoplastic: Rate-dependent with equilibrium hysteresis (irre-
versible);

The typical stress-strain curves of the above-mentioned material groups are
shown in Fig. 4.3.
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Figure 4.3: Typical stress-strain curves of the different types of material
behavior.

As this study focuses on the development of an anisotropic elasto-plastic
material model, only the theories of elastic and plastic behavior are discussed
in detail below.

4.3.1 Anisotropic Elasticity and Orthogonal Transforma-
tions

Anisotropy is an important common feature of most heterogeneous materials.
Physical or mechanical properties of a specimen vary depending on the di-
rection in which they are measured. In other words, an anisotropic material
does not have uniform characteristics in all directions. With the exception
of the complete anisotropy the anisotropy is always restricted by symmetry
conditions caused by material structure [21, 17]. These symmetry conditions
result from either special microstructures such as composite materials or, on
a macroscale, from a special geometry of the structure such as auxetic mate-
rials. All solids can be characterized in different material groups based on the
number of existing symmetry planes in the structure, from triclinic materials
without any symmetry plane to isotropic materials with infinite symmetry
planes. With the help of Tab. 4.1 and Fig. 4.4 all possible material groups
can be well represented in terms of the number of symmetry planes, where
the vectors OP and OQ represent the normal vectors of the corresponding
symmetry planes [94].



4.3. Constitutive Equations 47

Table 4.1: The groups of material symmetry in context of anisotropy

Type of symmetry | Planes of symmetry Position of normal vectors
Triclinic 0 -
Monoclinic 1 0=0or7m/2o0rp=m/2
Orthotropic 3 0=0,m/2and ¢ =7/2
Trigonal 3 0 =0and +7/3
Tetragonal 5 0=0,+n/4,7/2and ¢ =7/2
Hexagonal 7 0=0,+n/6,+7/3, /2 and p =m/2
Cubic 9 0=0,+n/8,+7/6, +n/4, m/2 and ¢ = 7/2
Transverse isotropic 0 es axis of symmetry
Isotropic o0 o0

&)
©

> €2
o

/ P

€1

Figure 4.4: O represents the material origin and the vectors OP and OQ
are the normals to planes of reflection symmetry mentioned in Table 4.1

Hooke’s law is a key principle that explains the elastic behavior of materials
under small strains caused by external forces. It is generally expressed as:

o :(42 L€ (4.23)
4
S:

€

o (4.24)

4
Here, o and e represent engineering stress and strain, respectively, while C

and § denote the fourth-order elastic stiffness and compliance tensors. The
superscript 4 indicates the order of the tensor, signifying the number of basis
components required to characterize it.

The fourth order elasticity tensor C contains 81 components (3 X 3 x 3 x 3),
which in the general case (full anisotropy) are characterized by 21 indepen-
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dent elastic material parameters.
For isotropic materials, Hooke’s law is expressed as:

o =2pue+ \tre)l (4.25)

where the elastic behavior is characterized by only two independent material
parameters, namely g and A known as the Lamé constants. In this equation
tr € denotes the trace of the strain tensor and I refers to the identity tensor.
These parameters can alternatively be expressed using Young’s modulus F,
the bulk modulus k£ and Poisson’s ratio v.

Anisotropic elasticity has been extensively studied in the past several
decades, primarily because of its relevance in composite materials. Its behav-
ior is always constrained by symmetry conditions imposed by the material’s
internal structure. To understand how symmetry properties impact the elas-
tic behavior of an anisotropic material, it is crucial to consider orthogonal
transformation relationships that mathematically describe rotations around
an axis or reflections across a plane. This approach results in a reduction
in the number of independent elastic constants needed to characterize the
fourth-order elastic tensor C, which depends on the number of symmetry
planes in the structure of the material [94].

An orthogonal tensor represents a rigid transformation, which means that it
does not alter the shape of a body. Orthogonal tensors possess several use-
ful properties, one of which is that their inverse is equal to their transpose,
making them particularly convenient to work with [45].

Consider an orthonormal basis B = {e;, e, e3} that is rotated counterclock-
wise around the ez-axis by an angle 6, resulting in a new orthonormal basis
B’ = {€}, €}, e3}, as shown in Fig. 4.5. The two bases, B and B’, are related
by an orthogonal tensor R.

Figure 4.5: Illustration of the two orthonormal bases B = {e;, es, e3} and
B’ = {e},€,, e3}, where B’ is obtained by rotating B by an angle 6 about
the es-axis.
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Depending on the type of objects to be transformed according to the new
base B, the following relationships apply:

€ =R-e (4.26)
L'=R-L-R" (4.27)

4
C'—R®R): C: (ROR)" (4.28)

4
where e, L and C denote a first order (vector), a second order and a fourth

4
order tensor respectively, with respect to the basis B, while €/, L' and C’
represent the corresponding quantities relative to the rotated basis B’ [94]. In
general, the terms reflection and rotation are distinguished in the context
of orthogonal transformations. The existence of a plane of symmetry in
the structure implies that objects are reflected across this symmetry plane
without altering their properties. Consequently, the orthogonal tensor R
must satisfy the following conditions:

R-m=m (4.30)

where n refers to the unit vector normal to the reflection plane and m to the
any vector on the reflection plane. The conditions 4.29 and 4.30 lead to this
expression for tensor R, thus:

R=I-2n®n (4.31)

where I denotes the second order identity tensor. In general, the unit vector
n in plane can be written as:

n' = [cos, sinf), 0] (4.32)
which leads to a concrete definition of the tensor R using Equation 4.31:

—cos20 —sin26 0
R(0)ef = | —sin20  cos26 0 (4.33)
0 01

By applying the same methodology, the corresponding orthogonal tensor
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responsible for rotation around the es-axis can also be derived as:

cosf) —sinf 0
R(f),or = | sinf cosf 0 (4.34)
0 01

As shown in Table 4.1, orthotropic materials, which are the most common
type of anisotropic materials, exhibit three planes of symmetry located at

0 =0, 7/2 and ¢ = 7/2. This means that the elasticity tensor (42 must
remain unchanged (be invariant) under the respective reflection transfor-
mations associated with these symmetry planes. Applying the three angles
specified for orthotropy in the transformation tensor R and using them in

4 4
Eq.4.28, together with the condition C' =C derived from the symmetry

4
constraint, leads to some restriction on the elasticity tensor C, which require
some of its components to be zero. In Voigt notation, this leads to:

[Ci1 Cia Ciz Cia Cis Cig] [Ci1 Cia Ciz 0 0 0]
Cor Oy Chz Oy Cas U Cy Cyp Cy 0 0 0
Cs1 O3 Czg Czy Czs Csg . C31 O3 Csz 0 0 0
Cyp Cio Cuz3 Cy Cys Cyg 0 0 0 Cu O 0
Cs1 Cso Csz3 Csy Css Csg 0 0 0 0 Cs5 O

[Co1 Co2 Ces Coa Cgs Cos L0 0 0 0 0 Cel

where the left matrix denotes the corresponding elasticity matrix in case of
total anisotropy (triclinic), while the matrix on the right side corresponds to
the orthotropic materials. This approach can also be applied to characterize
all other elastic tensors with respect to the type of symmetry present in

4
the materials. For simplicity in presentation, the compliance tensor § is
preferably presented here including its elastic constant instead of the elastic

4
tensor C. The so-called engineering constants, as the components of the

4
tensor S, can be determined in the Voigt notation for orthotropic materials
as a function of the coefficients S;;:

1

Si' —_
E;

. i=1,2,3
1
QGZ‘]’7

Spr = i#j=1,23, k=4,506
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Sij = B

i4j=123

resulting in the compliance tensor for orthotropic materials as follows:

ro1 —lV21 —V31

— 0 0 0
Ey Es Es
-V —U32
— 0 0 0
E, E, E13
—lV31 —V32 s 0 0 0
Sz Es Es 3 1
0 0 0 — 0 0
Gi3 )
0 0 0 0 — 0
Gias .
0 0 0 0 0 —
L G12 -

As can be seen from the tensor é, there are in total 9 independent elastic
constants describing the elastic behavior of an orthotropic material, where
E;, Gi; and v;; correspond to the Young’s moduli, shear moduli and Poisson’s
ratios in terms of different directions.

4.3.2 Plasticity

Plasticity is a fundamental property of materials that describes their abil-
ity to undergo permanent deformation when subjected to external forces.
In contrast to elasticity, where materials regain their original shape after
the applied load is removed, plasticity involves permanent and irreversible
changes in shape or size. At the microscopic level, plasticity arises from the
movement of dislocations, whereas elasticity results from the distortion of the
material’s lattice structure. This phenomenon causes a shift in the behavior
of the stress-strain curve at the macroscopic level [52, 6, 66, 49, 37].

Figure 4.6 illustrates a typical stress-strain curve of a ductile metal subjected
to a uniaxial tensile test.
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Figure 4.6: Typical stress-strain curve of a ductile metal including loading
and unloading path [25].

Initially, the material exhibits linear-elastic behavior in response to the load,
which is characterized by the Young’s modulus (F) as the slope of the linear
region. In this area (1), the material returns to its original state when the load
is removed. Once the stress reaches the critical value o, the material begins
to deform plastically. Beyond this point, the curve has a flatter slope, with
slight stress oscillations often occurring as strain increases which is known as
Liiders strain (1) @). This behavior, common in metals, arises from dislo-
cations piling up at grain boundaries. Once enough dislocations accumulate,
they move again, restoring a uniform stress-strain curve (3). In continuum
mechanical modeling, the area of Liiders strain is usually neglected. If load-
ing is reversed at the 0 = o, unloading follows a curve parallel to the elastic
line (). After complete unloading, a residual plastic strain €, > 0 remains,
leaving the sample longer. Re-loading increases stress along the unloading
curve until oy is reached again, then continues along the original loading
path (5).

In summary, the main points discussed so far are as follows:

o< 0op = €,=0 = e=¢. = 0= Fe,
o>0p = >0 = e=¢c.+¢, = 0=FE(c—¢p)

This can be utilized to define a new term that characterizes the material
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yielding, referred to as the yield condition or yield criterion F', which is ex-
pressed as follows in one dimensional case:

< 0 — elastic,
F(oc) =0 —op:{ =0 — plastic, (4.35)
> 0 — undefined,

where o refers to the current stress acting on material and op to the current
yield stress. Under the yield condition, F' > 0 is not allowed, since the stresses
cannot exceed the current yield stress. Instead, the yield stress increases
during yielding, a process known as hardening, also referred to as strain or
work hardening. This implies a hardening rule to describe how yield stress
increases with strain. For linear hardening, the following applies:

O'F:Héfp — O-F:UFO+H5p (436)

Here H refers to the linear hardening modulus, which is determined experi-
mentally.

All the concepts discussed so far apply to the 1D case. However, for con-
tinuum mechanical material modeling, they must be extended to 3D. As
mentioned in Section 4.1.1, strain in 3D is defined as a tensor, its compo-
nents are derived from the displacement gradient (see Eq. 4.11). The strain
tensor can be additively decomposed into elastic and plastic components:

e=¢e.+¢g (4.37)

As long as the material deforms elastically, the generalized Hooke’s law ap-
plies:

o =2Ge, + k(tre.) I (4.38)

where tre, refers to the volumetric part and €, to the deviatoric part of
elastic strain tensor:

1
e =e — g(tr e.) 1 (4.39)

Yield Criteria

A yield condition defines the elastic limit within a material. It specifies when
and under which loading conditions the material begins to deform plastically.
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In the 1D-case the yield condition is formulated as Eq. 4.35. In 3D, the yield
condition appears similar, except that F' depends on tensorial stress rather
than scalar stress:

< 0 — elastic
F(o){ =0 — plastic (4.40)
> (0 — undefined

This implies F' to be formulated in such a way that it outputs a scalar value
from the stress tensor o. Since the stress tensor depends on the choice of
a coordinate system, F' is formulated in terms of stress invariants to ensure
its value remains independent of the coordinate system. Theoretically, three
different stress invariants can be derived from the symmetric stress tensor,
which are independent of each other. These invariants are expressed as fol-
lows:

L=troc=0:1 (4.41)
L=tr(c-o0)=0:0" (4.42)
L=tr(c-0-0)=(0-0): " (4.43)

It implies:
F(o)= f(li,13,13) —oF (4.44)

This implies that the yield function F' in three dimensions for an isotropic
material is governed by an arbitrary function f of the stress invariants and
the yield stress o obtained from the uniaxial tensile test. The function F' is
material-specific and must be modified or adjusted as needed to satisfy the
properties of the material. In this context, the stress tensor can be split into
two terms, namely deviatoric o’ and volumetric ¥ parts, which are defined
as follows:

1
o'=0— g(tr o)l  where tro’=0 (4.45)
v 1
o' = g(tr o)I=—pl (4.46)
where p refers to the hydrostatic pressure defined as p = —% (tro). The

volumetric part of the stress tensor is responsible for the change in volume of
the material, whereas the deviatoric part contributes to the change in shape
of the material. Analogous to the stress tensor, three invariants can also be
defined with respect to the stress deviator o”':

Ji=tra’' =0 (4.47)
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Jo==(c" : o) (4.48)

Js = det (o) (4.49)

After decomposing the stress tensor into its volumetric and deviatoric com-
ponents, the yield function defined in Eq. 4.44 is modified accordingly:

F(o) = f(Iy, J2, Js) — o (4.50)

In the following, the function value of f is referred to as the equivalent stress
Oe, l.€e.:

f(Ii, J2, J3) = o (4.51)

It has been demonstrated that bulk metals do not exhibit yielding under a
hydrostatic stress state i.e. 011 = 099 = 033, as dislocation movements, which
are responsible for yielding, are mutually obstructed. Consequently, yielding
in these materials depends only on the stress deviator invariants (Ja, J3),
which are independent of the hydrostatic stress components.

Von Mises (1913) is the most widely used yield criterion for massive metals.
It states that yielding occurs when the second invariant of the stress deviator
Jy reaches a critical value k2, i.e.:

F=J,—r"=0 (4.52)

By considering the yield condition under a uniaxial tensile test and using op
as the single non-zero component of the stress tensor o at which yielding
begins to compute J, k% can be determined as:

1
K = §a§ (4.53)

In terms of principal stresses the von Mises yield criterion (4.52) is expressed
as follows:

(UI — 0'1[)2 + (O’H — UIII>2 + (U[ - UIII>2 = 20% (454)

Equation 4.54 forms a cylindrical surface in principal stress space, oriented
parallel to the hydrostatic axis, with a radius of r = \/gap in the correspond-
ing m-plane which is prependicular to the hydrostatic axis (see Fig. 4.7-left).
As long as the stress state remains inside the cylinder, the material under-
goes elastic deformation. Once the stress vector reaches the surface of the

cylinder, the material begins to deform plastically. In case of plane stress
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(o = 0), Eq. 4.54 reduces to:
of — oo + o = o (4.55)

This represents an ellipse in the oy —oyp plane, as illustrated in Fig. 4.7-right.

111

. T

T-plane
(deviatoric plane)

Figure 4.7: Von Mises yield surfaces in terms of principal stresses in 3D (left)
and in 2D (right) and the corresponding m-plane (middle).

The von Mises yield criterion describes yielding in bulk metals quite well,
where hydrostatic stress has no effect. However, it fails for porous materials,
where plasticity can occur under pure hydrostatic stress states.

