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A B S T R A C T

Since their discovery in 1993, microRNAs have been an active topic in molecular

biology, a breakthrough that was honored with the 2024 Nobel Prize, reflecting

their profound impact on the field. Despite the many years of research focused

on microRNAs across species, their precise functional roles are still not fully

understood. In particular, the dynamics behind timing and location of microRNA-

mediated target repression or activation are yet to be discovered for most tissue

and cell contexts. Moreover, these localized microRNA expression profiles are

known to change throughout the lifespan of organisms. Recently, single-cell RNA

sequencing has revealed age-modulated expression patterns such as waves of

activation with exceptional detail by capturing cellular heterogeneity. Yet, the cur-

rently limited scalability and high costs involved with single-cell high-throughput

microRNA protocols prevent large-scale, cell type-resolved application studies.

As an alternative, fine-grained study designs which consider multiple tissues

investigate microRNA expression heterogeneity with established bulk-sequencing

protocols. Eventually, either approach results in large, multi-faceted datasets

where computational methods are necessary to select promising microRNAs or

identify behavior-driving sample properties, such as sex or age. To this end, this

thesis presents a flexible computational framework for the downstream analysis

of such complex microRNA datasets.

Three publications investigating individual application scenarios of microRNA

functionality emphasize the customizability of the developed framework. In the

first, which explored small non-coding RNAs in two mouse plasma fractions,

nonnegative matrix factorization of the expression profiles was used to cluster

samples based on their age. Second, in a case-control study investigating the

effects of non-thermal plasma treatment, differential expression analysis revealed

a set of microRNAs previously implicated in wound healing and tissue regenera-

tion. Third, a clustering of time-series data in stem cell differentiation identified
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increasing expression trajectories for genes related to cell-type differentiation. The

adaptability of the computational framework was demonstrated by providing nor-

malized count tables alongside detailed quality control metrics to optimize library

preparation protocols for single-cell microRNA sequencing. Building upon this,

the accessibility aspect of the framework was addressed with the development

of a web-based platform to enable scientists world-wide to process and evaluate

their sequencing runs, facilitating the rapid prototyping of single-cell microRNA

preparation protocols.

Applying the computational framework to large-scale, multi-faceted datasets

resulting from fine-grained bulk studies highlighted its scalability. Investigating

an organ-resolved expression dataset (771 samples from 16 organs across ten time

points) revealed both organ-specific and global microRNA profiles. Examining

these recurrent expression patterns at multiple time points across the mouse

lifespan uncovered dynamic expression patterns influenced by aging. A subse-

quent study focussed on the mouse brain (844 samples from 15 brain regions

across seven time points), which is characterized by its substantial structural and

functional heterogeneity. By leveraging all aspects of the developed computational

framework, including embedding, differential expression analysis, and clustering

of time-series data, the study identified brain region-specific and global aging

signatures within a sex-specific dataset. Further, in a unique case-control study

which involved accommodating mice at the International Space Station for 40

days, a profiling of single-cell messenger-RNA expression levels revealed the

down-regulation of ribosomal protein genes. Both, the analysis of the single-cell

RNA and the associated bulk microRNA dataset showed effects of spaceflight on

the extracellular matrix and the immune system.

In the future, as more single-cell protocols become accessible and sequencing

costs further decrease, fine-grained microRNA studies will be even more relevant.

The computational framework presented in this dissertation provides a foundation

for their analysis by offering customizable, adaptable, and scalable evaluation

methods. Ultimately, these developments support the translation of findings to

clinical applications, facilitate the development of intricate analysis methods, and

therefore advance microRNA research.



Z U S A M M E N FA S S U N G

Seit ihrer Entdeckung im Jahr 1993 sind microRNAs ein zentrales Thema der

Molekularbiologie. Ihre Bedeutung für das Fachgebiet wurde mit der Verleihung

des Nobelpreises für Medizin im Jahr 2024 gewürdigt. Trotz jahrelanger For-

schung an microRNAs sind ihre genauen und umfassenden Funktionen jedoch

noch nicht vollständig verstanden. Insbesondere die Dynamik der zeitlichen

und räumlichen Regulation durch microRNAs ist in den meisten Gewebe- und

Zellkontexten unklar. Bekannt ist hingegen, dass sich diese lokalisierten Expressi-

onsprofile im Laufe des Lebens eines Organismus verändern. Kürzlich hat die

RNA-Sequenzierung einzelner Zellen altersbedingte Expressionsmuster, zum

Beispiel Aktivierungswellen, mit außergewöhnlicher zellulärer Auflösung sicht-

bar gemacht. Derzeit verhindern jedoch die begrenzte Skalierbarkeit und die

hohen Kosten solcher experimenteller Protokolle für microRNAs deren breiten

Einsatz in Anwendungsstudien. Alternativ dazu ermöglichen Studiendesigns, die

aus mehreren Einzelgeweben bestehen, die Untersuchung der Heterogenität der

microRNA-Expression mittels etablierter Bulk-Sequenzierungstechniken. Beide

Ansätze führen zu großen und vielfältigen Datensätzen, die computergestützte

Methoden erfordern, um vielversprechende microRNA-Kandidaten auszuwählen

oder regulatorisch relevante Merkmale wie Geschlecht oder Alter zu identifizie-

ren. In dieser Dissertation wird ein computergestütztes Framework zur Analyse

solcher komplexer microRNA-Datensätze vorgestellt.

Zunächst wird die Flexibilität des entwickelten Frameworks in drei Publika-

tionen zu spezifischen Anwendungsfällen von microRNA-beeinflusster Funk-

tionen demonstriert. In der ersten Studie wurden nichtkodierende RNAs in

zwei Mausplasmen untersucht, wobei eine nichtnegative Matrixfaktorisierung

der Expressionsprofile zur altersbasierten Clusterbildung der Proben verwendet

wurde. In einer zweiten Fall-Kontroll-Studie, in der die Auswirkungen einer

nicht-thermischen Plasmabehandlung betrachtet wurden, konnten durch diffe-
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rentielle Expressionsanalysen microRNAs identifiziert werden, die bereits mit

Wundheilung und Geweberegeneration in Verbindung gebracht wurden. Eine

Clusteranalyse von Zeitreihendaten zur Stammzelldifferenzierung in der dritten

Studie ergab ansteigende Expressionsmuster von Genen, die an der Zelltypdif-

ferenzierung beteiligt sind. Die Anpassungsfähigkeit des Frameworks wurde

anhand eines Einzelzell-microRNA-Datensatzes demonstriert für den eine norma-

lisierte Expressionstabelle und detaillierte Metriken zur Qualitätskontrolle erstellt

wurden. Darauf aufbauend wurde die Zugänglichkeit des Systems durch die

Entwicklung einer webbasierten Plattform verbessert, die es Forschern weltweit

ermöglicht, ihre Sequenzierungsdaten zu analysieren und damit die schnelle

Prototypisierung von Einzelzellprotokollen für microRNAs unterstützt. Die wei-

tere Anwendung des Frameworks auf große und komplexe Bulk-Datensätze,

die aus mehreren Geweben bestehen, unterstreicht seine Skalierbarkeit. Die Un-

tersuchung eines hochaufgelösten Expressionsdatensatzes (771 Proben aus 16

Organen über zehn Zeitpunkte) zeigte sowohl organspezifische als auch globale

microRNA-Profile. Durch die Analyse von wiederkehrender Expressionsmuster

über mehrere Zeitpunkte konnten dynamische, altersabhängige Expressionsmus-

ter nachgewiesen werden. Eine Folgestudie mit Fokus auf das Mausgehirn (844

Proben aus 15 Hirnregionen zu sieben Zeitpunkten) wurde durchgeführt, da

dieses Organ eine erhebliche strukturelle und funktionelle Heterogenität aufweist.

Unter Verwendung aller Aspekte des entwickelten Frameworks, einschließlich

Einbettungsmethoden, differentieller Expressionsanalyse und Clusteranalyse von

Zeitreihendaten, wurden in einer geschlechtsspezifischen Untersuchung des

Datensatzes sowohl regionsspezifische als auch globale Alterungssignaturen iden-

tifiziert. Darüber hinaus wurde in einer einzigartigen Fall-Kontroll-Studie an

Mäusen, die für 40 Tage an Bord der Internationalen Raumstation untergebracht

wurden, mittels einer Einzelzell-mRNA-Expressionsanalyse eine Herunterregulie-

rung ribosomaler Proteingene nachgewiesen. Zusammen mit der begleitenden

Bulk-Analyse von microRNAs zeigte sie Effekte des Weltraumfluges auf die

extrazelluläre Matrix und das Immunsystem.

Mit der zunehmender Verfügbarkeit von Einzelzellprotokollen und sinkenden

Sequenzierungskosten werden detaillierte microRNA-Studien in Zukunft an
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Relevanz gewinnen. Das in dieser Dissertation vorgestellte computergestützte

Framework bietet eine Grundlage für deren Analyse, indem es anpassbare, flexible

und skalierbare Analysemethoden bereitstellt. Diese Entwicklungen unterstützen

letztlich den Transfer von Forschungsergebnissen in die klinische Anwendung,

ermöglichen die Entwicklung neuartiger Analysemethoden und tragen somit zur

Forschung auf dem Gebiet der microRNAs bei.
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1
F R O M M O L E C U L A R M E C H A N I S M S T O C O M P U TAT I O N A L

T O O L S F O R A P P L I E D M I R N A R E S E A R C H

This chapter establishes the foundational context for the bioinformatics ap-

proaches explored in this thesis. It begins with an introduction to molecular

biology, providing the biological background for the computational analyses.

The subsequent section introduces the mathematical foundations and methods

that underlying the computational framework developed in this work, including

statistical, embedding and clustering techniques. Finally, the last section focuses

on the implementation and accessibility of the framework.

1.1 basic principles in molecular biology, rna applications and

profiling

Molecular biology forms the cornerstone of understanding cellular processes.

Deoxyribonucleic acid (DNA) mainly serves as the blueprint for cellular processes,

encoding the information required to produce proteins, which carry out most

functional roles in the cell. Focusing on eukaryotic cells, this section briefly

introduces these key concepts, establishing the connection between molecular

mechanisms and their computational exploration. By understanding the basics of

gene expression and regulation, we can better contextualize the bioinformatics

techniques used to analyze ribonucleic acid (RNA) data.

1.1.1 Gene expression and regulation

Genes are specific segments of DNA that encode the instructions for producing

proteins by transcription and translation [8]. The transcribed messenger-RNA

(mRNA) molecules serve as genetic blueprints controlling nearly every biological

process, shaping the development, function, and adaptation of all living organ-
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Figure 1.1: Protein biosynthesis in eukaryotic cells is presented. The main steps from
the transcription to the translation into an amino acid chain are shown. Created in
BioRender.com.

isms. The expression of genes, a tightly regulated process, involves the conversion

of DNA-encoded information into functional products, such as proteins.

From DNA to protein - A general schematic illustration of eukaryotic protein

biosynthesis is shown in Figure 1.1. Gene expression begins with the transcription

in the cell nucleus, whereby the double-stranded DNA is read in 3’ to 5’ direction

by complementary completion of the bases by a RNA polymerase II. The bases

from the DNA adenine, guanine, cytosine, and thymine are supplemented by

complementary bases from the RNA uracil, cytosine, guanine, and adenine, re-

spectively. The so generated precursor messenger RNA (pre-mRNA) is processed

into a mature mRNA by post-transcriptional modification and consists of two

parts: the open reading frame in which the building instruction for the protein is

decoded and a non-coding region called untranslated region (UTR) at both ends.

The mRNA then leaves the cell nucleus into the cytoplasm, where translation

is performed at the ribosomes. Here, the mRNA molecules serve as building

https://BioRender.com
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instructions for proteins. In a translation step, an amino acid sequence is created

from the base sequence of the mRNA. Three consecutive bases always result in

a base triplet, which is here denoted as the codon. This codon uniquely codes

one of the 20 known amino acids. However, since the amino acid has no direct

connection to the codon, an intermediate molecule, called transfer RNA (tRNA), is

needed. It therefore possesses two distinct binding sites, the anticodon represents

the corresponding match to the codon. The other one represents the amino acid

binding site. By docking further tRNAs for the next base triplets in 5’ to 3’ direc-

tion to the mRNA, an amino acid chain is created. In order for the amino acids

to be able to connect through a peptide bond, a ribosome is required, which in

this case consists of a smaller and a larger subunit which both consist of a special

type of RNAs called ribosomal RNAs (rRNAs) and ribosomal proteins. These

amino acid chains form functional proteins when they are correctly folded and

have undergone necessary modifications and assemblies. These processes do not

necessarily happen immediately, but can be completed later at a different cellular

location. The resulting proteins exhibit a specific three-dimensional structure that

enables them to fulfill their respective cellular functions.

1.1.1.1 Gene regulation

Maintaining cellular identity requires precise regulation to respond to environ-

mental stimuli and ensure proper development [9–12]. Regulatory elements,

such as transcription factors and enhancers, modulate the onset and intensity

of transcription. Epigenetic modifications, for example DNA methylation and

histone acetylation, further impact gene accessibility and activity [13–23]. Post-

transcriptional mechanisms, including RNA modifications and non-coding RNA

(ncRNA) interactions, fine-tune mRNA stability and translation efficiency. Adding

another layer of complexity to gene regulation, alternative splicing can generate

isoforms with distinct functions.

The precise control of gene expression is vital for organismal health. Dereg-

ulation can lead to developmental abnormalities, diseases such as cancer and

altered responses to environmental stressors [24–37]. Advances in genomics,

transcriptomics, and epigenetics have expanded our understanding of these pro-
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cesses, enabling researchers to map gene expression patterns across tissues, cell

types, and developmental stages. Despite these efforts, the dynamic interplay

between genotype and phenotype remains an intricate puzzle and requires further

exploration to fully understand the molecular mechanisms driving life.

1.1.2 Non-coding RNA and its role in gene regulation

While genes serve as the templates for protein synthesis, they represent only a

part of the transcriptome. Based on Frankish et al. [38], around 19.370 coding

genes could be found in humans. Of all nucleotides in humans, only a minor

fraction is considered to be coding, although around 85% can still be transcribed

into ncRNA [39]. These ncRNA components, once dismissed as non-functional

DNA, perform diverse regulatory functions that extend beyond coding regions

and play a critical role in maintaining cellular stability [40–45].

NcRNAs are broadly categorized by size and function [40, 43]. Long non-

coding RNAs (lncRNAs) often regulate gene activity at the transcriptional or

post-transcriptional level. Small non-coding RNAs (sncRNAs) such as tRNA,

rRNA, and microRNA (miRNA) guide or suppress specific genetic pathways and

are involved in the translation process [42, 43, 46–54]. Additionally, lncRNAs may

function as precursors for sncRNAs, underscoring their interconnected roles in

regulating gene function [55].

The discovery of ncRNAs has reshaped our understanding of the genome.

SncRNAs like miRNAs, for example, play a key role in gene silencing by binding

to mRNAs and preventing their translation into proteins. Advances in molecular

biology have revealed that ncRNAs influence a wide array of cellular processes,

from development to disease [42, 55–58]. These regulatory elements are now

recognized as integral to understanding how genes operate and how their dereg-

ulation contributes to conditions such as cancer and neurodegenerative diseases

[59–67].

The study of ncRNAs highlights the complexity and precision of gene regula-

tion. Far from being "junk" the non-coding genome is a dynamic and essential

component of the genetic architecture, ensuring that genes fulfill their roles in
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the intricate symphony of life. Among the various classes of ncRNAs, miRNAs

stand out as potent regulators of gene expression.

1.1.2.1 MicroRNA

MiRNAs, a class of sncRNAs, are small RNA molecules which play an important

key in fine-tuning gene expression. Discovered in 1993, miRNAs regulate genes

by binding to mRNAs and influencing their stability or translation [68].

Subsequent research has shown that miRNAs are highly conserved across

species, highlighting their evolutionary importance. With nearly 2, 000 known

human miRNAs and potentially more candidates, miRNAs regulate a significant

portion of the protein-coding genome [69]. They are central to processes like

development, differentiation, and cellular stress responses, often functioning as

negative regulators by silencing target genes.

From DNA to microRNA - Analogous to the generation of mRNAs, there are spe-

cial sites in the DNA that contain a blueprint for miRNAs. They are either read

specifically for the production of miRNAs or as part of mRNA generation. The

transcription of miRNAs works in the same way as for mRNAs. The correspond-

ing site on the DNA is transcribed using a RNA polymerase II. The resulting RNA

molecule is called primary microRNA (pri-miRNA) and has a hairpin structure,

which plays an important role in the later recognition by enzymes [70, 71]. While

still in the cell nucleus, the pri-miRNA is cut using the Drosha enzyme [72]. It

retains the hairpin structure but is much shorter (about 70 nucleotides) and is now

called precursor microRNA (pre-miRNA). Now the pre-miRNA is transported

out of the cell nucleus into the cytoplasm with the help of another enzyme called

Exportin-5 [73, 74]. Once there, the Dicer enzyme cuts the pre-miRNA further

into a typical miRNA double strand consisting of about 22 nucleotides in length

[75, 76]. One of the two strands is selected as the leading strand, which later

becomes active, the other is disassembled. The miRNA guide strand is integrated

into the RNA-induced silencing complex (RISC) protein complex [77, 78]. Here

the miRNA acts like a key for mRNAs and waits to carry out its regulatory tasks.

The discovery of miRNAs has revolutionized our understanding of gene reg-

ulation by showing that genes are not merely static units of inheritance but
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dynamic players in cellular networks. By acting as precise molecular switches,

miRNAs exemplify the intricate mechanisms that maintain genetic balance and

adapt to environmental changes. Their role in health and disease emphasizes the

importance of genes not just as templates for proteins, but as hubs of regulatory

activity.

The regulatory influence of miRNAs depends on their interactions with their

so-called target genes. These interactions occur at defined binding sites, where

miRNAs guide the suppression or fine-tuning of gene expression. Exploring the

mechanisms of these interactions sheds light on the specificity and biological

outcomes of miRNA activity.

1.1.2.2 MicroRNA and its targets

By influencing gene expression, miRNAs intervene in the production of proteins

as post-transcriptional regulation [79]. This influence can occur by either blocking

of translation, or the complete disassembly of the mRNA so that it does not even

exist long enough to be translated. In rare cases in specific cellular conditions,

miRNAs can also take on enhancing tasks. For example, miR-122 stabilizes mR-

NAs that are important for liver function and thus increases protein production

[80].

After the miRNA has been integrated into RISC, it searches for a matching

complementary mRNA. This means that the miRNA recognizes a mRNA as

a match if its own seed sequence (a region about 6 to 8 nucleotides long) is

complementary to that of the mRNA. The miRNA can then bind to the mRNA.

However, miRNAs cannot bind everywhere. There are specific sites on the mRNA

that are suitable for binding, these are located on the 3’UTR [81]. This is the end

of the mRNA behind the coding sequence which itself is less suitable as it is

much shorter and more protected. The other end of the mRNA, the 5’UTR, is

shorter, it controls translation and is therefore usually covered by other structures

and therefore less accessible. The 3’UTR is the evolutionarily conserved main site

for regulation by miRNAs, its length makes it suitable for fine-tuned control of

protein production. It has multiple binding sites for the same and other miRNAs

to allow a fine and combined regulation. There are different ways of strengthening
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of the resulting pairing. In perfect pairing, which occurs less frequently in animals

or humans, the mRNA is completely degraded by the RISC complex [82–85]. More

commonly, in partial pairing, the translation is blocked by the RISC. This means

that the ribosome, which initiates the translation, can no longer bind properly

to the mRNA. An individual miRNA may influence several mRNAs, while a

single mRNA can be a target of numerous miRNAs. This forms a regulatory

network [79, 86–88]. Mutations can cause a change in the binding sites, resulting

in regulation not being carried out normally, which can play an important role in

disease and aging.

Beyond the miRNA target interactions, their intercellular roles are facilitated

by an active transportation between cells through extracellular carriers like vesi-

cles. These transport mechanisms enable miRNAs to act as signaling molecules,

influencing distant cells and tissues, which is particularly relevant in processes

like aging and intercellular communication [89–92].

1.1.2.3 Extracellular vesicle for microRNA transport

Extracellular vesicles (EVs) are tiny, membrane-bound particles that are released

from the cells into the surrounding tissue or blood. They play a crucial role in

cellular communication. EVs are divided into three subtypes: exosomes, which

are formed in intracellular endosomes and are then released by exocytosis, mi-

crovesicles, which are formed at the cell membrane and are released by being

pinched off from the cell membrane, and apoptotic vesicles, which are formed

during programmed cell death (apoptosis). In the context of this work, we only

briefly present the functionality of exosomes and microvesicles.

EVs are used by cells to specifically exchange molecules such as miRNAs. In

this way, large quantities of miRNAs can be sent to another cell at the same time

[93, 94]. Therefore, the EVs are first loaded by the cell with specific miRNAs at a

certain point in time. The vesicles are then released from the cell and enter the

serum, which is the liquid component of the blood that remains after clotting,

or other body fluids. During transportation, EVs protect the RNAs inside them

from degradation by enzymes present in the serum. In the case of exosomes,

they can then be transported through the serum to distant cells due to the blood



24 1.1 basic principles in molecular biology, rna applications and profiling

circulation. A cell can take up the EVs by its cell membrane swallowing the EVs

or by fusion of the vesicle and cell membrane. Specific proteins among other

molecules on the surface of the exosome membrane are recognized by special

receptors on the target cell to initiate a connection. As a result, exosomes often

travel longer distances in the body and the communication mechanism is precise

and controlled. Microvesicles are not recognized by receptors due to the less

pronounced surface molecules on the membrane. This means that any cell, with

which the vesicle makes contact, can absorb it. Therefore, microvesicles mainly

act in the local environment and occur more frequently in stress situations, such

as inflammatory processes or acute wound care.

The transfer of miRNAs between cells is a highly specialized communication

mechanism that transmits signals which promote certain behaviors in the target

cells, such as cell growth, differentiation or immune response [95–98]. Systematic

effects can arise when cells communicate with other cells in distant organs

and regulate genes in them. It therefore plays a central role in many diseases

and biological processes such as wound healing, the immune system or tumor

regulation [99–102]. Tumor cells, for example, can suppress the immune system

and prepare their environment for metastases.

Having discussed extracellular transport mechanisms for miRNAs and their

intracellular and intercellular roles, we now focus on the transformative potential

of miRNAs in research and clinical use.

1.1.3 RNA in therapeutics and aging

Individual miRNAs can regulate several mRNAs which, in turn, can be regulated

by many other miRNAs, such that these interactions form a complex network. The

same miRNA can have different and sometimes even opposing effects depending

on the cell type, developmental stage or disease state and is therefore highly

context-dependent [103–105]. Bioinformatic evaluations often link miRNAs and

mRNAs, but experimental validation in the laboratory is usually time-consuming

and often complicated [106, 107].

In addition to their central role in gene regulation, they are an essential factor

in the developmental processes of stem cell differentiation, tissue and organ
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development [108, 109]. Due to malfunction, miRNAs are associated with various

diseases such as cancer, cardiovascular diseases and neurodegenerative diseases

[110–113]. In addition to regulating mRNAs, they also regulate immune responses

and, through their transport by EVs, they help cells to communicate systematically

throughout the body.

MiRNAs nevertheless show promising potential for therapies. Their stability in

EVs and their presence in body fluids make them ideal non-invasive biomarkers

for disease [114–118]. Much is still unknown, but miRNAs harbor great potential

to shed more light on the underlying mechanisms, for example, their highly

conserved nature points to their important evolutionary function.

1.1.3.1 Clinical treatment strategies and microRNA modulation

Clinical treatments are therapeutic approaches or interventions that are directly

applied in hospitals or clinics to prevent, diagnose, or treat diseases in patients. For

miRNAs, while their role in biological processes and diseases is well established,

most therapeutic applications involving miRNAs are still in the research or

experimental stage [119–124]. Some promising examples are being tested in

clinical trials, but very few have made it to actual use in hospitals or clinics. The

targeted delivery to the relevant cells is challenging and side effects for other

cells, tissues or organs may occur, thus, complicating therapeutic use [125–127].

To date, the most advanced therapeutic strategies using miRNAs involve

miRNA mimics or miRNA inhibitors. These approaches aim to restore normal

levels of miRNAs in cases where they are deregulated. For instance, MRX34,

a synthetic mimic of tumor-suppressing miR-34, entered early-phase clinical

trials for cancer treatment, but was discontinued due to immune-related side

effects [128]. This highlights the potential of miRNA-based therapies while also

emphasizing the challenges in translating them into clinical use. While some

studies, such as the development of MRX34, have already explored the potential

of miRNA-based therapeutics in early clinical trials, many other research efforts

are focused on building the foundational knowledge necessary for future thera-

peutic integration. For instance, the study on the miR-23-27-24 cluster elucidates

its roles in development and aging, highlighting potential targets for therapeutic
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interventions [129]. Similarly, research on exosomal miR-21 demonstrates its im-

pact on cancer progression and therapy resistance, offering insights for designing

targeted treatments [130]. Furthermore, emerging strategies and challenges for

incorporating miRNA modulation into cancer therapy are still be discussed [131–

133]. Together, these studies exemplify the extensive work being done to advance

miRNA research toward eventual clinical application.

1.1.3.2 Differences in RNA signatures through aging

Aging is a complex, natural biological process characterized by the gradual

decline in the structure and function of cells, tissues, and organs over time.

This decline increases the risk of diseases, reduces the body’s ability to repair

damage, and leads to a higher likelihood of death. Aging affects nearly all

aspects of an organism’s physiology, including the immune system, metabolism,

and cellular repair mechanisms. The process of aging is driven by multiple

molecular and cellular mechanisms, including damage to the DNA, proteins,

and other biomolecules caused by reactive oxygen species and environmental

stress which contributes to the decline in cellular function [134–137]. Additionally,

senescence where cells arrive in a state of permanent cell cycle arrest in return to

stress or damage, contributes to tissue dysfunction and aging [138]. Further, the

telomeres, which are protective caps on the ends of chromosomes, get shorter,

eventually leading to cellular aging and senescence [139–142]. Moreover, the roles

of epigenetic modifications and DNA methylation changes in aging have been

investigated. These methylation patterns can be used to estimate biological age

and provide insights into age-related functional decline [143, 144].

Aging is accompanied by alterations in RNA expression profiles, which can

affect various physiological processes. For instance, the miR-34a has been impli-

cated in the regulation of genes involved in DNA repair and cellular senescence

[145, 146]. Aging is often connected to chronic, low-grade inflammation, which

is regulated by miRNAs like miR-146a that suppress inflammatory responses

[147]. Understanding these changes in RNA expression with age can aid in devel-

oping interventions to mitigate age-related diseases and promote healthy aging.

Therefore, researchers all over the world study the role of RNAs in aging and
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use various methods, like expression profiling, RNA sequencing or microarrays,

to identify age-related changes in RNA expression [148–158]. In addition, these

changes have been investigated in sex-specific studies [159–162]. Notably, the

emergence of single-cell RNA sequencing enabled studying expression changes

while taking cellular heterogeneity into account [163–167]. By functional studies,

like knocking out or over expressing specific miRNAs in model organisms, for

example mice or C. elegans, helps to identify their role in aging pathways [168].

Incorporating clinical studies investigate miRNAs as biomarkers for aging-related

diseases, such as cardiovascular disorders or neurodegenerative conditions [169].

In summary, miRNAs are critical regulators of aging processes, including cellu-

lar senescence, inflammation, and longevity pathways, making their modulation

a promising therapeutic strategy and their expression valuable as biomarkers for

disease. Continued research into miRNA functions and mechanisms will improve

our understanding of their role in aging and enhance their application in clinical

interventions [170].

Concluding this section with a discussion of miRNA challenges and impacts

provides a broader perspective before transitioning to methodologies. Given

the complexity of miRNA regulation and their diverse roles, robust profiling

techniques are essential to gain a correct and proper understanding of their

functions. These approaches range from bulk profiling methods to emerging

single-cell technologies, providing the resolution necessary to decode the dynamic

behavior of RNA molecules.

1.1.4 RNA profiling techniques

Quantifying the expression of RNAs, among them sncRNAs like miRNAs, is

a pivotal task in molecular biology. A typical laboratory workflow starts with

collecting the samples of interest, for example from bulk tissue or a specific

cell type. For such bulk samples, the obtained expression profile represents an

average over the cells in the processed sample. Subsequently, the RNA is extracted

from the samples and possibly further purified. Eventually, a quality control step

ensures the successful processing of the samples. From there, multiple techniques
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can be utilized to quantify the RNAs. In the following, we briefly introduce the

microarray technology [171–173] and next-generation sequencing (NGS) [174–176]

while focussing on miRNA. These techniques are common in expression profiling,

but not limited to this application. For instance, microarrays are also used to

investigate DNA methylation [177].

1.1.4.1 Microarray

Figure 1.2: Exemplary mi-
croarray fluorescence.

MiRNA profiling via microarrays relies on the hybridization of the

miRNA molecules of the sample to known miRNA probes on a solid

substrate, the so-called chip. The probes are organized in spots which

are laid out in a two-dimensional grid across the chip where each

spot consists of numerous probes of a certain miRNA. To quantify the

composition of miRNAs in the sample, each strand is ligated with a

fluorescent dye and adapters to improve its binding capability to the

probes. This so-called library is then applied to the microarray chip

where the complementary strands of the miRNAs hybridize with the

corresponding probes. Note, the term library size denotes the number of unique

miRNA in the library. After washing away free, unbound molecules, fluorescence

detection measures the amount of remaining miRNAs as brightness per spot, as

indicated in Figure 1.2. To convert these intensities into counts for each miRNA

probe, sophisticated post-processing including localized background correction,

aggregating multiple spots and normalization is necessary.

An advantage of the microarray techniques is that no miRNA amplification is

required in the sample, therefore a potential amplification bias is avoided. Yet, the

dynamic range of the detection leads to a diminishing accuracy for high expressed

miRNAs caused by the saturation of the fluorescence. In contrast, low expressed

molecules can be lost in the background signal. One major disadvantage is rooted

in the process itself. Since it is based on the hybridization to previously selected

probes, discovering novel miRNAs is challenging. While custom microarrays

can be manufactured to incorporate candidates, explorative probing remains

infeasible.
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1.1.4.2 Next-generation sequencing

NGS is a widely used technology for miRNA screening and profiling since

sequencers have become commercially available in the mid-2000s [178]. In con-

trast to the aforementioned microarray technique, NGS step-wise determines

the sequence of nucleotides in the miRNAs. Starting from the purified sample,

each miRNA is reverse transcribed and ligated with adapters which enable its

binding to the experimental substrate. Additionally, a barcode is added to each

complementary strand to later match it to the sample. This is followed by an

optional amplification step to increase the number of complementary strands.

In the case of synthesis sequencing, for example using the Illumina platform,

the actual sequencing of the library is performed in a so-called flow-cells which

consist of multiple fluid channels. In a first step, the complementary strands in

the library are fixed inside these channels using the previously attached adapters.

Here they are further amplified into clusters of the same kind. Then, a polymerase

step-wise adds nucleotides to each strand whereby each type of nucleotide is

augmented with a specific fluorescence marker. After each step, the type of each

added nucleotide is determined via fluorescence detection, generating the reads.

Following their detection, the fluorescence markers are removed from the strands

and the flow-cell is flushed before the next cycle starts. Eventually, the sequencing

stops after a pre-defined number of cycles which is called sequencing length. For

miRNA, it typically ranges from 50 to 100 nucleotides which is sufficient to

fully read miRNA including all attachments. Eventually, the sequencing results

in sequences of measured nucleotides, called reads. They can be matched to

the samples via the barcodes. When considering miRNAs, the sequencing depth

denotes the number of reads per sample. Yet, multiple definitions for sequencing

depth exist with regard to what is sequenced.