Drucker and Prager (1950) proposed modifying the von Mises yield crite-
rion by incorporating a hydrostatic stress term a/y, treating the yield surface
as a circular cone [5]:

F= 3J2 - OZIl —rk=0 (456)

For materials with equal yield stresses in uniaxial tension and compression,
k is determined as:

k=" (3-a) (4.57)

here op is also the yield stress in uniaxial tension. In these equations, « is
referred to as the pressure sensitivity parameter, which will be determined
experimentally. It is also referred to as the slope of the line in the hydrostatic
plane (/; — J; plane).
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Figure 4.8: Drucker-Prager yield surfaces in terms of principal stresses in 3D
(left) and in 2D (right) and the corresponding m-plane (middle).

Figure 4.8 illustrates that the Drucker-Prager yield criterion forms a conical
shape in the principal stress space, featuring a circular cross section in the
deviatoric plane. The pressure dependence is evident from the variation in
the cross-sectional area along the hydrostatic axis; as the hydrostatic pressure
(p) increases, the deviatoric area decreases.

Flow Rule

As previously discussed, the total strain can be additively decomposed into
elastic and plastic components (Eq. 4.37). The flow rule describes the evo-
lution of plastic strain as an internal variable during deformation and is
formulated as follows

0G (o)
Jo

€, = A (4.58)
where \ represents the plastic multiplier, controlling the magnitude of plas-
tic strain and G denotes the plastic potential, which must be determined
experimentally. The term 3(09((70) represents the direction of the plastic flow.
In most cases, the flow function F' is chosen as the plastic potential, provid-

ing accurate results, particularly for bulk metals. When this assumption is
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made, the flow is referred to as associated flow

) . OF (o
Ep=A 8&7)'

(4.59)

In associated flow, the direction of the plastic flow is always perpendicular
to the yield surface in the principal stress space, as illustrated schematically
in Fig. 4.9.

or(o) _
o

o111
F <0

g1
o F=0

Figure 4.9: Schematic representation of flow direction in principal stress state
in case of associated flow [25].

Hardening

Hardening is another component of plasticity and describes how yield stress
develops with increasing load. The yield stress op is then influenced by
additional internal variables, known as hardening variables ;. In general,
multiple hardening variables may arise which can be either scalar-valued or
tensor-valued. The yield function must be modified to incorporate these
variables in a manner that

F =F(o,p). (4.60)

In general, as hardening progresses, the shape and position of the yield sur-
face F' = 0 in stress space can change in various ways. However, two com-
monly observed types of hardening are isotropic and kinematic hardening.
In isotropic hardening, the yield surface retains its shape while its size ex-
pands uniformly, as illustrated in Fig. 4.10 (left). In contrast, in kinematic
hardening, the yield surface preserves its size but changes position within the
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stress space, as shown in Fig. 4.10 (right).

o111 g111

o =0p,

o
o1 I

Figure 4.10: Isotropic hardening (left) and kinematic hardening (right)[25].

To determine the type of hardening that a material undergoes, appropriate
experiments must be conducted. Kinematic hardening is observed when a
material exhibits different yield strengths in tension and compression during
cyclic loading. This phenomenon is also known as the Bauschinger effect. In
the case of isotropic hardening, which is particularly relevant to this work,
uniform expansion of the yield surface can be described by scalar hardening
parameters ¢;, typically expressed as a function of the effective plastic strain
eP. It is therefore convenient to write the yield function as

F(o,e’) =0, —op = 0.(0) — op(EP) (4.61)

where o, refers to the effective stress. In case of von Mises material

e =1/3J2 =/ =(0’ : ') (4.62)

2 2 O0F OF
§€p : Ep = g ()\870_ : )\870‘) (463)

Since the yield condition F' = 0 must hold during plastic flow, the material
must harden under increasing load. This is expressed by the consistency
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condition, which states that:
F=0= F=0 (4.64)

Applying the chain rule gives:

. OF oF .
90 7T a" (4.65)
Now, by combining Equations 4.63 and 4.65, we arrive at a precise definition
of the plastic multiplier rate:

_ Jo
i\ =~ F . OF (4.66)

(G (50

4.3.3 Anisotropic Plasticity

As discussed in Section 4.3.1, anisotropy refers to the variation of a ma-
terial’s properties depending on the direction in which they are measured.
In contrast to isotropic models, where the choice of a reference frame is
arbitrary, anisotropic models require the use of a coordinate system aligned
with the material’s structure.

In general, anisotropic plasticity can be characterized in various ways, as
discussed by Skrzypek and Ganczarski [90]. One of the earliest formula-
tions of anisotropic plasticity was proposed by Hill 1948 [47], which is an
extension of the classical von Mises yield criterion to account for anisotropy.
It introduces a quadratic yield function that incorporates different yield
stresses along various material directions as follows, making it particu-
larly useful for metals and sheet materials that exhibit orthotropic symmetry.

F(o) = \/F(UQQ —033)2 + G(o33 — 011)? + H(011 — 022)% 4+ 2L033 + 2M o3, + 2No7,

Hier F', G, H, L, M and N are constants obtained by tests of the material
in different orientations. Although the Hill model effectively describes
the anisotropic plastic behavior of metals, it is restricted to materials
with orthotropic symmetry and cannot represent other types of material
symmetry. Additionally, it is only applicable to bulk metals where the
hydrostatic pressure does not affect the plastic flow.

Following Hill’s work, many other researchers have proposed anisotropic
yield surfaces in stress space. Among the most notable are those developed
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by Bassani (1977) [13], Budiansky (1984) [14], and Barlat et al. (1989,
1991) [12, 11]. All of these yield theories employed an associated flow
rule and described the yield surfaces as convex in the stress space. They
proposed flow functions that, unlike the Hill criterion, were not restricted to
a quadratic form, but instead had an arbitrary degree.

Almost all anisotropic plasticity models are based, either directly or indi-
rectly, on generalized forms of stress deviator invariants. In this framework,
the Cauchy stress tensor undergoes a linear transformation. Here, two
fundamental concepts are employed. The first involves the use of structural
tensors, typically denoted by M;, which represents the material’s privileged
directions as

where a; denotes unit vectors of the material’s privileged directions [83, 22,
46]. As a result, the flow function F' depends not only on the stress state,
but also on the structural tensors M;

Flo,M;)=y/oc:CM):0—op (4.68)

where F is intended to involve only the second invariant of the stress deviator

4
Jo. In this Equation C is a fourth order anisotropy tensor, which is defined
as

n

C=alI®+8Y w; (M;®M,). (4.69)

i=1

Here, a and (8 are scalar anisotropy parameters determined experimentally,
while w; is a weighting factor reflecting the intensity of the material properties
in the corresponding direction. Applying 5 = 0 and o« = 1, the corresponding
isotropic flow function is recovered.

All the anisotropic models discussed so far are based basically on the ana-
lytical solution, which require simplified geometry, boundary conditions and
material behavior to be solvable. Karafillis and Boyce (1993) [51] introduced
a refined approach that leveraged linear stress transformation and arbitrary
nonlinearity while overcoming limitations like restricted stress states and
anisotropic behavior. The Karafillis-Boyce model (KB93) applies a linear
transformation of the Cauchy stress to derive an Isotropic Plasticity Equiv-
alent (IPE) deviatoric stress, which was later adopted in other anisotropic
models (e.g. [10, 68]). This modeling approach has been effectively applied
to metal forming processes, as demonstrated by [16, 101, 54]. The “IPE
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stress transformation” is defined as

4
S=L:o (4.70)

where ﬁ is a fourth-order transformation tensor, o is the actual stress tensor
of the anisotropic material, and S is the resulting Isotropic Plasticity Equiv-
alent (IPE) stress tensor, which is also deviatoric (traceless). The idea is to
replace the actual stress tensor o with the transformed IPE tensor S. For
example, the anisotropic von Mises yield criterion becomes

Flo) = |2(c" : o) —op — F(§) = ;’(s . 8)—op—5—op
(4.71)

where o’ refers to the stress deviator and ¢ to the mean yield stress in differ-

ent directions and ¢ to the equivalent transformed stress. The main challenge
4
in this approach is to identify the components of the transformation tensor L.

Its structure, particularly the zero entries, is the same as the elasticity tensor
4
due to the symmetry condition. For example, in orthotropic materials, L has

4
9 independent components to be determined. In the isotropic case, L must

leave the stress deviator unchanged. In anisotropic case, it must be trans-
formed itself according to the material orientation as described in Eq. 4.28.
Finally, an error function (F) can be defined to identify the components of

4
tensor L based on experimental data

BE(L;) = i (5% - 1) (4.72)

where k refers to the number of experimental data available from different
tests.

IPE approach is an elegant way, especially for numerical implementation for
models that are independent of the hydrostatic stress component. In order to
generalize the IPE method also for porous materials whose yielding behavior
depends also on the hydrostatic stress component, Smith et al. [91] proposed

*
a new transformation tensor L, where

: 1
L=L+ Il (4.73)



4.3. Constitutive Equations 63

Here, i is the new fourth-order pressure-augmented isotropic projection ten-
sor, L is the original deviatoric fourth-order projection tensor from KB93,
and I is the second-order identity tensor. This leads to a new, non-deviatoric
form of the IPE tensor, termed the Pressure-augmented Isotropic Plasticity
Equivalent (PIPE) tensor,

* * 1
S:L:a:(L—i-gI@I):O' (4.74)

The structure of the IPE tensor indicates that the PIPE stress can be addi-
tively decomposed into the following two tensors

S=S+P (4.75)

where S denotes the IPE tensor as defined in Eq. 4.70, and P represents the
pressure tensor, which due to the Eq. 4.74 is defined by

P=—pl (4.76)

Here, p refers to the hydrostatic pressure of the Cauchy stress tensor.
Therefore, the results from Equations 4.75 and 4.76 demonstrate that the
anisotropic pressure-dependent yield function associated with the PIPE ten-

sor S depends on both the L and the Cauchy stress tensor o. Consequently,
the corresponding anisotropic Drucker—Prager yield criterion (Eq. 4.56) de-
rived from this framework is given by

F(S) = \/34(S) — ali(o) — k=0 (4.77)

This confirms that the projection tensor L from the KB93 is fully sufficient
to characterize an anisotropic, pressure-dependent yield function as well.



Fully Resolved Simulation and
Homogenization

5.1 Introduction to the FEM

The Finite Element Method (FEM) is a numerical technique used to find
approximate solutions to complex engineering and physical problems, those
that involve partial differential equations (PDEs). FEM has become one of
the most powerful and widely used tools in fields such as structural analysis,
heat transfer, fluid dynamics, and electromagnetics. Its success lies in its
flexibility and adaptability to complex geometries, complex boundary con-
ditions and diverse material properties. The method is based on dividing a
large and complex problem into smaller and simpler parts called "finite ele-
ments', which are connected at discrete points known as nodes. By solving
these smaller, discrete problems, FEM builds an approximate solution to the
entire problem.

Finite Element Analysis (FEA) is divided into three main phases: prepro-
cessing, where a computable model is created by defining geometry, mate-
rial properties, boundary conditions and discretization of geometry; solving,
where the global system of equations is solved; and postprocessing, where
results are evaluated and visualized for interpretation.

—064 -
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In FEA, variables are categorized as primary or secondary on the basis of
their role in solving the problem. Primary variables are the main unknowns
that the FEA seeks to solve directly, such as displacements in structural anal-
ysis or temperature in thermal analysis. These primary variables are typically
calculated at the nodes. These variables are then interpolated within the ele-
ments using the node values. The interpolation is carried out using the shape
functions, which are typically polynomial functions due to their continuously
differentiable or integrable nature. The field quantities generated by inter-
polation within the elements can be used to calculate secondary variables
such as stress or strain. This calculation is performed through numerical
integration at specific locations called integration points (or Gauss points).
Increasing the discretization fineness or choosing a higher order polynomial
function for interpolation enhances result accuracy, but also significantly in-
creases computational effort. Therefore, choosing the appropriate mesh and
element type is a challenging task that requires experience. A balance must
be achieved to ensure that the results are sufficiently accurate while keeping
computational effort manageable.

This concept is referred to as the convergence study. It is a process used
to ensure that the simulation results are accurate and independent of the
mesh size or element discretization. It involves systematically refining the
mesh typically by increasing the number of elements and observing how the
results (such as stress, strain, or displacement) change with each refinement.
Once the results converge to a consistent value (no significant change in re-
sults), the solution can be considered accurate. At this point, the density of
the mesh is likely sufficient for a reliable solution.

5.2 Plane Stress State and Element Formulation

In the field of continuum mechanics, a plane stress state refers to a condition
in which the stress components perpendicular to a specific plane (usually the
thickness direction) are negligible compared to the in-plane stresses. This
assumption is valid in thin flat structures such as plates and shells, where
the thickness is much smaller than the other dimensions and the out-of-
plane forces are minimal. Under plane stress state, only the normal stresses
(011 ,092) and shear stress (712) are considered, simplifying analysis and en-
abling two-dimensional modeling.

Depending on the dimension and complexity of the model, different types
of elements can be chosen, each differ in terms of dimensionality and num-
ber of nodes as well as number of integration points. Theoretically, volume
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elements or surface elements can be used for the spatial discretization of
auxetic sheets. Volume elements are typically used for massive or thick-
walled components. For thin-walled components, as utilized in this work,
the thickness resolution would be significantly lower than the dimensions in
the plane of the component, making the use of volume elements less suitable.
In addition, the computation time increases significantly as the number of
elements grows. In practice, volume elements require approximately eight
times as much computation time as equivalent surface elements [15]. Figure
5.1 shows a continuum element as an example of a volume element, as well
as 2D shell elements with different numbers of integration points.

node
\ integration point

8-nodes continuum element 4-nodes shell element 4-nodes shell element
full integration full integration reduced integration

Figure 5.1: Continuum element and shell elements including nodes and inte-
gration points.

For computational efficiency reasons, linear shell elements, which use bilin-
ear shape functions, are used for auxetic sheets. The governing equations
are integrated over the element, which is performed numerically by selecting
appropriate integration points. For bilinear shell elements, numerical inte-
gration is carried out based on four integration points. By using reduced
integration, the number of integration points is reduced to one per surface,
decreasing the computation time and avoiding locking effects (shear locking
and volumetric locking). First-order elements with full integration suffer from
the problem of shear locking. Shear locking results in an excessively high
element stiffness under bending load because the corresponding deformation
modes cannot be accurately represented by the shape functions. The cause
of this issue lies in the element edges, which cannot bend due to the linear
order. Even fully integrated quadratic elements can experience shear locking
when the bending load becomes too large. In reduced integration, the value
of the volume integral is determined only by the support values at the center
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of the element. Linear elements with reduced integration tend to exhibit a
stiffness that is too low. Reduced integration leads to a rank deficiency when
calculating the element stiffness matrix, and thus, it is no longer solved ex-
actly. This numerical problem is known as hourglassing and can lead to
unphysical solutions. Hourglassing occurs when, during bending the element,
no strain energy is generated due to a single integration point, meaning that
the element cannot resist the applied load.

In contrast to shear locking, there are stabilization methods available for
hourglassing to minimize the problem. ABAQUS® provides a range of suit-
able element formulations, integration methods, and stabilization techniques.
Details can be found in the ABAQUS® user’s manual [69)].

5.3 Fully Resolved Simulation of Auxetic Sheets

A fully resolved simulation or in other words a micromodel simulation refers
to a numerical model that captures all relevant physical details of a structure,
including fine-scale stress distributions, deformations, and material behavior,
without relying on simplifications or submodels. All simulations in this study
were performed using commercial FE software ABAQUS® (Dassault Sys-
tems). The CPS4R element type (4-node bilinear plane stress quadrilateral,
reduced integration) with a seed size of 0.5 mm is used. The seed size of
0.5 is chosen so that the struts (thin webs) can be meshed by two elements.
Young’s modulus of 60.04 GPa and Poisson’s ratio of 0.33 as well as the
hardening parameters (Table 5.1) were applied as input parameters for the
fully resolved elasto-plastic simulation of the corresponding auxetic sheet,
which were determined from the experimental flow curve of the bulk AlMg3
discussed in Section 3.2 (see Fig. 5.2).

e — oi (MPa) | o [
;gg: 1 | 119.64 0
175} ] 126.24 0.004151
is0f ; 158.40 | 0.017051
toof ] 195.00 | 0.041381
ol _ 9297.84 | 0.093941
o I« S 232.70 | 0.127941
0 0.02 0.04 0.06 0.08 0.1 0.12

Figure 5.2: Flow curve of bulk AIMg3 sam- Table 5.1: Input Parameters
ple. for the hardening simulation.
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Strain-controlled tensile tests were simulated, where a total displacement of
9 mm was specified, which corresponds to approximately 10% global strain.
As boundary conditions, a displacement of U2 = 4.5 mm is applied to both
ends of the specimen in clamping holes so that the center of the specimen
remains stationary during deformation. The other degrees of freedom, i.e.
the displacement U1 in the e; direction and the rotation U R3 around the e3
axis are fixed, as illustrated in Fig. 5.3.

U2 = 4.5mm

Ul=UR3=0
Ul=UR3=0
U2 = —4.5mm

Figure 5.3: representation of boundary conditions applied to the auxetic
sheets for fully resolved simulations.

5.3.1 Reference Auxetic Sheet with AR =5

At first, the fully resolved simulation was carried out on the reference auxetic
sheet with AR = 5. The deformed auxetic sheet with cut-out unit cell in
the center of the sheet after 10%-global strain are shown in Figure 5.4. The
micromodel results with respect to the von Mises equivalent stress distribu-
tion are in total agreement with the experimental results of the local strains
determined by DIC, which are represented in Section 3.5. As can be seen in
Fig. 5.4, the maximum stresses occur in the struts that are responsible for
the rotation of the squares. In the central areas of the squares, however, low
stresses occur, so that these stress values are below the yield point of AIMg3
(approx. 120 MPa). This means that these areas do not experience any
plastic deformation at all, but they exhibit only rigid-body rotations during
the tensile test.
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Figure 5.4: Undeformed reference auxetic sheet whit AR = 5 (left) and
corresponding deformed state including cut-out unit cell subjected to uniaxial
tensile test after 10%-global strain (right). The contour refers to the von
Mises stress.

As shown in Figure 5.5, there is a small deviation between the global stress-
strain curves obtained from the experiment and the simulation. However,
this is quite typical. The difference occurs because simulations are always
based on idealized conditions and boundary constraints, unlike real-world ex-
periments. In the experiment, local effects may have influenced the outcome
such as localized plastic deformation around the clamping holes or minor
measurement, errors in tracking machine displacement, causing the experi-
mental stress-strain curve to appear slightly softer.

In general, as can be seen in Fig. 5.5, both the local and global deformations
as well as the global stress-strain curves of simulation and experiment agree
well with each other. The minor deviation observed in the initial elastic
region is attributed to the idealized conditions in the simulation—namely,
perfect material homogeneity and ideal boundary conditions, which result in
an overestimation of the specimen’s stiffness. This suggests that the simula-
tions accurately capture the auxetic behavior and could potentially substitute
for real experiments if needed.
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Figure 5.5: The deformed reference auxetic sheets (AR = 5) in simula-
tion (left) and experiment (right) and the corresponding global stress-strain
curves subjected to uniaxial tensile test after approx. 10% global strain for
both simulation and experiment.

5.3.2 Anisotropy Investigations

In order to analyze the type of anisotropy present in the auxetic structure,
various auxetic sheets with an identical aspect ratio of AR = 5 were designed,
featuring different orientation angles. These angles progressively increased
from 0° to 90° in 5-degree intervals. All these auxetic sheets with different
orientation angles (6) were subjected to uniaxial tensile tests up to approx-
imately 10% global strain, as illustrated in Figure 5.6 for the sheet with an
orientation angle of 6§ = 45°.
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Figure 5.6: Undeformed auxetic sheet whit AR = 5 and orientation angle of
0 =45° (right) and corresponding deformed state including cut-out unit cell
subjected to uniaxial tensile test after 10% global strain (left).

At the microscale, as evidenced by the comparison of Figures 5.4 and 5.6,
the von Mises stress in the struts decreases as the orientation angle increases.
This phenomenon on the macroscale leads to a decline in global stress, which
is responsible for the deformation of the entire sheet. This decrease in global
stresses can also be observed in the corresponding global stress-strain curves
for the specimens with 0° to 45° rotated pattern (see Fig. 5.7a). Young’s
moduli and yield strengths decrease continuously with increasing orientation
angle (6). For the specimens from 45° to 90° rotated pattern, the mechanical
properties repeat in such a way that the stress-strain curves related to the
specimen with 6° rotated pattern are quite identical to the specimen with
(90 — 6)° rotated pattern (see Fig. 5.7b).
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Figure 5.7: Global stress-strain curves related to the specimens with different
pattern orientation angles (6).

It is obvious that after 90° rotation of the pattern, the initial state is recov-
ered, which corresponds to orthotropic materials based on Tab. 4.1. Further-
more, referring to the stress-strain curves in Fig. 5.7, it was also derived that
the 45° axis forms an additional axis of symmetry in this structure, which
corresponds to the so-called tetragonal materials due to Tab. 4.1. A spatial
representation of the tetragonal symmetry is shown in Fig. 5.8, where four
of the five planes of symmetry lie at distances of 45° from each other and
the fifth plane of symmetry lies transverse to all of them. The corresponding
normal vectors to the planes of symmetry are denoted by al — a5.
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Figure 5.8: Spatial illustration of the five planes of symmetry characterizing
tetragonal symmetry. The normals to the five planes are denoted by al —ab.

5.4 Numerical Homogenization

Numerical homogenization is a powerful computational technique used to
evaluate and predict the effective properties of heterogeneous materials by
bridging the micro- and macroscales. It ensures that the chosen RVE reflects
the macroscopic behavior of the material without bias or excessive compu-
tation. The representative volume element (RVE) is an important concept
in the field of computational mechanics, representing the smallest volume of
material that can statistically capture the macroscopic properties of a larger
structure [72]. The concept of RVE was first introduced by Hill [48] and
Hashin [43] and is currently widely used for the homogenization of hetero-
geneous microstructures such as composite and porous materials. Fig. 5.9
provides a schematic illustration of the homogenization process. To apply
continuum-mechanical principles to heterogeneous materials, it is crucial to
establish a way to transition from a heterogeneous structure to a homoge-
neous structure.
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‘ heterogeneous material ‘ homogeneous continuum

Figure 5.9: Transition from the physical body to the homogenized continuum.

For this purpose, an RVE is chosen, whose properties result from the integral
mean over the entire volume element v at the microscale. The mean operator
is defined for any unweighted field quantity by Eq. 5.1

(o) = i/y(.) dv (5.1)
In this equation, (®) denotes any arbitrary macroscopic variable, while (e)
represents the corresponding microscopic counterpart. The transition from
microscopic variables to macroscopic variables is called homogenization and
the reverse process is called localization [88]. By applying divergence theorem
and Gauss’s integral theorem, Equation 5.1 can be reformulated in terms of
boundaries integration. This boundary formulation is then used to compute
the effective (macroscopic) strain and stress within an RVE as follows:

1
:@ agu@)nda (5.2)

1
g =— t d .
o |Q|/an ® xda (5.3)

®)

where u denotes the displacement field on the RVE boundary, n is the unit
normal vector, t refers to the stress vector acting on the RVE boundary
and x is position vector. da and |{2| are the differential element along the
boundary and the area of the RVE respectively [72]. The tensor product
u ® n in Eq.5.2 captures the directional contribution of the displacement
field relative to the RVE boundary orientation, while ¢ ® « in Eq. 5.3 forms
the corresponding stress tensor arising from the normalized edge forces (stress
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vectors).

Using Cauchy’s theorem (Eq. 4.17) t can be replaced by the stress tensor o
and the corresponding normal vector n as below, in case o is already defined
along the RVE boundaries.

1

1 89(0’ ‘n)®xda (5.4)

o=
Such boundary-based homogenization approaches are especially useful in FE
simulations, where boundary displacements and forces can be directly ex-
tracted.
Different boundary conditions can be applied on a homogenized RVE to de-
termine the effective material properties of the entire system. The shape
and size of the RVE depend mainly on the randomness of the geometry or
microstructure, which has been extensively discussed in the context of mul-
tiscale homogenization-based modeling [73, 36, 50, 2, 92]. For mechanical
metamaterials such as auxetics, which are regularly composed of periodic
unit cells, it is simpler to obtain an appropriate RVE than for materials
with arbitrary microstructure. For such materials, the RVE typically con-
sists of one or more unit cells, the number of which is to be determined by
comparison with the fully resolved sample. Finite element (FE) analysis is
one of the most common methods to deal with these systems. In order for
the RVE to be a proper representative for the corresponding infinite system,
the boundary effects must be eliminated somehow. This can be achieved by
implementing Periodic Boundary Conditions (PBCs). Kinematic periodic
boundary conditions are a set of boundary conditions applied often in a FE
program, where all opposite pairs of nodes are kinematically coupled with
each other, so that they deform in an identical manner and accordingly the
boundary effects disappear completely [71, 100, 62].
Periodic boundary conditions are actually linear couplings between the pairs
of nodes, which are supposed to be adjusted based on the prescribed load sce-
nario. In strain-controlled simulations, these linear equations must result in
the relative motion of all pairs of nodes being equal to the specified displace-
ment in the loading direction. This can be formulated in general for a single
node pair as equation (5.5), where A denotes the node number, i = (1,2, 3)
is degree of freedom and a is the constant coefficient that define the relative
motion of the nodes and @ is a prescribed displacement value [99].
aru + au® =7 (5.5)

i

Figure 5.10 presents a schematic representation of the expected coupling
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structure and the associated linear equations relating the node pairs.
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Figure 5.10: Schematic representation of the coupling between node pairs in
order to implement PBCs within RVE and associated linear equations for
the node pairs AB and C'D in 2D.

5.4.1 Influence of Boundary Conditions

As outlined in the previous section, applying periodic boundary conditions
(PBCs) to the representative volume element (RVE) is essential for eliminat-
ing undesirable edge effects. Fig. 5.11 illustrates the nature of these effects,
showing a comparison between a unit cell, a 2x2 cells and a 4x4 cells sub-
jected to uniaxial loading along the ey direction with standard (non-periodic)
boundary conditions. The corresponding cut-outs from a full sheet are shown
below each case. The noticeable difference in local deformation patterns be-
tween the upper and lower images highlights the impact of edge effects at
the locations where external forces are applied. Specifically, the restriction of
square rotations near the boundaries alters the local deformation and, con-
sequently, affects the effective material properties. Naturally, the smaller the
sample, the more pronounced this influence becomes. Implementing PBCs
within the RVE removes these artifacts, ensuring that the derived effective
properties accurately reflect those of a larger auxetic structure.
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Figure 5.11: Influence of boundary conditions on local deformation. Top:
specimens with standard boundaries; bottom: corresponding cut-outs from
the full sheet under tensile load.

5.4.2 Periodic Boundary Conditions (PBCs)

Periodic Boundary Conditions (PBCs) are actually a set of boundary condi-
tions in the form of linear equations between the pairs of nodes lying in op-
posite positions on the boundary. In ABAQUS® these equations can either
be written directly in the ABAQUS-Input file or as "SETS" via ABAQUS-
CAE in the interaction module under the constraint equations. Depending
on how the loads and corresponding deformations should look like, these lin-
ear equations have to be adjusted. To implement PBCs, all edge nodes must
first be selected and stored in the various SETS. The edge nodes, which are
opposite to each other, should be easily identified by a meaningful naming
as in Fig. 5.12. Then we need to define a reference point (RP) somewhere
outside the model where the prescribed global displacement of the unit cell
is to be applied. To avoid rigid body motion of the whole part, one point in
the center of the model must be fixed.
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nW

Figure 5.12: Typical way of numbering the node sets at the edges that appear
in pairs in the equations when implementing PBCs in case of the standard
unit cell (left) and the rotated unit cell (right).

So finally after the above steps we are able to establish the linear equations
based on the loading scenario. In general, the equations in the 2D case can
be written in four columns, where two columns refer to the node pairs in the
loading direction and the other two columns refer to the node pairs perpen-
dicular to the loading direction. The necessary number of equations depends
on the number of the edge nodes, or in other words, it depends on the dis-
cretization of the model. The finer the model, the more equations have to
be set up. The exact number of equations is equal to n + m, where 'n’ and
'm’ correspond to the total number of the nodes on a horizontal and vertical
boundary.

For a uniaxial tensile test, the typical equations used to implement the Pe-
riodic Boundary Conditions (PBCs) are illustrated in Figure 5.13. In this
setup, the displacement vector of the reference point is given as u®” =[0 ,
ug], as represented in Figure 5.14. It should be noted that the relative dis-
placement of the lateral node pairs (nodes on the East-West edges) regarding
the u;-direction must remain constant and non-zero. Otherwise, the trans-
verse strain will be zero, preventing the representation of any auxetic effect.
This constant (1) should be formulated as I; = uj¥ — u}", where the node
number ’r’ refers to a random pair of nodes in the East-West direction.
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Figure 5.13: Implementation of PBCs equations for a tensile test based on
the numbering in Fig. 5.12.

After applying the PBCs, the simulation results are presented in Figures 5.14
and 5.15. To provide a clearer comparison between homogenized and non-
homogenized unit cells, the corresponding simulation results for conventional
boundary conditions (without PBCs) are also included. As can be clearly
seen in Figure 5.14, the edges of the samples with PBCs remain straight
during deformation. Consequently, the stress distribution at the edges is no
longer close to zero, as is the case for a unit cell without PBCs. This behavior
reflects a unit cell embedded within a larger sheet surrounded by many other
unit cells, and accordingly influences the global behavior of the unit cell in
such a way that it is more close to the global behavior of the entire sheet.
This consideration is crucial for identifying an appropriate RVE, which will
be discussed in the next section.
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Figure 5.14: The deformed unit cell subjected to uniaxial tensile test with
conventional boundary conditions (without PBC) and with Periodic Bound-
ary Conditions (PBCs).

To ensure correct implementation of PBCs, the displacement fields along the
two coordinate axes are also shown in Fig. 5.15. It illustrates that the pairs
of east-west nodes along the edges of the unit cell with PBCs exhibit min-
imal relative wui-displacements, whereas the unit cell without PBCs shows
significantly larger relative u;-displacements. In contrast, the transverse dis-
placements at the center of the unit cell behave differently, showing greater
relative displacements in the case of PBCs. This behavior arises from bound-
ary effects rather than the intrinsic deformation of the unit cell. However,
the equal transverse displacements observed across all east-west node pairs
at the edges confirm the correct implementation of PBCs in the transverse
direction.

Observing the uo-displacements indicates that in both cases, the North-South
edge nodes exhibit the same relative axial displacement (approximately 0.32
mm). However, in the case without PBCs, the displacements of the north
and south nodes are completely symmetrical in contrast to the unit cell with
PBCs. Implementation of PBCs ensures only that the relative movement of
the node pairs is consistent and follows the prescribed conditions, but it does
not necessarily result in symmetric manner.
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Figure 5.15: The deformed unit cell subjected to uniaxial tensile test with
conventional boundary conditions (without PBC) and with Periodic Bound-
ary Conditions (PBCs). The contours refer to the axial (ug) and transverse
(u1) displacement.