To actually perform the miRNA expression profiling, the reads need to be

further processed by removing the parts of the reads which correspond to the

platform-specific adapters using, for example, cutadapt [179, 180]. The cleaned

reads are then mapped against a reference genome or a database such as mirBase

[69] with tools such as bowtie [181]. In addition, the alignment, for example using
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Figure 1.3: Single-cell se-
quencing workflow adjusted
from [182]. Created in
BioRender.com.

STAR [183], quantifies mismatches of reads with respect to the refer-

ence, for miRNA datasets, considering 0 or 1 mismatches are common.

Finally, counting the detected miRNAs per sample results in a raw

count matrix which can be further processed downstream. In the case

of sncRNA, all these steps, including necessary data transformations

in between them, have been consolidated into a single workflow by

Fehlmann et al. [184].

In comparison to the microarray technique, NGSs performs a read-

out of the library in question requiring minimal explicit assump-

tions about the contained miRNAs. Therefore, it is suitable to detect

variations and novel miRNAs candidates without changing the ex-

perimental process [185, 186]. Moreover, since the resolution is at

single-nucleotide level, re-evaluating reads at a later point in time

with up-to-date reference databases can lead to further, previously

hidden annotations.

1.1.4.3 Single-cell RNA sequencing

While bulk methods offer valuable insights into average gene ex-

pression across multiple cells, they often mask cellular heterogeneity.

Overcoming this limitation, single-cell resolved RNA studies have

gained increasing interest in the last decade [187–190].

To perform single-cell RNA studies, changes to established prepara-

tion protocol of bulk (tissue) samples are necessary [182, 191]. As out-

lined in Figure 1.3, the workflow starts by isolating single cells, for ex-

ample via droplet-based methods or fluorescence activated cell sorting.

Then, the RNA molecules are extracted per cell and transcribed to com-

plementary strands and ligated with platform-dependent adapters.

Additionally, a unique molecular identifier (UMI), to counter the

amplification bias, and a barcode are added to each complementary

strand. In contrast to bulk samples, these barcodes are split into a

unique part for each sample and a second unique barcode within the

sample for each individual cell. Since the amount of RNA per cell is

https://BioRender.com
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too low for synthesis sequencing, amplification of the complementary strands

is necessary. The sequencing of the resulting library via NGS is performed via

step-wise polymerase and the obtained reads are processed as presented in the

above section.

In the recent years, studies explored cell-resolved expression heterogeneity

on the miRNA level [192]. Yet, while commercial single-cell RNA workflows

and platforms have emerged, to this date, none are available for miRNAs [193,

194]. Currently, the library preparation is still an active area of research where

different protocols are evaluated and modified [4, 195]. In Chapter 3, we present

a processing workflow for single-cell miRNA reads which can be easily utilized

by scientist in the laboratory to quickly assess NGS results and use these insights

to optimize their library preparation [5].

Through the expression profiling, we obtain numeric count values for any

detected miRNAs, typically several hundred, per sample. Conducting similar

profiling studies, we obtain even higher numbers of mRNAs per sample. In

addition, each sample is annotated with attributes reflecting the experimental

setup, for example age, sex, type of tissue, and treatment status. Combing the

amount of miRNAs with the dimensionality given by the study setup leads to

large, highly-complex datasets. Thus, manually selecting promising miRNAs

and identifying behavior-driving attributes becomes infeasible and a need for

data-driven methods using computational tools emerges.

1.2 mathematical foundations , methods and techniques

A central part of this thesis is concerned with the rigorous interpretation of

experimental data using a wide variety of analytical methods. In the publications

forming Chapter 3, these methods and techniques are often presented as black

boxes, where data is fed in and results are simply delivered. However, unveiling

the mathematical foundations of these techniques is crucial for comprehending

and assessing the obtained results. Therefore, this section provides an overview

of key concepts, including statistical testing, correlation analysis, embedding

techniques with variance analysis, and clustering methods. These methodologies
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form the basis of the developed computational framework for uncovering pat-

terns, relationships, and variability in complex datasets, providing robust and

meaningful conclusions.

1.2.1 Data normalization and filtering

In the context of this thesis, we typically obtain a raw read count matrix originat-

ing from a transcriptomic readout. To draw meaningful conclusions, we perform

a pre-processing consisting of three steps. The first step consists of normalization

to make the samples comparable, afterwards we perform two quality control

steps to remove sample and features with low quality [196–205].

1.2.1.1 Normalization

Depending on the specific case, we choose one of the following normalizations,

which are common in the field: reads per million (rpm), reads per mapped million

(rpmm), reads per mapped million against miRNA (rpmmm) (only in case of a

miRNA dataset), quantile normalization and DESeq2 normalization based on [184,

206]. The rpm-normalization divides for every sample the raw read counts of each

feature by the total number of sequenced reads of this sample and multiplies the

ratio by one million. This accommodates for different sequencing depths between

the samples. Similar to the previous, the rpmm-normalization divides for every

sample the raw read counts of each feature by the total number of reads of these

samples which could be aligned to the genome, multiplied again by one million.

This normalization also adjusts for the sequencing depth by considering the total

number of genome-aligned reads, ensuring consistent comparisons across samples

while reducing the bias from sequencing contaminants or non-species-specific

reads. The rpmmm-normalization divides for every sample the raw read counts

of each feature by the total number of reads of this sample which mapped only to

miRNAs and multiplies the fraction by one million. This normalization method

is only suitable for a miRNA dataset. The quantile normalization transforms

the dataset in order to obtain an equal distribution of read counts for each

sample. Therefore, we calculate the mean for every smallest count value of

each sample, then for the second smallest, the third smallest until all values
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are processed. Then we replace all smallest elements with their mean, every

second-smallest elements with their mean and so on. This procedure removes

technical biases, for example sequencing depth and batch effects while preserving

relative expression levels. Additionally, it accounts well for differences in library

size and corrects for compositional biases. Therefore, it is suited for datasets with

homogenous expression patterns across the features. The DESeq2 normalization

uses a size factor based on the median ratio method. We first compare the

geometric mean gi for all features given for feature i by gi =
(

∏n
j=1 Xi,j

) 1
n
, if

Xi,j = 0 holds, we remove feature i for every sample. The size factor sj represents

the median over Xi,j
gi

for all features after removing the features containing at

least one 0. For each feature i, the ratio reflects how much the expression level of

that feature in sample j deviates from the overall geometric mean. The median

across all features i ensures that the size factor is robust against outliers, for

example if highly expressed features skew the results. To finally normalize the

data, we divide for each sample j the feature values by the size factor sj. This

normalization removes differences according to the library size and corrects

for compositional bias. For mRNA datasets using the DESeq2 normalization or

quantile normalization are best suited due to their compensation of compositional

biases. Further, they stabilize the high variance within the datasets. For miRNAs,

rpmmm and rpmm are well suited, due to their low number of features and since

their narrow dynamic range compared to mRNAs renders compositional biases

are less pronounced. While the rpm normalization is also often used due to its

simple and quick calculation, it may not be as robust for some properties within

the datasets, like compositional bias.

Following the normalization, we perform a first quality control by discarding

samples with a low read quantity followed by a filtering for features.

1.2.1.2 Quality control filtering criteria

Formally, let X′ ∈ Rs′×n′
be the normalized data point matrix where s′ describes

the number of features and n′ the number of samples. For example, the element

X′
i,j for i ∈ 1, . . . , s′ and j ∈ 1, . . . , n′ is the i-th feature of the j-th sample. Addition-

ally, a metadata or annotation table M accompanies the dataset which consists of
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one row for each sample and one column for each attribute of the samples, for

example treatment, age, tissue or batch. Hence, we regard M as a table with size

n′ × (m + 1) where m denotes the number of attributes the dataset exhibits.

To ensure their experimental relevance, we filter the normalized data point

matrix for samples with a high number of aligned reads against the genome.

A common threshold in our analyses was 2 million reads. Most experimental

designs ensure that the attributes are given in a balanced form where each

attribute realization is more or less equally often present. This usually holds true

after the sample filtering. In case too few samples for an attribute realization

remain after the sample filtering, all samples belonging to this realization must

be removed.

An additional filtering with respect to the features is performed by checking if

enough samples exhibit a higher raw count than a preselected value. How many

samples have to fulfill the criterion is often indicated by a percentage, typical

values can be 10%, 50%, 75% and 100%, depending on the specific dataset. The

preselected raw count threshold should be above the detected noise level of the

data, in case of miRNAs this values is often set to 5 [184]. This filtering is often

only applied to partitions of the dataset. The partitioning is achieved with respect

to a chosen attribute of the samples and the filtering is performed individually for

each part. The obtained features from every filtering are joined and serve as the

new feature set for the final filtered and normalized data point matrix X ∈ Rs×n

where s ≤ s′ and n ≤ n′.

1.2.2 Statistical testing and correlation analysis

Statistical methods are essential tools in bioinformatics for drawing meaning-

ful conclusions from experimental data. This section introduces fundamental

hypothesis tests, including the Shapiro-Wilk-Test, Student’s t-test, and Wilcoxon

rank-sum test, alongside p-value adjustments to account for multiple comparisons.

Additionally, the section explores correlation analysis, focusing on Pearson correla-

tion coefficient and Spearman’s rank correlation coefficient, to evaluate relationships

among variables and their statistical significance. The presented descriptions are

based on [207–211] and [207, 212–214] for the two parts respectively.
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Many of the methods introduced below require normally distributed inputs.

To push our data values closer to an approximation of a normal-distribution,

to reduce skew within the dataset and to stabilize the variance, we apply a

logarithmic-transform to the gene or miRNA expression matrix by computing

log(X + ε) with ε > 0 (in our case ε = 1) [215, 216].

1.2.2.1 Hypothesis testing

Comparing gene or miRNA expression across groups of samples, for example, in

case versus control setups, relies heavily on hypothesis testing [217–225]. We can

assess whether the observed dataset differences are statistically significant or due

to random chance. Hypothesis testing starts with defining two mutually exclusive

hypotheses: the null hypothesis (H0) where we assume no effect, difference or

relationship exists and the alternative hypothesis (H1) where we assume that an

effect, difference or relationship exists. The objective is to evaluate the evidence

against H0 in favor of H1 based on a chosen significance level α, typically set

to α ∈ {0.05, 0.01, 0.001}. The result of a test is the p-value ranging between

0 and 1 which is defined as the probability of measuring a test statistic as

extreme as or more extreme than the one calculated from the given dataset, under

the assumption that H0 is true. For a right-tailed test this means p = P(T ≥

Tobserved
∣∣H0), for a left-tailed p = P(T ≤ Tobserved

∣∣H0) and for the two-tailed

p = P(T ≤ Tobserved
∣∣H0) + P(T ≥ Tobserved

∣∣H0) = 2 · P(T ≥ |Tobserved|
∣∣H0). A

small p-value (p < α) provides evidence to reject H0, while a large p-value

(p ≥ α) suggests insufficient evidence to reject H0. The p-value was originally

obtained from look-up tables, based on precomputed null distributions. Modern

implementations now either use mathematical approximations for the p-value or

spline interpolation of less precomputed values from the null distribution.

Shapiro-Wilk-Test - Many methods require normally distributed data points. To

test if one vector of the data point matrix exhibits a normal distribution with

unknown mean µ and variance σ, the univariate Shapiro-Wilk-Test was developed

[208]. In our case and for the further analysis, we are interested if a feature vector

Xi,· is normally distributed. The hypotheses for this test are: H0 that a feature

vector Xi,· follows a normal distribution and H1 that it does not follow a normal
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distribution. The test calculates a statistic W based on the vector Xi,· which is

sorted decreasingly and is given by

W =

(
∑n

j=1 wjXi,j

)2

∑n
j=1(Xi,j − Xi,·)2

where Xi,· =
1
n ∑n

j=1 Xi,j and wi are weights derived from the expected normal

distribution. The numerator reflects how well the data points align with the

normal distribution’s expected structure, and the wi-weights play a key role in

this alignment. In case of a normal-distribution the numerator is an estimate of

the total variance within the vector (like the denominator). Without these weights,

the test statistic W would not properly reflect how the data point deviates from

the expected structure of a normal distribution. The weights are designed to give

more emphasis to the data points that are most informative about normality. This

means the smallest and the largest values (tails of the distribution) tend to have

larger weights because deviations in the tails are more indicative of non-normality.

Since the weights depend only on the vector length, the n expected values and

the covariance matrix of an order statistics of a standard normal distribution

(N (0, 1)), they can be pre-calculated and stored in look-up tables. The resulting

values are the test statistic W ∈ [0, 1] and the decisive parameter p-value. Since it

uses a left-tailed test, the p-value is given by

p = P(W ≤ Wobserved
∣∣H0)

to evaluate the evidence against H0. If p < α holds, we reject H0, which means

Xi,· is not normally distributed. In contrast, if p ≥ α holds, we fail to reject H0

which means Xi,· is likely normally distributed. This statement is sufficient to

proceed with methods requiring normally distributed data points. The test is

sensitive to deviations from normality, which makes it effective for the task. The

performance decreases for very small vector lengths or with data points heavily

skewed by outliers. If the data points are highly discrete which means only a few

unique values exist, the test may produce unreliable results because it assumes a
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continuous distribution.

In this thesis, we often use tests to compare two attribute realizations mA and

mB introduced by the metadata table M for each sample. We subset the data point

matrix for the samples belonging to one realization each to obtain two matrices

A and B. Therefore, A ∈ Rs×nA and B ∈ Rs×nB holds where nA and nB denote

the number of samples fulfilling realization mA and mB, respectively. We remove

constant rows (mainly rows containing only zeros) from our data point matrix. If

the variance for a feature over all samples is constant, there is no distinguishing

information included and many methods would fail for this feature.

The hypothesis testing framework is given by the null hypothesis (H0) which

stands for no difference between the groups for one feature i and the alternative

hypothesis (H1) claiming a significant difference between the two groups for one

feature i. We assume that the feature vectors a B Ai,· and b B Bi,· are normally

distributed since we applied Shapiro-Wilk-Test to the feature vectors across all

samples. By Jensen [226] we conclude that if the feature vector across all samples

is normally distributed, then the feature vector of a subset (apply for A and B) is

also normally distributed.

Student’s t-test - Here, we compare the means of the two feature vectors a and b

under the assumption of normality. For H0, this implies that the means of the two

groups are equal (µa = µb) and for H1 that the two means are different (µa , µb).

We compute the test statistic t with

t =
a − b√
s2

a
na

+
s2

b
nb

where s2
a is the variance within a and na is the length of the vector a and for s2

b

and nb, respectively. The numerator measures the difference between the sample

means, and the denominator adjusts this difference for the variability and sample

sizes of the two groups. Since we allow that the two groups can have different

variances, we consider an extension of the Student’s t-test called Welch’s Test to

calculate the p-values. We obtain the degrees of freedom df by using the Welch-

Satterthwaite formula which adjusts the df based on the relative variances and the
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sample sizes of the groups. In the thesis, we use the two-sided test to calculate

the p-value by

p = 2 · P(t ≥ |tobserved|
∣∣df) = 2 ·

(
1 − Ft(|tobserved|

∣∣df)
)

where t follows a t-distribution with df degrees of freedom and Ft is the cu-

mulative distribution function of the t-distribution which can be determined

analytically. The t-distribution is similar to the standard normal distribution,

while for small degrees of freedom the distribution is wider with heavier tails

(to account for uncertainty due to limited data). For df → ∞ the t-distribution

converges to the standard normal distribution. We compute the p-value by ob-

serving a t-statistic as extreme as tobserved in the right tail. If p < α, we reject

H0 which indicates the means are significantly different. An advantage is that

the two feature vectors can have different lengths and different variances which

makes it widely usable in many real-world applications. The univariate test as-

sumes normally distributed independent groups with large sample sizes and no

significant outliers. This assumption is crucial because the test relies on the mean

and the variance, which can be disproportionately affected by extreme values.

Additionally, the data points are assumed to be continuous or mildly discrete.

Wilcoxon rank-sum test (Mann-Whitney U test) - Here, we compare the distribu-

tions, specifically the medians, of two feature vectors a and b without assuming

normality. The hypothesis H0 proposes that the distributions of the two feature

vectors are identical and H1 claims the distributions are different. We combine

the two feature vectors and create a mapping table to rank the values. To do so,

we sort the combined vector increasingly and rank it with integers starting by 1.

In case of ties (identical values), we assign the average of those tied values. Using

this mapping table we transform the two feature vectors a and b. We compute the

test statistics W as the sum of ranks for one feature vector with

Wa =
nA

∑
i=1

Ri
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where nA denotes the number of samples in a and Ri the rank mapped to the

sample i. By construction, it holds that Wa + Wb = (nA+nB)·(nA+nB+1)
2 . If Wa is

known, Wb can easily be computed by reformulating the equation above. Under

the null hypothesis H0, the expected value E(W) is given by

E(Wa) =
Wa + Wb

nA + nB
=

nA(nA + nB + 1)
2

and the variance σ2
W of the rank sum W by

σ2
W =

nAnB · (nA + nB + 1)
12

.

Next, we standardize the test statistic W by

Z =
Wa − E(Wa)√

σ2
Wa

.

The p-value is based on the standardized test statistic Z and is achieved using a

two-tailed test by

p = 2 · P(Z ≥ |Zobserved|)

where P(Z) is the cumulative probability from the standard normal distribution.

If p < α, we reject the null hypothesis H0 which means that the distributions are

significantly different. This univariate test is robust to non-normal data points

(non-parametric) and outliers but is less sensitive to small differences in means.

1.2.2.2 Adjustments for multiple testing

When conducting multiple test as for instance by calculating p-values for every

feature, the probability of false positives increases as well. Without adjustment,

raw p-values only control the error rate per test. They do not account for the fact

that multiple hypothesis tests are performed simultaneously. For example, if we

do 20 tests with a significance level α = 0.05 (which describes the probability of a

false positive), we obtain a probability that at least one false positive is included

as 1 − (1 − 0.05)20 ≈ 0.64 which means we have a 64% chance to obtain a false

positive. The probability of at least one Type I error (false positive) in a family
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of s simultaneous tests is called family-wise error rate FWER and can always be

computed by FWER = 1 − (1 − α)s. To overcome this problem we adjust the

p-values for this multiple testing. Adjustments control for the family-wise error

rates or false discovery rates.

Bonferroni correction - To control the family-wise error rate, the significance level is

rescaled by the number of tests s using the Bonferroni correction: α
s . This changes

the family-wise error rate to FWERBonferroni = 1− (1− α
s )

s and the rejection criterion

to p < α
s . In practice, it is more convenient to transform the p-value instead of the

significance level. Therefore, we adjust the p-values obtained for each feature by

padjusted = p · s ≥ p.

Considering the rejection criterion p · s < α, this is equivalent to reducing the

significance level for each individual test which also induces a lower family-wise

error rate. This approach is very conservative, it reduces Type I errors but raises

Type II errors (false negatives).

Benjamini-Hochberg procedure (BH) - The share of Type I errors (false positives)

within all rejected hypotheses, known as False Discovery Rate (FDR) and defined

as FDR = E
(

|false positives|
|true positives|+|false positives|

)
, is controlled by the BH method.

For R = 0 where R corresponds to all rejected hypotheses (the denominator

in the FDR formula) the FDR is set to 0. In contrast to the Bonferroni correction,

we only consider the share of false positives within all positive values (rejected

hypotheses). The p-values obtained for each feature are sorted increasingly p1 ≤

p2 ≤ . . . ≤ ps. For a given α, we assume i is the largest index fulfilling pi ≤
i
s · α. We reject all null hypotheses corresponding to p1, p2, . . . , pi. To achieve the

adjusted p-values, we calculate

padjusted
i = min

( s
i
· pi, 1

)
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for all features. With this we ensure that the FDR, the expected proportion, is

below α. This approach balances the Type I and II errors.

Using the adjusted p-values, we check for each feature individually whether

the adjusted p-value is smaller than the significance value. If this holds, we denote

the feature as significant according to the underlying attribute comparison. The

decision for a specific adjustment method depends on the desired outcome. If we

want to achieve a strict control of false positives we use the Bonferroni correction.

For large-scale exploratory studies, we use BH.

1.2.2.3 Differential expression (DE) analysis

The exemplary scenario of comparing the expression of two groups of samples

serves as the basis for the DE analysis approach, which is a standard step in

data-driven studies [224, 227–236]. For two attribute realizations mA and mB, we

want to see if some features for the corresponding samples differ. Exemplarily,

we consider the underlying comparison to be between the two realizations case

versus control.

Fold change - First, we calculate the fold change FC describing, if the average expres-

sion of every feature across all samples between the realizations is deregulated.

The FC is given by

FC =

1
nA

∑nA
j=1 X·,j

1
nB

∑nB
j=1 X·,j

.

If FC ≥ tdereg holds for one feature i, then we say the feature i is upregulated.

In contrast, if FC ≤ 1
tdereg

, we call it downregulated. Threshold tdereg values like

1.5 or 2 are common. Using the log2-transform, we can combine the inequalities

to an overall deregulation statement with |log2(FC)| ≥ log2(tdereg) utilizing the

logarithmic laws. The previously introduced p-values can be used to decide if the

investigated comparison is significant by checking if padjusted < α. A feature is

considered significantly deregulated (up or down depending on FC) if it fulfills

both criteria. The interplay between fold changes and the adjusted p-values

is often displayed in a volcano plot which is a scatter plot showing the log10-
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transformed adjusted p-values against the log2-transformed FCs.

(a)

(b)

Figure 1.4: Visualization for a DE
analysis. (a) Volcano plot. The signif-
icantly downregulated miRNAs are
highlighted in green and in yellow the
significantly upregulated miRNAs for
|log2(FC)| ≥ log2(1.5) and α = 0.05.
(b) Scatter plot. The downregulated
miRNAs with a considerable effect are
highlighted in green and in yellow the
upregulated ones with a considerable
effect for |log2(FC)| ≥ log2(1.5) and
|d| ≥ 0.5.

Cohen’s d - While hypothesis tests determine whether an effect

exists (statistical significance), Cohen’s d measures how large

that effect is (practical significance). It is common to report

both a p-value and Cohen’s d to provide a complete picture of

the results. The combination of adjusted p-values and the fold

changes together with Cohen’s d is used to detect promising

feature candidates. The following is based on Cohen [237].

Cohen’s d quantifies the difference between the two attribute

realization means in terms of standard deviations by

d =
a − b

σpooled
where σpooled =

(
(nA − 1)σ2

a + (nB − 1)σ2
b

nA + nB − 2

)
,

a, b denote the means of feature vectors and σ2
a and σ2

b the

variances of a and b, respectively. No effect can be measured,

if |d| = 0, a small but noticeable difference, if |d| = 0.2. If

|d| = 0.5, we call the difference moderate, so likely meaning-

ful and a large effect can be seen for |d| = 0.8 which identifies

a clearly noticeable difference. It is unit-less, making it com-

parable across different studies and datasets. However, it

assumes the two input vectors to be normally distributed

and for large variances or small sample sizes the estimate can be less reliable.

Like for the p-values, the magnitude of d just refers to the size of the effect but

not which attribute realizations exhibit higher expression values.

An example of a volcano plot showing the adjusted p-value (Student’s t-test,

BH) against the fold change for each feature is depicted in Figure 1.4a. In green,

the significantly downregulated miRNAs are highlighted and in yellow the

significantly upregulated ones (for |log2(FC)| ≥ log2(1.5) and α = 0.05). An

example of a scatter plot showing the absolute Cohen’s d against the fold change

for each feature is shown in Figure 1.4b. The downregulated miRNAs with

a considerable effect are highlighted in green and in yellow the upregulated
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one with a considerable effect (for |log2(FC)| ≥ log2(1.5) and d ≥ 0.5). The

lines indicate the chosen thresholds, the comparison is based on two attribute

realizations from the metadata table. The depicted data points were taken from

the planned publication I and can be accessed online at GEO via the accession

number GSE282205 (available at latest at publication).

1.2.2.4 Correlation methods

Understanding relationships between variables in high-dimensional datasets is

crucial in bioinformatics analyses, a task often achieved using correlation methods

[231, 238–246]. They offer an intuitive and quantitative way to assess pairwise rela-

tions together with their direction, which, in turn, can be used to identify patterns,

redundancies and dependencies between variables. They serve as exploratory data

analyses and enable further structured and focused downstream methodologies

like feature selection and dimension reduction. General advantages of correlation

analyses are that they are simple to understand and widely used. Furthermore,

their simple calculations can be easily parallelized and therefore scale well with

larger datasets. Additionally, they can be applied to a wide range of data types

and tasks. In this thesis, we calculate correlations in different scenarios. First, we

consider sample correlations which refer to the pairwise relations between every

two samples. Next, the correlation value between a feature and an attribute from

the metadata table, for example age, to determine if a feature is correlated with

age. Lastly, we calculate the relation between a feature from one dataset to one

from another, in our case this means to consider a miRNA from one dataset and

a mRNA from another where the two datasets share identical samples.

However, there exists general limitations like the bivariate nature of correlations

by presenting only the relation between exactly two variables each. Therefore,

a complex interaction between three or more variables cannot be explained

using bivariate correlation analysis. Since the calculated correlation is symmetric

no statements regarding causality can be derived from the coefficients. Some

methods can be sensitive to certain data characteristics like outliers, non-linearity,

and skewed or non-uniform distributions. To be able to compare correlation

coefficients from different pairs of variables, matching data values for both
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variables are required. Here, we introduce the correlation methods exemplary for

sample correlations.

Figure 1.5: Exemplary
scatter plot with correla-
tion values rj,j′ .

Pearson correlation coefficients - Capturing linear relationships between

variables in high-dimensional datasets is often achieved using Pearson

correlation coefficients. The correlations values range from −1 (a perfect

negative linear relationship) to 1 (a perfect positive linear relationship). A

vanishing correlation coefficient means that there is no linear relationship.

An exemplary, sketched overview of the different correlation values is

depicted in Figure 1.5. For two samples j and j′ the sample correlation

is defined as

rj,j′ =
∑s

i=1(Xi,j − Xj)(Xi,j′ − Xj′)√
∑s

i=1(Xi,j − Xj)2
√

∑s
i=1(Xi,j′ − Xj′)2

where Xj =
1
s ∑s

i=1 Xi,j denotes the mean over all features of sample j and Xj′ for

sample j′ analogously. The correlation coefficient rj,j′ quantifies relationship of

two variables in strength and direction. Still, it does not indicate whether the

observed correlation is statistically significant or could have occurred by chance.

Therefore, a hypothesis testing resulting in a p-value followed by an adjustment

for multiple testing helps to assess statistical significance. The test hypothesis is

given by H0 which states that the correlation coefficient is r = 0, which means no

linear relationship exits. In contrast, H1 claims r , 0, indicating linear relation.

The used test statistic is the t-statistic which we obtain by

t = rj,j′ ·
(

s − 2
1 − r2

j,j′

) 1
2

.

We obtain the p-values from the t-distribution with df = n − 2, introduced in

Section 1.2.2.1. Since we frequently calculate many correlations and p-values

simultaneously, for example n(n−1)
2 in the case of sample correlations, an adjust-

ment for multiple testing of the p-values is mandatory (see Section 1.2.2.2). We

reject H0 if padjusted < α, which indicates a significant linear relationship. While

the Pearson correlation coefficient assumes a linear relationship, it is used to validate
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and quantify this assumption. Note, the method is sensitive to outliers which

can distort the coefficients. Additionally, normally distributed data points are

necessary for meaningful p-values in the significance testing.

Spearman’s rank correlation coefficient - The strength and direction of a monotonic

relationship between two variables can be measured using Spearman’s rank correla-

tion coefficient, which operates based on their ranks. Again, the obtained values

range between −1 (a perfect negative monotonic relationship) and 1 (a perfect

positive monotonic relationship). A value of 0 means that there is no monotonic

relationship. It describes whether variables change simultaneously in a consistent

direction, regardless of the form of the relationship, for example linear or non-

linear trends like exponential or logarithmic behaviors. Consider one variable to

increase exponentially while the second one increases linearly, then their relation-

ship is not linear, but is still identified by Spearman’s rank correlation and not by

Pearson correlation. For two samples j and j′, the sample correlation is achieved

by computing the ranks of the values of each sample across all features, then

applying the Pearson correlation formula to the ranks. To rank the data, we need to

create a mapping table by sorting the values and number them from 1 to s where

s is the number of features. In case of ties we replace these ties by the averaged

ranks for this tie to ensure consistency and robustness. Ranks are now computed

by using the created mapping table to transform the original values. Applying

the Pearson correlation results in the formula given by

ρj,j′ =
∑s

i=1(Ri,j − Rj)(Ri,j′ − Rj′)√
∑s

i=1(Ri,j − Rj)2 ·
√

∑s
i=1(Ri,j′ − Rj′)2

where Ri,j is the rank of feature i for sample j and Rj is the mean rank of all

features for sample j, and it follows analogously for sample j′. Again, to guarantee

statistical significance of the results, we use a hypothesis test to obtain p-values

followed by a mandatory adjustment for multiple testings (see Section 1.2.2.1 and

Section 1.2.2.2). The test hypothesis is given by H0 assuming that the correlation

coefficient is ρ = 0 which means no monotonic relationship. The alternative

hypothesis H1 is given by ρ , 0 indicating that a monotonic relationship exists.
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Scenario Recommended method

Linear relationship expected Pearson corr. coeff.
Non-linear monotonic relationship Spearman’s rank corr. coeff.
Data points are normally distributed Pearson corr. coeff.
Data points are non-normal or ordinal Spearman’s rank corr. coeff.
Outliers are present Spearman’s rank corr. coeff.
Exploring a dataset with unknown relationships Spearman’s rank corr. coeff.

Table 1.1: Decision-making guide for choosing between Pearson correlation coefficient and
Spearman’s rank correlation coefficient.

To obtain the p-value for small sizes of variable (s ≤ 30), we use an exact but

computationally expensive permutation-based method based on the distribution

of the rank correlations coefficients. For larger variables (s > 30), we use an

approximation of the t-distribution. The test statistic is given by

t = ρj,j′ ·
(

s − 2
1 − ρ2

j,j′

) 1
2

.

This formula is the same as the test statistic used in Pearson correlation coefficient,

but it is applied to the Spearman’s rank correlation coefficient instead of the Pearson

correlation coefficient, since both only rely on the distributions of the two variables.

We reject the H0 if padjusted < α, which indicates a significant monotonic rela-

tionship. The method is robust to outliers and non-normal distributions and is

suitable for ordinal datasets where the actual values are not meaningful. Yet, by

considering only the ranks, we lose the actual numerical amount of the relations

and differences and therefore may fail to detect subtle linear trends.

Choosing the appropriate method for a dataset is dependent on the specific

characteristics of the dataset. First, we need to inspect the relations within our

dataset visually by utilizing scatter plots, check the distributions of the investi-

gated variables by normality testing (Shapiro-Wilk-Test), Q-Q plots, histograms

and check for outliers. If the relationships appear linear and the data points

are normally distributed, the Pearson correlation coefficient is suitable. In contrast,

if the relationships appear monotonic or the data points are not normally dis-
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tributed Spearman’s rank correlation coefficient is better suited. The Table 1.1 offers

an overview regarding when to select which method. In doubt, the calculation of

both correlation coefficients to compare and assess their consistency is necessary.