Implementing PBCs for unit cells with local orientation is more challenging,
because they must be homogenized in their local orientation. This means
that the typical PBCs equations must be valid in local coordinate systems.
However, since all equations and relationships should ultimately be expressed
consistently in the global coordinate system, a coordinate transformation is
necessary. The theory behind these coordinate transformation relationships
has been thoroughly discussed in Section 4.3.1. Hence, they are just applied
here without going into details.

The corresponding PBCs equations for a unit cell with local orientation angle
0 subjected to a uniaxial tensile test in global es-direction are shown in
Figure 5.16 for an arbitrary North-South node pair and in Figure 5.17 for an
arbitrary East-West node pair.
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[l sin(0) + ud cos(0)] — [uf sin(0) + u3 cos(9)] = ul* cos(0)

Figure 5.16: Typical equations to implementing PBCs for a unit cell with
local orientation of # for an arbitrary Nord-South node pair subjected to
uniaxial tensile test in global es-direction.

1E 1A%
Uy — Uy

[uf cos(0) — uL sin(0)] — [ul¥ cos(0) — ulV sin(9)] =1
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I = [uf™ cos(8) — ub™ sin(0)] — [uy ™ cos() — uy ™ sin(8)]

ulf —ufV =0
[u¥ sin(f) + u¥ cos(#)] — [u}¥ sin(0) +ul¥ cos(8)] =0

Figure 5.17: Typical equations to implementing PBCs for a unit cell with
local orientation of § for an arbitrary East-West node pair subjected to uni-
axial tensile test in global es-direction.

Such implementations are more straightforward in ABAQUS®-CAE. All
that is required is to define a local coordinate system and write the equa-
tions in the local framework. ABAQUS® then automatically handles the
necessary transformations from the local to the global coordinate system.

As an example, a unit cell with a local orientation of # = 30° was considered.
The unit cell was subjected to a uniaxial tensile test in the global es-direction
using the PBC implementation, with a prescribed global displacement of uf*
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=[0, 0.32] in mm along the es-direction.

Figure 5.18 illustrates the local von Mises stress distribution in the unit cell
with PBCs with a 30° orientation. As shown, all free edges are already under
stress, which is expected due to the homogenization process. In the center of
the squares, the stress is lower compared to the unit cell without a local ori-
entation, as shown in Figure 5.14. This difference arises because the squares
in the oriented unit cell can rotate due to the local orientation, unlike those
in the unit cell without orientation.
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Figure 5.18: The deformed unit cell with 6 = 30° local orientation subjected
to uniaxial tensile test with Periodic Boundary Conditions (PBCs). The
contours refer to the von Mises stress in [MPa] after approx. 4% global
strain.

The corresponding displacement fields are also illustrated in Figure 5.19. It
should be noted that the contours u; and uy are based on the local coordinate
system (e],e5) and not on the global coordinate system (ej,ez). As shown
in Figure 5.19, the East-West edges of the unit cell have remained straight
during the deformation. This indicates that the corresponding pairs of nodes
on these edges have the same relative displacements from each other in both
directions.

Regarding the North-South nodes, the relative displacements u; and uy for
all node pairs correspond to the displacement vector w'?¥ derived from the
transformation of the global displacement vector uf*’, as explained in Fig.
5.16, where uf*¥ =[0 0.32].
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Figure 5.19: The deformed unit cell with 8 = 30° local orientation subjected
to uniaxial tensile test with Periodic Boundary Conditions (PBCs). The
contours refer to the local displacement fields U; and Us in [mm] after approx.
4% global strain.

To provide a better understanding of the form of the PBCs equations, another
example is presented here as well, illustrating the implementation of PBCs
for a simple shear test. The equations are shown in Figure 5.20. In this case,
the equations are nearly identical to those for the uniaxial tensile test, except
that the relative displacement of the lateral node pairs (node pairs on the
East-West edges) in the ej-direction must also be zero. This ensures that
pure shear does not induce a normal strain €17 locally.

IN _ ,1S _ , RPi_ 1N 1S _ , RPi,6 1E 1w _ 1E 1
Uy ur” =ug" jug —ug” =wuyt iupt —upt =0 tudf —udW =0
2F oW _
N — 25 = RPN 25— BPLadE W = 0§ 3P — 3V =0
N P
Y —u?szuﬁ ug’“N—ugszugpu’fE—u’fW:O ugE—u’gW:O

Figure 5.20: Implementation of PBCs equations for a simple shear test based
on the numbering in Fig. 5.12.
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Finally, the simulation results for the simple shear test, both with and with-
out PBCs, are presented in Figure 5.21. It can be observed that the edges
remain straight during shearing, which also represents the deformation of a
unit cell within a larger sheet surrounded by multiple other unit cells.
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Figure 5.21: The deformed unit cell subjected to simple sshear test with con-
ventional boundary conditions (without PBC) and with Periodic Boundary
Conditions (PBCs).

5.4.3 Representativ Volume Element (RVE)

As discussed in section 5.4, the RVE generally is the smallest volume fraction
that represents the properties of the whole system. For periodic systems like
auxetics, the RVE may consists of one or more unit cells. As demonstrated
in Section 5.3.2, the auxetic structure studied in this work exhibits tetrag-
onal symmetry in terms of anisotropy. The RVE we aim to identify must
also exhibit this property. Furthermore, other mechanical properties, such
as Poisson’s ratio and Young’s modulus, must align closely with those of the
entire system.

As discussed in the last Section (5.4.2), in order to identify suitable RVE,
the RVE candidates must be examined with the periodic boundary condi-
tions (PBCs) and not under the conventional boundary conditions. This
ensures that the results are not affected by the detrimental boundary effects.
As potential candidates for the RVE, both a 1x1 (single) unit cell and 2x2
cells were considered. To ensure that the volume elements also satisfy the re-
quirement for tetragonal symmetry, they were additionally evaluated in their
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rotated states of 45° and 90°. All volume elements considered were subjected
to uniaxial tensile tests, where a total displacement of 0.5 mm and 1 mm
in the es-direction is specified for the 1x1 and 2x2 cells, respectively, which
corresponds to approximately 6% of global strain for both cases.

The simulation results for the transverse displacement fields (u;) are pre-
sented in Figure 5.22. For the 1x1 unit cell, a clear difference in transverse
displacement is observed between # = 0° and # = 90°. At § = 0°, the results
indicate that the sample tends to contract, exhibiting behavior opposite to
typical auxetic properties. In contrast, at # = 90°, the unit cell demonstrates
auxetic behavior by expanding in the transverse direction. However, in con-
trast to the 1x1 unit cell, 2x2 cells have the same transverse displacement
field in the case of # = 0° and 6 = 90°, exibithing auxetic behavior in both
cases.

0 = 90°
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Figure 5.22: The transverse displacement fields (u1) of the 1x1 unit cell and
2x2 cells subjected to uniaxial tensile loading in es-direction after 6% global
strain.

The next step involved analyzing the stress distributions in terms of von
Mises equivalent stress in each volume elements, as shown in Figure 5.23. As
expected from the results of the displacement field, the stress distributions
for the 1x1 unit cell also differ between # = 0° and 6§ = 90°. At 6§ = 0°, apart
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from a few very small local stress concentrations, the unit cell exhibits nearly
uniform stress everywhere. In this case, the local von Mises stresses exceed
the yield strength of AIMg3 (approximately 119 MPa) almost everywhere,
indicating that the entire unit cell undergoes plastic deformation. However,
at # = 90°, this is not the case and the stress distribution looks exactly like
that of every unit cell in the entire sheet, where the squares undergo pure
rigid body rotation instead of plastic deformation. In contrast, the 2x2 cells
exhibit the same stress distribution at § = 0° and 6 = 90°, namely in both
cases the stress distributions are the same as those in the whole sheet.

0=0 0 = 45° 0 =90°

S, Mises [MPa]
(Avg: 75%)

Figure 5.23: The stress distribution of the 1x1 unit cell and 2x2 cells sub-
jected to uniaxial tensile loading in es-direction after 6% global strain.

Finally, the effective stress-strain curves extracted from macroscopic bound-
ary conditions for each volume element were analyzed and presented in Fig-
ure 5.24. As expected from the local field variables, the effective stress-strain
curve for the 1x1 unit cell also differed between 6 = 0° and 6 = 90°, failing to
meet the requirement for tetragonal symmetry in the structure. In contrast,
2x2 cells demonstrated identical local and effective properties for both 6 = 0°
and 6 = 90°. Furthermore, the effective stress-strain curves for the 2x2 cells
at @ = 0° and 6 = 90° align closely with the curve of the fully resolved sheet,
as can be seen in Figure 5.24.
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All these reasons mentioned above indicate that the 2x2 cells are identified
as a suitable RVE for the auxetic structure investigated.

40 20
35 =
— 30+ 154
< g
= 25- s P
2 o /
7] /
£ 20 g104
= 2
8 15 3
g % 2x2_0°
10 - 1X1_Uu 5 2x2_45°
— 1x1_45° ---2x2_90°
5 1x1_90° - - - fully resolved_0°
0 T T T 0 T T T
0,0 0,5 1,0 1,5 2,0 0,0 0,5 1,0 1,5 2,0
Global strain [%] Global strain [%]

Figure 5.24: The effective stress-strain curves of the 1x1 unit cell and 2x2
cells subjected to uniaxial tensile loading until 2% global strain.

5.4.4 Effective Mechanical Properties

Following the identification of a representative volume element (RVE), the
effective properties of the auxetic structure could be evaluated by homog-
enization of the micromechanical model defined within the RVE. For this
purpose, Eq. 5.2 and 5.3 were applied in the corresponding two-dimensional
context. In this setting, the boundaries are confined to the edges of the RVE,
and consequently, the surface elements da of the integrals are reduced to the
line elements dzx.

To compute the effective strain €, Eq. 5.2 is reformulated into Eq. 5.6, where
the integral is replaced by a discrete summation over the nodal displacements
located at the RVE boundaries.

41 N )
j=1 Nj i=1

In this Equation (Eq. 5.6), the index i denotes the node number, j refers
to the corresponding edge, and N; represents the total number of nodes
along that edge. Due to the imposed periodic boundary conditions (PBCs)
and the associated symmetry between opposing edges, Eq. 5.6 reduces to
Eq. 5.7, where the superscripts r and t refer to the right and top edges,
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respectively, and N and M denote the total number of nodes located along
the corresponding edges.

1 &, 1 X
é = 2 <N Z u(’b,?") ® n(r) _|_ M Z ,u’(Z,t) ® n(t)> (57)

i=1 i=1

Figure 5.25 shows the displacement fields u; and uy of the RVE with peri-
odic boundary conditions (PBCs) under uniaxial tensile loading in the es-
direction, which are used to compute the effective strain €.

U, Ut [mm] e u, u2 [mm]
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Figure 5.25: Resulting micro model of the RVE in terms of displacement
fields with PBCs subjected to the uniaxial tensile load in es-direction.

For the purpose of calculating the effective stress o from the local stresses
illustrated in Fig. 5.26, the volume integral proved to be more suitable than
the edge integral within the homogenization framework. This is because, in
perforated microstructures such as the auxetic sheet, significant local varia-
tions occur within the interior of the material that are not captured at the
boundaries. In other words, relying solely on the edge integral to compute
the effective stress may result in loss of critical information. So, by applying
Eq. 5.1

&= ﬁ/va(x) dv (5.8)

where V' represents the volume (or area in 2D) of the RVE and o (x) is the
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microscopic stress at the point x within RVE. With the numerical implemen-
tation, Eq. 5.8 can be formulated as
1 N

5~ mz/ o(x)dV (5.9)

=1

Using numerical quadrature (e.g., Gauss integration), this becomes:
N
o — > Y o@Dy, | ]| (5.10)

where

o is the effective (homogenized) stress tensor,
V' is the total volume (or area in 2D) of the RVE,
N is the total number of finite elements in the mesh,

e N, is the number of integration points per element,

o o(®9 is the stress tensor at integration point ¢ in element e,

e w, is the quadrature weight at point g,

o |J®9|is the Jacobian determinant at point ¢ in element e, representing
the local volume (or area in 2D).
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Figure 5.26: Resulting micro model of the RVE in terms of stress fields with
PBCs subjected to the uniaxial tensile load in ey direction.
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The effective stress o and strain € were computed at each load incre-
ment, enabling the determination of the effective Young’s modulus as the
ratio 22.  Similarly, the effective Poisson’s ratio was evaluated as —Zt.
These calculations were carried out also for RVEs with orientation angles
at # = 5°,10°,15°, ..., 90°.

The results were subsequently respresented as polar diagrams in terms of
Young’s modulus, Poisson’s ratio and yield strength. Figure 5.27 presents
the polar diagram of Young’s modulus for the homogenized RVE. The max-
imum Young’s modulus is approximately 3.2 GPa for samples oriented at
0° and repeated at 90° intervals, while the minimum is around 2.2 GPa for
samples oriented at 45°, also repeated at 90° intervals. The polar diagram
clearly exhibits five axes of symmetry: four within the plane at 45° intervals
(indicated by the blue dashed lines) and one perpendicular to the plane. This
configuration reflects the tetragonal symmetry of the material, as discussed
in Section 5.3.2.
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Figure 5.27: Polar diagram of effective Young’s modulus for the homogenized
RVE with the symmetry axes depicted in blue.

Finally, analogously to Young’s modulus, the polar diagrams of Poisson’s
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ratio and yield strength were also plotted and presented in Figure 5.28.
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Figure 5.28: Polar diagrams of Poisson’s ratio and yield strength for the
homogenized RVE.



Material Model

6.1 Tetragonal Elastic Model

Using the procedure explained in Section 4.3.1, the corresponding elastic ten-
sor for the auxetic structure studied in this work with tetragonal symmetry
can now be determined. It should be noted that in tetragonal materials the
orthotropic properties are already included, since # = 0° and € = 90° also
build symmetry planes in these structures. In other words, tetragonal sym-
metry can be interpreted as a special case of orthotropy. The difference is
that in tetragonal materials there exists an additional symmetry plane at
0 = 45°, which leads to further restrictions in the elastic tensor compared
to orthotropic materials. This means that we assume the orthotropic elastic
tensor as the initial situation and now we consider the transformation (4.28)
using the orthogonal tensor R in (4.33) with respect to 6 = 45°, thus:

0 -1 0
R(r/4)=|-1 0 0 (6.1)
0 0 1

—-03-
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The transformation (4.28) can be written in index notation as follows:
Cijkl = RipquerthCpqrt (62)

The zeros in tensor (6.1) do not contribute to the corresponding summation
using the transformation (6.2). Therefore, only the components Ciy, Co
and C33 have to be taken into account. Due to the symmetry properties

of the elasticity tensor (4: and also the orthogonal tensor R, the number of
components to be considered is reduced to two, that is, only C15 and Css,
which correspond to —1 or +1, respectively. Now we consider all possible
cases in the transformation (6.2) in which these two components can appear:

Chiit = RiaRisR12R19Cosga — Chint = Cazga 224 Oy = O (6.3)
Chits = RizRiaRiaRazCanag — Ching = —Cag ~22% Cis = —Cas (6.4)
Chizs = RisRi12RasRazCongs — Ciizs = Cosgs  ~—2% O3 = Ciy (6.5)
Ciazs = RizRasRag RayCogzs — Cuay = —Cagay ~% Coy = —Cag (6.6)
Ciais = Ri2RaaRiaRazCogns — Chaiz = Cozzy  ~%% Cuy = Cig (6.7)

The transformation results according to (6.4) and (6.6) do not give any
new information since these components are already zero in the orthotropic
tensor shown in section (4.3.1) and therefore they can be treated as trivial
equations. However, the remaining relations (6.3), (6.5) and (6.7) further
restrict the orthotropic tensor, requiring the corresponding components to
be pairwise identical, as indicated by the color-coded compliance tensor

4
below. Finally, the tetragonal compliance tensor S based on the results of
(6.3), (6.5) and (6.7) looks like this:

1 —Vy —Us 1 —Va1  —Us
0 0 0 — 0 0 0
El E2 E3 El El‘l E
—lV21 —UV32 —U2 —UV31
— 0 0 0 — 0 0 0
E, E, fis E, E, Es
—V31 V32 —V31 —V31
— 0 0 0 — 0 0 0
Sort= Es Es Es 1 Ster= Es Es Es
0 0 0 — 0 0 0 0 0 0 0
Gi3 )
0 0 0 0 — 0 0 0 0 0 0
Gas 1 1
0 0 0 0 0 — 0 0 0 0 0 —
G2 L Grad

Based on the results, the number of independent elastic constants that
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appear in the compliance tensor é is reduced from 9 (orthotropic) to 6
(tetragonal).

In the plane stress state, the number of independent engineering constants is
reduced to 3 in the case of tetragonal symmetry, namely the Young modulus
E1, the Poisson’s ratio 15, and the shear modulus G15. The corresponding
compliance tensor is expressed as:

LU
E, E{l
—UV91
Siet= — 0
tet B, B, X
0 0 —
L Gio |

6.1.1 Elastic Parameters

To model the elastic behavior of auxetic sheet metal, three parameters are
required, namely E; (Young’s modulus), G5 (shear modulus) and vy (Pois-
son’s ratio). These parameters were determined through numerical simu-
lations conducted on a homogenized representative volume element (RVE),
including a uniaxial tensile test to obtain Young’s modulus and Poisson’s
ratio, and a simple shear test to evaluate the shear modulus.

The values of Young’s modulus and Poisson’s ratio were obtained directly
from the polar diagrams of the RVE (5.27) and (5.28). To determine the
shear modulus, an independent shear test was carried out, with the resulting
curves presented in Fig. 6.3. The shear modulus was then determined as the
slope of the linear region of the global shear stress-slip curve, expressed as:

T12

G12 =—=1.9 GP& (68)

Y12

Finally, the three essential parameters required for modeling the elastic be-
havior of the auxetic sheet are summarized in Table 6.1.

Ey Vo1 G2
3.3 GPa | —0.78 | 1.9 GPa

Table 6.1: The elastic parameters of the reference auxetic sheet with AR=5.
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6.2 Pressure Sensitive Plastic Model

As mentioned in Section 4.3.2, the plastic behavior of the auxetic sheet, influ-
enced by the perforations, can be characterized using a pressure-dependent
yield criterion. Given the sheet’s thin thickness of 1 mm, a plane stress condi-
tion can be assumed for simplification. In the first step, an isotropic Drucker-
Prager yield criterion was formulated in the primary direction (0 = 0°). Sub-
sequently, the model was extended to anisotropy, taking into account the
existing tetragonal symmetry.

6.2.1 |Initial Yield Surface

In order to calibrate the yield surface, various tests must be carried out.
Analogously to the elastic part, numerical simulations on homogenized RVE
were also used to identify the resulting yield surface. All effective stress-strain
curves have already been determined by the homogenization procedure using
Eq. 5.7 and Eq. 5.10 explained in Section 5.4.4. To ensure that all results
are consistent, Rpp1 was taken as the yield point for all tests.

Due to the plane stress condition, the tests were restricted to 2D tests, specif-
ically uniaxial tensile test, simple shear test, combined shear-tension and
biaxial tensile tests. Biaxial tensile tests were conducted using both uni-
form (balanced biaxial test) and non-uniform loading along two axes. Since
the superimposed tensile-shear test was difficult to perform experimentally
and because of the consistency of the results, all tests were treated numeri-
cally here. All simulation parameters are the same as those used in section
5.3. As mentioned previously, this section focuses solely on the homogenized
RVE oriented at 0° (reference direction) to identify an isotropic yield surface.
The next step involves extending the identified yield function to account for
anisotropy.

Uniaxial Tensile Test

Numerical uniaxial tensile test was performed on the RVE. The resulting lo-
cal stress components are already presented in Fig.5.26. The corresponding
effective stress tensor was obtained by homogenizing the local stresses using
Eq.5.10. This calculation revealed that the effective values of g1 and a1
are negligible compared to 099, as they are nearly zero. This observation
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can also be qualitatively inferred from the local stress distributions shown
in the Fig.5.26, where symmetry in the contour patterns and the relative
magnitudes of the values of 017 and oy, indicate a mutual cancellation. The
effective Strain € was also obtained by homogenization the local strains ac-
cording to Eq.5.7. By calculating the effective stress and strain in each time
step, the effective stress-strain curve could then be determined. The yield
stress was identified from the effective g99 — €99 curve as the only stress com-
ponent with a non-zero value using the Rpy ; line (dashed blue line) as shown

in Fig. 6.1.
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Figure 6.1: Effective g9y — &99 curve obtained from a uniaxial tensile test,
based on the homogenization of local stresses within the RVE, including the
R, offset line for yield point identification.

Shear Test

Numerical simple shear test was also performed on the RVE by applying a
tangential force to the upper and lower edges of the RVE. Here, effective
stresses and strains were also determined by homogenizing the local values
according to Eq.5.10 and Eq.5.7. The resulting local stress fields are shown
in Fig. 6.2. The local shear stress 015 induced by the applied shear load within
the RVE is significantly more pronounced than the local normal stresses 011
and o99. This is also visually evident, as the effective stresses 1, and o499 are
nearly zero, a result of the perfect symmetry observed in their corresponding
local distributions.
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011 [MPa] 0 12 [MPa 099 [MPa]

S, S11 S, 512 S, 522

(Avg: 75%) (Avg: 75%) (Avg: 75%)
+1.569e+02 +8.978e+01 +1.534e+02
+1.049e+02 +6.914e+01 +1.020e+02
+5.289e+01 +4.851e+01 +5.067e+01
+8,799e-01 +2.787e+01 -6.894e-01
-5.113e+01 +7.233e+00 -5.205e+01
-1.031e+02 -1.340e+01 -1.034e+02
-1.552e+02 -3.404e+01 -1.548e+02

Figure 6.2: Microstructural stress response of the RVE subjected to simple
shear load in the e; direction, using PBCs.

Finally, the corresponding shear yield stress was identified from the o195 — 712
curve as the only stress component with a non-zero value using the Rpg 1 line
as shown in Fig. 6.3.
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Figure 6.3: Effective 615 — 712 curve obtained from a simple shear test, based
on the homogenization of local stresses within the RVE, including the R,1
offset line for yield point identification.
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Combined Tensile-Shear Loading

To identify multiple points on the yield surface, an additional superimposed
tension-shear loading was applied.

To generate the superimposed tension-shear stress state in the RVE, the
applied force can be oriented at any angle of inclination relative to the e;-axis
on the upper edge. As an example in this work, the applied force was oriented
at an angle of 20° from the e; axis to induce a combined tension—shear loading
condition, as shown in Fig. 6.4.

The effective stress and strain were obtained by homogenizing the local field
values, with g7 being the only stress component that remained nearly zero.

011 [MPa] 012 [MPa] 0992 [MPa]

S, S11 S, 512 o S, 822

(Avg: 75%) (Avg: 75%]) (Avg: 75%)
+1.789e+02 +6.002e+01 +2.041e+02
4+1.209e+02 +4.077e+01 +1.438e+02
+6.278e+01 +2.152e+01 +8.360e+01
+4.692e+00 +2.264e+00 +2.336e+01
-5.33%e+01 -1.699e+01 -3.689e+01
-1.115e+02 -3.624e+01 -9.713e+01
-1.696e+02 -5.54%e+01 -1.574e+02

Figure 6.4: Microstructural stress response of the RVE subjected to combined
tensile-shear load, using PBCs.

First, g99 was plotted against &9, as it is the dominant stress component
compared to g15. The yield stress was then determined using the Rpg; offset
method. This allowed for the identification of the corresponding time step
at which yielding begins.



100 Chapter 6. Material Model

I
i
= |
3 |
=) |
™ '
« o 18]
o IF [1.8 8.5] |
i
|
|
|

0 0.2 04 06 08 1

T fsed]

Figure 6.5: Effective normal (792, red) and shear (72, blue) stress curves
versus time, obtained from combined tensile—shear loading based on the ho-
mogenization of local stresses within the RVE. The dashed offset line indi-
cates the yield points.

Subsequently, both 795 and 715 were plotted as functions of time, enabling
the determination of the g5 value at the onset of yielding, as illustrated in
Fig. 6.5.

Biaxial Tensile Tests

In the next step, biaxial tensile tests were performed by applying normal
forces (tensions) to the RVE along the e;- and eg-axes, both uniformly and
at varying rates. An equibiaxial tensile test, where both axes are stretched

equally, along with two additional biaxial tensile tests with strain rate ratios

2 of 0.9 and 0.8, were conducted.

€92
The local stress fields resulting from the balanced biaxial tensile test are

shown in Fig.6.6. It can be observed that the local shear stresses o5 effec-
tively cancel out due to the inherent symmetry of the setup, resulting in an
almost zero effective shear stress oys.



6.2. Pressure Sensitive Plastic Model 101

011 [MPa] 012 [MPa) 0929 [MPa]
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Figure 6.6: Microstructural stress response of the RVE subjected to balanced
biaxial tensile load, using PBCs.

11 11 11 11

In contrast, this symmetry does not apply to the normal stresses oy, and
092, where a noticeable difference in the peak values of the corresponding
local stress fields is evident. The homogenized effective stresses o;; and
099 and strains £;; and £99 were calculated from the micromodel and the
corresponding effective stress-strain curves are shown in Fig. 6.7.

0.1 0.5 1 1.5 2 25 3

€ [l

Figure 6.7: Effective 0 — & curves with respect to the both axes obtained from
a biaxial tensile test, based on the homogenization of local stresses within
the RVE, including the R, offset line for yield point identification.



102 Chapter 6. Material Model

As shown in Fig. 6.7, both curves exhibit identical trends, confirming the ac-
curacy of the simulation and homogenization procedures. The corresponding
yield stress was subsequently determined using the R, ; offset method.

To identify multiple points on the yield surface, two additional biaxial tensile
tests were conducted on the RVE, this time using different strain rates along
the two principal axes—specifically, strain rate ratios of 0.9 and 0.8. As in
the balanced biaxial test, the effective stresses and strains were obtained by
homogenizing the local field values. In both cases, the effective shear stress
remained nearly zero due to the symmetry of the loading conditions.
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18 T T T T T 20 T T T T
14} : — 1 16t l .
19l } —eraxis| | 441 : _— ' —eraxis| |
107 } N 14 0 e;axis| | :E )|( e 0 fé;a)qsi
8 :* O-F_ 4 | O'F:

/! 0 89 sf /| 0 10.6 |
6r /| ol / : |
4r I 4+ / |
2t/ | NV
0¥ ‘ 0/1\‘

0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1

1 lsed L [sed

Figure 6.8: Effective normal stress curves versus time, obtained from inho-
mogeneous biaxial tensile loading with two different strain rate ratios based
on the homogenization of local stresses within the RVE. The dashed offset
line indicates the yield points.

Because of the differing strain rates, the effective stress—strain responses along
the two axes had to be evaluated independently. The onset of yielding was
first determined from the curve corresponding to the dominant stress com-
ponent. This allowed identification of the time step at which yielding began.
Finally, by plotting both stress components as functions of time, the corre-
sponding yield onset point for the second axis could also be identified, as
shown in Fig. 6.8.
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p — q plane

In the context of continuum mechanics and material modeling, the p — ¢
plane is commonly used to represent yield criteria for pressure-sensitive ma-
terials such as soils, rocks and porous metals. It provides a convenient two-
dimensional space for visualizing yield surfaces, especially when analyzing
complex multiaxial stress states. Yield functions expressed in this plane,
such as the Drucker—Prager model, describe the material’s transition from
elastic to plastic behavior based on the combined effects of hydrostatic pres-
sure and shear stress.

After analyzing the tests described in the previous section, six different yield
states were identified. Based on these yield stresses, the corresponding p
and ¢ values were calculated, which are derived from the first invariant I; of
the Cauchy stress tensor and the second invariant J, of the deviatoric stress
tensor as follows:

1 (011 +0’22)
p 511 o 9 (6.9)
q:\/?)(]g:\/0%1—011022+U%2+30'%2 (610)

All calculated p and g values from the various experiments are presented in
Table 6.2.

Test oF P q

0 0
uni-tensile -6.15 MPa | 12.3 MPa
0 12.3

0 10.8
shear 0 MPa 18.7 MPa
10.8 0

[ 0 1.8

tensile-shear -4.25 MPa | 9.6 MPa
| 1.8 8.5 |
(69 0]
biax 1 -6.9 MPa | 6.9 MPa
0 6.9 |

(44 0]
biax 0.9 -6.65 MPa | 7.7 MPa
0 89

1.7 0
biax_ 0.8 -6.15 MPa | 9.86 MPa
0 10.6

Table 6.2: The varying p and ¢ values obtained from different test types for
yield surface calibration in the p—¢q plane.
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After determining the values of p and ¢, they were plotted against each other
to approximate the optimal yield function. As shown in Fig. 6.9, the plotted
points exhibit the best linear relationship. The trend was then fitted linearly
using MATLAB’s fit function.

T T T T T T T T

20 |*data 4
—fitted curve

R
Figure 6.9: Plotting the p and ¢ values along with the corresponding linear
fit curve.

By reformulating the Drucker-Prager yield function (4.56) in terms of p and
q, the parameter a was identified as follows:

qg—ap—"blop) =0 a=153[] (6.11)

6.2.2 Hardening

In this study, we assume isotropic hardening, where the yield surface expands
uniformly with increasing load. Since the auxetic sheets cannot be in a
compressive state in reality (as buckling would occur), no conclusions could
be drawn regarding the existence of kinematic hardening. To model the
hardening behavior of auxetic sheets, the true stress-true plastic strain curve
(also known as the flow curve) was derived from the effective engineering
stress-strain curve using Eq. 3.5 and 3.6. As shown in Fig. 6.10, the flow
curve exhibits a relatively good linear trend, which was interpolated using
MATLAB's fit function.
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Figure 6.10: Engineering stress-strain curve (left) and true stress-plastic
strain curve or so-called flow curve (right).

After interpolation of the hardening behavior, the linear hardening modulus
k could be identified as follows:

op = 0o+ ke? k = 274 [MPa] (6.12)

By inserting the yield stress o, obtained from the uniaxial tensile test, into
the yield function (Eq. 6.11), the parameter b was determined as a function
of the yield stress o as follows:

Finally, by substituting Eq. 6.13 into Eq. 6.11, the final form of the flow
function f, incorporating hardening, is obtained as follows:
a a
f:q—ap—(ap—i—iap):q—ap—ap(1+§):O (6.14)
A qualitative illustration of the yield criterion 6.14, incorporating linear
isotropic hardening, is presented in Fig.6.11. As the accumulated equiva-
lent plastic strain P increases, the p — ¢ curve shifts upward without any
change in slope, which consequently results in a corresponding shift of the
intercept on the p-axis.
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p

Figure 6.11: Qualitative representation of the evolution of the p — ¢ curve
with increasing equivalent accumulated plastic strain £P.