For example a direct comparison of the correlation coefficients can be done. If

both correlations yield the same coefficients (|r − ρ| < 0.1), the relationships

is likely linear and Pearson correlation coefficient is sufficient to capture it. If the

coefficients differ and the Spearman’s rank correlation coefficient is high, it is likely,

that there is a non-linear monotonic relationship, therefore the Spearman’s rank

correlation coefficient is the suitable approach. In contrast, if the Pearson correlation

coefficient is high and the Spearman’s rank correlation coefficient low, there might be

subtle linear trend. Additionally, to consider the accompanying adjusted p-values

together with the coefficients is universally recommended. If one of the correla-

tion coefficients is not significant, the observed correlations are not statistically

significant and may have occurred by chance.

1.2.3 Embedding and variance analysis

In high-dimensional datasets, the relationships between samples or features are of-

ten obscured by the complexity of the data structure. By projecting these datasets

into lower-dimensional spaces using embedding methods, such as Principal Com-

ponent Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP),

we reveal patterns and relationships while simultaneously reducing noise. These

methods are widely used for dimensionality reduction and feature extraction in

bioinformatics [247–263]. Complementing these approaches, Principal Variance

Component Analysis (PVCA) leverages variance decomposition to explain vari-

ability in the dataset with experimental factors and thus sheds light onto the

underlying drivers of the variation.

Principal Component Analysis - Simplifying complex datasets while preserving as

much variation as possible is a key function of PCA, aiding interpretation and

downstream analysis. Graphically speaking, in this representation, each feature is

treated as a dimension in an s-dimensional space, and we rotate, shift and scale

the feature space so that we end up with a new set of orthogonal axes (principal
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components). The first few principal components capture most of the variance in

the data.

The presented approach is adapted from Jolliffe [264]. To formulate the trans-

formation, we first need a few definitions. The mean centering Xcentered is given

by the data point matrix X ∈ Rs×n and the mean vector µ ∈ Rs. It consists of the

mean of each row from X and therefore every feature

Xcentered = X − µ with µ =
1
n

n

∑
j=1

X·j

where X·j denotes the j-th column of the matrix X (all feature values for sample

j). Often an Xscaled is used where additionally each row of Xcentered is divided by

the standard deviation of this row (feature). The s × s sized empirical covariance

matrix S is calculated for the given samples with

S =
1
n

XcenteredX⊤
centered =

1
n

n

∑
j=1

(X·j − µj)(X·j − µj)
⊤.

Note that the covariance matrix of X is defined by S = E(X − E(X))(X − E(X))⊤.

Since S is symmetric and positive semi-definite, because the quadratic form is

based on a squared norm, we obtain the eigen decomposition by solving for the

eigenvalues λi and the corresponding eigenvectors ui of S:

Sui = λiui

with λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0. We assume that S is positive definite, this means

λl > 0, and we define U ∈ Rs×l as the matrix containing the eigenvectors

ui for i = 1, . . . , l, which we call principal component axis. Therefore, the span

span (u1, . . . , ul) forms a basis of the Rl . The projection of the original data points

onto the principal component axis is obtained by

Y = U⊤X
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Figure 1.6: Graphical representation of
a PCA for d = 2 colored by a metadata
attribute. The percentages at the axis
are the proportions of variance of each
respective principal component PCk.

where Y is the transformed data point matrix in the principal

component space. We call the k-th row of Y the k-th principal

component PCk, containing the projections of all samples

onto the k-th principal component axis. The proportion of

the variance given by PCk can be explained by:

ϕ(PCk) =
λk

∑s
i=1 λi

.

To limit the number of principal component axis to the d axis

which contain most of the variance in the data, we calculate

∑d
i=1 λi

∑l
i=1 λi

≥ t (1)

and choose the smallest d ≤ l which fulfills the inequality for a pre-selected t.

Here, t represents the percentage of the original data variance which we want to

capture in the transformed data.

For a typical graphical interpretation of the transformed data points, we choose

d = 2. An example is shown in Figure 1.6, we use the same data points as in

Figure 1.4. We use Xscaled and the percentages at the axis labels indicate the

proportion of variance ϕ for the corresponding principal component. The data

points are colored according to an attribute derived from the metadata table.

Uniform Manifold Approximation and Projection - Preserving both local and global

structures in high-dimensional data, UMAP is a nonlinear dimensionality reduc-

tion technique that excels in visualization and clustering. In comparison, PCA

is solely a linear dimensionality reduction method and retains global relation-

ships but may fail to capture local ones. The following approach is adapted

from McInnes, Healy, Melville [265]. Manifold learning which consider that high-

dimensional data is located on a lower-dimensional manifold which is embedded

within the high-dimensional space is the foundation of UMAP. The topological

structure represented by the graph of nearest neighbors capturing how points

are connected locally and globally serves as a computational approximation of

the manifold’s structure. The embedding matrix Y is the equivalent of the data
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point matrix X in the low-dimensional space. It has the dimensions d × n, where

d (typically 2 or 3) is the number of dimensions in the reduced space, and n

corresponds to the number of samples.

First, we need to construct a weighted graph capturing the geometry of the

manifold based on the given standardized (z-scored) data points X. Therefore,

we calculate the local neighborhood estimation for each column (sample) of X by

identifying its k-nearest neighbors based on the distances between the columns.

To do so, we use the conditional probability pj,j′ , which describes the likelihood of

a sample j being a neighbor of sample j′. Using the distance d(X·,j, X·,j′), typically

the Euclidean or cosine distance, between samples j and j′, we formulate

pj,j′ = exp
(
−

d(X·,j, X·,j′)− ρj

σj

)

where ρj = min
l=1,...,n

d(X·,j, X·,l) denotes the local connectivity adjustment (the dis-

tance to the nearest neighbor of sample j) and σj is a scaling parameter. The latter

is optimized numerically per sample to balance the number of effective neighbors.

The subtraction of ρj ensures that the closest neighbor always has a significant

weight, regardless of the value of σj. The scaling factor σj then controls how

quickly the probabilities vanish for distant neighbors. Driven by the pre-selected

hyperparameter k, σj ensures that only for the k nearest neighbors, so the k sam-

ples with the highest pj,j′ values, pj,j′ > 0 holds. In order to obtain a symmetric

graph we replace the directed by undirected edges and combine pj,j′ and pj′,j via

psym
j,j′ = pj,j′ + pj′,j − pj,j′ · pj′,j. The result is a symmetric, weighted graph called

nearest neighborhood graph with vertices being the samples and undirected edges

between all vertices. The edge weights are given by the psym
j,j′ which capture the

pairwise local relationships between all samples.

Second, we optimize the low-dimensional embedding such that it forms a

flattened representation of the manifold while preserving the local and global

structure of the manifold. Therefore, we need to define a low-dimensional space

by initializing a d × n sized representation of the data point matrix Y by random

values, typically from a small Gaussian distribution. In this low-dimensional
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space, we define the similarity or new edge weight of two samples j and j′ by a

modified form of a Student’s t-distribution:

qj,j′ =
1

1 + a∥Y·,j − Y·,j′∥2b

where a controls the steepness of the similarity qj,j′ for close neighbors and b

determines how probabilities decrease for larger distances. The parameters a and

b are derived numerically based on the pre-selected minimal distance parameter

which serves as a hyperparameter. Both parameters control the embedding’s

structure, and they define how the UMAP embedding balances local and global

structure by shaping the probability curve. The term ∥Y·,j − Y·,j′∥ represents the

distance between the two samples j and j′ given by the Euclidean norm. To

obtain Y, we minimize the loss function which is the difference between the

high-dimensional probabilities psym
j,j′ , originating from the original data, and the

low-dimensional probabilities qj,j′ . Therefore, we write the cross-entropy-based loss

function as

loss = − ∑
j,j′

(
psym

j,j′ · log(qj,j′) + (1 − psym
j,j′ ) · log(1 − qj,j′)

)
.

Figure 1.7: Graphical representation of
a UMAP for d = 2 colored by a cate-
gorical metadata attribute.

The necessary optimization can be realized using a gradient

descent or a related optimization method. During each iter-

ation step, the elements in Y are updated to better reflect the

high-dimensionality relationships captured in psym
j,j′ . Finally,

the resulting matrix Y consists of the new coordinates for

every sample.

An example of a UMAP is given in Figure 1.7, we use

the same data points as in Figure 1.4. The hyperparameters

are a minimal distance of 0.25 and local neighborhood size

k = 10 while using the Euclidean distance as a metric in the

high-dimensional space. These parameters were selected by

visually assessing the results from a pool of linear combi-
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nations of default parameters. The sample points are colored according to an

attribute of the available metadata.

When comparing the results for the PCA and the UMAP applied to the same

dataset depicted in Figure 1.6 and Figure 1.7, respectively, we notice that a linear

reduction via PCA does not achieve a clear distinction between data points

according to the color-coded property.

Principal Variance Component Analysis - Combining PCA and Variance Component

Analysis (VCA), PVCA partitions the total variance across predefined attributes,

allowing for the quantification and comparison of their contributions. In high-

dimensional biological datasets, it is crucial to understand how much of the total

variance is attributable to known experimental or biological factors, for example

treatment, age, tissue or batch effects [112, 266–270]. The PVCA method decom-

poses the variance in high-dimensional datasets quantifies the relative impact of

experimental factors. These insights can then guide downstream analyses.

The approach presented in the following sections is adapted from Li et al. [271].

As a first step, we start with a PCA of the data point matrix X. Using the formula

introduced in Equation 1, we obtain the d principal components which explain a

predefined proportion of the variance (typically 80% − 90%).

We proceed to the VCA which partitions the total variance in the dataset

across given attributes by building a linear mixed-effects model. For the principal

component i, we write

PCi = µi +

(
m′

∑
k=1

Dj,kβi,k

)
+ ε i,j

with µi =
1
n ∑n

j=1 Yi,j. The design matrix D with size n × (m′ + 1) where m′ ≥ m

is based on the metadata table M and therefore possesses the same number of

rows. To construct D, we keep all columns in M containing numbers and columns

containing words are split in as many columns as the column has unique elements

following one-hot encoding. The elements of the newly created columns are binary

and equal to 1 if the sample has the specific attribute realization. For example, a

column corresponding the attribute treatment exhibits two different realizations
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case and control. We replace this attribute column by two columns called Dcase and

Dcontrol and assign 1 in Dcase to the case samples and 0 otherwise. Analogous, we

populate in the column Dcontrol . The variable βi,k is a random effect representing

the contribution of attribute k of the design matrix to the variability in the i-th

principal component and ε i,j denotes the residual error, representing the variance

which cannot be explained by the attributes.

The linear mixed-effects model can be solved by a statistical method typically

the restricted maximum likelihood (REML) where a likelihood function needs

to be maximized. This likelihood function does not depend on the βi,k or the ε i,j

but only on their variances σ2
i,k and σ2

i,ε, respectively, since we assume that their

distributions are given as normal distributions with βk ∼ N (0, σ2
i,k) and ε i,j ∼

N (0, σ2
i,ε). The optimization of the likelihood function is achieved by standard

numerical approaches, among those are Quasi-Newton methods and the EM

Algorithm. For each principal component i, we estimate the variance proportion

vi,k explained by each attribute k by

vi,k =
σ2

i,k(
∑m′

k=1 σ2
i,k

)
+ σ2

i,ε

.

We combine the proportions for one attribute k and each principal component by

calculating

PVk =
∑d

i=1 vi,kλi

∑d
i=1 λi

where λi denotes the eigenvalue corresponding to the principal component i. The

proportion of variance of the residual which captures the variance not covered by

the attributes in the metadata table can be calculated by PVε = 1 − ∑m′
k=1 PVk. To

map the proportion of variance PVk back to the original attributes in M, we sum

up the proportion of variances of all one-hot encoded columns corresponding to

the attribute’s realizations.

In real-world datasets, many effects are often driven by more than one attribute

at the same time. Therefore, it is beneficial to consider the so-called interaction

terms, which pairwise combine all attributes. The variation of proportion within
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the dataset according to interaction terms can also be measured by the PVCA.

Therefore, we need to reformulate the linear mixed-effects model as

PCi = µi +

(
m′

∑
k=1

Dj,kβi,k

)
+

(
m′

∑
k=1

∑
l>k

Dj,kDj,l βi,k,l

)
+ ε i,j.

Solving using the aforementioned approach, yields the variances σ2
i,k, σ2

i,k,l and

σ2
i,ε, which we use to calculate the variance proportions vi,k,l by

vi,k,l =
σ2

i,k,l(
∑m′

k=1 σ2
i,k

)
+
(

∑m′
k=1 ∑l>k σ2

i,k,l

)
+ σ2

i,ε

.

This proportion represents the relative contribution of the interaction between the

attributes k and l with respect to the total variance in the i-th principal component.

The proportion of variance for the two attributes k and l are given by

PVk,l =
∑d

i=1 vi,k,lλi

∑d
i=1 λi

.

Like before, we calculate the proportion of variance of the residual using PVk and

PVk,l . All proportions of variance PVk, PVk,l and PVε are often visualized in a bar

plot or pie chart.

Figure 1.8: Graphical representation of
a PVCA result including interaction
terms.

An example of a PVCA result using the data points pre-

viously, introduced in Figure 1.4, is displayed in Figure 1.8,

whereas vanishing proportions are omitted for clarity. In this

example, we transformed the given data point matrix X in a

pre-processing step with Xlog = log10(X + ϵ) whereas ϵ is a

small positive constant added to avoid log(0). This transform

is used to stabilize the variances, to compress the dynamic

range of the expression value and to improve the distribu-

tion to approximate a normal distribution within the miRNA

dataset [215, 216]. As a threshold to calculate the d principal components, we

chose t = 0.9.



1.2 mathematical foundations , methods and techniques 55

1.2.4 Clustering methods

Clustering is a fundamental technique for exploring the structure in datasets of

high-dimension and is widely applied [272–284]. Each cluster groups samples,

features, or other entities based on their similarity, such that members within

a cluster are more similar to each other than to members of other clusters,

with similarity typically quantified using a distance metric. Depending on the

methodology, clustering can produce either hard assignments (assigning each

sample to exactly one cluster) or soft assignments (allowing partial membership

across multiple clusters). The choice of the number of clusters c is a crucial

parameter that directly influences the quality and interpretability of the clustering.

Hierarchical clustering - Grouping data points into a hierarchy based on their

pairwise distances is achieved through the method of hierarchical clustering. It is

particularly useful for exploring the underlying structure in high-dimensional

data, such as gene or miRNA expression profiles or sample features where

it identifies co-expressed features or related samples. The method’s ability to

visualize clusters in a dendrogram facilitates biological interpretation. In contrast

to other clustering methods, initially specifying the number of clusters is not

required. The presented method is based on Backhaus et al. [207] and Müllner

[285].

Let us assume we aim to cluster the columns (samples) of the data point matrix

X ∈ Rs×n. A row-wise clustering can be achieved by clustering the transpose of

X. We start by computing the pairwise distance matrix D with Dj,j′ = d(X·,j, X·,j′).

Typically, the Euclidean distance is used for the distance function d and thus

d(X·,j, X·,j′) =
√

∑s
i=1(Xi,j, Xi,j′)2. The main procedure in hierarchical clustering is

the approach of agglomerative clustering where we start with each point, here

column or sample, in a separate cluster. We then iteratively merge the two closest

clusters according to the smallest distance value d until all clusters are merged.

Hence, after merging two clusters, we need to find a strategy to calculate the

distance between this new cluster and all remaining clusters. In the following, we

present several strategies, called linkage criterions, to determine these distances:
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Single Linkage - The distance between two clusters A and B is defined as the

minimum pairwise distance between their elements:

dsingle(A, B) = min
j∈A,j′∈B

d(X·,j, X·,j′).

Thus, we consider all possible combinations of two points, where one originates

from each cluster, calculate their distance and use the minimum as the distance

between the two clusters. This strategy produces elongated clusters as it prioritizes

small pair-wise distances between points within the clusters. Additionally, this

strategy tends to be sensitive to noise and outliers.

Complete Linkage - The distance between two clusters A and B is defined as the

maximum pairwise distance between their elements:

dcomplete(A, B) = max
j∈A,j′∈B

d(X·,j, X·,j′).

This ensures compact clusters by minimizing the maximum intra-cluster distance,

but it is sensitive to outliers due to its reliance on maximum distances.

Average Linkage - The distance between two clusters A and B is the average of all

pairwise distances between their elements:

daverage(A, B) =
1

|A| · |B| ∑
j∈A

∑
j′∈B

d(X·,j, X·,j′)

where |A| denotes the number of elements in A and |B| in B. This strategy

circumvents the sensitivity to outliers compared to the single and complete

linkage criteria.

Centroid Linkage - The distance between two clusters A and B is the Euclidean

distance between their centroids (means):

dcentroid(A, B) = ∥µA − µB∥2, where Rs ∋ µA =
1
|A| ∑

j∈A
X·,j

and µB ∈ Rs follows analogously. Computationally efficient, as it reduces the

number of calculations. Instead of pairwise distance computations, we only

compute the distance between the cluster centroids which makes this strategy
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computationally more efficient. Yet, once a cluster is updated, its cluster centroid

also needs to be updated.

Ward’s Linkage - The distance between two clusters A and B is described by the

increase in total within-cluster variance when the two clusters are merged into

A ∪ B:

dWard(A, B) = ∆E = E(A ∪ B)− (E(A) + E(B)) .

Figure 1.9: Graphical rep-
resentation of the exam-
ple dataset as heatmap.
The dendrogram shows
the result of a hierarchical
clustering on the columns
using complete linkage.

Here, E(A) = ∑j∈A∥X·,j − µA∥2
2 denotes the within-cluster variance of

cluster A where µA again is the centroid and E(B) is the within-cluster

variance of cluster B. This strategy tends to produce compact and spher-

ical clusters, making it favorable for many datasets. Yet, the additional

variance computations require additional computational effort.

The hierarchical clustering process is visualized in a dendrogram, where

each leaf represents a sample or feature. The branches represent the

sequence of cluster merges and the distance between a branch and the

leaf corresponds to the distance values of the merged clusters. A cutoff of

the dendrogram at a specific position yields a specific number of clusters

together with their corresponding elements.

An example of a dendrogram calculated by a hierarchical clustering by the

columns using complete linkage is depicted in Figure 1.9. In this example, the data

point matrix X was manually designed and the values are either 6, 0 or −6.

C-means algorithm - Partitioning the dataset into c non-overlapping, compact

clusters is the goal of the C-means algorithm. This means that every data point

is assigned to exact one cluster which is called hard clustering. The algorithm

is a popular and efficient clustering method, widely used in bioinformatics for

grouping genes or samples based on their similarity.

We present the algorithm based on Backhaus et al. [207] and focus on a

clustering of the columns (samples). The algorithm needs to be provided with the
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number of clusters c as a hyperparameter. We aim to minimize the within-cluster

sum of squares J which serves as the objective function:

Z =
c

∑
l=1

∑
j∈Cl

∥X·,j − µl∥2
2

where Cl is the set of samples in cluster l and Rs ∋ µl =
1

|Cl | ∑j∈Cl
X·,j. We thereby

find a centroid for each cluster l such that the sum of the distances between

the centroid and the elements of that cluster gets small. The minimization itself

starts with a random initialization of c many centroids µ
(I)
1 , µ

(I)
2 , . . . , µ

(I)
c ∈ Rs

with I = 0. Two steps form the iteration. In the first one, we assign each sample j

to the nearest centroid l if

∥X·,j − µ
(I)
l ∥2

2 ≤ ∥X·,j − µ
(I)
l′ ∥2

2 for all l′ = 1, . . . , c.

Next, we update the cluster centroids with respect to their newly assigned samples

µ
(I+1)
l =

1
|Cl | ∑

j∈Cl

X·,j.

The iteration stops if we either reached a pre-selected number of iterations or if

the centroids no longer change significantly.

In practice, the algorithm typically performs well for compact and spherical

clusters, is simple and computational efficient. Yet, it is sensitive to the initial-

ization values of the centroids and may converge to a local minimum. Since

underlying distance measure is the Euclidean distances, the C-means algorithm

can be suboptimal for non-spherical clusters, where points are not distributed

symmetrically around the centroid.

A visualization of one iteration step of the algorithm for 16 manually created

example data points and two features is depicted in Figure 1.10. On the left, the

centroids within an iteration step are marked as circles, whereas the data points

are denoted as gray squares. In the second image, we colored every data point

according to the cluster centroid to which it is the closest. Note, the division lines

only serve as a guideline in this example. In the third image, the centroid positions
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Figure 1.10: A visualization of one iteration step of the C-means algorithm for 16 samples
and two features. Adjusted from Backhaus et al. [207].

are updated with respect to the cluster members. Again, we determine the nearest

centroid for each data point and color them accordingly. As a result of this

iteration step, one data point, marked with a thicker borderline, is transitioned

from the red cluster to the green one.

Fuzzy C-means algorithm - Allowing each sample to correspond to multiple clusters

with different degrees of membership is the key feature of the Fuzzy C-means algo-

rithm. This is called soft clustering in contrast to the traditional C-means algorithm,

which performs a hard clustering where each sample belongs to exactly one

cluster. This property is especially useful when the dataset lacks hard boundaries

between clusters, such as in gene or miRNA expression analysis, where samples

might share characteristics across groups. Similar to the C-means algorithm, the

number of clusters c has to specified before the algorithm starts.

We introduce the algorithm according to Wierzchoń, Kłopotek [286] and again

consider a clustering of the columns (samples). Here, we aim to minimize an

objective function given by

Z =
c

∑
l=1

n

∑
j=1

ut
l,j∥X·,j − µl∥2

2

where µl ∈ Rs is the centroid of cluster l and t > 1 corresponds to the fuzziness

parameter which controls the degree of fuzziness, typically set to t = 2 which

yields a good balance between crispness and fuzziness of the clusters. For small

values close to 1, for example t = 1.1, the clustering behaves like a hard clustering
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(ul,j ≈ 1 for the closest and ul,j ≈ 0 for all others), which is suitable for well-

defined and distinct clusters. For a larger value t > 2 the membership values get

more diffuse, allowing points to belong to multiple clusters, which is suitable

if the clusters should overlap or be ambiguous. But too high values for t can

lead to too fuzzy results which are hard to explain and to interpret. The variable

ul,j ∈ [0, 1] denotes the degree of membership of sample j to cluster l. The matrix

U ∈ Rc×n is given by the ui,j and is called membership matrix. We start with

setting ∑c
l=1 u(I)

l,j = 1 for all samples j to obtain the membership matrix U(I) for

iteration step I = 0. Next, we update (or initialize in case of I = 0) the centroids

by computing

µ
(I+1)
l =

∑n
j=1 ut

l,jX·,j

∑n
j=1 ut

l,j
.

The numerator of the fraction contains a weighted sum of all samples with the

membership degrees of cluster l and the corresponding sample. The denominator

consists of the sum of the membership degrees of cluster l. Note that both the

terms ul,j occurs to the power of t. We finish the iteration step by updating the

membership degrees ul,j using

u(I+1)
l,j =

1

∑c
l′=1

(
∥X·,j−µ

(I+1)
l ∥2

∥X·,j−µ
(I+1)
l′ ∥2

) 2
t−1

.

This ensures that ul,j decreases if the sample j is farther away from the centroid

of cluster l and that ∑c
l=1 ul,j = 1 holds for all samples. The iteration stops if a

predefined iteration limit is reached, or the changes of U and of the centroids are

below a predefined threshold, whereas the latter is more common. Finally, the

membership degree ul,j can also be seen as a percentage how likely the sample j

belongs to cluster l.

Similar to the C-means algorithm, fuzzy C-means variant is sensitive to initializa-

tion of the matrix U. Yet, it demands a greater computational effort caused by the

additional updates for U.

In this work, we used the fuzzy C-means algorithm to analyze the time series

of miRNA expression across tissues and ages. Therefore, we created time series
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defined by all the combination of features (miRNA) and attribute realizations of

the attribute tissue. Each time series consisted of different time points, representing

miRNA expression at multiple ages from young to old. We applied the algorithm

to cluster these time series according to their trajectory.

After obtaining the initial fuzzy clustering results, we post-processed them by

first transforming the soft clustering into a hard clustering by assigning each

miRNA-tissue combination to the cluster with the highest membership degree.

This step served to remove ambiguity and overlap, ensuring that each combination

contributed to only one cluster. Second, we removed miRNA-tissue combinations

with a low membership degree to focus on confidently clustered time series. This

step reduced noise and ensured that only well-clustered time series were included

to avoid potential misinterpretations caused by uncertain assignments.

These post-processing steps were crucial for the subsequent analysis, where we

focused on clusters with a high share of specific tissues or miRNA and clusters

that showed distinct temporal trends (increasing or decreasing trajectories). This

approach allowed us to concentrate on biologically meaningful and distinct

clusters and improved the interpretability and robustness of our findings.

Determining the cluster number c is crucial in both C-means and fuzzy C-

means algorithms, as it significantly influences the clustering results and their

biological interpretability. Selecting the optimal c is a balance between algorithmic

criteria and domain-specific relevance. We introduce common strategies based on

Wierzchoń, Kłopotek [286] and Pal, Bezdek [287] which guide the choice of c to

balance computational efficiency and meaningful partitioning of the data.

Elbow Method - This method evaluates the within-cluster sum of squares Zc for

multiple cluster sizes c:

Zc =
c

∑
l=1

n

∑
j=1

ut
l,j∥X·,j − µl∥2

2.

The values for Zc decrease with increasing c. Plotting Zc against c identifies an

optimal number of clusters c′ at the so-called elbow point where the decrease

sharply slows, which indicates that the variance can be explained with c′ clusters.
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Mean Centroid Distances - Instead of within-cluster variance, we used a custom

approach in this thesis to select the number of clusters by analyzing the mean

distances between centroids MCD given by

MCDc =
1
(c

2)

c

∑
l=1

c

∑
l′=l+1

∥µl − µl′∥2

This metric emphasizes the separation between clusters, ensuring that clusters

are not only compact but also distinct. We selected the c′ at the "elbow point" of

the plot between MCD and the corresponding c, where increasing the number of

clusters yields a decrease in centroid separation.

Silhouette Analysis - This method measures how well samples fit within their

assigned clusters compared to other clusters. Therefore, we calculate the silhouette

score by

S(j) =
b(j)− a(j)

max(a(j), b(j))
.

It ranges from −1 (poor clustering) to 1 (perfect clustering) for every sample j.

Here

a(j) =
1

|A| − 1 ∑
j′∈A,j′,j

∥X·,j − X·,j′∥2

denotes the mean intra-cluster distance for sample j to every other sample j′ in

the same cluster A. The variable b(j) = min
B,A

1
|B| ∑j′∈B∥X·,j − X·,j′∥2 is the mean

nearest-cluster distance for sample j ∈ A to every other sample j′ ∈ B where

B , A, while B is the nearest cluster. We determine the nearest cluster by the

smallest mean distance d(B, X·,j), whereas the distance is defined by the average

distance between the sample j and every sample j′ ∈ B. The number of clusters

with the highest average silhouette score across all samples is preferred.

Fuzzy Clustering Validity Indices - For soft clustering methods like the fuzzy C-means

algorithm, we consider the partition coefficient Pcompact which measures the cluster

compactness with

Pcompact =
1
n

c

∑
l=1

n

∑
j=1

u2
l,j.
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Higher values indicate better clustering but tend to decrease as the number of

clusters increases. Additionally, we introduce the partition entropy Pentropy which

indicates the fuzziness of the clustering by

Pentropy = − 1
n

c

∑
l=1

n

∑
j=1

ul,j · log(ul,j).

Here, lower values suggest more distinct clusters.

Biological or Domain-Specific Considerations - If known functional groups, temporal

patterns, or tissue types exist, they can guide the selection of c′.

1.3 development of a computational framework

This section explores practices for the development, application and accessibility

of a computational framework designed to bridge theoretical methods with prac-

tical research applications. This framework integrates the mathematical principles

and techniques from Section 1.2 into a cohesive pipeline, enabling reproducible

analyses of large-scale datasets. Beyond implementation, this section puts our

framework in the context of existing analysis platforms.

1.3.1 Implementation

The downstream analysis part of typical research studies considered here typ-

ically starts with an expression matrix or count table. Then, consecutively or

simultaneously applying the methods introduced in Section 1.2 aims to answer

pre-defined research questions, reveal patterns in large, multi-faceted datasets or

identify angles for further, in-depth investigations.

We primarily implement the process from data point matrix X to results which

are provided as matrices and visualizations using the programming languages R

and Python. Both scripting languages have established themselves in the field of

bioinformatics and data-science in general [288]. On the one hand, this can be

attributed to their ease of use and comparably smooth learning curves. Compared

to languages like C and its derivates, Python, for example, does not require the

user to carefully consider typing or perform manual memory management. While
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this comes at the cost of reduced computational efficiency, it may drastically

increase the accessibility and understandability of the resulting code. The lack

of computational speed on the other hand can be tackled by interfacing with

highly-optimized internal and external libraries [289–291].

Many of the analysis approaches and algorithms presented in Section 1.2 are

available to the community in the form of packages, for example UMAP [265],

PVCA [271, 292] and fuzzy c-means clustering [293, 294]. The packages, in turn,

are provided via so-called repositories like Bioconductor [295] or Bioconda [296].

From this standpoint, we can consider the downstream analysis as a collection of

self-written and external software which is tied together using custom routines.

Considering that a typical analysis combines tens to hundreds of tools, a lack

of structured organization among them severely hinders the reproducibility

of studies and results. For example, uncertain software versions may prohibit

performing the same analysis at a later point in time and changing the execution

order may lead to different results. In particular, an ambiguous order of filtering

steps can lead to the identification of different features. In the last years, the

reproducibility of scientific results shifted into focus following a study by Baker

[297], reporting that more than half of the researchers failed to reproduce at least

one result of their peers.

1.3.2 Reproducible pipelines

To successfully recreate an analysis or computational method, we need to fulfill at

least three criteria. First, the input data has to be available. This can be approached

by providing the dataset to the public via repositories such as the NCBI Gene

Expression Omnibus (GEO) [298, 299]. Second, the utilized functionalities and tools

have to be precisely specified and available. Software environment management

using Conda or containerization and virtualization techniques using Docker and

Singularity create reproducible and shareable collections of tools with specified

versions [300, 301].

Finally, the flow of execution of the analysis needs to be defined. Therefore,

we consider the collection of routines to execute in the form of a directed acyclic

graph. This graph is constructed from the inputs, outputs and function of each
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execution step and is then executed via so-called workflow managers. In this

thesis, we only utilize Snakemake, while Nextflow and Galaxy are also common

in the community [302–304]. Besides being a comprehensive description of the

execution order, the directed acyclic graph additionally enables to efficiently

schedule single tasks in parallel if they do not interfere. In this way, scaling the

workflow to fully utilize all computational resources is simplified. Additionally,

workflow managers separate the functionality from the data, by defining both,

the workflow itself and the environment in which it is executed using software

environment managers.

1.3.3 Accessibility through web-based tools

While workflow pipelines themselves allow sharing computational methods

with the research community, using them requires programming knowledge

and the necessary computational resources to execute the pipeline. Web-based

tools or services provide a solution for this twofold dilemma. On the one hand,

scientist without expert programming knowledge are able to perform complex

analyses using only a web browser while focussing on their respective research

objective. The developers on the other hand retain control over the computational

environment.

The web services which are developed in the context of this thesis follow a

common design principle based on the Django web framework. In brief, the web

application is split into frontend and backend. The frontend provides the users

with a graphical interface which they use to upload data, fine-tune the desired

computation via variables and observe the results. We implemented the interac-

tions with the user in the form of so-called wizards which consist of a sequence of

interfaces that simultaneously guide the user and provide immediate feedback

regarding user choices. For example, settings for the computational method can

be pre-selected or even prohibited based on previous user inputs or uploaded

data. The backend receives the user input, performs cleaning and validation and

starts a computational pipeline via a workflow manager. After the computation

terminated successfully, the results are then provided to the user and visualized

via the frontend. Using the pipelines to perform the actual bioinformatic func-
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tionality simultaneously ensures a well-defined environment and allows easily

re-using the functionality outside the web service for expert users and developers.