6.3 Extension to Anisotropic Plasticity

The previously developed plasticity model is based on isotropy assumptions.
However, the material under investigation exhibits anisotropic behavior with
tetragonal symmetry, as demonstrated in Section 5.3.2. It has been observed
that the tensor transformation relationships with respect to rotation ade-
quately capture the existing anisotropy. This suggests that the given tetrag-
onal symmetry leads to a form of functional anisotropy, rather than a fixed
directional dependence. Consequently, an extension of the existing model is
necessary to explicitly account for the anisotropic properties of the material.
In the following, homogenized RVE with orientation angles of § = 0°, 15°,
30° and 45° were subjected to a uniaxial tensile test in the ey -direction, as
shown in Fig. 6.12.
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Fgl.

Figure 6.12: Schematic depiction of the global (ey. ) and local cartesian (eq —
e2) directions.

The corresponding force-displacement curves are presented in Fig. 6.13. The
resulting curves were observed to gradually decrease as the orientation angle
f increases. Moreover, the trend becomes more pronounced at higher angles,
as reflected in the greater difference between the curves at # = 30° and
0 = 45° compared to those at # = 0° and 6 = 15°.

F gl. N
400 T T | .
—0=0°
0=15°
300 [ #=30°
—9=45°
200+
100+
0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

A.CCg,g. [mm]

Figure 6.13: Global force-displacement curves for the RVEs with various 6
subjected to uniaxial tensile tests.
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To have a more precise interpretation, the resulting global forces Fy; were
projected into normal and shear components F, and F; within the local
coordinate system using these equations:

Fy = Fy.sin(9) (6.15)
Fy = F,. cos(f) (6.16)

and then converted into corresponding normal and shear stresses g9 and
T12 by dividing them by the reference area. In the next step, normal and
shear stresses were plotted against time and then the corresponding yield
stress tensor was determined, as shown in Fig. 6.14 for samples with § =15°
and 6 =30° respectively. It should be emphasized that plotting the stresses
against time is not related to any rate dependency. This approach was used
solely for visualization purposes, as the g9 and o5 values correspond to
different strain levels and could therefore not be plotted directly against a
common strain axis.

012 0 =15° 022 012 6 = 30° 022
6 T r v T 20 10 v . T T
118 ol 114
5r 116 gl 112
ar 177 10
212 6t
3r {10 s} 18
) 18 af 16
.6 37 74
1t "o
12 1 12
0 . . . . o o . . ‘ . 0
0 02 04 0.6 08 1 0 0.2 0.4 06 038

{ [sec] 1 [sec]

Figure 6.14: Normal and shear stress curves vs time for the RVEs with §=15°
and 30° with dashed lines indicating the onset of yielding (Ryo1).

All yield stress tensors for the samples with 6=15° 30° and 45° determined
by this method are listed in Tab. 6.3.
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Sample oF
0 3.10
0 =15°
3.10 11.66
0 5.40
0 =30°
5.40 9.35
0 6.30
0 = 45°
6.30 6.30

Table 6.3: Yield stress tensors for the RVEs with various 6 within the local
coordinate system.

Subsequently, the values in Table 6.3 were compared with the yield stress
tensors obtained through the transformation of the yield stress with respect
to the global coordinate system. That means we consider the yield stress of
o 0 0
the RVE at § = 0°i.e. op = [ 0 12.3
responding local coordinate system using the rotation transformation tensor
R(6)or in Egs. 4.34 and 4.27.
It was observed that the yield stresses from Table 6.3 were quite identical
with corresponding yield stresses obtained from the transformation of the
yield stress tensor of the RVE at reference direction i.e. § = 0°. These find-
ings suggest that the developed isotropic plasticity model is also applicable
to the local coordinate system through established transformation relation-
ships.
Now, let us return to the yield function developed (Eq. 6.11) for the isotropic
case. For this equation to be valid in the local coordinate system, the in-
dividual terms must be transformed accordingly. The terms p and ¢ are
functions of stress invariants, which means that they are inherently indepen-
dent of the coordinate system. As a result, they remain unchanged under
any rotation transformation. However, the term b(o), or more precisely, the
yield stress o, is the only component of the yield function f that undergoes
transformation based on the given pattern orientation angle 6. It leads to:

] MPa and transform it into the cor-

f=q—ap—V(op) =0 (6.17)

applying Eq. 6.13:

W (or) = (or(l + g))/ —oh(1+ 2 (6.18)
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In this equation, op represents the yield stress obtained from the uniaxial
tensile test and, based on Fig. 6.12, is defined as

_ Fay

4 (6.19)

OF
where F; is the yield force and A is the reference area. When the sample
(pattern) rotates by 6°, the corresponding yield stress transforms accordingly.
The new yield stress is given by

Fy  Fycos(6)

e 1 = op cos(0) (6.20)

o =
Applying the linear hardening relationship Eq. 6.12 in Eq. 6.20 leads to
o = oo cos(0) + k cos(0) ¥ (6.21)

The relationship 6.21 could be also confirmed by the corresponding harden-
ing behavior. Fig. 6.15 shows the hardening curves for the RVE with § = 0°,
15°, 30° and 45°. All curves were effectively approximated using linear inter-
polation in MATLAB, each characterized by the linear hardening modulus
k.

25r .
O = 0p + keP
=
=
=,
ét' 10 —0°
—15°
30°
5¢ —45° .
- -fit curves
0.005 0.01 0.015 0.02 0.025

el

Figure 6.15: True stress-true strain curves (hardening curves) for the RVE
with different 6, along with the corresponding linear fits for each curve.
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Tab. 6.4 presents both the values k£ directly obtained from the curves and
those calculated using the relationship &' = kg cos(f). A comparison of these
results demonstrates the validity of the relationship 6.21, as the differences
between the k values from the curves and the corresponding k cos(f) values
were less than 2%. The same results were also observed for the first term of
Eq. 6.21, i.e. o} = g¢ cos().

Sample | k | ko cos(0)
0=0°|274 274
0 = 15° | 260 264
0 = 30° | 232 237
0 = 45° | 188 193

Table 6.4: Comparison of the linear hardening modulus k obtained from
the hardening curves with their corresponding values from the relationship
k' = kcos(0), where ko denotes the k-value of § = 0°

These results lead to the extension of the isotropic yield function (Eq. 6.14)
to the corresponding functional anisotropic yield function as follows

f :q—ap—aFcos(e)(H%) =0 (6.22)

Finally to ensure that the anisotropic flow function satisfies the tetragonal
symmetry condition, it must hold that

F(6) = f(90° — 6) =0 (6.23)

This means that if the specified orientation angle 0 lies between 45° and 90°,
90° — 6 must be used in Eq. 6.22 instead of 6.



Numerical Implementation

The fundamentals of the finite element method and particularly spatial dis-
cretization have already been discussed to some extent in Chapter 5. In this
chapter, more attention is given to the temporal discretization and other as-
pects of numerical implementation that are more relevant and challenging in
the context of this work.

7.1 Time Integration

Time integration methods play a crucial role in finite element analysis (FEA),
especially when solving time-dependent problems such as dynamic structural
simulations, heat transfer, and fluid low. These methods discretize the time
domain, transforming differential equations into algebraic equations that can
be solved numerically. Time integration methods can be broadly classified
into explicit and tmplicit schemes.

Explicit Methods, such as the Forward Euler or central difference scheme,
calculate the state at the next time step directly from the previous step, as

-112-



7.1. Time Integration 113

follows:

d
Upp1 = Up + ((;Z) - At = u, + Au, (7.1)

where n denotes the time step index and At represents the time step size.
They are computationally efficient, but require small time steps to maintain
stability.

The implicit method is a time-stepping approach in which the unknown fu-
ture state of a system depends on itself. This requires solving a system of
equations at each time step iteratively, making it more computationally ex-
pensive but also more stable than explicit methods. The Backward Euler
method is a common implicit integration scheme, described as follows:

d
Upy1 = Up + au At = U, + Aty (7.2)
at ),

Unlike the explicit method, where u,,; is computed directly from known
values u,, this equation contains u,; on both sides. This means that we
need to solve for u,,; at each step, often requiring iterative methods like
Newton-Raphson.

7.1.1 Implicit Methods

Plasticity models are governed by differential-algebraic equations (DAE),
meaning they consist of both time-dependent differential equations and alge-
braic constraints such as the yield condition F' = 0, which must be enforced
concurrently during the solution process. In such problems, implicit meth-
ods are preferred because they ensure stability and allow larger time steps,
making them ideal for quasistatic loading and highly nonlinear material be-
havior. Unlike explicit methods, which require very small time steps due to
the stability criterion for time step size, known as Courant-Friedrichs-Lewy
(CFL) condition, implicit methods are far less sensitive to time-step size. The
trial stress approach is commonly used in implicit plasticity solvers, where an
initial elastic predictor (trial stress) is computed. If this stress exceeds the
yield criterion, a plastic corrector is applied using iterative methods (e.g.,
Newton-Raphson) to enforce plastic consistency and update internal vari-
ables like plastic strain and hardening parameters.

Fig. 7.1(a) illustrates a von Mises yield surface alongside a schematic of the
explicit integration method described earlier. In this method, the updated
stresses are pushed outside the yield surface after a time step. In contrast,
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Fig. 7.1(b) shows the implicit integration approach. Here, a trial stress in-
crement is chosen that initially moves the updated stresses, o}’ 5,, outside
the yield surface. Then a plastic correction is applied to adjust the stress
and bring it back to the yield surface at the new time ¢t + At.

Ot+At

Fl«h_\l =0
—— FH»AJ =0

Ft:()

Ft:()

Figure 7.1: Schematic illustrations of (a) explicit integration and (b) implicit
integration using the radial return method for the von Mises plasticity equa-
tions.

Finite Element Analysis (FEM) is always treated incrementally, where the
problem is solved step by step by considering small changes in load or time
at each stage. Unless stated otherwise, for simplicity, we will assume that all
quantities refer to the values at the end of a time step, ¢t + At. Therefore,
the stress at t + At is simply denoted as o, while the stress at the beginning
of the time step, at time ¢, is o;.

The elastic strain at the end of the time step may be written as

e’ =g} + Ae® =g + Ae — A€’ (7.3)

after inserting Eq. 7.3 into Hooke’s law (Eq. 4.24) we get

o=C":(ef + Ae — Ae?) (7.4)
so that
o= (C:e/+C:Ae)— (C:AeP) (7.5)
Trial stress Plastic corrector
so then

o=0"—-C: A (7.6)
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With applying Eq. 4.59 into Eq. 7.6 gives
of
=o" - ANC : = 7.7
oc=o oy (7.7)
where using the flow function f according to Eq. 6.17
of 3o a
R 7.8
Jdo 2q + 2 (78)
where o' refers to the stress deviator and I to the identity tensor.
Due to the definition of J,, the following identity holds [29]
/ /tr
T -9 (7.9)
JQ(O") JQ(O" tr)
which leads to this equality
af af
— = = 7.10
Jdo  Jdo'r (7.10)
its substitution into the stress update formula (Eq. 7.7) gives
tr af tr
oc=0"—-ANC: =0 — (AXNC : n) (7.11)
80’2&,« N——
Aol
so finally we obtain
o=0c"— Ac" (7.12)
which actually means
Trear = Ofinr — Aaﬁm (7.13)

Thus, from Eq. 7.13, it is evident that the updated stress at the end of the
time step depends on both the initial values at the beginning of the time step
t, which are implicitly included in the trial stress, and the values at the end

of the time step t + At.
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7.2 Implementation in ABAQUS®

In this Section, the implementation of the developed material model
within the finite element software ABAQUS® is presented. Although the
ABAQUS® library provides various material models that can be easily ap-
plied through the ABAQUS®-CAE (Abaqus user interface), more complex
material models require custom implementation. This can be achieved in
ABAQUS® using the so-called Material User Subroutine UMAT, which
allows users to define a custom constitutive behavior by specifying the stress-
strain relationship at the integration point level. This flexibility is partic-
ularly useful for advanced material models that cannot be accurately rep-
resented using the built-in options. In UMAT, users provide the algorithm
for updating stress and state variables based on the strain increment, en-
abling the simulation of complex phenomena such as anisotropy, nonlinear-
ity, and rate dependence. Since the UMAT code must be written in Fortran,
ABAQUS® first needs to be linked to a Fortran compiler. This linkage en-
sures that the custom subroutine is correctly compiled and integrated into
the ABAQUS® simulation environment. Proper configuration of the com-
piler settings and environment variables is crucial to avoid compatibility is-
sues and compilation errors. Additionally, the version compatibility between
Abaqus and the Fortran compiler must be carefully checked to ensure seam-
less execution of the user-defined material model. Fig. 7.2 shows a schematic
representation of where exactly the UMAT is called in a non-linear FE anal-
ysis.
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44 Start of Increment |

I
Applying Au | UMAT
|
Input
» | calcuiate Ae | P Calculate O, gAT‘; = Cia
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.
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More increments?

Figure 7.2: Schematic representation of a typical non-linear FE analysis hi-
erarchy, highlighting the specific location where the UMAT is called.

Basically, within the UMAT, the strain increment Ae at the beginning of the
increment is provided as an input, along with the stress o and the material

. . o . . .
Jacobian matrix from the previous increment. These quantities are

updated through theeuser—deﬁned algorithm. At the end of the increment,
the updated stress and Jacobian are returned to ABAQUS® as output vari-
ables. This process ensures the consistent transfer of information between the
custom material model and the finite element solver, allowing ABAQUS®
to accurately compute the global equilibrium. In the hierarchy illustrated
in Fig. 7.2, k represents the tangential element stiffness matrix, and Fy,
denotes the vector of internal forces. In this context, the matrix B is defined
as the product of the shape function matrix N and the differential operator
D, i.e., B = DN. The vector of external forces is denoted by F,.

Fig. 7.3 provides a detailed overview of all ABAQUS® variables and their
corresponding dimensions, as defined in the UMAT header for input and out-
put purposes. Depending on the type of analysis that is performed, certain
variables can be utilized within the UMAT code. In an elastoplastic material

model, STRESS, DDSDDE (Material Jacobian), and STATEV (Solution-
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dependent state variables) are the most important variables that need to
be computed and updated. Accurate calculation and consistent updating
of these variables are crucial for capturing the non-linear behavior of the
material and ensuring the convergence of the finite element solution.

SUBROUTINE UMAT (STRESS,STATEV, DDSDDE, SSE, SPD, SCD,
RPL,DDSDDT, DRPLDE, DRPLDT,

STRAN, DSTRAN, TIME, DTIME , TEMP, DTEMP, PREDEF, DPRED , CMNEME ,
NDI,NSHR,NTENS,NSTATV, PROPS, NPROPS, COORDS , DROT , PNEWDT,
CELENT , DFGRDO, DFGRD1,NOEL, NPT, LAYER , KSPT, JSTEP , KINC)

DIMENSION STRESS (NTENS) ,STATEV (NSTATV),
DDSDDE (NTENS ,NTENS) , DDSDDT (NTENS) , DRPLDE (NTENS) ,
STRAN (NTENS) ,DSTRAN (NTENS) ,TIME(2) ,PREDEF(.) ,DFRED (1),
PROPS (NPROPS) ,COORDS (2) ,DROT (2, 3) ,DFGRDO(2,3) ,DFGRD1 (2,3),
JSTEP (4)

Figure 7.3: The UMAT header includes all variables and their corresponding
dimensions that are passed from ABAQUS® into the UMAT.

STATEV is an array used to store state variables that are updated during
each integration point at every step of the analysis. These state variables are
used to track internal material states that evolve during the simulation, such
as plastic strains, damage variables, etc. In order to update the aforemen-
tioned variables within each time increment in the UMAT, some material
parameters such as Young’s modulus, Poisson’s ratio and others need to be
input into the UMAT. These parameters are stored in the PRPOS array
within the UMAT.

Within the framework of our developed anisotropic elastoplastic material
model, seven material parameters need to be specified in the UMAT, as
shown in Fig. 7.4. These include elastic parameters, plastic or hardening
moduli and an additional parameter, the material orientation angle 6, to
account for anisotropy. The material orientation angle ¢ must be entered
separately, as ABAQUS® does not automatically pass it to the UMAT.
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PROPS ( - Young's Modulus (MPa)

)
PROP3(2) - Polisson's Ratio

PRCPS(-) - Shear Modulus (MPa)

PEOPS(4) - Initial Yield Stress (MPa)
PROPS(5) - Hardening Modulus

PROPS5(7) - Parameter 'za' in Yield Function
PROPS(7) - Orientation Angle (Radian)

Figure 7.4: The list of all necessary material parameters for the developed
material model, which are stored within the PROPS array in the UMAT.

The mentioned material parameters must first be defined in ABAQUS®-
CAE within the "Material" modul under the Material Behaviors "User Mate-
rial" as Mechanical Constants (see Fig. 7.5). This allows them to be accessed
within the UMAT. Additionally, the number of state variables (STATEV)
must also be specified, which is represented as "Depvar" in ABAQUS®-CAE
under the Material Behaviors as well (see Fig. 7.5).
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ol
-

Mame: Material-1

Description: ) 2

Material Behaviors

Depvar

General Mechanical Thermal Electrical/Magnetic  Other v
User Material
User material type: | Mechanical ~

) Use unsymmetric material stiffness matrix
Data

Mechanical
Constants

1
2 -0.75
3 980
4 144
5 274
6 1.53
7 pife

Figure 7.5: The corresponding material window in ABAQUS®-CAE, where
the material parameters and the number of STATEV are defined.

In the developed material model, the accumulated plastic strain is the only
STATEV within the UMAT. The material parameters listed in Fig. 7.5 are
experimentally determined. This allows us to later compare and validate the
model results against real experimental data.

7.3 Newton—Raphson Method

The Newton-Raphson method is a powerful and widely used iterative tech-
nique for solving non-linear equations in Finite Element analysis. It is par-
ticularly effective for handling complex, non-linear systems arising from ma-
terial behavior, large deformations, and boundary conditions. The method
involves linearizing the non-linear equilibrium equations through a Taylor
series expansion, iteratively updating the solution by solving a sequence of
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linearized equations. Each iteration refines the approximation by evaluating
the residual and the tangent stiffness matrix, ultimately converging to an
accurate solution. Its quadratic convergence rate makes it highly efficient,
although convergence depends on a good initial guess and the nature of the
non-linearity. The method is based on an iterative procedure used to find
the roots of a non-linear equation f(u) = 0. The core idea is to approximate
the non-linear function using its tangent line, which is a first-order Taylor
series expansion. The iterative formula is:

S (ux)

Uk+1 = Uk — f’(uk)

(7.14)

where k£ denotes the iteration number. The process begins with an initial
guess ug and progressively refines the solution with each iteration until it
reaches the specified tolerance.

In the context of the Finite Element Method (FEM), the Newton-Raphson
method is used to solve the non-linear equilibrium equation

R(u) =F¢ — Fip(u) =0 (7.15)
The update rule becomes
Up+1 = U — K_lR(uk) (716)

where:

e u is the vector of nodal displacements.
« R is the residual vector.
« K= %—3 is the tangent stiffness matrix.

In ABAQUS®, the Newton’s method algorithms for solving equilibrium equa-
tions are integrated into the program, so the user does not need to write the
corresponding code manually.

7.4 Determination of Plastic Multiplier

The plastic multiplier A plays a crucial role in the implementation of a plastic-
ity model. It determines the magnitude of the plastic strain in each increment
and, therefore, directly influences the stability of the numerical solution. In
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implicit methods, trial stress is the central known quantity, which requires
formulation of the increment of the plastic multiplier A\ as a function of the
trial stress o'".

We begin with the developed yield function (Eq. 6.17) and analyze each term
individually. From the definition of ¢ (6.10) we can write

g = ﬁa ol = \/3(0 _ ;tr(a')) (o - ;tr(a')) (7.17)

inserting Eq. 7.12 in Eq. 7.17

= ¢ (o Ag¥ — ix(0): (6" — Ao — (o)) (T18)

It has been derived in [29]
tr 1 Itr
o' — itr(a) =0 (7.19)

Here, o’ ' denotes the deviatoric part of the trial stress tensor. By inserting
Eq. 7.19 into Eq. 7.18, we obtain

q= \/ §<ff’ "~ Ag¥) : (o' — Ao (7.20)

Now, we expand the product in Eq. 7.20

q= \/(q“)2 —3(e’'t : Ao?) + g(Aal’l : AoPl) (7.21)

Next, we express Ao using its original components as defined in Eq. 7.11.
This yields

q= \/(q’”“)2 —3X\(o’t: C:n)+ ;A)\Q(C :n): (C:n) (7.22)

4
In this equation, C denotes the fourth-order elasticity tensor, while n signifies
the flow direction as a second-order tensor. Now, for the sake of clarity and
simplification, we assume:

C:n=B (7.23)
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where B represents a second-order tensor, which implies

= ¢ (¢")? — 3ANo" ¥ < B) + ;)A)\Q(B . B) (7.24)

In Eq. 7.24 there are two tensor multiplications, each resulting in a scalar
value

o' :B=a (7.25)
B:B=p (7.26)
this leads to
3
q= \/(qt’")2 —3ANa + iA)\Qﬁ (7.27)

" and A\, which results in a

so now the ¢ is formulated as a function of o’*
scalar as well.
Next, we examine the second term in the yield function Eq. 6.17, i.e. ap.

The same methodology applied to ¢ is also used here, as outlined below.

ap — a(—Tr;")) (7.28)

Ti(o) = Tr(a" — Ag™) = Tr(a") — Tr(Ac™) (7.29)
Tr(Ac?') = Tr(AX(C : n)) = ANTr(B) (7.30)

ap = —%[Tr(a'”) — ANT(B)] (7.31)

and finally the last component of yield function, i.e. ¥ (or) needs to be
adjusted. From Eq. 6.22 the b'(or) was identified as

V(or) = opcos(8)(1 + g) (7.32)

where

O = Oy + keP (733)
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Relation 7.34 states that the plastic work done must be the same when the
corresponding tensor multiplication is replaced by the equivalent (effective)
values

o Ae? =0 AP (7.34)
where
e =q—ap (7.35)

After inserting the Eq. 7.35 and the flow rule Eq. 4.59 in Eq. 7.34, it can be
derived that

AE = AN (7.36)

this leads to a definition of hardening equation in terms of plastic multiplier
increment A\

o = 0g + kAN (737)

After all these steps, the yield function Eq. 6.17 was reformulated in such a
way that a complex non-linear equation was created with respect to the plas-
tic multiplier increment A\, which may be solved using the Newton—Raphson
method.

Unlike the Newton method used for solving nonlinear equilibrium equations
discussed in Sec. 7.3, the Newton iteration for computing the plastic mul-
tiplier AX must be explicitly implemented by the user within the UMAT
subroutine in form of the finite element code. In the last section, the yield
function f could be expressed in terms of the plastic multiplier increment
AM. Consequently, the corresponding Newton’s equation, derived from Eq.
7.14, is as follows

JF(AN)
f'(AX)

Therefore, to compute A\ in Eq. 7.38, the derivative of the yield function
f (Eq. 6.17) with respect to AX must be determined, which using the chain
rule takes the following form

ANjsr = ANy, — (7.38)

of of dq Of op  Of o
OAXN g OAXN ~ Op OAN OV DA

(7.39)
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From Eq. 7.27, we obtain
of dq 3

i — A - 4
and from Eq. 7.31,
of dp _ tr(3)
9p’ OAN a( 5 , (7.41)
finally, using Eqs. 7.32 and 7.37,
aof ov a

where k refers to the linear hardening modulus.
So finally the increment of plastic multiplier A\ according to Eq. 7.38 results
as follows

q+ 5Tr(e") — SANTE(B) — b

dAN = — 527 (AAG — @) — a(FE) — kcos(0)(§ + 1)

(7.43)

where

A)\k-i-l = AN, +dAN, (744)

7.5 Numerical Material Tangent

In implicit FEA, the material tangent (or stiffness matrix/Jacobian) defined

do . . : . . . L
as — 1is essential for capturing non-linear material behavior. It linearizes

the sgnsitivity of stress to strain changes, enabling rapid and accurate conver-
gence in the iterative solution process to solve the global equilibrium equa-
tion system. The flowchart in Fig. 7.2 schematically illustrates where and
how the material tangent C;, influences the global computation process. An
inaccurate material tangent can hinder convergence and lead to unreliable re-
sults. Deriving the material tangent is challenging, particularly for complex
material models with non-linear and path-dependent behaviors. Analytical
derivation is often time-consuming and must be adjusted whenever consti-
tutive equations change. To simplify this process, numerical methods such
as finite difference methods or automatic differentiation can be used to ap-
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proximate the tangent. However, these approaches may introduce numerical
issues such as roundoff errors, truncation errors, step size sensitivity, and
instability, especially due to floating point arithmetic [81].

Finite difference methods approximate derivatives by discretizing them over
a finite interval, using forward, backward, or central differences. While they
provide a simple way to compute derivatives numerically, they are susceptible
to truncation errors and require careful step size selection to ensure accuracy
and stability.

In this context, the numerical computation is demonstrated using a forward
difference first-order scheme, characterized for its simplicity and straightfor-
ward implementation. This method approximates the derivative of a function
f(z) at a point z; using the function values f(z;) and f(z;41) . Mathemati-
cally, this can be written as:

f(@iv1) — f(m3)

fi(w) = .

(7.45)

where h represents the step size, also known as perturbation parameter. This
method estimates the slope of the function over the interval [x;, z;1] and is
first-order accurate, meaning the approximation error decreases linearly with
the step size h. The goal is to compute the material Jacobian numerically
using the forward difference method within ABAQUS® UMAT.

The constitutive law (Material model) defines the relationship between the
applied strain & (second-order tensor) and the resulting second-order stress
tensor o. In ABAQUS®, the strain € is represented by the one-dimensional
arrays STRAN(6) (total strain) and DSTRAN(6) (strain increments), cap-
turing the material’s deformation. The UMAT routine then calculates the
stress o, which is returned via the STRESS (6) array. The Jacobian mate-
rial tangent C (a fourth-order tensor showing the partial derivatives of stress
with respect to strain) is conveyed through DDSDDE(6 x 6). To apply the
first-order forward difference scheme for computing the Jacobian, each of
the six components of the strain vector STRAN(6) is perturbed individually
by adding a disturbance value 4. During each perturbation step j (rang-
ing from 1 to 6), only one component of STRAN(6) is modified, resulting
in the perturbed strain vector STRANy4(6), while all other components re-
main unchanged. For each step j, a column of the disturbed stress matrix
STRESS4(6x6) is obtained, where the second index represents the pertur-
bation step j, and the first index i (ranging from 1 to 6) corresponds to
the stress response component. The undisturbed stress vector STRESS,,4(6)
is calculated during an undisturbed step (i = 7) by evaluating the material
routine with the original strain vector STRAN,4(6).
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By analyzing the stress changes caused by these perturbations, the partial
derivatives of stress with respect to each strain component and thus the
Jacobian material tangent C can be approximated:

 STRESS(i,j) — STRESS (i)

) i)

(7.46)

where C(i,j) represents the approximated fourth-order Jacobian material
tangent tensor, which in ABAQUS®-UMAT is returned through the field
DDSDDE(6x6). The value of the perturbation strain &4 is limited by the
precision of the floating point. In a double-precision environment, the limit
for g4 for each perturbation step j is given by [23]:

ea(j) = max(1.0 x 107®, Abs (1.0 x 107 - STRAN4(5))) (7.47)

However in the context of this work, it was found through experience that the
following expression for ¢4 yielded the best results for achieving convergence:

£a(j) = max(1.0 x 107*, Abs (1.0 x 10™* - STRAN4(5))) (7.48)

7.6 Results and Model Validation

In this section, the simulation results from the elasto-plastic material model
were evaluated and compared with the corresponding experimental data.
Auxetic sheets with pattern orientation angles of # = 0°, 15°, 30°, and 45°
were considered. The results demonstrate that the developed model and
its implementation can accurately capture the real behavior of the sheets,
including their anisotropic response under mechanical loading. The model
reliably reproduces the direction-dependent deformation patterns observed
in the experiments, reflecting the influence of the pattern orientation on the
auxetic behavior. This indicates that the model is robust and reliable in
predicting the mechanical performance of auxetic structures with varying
orientations.

In the following, samples with different 6 are presented separately, each focus-
ing on the specific behavior and characteristics associated with their unique
orientations.
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Sample with 6 = 0°
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Figure 7.6: Comparison of experimental and simulated transverse displace-
ments (u;) and the corresponding global stress-strain curve for sample with
0 = 0° after approx. 6% global strain induced from uniaxial tension in the
ep-direction.
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Sample with § = 15°
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Figure 7.7: Comparison of experimental and simulated transverse displace-
ments (u;) and the corresponding global stress-strain curves for sample with

6 = 15° after approx. 6% global strain induced from uniaxial tension in the

eop-direction.



Chapter 7. Numerical Implementation

130

Sample with 6 = 30°
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Figure 7.8: Comparison of experimental and simulated transverse displace-
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Sample with 6 = 45°
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Figure 7.9: Comparison of experimental and simulated transverse displace-
ments (u;) and the corresponding global stress-strain curves for sample with
0 = 45° after approx. 6% global strain induced from uniaxial tension in the
eo-direction.
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Conclusion and Future Works

8.1 Conclusion

This dissertation presents a comprehensive investigation into the mechan-
ical behavior and numerical modeling of auxetic sheet metal structures,
with a particular focus on rotating unit patterns in AlMg3 aluminum alloy
sheets. The aim was to enhance understanding of auxetic metamaterials for
lightweight structural applications and to provide validated material models
that can serve both theoretical development and practical implementation in
design processes

A robust experimental methodology was developed and executed, encompass-
ing uniaxial and biaxial tensile tests, advanced characterization techniques
such as Digital Image Correlation (DIC) and Infrared Thermography (IRT),
and systematic variations in geometrical parameters namely pattern size, as-
pect ratio and orientation angle. These experimental studies revealed that
the auxetic effect, mechanical stiffness and failure behavior are highly sen-
sitive to microstructural configurations. For instance, increasing the aspect
ratio of the rectangular perforations enhanced the auxetic behavior (more
negative Poisson’s ratio) but resulted in reduced stiffness and strength. Sim-
ilarly, altering the orientation angle led to pronounced anisotropy, diminish-
ing the global auxetic effect while impacting yield stress and stiffness. This

-132-
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observation arises from the deformation mechanism of the auxetic sheet, char-
acterized by the rigid body rotation of square units and localized deformation
in the struts between perforations. An increased aspect ratio naturally leads
to thinner struts, thereby enabling greater rigid body rotation of the square
units and consequently, enhance the auxetic effect.