In our applications, the frontend does not require any user-side computational

workload besides validating file extensions. Yet, performing certain computations

at the user-facing end of the web service can proof beneficial. For example, Hirsch

et al. [305] demonstrated that calculating hashes of microbiome read files on

the user machine makes uploading the full read files unnecessary and thereby

reduced the uploaded data volume by more than two orders of magnitude, saving

both time and resources. Additionally, user-side computations can be required in

patient-related areas of research where uploading sensitive data to the backend is

not desirable.
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Figure 1.11: Visits (dots in yellow on
the left side) and page views (bars in
green on the right side) tracked with
our tracking tool since Feb 10, 2020.
On the top we provide the number of
web services which are tracked in the
respective year.

Web-based tools and databases serve as an important

part of the bioinformatics research landscape [306–319]. No-

tably, various tools stay relevant throughout several years

or decades [320–324] while steadily receiving updates [325–

329]. Their importance and abundance can be assessed by

considering the annual special-issue regarding web servers

of Nuclear Acids Research [330]. The year 2024 marks the 22nd

edition of this format where 248 proposals for tools led to 73

publications, one of them contributing to this thesis [5]. Apart

from the momentary exposure at the time of publication, the

long-term accessibility of these tools has been investigated

to formulate best practices [331, 332]. Figure 1.11 visualizes the number of web

services which are provided by our own research group accompanied by the

number of visits and page views per year. At the moment, we track 26 of our

web services and in sum, we recorded more than 300 000 visits between 2020 and

2024. Overall, we offer 38 web services, some of them only for internal use of

collaborators.

1.3.4 Related bioinformatics applications

In the last decade, various tools have emerged which investigate areas of miRNA

research [333, 334]. A major effort has been conducted to predict targets of miR-
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NAs [335, 336]. Some of these tools, for example TargetScan or DIANA-microT are

accessible as web services [320, 337, 338]. Discovering novel miRNAs or detecting

isomiRs is the major focus of another range of established tools [339–341]. Even-

tually, platforms like tools4miRs and sRNAtoolbox encapsulate a workflow starting

from sequencing data files, perform the mapping and alignment, then provide

downstream analysis tools and finally present the user with visualizations of their

results [342, 343]. In the first case, tools4miRs interfaces with several external plat-

forms such as CPSS and mirTools, while sRNAtoolbox relies on its own framework

sRNAde [344, 345]. Notably, in both cases the downstream methodology is limited

to a DE analysis and the associated hypothesis tests. While the DE analysis is a

fundamental building block to analyze expression datasets, supplementary ap-

proaches, for example embedding, variance and cluster analysis, provide valuable

insights into behavior-driving experimental factors and conditions. To this end,

our proposed framework encompasses a wide range of data-driven methods to

reveal relevant features and patterns in large, complex datasets up to single-cell

resolution.





2
G O A L S O F T H E P H D T H E S I S

This thesis introduces a versatile computational framework designed for the

exploration of complex microRNA (miRNA) datasets. It encompasses data-driven

methods, including differential expression analysis, dimensionality reduction,

and clustering to simultaneously address multi-faceted and time-resolved study

setups. Within the publications that form this thesis, the framework is adapted to

applied as well as fundamental research and contributes to web-based tools which sim-

plify the use of intricate analytical methods. Each publication is briefly presented

in this chapter accompanied by the core findings of the study. An overview of

the distinct publications is presented in Figure 2.1. The projects are shown in two

ways: on the right by arranging them on a timeline that indicates their publication

dates and on the left by categorizing them according to their respective research

focus. Additionally, the applied research projects are further organized according

to the granularity and the time span of the respective study.

Figure 2.1: The graphical abstract shows the publications presented in this thesis. Pub-
lications where the author of this thesis contributed as first authorship are highlighted
with a thick black border. Created in BioRender.com.

https://BioRender.com
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Starting in the realm of applied research, the flexibility of this framework is

demonstrated through three distinct publications that investigate various ap-

plications of miRNA functionality. In the first study, small non-coding RNAs

(sncRNAs) in two mouse plasma fractions were analyzed, where nonnegative

matrix factorization enabled age-based clustering of samples [1]. The second

study, a case-control experiment focusing on non-thermal plasma treatment, iden-

tified miRNAs associated with wound healing and tissue regeneration through

differential expression analysis [2]. The third study applied a clustering method to

a time-series dataset from stem cell differentiation, revealing upward trajectories

in the expression of genes linked to cell-type differentiation [3].

Despite the valuable insights gained into post-transcriptional gene regulation,

these studies were unable to capture the cellular heterogeneity inherent in com-

plex tissues. To increase the granularity of analyzing miRNA heterogeneity to

a cell-specific level, high-resolution methodologies are essential for uncovering

more intricate patterns. Recent progress in single-cell ribonucleic acid (RNA)-

sequencing supported by sophisticated bioinformatics tools has enabled the

development of innovative analyses. Adapting these high-resolution approaches

to study miRNA regulation is an emerging area of fundamental research. This

thesis highlights the utility of such an approach in a pilot study that optimizes

library preparation protocols and provides detailed quality control metrics along-

side feature-normalized count tables [4]. Additionally, the development of a

web-based tool integrating this bioinformatics pipeline with the presented com-

putational framework allows for downstream analyses [5]. Besides its capabilities

regarding the analytical methods, the defining characteristic of this tool is the

unification of the process from raw sequencing dataset to the graphical repre-

sentation of results in a unified user workflow. As the first platform of its kind,

this tool offers researchers around the globe an accessible way for processing

and analyzing single-cell miRNA sequencing datasets, thereby accelerating the

development of sequencing protocols. Further exploring the usability aspect in

combination with aspects of fundamental research, a second web-based tool was

developed to visually indicate miRNA binding sides in the secondary structure

of the 3’untranslated region (UTR) of a gene [6]. Additionally, a method was
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developed to describe the coverage of such a binding site to investigate if the

binding of a miRNA can be inhibited by the folding of the secondary structure of

the messenger-RNA (mRNA).

As an alternative to cell-type-resolved studies, extensive tissue-resolved datasets

can be employed to increase the granularity of exploring miRNA expression. In

this thesis, an organ-specific expression dataset comprising 771 bulk samples

from 16 organs across 10 time points, was analyzed [7]. Using the computa-

tional framework uncovered both organ-specific and global miRNA behaviors.

By examining expression patterns over the mouse lifespan, dynamic changes

influenced by aging were identified. A follow-up investigation further increased

the granularity from an organ-specific to a tissue-specific level by focussing on

the mouse brain, an organ notable for its high structural and functional diversity

(Planned I). Consisting of 844 bulk samples from 15 regions from male and female

mice across seven time points spread over the whole life span, this study estab-

lished a time-, sex- and brain region-resolved atlas of miRNA expression patterns.

Given the extent of the dataset, using the full range of methods in the developed

computational framework was crucial to designate miRNAs for an in-depth anal-

ysis. Besides uncovering brain region-specific and global aging signatures, the

granularity identified miR-155-5p as a promising therapeutic target.

Finally, a tissue-resolved, single-cell study for mRNA (Planned II) and a com-

plementary bulk miRNA investigation (Planned III) were combined to form a

comprehensive dataset studying the systemic effects of microgravity. This unique

study design included housing mice aboard the International Space Station for 40

days, offering exceptional experimental insights. The single-cell dataset consists

of 216 samples from 28 mouse organs and tissues which results in 280, 745 cells.

This part of the study indicated a down-regulation of ribosomal protein genes.

The miRNA dataset is composed of 686 samples from 13 mouse organs and

tissues. Benefiting from the granularity of the study, tissue specific influences of

space flight could be identified in GAT, Spleen and SCAT.

Apart from the primary set of publications discussed before, two more applica-

tion studies concerning miRNAs [346, 347] and two additional web services [305,

348] were published in the course of this thesis.





3
R E S U LT S

This cumulative thesis is based on 7 peer-reviewed publications whose published

versions are included in full in this chapter.
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ABSTRACT
Previous work on murine models and humans demonstrated global as well as tissue-specific molecular 
ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal 
transfer of genetic information between different tissues. We sequenced small regulatory RNAs 
(sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2–18 months: (1) 
sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). 
Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA 
fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited 
inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was 
exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. 
Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 
27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation 
that we validated in a third cohort by RT-qPCR.
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Introduction

Understanding and controlling the molecular hallmarks of 
age-related processes in higher organisms promises to greatly 
improve the quality of life [1]. For humans, ageing is fre
quently studied using easily accessible biospecimens such as 
blood, serum, or urine. Consequently, the scientific commu
nity generated models for a broad spectrum of molecular 
physiological and pathophysiological processes from different 
molecular types. For example, studies rely on long-lived indi
viduals [2], serum proteomic profiling [3], small RNA pat
terns in blood cells [4,5], or the exploration of epigenetic 
control of ageing clocks [6]. Likewise, deeper profiles, such 
as gene expression fingerprints, are available for different 
tissues [7]. Murine models facilitate the analysis of such 
processes thanks to their restricted influence of genetic back
ground and varying lifestyles compared to humans. In mouse 
models, the aged immune system drives senescence and 

ageing of solid organs [8]. Further, organism-wide RNA- 
sequencing data of major organs and cell types across the 
mouse lifespan provide an important resource to study ageing 
[9,10]. The available data suggest complex ageing patterns, 
including both linear and non-linear effects that are either 
specific for organs or follow global organism-wide trajectories. 
Ageing and parabiosis-mediated rejuvenation suggest an 
almost universal loss of gene expression with age that is 
largely mimicked by heterochronic parabiosis: aged blood 
reduces global gene expression, and young blood restores it 
in select cell types [11]. In the same direction, Sahu and co- 
workers demonstrated that a beneficial effect of young blood 
on aged muscle regeneration was diminished when serum was 
depleted of extracellular vesicles (EVs), indicating the impor
tant role of EVs in ageing and rejuvenation [12]. In addition 
to blood, also young CSF has a beneficial effect by restoring 
oligodendrogenesis and memory in aged mice [13].
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These observations indicate a systemic and orchestrated 
exchange of information and molecules between organs. For 
example, extracellular vesicles (EVs) are membrane vesicles 
mediating the horizontal transfer of genetic information 
between different cell types. Specifically, EVs are postulated 
to play an important role [14,15] in, e.g. hypothalamic stem 
cells seem to control ageing through EV miRNAs [16]. 
Recently, targeted intervention of EV-mediated transfer of 
miRNAs from osteoclasts to chondrocytes was described as 
a promising method to slow or even inhibit osteoarthritis in 
mice [17]. Furthermore, several studies have addressed the 
relationship of EVs with ageing in a systematic manner [18– 
21]. Complementary studies have investigated the change in 
EV-bound noncoding RNAs depending on (treatment) inter
ventions such as caloric restriction [22]. However, these are 
limited in their analysis scope by considering only one small 
RNA class at a time, often even to a subset of well- 
characterized representatives. Moreover, an inherent restric
tion is the limited sample volume, frequently leading to pool
ing of biosamples and blurring of fine-grained signals.

These and other issues complicate the analysis of EVs and 
their molecular cargos. Especially in the context of EVs in 
cancer, common pitfalls in purification have been summar
ized by Schekman and co-workers [23], with the correct 
nomenclature of EVs, purification and other aspects eluci
dated in great detail. Considering these inconsistencies, we 
use the term ‘extracellular vesicles’ (EVs) throughout the 
manuscript as recommended by the International Society for 
EVs. EV means the full fraction of vesicles up to 400 nm in 
diameter irrespective of their origin and biogenesis.

The main aim of our study was to provide a data resource 
of small non-coding RNAs included in EV cargo and freely 
circulating in plasma (fc-RNAs) in mice of different ages and 
to identify differences between the molecular information in 
these fractions associated with ageing that might advance our 
understanding of the systemic ageing process. Therefore, 
plasma fc-RNA and EV-RNA of individual mice were 
sequenced for noncoding RNA profiling and contrasted by 
computational approaches. To demonstrate the use of this 
resource, we conducted pathway and comparative analyses 
using original Tabula Muris senis (TMS) data [9,10] and 
performed sequencing of small RNAs from TMS as an inde
pendent cohort. Finally, we validated the core findings by RT- 
qPCR in a third cohort of aged mice (Figure 1a).

Results

Noncoding RNAs are modulated specifically upon ageing 
in EV- and fc-RNA samples

To uncover age-related dynamic processes and to model the 
information exchange involved, we sequenced both non- 
coding fc-RNAs and non-coding EV-RNAs from individual 
mice. The molecular profiles are available at five time points 
across the average lifespan between two and 18 months in two 
to four replicates per age group and biospecimen type 
(Supplementary Table S1). For the fc- and EV-RNA samples, 
we sequenced an average of 38 million reads per sample and 
mapped them to ten different noncoding RNA classes. Our 

analysis covered a total of 80,688 different noncoding RNAs, 
with piRNAs, circRNAs, lincRNAs and miRNAs being the 
classes with the highest number of different features 
(Figure 1b). The first aspect of the analysis encompassed the 
distribution of molecules from the different RNA classes. 
While tRNA fragments were highly represented both in EV- 
and fc-fractions, piRNAs showed sharply lower levels in both 
specimen types (Figure 1c). However, varying amounts of 
circRNAs and rRNAs were predominantly observed in the 
EV- and fc-fractions. Notably, this analysis has 
a quantitative and RNA class-centric view but does not yet 
consider whether the representatives within the classes match 
across sample types. For example, only a small number of 
piRNAs were present in both the EV and fc fractions, even 
though the general abundance was high. Considering the 
sample type overlap for each class, the most significant dif
ference was indeed observed between fc- and EV-bound 
piRNAs (Figure 1d). Similarly, we report large differences in 
the content of RNA molecules from snRNAs, snoRNAs, and 
scaRNAs. In contrast, detected tRNA fragments, lincRNAs, 
rRNAs and circRNAs are often shared between the two frac
tions. In summary, our data argue for type-specific expression 
patterns that differ significantly between noncoding RNA 
classes both in a quantitative and qualitative manner.

We thus asked whether unique ageing trajectories within 
and between noncoding RNA classes exist, either enclosed 
into/bound to EVs or freely circulating in plasma. One indi
cator is the proportion of variance in the RNA counts that can 
be explained by available sample covariates, i.e. either by age 
of the mice, the specimen type and donor mice identity, or 
linear combinations of such. Depending on the RNA class we 
observe varying results with respect to the separation in the 
fc- and EV-fraction in a 2-dimensional UMAP embedding, 
with a clear segregation in the scaRNAs (Supplementary 
Figure S1). Compared to the other RNA classes, tRNA frag
ments and miRNAs however showed the highest fraction of 
variance explained by age (Figure 1e). In comparison, the 
lowest variation with respect to age was observed for 
scaRNAs and rRNAs. Importantly, the individuality factor of 
each donor mouse used for this study was comparably small 
and independent of the RNA class. To uncover a potential 
relationship between each RNA class and mouse age, we used 
the expression at month 2 as baseline and modelled whether it 
increases or decreases over time for EV-RNA and fc-RNA 
separately but observed similar dynamics of change.

The largest age-related differences appear for rRNAs, 
where the overall amount increases for free circulating mole
cules with ageing but the EV loading of rRNAs decreases. This 
notable difference in the specimen types also explains the high 
proportion of variance attributed to the sample type annota
tion (Supplementary Figure S2). Our data further indicate 
a strong ageing signal in EV-and fc fractions, with varying 
strengths, again depending on the RNA class (Figure 1f). As 
our previous analyses emphasized the role of tRNA fragments, 
we investigated the expression profiles in an unbiased manner 
and performed a classification into three age groups (young, 2  
months; middle aged, 6–8 months; old, 12–18 months). We 
modelled this classification task as an optimization problem 
through nonnegative matrix factorization, computing
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Figure 1. Distribution of sequencing reads into their mapped noncoding RNA classes and their relation to ageing across the mouse lifespan. (a) Study setup. We 
profiled EV- and fc fraction vesicle and plasma samples from mice in five age groups, sequenced 80,668 noncoding RNAs from 10 classes (1), sequenced fat tissue 
specimens from TMS as an independent cohort (2) and validated the key findings using RT-Qpcr in another independent cohort (3). (b) Overall distribution of 
molecules to the 10 noncoding RNA classes under investigation. (c) Fraction of representatives per RNA class (y-axis) exceeding the expression threshold (x-axis; 
normalized counts). The RNA class is presented as solid line in the foreground. Dashed with lines indicate the fc fraction and solid lines the EV fraction. (d) Overlap of 
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probabilities for each sample to belong to each of the three 
groups. We then assigned each sample to the age group with 
the highest probability. For both fc- and EVs, we computed 
varying prediction accuracies, once more with the best results 
obtained for tRNA fragments with a remarkable accuracy of 
86% (Figure 1g).

Taken together, our analyses suggest that non-coding 
RNAs exhibit specific age trajectories, both qualitatively and 
quantitatively. Moreover, the data pinpointed substantial dif
ferences in the case of fc-RNAs and EV-RNAs, where the 
highest correlation with age was observed for tRNA frag
ments. This poses the question of whether loading of EVs 
follows biologically relevant environmental mechanisms. To 
potentially discover such patterns, we next performed a fine- 
granular and molecule-centric analysis.

Ageing patterns deviate within specific RNA classes

Of the 80,668 unique noncoding RNA molecules in Mus 
musculus included in our analysis, 23052 (28.6%) were 
stably present in the EV- and fc-fractions (Supplementary 
Table S2). We then computed the linear Pearson correla
tion as well as the nonlinear distance correlation for each of 
the investigated RNAs. While making conclusions on the 
correlations of single RNA features can be challenging in 
terms of type-I errors, comparing the different RNA classes 
and the fc- and EV-fractions globally can support an 
understanding of linear and non-linear ageing effects. We 
thus computed an estimate for each RNA whether it was 
linearly correlated with age, nonlinearly correlated with age, 
or not correlated with age at all for EV-and fc-fractions 
separately. Because of the large number of non-coding RNA 
features included in the study we are potentially facing an 
overplotting issue and thus computed a density estimation 
for the two correlation schemes. For both sample types, fc- 
(Figure 2a) and EV- (Figure 2b), the linear component was 
dominant, and only a few exceptions with nonlinear trajec
tories occurred. Those are characterized by a distance of at 
least 0.15 from a spline with eight degrees of freedom. The 
amplitude and frequency of nonlinear RNAs were both 
slightly enriched in EVs. Interestingly, we also observed 
a pattern towards a slightly negative correlation in EVs as 
compared to a positive correlation (average of 0.106) in the 
fc fraction. To test whether the average of 0.106 is the 
result of a random effect we performed permutation tests. 
Here, we reached an average correlation of −0.0003, mark
ing a statistically significant difference (p < 10−16). Of note, 
most of the correlation values observed in our study are not 
significant. Generally, linear correlation coefficients above 
0.5 and −0.5 in our study roughly corresponded to p-values 
with nominal significance at an alpha level of 0.05 
(Supplementary Table S2).

Having observed noncoding RNAs that are either positively 
and negatively correlated with age in EV and fc fractions further 
called for exploring whether the up- and downregulated candi
dates show similar compositions in the two specimen types. In 
total, 27% and 22% increased and decreased with age in the EV 
fraction and fc fraction, respectively, slightly differing from 
what would be expected by a random distribution. However, 
39% of the 23,052 expressed noncoding RNAs were negatively 
correlated with age in EVs but positively correlated in the fc 
fraction while only 12% presented the opposite behaviour, i.e. 
were negatively correlated with age in the fc- fraction and 
positively correlated with age in the EV-fraction (Figure 2c, 
Supplementary Table S2). To seek common patterns for the 
increasing and decreasing expression of non-coding RNAs, we 
clustered the expression in EV-and fc-fractions separately and 
extracted RNA clusters from the dendrogram. For each cluster, 
we then computed the average linear and nonlinear correlation 
with ageing and finally calculated the overlap of the sample 
types. Our analysis confirmed a strong decrease in the correla
tion with age in the EV fraction compared to the fc fraction 
(Figure 2d). The EV clusters are enriched in the lower left 
corner, indicating a significant trend towards a negative correla
tion with age in EVs. Furthermore, the data reveal an age- 
related loss in linear correlation compared to non-linear corre
lation. To validate the origin of these signals, we inspected all 
concordant and discordant noncoding RNAs and provide spe
cific examples for markers clearly increasing and decreasing 
with age in both EV and fc fractions (miR-466i-5p, Figure 2e 
and Gm16701, Figure 2f, respectively), decreasing with age in the 
EV fraction but increasing in the fc fraction (Gm20756, 
Figure 2g), and finally increasing with age in the EV fraction 
but decreasing in the fc fraction (miR-690, Figure 2h). We 
further examined whether the patterns hold for all 10 noncod
ing RNA classes or if they are rather class specific. Here, the 
specificity of patterns for the different non-coding RNA classes 
was astonishing. For example, 94% of tRNA fragments 
increased with age in both the EV and fc fractions. 
Additionally, 54% of rRNAs decreased with age in the fc frac
tion but increased with age if EV-bound. Conversely, 42% of 
circRNAs increased with age in the fc fraction but decreased 
with age if EV-bound (in- or outside). Additionally, other RNA 
classes revealed distribution patterns significantly deviating 
from the 25% per group as expected by chance. Finally, 82% 
of miRNAs increased with age in the EV fraction (Figure 2i).

The miR-29 family controls ageing-related processes in 
fat tissues

In light of the regulatory role of miRNAs typically repressing 
gene expression [24] and further knowing that mRNA levels 
tend to decrease with age, we chose this particular class of 
noncoding RNAs to reveal further potential of our data

expressed RNAs in EVs and in the fc fraction as area proportional Venn diagrams. (e) Percent of total data variance attributed to different parameters, such as age 
(month), individual mice or specimen type (source). Columns are sorted according to decreasing fraction of variance attributed to age. (f) Relative expression of the 
different RNA classes per time point and sample type compared to the baseline (2 months). Green indicates higher expression, and purple indicates lower expression. 
The upper row per RNA class shows the fc fraction, and the lower row shows the EV fraction. (g) Prediction of age by nonnegative matrix factorization. The colour 
code represents the probability (trust) in the prediction, the x-axis represents the true age group, and the y-axis represents the predictions.
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Figure 2. Correlation of noncoding RNAs with ageing in fc- and EV fractions. (a) for each noncoding RNA, the x-axis represents the Pearson correlation, and the y-axis 
represents the distance correlation with age in the fc fraction. The colour gradient in the background represents the density of non-coding RNA representatives with 
respective linear and non-linear correlation. The red line is a smoothed spline. The coloured dots (green, negatively; red, positively) are correlated with age in 
a predominantly nonlinear manner, i.e. those points are with a distance of at least 0.15 away from the spline. (b) the same information as in panel (a) but for EVs. (c) 
Scatter plot showing the Pearson correlation in EVs (x-axis) in relation to the Pearson correlation in the fc fraction (y-axis). Orange numbers represent the percentage 
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resource. We first asked whether the miRNAs increasing or 
decreasing with age in EV- and fc-fractions exhibit distinct 
functions in a pathway-specific manner. For each gene ontol
ogy category [25], we computed an enrichment score for the 
miRNAs in EVs and in the fc fraction. In more detail, we used 
the list of miRNAs sorted by their correlation with age to 
perform cut-off-free miRNA set enrichment analysis using 
miEAA [26,27] for all miRNAs instead of selecting only 
a subset of miRNAs. The gene ontology categories were 
extracted from the miEAA tool using annotations from the 
miRTarBase (Supplementary Table S3). A direct comparison 
provided strong evidence supporting the notion that miRNAs 
correlating with age in EVs are significantly enriched in 
biochemical categories compared to those in the fc fraction 
of plasma (Figure 3a). This finding argues further towards our 
initial hypothesis that EVs may specifically be loaded with 
noncoding RNAs that exert biological processes in remote 
sensing cells. To understand the nature of these processes, 
we compared the 16 categories that are at least three orders of 
magnitude more significant in EVs compared to the fc frac
tion to the two being at least three orders of magnitude more 
significant in the fc fraction compared to EVs. In the former, 
the strongest enrichment was found for protein heterodimer
ization activity, neural crest cell migration, negative regulation 
of inflammatory response, receptor internalization, positive 
regulation of neuroblast proliferation, the mitochondrial 
envelope, the positive regulation of DNA-templated transcrip
tion and the TORC2 complex. All categories were significant 
at an alpha level of 0.05 following Benjamini-Hochberg FDR 
adjustment in the EV fraction and none of the categories 
remained significant after adjustment for multiple testing in 
the fc fraction. As an example, we present the enrichment 
plots for the protein heterodimerization activity for both 
fractions (Figure 3b). Here, the original running sum curve 
for the EV fraction clearly exceeds the random background 
distribution while for the fc fraction random distributions 
reach the original one. The categories with higher significance 
in the fc fraction included cellular response to BMP stimulus 
(p = 6×10−5 vs. 0.11) and negative regulation of myotube 
differentiation (p = 6×10−7). Here, both categories were sig
nificant following adjustment for multiple testing for the fc 
fraction, in the EV fraction the negative regulation of myo
tube differentiation remained significant following adjustment 
for multiple testing. This case indeed indicates that pathways 
can be significant in both, the fc and EV fraction. Especially 
one category was highly significant in both: ‘response to 
hypoxia’ reached a p-value of 4.3 × 10−5 in the fc fraction 
and of 9.4 × 10−6 in the EV fraction (Figure 3c, 
Supplementary Table S3). Distinct pathways specifically 

enriched in the EV fraction open the question of potential 
effects on gene regulation in different tissues.

The core hypothesis of our work stipulates specific loading 
of EVs, notably considering both possibilities, in- and outside- 
bound, with non-coding RNAs, first and foremost miRNAs, 
enabling the control of specific cellular functions and gene 
regulation in remote cells. To identify tissues most likely 
affected by the EV- and fc-RNA cargo, we next combined 
the miRNA data generated in this study with our previously 
established bulk- and single-cell murine tissue-ageing atlas, 
TMS [9,10]. In these studies, we reported both linear and 
nonlinear ageing trajectories in gene expression signals. Like 
the findings on noncoding RNAs observed here, the asso
ciated genes cluster with coherent biological functions, includ
ing extracellular matrix regulation, unfolded protein binding, 
mitochondrial function, and inflammatory and immune 
responses. The expression patterns are consistent across tis
sues, differing only in the amplitude and age of onset. In 
particular, fat tissues showed early ageing signals of biochem
ical pathways similar to those observed in the miRNA path
way analysis described above. It was previously shown that 
miRNAs target genes in a pathway-specific manner [28–30]. 
Thus, for miRNAs associated with age in the EV- or fc-RNA 
in the current work, we extracted the experimentally validated 
target genes from miRTarBase [31] and evaluated the correla
tion of these target genes with age in all tissues from TMS. 
Remarkably, the analysis was limited to miRNA-gene pairs 
with strong evidence of functional interactions, such as from 
reporter assays. In this context, the expected pattern is 
a negative correlation of target genes with age, where 
miRNAs show a positive correlation with age and vice versa. 
In particular, mesenteric fat, gonadal fat, the brain, white 
blood cells and brown fat fulfill this expectation (Figure 3d). 
This result is also in line with recent parabiose-mediated 
rejuvenation experiments, suggesting a loss of gene expression 
with age that is largely mimicked by rejuvenation. Likewise, 
the observed tissue-independent ageing patterns matched our 
previous results. While fat tissues generally showed the best 
concordance, other tissues, such as the lung or pancreas, did 
not. The target gene correlation for mesenteric and gonadal 
fat verified the increased correlation with age for miRNAs 
decreasing with age and vice versa (Figure 3e and 3f). This 
effect was more pronounced for gonadal fat in EV-miRNAs. 
Translating the miRNAs and genes to a target gene network 
identified eight core genes: Notch1, Bace1, Hdac4, Igf1, Eln, 
Cav2, Insig1, and Scap (Figure 3g, Supplementary Table S4), 
possibly reflecting physiological relevance for both signalling 
networks and epigenetic processes. All but Notch1 are experi
mentally validated target genes of specific members of the

of points in each of the four quarters. The data suggest a shift to a negative correlation with age in EVs. Numbers are rounded to integers. (d) Noncoding RNAs in the 
fc- and EV fractions were clustered, and the resulting clusters were attributed to the average linear and nonlinear correlation. Solid lines represent a match of 
noncoding RNAs; the thicker the line is, the more noncoding RNAs match between an fc and EV clusters. The diameter of the points represents the cluster size. Most 
EV clusters accumulate in the lower left corner. (e-h) Examples of noncoding RNAs that increase or decrease with age. The x-axis represents the age, and the y-axis 
represents the expression of the selected noncoding RNA (orange, EV fraction; blue, fc). Colored boxes span the first to the third quartile, with the line inside the box 
representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below or above the first or 
third quartile if outliers are present. (i) Confusion matrix scatter plots (see also panel (c)) split by the RNA classes.
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Figure 3. Pathway results and miRNA-target regulation networks. (a) miRNA pathway enrichment for age-related miRnas in the fc fraction (x-axis) and EVs (y-axis). 
Each dot is one pathway, and the size represents the number of miRnas associated with the pathway. The red dashed line is the bisector, and the green lines indicate 
two orders of magnitude higher significance in the fc fraction and in EVs. The pathways with at least a three orders of magnitude difference are listed on the right. 
(b) Enrichment plots for the category protein heterodimerization activity in the EV and fc fraction. The solid blue line denotes the enrichment for the miRnas sorted 
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miR-29 family (miR-29a, -b or -c), pointing at an inherent 
regulatory role of this miRNA family in fat tissue. Among the 
gene nodes, Nanog could be distinguished by a positive cor
relation with age. This gene is targeted by mmu-miR-296-5p, 
which is negatively correlated with age.

Of note, the correlation presented in this analysis was 
indirect. The fc-RNA and EV-RNA fractions were 
sequenced from another cohort of mice and compared 
to the gene expression profiles in tissues. To test whether 
increased levels of these miRNAs have also been detected 
in gonadal fat tissue of aged mice, we used small RNA 
sequencing data from gonadal fat tissues from TMS [32]. 
Specifically, we examined identical tissue specimens that 
were used for sequencing the RNA expression atlas. For 
the microRNAs from the network (Figure 3h), we 
observed in most cases a mixed pattern of up- and down
regulation of the targets for those miRNAs. Nevertheless, 
members of the miR-29 family (namely, miR-29b-3p and 
miR-29a-3p) showed downregulation across all target 
genes in gonadal fat.

Due to a limited cohort size and potential challenges in 
using high-throughput screening based on NGS, we per
formed a further validation experiment. To this end, we 
investigated a third independent cohort of mice and ana
lysed the relative expression of miR-29 family members 
along with other dysregulated miRNAs from the network 
(miR-455-5p, miR-139-5p, miR-146-5p, miR-1-3p, miR- 
34a-5p, and miR-706) in the EV-RNA of four young and 
two old mice using real-time quantitative PCR (RT-qPCR). 
The RT-qPCR results for the miR-29 family support the 
sequencing data and provide evidence for an increased 
abundance of miR-29a/b/c-3p in EV-RNA of old mice 
(Figure 3i). Additionally, in the gonadal fat samples of the 
same mice, a – however less pronounced – upregulation 
was confirmed upon ageing. miR-146-5p showed a similar 
trend and also miR-1-3p was slightly increased in the EV- 
fraction and GAT tissue. In contrast, miR-455-5p was 
down-regulated in the EV fraction and in GAT tissue. For 
miR-139-5p no dysregulation was observed and for miR- 
34a-5p and miR-706 the dysregulation in the EV-fraction 
and GAT tissue did not match. The strongest effects overall 
occurred in the miR-29 family.

In summary, the data presented here provide a valuable 
resource that can be used as a starting point to study the 
biology of circulating noncoding RNAs in the context of 
ageing in general. Especially in combination with published 

tissue-specific gene expression atlases, these data enable the 
community to formulate novel hypotheses on distant cell- 
cell communication and affected tissues during ageing, 
which serves as a basis for functional studies in the future. 
At the same time, our analysis suggests a major role of fat 
in ageing processes, with EV-bound miRNAs of the miR-29 
family performing important regulatory events.

Discussion

While our study presents intriguing new insights into the correla
tion of EV-and fc fractions and the molecular loading of EVs with 
noncoding RNAs in the context of ageing, it is important to 
mention the limitations and how they could be addressed. First, 
the purification of EVs is challenging and has many pitfalls [23]. 
Generally, the more purification steps that are applied, the less 
material is left, eventually requiring a pooling of samples. We 
decided to achieve the maximal possible purity while still leaving 
sufficient material for high-throughput sequencing of small 
RNAs, avoiding any pooling. As stated by Schekman et al. [23], 
healthy scepticism concerning the possible connection between 
EV-miRNAs and control of gene expression in target cells should 
remain until functional cell culture and animal studies are con
ducted with EVs purified by rigorous and quantitatively docu
mented procedures, allowing depletion of lipoproteins and other 
non-EV contaminants and quantification and characterization of 
pure EVs. Similar concerns hold for the RNA molecules detected 
in the EV pellets, which may include RNAs that are inside the 
EVs, outside the EVs, or pelleted together with EVs within larger 
complexes. While NTA and cryo-EM do not replace purification, 
they verify the presence of vesicles in the samples used 
(Supplementary Figure S3). A second limitation comes down to 
the molecular measurement and annotation of the molecules. 
Having reached a high sequencing depth from low input volumes, 
the data were mapped to the standard reference databases. 
Whether read molecules, e.g. mapping to piRNAs represent func
tional piRNAs and not fragments or reads mapping to miRNAs 
annotated in miRBase represent functional miRNAs, is only par
tially known, calling for further functional validation experiments. 
Another challenge is the normalization of data, which in our case 
relies on global normalization. Nevertheless, differences between 
the fc-RNA and EV-RNA fractions as well as an additional tar
geted validation by RT-qPCR support the general high- 
throughput results. Nevertheless, we acknowledge that different 
normalization approaches can impact the results of respective 
studies relying on microarrays or sequencing. Additionally, we

with respect to the correlation with age. The coloured lines in the background denote the enrichment plots for random distributions. The more the blue line exceeds 
the background distribution the more significant the pathway is enriched. The horizontal dashed orange line represents a running sum of 2,000 to make the two 
curves better comparable to each other. (c) Same information as in panel (b) for the response to hypoxia. Here, both, the Ev and fc fraction exceed the random 
distributions significantly. (d) for miRnas that are positively and negatively correlated with age in either the fc fraction or EVs, the average correlation with age of 
target genes from Tabula muris senis across 17 tissues is shown. As expected, miRnas decreasing with age showed target genes increasing with age and vice versa. 
(e, f) for two fat tissues, the target gene correlation with age is detailed for the four groups shown as rows in (b). Gray boxes span the first to the third quartile, with 
the line inside the box representing the median value. The whiskers show the minimum and maximum values or values up to 1.5 times the interquartile range below 
or above the first or third quartile if outliers are present (shown as separate, black outlined dots). (g) Target network. Large green dots depict miRnas, small pink dots 
represent genes, and lines delineate experimentally validated regulatory events between miRnas and genes. The colour shading represents the correlation with age, 
and the hub genes targeted by at least three miRnas are annotated in red. Relative font sizes represent the number of miRnas targeting the respective gene. (h) for 
the core miRnas from panel (g), the direct correlation of miRnas to all target genes in fat tissues of the TMS cohort is shown. Distributions are sorted with respect to 
an increasing average correlation such that the most consistent downregulation of target genes is observed for miRnas at the top. (i) RT-Qpcr results. The log2 fold- 
change based on the RT-Qpcr is presented for EV and GAT tissue. The miR-29 family members present a consistent up-regulation in both fractions.
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want to highlight that we considered here only the non-coding 
RNA fraction from vesicles. But exosomes, known as crucial 
systemic signalling mediators, carry also mRNA as well as pro
teins. Especially when secreted by cancer cells the composition of 
exosomes varies depending on the disease, and these components 
can have an impact on the development and maintenance of the 
tumour microenvironment [33–35]. Applying multi-omics stu
dies to ageing-associated vesicles is now crucial to get 
a comprehensive model on the action of the miRNAs reported 
herein and due to the complex EV micro-ecosystem.

In performing the study, we paid attention to limit con
founding factors wherever possible. Because an influence of 
the sex on organ specific RNA signatures is known [9,10], we 
decided to only measure female mice in this study. Of note, 
the pathways comprising these sex DEGs in the previous RNA 
based studies largely differ from those describing ageing 
DEGs. We thus do not have evidence that sex differences 
influence the transcriptional ageing profiles from those stu
dies. Nonetheless, the amount and cargo of EVs seems to be 
affected significantly by the sex overall [36–40]. In future 
targeted preclinical studies, the role of mouse sex on vesicle 
cargo type and amount should be further explored.

The primary aim of our study was to develop a resource for 
free circulating (fc-RNA) and extracellular vesicle-associated 
small RNAs (EV-RNA) in ageing. While we observe broad 
differences between RNA classes upon ageing, pathway and 
network analysis highlights a limited set of miRNAs with age- 
related regulatory activity. Missing miRNA target interactions 
(MTIs) in the regulatory core network (Figure 3e) await 
validation in future studies. Our results however do not only 
pinpoint a multifaceted ageing-factor depending on the RNA 
class but also on the organ. Strikingly, the results of EV- 
bound miRNAs suggest a major role of fat tissue in the 
process of ageing. The miR-29 family seems to play an essen
tial role as a regulator of a tentative core ageing network and 
has been described in the context of ageing [41,42]. There is 
an increasing body of evidence associating fat tissue or pro
cesses therein with ageing in health and disease [43]. Age- 
related inhibition of adipogenesis and adipose tissue senes
cence leads to a decline in body fat in elderly individuals and 
is implicated in the development of metabolic diseases [44]. 
One hallmark of ageing is the so-called ‘inflammageing’, 
which describes a low-level chronic inflammation caused by 
cells taking on a senescence-associated secretory phenotype 
(SASP) and secreting proinflammatory molecules [45]. 
A recent single-cell sequencing study suggests the emergence 
of ‘ageing-dependent regulatory cells’ in fat tissue of mice 
with higher age that secrete, for example, the proinflamma
tory Ccl6 as a major contributor to adipose cell senescence 
[46]. For some of the genes in the computed core networks, 
there is already evidence of a contribution to ageing or age- 
related diseases. The growth factor IGF1, for example, is 
a major player regulating ageing on a cellular and organism- 
wide level [47]. The histone deacetylase HDAC4 has been 
shown to be polyubiquitylated and degraded during all types 
of senescence [48]; however, it seems to be overexpressed in 
ageing muscle [49]. Similarly, deregulation was shown for 
CAV2 [50] and other genes reported in this study. The asso
ciation of EV-RNAs is a likely contributor to these ageing 

processes and is already known from cancer research. For 
example, miR-29a enclosed in tumour-derived exosomes has 
even been shown to directly bind to intracellular toll-like 
receptors in immune cells, generating a prometastatic inflam
matory response [51]. Moreover, overexpression of miR-29a 
has been shown to repress adipogenesis in humans and mice 
due to repression of the glucocorticoid receptor as its target 
gene [52]. Our data, first and foremost the pathway enrich
ment analysis, provides evidence that miRNAs are not ran
domly associate with vesicles. It is hard to distinguish whether 
those miRNAs have synergistic or antagonistic effects. For 
both mechanisms examples have been published [53–55]. Of 
note, miRNAs with different (seed) sequences that nonethe
less regulate similar gene sets or pathways exist, pinpointing 
synergistic or antagonistic effects [56]. Considering the set of 
pathways identified in our study we assume that the miRNAs 
in exosomes are synergistically targeting pathways but par
tially also exhibit antagonistic effects. Here, a systems biology 
analysis together with targeted validation experiments is 
required.

Together with the data presented herein, it is plausible to 
postulate that the miR-29 family might be one of the media
tors for the inhibition of adipogenesis and the induction of 
a proinflammatory environment in ageing fat tissue. One 
interesting open task for future studies is to determine the 
cells of origin of the EVs loaded with miR-29 and clarify the 
regulatory functions of the miRNA in adipocytes. This finding 
adds to the knowledge on the importance of extracellular 
vesicles and the immune system interplay in ageing and 
immune diseases [57], together forming the complex cellular 
ecosystem.

Methods

Animals

We initially conducted the EV-RNA and fc-RNA isolation work
flow on 18 female C57BL/6N mice, 14 of which resulted in 
a sufficient amount of biological material. Overall, we thus gen
erated non-coding RNA-sequencing samples from mice at the age 
of 2 months (n=3; body weight (bw): 19–20g), 6 months (n=4; bw: 
25–29g), 8 months (n=3; bw: 23–26g), 12 months (n=2; bw: 31g) 
and 18 months (n=2; bw: 34 & 41g). The age range was selected 
based on our previous results on age-related tissue-specific 
changes in gene expression that were already evident in mice 
18months old (Tabula muris senis [9,10]. Leftover gonadal fat 
tissue samples from the TMS study were obtained as a second 
cohort for RNA sequencing. To assess the size distribution of 
vesicles and perform EM, an independent cohort of female 
C57BL/6N mice was used with an age of 2 (n=4; bw: 19–20g) 
and 18 months (n=4; bw: 29–41g). For validation experiments 
using RT-qPCR, a third independent cohort of female C57BL/6N 
mice was used (2 months: n=4, bw: 19–21g; 18 months: n=2, bw: 
27–32g). The animals – excluding the existing specimens from 
TMS – were housed in groups on wood chips as bedding in the 
conventional animal facility of the Institute for Clinical & 
Experimental Surgery (Saarland University, Homburg/Saar, 
Germany). They had free access to tap water and standard pellet 
food (Altromin, Lage, Germany) and were maintained under
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a controlled 12-h day/night cycle. This animal study was approved 
by the local State Office for Health and Consumer Protection and 
conducted in accordance with Directive 2010/63/EU and the NIH 
Guidelines for the Care and Use of Laboratory Animals (NIH 
Publication #85–23 Rev. 1985).

Blood sampling

The mice were anesthetized by an intraperitoneal injection of 
ketamine (100 mg/kg bw; Ursotamin®; Serumwerke Bernburg, 
Bernburg, Germany) and xylazine (12 mg/kg bw; Rompun®; 
Bayer, Leverkusen, Germany). Subsequently, they were fixed 
on a heating pad in the supine position. After midline lapar
otomy, a maximal volume of blood (~700–1000 µL) was taken 
from the vena cava and transferred into plasma tubes 
(Sarstedt, Nümbrecht, Germany). The blood samples were 
then centrifuged at 20°C and 10.000 × g for 5 min to remove 
platelets, large vesicles, and cell debris; the resulting platelet- 
free plasma was stored at −80°C until further use. After blood 
collection, gonadal fat tissue of the mice in the third cohort 
was collected and snap-frozen.

Isolation of EVs

Two hundred microlitres of mouse plasma was transferred to 
a 1 mL open-top thickwall polypropylene ultracentrifugation 
tube (Beckman-Coulter, USA) and diluted with 800 µL of 
phosphate-buffered saline to prevent the tube from collapsing 
in the ultracentrifuge vacuum. Samples were centrifuged for 2  
h at 4°C at 100,000 × g using Type 50.4 Ti fixed-angle rotor 
(Beckmann-Coulter, USA). Supernatants were carefully 
removed, and the EV-containing pellets were resuspended in 
20 µL of phosphate-buffered saline. Samples were stored at 
−80°C until further analyses. The samples were characterized 
according to the MISEV2018 criteria [58], and NTA and EM 
were performed. Limitation of material (700 µl blood/animal/ 
sample that resulted in approximately 250 µl plasma/sample) 
prevented application of other analytical approaches.

RNA extraction

EV-enriched pellets further referred to as EV fractions and EV- 
depleted plasma referred to as the free circulating (fc) fraction 
were used for RNA isolation. All samples (blood from one 
animal corresponding to one sample) were treated separately, 
and no samples were pooled. EV- and fc- total RNAs were 
isolated semi-automated using the miRNeasy Micro kit 
(Qiagen, Hilden, Germany) and Qiacube isolation robot accord
ing to the manufacturer’s recommendations with the addition of 
2 µL RNase-free glycogen (20 mg/mL, Invitrogen, Carlsbad, CA, 
USA) to facilitate RNA precipitation. For each sample, at least 
two replicated sequencing results were available (12- and 18- 
month replicates, all other time points in triplicate). Total RNA 
of gonadal fat tissue was isolated using a miRNeasy Mini kit and 
Tissue Lyser LT according to the manufacturer´s protocol. The 
RNA concentrations of the EV- and fc-fractions were measured 
using a Qubit™ microRNA Assay Kit, and fat tissue was mea
sured using a Nanodrop (Thermo Fisher Scientific, Waltham, 
MA, USA).

High-throughput RNA sequencing

Isolated EV-RNA and fc-RNA samples were analysed by Agilent 
small RNA chips, and 2 ng each (EV-RNA and fc RNA) was used 
for Illumina-compatible library preparation using the D-Plex 
Small RNA Kit (Diagenode, BE). The kits employ 3´-poly 
A tailing and template switch-based cDNA generation using 
unique molecular identifier (UMI)-tagged template switch oligos. 
After PCR amplification involving 13 cycles, libraries were purified 
from TBE-PAGEs. Illumina sequencing was carried out on 
a HiSeq2500 platform using the High Output mode for 96 cycles. 
Isolated RNA from gonadal fat tissue was sequenced using the 
MGISeq system with the standard MPS protocol as described 
previously [59].

Nanoparticle-tracking analysis

Each EV preparation and each EV-depleted sample were tested 
using NTA to estimate the number of particles in a sample. For 
that, 1 µl of plasma was diluted in 1199 µL, and 1 µL of the 
resuspended EV pellets was diluted in 999 µL of phosphate- 
buffered saline to achieve a final concentration between 20 and 
120 particles/frame. Samples were then measured on NanoSight 
(Malvern, UK) at a camera level of 15. For each sample, three 
captures of 30 s were acquired. Videos were then analysed at 
a detection threshold of 5 using NTA 3.4 software.

Cryo-transmission electron microscopy

Three microlitres of each EV sample was transferred to a holey 
carbon film-coated copper grid (Plano S147–4), blotted for 2 s, 
and plunged into undercooled liquid ethane at −165°C (Gatan 
Cryoplunge3). The grid was then transferred to a cryo-TEM 
sample holder (Gatan model 914) under liquid nitrogen. Low- 
dose bright-field images were acquired at −170°C using a JEOL 
JEM-2100 LaB6 Transmission Electron Microscope and a Gatan 
Orius SC1000 CCD camera.

RT-Qpcr

Quantitative real-time PCR of EV-RNA and gonadal fat 
tissue RNA was used to validate age-related expression 
differences of selected miRNAs. Reverse transcription was 
performed using the miRCURY LNA RT Kit (Qiagen, 
Hilden, Germany) with 100 ng fat tissue RNA and EV- 
RNA equivalent to EVs from 20 µl plasma as input. qPCR 
was performed using the miRCURY LNA SYBR Green PCR 
Kit with miRCURY LNA miRNA PCR Assays specific for 
selected miRNAs in a 10 µl reaction volume. Uniform iso
lation and RT efficiency were checked using the manufac
turer’s recommended spike-in controls (Uni-Sp2, 4, 5 
and 6). Expression differences were calculated using the 
ΔΔCt method with miR-191a and let-7a (in conjunction) 
as endogenous controls [60].

Computational data analysis

The sample primary processing was performed with 
miRMaster [61] using standard parameters. The miRNAs 
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were mapped using Bowtie (version 1.2.3) and allowing up
to 1 mismatch. As reference databases we used miRbase (ver
sion 22.1); Ensembl ncRNA (version 100), RNACentral 
piRNA (version 15), GtRNAdb (version 18.1), NCBI RefSeq 
(bacteria & viruses; version 74) and NONCODE (version 5). 
As output, miRMaster generated a list with the expression of 
80,668 RNAs from 10 RNA classes. The data were normalized 
to expression in one million reads and further processed with 
R (R 4.0.4 GUI 1.74 Catalina build (7936)). For quality control 
aspects, we compared the correlation of replicated samples to 
the correlation obtained for samples that were not replicated. 
In the first case, we reached an average correlation of 0.93 for 
the replicates and 0.80 between samples that were not repli
cates of each other (p < 10−10). Venn diagrams were generated 
using the eulerr package from R. Mapping the fraction of 
variance to different parameters was performed using the 
principal variance component analysis (pvca) package. 
Splines were computed using the smooth.spline function with 
seven degrees of freedom. Colour palettes were generated 
using the RColorBrewer package. Smoothed scatter plots 
were computed using the smoothScatter function setting the 
point number to 500. Clustering was performed for the most 
highly expressed noncoding RNAs (at least 5 reads per million 
in at least one sample) using the scaled expression matrix 
(z-score of each feature). The clustering was performed with 
the hclust function using the Euclidean distance measure. 
Clusters were extracted by cutting the dendrograms at 1/1.25 
of the maximal height. Heatmaps of target genes were com
puted using the heatmap.2 function. Network visualization 
was performed using iGraph. As input for the network ana
lysis, targets from miRTarBase [31] were used; however, they 
were restricted to strong evidence targets (i.e. experimentally 
validated). To compute the statistical concordance of RNAs 
correlated with ageing across sample types, a random back
ground distribution with respect to positive and negative 
correlation was assumed. Briefly, a random distribution 
would mean that close to 25% of non-coding RNAs is con
sistently positively regulated in plasma and EVs, 25% is con
sistently negatively correlated with age and 25% in each are 
positively correlated in the one and negatively correlated in 
the other specimen type. Where applicable, p-values were 
corrected for multiple testing using the Benjamini Hochberg 
method with an alpha-level set to 5%.

Pathway analysis

For the pathway analysis we used miEAA 2.0. Precisely we 
performed a miRNA set enrichment analysis of the mature 
RNAs. To this end, we sorted the correlation value of the 
EV- and fc-fraction separately with the age and uploaded 
both sorted lists to miEAA. As organism we selected mus 
musculus and choose the gene ontology categories derived 
over the miRTarBase. We then selected a p-value threshold 
of 1 to force miEAA reporting of all nominal p-values, 
facilitating a direct comparison between the pathway results 
of the fc- and EV-fraction. We adjusted the p-values using 
the Benjamini-Hochberg method. As graphical output we 
present the enrichment plots. These plots describe the 
enrichment statistics for the input list as solid blue line. 

In the background, the same distributions computed for 
random lists (corresponding to the result of non- 
parametric permutation tests) are shown.

Matrix factorization

We predicted the age of samples with respect to three age 
groups: ‘young’ (2 months), ‘middle’ (6–8 months) and ‘old’ 
(12–18 months). To this end, the expression patterns were 
split into 20 individual matrices for each of the 10 noncoding 
RNA classes and for plasma and EVs. We first normalized the 
given nonnegative Matrix D by dividing all elements by the 
maximum value in D.To obtain the probabilistic regarding the 
age groups, we decomposed the matrix D into two further 
matrices T and P, where P gives us the desired probabilities. 
Tstands for the matrix of the typical age group vectors, i.e. in 
each entry of a column, there is a value representing all entries 
at this position of all samples belonging to this age group. The 
matrix P contains the probabilities of each sample to each age 
group respective to their typical vector in T. We formulated 
the non-negative matrix factorization as the optimization 
problem:

The first two constraints require all entries of the matrices T 
and P to lie between 0 and 1. Since we were interested in the 
percentage of a sample belonging to the three age groups, we 
also required all columns of the matrix P to sum up to 1 using 
a numerical solver [62].

We then classified each sample by choosing the index with 
the highest entry of each column in P and assigned the index 
as a label to each one. However, the rows of P were invariant 
to permutations. Here, this means that it is not clear which 
label corresponds to which age group. Furthermore, 
a measure of quality for the results was needed. Using the 
known age, we could construct a ground truth for each 
sample and calculated the classification accuracy for every 
permutation. The ground truth used was ‘young’ correspond
ing to two-month-old mice, ‘middle’ to six- and eight-month- 
old mice and ‘old’ to twelve- and 18-month-old mice. Finally, 
we chose the permutation labels that maximize the accuracy 
and obtain a measure of quality.
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ABSTRACT
Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including 
wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed 
promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus 
apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well 
as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare 
the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same 
mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the 
treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR 
-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the 
right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with 
mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing 
and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is 
particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, 
single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, 
Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal 
plasma.
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Introduction

Non-thermal plasma (NTP), a partially ionized gas consisting 
of a mixture of ionized atoms, molecules, radicals, and 
photons, has been studied for clinical application in recent 
years. Technical applications include decontamination of sen
sitive instruments [1,2] due to its antibacterial effect [3–6]. 
Additionally, NTP treatment has been investigated in anti- 
tumourtherapy [7–9]. Interestingly, NTP-induced apoptosis 
was shown in head and neck cancer (HNC) cells via accumu
lation of reactive oxygen species in vitro and inhibited growth 
of HNC tumours in vivo [10,11]. However, one of the most 
explored applications of NTP treatment is wound healing. 
Recently, Wang et al. demonstrated inhibited scar formation 
after surgery [12]. Additionally, Isbary et al. reported 
a reduction of the bacterial load in chronic infected wounds 
[13]. Preliminary in vitro experiments showed that epithelial 
cells display an increased proliferation when exposed directly 
to NTP and also when exposed indirectly via NTP-treated 

culture medium [14–16], providing a potential mechanism 
underlying the improved wound healing processes. 
Considering stages of wound healing from inflammation to 
tissue formation and remodelling [17], NTP treatment sup
ports wound recovery by stimulating the contribution of 
monocytes in the first stage [18]. The exact mode of action 
of NTP has not been fully identified and the knowledge on 
molecular processes underlying the improved wound healing 
and other positive effects of NTP are only partially under
stood. The aforementioned studies suggested the stimulation 
of the immune system as a systemic effect that might add to 
the local anti-microbial effects of NTP.

Beyond proteins, coding genes and metabolites, non- 
coding RNAs are well known to play an important role in 
processes related to the immune system. Among those, 
microRNAs (miRNAs) are a particular class of small non- 
coding RNAs, which are expressed in the course of 
a specific disease or in a cell-specific way [19–24]. The
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mechanisms how miRNAs are transcribed and processed 
remain an active field of research [19] but even basic princi
ples remain still incompletely understood [25]. Large-scale 
databases such as miDIP suggest however over 46 million 
interactions between miRNAs and genes [26]. Databases 
such as miRTarBase collect over 2 million of verified 
miRNA gene interactions [27]. Such comprehensive resources 
are partially created using curated functional evidence. As an 
example, the role of infections and how pathogens can hijack 
miRNAs to suppress innate immunity of the host are known 
[28], indicating their importance in immune responses. 
Performing microRNA studies should typically also include 
an investigation of the target effects to improve a lacking 
understanding of mechanism in the light of the suggested 
wide variety of roles for miRNAs [29].

We thus hypothesize that NTP treatment has (a) a local 
influence on miRNA profiles that (b) potentially extends to 
a systemic influence and (c) thereby alters gene expression in 
mediators such as blood cells. To test this hypothesis, we 
study the effect of NTP treatment on mouse auricular skin. 
Because of the known effect of NTP treatment in wound 
healing, we measure differences in miRNA expression in 
treated versus untreated skin samples using deep sequencing. 
By including five different timepoints up to 120 minutes after 
the exposure, we are able to analyse immediate and time- 
dependent changes in miRNA profiles. Because of potential 
systemic regulatory effects on target genes, we finally carry 
out single-cell RNA sequencing on peripheral blood mono
nuclear cells (PBMC)s.

Results

Non-thermal plasma treatment has a limited global 
impact on the miRNA repertoire

To investigate the effects of non-thermal plasma (NTP), we 
select mouse ears as a suitable model system and analysed 
four distinct subsets: the left and irradiated ear of treated mice 
(TL), the right ear of treated mice (TR), the left ear of 
untreated mice (UL), and the right ear of untreated mice 
(UR). For clarity, we refer to these four groups as the sample 
types throughout the following sections. To capture the time- 
dependent processes, we consider miRNA bulk samples from 
five timepoints after the treatment (Figure 1A). A detailed 
description of the study setup is given in the method section.

As our initial experimental readout, we choose small RNA 
deep sequencing. After stringent quality control and adapter 
trimming, we include an average of 30 million reads per 
sample (Figure 1B). On average 25 million reads align with 
the mouse reference genome. Notably, no significant differ
ence was observed within the four groups in terms of quality 
filtering, mapping to the reference genome, or mapping to 
mouse miRNAs (Supplemental Figure S1A). Altogether, we 
obtain 1966 miRNAs of which 495 remain as stably expressed 
in the data set.

Performing a Principal Component Analysis (PCA) with 
a global clustering of the miRNA expression data including all 
samples, we find no discernible clustering patterns based on 
treatment or timepoints (Figure 1C), arguing against 

a potential overarching molecular effect of NPT. To further 
explore the data and to identify less pronounced effects, we 
next conduct hierarchical clustering analysis for the top 100 
miRNAs with the highest coefficient of variance (CV) across 
all samples (Figure 1D). Consistent with the PCA-based clus
tering results, we do not observe clear differentiation between 
treated and untreated samples, the different sample types, or 
the timepoints.

To check whether effects for single miRNAs exist at all, we 
calculate the fold changes (FCs) for all samples from treated 
and untreated mice separately across the timepoints (10 min 
vs. 0 min, 30 min vs. 0 min, 60 min vs. 0 min, 120 min vs. 0  
min, Figure 1E). This analysis suggests a stronger effect in the 
treatment as compared to the control group, both, for 
miRNAs close to the background but also for highly abundant 
ones. Because of the large number of analyses (495 miRNAs, 4 
timepoint comparisons for two groups) none of the markers 
in this global analysis remains significant following adjust
ment for multiple testing.

We thus ask for those factors yielding the overall largest 
impact on the expression levels using principal variance com
ponent analysis (PVCA). While PVCA is typically used to 
identify batch effects, we utilize it to uncover high-impact 
properties in our data set. We consider the attributes 
‘Treated/Untreated’, ‘Left ear/Right ear’, ‘Timepoints’, and 
combinations of these attributes as potential factors affecting 
the expression levels. Additionally, we include the informa
tion that two samples always originate from the same mouse 
as a final attribute, ‘Individual’ (Figure 1F). The largest por
tion of the variance lies within the Residuals, indicating fac
tors not explained by our experimental setup. We observe that 
the most substantial variance in the data set is associated with 
the ‘Individual’ property (8.2%), which is a common result 
pinpointing intra-individual variability. The combination of 
‘Individual’ with ‘Treated/Untreated’, however, still signifi
cantly contributes to the overall data variance (7.6%). In 
a similar manner, the ‘Timepoint’ adds 7.6%. One notable 
result of the PVCA is that the left/right ear adds twice as 
much to the overall variance if considered in combination 
with the treatment.

In summary, our findings suggest that treatment with NTP 
has a limited influence on the global composition of miRNAs. 
However, it is important to note that this result does not 
imply the absence of changes in the abundance of individual 
miRNAs. In fact, the PVCA suggests significant differences 
between treated and untreated mice, especially if considered 
in the context of the timepoint and with respect to the left and 
right ear. This calls for a more focused analysis for each 
miRNA in the four sample types.

Comparison between treated and untreated mice yields 
significant upregulated miRNAs

For the four groups, we thus perform ear-wise comparisons 
within and between the treated and untreated cohorts and 
compare the results to each other (Figure 2A). Specifically, to 
identify miRNAs which are influenced by the treatment, we 
first compare all samples obtained from the treated to all 
samples from untreated mice since treatment accounts for
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the highest variance in the PVCA analysis after excluding all 
properties related to the individual. Of note, we compute not 
only the fold changes (FC) and the adjusted p-values (t-test) 
for the comparison but also the effect sizes (Cohen’s d). Our 
analysis reveals that three miRNAs mmu-miR-144-3p, mmu- 
miR-144-5p and mmu-miR-451a are more than 1.5-fold upre
gulated in treated mice and have a high effect size (≥0.5) and 
a significant adjusted p-value (Figure 2B; upper part). When 
considering only the last timepoint (120 minutes) we calculate 
the overall largest effect sizes for a higher number of miRNAs 

(Figure 2B; lower part). However, none of the miRNAs 
remain significant following adjustment. In the light of stron
ger effect sizes, the larger p-value may be explained by the 
smaller group sizes in this comparison (n = 24).

To make the comparison even more specific, we split the 
samples into the four sample types (TL, TR, UL, UR) and 
consider all combinations between treated and untreated with 
each side of the ear. Interpreting the results, it is important to 
keep in mind that NTP was only applied to the left ear. We 
start our analysis by comparing left and right ears first in the

Figure 1. Study setup and expression variance analysis. (A) the data set consists of 55 mice, 28 of these were treated and 27 serve as a control group. Two samples 
were taken from each of the 55 mice – one from the skin of the left ear and one from the skin of the right ear. For the treated mice the left ear was exposed to NTP, 
and the samples were obtained at 5 different timepoints (0 minutes, 10 minutes, 30 minutes, 60 minutes, and 120 minutes). (B) the number of processed reads and 
the proportion aligned to the mouse genome. The bottom annotation indicates the sample type and timepoint. (C) Principal Component Analysis of the miRNA 
expressions. Outliers are excluded for visualization purpose. Colouration is done according to the five timepoints. Shapes indicate the treated and untreated mice. 
(D) Heatmap of the top 100 expressed miRNAs (log10) with hierarchical clustering. The top annotation rows provide information regarding the treatment status, the 
sample type and the timepoint. (E) Scatter plot of the FC (log2) of each timepoint to the minimal timepoint (0 minutes) versus the expression of each miRNA (log10). 
Coloured according to the five timepoints. The shapes correspond to treated and untreated mice. We differentiate between regulated and deregulated (FC ≥ 1.5 or 
FC ≤ 1/1.5) miRNAs according to the horizontal dashed lines. We assume that miRNA expressions left of the empirically determined threshold are dominated by 
noise. (F) Principal Variance Component Analysis of the miRNA expressions (log10). ‘Residual’ corresponds to the variance not covered by the properties.
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Figure 2. Group-based comparisons of miRNA expression. (A) the experimental setup with additional arrows indicating the comparisons we are investigating. (B) T 
versus U mice comparison. The effect size plots are located on the left side and Volcano plots on the right side of the different boxes with the comparisons from 
Figure 2a. The upper plots include all samples over all timepoints and the comparison for only the timepoint 120 minutes is depicted in the lower part of the box. 
Deregulated miRNAs with effect size ≥ 0.5 or p-value <0.05 (t-test, -log10) are highlighted in dark grey. (C) TL versus TR mice comparison analogous to Figure 2b. 
(D) TL versus UL mice comparison analogous to Figure 2b. (E) Violin plot for mmu-miR-144-3p. Each violin corresponds to a sample type and the horizontal lines 
indicate the medians. The black arrow marks the violin corresponding to the treated ear. (F) Violin plot for mmu-miR-223-3p analogous to Figure 2e.
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untreated (Supplemental Figure S2A) and then in the treated 
mice (Figure 2C). The results of the comparison of the left ear 
and the right ear within the untreated mice reveal no deregu
lated miRNAs, even if the latest timepoint is considered 
separately. In contrast, in the treated mice we identify upre
gulated miRNAs in the left ear compared to the right ear, even 
though they miss the significance level after adjustment for 
multiple testing. Focusing only on the 120 minutes timepoint 
confirms the result: we detect deregulated miRNAs, yet these 
do not prove significant following adjustment for multiple 
testing. We consequently investigate if the observed upregula
tion between treated and untreated samples can also be seen 
when comparing the left ears of treated versus the left ears of 
untreated mice (Figure 2D). In this comparison, we observe 
the same three miRNAs as above, i.e. mmu-miR-144-3p, 
mmu-miR-144-5p and mmu-miR-451a, to be of considerable 
effect size and significance level. In addition, two new candi
dates, mmu-miR-142a-5p and mmu-miR-223-3p, emerge for 
further investigation. When only looking at the 120 minutes 
timepoint, only mmu-miR-223-3p remains significantly 
upregulated.