Another significant contribution lies in the methodological framework de-
veloped for transferring microstructural behavior into macroscopic material
model. By integrating continuum mechanics theory with experimental data
and numerical simulations, this framework enables efficient and accurate
modeling of auxetic and potentially other metamaterial systems. Numeri-
cal homogenization played a central role in this process. By identifying the
2x2 unit cell as a representative volume element (RVE) and applying peri-
odic boundary conditions (PBCs), it was possible to determine the effective
microscale properties and assign them to material points within a homoge-
neous continuum.

From a computational standpoint, fully resolved finite element simulations
and numerical homogenization were conducted to replicate the mechanical
behavior observed experimentally. These simulations confirmed the signif-
icant anisotropy induced by pattern orientation and geometric design. A
major outcome of this numerical work was the derivation of an anisotropic
elasto-plastic material model based on the existing tetragonal symmetry in-
corporating a pressure-sensitive plastic yield surface. This model was imple-
mented in ABAQUS® through a user-defined material subroutine (UMAT),
incorporating robust numerical schemes such as implicit time integration and
Newton-Raphson iteration. The model was successfully validated against
uniaxial tests data, capturing key characteristics of the auxetic response, in-
cluding stress-strain asymmetry and direction-dependent hardening. This
modeling approach is highly adaptable and can be extended to different per-
foration geometries, base materials and loading conditions, thereby serving
as a valuable tool for materials engineers and designers.

The findings not only expand our understanding of auxetic sheet metals but
also pave the way for their application in high-performance, weight-sensitive
structures such as aerospace components, protective equipment and morph-
ing surfaces.
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8.2 Future Works

Building on the insights and models developed in this dissertation, several
promising avenues exist for future research. One key direction is the extension
of current investigations from planar auxetic sheet metals to more complex
shell structures. Shells, with their inherent curvature and additional geomet-
ric degrees of freedom, can amplify or modify auxetic effects under various
loading conditions. Integrating auxetic behavior into shell geometries may
unlock new functionalities for applications in morphing surfaces, aerospace
components, and protective enclosures where stiffness, flexibility, and energy
absorption must be balanced.

Additionally, the mechanical characterization methods employed in this
work—primarily under quasi-static loading—should be extended to dynamic
and fatigue loading scenarios. Such tests are crucial to understanding the
long-term reliability and performance of auxetic structures under cyclic
stresses, vibrations, and impact loads. Implementing high-speed DIC sys-
tems and time-resolved thermography could enable the capture of transient
strain and thermal fields during dynamic events. This extension would not
only validate the durability of auxetic designs but also inform the develop-
ment of time-dependent material models such as viscoplastic or viscoelastic
formulations.

Another promising direction is the use of artificial intelligence, and neural
networks in particular, to enhance and extend the current modeling frame-
work. The numerous datasets generated through extensive numerical sim-
ulations and experimental campaigns provide a strong foundation for data-
driven surrogates capable of capturing complex, nonlinear material responses.
Machine learning models could be trained to identify hidden patterns in
stress—strain behavior, predict failure mechanisms, or accelerate large-scale
simulations by serving as efficient constitutive approximators. Hybrid ap-
proaches that couple physics-based formulations with neural network en-
hancements may further improve predictive accuracy while preserving phys-
ical consistency. Such Al-driven methodologies hold significant potential for
automating parameter calibration, optimizing auxetic designs, and enabling
real-time structural response prediction.

Furthermore, exploring alternative base materials and manufacturing pro-
cesses, including additive manufacturing, could lead to enhanced design flex-
ibility and scale-up feasibility. Together, these extensions would broaden the
applicability of auxetic metamaterials and deepen our understanding of their
behavior under realistic service conditions.
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SUBROUTINE UMAT (STRESS,STATEV,DDSDDE, SSE,SPD, SCD,
RPL,DDSDDT,DRPLDE, DRPLDT,

STRAN,DSTRAN, TIME,DTIME, TEMP, DTEMP, PREDEF , DPRED, CMNAME ,
NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS, COORDS, DROT, PNEWDT,
CELENT, DFGRDO, DFGRD1,NOEL,NPT, LAYER,KSPT, JSTEP,KINC)

INCLUDE 'ABA PARAM.INC'

REAL(38) :: E1, N12, G12, CELASTIC(3,3), EL11l, EL12
REAL(8) :: SHYDRO, sigDev (NTENS), STRESSNEW(3)
REAL(S8) :: THETA, SMISES, SYIELO, DEQPL, HARD
REAL(S8) :: SYIELD, Fa, Fb, £, EQPLAS, DPSTRAN2(3,3)
REAL (%) :: ENU, EBULK3, ELAM, STRESS UD(NTENS)
REAL(8) :: STRESS_D(NTENS, NTENS) , EPSILON D
REAL*S :: STRAN UD(NTENS), STRAN D(NTENS, NTENS)
REAL*2 :: STRESST2(3,3),SHYDRO2(3), SMISES2(3)
REAL*3 :: sigDev2(3,3), FLOW2(3,3), DEQPL2(23)
REAL*3, PARAMETER :: MACHINE EPSTILON = 1.0D=-5

CHARACTER*3(0 CMNAME

DIMENSION STRESS (NTENS) ,STATEV (NSTATV),
DDSDDE (NTENS,NTENS) , DDSDDT (NTENS) , DRPLDE (NTENS) ,
STRAN (NTENS) , DSTRAN (NTENS) , TIME (2) ,PREDEF (1) ,DPRED(1),
PROPS (NPROPS) , COORDS (3) ,DROT (3, 3) ,DFGRDO (3, 3) ,DFGRD1 (3, 3),
JSTEP (4)

DIMENSION FLOW(NTENS) ,STRESST (NTENS),
DPSTRAN (NTENS) , DESTRAN (NTENS)

PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=06.D0

NEWTON=20.D0, TOLER=1.0D-8, PI = 3.14D0)

- EMOD (Young's modulus)
- N12 (Poisson's ratio)
- G12 (Shear modulus)

- HARD (Plastic Hardening slope)
- Fa (Parameter 'a' in yield function)
- ORIENTATION ANGLE IN RADIAN (THETA)

(1)
(2)
(3)
'PROPS (4) - SYIELO (Initial yield stress)
(5)
(6)
(7)

ELASTIC PROPERTIES

EMOD=PROPS (1)
N12=PROPS (2)
G12=PROPS (3)

EL11=-EMOD/ (N12**TWO-ONE)
EL12=-EMOD*N12/ (N12**TWO-ONE)

ELASTIC STIFFNESS

CELASTIC(1,1)=EL11
CELASTIC(1,2)=EL12
CELASTIC (1, 3)=ZERO
CELASTIC(2,1)=EL12
CELASTIC(2,2)=EL11
CELASTIC (2, 3)=ZERO
CELASTIC(3,1)=ZERO
CELASTIC(3,2)=ZERO
CELASTIC(3,3)=G12

CALL SMISESFUNC(DSTRAN, CELASTIC, STRESS, STRESST, SHYDRO,sigDev,

EQPLAS=STATEV (1)



74 SYIELO= props(4)

75 THETA = props(7)

76 SYIELO=SYIELO*cos (THETA)

77 HARD = props(5)

78 HARD=HARD*cos (THETA)

79 Fa = props(6)

80

81 SYIELD = SYIELO + HARD*EQPLAS

82

83 f = SMISES-Fa* (-SHYDRO)-SYIELD-Fa*SYIELD/TWO

84

85 DEQPL=ZERO

86 FLOW=ZERO

87

88 IF (f .GT. TOLER*SYIELD) THEN

89

90 CALL DEQPLFunc (CELASTIC,SHYDRO,sigDev,SMISES,HARD,Fa,SYIELD,FLOW,DEQPL)

91

92 STRAN UD = DSTRAN

93

94 DO I= 1,

95 STRAN D(:,I) = STRAN UD

96 EPSILON D = MAX(MACHINE EPSILON,

97 ABS (MACHINE EPSILON * STRAN UD(I)))

98 DO J=1,

99 IF (I == J) THEN

100 STRAN D(I, J) = STRAN UD(I) + EPSILON D

101 END IF

102 END DO

103 END DO

104

105 DO I= 1,

106 CALL SMISESFUNC (STRAN D(:,
I),CELASTIC,STRESS,STRESST2(:,I),SHYDRO2(I),sigDev2(:,I), SMISES2(I))

107

108 CALL
DEQPLFunc (CELASTIC,SHYDRO2 (I),sigbev2(:,I),SMISES2(I) ,HARD,Fa,SYIELD,FLOW2(:,I),
DEQPL2 (I))

109

110 END DO

111 ENDIF

112

113 CALL STRESS UPD (STRESS, CELASTIC, DSTRAN,DEQPL,FLOW,
DPSTRAN, STRESSNEW)

114

115 STRESS=STRESSNEW

116 EQPLAS=EQPLAS+DEQPL

117 STATEV (1) = EQPLAS

118

119 IF (f .LT. TOLER*SYIELD) THEN

120

121 DO i = ONE, NTENS

122 DO j = ONE, NTENS

123 DDSDDE (i,j) = CELASTIC(i,j)

124 END DO

125 END DO

126

127 ENDIF

128

129 IF (f .GT. TOLER*SYIELD) THEN

130

131 DO I= 1, 3

132

133 CALL STRESS UPD(STRESS, CELASTIC,
STRAN D(:,I),DEQPL2(I),FLOW2(:,I),DPSTRAN2(:,I) ,STRESS D(:,I))

134

135 END DO

136

137 DO I =1, 3

138 DO J =1, 3

139 EPSILON D = MAX(MACHINE EPSILON,

140 ABS (MACHINE EPSILON * STRAN UD(J)))
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DDSDDE (I, J) = (STRESS D(I, J) -
STRESS(I)) / EPSILON D

ENDDO

ENDDO

ENDIF

RETURN
END SUBROUTINE UMAT
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cccc SUBROUTINE SMISES
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SUBROUTINE SMISESFUNC(DSTRAN,CELASTIC,STRESS,STRESST,SHYDRO,sigDev, SMISES)

REAL*3, INTENT (IN) :: DSTRAN(3), CELASTIC(3,3),STRESS(3)
REAL*3, INTENT (OUT) :: STRESST(3),SHYDRO, sigDev(3),SMISES
REAL*S :: Dsig

PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0,SIX=6.D0)
DO Kl1=1,

Dsig = ZERO

DO K2=1,

Dsig = Dsig + CELASTIC(K1, K2)*DSTRAN (K2)

END DO

STRESST (K1)=STRESS(K1)+ Dsig

END DO

SHYDRO=(STRESST (1) +STRESST (2) ) /TWO

DO Kl=1,?”

sigDev (K1)=(STRESST (K1) -SHYDRO)
END DO

sigDev (3)=STRESST (3)

SMISES= sigDev (1) **TWO+ sigDev (2) **TWO+ TWO*sigDev (3) **TWO
SMISES=SQRT (SMISES*THREE/TWO)

END SUBROUTINE SMISESFUNC
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SUBROUTINE DEQPLFunc (CELASTIC,SHYDRO,sigDev,SMISES,HARD,Fa,SYIELD,FLOW,DEQPL)

REAL*3, INTENT(IN) :: sigDev(3), CELASTIC(3,3),SMISES, HARD, Fa, SYIELD, SHYDRO
REAL*3, INTENT (OUT) :: FLOW(3), DEQPL

REAL*S :: CFLOW(3), ALPHA, BETA, GAMMA,TRB, HMODL, RHS, TERM1, DDEQPL

INTEGER :: KEWTON

PARAMETER (ZERO=0.00, ONE=1.D0, TWO=2.D0, THREE=3.D0,SIX=6.D0, NEWTON=20.D0)

DO Kl=1,”

FLOW (K1) = (THREE/TWO) * (sigDev (K1) )
FLOW (K1) =FLOW (K1) /SMISES
FLOW (K1) =FLOW (K1) + (Fa/TWO)



209 END DO

210

211 FLOW (3)=(THREE/TWO) *sigDev (3)

212 FLOW (3)=FLOW (3) /SMISES

213

214 CFLOW=ZERO

215 DO Kl1=1,3

216 DO K2=1,3

217 CFLOW (K1) =CFLOW (K1) +CELASTIC(K1,K2) *FLOW (K2)

218 END DO

219 END DO

220 CFLOW (3) =TWO*CFLOW (3)

221

222 ALPHA=ZERO

223 DO Kl1=1,3

224 ALPHA=ALPHA+sigDev (K1) *CFLOW (K1)

225 END DO

226 ALPHA=ALPHA+sigDev (3) *CFLOW (3)

227

228 BETA=ZERO

229 DO Kl1=1,3

230 BETA=BETA+CFLOW (K1) *CFLOW (K1)

231 END DO

232 BETA=BETA+CFLOW (3) *CFLOW (3)

233

234 DEQPL=ZERO

235

236 GAMMA=SMISES**TWO-THREE*ALPHA*DEQPL

237 GAMMA=GAMMA+ (THREE/TWO) *BETA*DEQPL**TWO

238 GAMMA=SQRT (GAMMA)

239

240 TRB=CFLOW (1) +CFLOW ()

241

242 HMODL=-HARD* (ONE+Fa/TWO)

243

244 RHS=GAMMA+ (Fa/TWO) * (TWO* SHYDRO-DEQPL*TRB)

245 RHS=RHS-SYIELD* (one+Fa/TWO)

246

247 KEWTON = ONE

248

249

250 Do While (KEWTON .LT. NEWTON .and. RHS .GT. ZERO)

251

252 SYIELDNEW = SYIELD + HARD*DEQPL

253 GAMMA=SMISES**TWO-THREE*ALPHA*DEQPL

254 GAMMA=GAMMA+ (THREE/TWO) *BETA*DEQPL**TWO

255 GAMMA=SQRT (GAMMA)

256 RHS=GAMMA+ (Fa/TWO) * (TWO* SHYDRO-DEQPL*TRB)

257 RHS=RHS-SYIELDNEW* (one+Fa/TWO)

258 TERM1=(ONE/TWO) *GAMMA** (-ONE/TWO)

259 TERM1=TERM1* (THREE*DEQPL*BETA-THREE*ALPHA)

260 TERM1=TERM1- (Fa/TWO) *TRB+HMODL

261 DDEQPL=-RHS/TERM1

262 DEQPL= DEQPL+DDEQPL

263 KEWTON = KEWTON+ONE

264

265 END DO

266

267 END SUBROUTINE DEQPLFunc

268

269 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeececeeceeeeececeecececececeeceeceececee
cccc ROUTINE STRESS UPD
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270

271 SUBROUTINE STRESS UPD(STRESS, CELASTIC, DSTRAN,DEQPL,FLOW,

DPSTRAN, STRESSNEW)

272

273 REAL*S, INTENT(IN) :: STRESS(3), CELASTIC(3,3),DSTRAN(3), DEQPL, FLOW(3)

274

275

276 REAL*S, INTENT(OUT) :: DPSTRAN(3), STRESSNEW(3)

277



278
279
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REAL*S :: DESTRAN(3), DsigNew(3)

PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0,SIX=6.D

DO Kl=1, 3
DPSTRAN (K1) =DEQPL*FLOW (K1)
END DO

DO Kl=1, 3
DESTRAN (K1) =DSTRAN (K1) - DPSTRAN (K1)
END DO

DsigNew=ZERO

DO Kl=1, 3

DO K2=1, 3

DsigNew (K1)=DsigNew (K1) +CELASTIC (K1,K2) *DESTRAN (K2)
END DO

END DO

DO Kl=1, 3
STRESSNEW (K1) =STRESS (K1) +DsigNew (K1)
END DO

END SUBROUTINE STRESS UPD

N
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