Considering these results, we exemplarily compare the five 
normalized expression values for mmu-miR-144-3p and 
mmu-miR-223-3p across the four sample types directly to 
each other (Figures 2E,2F). The medians of the samples of 
the treated mice show a higher expression compared to the 
untreated ones. Since only the left ears were stimulated with 
NTP and we find no significant miRNAs between the right 
ears of the treated and right ears of the untreated mice 
(Supplemental Figure S2B), we suggest that the observed 
upregulation is caused by the application of NTP. Overall, 
this argues for the hypothesis of a systemic effect of the 
treatment.

To gain a better understanding of the underlying effects in 
the data set, we thus take a closer look at the dynamic 
variability dependent on the time after exposure to the NTP 
as a potential key factor.

Detailed view on significantly upregulated miRNAs

In the subsequent analysis, we focus our investigation on the 
five miRNAs that exhibit significant deregulation. When com
paring samples within the same sample type but at the time
points furthest apart from each other (Figure 3A, upper part), 
we observe a downregulation of miRNA expression in all the 
samples from the untreated mice and just the samples from 
the left ear from the untreated mice when considering the 
timepoint difference between 120 and 0 minutes. This down
regulation suggests a general change in miRNA expression 
over time, potentially influenced by the anesthesia. 
Interestingly, a similar downregulation is also detected in 
the samples taken from the right ears of the NTP-treated 
mice. Furthermore, no significant deregulation is observed 
between the left and right ears, indicating a consistent beha
viour of both ears. However, the downregulation over time 
does not reach statistical significance, suggesting a limited 
impact of the anaesthesia. In contrast, we observe 
a significant upregulation of all five miRNAs in the treated 
samples compared to the untreated samples (Figure 3A, lower 

part). This change is consistent across all samples from the 
treated mice compared to all samples from the untreated 
mice. Moreover, this upregulation is also evident when com
paring the left ears of the treated mice to the left ears of the 
untreated mice. However, we detect no significant difference 
in miRNA expression when comparing the right ears of the 
treated mice to the right ears of the untreated mice.

We thus calculate the Spearman correlation between the 
miRNA expression and the time following exposure to NTP 
(Figures 3B,3C). For both, treated and untreated samples, we 
observe mainly positively correlated miRNAs. In the sample- 
type-specific investigation, however, we find that the majority 
of miRNAs in the treated mice are positively correlated with 
the progression of time, while in the untreated mice they are 
negatively correlated. Notably, the five significant miRNAs 
from the previous analysis are all negatively correlated with 
time in the samples from untreated mice, even though not 
below our empirically determined threshold (−0.3). MiRNAs 
mmu-miR-223-3p and mmu-miR-142-5p present a positive 
correlation with time in the samples from treated mice (corr  
= 0.36 and corr = 0.35) and in the samples from left ears of 
treated mice (corr = 0.61 and corr = 0.49). Such a systemic 
effect, however, should become most obvious in the detailed 
time analysis and become more pronounced over time 
(Figures 3D-3G). We confirm the general trend of 
microRNAs being higher abundant in treated samples than 
untreated ones in the majority of timepoints. Resolving the 
expression over all timepoints does not indicate a distinct 
behaviour for mmu-miR-144-3p. In contrast, mmu-mir-223- 
3p, which is the only miRNA significantly upregulated for 
timepoint 120 minutes in the comparison between TL and 
UL, presents a monotonous increase from 0 minutes until 
30 minutes and remains stable, highlighting it as a most likely 
systemic miRNA. Altogether, this narrow set of five miRNAs 
with potential effects opens the question on regulatory 
mechanisms affecting the expression of genes and pathways.

Upregulated miRNAs regulate wound healing and are 
enriched in immune and blood cells

To connect our miRNA findings to causal mechanisms, we 
perform a pathway analysis using the miRPathDB [30] 
resource (Figure 4A). Especially mmu-miR-142a-5p, mmu- 
miR-144-3p and mmu-miR-223-3p indicate a similar set of 
pathways connected to wound healing and tissue regenera
tionfor example, the ErbB, FoxO, Hippo and PI3k-Akt signal
ling pathways [32–34]. The MAPK signalling pathway, which 
shows to be especially relevant in association with mmu-miR 
-144-3p, is known to be activated by NTP treatment [18]. In 
addition, the Adherens junction, Rap1 and Ras pathways 
exhibit effects regarding the cell adhesion and affiliations to 
epithelial tissue [35,36]. Furthermore, Ras and TGF-beta path
ways are involved in cell-cycle control and apoptosis [37,38]. 
A co-regulation of miRNAs to similar sets of genes and thus 
of similar pathways is not surprising and well-known, espe
cially if the seeds of the miRNAs are similar. But there are also 
examples of miRNAs with very different seeds regulating 
similar pathways [39]. We thus compute a multiple sequence 
alignment for the three miRNAs sharing similar target
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Figure 3. Group-based comparisons and time evolution of miRNA expression for mmu-miR-142a-5p, mmu-miR-144-3p, mmu-miR-144-5p, mmu-miR-223-3p and 
mmu-miR-451a. (A) Heatmaps of adjusted p-value from t-test (−log10), FC (log2) and AUC for manually selected comparisons. A p-value of under 0.05 is indicated by 
a *, of under 0.01 by ** and under 0.001 by ***. A deregulation of miRNAs by a factor of 1.5 is marked with a * and a factor of 2 with **. An AUC value between 0.7 
and 0.8 or between 0.3 and 0.2 is marked by *, between 0.8 and 0.9 or between 0.2 and 0.1 is marked by ** and higher than 0.9 or lower than 0.1 is marked by ***. 
Promising comparisons between the treated and untreated mice are highlighted in red on the left side. (B) Heatmap plot of Spearman correlation between miRNA 
expressions and timepoints for the samples of the treated and untreated mice. Only miRNAs with a correlation lower than − 0.3 or higher than 0.3 are depicted. 
Correlation values are highlighted as negative correlated if the correlation values are < −0.3 and positive correlated if the correlation values are > 0.3. (C) Heatmap 
plot of Spearman correlation between miRNA expressions and timepoints for the samples of the four sample types analogous to Figure 3b. (D) Box plot over all five 
timepoints for mmu-miR-144-3p for each of the four sample types. The ends of the box denote the 25th percentile and the 75th percentile and the median is given as

36 A. ENGEL ET AL.

92 results



pathways (Figure 4B). While miR-144-3p and miR-142a-5p 
indeed share some similarity in the relevant mature miRNA 
sequences, miR-223-3p has no seed similarity to the former. 
This again provides further evidence for a biologically relevant 
function. At the same time, it immediately poses the question 
how these miRNAs, and especially miR-223-3p, mediate 
a potential systemic effect.

To further improve our understanding of the causal 
mechanisms, we investigate the expression of the miRNAs 
across different cell types. Because of the homology of 
mouse miRNAs to humans and a significantly better data 
basis for human miRNAs in cell types, we perform this 
analysis on human cell lines. For four of the significantly 
upregulated miRNAs (miR-142(a)-5p, miR-144-3p, miR-223- 
3p and miR-451a) the computed alignments of their mouse 
and human sequences map in every position (Figure 4C). 
Accordingly, we are able to use a very comprehensive data 
set of miRNAs across human cell types [31] as a reference 
resource. We individually examine the expression of hsa-miR 
-144-3p, hsa-miR-223-3p, hsa-miR-451a and hsa-miR-142-5p 
at the cell type level (Figure 4D-G). We observe that these 
four miRNAs are common in blood (red coloured classes, e.g. 
red blood cells, plasma, and erythroblast-derived cells), 
immune (green coloured, e.g. CD15+ cells, neutrophil and 
B lymphocyte and CD56+ cells) and skin cells (pink coloured 
classes, e.g. hepatocyte, endothelial progenitor cells, conjunc
tival epithelial cells, Beta cell like derived cells and Endothelial 
cell retinal microvascular cells).

The significant abundance in skin cells is expected as this is 
the main specimen of the samples. The dysregulation of 
miRNAs mainly expressed in immune cells circulating in 
blood argues for a systemic effect. The principal occurrence 
of hsa-miR-144-3p and hsa-miR-451a in blood cells and the 
expression difference between the four experimental groups 
already visible at the earliest timepoint (0 minutes) 
(Figures 3D,3F) allows for the hypothesis that the miRNAs 
may show a direct response to the NTP treatment. In contrast, 
no difference for mmu-miR-223-3p and mmu-miR-142a-5p 
at 0 minutes exists (Figures 3E,3G) and the deregulation 
occurred delayed. This hints towards a dysregulation within 
the immune system occuring after an initial effect mediated 
by afore mentioned cell types within the treated tissue. To 
check our hypothesis of a systematic response to NTP treat
ment mainly within blood and especially circulating immune 
cells in blood, we take a closer look at our miRNA candidates 
and their occurrence in blood cells. For this purpose, we first 
take into account the data set presented by Juzenas et al [40]. 
This data set offers a comprehensive, cell-specific miRNA 
catalogue of selected peripheral blood mononuclear cell 
(PBMC) types (including CD4+ cells, CD8+ cells, B cells 
(CD19+ cells) and NK cells (CD56+ cells)). Since the data 
set again refers to human miRNAs, we consider the same four 
miRNAs as above with complete sequence homology between 

human and mouse. We observe that hsa-miR-223-3p, hsa- 
miR-451 and especially hsa-miR-142-5p are strongly 
expressed in the cell types shown (NK cells, B cells, CD4+ 
cells and CD8+ cells) (Supplemental Figure S3A). Therefore, 
we decide to perform a further analysis to investigate the 
changes in PBMCs under NTP treatment. Here, single-cell 
RNA sequencing provides the best option to evaluate the 
changes over time for the different immune cell types.

Single immune cell sequencing supports downregulation 
of targeted genes via miRNA overexpression

We thus perform single-cell sequencing of peripheral blood 
mononuclear cells (PBMCs) using the same experimental 
setup. Because the largest impact in our time-series experi
ment is present at the latest time point and potential regula
tory mechanisms might take additional time, we perform the 
analyses for the latest time point in the study. For this experi
ment, we use a second cohort of mice and compare blood 
from two treated to two untreated mice. We sequence 
7503 peripheral blood mononuclear cells (PBMCs) and after 
quality control end up with 5794 high-quality cells. The cell- 
type annotation highlights five different main cell types: 
B cells, CD4+ T cells, CD8+ T cells, plasmablasts and NK 
cells (Figures 5A,5B). Due to the fact that the single-cell 
method we use to sequence the PBMC data does not allow 
for quantifying mature miRNAs, we identify the target genes 
of the four miRNAs with the tool MirTarBase [27] to verify 
the previously seen effects. In a subsequent differential expres
sion analysis between cells from treated and untreated mice, 
we find a downregulation for 12 of the 15 target genes linked 
to the deregulated miRNAs mmu-miR-223-3p and mmu-miR 
-451a (Figures 5C,5D). Most of the target genes show 
a deregulation in B cells (7 down and 3 upregulated), followed 
by CD4+ T cells (5 downregulated) and CD8+ T cells (1 
downregulated). Mbnl1 that is targeted by miR-223-3p 
shows a downregulation both in CD4+ and CD8+ T cells 
and has been previously found to be involved in the differ
entiation of fibroblasts during wound healing [41]. This sup
ports the assumption that a treatment with NTP influences 
both the level of the miRNA and their respective target genes.

Discussion & Conclusion

In this study, we systematically explored the effect of NTP 
treatment on mouse tissue samples. While the exact mode of 
NTP action has not been fully identified, previous studies 
showed that epithelial cells display an increased proliferation 
after NTP exposure and reported an inhibited scar formation 
in in-vitro experiments [12,15,16]. To examine the underlying 
molecular processes contributing to improved wound healing 
following NTP treatment, we analysed non-coding RNA from

a horizontal line. The solid lines show a polynom of second degree fitted to the expression values using least-squares. Arrows indicate the overall trend of samples 
from treated (red) and untreated (green) mice. (E) Box plot for mmu-miR-223-3p analogous to Figure 3d. (F) Box plot for mmu-miR-451a analogous to Figure 3d. 
(G) Box plot for mmu-miR-142a-5p analogous to Figure 3d.

RNA BIOLOGY 37

results 93



Figure 4. Connected signalling pathways and miRNA occurrence in human cells. (A) Heatmap of adjusted p-value from Hypergeometric test (−log10) for pathways 
originating from the KEGG database related to the five upregulated miRNAs [30]. We use predicted union and a pathway is shown if it has at least two significant 
miRNAs. One or more asterisks indicate the significance (cf. Figure 3a). (B) a multiple sequence alignment for the miRNAs mmu-miR-144-3p, mmu-miR-142a-5p and 
mmu-miR-223-3p. Asterisks highlight the region for which the miRNAs exhibit the same base. (C) an alignment of the human and mouse related miRNA for the five 
significantly upregulated miRNAs. Asterisks highlight the region for which the miRNAs exhibit the same base. (D) Violin plot for hsa-miR-144-3p from a previously 
published data set [31]. Every violin depicts normalized (DESeq2) expression data for specific cell types. Cell types are sorted descending by their medians, are cut 
after the first 50 and grouped into cell classes highlighted by different colours. Higher values indicate a more frequent occurrence of the miRNA in the respective cell 
type. (E) Violin plot for hsa-miR-223-3p [31]. (F) Violin plot for hsa-miR-451a [31]. (G) Violin plot for hsa-miR-142-5p [31].
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irradiated auricular skin and performed single-cell sequencing 
of blood.

Unsupervised hierarchical clustering and PCA as a first 
attempt to group the samples according to their known prop
erties, e.g. treated/untreated, left/right ear or the timepoint, 
did not yield the anticipated result. Yet, a subsequent PVCA 
indicated a local influence by yielding promising comparisons 
between sample subsets, e.g. treated versus untreated left ears. 
From these comparisons, we obtained five significantly upre
gulated miRNAs (mmu-miR-144-5p, mmu-miR-144-3p, 
mmu-miR-142a-5p, mmu-miR-223-3p and mmu-miR-451a).

To reveal a potential systemic influence of the treatment, we 
investigated this set of miRNAs in a two-fold manner. First, we 
presented a relation between the upregulated miRNAs and path
ways directly linked to wound healing and associated processes 
like tissue regeneration and cell cycle control. Additionally, mmu- 
miR-144-3p exhibited a connection to the MAPK signalling path
way which was reported to be induced by NTP treatment in 
human monocytes [18].

These findings fit to the second part of the investigation 
where we showed a correlation of miR-223-3p to the NTP 
treatment. This effect seemed not to be limited to the treated 
site but systemic. Several recent studies connected the dereg
ulation of miR-223-3p to healing processes. Cheng et al. 
reported that mmu-miR-223-3p increases the muscle 

regeneration in the early stage after an injury in mice [42]. 
They attributed the increase on the regulation of inflamma
tion via the suppression of the target gene interleukin-6 (Il6). 
Effects concerning the inflammation regulation were also 
shown to suppress necroptosis in ischaemic hearts [43]. 
A study investigating the healing of human gingiva reported 
hsa-miR-223-3p as most upregulated miRNA [44]. In addi
tion, Wu et al. presented an increase in hsa-miR-223-3p over 
the timespan of 21 days in patients with two kinds of fractures 
and accounted the effect to the regulation of cell viability and 
cell apoptosis [45].

Additionally, we were able to roughly sketch out the timing of 
the mmu-miR-223-3p upregulation induced by NTP, which 
reached the highest level after 30 minutes after treatment. 
Altogether, this suggests a connection to the inflammatory phase 
of wound healing occurring in the first few hours after an injury.

To support our findings, we prepared a second data set 
with single-cell PBMC data to collect more information 
based on immune cells in the blood. Especially for some 
target genes of mmu-miR-223-3p (provided by miTarBase 
[27]) we observed a downregulation in the differential 
expression analysis. This opposite behaviour compared to 
the upregulation of the miRNA supports the assumption of 
an effect of NTP treatment on a RNA-level. We detected 
a downregulation of the gene Mbnl1 that is targeted by miR-

Figure 5. Single-cell quality assessment and associated gene miRNA expression changes. (A) UMAP of single-cell PBMC data coloured by cell type. (B) Cell type 
proportions in the data set (total: 5794 cells). (C) a graph network to display some of the target genes for miRNAs mmu-miR-223-3p and mmu-miR-451a provided by 
mirTarbase [27]. The target genes are selected by intersecting all target genes with the significant genes (p-value <0.05) from the single-cell data set. (D) Heatmap 
plot shows scaled FCs (scaled by the maximal absolute FC in the bulk and single-cell data, respectively) for the miRNAs (bulk data set) and some of their target genes 
(single-cell data set) from Figure 5c. Red yields an up- and blue a downregulation.
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223-3p in the blood. Although previous publications linked 
an increased expression of Mbnl1 in skin [41] and heart 
tissue [46] to an improved wound healing, this does not 
directly contradict a possible improvement of the wound 
healing due the downregulation of Mbnl1 in the blood after 
NTP treatment. Two factors that greatly influence the 
observed changes in gene expression are the used cells, as 
changes in the gene expression in blood often differ from the 
gene expression in other tissues, and the fact that previous 
publications were focused mainly on the effect in damaged 
tissue. Instead, we focused on the effect of NTP in healthy, 
non-injured mice.

Summarizing the bulk and the single-cell study, on the one 
hand, we found a set of upregulated miRNAs in a bulk experiment 
and a targeted gene in the subsequent single-cell analysis with 
reported effects in conjunction to wound healing processes. On 
the other hand, our analysis resulted in the connection to 
a signalling pathway, which was already reported in the context 
of NTP treatment. We conclude that NTP treatment induced 
some changes on miRNA-level, which might partially contribute 
to the supporting effects of NTP in wound healing, but further 
experiments are needed to confirm these conclusions and to 
decipher the exact mode of action.

Limitations and further work

In the bulk study, we were not able to observe a local difference 
between left and right ears nor a significant deregulation over 
time. This could be attributed to the low sample density, with only 
four to seven samples per timepoint and sample type. 
Additionally, many effects of wound healing occur immediately 
after the injury, yet further stages occur in the span of several days 
[17]. For example, mmu-miR-223-3p was only significantly upre
gulated for the last timepoint (120 minutes). This suggests that 
a further study would benefit from more samples per timepoint 
and a longer study period. However, we chose our experimental 
parameters optimizing the balance between sufficient samples per 
time point and minimizing the number of animals sacrificed for 
the study. The latest time point of 120 minutes was chosen to 
prevent possible narcosis damage of the mice caused by an 
extended sedation.

For the validation of the bulk results, we only focused on 
single-cell sequencing of blood. Due to the constraints of 
available blood volume from the experimental subjects, we 
omitted complementary measurements of microvesicles. 
Nonetheless, our previous studies supported the hypothesis 
that microversicles are likely primary mediators of miRNA 
transport and signal transmission [47,48,50]. Furthermore, for 
a definitive exploration of the mechanisms contributed to a 
miRNA, e.g., mmu-miR-223-3p, an experimental setup could 
be considered where the development of the miRNA in ques
tion is artificially inhibited or prevented . Yet, such a tissue- 
specific knock-out remained out of the scope for this preli
minary investigation. An additional experimental verification 
of the observed dysregulated genes, e.g. a qPCR analysis, 
would present a beneficial investigation but was left out con
sidering the quality of our samples leveraging 10X Chromium 
technology. Although we showed that the miRNAs of interest 
are present in PBMCs, our single-cell data only represents 

gene changes, as standardised high-throughput methods for 
the quantification of mature miRNAs are not yet established 
but are part of ongoing research [49,50]

Methods

Bulk study

Study setup
We carefully selected a suitable model system that would 
allow for controlled experiments in a well-defined environ
ment. The mouse ear emerged as an ideal choice due to its 
physiological characteristics, including the absence of hair, 
accessibility, and the presence of a well-established vascula
ture. By focusing on uninjured auricular skin as our model 
system, we aimed to study the direct effects of NTP without 
inducing unnecessary stress on the mice. This particular 
choice of model system offered several advantages. First, it 
enabled us to analyse the molecular processes occurring in 
healthy skin that were stimulated by exposure to NTP. 
Second, the lack of injury eliminated confounding factors 
associated with wound healing processes, allowing us to iso
late the specific effects of NTP on healthy skin. Additionally, 
the ease of sampling from the auricular skin simplified the 
experimental procedures. To capture the dynamic changes 
induced by NTP exposure, we obtained samples from the 
treated mice immediately after the end of NTP treatment (0  
minutes), as well as at 10, 30, 60, and 120 minutes post- 
treatment. Besides the samples from the treated mice (irra
diated and un-irradiated ears) we considered a equally sized 
control group.

Samples

All animal experiments were approved by the local authorities 
(Landesamt für Verbraucherschutz, Saarbrücken, Germany; 
permission number: 21/2018) and conducted in accordance 
with the European legislation on the protection of animals 
(Directive 2010/63/EU) and the National Institutes of Health 
(NIH) guidelines on the care and use of laboratory animals 
(NIH publication #85–23 Rev. 1985). The C57BL/6 wild-type 
mice used in this study were housed in groups on wood chips 
as bedding under a 12 h day/night cycle in the animal facility 
of the Institute for Clinical and Experimental Surgery 
(Saarland University, Homburg/Saar, Germany) with free 
access to water and standard pellet food (Altromin, Lage, 
Germany). To exclude age and gender as potentially con
founding factors, we selected 3-month-old female mice (3.2  
± 0.3 months) for our study, which were assigned to either 
treatment or control group. All mice were anaesthetized by an 
intraperitoneal injection of ketamine (75 mg/kg body weight; 
Ursotamin®; Serumwerke Bernburg, Bernburg, Germany) and 
xylazine (15 mg/kg body weight; Rompun®; Bayer AG, 
Leverkusen, Germany). The left ear of the mice in the treat
ment group was irradiated with NTP for 10 minutes using an 
atmospheric pressure argon plasma jet kINPen Med [51] 
(Neoplas, Greifswald, Germany) with argon (Air Liquide, 
Düsseldorf, Germany) using a flow rate of 5 standard litres 
per minute (sL/m). The distance between the tip of the plasma
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effluent and the mucosa was between 5 and 10 mm. The 
plasma jet was applied in meander-like motion to prevent 
heating of the treated tissue. The mice of the control group 
were equally anaesthetized but remained unexposed to NTP. 
Right and left ears of treatment and control mice were col
lected after 0, 10, 30, 60, and 120 minutes, immersed in 
RNAlater for 12 hours at 4°C and subsequently frozen at 
-80°C. RNA was isolated using miRNeasy Mini kit (Qiagen, 
Hilden, Germany) after manufacturer’s recommendations. 
RNA quantity and quality was determined using Nanodrop 
(ThermoFisher Scientific, Waltham, MA, USA) and 
Bioanalyzer RNA Nano Chip Kit (Agilent Technologies, 
Santa Clara, CA, USA). Mean RNA Integrity Number (RIN) 
of the samples was 8.2 ± 0.9.

Library preparation and sequencing

As our initial experimental readout, we chose small RNA deep 
sequencing which allows for high-resolution annotation of 
miRNAs. Small RNA sequencing libraries were prepared 
using MGIEasy Small RNA Library Prep Kit on the high- 
throughput MGI SP-960 sample prep system (MGI Tech, 
Shenzhen, China). According to the manufacturer’s protocols, 
the 3’- and 5’-adapters were ligated to the RNA. Afterwards, 
an RT primer including sample-specific barcodes was utilized 
to perform reverse transcription (RT). Amplification of the 
cDNA was achieved using a polymerase chain reaction (PCR) 
with 21 cycles. PCR products were subsequently size selected 
via AMPure Beads XP (Beckman Coulter, Brea, CA, USA). 
Size and concentration of the purified PCR products were 
determined using an Agilent DNA 1000 Kit (Agilent 
Technologies, Santa Clara, CA, USA) and Qubit™ 1X dsDNA 
High Sensitivity (HS) (ThermoFisher Scientific, Waltham, 
MA, USA), respectively. Fifteen samples and one performance 
control sample were pooled in an equimolar fashion in one 
sequencing library, which was circularized using the MGI 
Easy circularization kit. In total, we prepared 8 libraries com
posed of a total of 120 samples which were sequenced on 
DNBSEQ-G400RS High-throughput Sequencing Set (Small 
RNA FCL SE50) by BGI in Wuhan, China.

Data analysis

The pipeline ‘miRMaster 2.0’ in standard settings [52] was 
used to process the sequencing data. Furthermore, only 
miRNAs were considered for further analysis and called 
expressed that exhibited more or equal than 5 raw reads 
in 100% of the samples of at least one sample type. We 
normalized the expression data to make the samples com
parable. Therefore, we used the rpm-normalization inte
grated in the above-mentioned pipeline. This 
normalization considers the number of reads mapped to 
a miRNA and the total number of reads mapped to all 
miRNAs in units of million reads. In this work, we call 
this normalization rpmmm-normalization. For the further 
analysis, we used the filtered and normalized expression 
data, which consisted of 495 miRNAs. A total of 6 samples 
distributed over all sample types showed a vastly different 
behaviour in a preliminary analysis. We identified these 

samples as outliers and removed both samples of the cor
responding mice for further analysis. In total, we obtained 
110 samples after outlier removal.

Data analysis was performed using R in version 4.2.2 with the 
following packages: data.table in version 1.14.6, tidyverse in ver
sion 1.3.2, effsize in version 0.8.1, pROC in version 1.18, cowplot 
in version 1.1.1, reshape2 in version 1.4.4, ComplexHeatmap [53] 
in version 2.14.0, viridisLite in version 0.4.1, lme4 in version 1.1, 
readxl in version 1.4.1 RhpcBLASctl in version 0.21.

We always applied an unpaired two-tailed t-test. For the 
adjustment of p-values we used the Benjamini–Hochberg 
procedure. We used effect sizes to identify and specify quan
tifiable statements of an underlying effect between to subsets 
of a data set. To measure the effect size, which is done for 
every feature individually, we considered several measures 
such as fold change (FC), Cohen’s d and the area under the 
receiver operator characteristics curve (AUC). The FC is 
derived by building a ratio between two expression values. If 
the ratio is 1, this means that the two values are equal. If the 
ratio is <1 (>1), we know that the part we divided by, exhibits 
the higher (lower) value. We say that the change between the 
two values is down (up) directed. We called a miRNA deregu
lated if it passed in one direction a specified fold change 
threshold and significant deregulated if its adjusted p-value 
is lower than 0.05. We defined a miRNA as upregulated if 
FC ≥ 1.5 and downregulated if FC ≤ 1/1.5. Whereas the fold 
change just represents the ratio between two values, Cohen’s 
d uses a sophisticated ratio including the mean and the 
estimated variances of the two subsets calculated with the 
effsize package. We interpreted a feature as impactful if its 
Cohen’s d value ≥0.5. The third effect size we used was the 
AUC value. We took the expression values of the samples 
included in the comparison as a prediction and a binary value 
corresponding to the respective subset the sample belonged to 
as response. This allowed us to build an ROC curve. In this 
way, upregulated miRNAs achieved an AUC value close to 1 
and downregulated ones close to 0. To determine the AUC 
value, we used the pROC package. All correlations were 
calculated using the Spearman rank correlation. For correla
tion analysis, only miRNAs exceeding the interval between 
−0.3 and 0.3 were marked as negatively or positively corre
lated. Principal Variance Component Analysis (PVCA) is 
a combination of principal component analysis (PCA) and 
variance component analysis (VCA). As a result, we obtained 
the proportion of variance for the available properties. The 
residual bar represented the remaining variance which is not 
covered by any of the given properties. The listed properties 
and their combinations presented their impact on the total 
variance in the data set. For clustering, we used hierarchal 
clustering with Euclidean distance and complete linkage. For 
the clustering of the expression data, we first standardized, 
which means the data were transformed to a mean of 0 with 
standard deviation of 1. To create the heatmaps, we used the 
ComplexHeatmap package. The data for the heatmap depict
ing pathways, originated from the tool miRPathDB [30], 
which outputs all significant KEGG pathways for the entered 
miRNAs. The values in the heatmap indicated the p-value in - 
log10-transform originating from the Hypergeometric test for 
the corresponding enrichment result.
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Single-cell transcriptome analysis

Samples, library preparation and sequencing

The experimental setup for data collection was the same as for 
the bulk samples. As for the bulk samples, C57BL/6 mice from 
the Institute of Clinical and Experimental Surgery (Saarland 
University, Homburg/Saar, Germany) were used. All mice 
were anaesthetized as described above and, in the case of the 
treated mice, irradiated with NTP for 10 minutes. The plasma 
and the treatment itself were handled in the same way as for 
the bulk samples. Following a period of 120 minutes after 
irradiation for the treated mice and after the onset of anaes
thesia for the untreated mice, blood (usually between 500 and 
800 µL) was collected from the vena cava.

PBMC were isolated from heparin blood of four mice using 
standard Ficoll gradient. Cells were counted in a haemocytometer 
using Trypan blue for live/dead staining. Viability was >95% for 
all samples. Single-cell transcriptome analysis was performed 
using Chromium Next GEM Single Cell 3’ Kit v3.1 
(10×Genomics) with 5,000 cells input after the manufacturer’s 
protocol. Generated single-cell libraries were sequenced by 
Novogene on an Illumina NovaSeq using PE150 sequencing.

Data analysis

Reads were aligned against the mm10 genome (refdata-gex- 
mm10–2020-A) using the 10× Genomics CellRanger software 
(v.7.1.0) using a cut-off value of 200 UMIs.

For quality-control, SoupX [54] (v.1.6.1) was used to remove 
ambient cell-free mRNA contamination, cells with more than 10% 
mitochondrial reads, <200 features or > 2,500 features were 
removed using Seurat [55] (v.4.3.0). As a third quality-control 
step, doublets were removed using DoubletFinder [56] (v.2.0.3) 
using automatically determined (using the recommended set
tings) parameters nExp and pK.

The samples were aligned using Seurat integration with 
default settings and dimensionality-reduction was performed 
using PCA and UMAP on the first 20 dimensions. The data 
was clustered using the FindNeighbors and FindClusters 
Functions of Seurat at 0.8 resolution.

For the cell type annotation, a differential expression ana
lysis using Seurats FindAllMarkers function (Wilcox) between 
each cluster and all other clusters was performed to identify 
marker-genes and the cells were annotated using known mar
ker-genes. Clusters with the same cell type were merged.

Genes that were differentially expressed between treated and 
untreated mice were determined using the FindMarkers 
Function of Seurat with MAST [57]. Genes were selected if 
they had an adjusted p-value (Bonferroni correction) below 0.05.
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A B S T R A C T

Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent 
cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to 
trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic posi
tions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC 
signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional 
alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression 
of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate 
changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time- 
course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, 
including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, 
such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron 
differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and 
remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be 
linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential 
drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural 
trans-differentiation process. These factors include the persistence of stemness features and the expression of 
factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings 
contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These in
sights can pave the way for the development of safer treatments of neurological disorders.

1. Introduction

Mesenchymal Stem Cells (MSCs) serve as a valuable and sustainable 
source of multipotent cells involved in the regeneration of mesodermal 
tissues (Hoang et al., 2022; Rohban and Pieber, 2017; Vasanthan et al., 
2020). They differentiate into mesodermal cell types, such as osteo
blasts, chondrocytes, and adipocytes (Hmadcha et al., 2020). Moreover, 
MSCs possess the ability to trans-differentiate into various cell types 

from outside the mesodermal lineage, such as astrocytes, oligodendro
cytes, and neurons. This trans-differentiation process can be induced by 
in vitro stimulation with specific differentiation media (Hermann et al., 
2004; Hernandez et al., 2020; Kopen et al., 1999).

The ability of MSCs to develop into specific cell types combined with 
their ethical advantages over embryonic stem cells highlights their 
immense potential for therapeutic applications in personalized medicine 
(Feier et al., 2022; Harris, 2014; Hoang et al., 2022; Volarevic et al., 
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2018). The neural trans-differentiation capacity of MSCs has attracted 
significant interest for therapeutic interventions in neurological injuries 
and neurodegenerative diseases such as Parkinsońs and Alzheimeŕs 
disease (Hernandez et al., 2020; Rahbaran et al., 2022). Ongoing clinical 
trials explore replacing damaged neuronal cells with trans-differentiated 
MSCs derived from the adult bone marrow (Choudhary et al., 2021; 
Hernandez et al., 2020; Hoang et al., 2022). To ensure safe use in clinical 
applications, it is crucial to have a comprehensive understanding on the 
processes that underlie MSC neural trans-differentiation (Lee et al., 
2021; Lukomska et al., 2019; Musial-Wysocka et al., 2019). A thorough 
characterization could lead to more effective cell therapy approaches 
(Pittenger et al., 2019). However, the changes in cellular signaling that 
guide MSCs to their trans-differentiated state are still not fully under
stood (Choudhary et al., 2021; Hernandez et al., 2020; Lee et al., 2021).

Heterogeneous results have been reported for the molecular char
acteristics that define the MSC identity (Musial-Wysocka et al., 2019; 
Pittenger et al., 2019; Wang et al., 2021). A growing body of evidence 
could help to improve these criteria at the starting-point of the 
trans-differentiation process (Pittenger et al., 2019). Though, 
time-course RNA expression data are particularly useful to track and 
correlate changes in cellular signaling (Bar-Joseph et al., 2012; Diener 
et al., 2023a, 2020), only a few efforts have been made to decipher the 
transcriptional restructuring that directs MSCs towards their neuronal 
fate (Cortes-Medina et al., 2019; Khan et al., 2020), resulting in a 
disjointed picture of the relevant functional connections. Likewise, 
limited information is provided on factors that entail long-term thera
peutic risks, including the expression of genes that bear tumorigenic 
potentials (Hernandez et al., 2020; Musial-Wysocka et al., 2019).Neu
ron-like morphologies can be observed as early as 48 hours after the 
initiation of the trans-differentiation process (Cortes-Medina et al., 
2019; Miao et al., 2017). Based on this, we focused on this early 
time-window and generated time-resolved RNA expression data during 
the trans-differentiation of human bone marrow-derived MSCs 
(hBMSCs). We found relevant changes in cellular signaling that can be 
linked to the acquisition of neuronal features. Our study also uncovers 
potential issues that should be acknowledged when assessing the utility 
of MSC-derived neurons for therapeutic interventions. The transcripts 
and microRNAs with prominent time-course changes are both provided 
in an atlas format.

2. Materials and methods

2.1. Cultivation of human bone marrow derived mesenchymal stem cells 
(hBMSCs)

Human BMSCs (C-12974) were obtained from PromoCell GmbH 
(Heidelberg, Germany). The cell samples were derived from femoral 
head samples of a 66- (lot# 451Z012.3) and a 72-year-old (lot# 
475Z010.3) female Caucasian donor, respectively. To strengthen the 
significance of the results, the RNA analyses were carried out on the cells 
of one donor and the protein-staining validation on the cells of the other 
donor, as indicated below. Corresponding cell charges were approved 
and certified by the supplier with immune staining and flow cytometric 
analyses. The cells were seeded at a density of 100,000/25 cm2 flask 
with Mesenchymal Stem cell Growth Medium (PromoCell) and 
expanded for 1–2 passages before induction of the trans-differentiation.

2.2. Induction of neural trans-differentiation and collection of time-course 
samples

For neural trans-differentiation the BMSCs (lot# 451Z012.3) were 
seeded on fibronectin coated flasks and were allowed to reach a cell 
density of 60–80 % confluence. Once the appropriate confluence was 
reached, trans-differentiation induction was started by addition of Stem 
Cell Neurogenic Differentiation Medium (C-28015, PromoCell). Prior to 
this differentiation induction, the 0 h sample was collected.

Cellular samples were collected from 25 cm2 culture flasks at 0, 3, 6, 
9, 12, 24 and 48 h after addition of Neurogenic Differentiation Medium. 
Four independent replicates of the time-course experiment were per
formed resulting in a total of n=28 cell samples that were subject to 
subsequent RNA expression analyses. For cellular staining analyses, 
differentiation experiments were repeated with an independent bio
logical replicate of cells (lot# 475Z010.3) and examined for represen
tative time-points.

In a control experiment BMSCs were seeded on flasks with MSC 
Growth Medium 2 (C-28009, PromoCell). Cellular samples were 
collected at 0, 3, 6, 24 and 48 h after reaching 60 % confluence.

2.3. Staining of neural protein markers and fluorescence microscopy

Trans-differentiation experiments were repeated, to examine protein 
expression. Representative time-points were selected based on the in
formation from time-course RNA expression data. For immune fluores
cence analysis, BMSC were cultivated on fibronectin coated glass slides 
and allowed to reach 60–80 % confluence. Cells on glass slides for 0 h 
samples were methanol fixed when they reached 60–80 % confluence. 
Cells on glass slides for 9 h, 24 h, 48 h, 3 days and 7 days samples were 
differentiated by addition of Stem Cell Neurogenic Differentiation Me
dium and methanol fixed at the indicated time-points.

Cells on glass slides were permeabilized using 0.1 % Triton X100 for 
15 minutes, blocked with 1 % goat serum for 30 minutes and incubated 
with primary antibodies: rabbit anti-NP-I 1:100 (Abcam, ab300404); 
rabbit anti-MCP1 1:50 (Abcam, ab214819); mouse anti-Nestin 1:200 
(Abcam, ab18102); rabbit anti-ß-III-Tubulin 1:200 (Abcam, ab18207) 
for one hour. After three PBS washing steps, secondary antibodies were 
added (goat anti-rabbit-Alexa Fluor 594 to detect NP-I and MCP1; goat 
anti-mouse-Alexa Fluor 594 and goat anti-rabbit-Alexa Fluor 488 to 
detect Nestin and ß-III-Tubulin) 1:500. Nuclei were counterstained with 
DAPI.

2.4. Total RNA extraction, quantification and quality control

Cellular total RNA was extracted following the manufacturers’ in
structions from miRNeasy Mini Kit (Qiagen, Hilden, Germany). Con
centrations of the isolated samples were determined by NanoDrop™ 
2000c Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, 
USA). RNA integrity was verified using an Agilent 2100 Bioanalyzer 
instrument with the RNA Nano Kit (Agilent Technologies, Santa Clara, 
CA, USA).

2.5. Analysis of time-resolved RNA expression profiles

miRNA and transcriptome profiles were determined based on the 
same total RNA samples. High-throughput miRNA and transcriptome 
expression analyses were conducted as detailed in a previous publica
tion (Diener et al., 2020) using microarray systems from Agilent Tech
nologies (miRNA: Complete Labeling and Hyb Kit with Human SurePrint 
G3 Unrestricted miRNA arrays (Release 21.0, G4872A); transcriptome: 
Low Input Quick Amp Labeling Kit and the Gene Expression Hybridi
zation Kit with Human SurePrint G3 Gene Expression Microarrays (V3, 
G4851C)). For transcriptome analyses, cRNA was purified using RNeasy 
Mini Kit (Qiagen) and cRNA concentrations were determined with a 
NanoDrop™ 2000c Spectrophotometer (Thermo Fisher Scientific Inc.).

2.6. Validation of time-resolved RNA expression patterns by quantitative 
reverse transcription polymerase chain reactions (RT-qPCRs)

The total RNA (500 ng) was reverse transcribed to cDNA using the 
QuantiTect RT Kit, (Qiagen GmbH, Hilden, Germany). For the qPCR 
analyses, 5 ng of the resulting cDNAs were used together with the 
SYBR® Green PCR Kit (Qiagen) and with Qiagen QuantiTect assays: NES 
(QT00235781), NPTX1 (QT00083846), NLGN2 (QT00007189), TUBB3 
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(QT00083713), GAP43 (QT00023639), ITGA5 (QT00080871), PRSS35 
(QT00204113), ANLN (QT00011585), MMP13 (QT00001764). The 
qPCRs were run on a QuantStudio3™ Real-Time PCR System (Applied 
Biosystems™, Foster City, USA). Relative expression levels of the 
analyzed genes were determined with reference to GAPDH (Primer 
Assay: QT00079247) that served as endogenous control. Data evalua
tion was conducted using the Applied Biosystems™ Analysis Software, 
Relative Quantification Analysis Module, VERSION 4.3 (Thermo Fisher 
Scientific Inc.). Due to insufficient sample quantities, only three of the 
original four time-course replicates were included in the RT-qPCRs an
alyses. All analyses were conducted in duplicate technical replicates 
from each of the three biological replicates resulting in six analyses per 
tested gene and time-point.

In addition to RT-qPCR analysis of differentiated MSCs we investi
gated BMSCs with RT-qPCR during growth in MSC Maintenance Me
dium as described above.

2.7. Quantitative evaluation of miRNA expression data

For a quantitative evaluation of the miRNA expression data, a pre
viously determined calibration curve (Diener et al., 2020) was applied to 
the accordingly processed data of the employed microarray analysis 
system. Using Avogadro′s constant and assuming a total amount of 20 pg 
total RNA per cell (Monaco et al., 2012; Tang et al., 2019), absolute 
miRNA expression values [molecules/cell] were extrapolated.

2.8. Microarray processing and statistical comparisons

Microarray image analysis was conducted using Feature Extraction 
software (Agilent Technologies, Santa Clara, CA, USA). Absence of gene 
expression was specified by no detection throughout the microarray 
image analysis and excluded from further analysis. The raw microarray 
data were concatenated into one matrix using Python in version 3.7 with 
the package “NumPy” in version 1.16.4. Further, the data were back
ground corrected, quantile normalized and log2-transformed with R in 
version 3.5.1 with the packages “data.table” (v 1.12.0) and “Bio
conductor-preprocesscore” (v 1.46.0). The processing was applied for 
the transcriptome and miRnome data, respectively. To determine me
dians, fold changes and t-tests, while obtaining the DEG analysis, R in 
version 4.0.3 was used with the package “data.table” in version 1.14.2. 
P-values were adjusted using the Benjamini-Hochberg method. An 
adjusted p-value of ≤ 0.05 was considered statistically significant. As for 
the pair-wise comparisons between the four replicated time-course ex
periments, correlation coefficients (Pearson) were determined by using 
GraphPad Prism software in version 10.1.1 (Graphpad Software, Inc.). 
Unless otherwise stated, high expression levels were defined by a log2 
expression >7.

2.9. Clustering analyses

For the trajectory analysis of the transcriptomic data the expression 
values where standardized via z-scores by transcript (mRNA). The 
clustering of the transcripts by their time trajectory was performed using 
the fuzzy c-means algorithm. The optimal number of clusters was 
selected by investigating the minimum centroid distance measure. The 
miRNA trajectory analysis was accomplished analogously. R in version 
4.1.2 was used with the packages data.table (v 1.14.2) and Mfuzz (v 
2.54.0), the last package was used for z-scoring and clustering.

2.10. Integration of known miRNA-target interactions

Lists of known miRNA-target relations were obtained from the 
miRTargetLink 2.0 online tool (Kern et al., 2021a) performing a search 
on the designated miRNAs under the criterion of a “strong validation” 
typus for the evidenced target interaction. Results were compared with 
the list of prominently altered mRNA transcripts.

2.11. Determination of functional interactions and pathway enrichment 
analyses

Functional interactions were analyzed by and exported from STRING 
database (version 11.5; https://string-db.org/) (Szklarczyk et al., 2021), 
excluding text-mining from the selection of active interaction sources 
and hiding the disconnected nodes. Pathway enrichment analyses were 
conducted by the embedded feature of corresponding STRING interac
tion networks (“Functional enrichments in your network”). In desig
nated cases, subnetworks were represented for the enrichment of certain 
cellular processes.

3. Results

3.1. Experimental setup and quality control

Towards the establishment of neuron-like phenotypes, the cellular 
processes during the first two days of MSC trans-differentiation are yet to 
be deciphered. We conducted a detailed time-course RNA expression 
profiling (Fig. 1A) during the early trans-differentiation of hBMSCs. 
Cells were grown on fibronectin coated flasks and time-course samples 
were collected at 0, 3, 6, 9, 12, 24 and 48 h after addition of a standard 
commercial neurogenic differentiation medium. High quality of the 
RNA time-course samples was confirmed by RNA integrity numbers 
(RIN) ranging from 9.3 to 10.0. High-throughput RNA expression ana
lyses were conducted for both the transcriptome and the miRnome.

3.2. Transcriptome based characterization of the MSC identity

To contribute to a better definition of MSC signatures, we examined 
the expression of conventional MSC markers and of recently reported 
gene signatures in the analysis of our transcriptomics data (Fig. 1B and 
C). We first focused on the time-point before stimulation of the trans- 
differentiation process i.e., the 0 h time-point of our time-course 
analyses.

Our data confirmed high mRNA expression levels of the conventional 
MSC positive markers, CD90/THY1, CD73/NT5E, and CD105/ENG, as 
defined by the International Society for Cellular Therapy (ISCT) 
(Dominici et al., 2006). Corresponding median log2 expression levels at 
the 0 h time-point ranged between 10.48 and 15.42. Antibody staining 
had confirmed these markers on the surfaces of 91 % of the cells (data 
provided by the PromoCell GmbH, Heidelberg, Germany).

Based on the definition by the ISCT, absence of CD11B or CD14, 
CD19 or CD79A, CD34, CD45, and HLA-DR surface molecules is also 
characteristic for the MSC identity (Dominici et al., 2006). Accordingly, 
we found comparatively low RNA expression levels of CD11B/ITGAM 
(median log2 expression: 5.13), CD14 (median log2 expression: 6.57), 
CD19 (median log2 expression: 4.27), CD34 (median log2 expression: 
4.02) and CD45/PTPRC (median log2 expression: 4.74). We found high 
mRNA expression for CD79A with a median log2 expression of 11.30. We 
detected comparatively low expression levels of most HLA-DR subtypes. 
The detected HLA-DRA, HLA-DRB4, HLA-DRB5 transcripts showed a 
median log2 expression of 4.02, 3.91 and 3.27, respectively. HLA-DRB3 
was not detected by our RNA expression analyses. Two mRNA isoforms 
of HLA-DRB1 (NM_002124, NM_001359194), however, were found with 
high mRNA expression levels and median log2 expressions of 7.45 and 
8.54, respectively. As for the negative MSC markers CD14, CD34, CD45 
CD19 and HLA-DR, protein expression was only found on the surfaces of 
2–8 % of the cells (data provided by PromoCell).

Extending our MSC marker analysis to other recently suggested 
signature genes (Rohart et al., 2016), we confirmed high mRNA 
expression of ALCAM/CD166 (median log2 expression: 13.36), ANPEP 
(median log2 expression: 12.51), CD44 (median log2 expression 
NM_001202557: 7.61; NM_001202557: 15.63), ITGA5 (median log2 
expression: 12.74), MME (median log2 expression: 9.60) and PDGFRB 
(median log2 expression: 12.75). We detected comparatively low mRNA 
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expression levels of the recently reported negative markers (Oguma 
et al., 2022; Rohart et al., 2016) CD20/MS4A1 and PECAM1 (median 
log2 expression: 5.02).

3.3. Overall time-course expression changes

Extending our evaluation to further time-points of the early trans- 
differentiation process, a change in mRNA expression was evident for 
most of the MSC marker genes. Compared to the 0 h time-point, 
declining and increasing expression patterns were detectable in both, 
the groups of positive and the negative markers. The overall largest 
expression changes were observed at the end of the time-course analysis, 
i.e., at the 48 h time-point.

Specifically, out of the positive markers (Fig. 1B), six transcripts 
showed a declining expression pattern towards the end of the time- 
course (CD73/NT5E, CD90/THY1, ANPEP, CD44 (NM_001202557), 
CD166/ALCAM, ITGA5), while three showed an increasing expression 
pattern (CD105/ENG, MME, PDGFRB) and one transcript remained 
rather constant (CD44 (NM_000610)). The largest time-course expres
sion changes were observed for ITGA5 and MME. Compared to the 
beginning of the time-course, median log2 fold changes (log2 FCs) of the 
corresponding mRNA transcripts were − 1.53 and 2.78, respectively.

Out of the MSC negative markers (Fig. 1C), six transcripts showed an 
increasing expression pattern (CD14, HLA-DRA, HLA-DRB1 
(NM_002124), HLA-DRB4, HLA-DRB5, PECAM1), four showed a 
declining expression pattern towards the end of the time-course 
(CD11B/ITGAM, CD19, CD45/PTPRC, CD20/MS4A1) and three 
remained rather constant as compared to the beginning (HLA-DRB1 
(NM_001359194), CD34, CD79A). Here, the largest time-course 
expression changes were observed for CD20/MS4A1 and HLA-DRA 
with median log2 FCs of the corresponding mRNA transcripts at − 0.92 
and 5.99, respectively.

3.4. Grouping of transcripts in the early trans-differentiation process

We next identified transcripts with the most prominent time-course 
alterations and evaluated their functional relations. For each of the 
35,369 detected transcripts, the maximum and minimum expression 
levels throughout the time-course were determined based on the median 
results of four independent time-course experiments. Comparing the 
corresponding time-points, prominent expression changes were defined 
by a median fold change (FC) criterion of ≥ 1.5 and their statistical 
significance (p≤0.05) after False Discovery Rate (FDR) correction. We 
identified 18,443 transcripts with prominent time-course alterations, 
comprising 9,009 transcripts with an overall decreased expression and 
9,434 transcripts with an overall increased expression over the 48-hour 
time-period.

Comparing the expression data of the transcripts with prominent 
alterations revealed a very high concordance between the four repli
cated time-course experiments (Fig. 1D), demonstrating a rather uni
form progress of the trans-differentiation process. For most of the 
comparisons the correlation coefficients were above a level of 0.985. A 
slightly reduced correlation was only observed for replicate 1 at the 3 h 
time-point, likely indicating some technical issues as compared to the 
other time-course replicates. However, corresponding Pearsońs corre
lation coefficients were still in a high range between 0.970 and 0.972. 
This consistency allowed grouping the prominently altered transcripts 

into distinct clusters, each with a specific expression pattern over the 
time-course.

3.5. Cellular processes associated with transcript clusters

Categorization of the overall 18,443 prominently altered transcripts, 
identified 15 distinct clusters of expression trajectories (Supplementary 
Figure S1). Cluster 11 encompassed the highest number of transcripts, 
with a total of 1,656, while cluster 3 represented the smallest group with 
897 transcripts (Fig. 2A left axis). To facilitate a comprehensive over
view, the transcriptome and clustering data have been compiled in an 
atlas format and appended to the supplementary materials
(Supplementary Table S1).

To unveil functional associations with cellular processes, enrichment 
analyses for each of the clusters were performed using the STRING 11.5 
in silico tool (Szklarczyk et al., 2021). Considering “GO (Gene Ontology) 
biological processes” (Harris et al., 2004), the most significant terms 
were attributed to cluster 11 (n=390), whereas no significant relations 
to specific cellular processes were identified for Cluster 6. Supplemen
tary table S2 summarizes the top 20 enriched GO processes for each 
cluster based on p-values (see also Supplementary table S3). Corre
sponding functional associations can be assigned to various head cate
gories, including “cellular adhesion”, “ribosome production and 
function”, “transferRNA production and function”, “mitosis and repli
cation”, “immune system and interferone signaling”, “transcriptional 
activity”, “metabolism”, and “development and differentiation”.

Upon searching for the terms “neuron” and “nervous” among the 
significantly enriched processes, specific functions were identified for 
four out of the 15 clusters, including the clusters 3, 7, 10, and 12 (Fig. 2A 
right axis). The expression trajectory of cluster 3, exemplified by the 
NPTX1 transcript, showed an early increase followed by a plateau-like 
phase and a sharp decrease for the remaining time-points (Fig. 2B). 
Cluster 7, represented by the BDNF transcript, exhibited an early in
crease followed by a very slight decrease at later time points (Fig. 2C). 
The expression trajectory of cluster 10, as represented by the CCL2 
transcript, displayed an early decrease followed by a sharp increase for 
the remaining time points (Fig. 2D). Cluster 12, exemplified by the SOX4 
transcript, represented a sharp increase, followed by a short decrease 
and a steady increase during the time course (Fig. 2E).

Besides the enriched GO processes, we identified enrichment of 
various “Monarch human Phenotype Ontology” (Monarch HPO) 
(Shefchek et al., 2020) terms denoting specific relations to neurological 
abnormality and Central Nervous System (CNS)-associated diseases 
(Supplementary Table S3). These terms were significantly enriched in 
clusters 12 and 15. Among the genes in cluster 12 that were associated 
with “Abnormality of the nervous system (HP:0000707)” (adj. 
p=5.60×10− 3; n=248) were for example CYP1B1, MGP, and NTN1. 
Among the genes in cluster 15 that were associated with “Neuro
developmental abnormality (HP:0012759)” (adj. p=1.02×10− 2; 
n=160) were for example NEK2, BLM, and NALCN.

Next, we exemplarily show protein expression of the neuronal pen
traxin 1 (NPTX1/NP-I) and C-C motif chemokine ligand 2 (CCL2/MCP1) 
during 48 h of trans-differentiation. For each time-point and each pro
tein, expression was analyzed in 100 cells. Our cellular protein staining 
shows moderate fluorescence intensities of NPTX1 in about 25 % of the 
MSCs prior to the differentiation (Fig. 2F). After 9 h of trans- 
differentiation, the cells exhibited strong fluorescence intensities with 

Fig. 1. Overview of the experimental design, evaluation of MSC identity markers and time-course correlation of prominently altered transcripts.A: Trans- 
differentiation was in vitro stimulated by neurogenic differentiation medium to human BMSCs that were grown on the surface of fibronectin coated flasks. Cell 
samples for subsequent high-throughput mRNA and miRNA expression analyses were collected at early time-points (0, 3, 6, 9, 12, 24 and 48 h) after induction of the 
trans-differentiation process. The experiment was repeated in four replicates, resulting in a total of 28 RNA time-course samples.B, C: The time-course RNA signatures 
of MSC positive (B) and negative markers (C). Median log2 time-course expression patterns are shown for established and recently introduced MSC identity markers, 
respectively. Separation between these groups is indicated by the red dashed horizontal line. 
D: Expression data of 18,443 transcripts with prominent time-course alterations were compared between the four replicated (rep.) experiments. Resulting Pearsońs 
correlation coefficients (PCCs) are summarized in a correlation matrix.
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a strong staining of cellular extensions. After 24 h and 48 h of trans- 
differentiation only about 8 % and 0.5 % of the cells, respectively, 
showed NPTX1 immune fluorescence. Protein expression analysis of 
CCL2 expression (Fig. 2G) showed weak fluorescence staining all cells at 
the 0 h time-point. After 9 h of trans-differentiation, almost 50 % of cells 
exhibited CCL2 immune fluorescence, albeit at low intensities. After 
24 h and 48 h of trans-differentiation 75 % and 90 % of cells, respec
tively, showed enhanced CCL2 fluorescence staining. Overall, our im
mune fluorescence analyses are consistent with the expression changes 
observed by the RNA time-course analyses.

3.6. Cellular processes associated with most altered transcripts

In-depth examination of the top 100 transcripts with the most 
outstanding fold changes revealed high time-course correlations (Fig. 3A 
and B). For the specific comparisons, most correlation coefficients were 
above 0.94. Slightly reduced correlations were only observed for repli
cate 1 at the 3 h time-point, ranging between 0.858 and 0.890 for the top 
100 decreasing and between 0.878 and 0.904 for the top 100 increasing 
transcripts, respectively.

An analysis of the top 100 decreasing transcripts revealed functional 
associations (Fig. 3C), such as with p53 signaling, including genes like 
GTSE1, RRM2, and CCNE2, and with cell cycle regulation, including 
CDC45 and MCM5. Others of the most decreasing transcripts were 
linked to the maintenance of stemness, including BIRC5, HMMR, and 
MYB.

For the top 100 transcripts with increasing expressions (Fig. 3D), 
functional associations with prostaglandin signaling were evident, 
including genes such as CHI3L1, PTGDS and PPARGC1A. In addition, 
among the top transcripts with increasing expression were genes 
involved in complement signaling, including C5AR1, CDKN1C (p57) and 
C1S/C1R and genes involved in extracellular matrix remodeling, such as 
MMP13, EFEMP1 and FMOD.

3.7. Time course expression of marker genes characteristic for the neural 
lineage differentiation and synapse maturation

To further depict the specificity of the MSC neurogenic trans- 
differentiation process, we evaluated the expression of characteristic 
marker genes for the neural lineage differentiation in context with our 
time-course experiments.

From the beginning of the time-course, high mRNA expression of the 
NSC marker nestin (NES) (median log2 expression at 0 h: 10.78) indi
cated the neural differentiation capability of the analyzed MSCs 
(Minguell et al., 2005) (Fig. 4A). Likewise, high transcript levels of MSI1 
(median log2 expression: 8.23) and VIM (median log2 expression: 17.45) 
were observed at the 0 h time-point. Notably, the mRNAs of all the three 
NSC markers (Oikari et al., 2016a; Sun et al., 2008) showed rather 
constant decreases towards the end of the time-course, but still remained 
at high levels at the 48 h time-point (NES: 9.76; MSI1: 7.39; VIM : 
17.18). For NES and MSI1 these prominent decreases were statistically 
significant.

We next characterized the RNA expression of common neuron dif
ferentiation markers (Coccini et al., 2023; Fan et al., 2020; Jandial et al., 
2008; McKenzie et al., 2018; Oikari et al., 2016a, 2016b; Shi et al., 2018; 
Sun et al., 2008) in context with our BMSC time-courses experiments 

(Fig. 4B).
Amongst the neuron markers with the highest overall expression, 

TUBB3 and ENO1 showed distinct transcript expression already at the 
0 h time-point, i.e. before stimulation of the trans-differentiation process 
(median log2 expression TUBB3 (NM_006086): 15.28; ENO1 
(NM_001428): 15.13). It is known that TUBB3 is expressed in mesen
chymal as well as neural lineages (Tondreau et al., 2004). With time 
progression a minor decline of the corresponding mRNAs was observed. 
Compared to the time-points of maximal and minimal expression, ten 
out of the overall 22 marker transcripts, displayed prominent 
time-course increases (BTBD11 (NM_001018072), DISP2 (NM_033510), 
GAP43 (NM_002045), MAPT (NM_001123066), MAPT (NM_016835), 
NEFM (NM_005382), RBFOX3 (NM_001350453), SCN2A (NM_021007), 
SYT13 (NM_020826), ZMAT4 (NM_024645)) and were, thus, listed in 
the atlas of Supplementary Table S1. Vice versa, six of the marker 
transcripts displayed prominent time-course decreases (DLX2 
(NM_004405), ENO1 (NM_001428), ENO2 (NM_001975), GAD1 
(NM_013445), SERTM1 (NM_203451), SYN1 (NM_006950)).

In addition to general neuron markers, we also characterized the 
expression patterns of common markers for synapse maturation (Cline, 
2005; Coccini et al., 2023; Elias et al., 2008; Gomez de San Jose et al., 
2022; Krueger et al., 2012; Kwon and Chapman, 2011; Pelkey et al., 
2015; Varoqueaux et al., 2006) (Fig. 4C). Out of the 13 analyzed marker 
transcripts, six displayed a prominent increase in expression during the 
time-course (DLG4 (NM_001365), NLGN2 (NM_020795), NLGN4X 
(NM_001282145), NPTXR (NM_014293), NRXN2 (NM_138732), SYP 
(NM_003179)). For example, NLGN2 (NM_020795) continuously 
increased from a value of 9.60–11.93 during the initial 12 h of 
trans-differentiation. Afterwards the expression increase leveled off, 
reaching a maximum of 12.04 after 24 h, and ended with a final level of 
11.71 (48 h). Another isoform of NLGN2 (ENST00000575301) repre
sented the transcript with the overall highest expression level and 
showed only minor changes with a short-term decrease from 12.92 to 
12.14 at the 3 h time-point. Two synapse maturation markers showed 
prominent time-course decreases (NPTX1 (NM_002522); NPTX2 
(NM_002523)). As described above and shown in Fig. 4C, the NPTX1 
transcript displayed a remarkable increase during the early 12 h of 
trans-differentiation (median log2 expression NPTX1 (NM_002522) 0 h: 
7.85; 12 h: 11.19). With time progression, inversion of this trend to
wards an overall decline could be observed, resulting in a final median 
log2 expression level of 4.27.

We exemplarily evaluated the time-course protein detection of nestin 
(NES) and ß-tubulin III (TUBB3) in 100 cells (Fig. 4D-G and Supple
mentary Fig. S2 A-D). At the beginning of the time course (0 h) nestin 
expression was detected in 50 % of the cells and decreased remarkably 
until 48 h with only few cells with nestin expression at the ends of cell 
extensions. In contrast ß-tubulin III expression at the beginning (0 h) 
was detectable in almost all cells. During the following 48 h ß-tubulin III 
expression was detectable in 95 % of cells with strong expression in 
whole cell bodies and extensions. To allow for further assessment, we 
extended our observations of NES and TUBB3 proteins to the advanced 
stages of the trans-differentiation (Fig. 4H and I and Supplementary 
Fig. S2E and F). Interestingly after 3 days cells with simultaneous nestin 
and ß-tubulin III expression in dendrites were detected and after 7 days 
nestin expression increased predominantly at the ends of dendrites, 
while ß-tubulin III expression decreased at the ends of those.

Fig. 2. Representation of prominently altered transcripts by 15 clusters of time-course expression trajectories.A: For the 18,443 prominently altered transcripts 
different shapes of expression trajectories are represented by 15 distinct clusters. The numbers of transcripts that have been assigned to each of the clusters are 
indicated by the black bars and the scale on the left axis. The numbers of significantly enriched Gene Ontology (GO) cellular processes per cluster are indicated by the 
gray bars and the scale on the right axis of the graph. Clusters that include functional connections to neurological processes are marked with arrows.B-E: Expression 
trajectories of the clusters that were enriched for neurological terms are exemplarily represented by NPTX1, BDNF, CCL2 and SOX4. Log2 expression data are shown 
as median results (line) with total ranges (filled areas) of the four replicated time-course experiments.F, G: Selected time-course expression patterns were confirmed 
by fluorescence microscopic analysis of neuronal pentraxin 1 (NPTX1) and C-C motif chemokine ligand 2 (CCL2) proteins. Characteristic time-points were chosen 
based on the corresponding time-course RNA expression data (see B, D). Representative fluorescence microscopic images were taken at a resolution of 40x. DAPI 
staining of cellular nuclei is depicted in blue and immune fluorescence staining of NPTX2 (F) or CCL2 (G) proteins is depicted in red, respectively.
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Fig. 3. Overview on the top hundreds of prominently altered RNA transcripts.A, B: Amongst the 18,443 prominently altered transcripts, the 100 with the highest fold 
changes were determined and separated according to decreasing (A) and increasing (B) expression levels. Corresponding expression data were compared between the 
four replicated (repl.) experiments. Resulting PCCs are summarized in the correlation matrices.C, D: The top 100 transcripts are listed and represented with their 
median log2 time-course expression. For the top 100 decreasing transcripts (C) associations with the p53 signaling, cell cycle progression and stem cell maintenance 
are marked by differently colored arrows as specified in the image. For the top 100 increasing transcripts (D) examples with functional associations to prostaglandin 
signaling, complement signaling and extracellular matrix remodeling are marked accordingly.

C. Diener et al.                                                                                                                                                                                                                                  European Journal of Cell Biology 103 (2024) 151458 

8 

108 results



Fig. 4. Time-course evaluation of neural stem cell (NSC), neuron differentiation and synapse maturation markers.A-C: Time-course RNA expression data were 
evaluated for markers of common neural stem cells (NSC), neuron differentiation (diff.) and synapse maturation markers. Log2 expression patterns of the corre
sponding transcripts are shown as median results of the four time-course experiments.D-I: Selected time-course expression patterns were confirmed by fluorescence 
microscopic analysis of nestin (NES) and class III β-tubulin (TUBB3) protein expression. Protein analyses were conducted at selected time-points during the early 
trans-differentiation process (0, 24 and 48 h; D-G) and after an extended period of 3 days (H) and 7 days (I), respectively. We show two exemplary pictures of the 24 h 
time-point to emphasize the early structural alteration and ß-tubulin III expression within the cells. Representative fluorescence microscopic images were taken at a 
resolution of 40x. DAPI staining of cellular nuclei is depicted in blue. Immune fluorescence staining of NES and TUBB3 is depicted in red and green, respectively.
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3.8. Time-course expression of astrocyte and oligodendrocyte markers

We further extended the evaluation of our hBMSC time-courses data 
to various astrocyte (Fan et al., 2020; Jandial et al., 2008; McKenzie 
et al., 2018; Oikari et al., 2016b; Spurgat and Tang, 2022; Zhang et al., 
2019) and oligodendrocyte differentiation markers (Huang et al., 2020; 
Jandial et al., 2008; Li et al., 2017; McKenzie et al., 2018; Oikari et al., 
2016b; Zheng et al., 2018).

Nine out of the overall 18 astrocyte marker transcripts (Fig. 5A) 
displayed prominent time-course increases as specified above (CLDN10 
(NM_182848), HES1 (NM_005524), PRSS35 (NM_153362), S100B 
(NM_006272), SLC1A2 (NM_004171), STAT3 (NM_213662), TPD52L1 
(NM_001003395), TPD52L1 (NM_001292026), NDRG2 
(NM_001354565)). A distinct time-course increase was observed for 
example for PRSS35 (NM_153362). Starting at a median log2 expression 
value of 4.23, the expression quickly raised, but flattened towards the 
end of the time-course, resulting in final level of 9.65. Three of the 
astrocyte marker transcripts displayed prominent time-course decreases 
(ALDH1L1 (NM_012190), CD44 (NM_001202557), ID1 (NM_002165)). 
For example, the CD44 marker (NM_001202557), showed an initial 
median log2 expression of 7.61 (0 h) decreasing to a level of 6.70 (48 h). 
Another isoform of the CD44 marker (NM_000610) represented the 
astrocyte marker with the overall highest expression level and showed a 
rather constant expression trajectory during the time-course, ranging 
between 15.59 and 15.80.

Amongst the oligodendrocyte differentiation markers (Fig. 5B), 
PDGFRA showed the overall highest expression starting with a median 
log2 expression of 11.56 (0 h) and displaying a minor increase to a level 

of 14.61 (48 h). PDGFRA is involved in the growth and migration of 
mesenchymal cells as well as the signaling of oligodendrocyte pro
genitors (Funa and Sasahara, 2014). Six out of the overall 15 marker 
transcripts displayed prominent time-course increases as specified above 
(CARNS1 (NM_001166222), EGFR (NM_201283), PAIP2B 
(NM_020459), PDGFRA (NM_006206), QDPR (NM_000320), TMEM144 
(NM_018342)). A remarkable increase in mRNA expression was 
observed, for example, for TMEM144 (NM_018342), starting from a 
median log2 expression of 6.32 (0 h) and reaching a level of up to 7.94 
(48 h). Four of the oligodendrocyte marker transcripts displayed 
prominent time-course decreases (ANLN (NM_018685), CSPG4 
(NM_001897), EGFR (NM_005228), GALC (ENST00000622264)). The 
ANLN (NM_018685) transcript, for example, showed a continuous 
mRNA decrease from a median log2 expression of 11.18 (0 h) to 6.12 
(48 h) during the time-course.

3.9. Validation of time-resolved RNA expression patterns

Further validation of the microarray results was performed using RT- 
qPCR. ITGA5 was chosen as a marker for MSC identity, MMP13 as one of 
the top transcripts with increased expression, NES as a marker for NSCs, 
and NLGN2 and NPTX1 as markers for synapse maturation. Additionally, 
TUBB3 and GAP43 were analyzed as markers for neuronal differentia
tion, while the time-course mRNA expression patterns of ANLN and 
PRSS35 were validated as markers for oligodendrocyte and astrocyte 
differentiation, respectively.

Re-analyzing our time-course RNA samples by an independent 
method, we found a striking similarity between the results of the RT- 

Fig. 5. Time-course evaluation of oligodendrocyte and astrocyte differentiation markers.Time-course RNA expression data were evaluated for common astrocyte (A) 
and oligodendrocyte (B) differentiation (diff.) markers. Log2 expression patterns of the corresponding transcripts are shown as median results of the four time-course 
experiments.
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qPCRs and the median results of the original microarray analyses. As 
shown in Fig. 6, the comparative analysis confirmed that both the ranges 
and shapes of the time-course patterns matched, confirming the validity 
of our microarray data.

As determined by RT-qPCR analyses, marker expression was 
different between trans-differentiated cells and control cells with 
mesenchymal maintenance medium as exemplified for expression of 
neuron differentiation marker GAP43 and synapse maturation marker 
NLGN2 and MSC marker ITGA5 (Supplementary Fig. S3).

3.10. Time-course expression of microRNAs in the early trans- 
differentiation process

MicroRNAs (miRNAs) exhibit their function by inducing expression 
reduction of their specific target genes at the post-transcriptional level 
(Bartoszewski and Sikorski, 2018; Diener et al., 2023b; Yao, 2016). To 
investigate the potential impact of miRNA-mediated post-
transcriptional regulation as part of the trans-differentiation process, we 
conducted a comprehensive analysis of the miRNome alongside the 
transcriptome at time-points 0, 3, 6, 9, 12, 24, and 48 h, following 
trans-differentiation induction.

We identified 91 prominently altered miRNAs exhibiting significant 
time-course expression changes with a fold change ≥1.5. Among them, 
46 demonstrated an overall decreased expression, while 45 displayed 
increased expression over the 48-hour period.

As for the mRNA transcripts we examined the dynamics of changes in 
the median log2 miRNA expression over the 48-hour timespan. High 
time-course consistency between the replicated experiments, 
comprising correlation coefficients of more than 0.960 (Supplementary 
Figure S4A), allowed grouping of the 91 prominently altered microRNAs 
into distinct clusters, each representing a specific expression pattern 
over the time-course. The various expression trajectories were catego
rized into five distinct clusters (Supplementary Fig. S4B). As for the 
transcriptome data, the miRNome expression and clustering data are 
provided in an atlas format in the supplementary materials 
(Supplementary Table S4).

Cluster 2 contained the highest number of miRNAs, with a total of 
33, while clusters 4 and 5 were the smallest with 12 miRNAs each 
(Fig. 7A). Cluster 1, typified by a continuous decrease in expression 
following an initial latency of approximately 12 h, was exemplified by 
hsa-miR-15b-5p (Fig. 7B). Cluster 2, characterized by a continuous in
crease in expression after a certain latency period of 6 h, was exempli
fied by hsa-miR-27b-3p (Fig. 7C). Cluster 3, displaying a continuously 
decreasing expression trajectory, included several members of the miR- 
17 family, such as hsa-miR-18a-5p (Fig. 7D). Cluster 4 with a continu
ously increasing expression trajectory, encompassed various members of 
the let-7 miRNAs, including hsa-let-7c-5p (Fig. 7E). Cluster 5 was 
marked by an early decrease followed by a plateau-like phase at later 
time-points, featured 12 miRNAs including hsa-miR-503–5p (Fig. 7F).

To quantify the above-described expression changes, we utilized a 
calibration curve from a previous study (Diener et al., 2020), revealing 
that the most prominent alterations ranged within a magnitude of 
102-103 molecules per cell during the 48-hour observation window. 
Notably, this range aligns well with findings in other cell types (Diener 
et al., 2020). Among the top miRNAs with the largest changes in mo
lecular expression were for example hsa-let-7b-5p with +4,103 mole
cules/cell, hsa-miR-6089 with +2,311 molecules/cell, hsa-miR-34a-5p 
with +1,577 molecules/cell, hsa-miR-1260b with -2,303 molecule
s/cell, hsa-miR-221–3p with − 520 molecules/cell and hsa-miR-15b-5p 
with − 335 molecules/cell (Fig. 7G).

To gain insight into the regulatory roles of the prominently altered 
miRNAs, we searched for experimentally validated miRNA-target in
teractions using the in-silico tool miRTargetLink 2.0 (https://ccb-compu 
te.cs.uni-saarland.de/mirtargetlink2) (Kern et al., 2021a). Since miR
NAs often exert their regulatory effects by causing a decrease in the 
expression of their mRNA targets (Guo et al., 2010), we utilized the 

time-course expression data to identify inversely expressed targets. We 
identified 203 miRNA-target interactions for the 45 miRNAs with 
increasing miRNA expression levels and 341 target interactions for the 
46 miRNAs with decreasing expressions (see Supplementary Table S5). 
Subsequently, we constructed interaction networks for the correspond
ing proteins using the STRING 11.5 database (Szklarczyk et al., 2021) 
and highlighted sub-networks associated with the GO term "neuron 
differentiation" (Fig. 8A and B). Within the network for decreasing 
miRNAs, we identified central nodes such as STAT3 and VEGFA mRNAs, 
both of which displayed increased expression during the observed 
time-course (Fig. 8A). The corresponding proteins have previously been 
linked to neural differentiation and MSC trans-differentiation (Snyder 
et al., 2011; Theis and Theiss, 2018; Wada et al., 2006). Within the 
networks for increasing miRNAs, we identified central nodes such as 
MAPK1 and MET, both of which exhibited decreased expression over the 
time course (Fig. 8B). The expression of the these appears to be restricted 
to specific stages of the neural differentiation process (Semprich et al., 
2022; Zheng et al., 2013).

4. Discussion

The ISCT defines MSC identity through the expression of specific 
surface markers (Dominici et al., 2006). However, the definition of clear 
signatures remains controversial due to heterogeneous results and is an 
ongoing process (Musial-Wysocka et al., 2019; Pittenger et al., 2019; 
Wang et al., 2021). Nonetheless, there is growing evidence that gene 
expression data can refine the criteria for a more precise definition of 
MSC identity (Pittenger et al., 2019). A major aim of our study was to 
contribute to this effort by better defining MSC signatures.

Most of the conventional and various recently introduced markers 
appear to efficiently indicate MSC identity. We found high RNA 
expression levels of various MSC positive markers including genes such 
as CD44, THY1 (CD90), NT5E (CD73), ENG (CD105), ALCAM (CD166), 
ITGA5, MME and PDGFRB. Notably, CD44 has also been considered as an 
intermediate marker for astrocyte differentiation from human pluripo
tent stem cells (Cai et al., 2012; Oikari et al., 2016b; Shaltouki et al., 
2013). Low mRNA expression was detected for several MSC negative 
markers including ITGAM (CD11B), CD14, CD19, MS4A1 (CD20), CD34, 
PTPRC (CD45), PECAM1 and most HLA-DR isoforms. Consistent with 
our findings of an elevated expression of HLA-DRB1, an independent 
study also detected high HLA-DRB1 mRNA expression in human BMSCs. 
The elevated expression was, however, not confirmed at the protein 
level (Oguma et al., 2022).

Our time-course transcriptomics data identified several markers like 
ITGA5 or HLA-DRA that showed an altered expression shortly after the 
cellular stimulation. These markers appear to be well suited to distin
guish between the original MSC identity and the emerging neurogenic 
trans-differentiation.

Our analysis of transcripts with significant time-course alterations 
aimed to decipher the transcriptional restructuring that drives MSCs 
towards a neuron-like phenotype (Cortes-Medina et al., 2019; Khan 
et al., 2020). Our data highlight functional connections to cellular pro
cesses, typically involved in neuronal differentiation.

Various transcripts that exhibit substantial decreases over the time- 
course, have been associated with p53 signaling and cell cycle pro
gression. Exemplary genes, such as GTSE1, RRM2 and CCNE2, are 
regarded as p53 negative regulators (Gorjala et al., 2016; He et al., 2017; 
Monte et al., 2003; Scolz et al., 2012). Examples involved in cell cycle 
regulation, particularly in S phase transition, included genes such as 
CDC45 and MCM5 (Chapouton et al., 2010; Huang et al., 2022; Quinn 
et al., 2001). Generally, an altered p53 activity and a delay in cell cycle 
have previously been linked to neurogenesis in the CNS 
(Farioli-Vecchioli and Tirone, 2015; Hardwick et al., 2015; Ruijtenberg 
and van den Heuvel, 2016; Xiong et al., 2020). Other transcripts dis
played substantial increases and play critical roles in prostaglandin D2 
(Augustyniak et al., 2017; Sakry et al., 2015; Zhou et al., 2015) and in 
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complement pathways (Coulthard et al., 2017; Furutachi et al., 2013; 
Walsh et al., 2017), both of which have been associated with neurogenic 
differentiation (Coulthard et al., 2017; Nango et al., 2020; Thomas et al., 
2000). Notably, similar changes in both prostaglandin and complement 
signaling were also prevalent during the neurogenic differentiation of 
human induced pluripotent stem cells (iPSCs) (Augustyniak et al., 2017; 
Walsh et al., 2017), another type of stem cell with therapeutic potential 
that can be generated by the reprogramming of somatic cells 
(Thanaskody et al., 2022).

Alteration of additional processes with common links to neuronal 
development were identified as the result of our gene set enrichment 
analyses, including various head categories such as cellular adhesion 
(Migliorini et al., 2013), ribosomal and transfer RNA (rRNA, tRNA) 
functions (Fusco et al., 2021; Ramos and Fu, 2019), cell division 
(Farioli-Vecchioli and Tirone, 2015; McKinnon, 2013), immune 
signaling (Filiano et al., 2016; Morimoto and Nakajima, 2019), tran
scriptional activity (Hamby et al., 2008), and cellular metabolism 
(Fawal and Davy, 2018).

Additionally, there were expression changes in transcripts that have 
well-established roles in neural differentiation signaling. Examples 
include NPTX1 that showed an early increase followed by a sharp 
decrease for the remaining time-points of our analysis. The specific 
expression pattern was also verified when staining the according cellular 
proteins and likely plays a crucial role in the early growth of synapse- 
like connections (Gomez de San Jose et al., 2022). Likewise, the 
expression of the transcription factor SOX4 that showed an increasing 
expression in our time course analysis, is thought to be crucial for 
establishing neuronal identity (Bergsland et al., 2006). CCL2 that also 
showed an increasing expression, both at the mRNA and protein levels, 
has former been demonstrated as a common regulator of neuronal 
functions (Hong et al., 2015). Moreover, the neurotrophic factor BDNF 
that showed altered expression pattern in our MSC trans-differentiation 
experiments has been associated with neurogenic differentiation. Evi
dence for a decisive role of BDNF stems from studies showing that BDNF 
supplementation enhances the efficiency of human neural precursor cell 
differentiation (Jiao et al., 2014) and that overexpression of the BDNF 
gene promotes the neurogenic trans-differentiation of rodent BMSCs 
(Liu et al., 2015).

Overall, the nature of the transcripts that are prominently altered in 
the first few hours following the induction of the trans-differentiation, 
clearly demonstrates a wide-ranging reorganization of cellular path
ways. The according changes likely are the first essential steps towards 
for the acquisition of neuron-like features.

In addition to the evaluation of the transcriptomics, our data also 
imply that miRNAs act as potential drivers of the cellular trans- 
differentiation. As for the early dynamics of miRNAs during neuro
genic MSC trans-differentiation, we found altered expression patterns of 
multiple miRNAs that have previously been associated with the differ
entiation of neurons. Specifically, hsa-let-7b-5p and hsa-miR-34a-5p 
that have been linked to neural stem cell differentiation and mature 
neuron signaling exhibit significant expression changes (Aranha et al., 
2011; Kern et al., 2021b; Zhao et al., 2010). MiR-34a-5p has also been 
considered a potential driver of BMSC neurogenic trans-differentiation 
in rodent models (Liu et al., 2011). Hsa-miR-221–3p that showed a 
strong decreased expression during early BMSC trans-differentiation has 
been linked to the differentiation of neural crest cells (Greene and 
Tischler, 1976; Hamada et al., 2012). Its downregulation has also been 
shown to facilitate BMSC differentiation into osteoblasts (Gan et al., 

2020), suggesting an essential role in BMSC differentiation signaling.
Our clustering analysis identified further miRNAs that have previ

ously been connected to neural development and differentiation. An 
increasing time-course trajectory was identified, for example, for hsa- 
miR-27b-3p that is an abundant neuronal miRNA, which negatively 
regulates pluripotency associated genes (Fuchs et al., 2014; Poon et al., 
2016). Other examples include several members of the let-7 family that 
has been linked to the regulation of neural stem cell proliferation and 
differentiation (Roush and Slack, 2008; Zhao et al., 2010). The miR-17 
family, which showed a decreasing time-course pattern in our experi
ments was previously found to have a reduced expression during pro
gressive brain development (Mao et al., 2014; Xia et al., 2022). 
Hsa-miR-15b-5p, considered as a negative regulator of BDNF, and 
hsa-miR-503–5p, which likely inhibits neural lineages, also showed 
decreasing time-course expression patterns (Boone et al., 2017; He et al., 
2021).

To date only a portion of the miRNAs that found their way into da
tabases have been validated for their nature as true miRNAs (Alles et al., 
2019; Diener et al., 2023b). Some candidates, particularly those with 
high miRNA numbers, have only been annotated based on recent RNA 
sequencing data and may not necessarily represent true miRNAs. 
However, this does not imply the absence of cellular functions for the 
corresponding molecules (Diener et al., 2024). Future analyses should 
explore the potential roles of poorly characterized miRNAs, like 
hsa-miR-1260b and hsa-miR-6089, which show significant expression 
changes in our time-course data. Nevertheless, our evaluation of 
experimentally validated miRNA-target interactions indicated multiple 
neuronal differentiation genes as potential targets of miRNAs in the 
context of neurogenic trans-differentiation. The finding of many shared 
miRNA-targets within the corresponding regulatory networks un
derscores the functional interaction of different miRNAs to enhance 
their regulatory efficiency (Bartoszewski and Sikorski, 2018; Diener 
et al., 2022, 2023b; Gebert and MacRae, 2019; Schmitz et al., 2014; 
Selbach et al., 2008).

MSCs` ability to trans-differentiate into neural cells makes them a 
promising source for treating neurological injuries and neurodegenera
tive diseases. However, given the critical nature of transplanting MSC- 
derived neurons into the CNS, safety assessments are crucial. Our 
time-course analyses suggest potential issues with the neural trans- 
differentiation process that warrant further investigation.

Prominent time-course alterations of several transcripts indicate as
sociations with CNS abnormalities and diseases of the nervous system. 
Expressional increases of specific transcripts such as CYP1B1, MGP and 
NTN1 (Alsubait et al., 2020; Mertsch et al., 2009; Ylivinkka et al., 2017) 
have previously been associated with the development of brain resident 
tumor entities. In addition, a reduced expression of BLM has been 
associated with genomic instability and a high predisposition to tumors 
(Cunniff et al., 2017; van Wietmarschen et al., 2018), while substantial 
reduction of NALCN mRNA has been associated with failures in neuronal 
excitability (Cochet-Bissuel et al., 2014). We also observed substantial 
increases in the expression of extracellular matrix (EM) modulators such 
as MMP13, EFEMP1 and FMOD (Jan et al., 2016; Li et al., 2022; Liv
ingstone et al., 2020) during the early trans-differentiation process. 
While the peripheral secretion of growth factors and cytokines is likely 
advantageous for the therapeutic potential of MSCs (Han et al., 2022; 
Liang et al., 2021) the paracrine action of proteins including the EM 
modulators (Hu et al., 2012; Inoue et al., 2010; Sengupta et al., 2022) 
still raises concerns about their tumorigenic potential.

Fig. 6. Validation of time-resolved RNA expression patterns by RT-qPCRs.To confirm the microarray results, exemplary RT-qPCR were conducted to validate the 
mRNA expression patterns for nine representative genes: (A) ITGA5 as a representative marker for the MSC identity, (B) MMP13, the transcript of which was amongst 
the top increasing mRNAs, (C) NES as NSC marker, (D, E) NLGN2 and NPTX1 as markers for synapse maturation, (F, G) TUBB3 and GAP43 as neuron differentiation 
markers, (H) ANLN as oligodendrocyte and (I) PRSS35 as astrocyte differentiation marker. As the results of the RT-qPCR analyses, relative quantitation (Rq) of the 
corresponding mRNAs was conducted in relation to GAPDH housekeeping gene expression. Rq plots are shown on the left axis as median results (turquoise line) with 
the total range (turquoise shaded) of three replicated time-course experiments that were assayed in technical duplicates. They are illustrated in comparison to the 
median microarray results (black dotted line; right axis).

C. Diener et al.                                                                                                                                                                                                                                  European Journal of Cell Biology 103 (2024) 151458 

13 

results 113



Fig. 7. Representation of prominently altered microRNAs by five clusters of time-course expression trajectories and quantitative overview on the highest miRNA 
expression changes.A: For 91 prominently altered microRNAs (miRNAs, miRs) the different shapes of time-course expression trajectories were represented by five 
distinct clusters. An overview on the number of miRNAs that have been assigned to each of the clusters is depicted.B-F: Representative expression trajectories are 
exemplarily illustrated by miR-15b-5p (B), miR-27b-3p (C), miR-18a-5p (D), let-7c-5p (E) and miR-503–5p (F), respectively. Log2 expression data are shown as 
median results (line) with total ranges (filled areas) of the four replicated time-course experiments.G: As the result of quantitative evaluation, molecular changes are 
depicted for the most altered miRNAs. Maximum time-course changes are represented for the top 10 decreasing and increasing miRNAs, respectively. Separation 
between these groups is indicated by the black dashed horizontal line.
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Fig. 8. Networks of miRNA-target interactions.Validated miRNA-target interactions were matched with time-resolved RNA expression data. Including the 91 
prominently altered miRNAs, inverse directions of time-course expression patterns were assumed for their targeted transcripts. The represented networks, showing 
functional interactions between the resulting targets, were generated and exported from the STRING database. Networks are represented for the increasing targets of 
decreasing miRNAs (A) and the decreasing targets of increasing miRNAs (B), respectively. Targets that showed a connection to the GO term "neuron differentiation" 
are highlighted in red and exemplary targets at central nodes of the networks are identified by black circles.
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In the CNS, neural stem cells (NSCs) originating from the embryonic 
ectoderm, give rise to both neurons and glia cells (Kennea and Mehmet, 
2002; Tang et al., 2017). Similarly, MSCs have been described to possess 
the capability to trans-differentiate into these cell types (Urrutia et al., 
2019). As for the expression dynamics of neural and glial signatures, we 
found ambiguous characteristics of neurons, astrocytes and oligoden
drocytes upon the in vitro neurogenic trans-differentiation process. 
These different characteristics may be explained by a mixed cell popu
lation comprising neurons and glial cells. A similar scenario has previ
ously been reported for umbilical cord derived MSCs (UC-MSCs). After 
stimulation of the UC-MSCs with neuronal conditioned medium for up to 
12 days, expression of some glial proteins was observed in a portion of 
the trans-differentiated cells (Fu et al., 2004). Remarkably, our protein 
staining analyses revealed heterogeneity in the distribution of certain 
protein markers among the cells, indicating distinct cellular variability 
(Freeman et al., 2015). Future projects could benefit from more detailed 
insights into the composition of trans-differentiated cell populations, 
potentially using single-cell transcriptome or flow cytometric analyses.

It is also conceivable that the ambiguous marker characteristics 
reflect an uncompleted cell type differentiation. Various transcripts that 
are associated with the maintenance of stemness showed decreasing 
expression levels during the time-course, including genes such as BIRC5 
(Gil-Kulik et al., 2019), HMMR (Tilghman et al., 2014) and MYB 
(Malaterre et al., 2008). On the other hand, somatic stemness markers 
such as KLF4 or MYC (Qin et al., 2011; Zaytseva et al., 2020; Zhao et al., 
2017) exhibited an unexpected expression increase. Reduced expression 
of further stemness markers, as for example NEK2, has previously been 
linked to inefficient neural differentiation and the persistence of plu
ripotency (Spice et al., 2022). In addition, we were able to detect NSC 
specific genes throughout the trans-differentiation process, for example 
nestin that was detectable even up to 7 days, as validated by protein 
staining analyses. Overall, our findings and other reports on a later 
lineage conversion of terminally differentiated MSCs (Song and Tuan, 
2004) imply the maintenance of a residual stem cell capacity. This 
should be acknowledged when assessing the utility of MSC-derived 
neurons for the transplantation into critical tissues like the CNS. 
Future studies should focus on a comprehensive assessment of persistent 
stem cell characteristics in the resulting neuron-like cells. Further 
transcriptomic analysis will be necessary during first hours after trans
plantation to decipher the directions of those cells in an in vivo envi
ronment. Potential strategies to mitigate tumorgenicity and stemness 
persistence will depend on results of transcriptomic analysis of cells 
isolated from in vivo experiments.

In summary, our time-resolved RNA profiling provides a compre
hensive view on the transcriptomic landscape during the early MSC 
trans-differentiation process and highlights functional links to the 
acquisition of neuronal features. The assessment of experimentally 
validated target interactions together with the time-resolved RNA 
expression data indicate an essential role of microRNA mediated post- 
transcriptional regulations in the early MSC trans-differentiation. The 
combination of MSC identity markers shows that RNA signatures 
contribute to distinguish between the native MSC cell state and an 
emerging neurogenic trans-differentiation. Our data further indicate 
potential safety risks of MSC-derived neurons by showing an expression 
of common tumorigenic factors and the maintenance of stem cell 
characteristics.
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A B S T R A C T   

Obtaining high-quality omics data at the single-cell level from archived human tissue samples is crucial for 
gaining insights into cellular heterogeneity and pushing the field of personalized medicine forward. In this 
technical brief we present a comprehensive methodological framework for the efficient enzyme-free preparation 
of tissue-derived single cell suspensions and their conversion into single-cell miRNA sequencing libraries. The 
resulting data from this study have the potential to deepen our understanding of miRNA expression at the single- 
cell level and its relevance in the context of the examined tissues. The workflow encompasses tissue collection, 
RNALater immersion, storage, thawing, TissueGrinder-mediated dissociation, miRNA lysis, library preparation, 
sequencing, and data analysis. Quality control measures ensure reliable miRNA data, with specific attention to 
sample quality. The UMAP analysis reveals tissue-specific cell clustering, while miRNA diversity reflects tissue 
variations. The presented workflow effectively processes preserved tissues, extending opportunities for retro
spective analysis and biobank utilization.   

1. Introduction 

In the era of personalized medicine, the molecular characterization 
of diseases is increasingly coming into focus, as the response of 
numerous therapies depends on the molecular genetic alterations of the 
individual disease [1]. In particular, addressing diseases with intricate 
and diverse patterns demands a thorough comprehension of intracel
lular processes to guide effective treatment strategies [2,3] . Single cell 
micro RNAs (miRNA) profiling can offer a valuable avenue for deci
phering the complexities of these intracellular processes in order to 
enhance the understanding of individual disease [4]. miRNA are a type 
of small RNA molecules that play important roles in gene regulation [5]. 
They show tissue-specific expression patterns and are often dysregulated 
in diseases, making them valuable biomarkers. In the context of disease 
treatment, miRNA data can be used to: Identify new biomarkers for 
diagnosis and prognosis, study the effects of treatments on miRNA 
expression and develop new targeted therapies that target miRNAs 

[6–8]. 
In the last decade, several technologies for single-cell profiling have 

been developed and used in various applications, revealing many new 
insights. High-throughput methods for single cell analysis such as flow 
or mass cytometry and single cell sequencing are ideal for comprehen
sive identification of single cells based on molecular information [9,10]. 
These methods have already begun to transform the understanding of 
complex tissues by enabling the identification of previously unknown 
cell types and states [11,12]. While single cell sequencing is clearly a 
powerful diagnostic method, there can be confounding factors in the 
tissue dissociation process into individual cells that can negatively 
impact the quality and reliability of the data. One factor is the lack of 
standardisation, which can lead to significant differences between 
different research groups and tissue types. Another major challenge is 
that incomplete disaggregation could bias results towards cell types that 
are easier to dissociate [13]. A recent study by Wu et al., in which 
single-cell RNA sequencing was performed using samples from mouse 
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kidneys, found that endothelial cells and mesangial cells were under
represented in the scRNA-seq data [14]. Ultimately, long enzymatic 
digestion times have been shown to alter transcriptomic signatures and 
induce stress responses that affect cell classification. Solving these 
challenges would help drive the future of tissue mapping and disease 
diagnostics through the field of single-cell sequencing. Therefore, new 
approaches and technologies are urgently needed to ensure the reli
ability and wide acceptance of single-cell tissue analysis methods. Single 
cell sequencing methods mainly focus on mRNA, but for single cell 
miRNA sequencing only very few protocols are available [15–19] . 
Enzyme-free tissue dissociation is a promising new approach for 
miRNA-Seq from archived frozen biopsy samples. This method uses 
mechanical force to dissociate tissue into single cells without the use of 
enzymes [20,21]. While mRNA molecules are often subjected to 
degradation processes during long-term storage, miRNA molecules, 
owing to their compact size, exhibit robust resistance to such degrada
tion. This characteristic allows miRNA profiles to retain a reflection of 
the native biological landscape, presenting an invaluable opportunity to 
investigate the molecular states as they existed prior to the archival 
process. Another reason for emphasizing miRNA analysis lies in the 
regulatory role of miRNAs in gene expression. By examining miRNA 
profiles, one not only gains insights into the preservation of the bio
logical state but also indirectly access information about gene expression 
profiles. miRNAs serve as mediators of post-transcriptional gene regu
lation, and variations in their abundance can have profound effects on 
the gene expression landscape. In essence, the choice to prioritize 
miRNA analysis in archived tissue samples is driven by the unique ad
vantages of miRNA stability over time and their pivotal role as regula
tors of gene expression. This would be particularly important for the 
transfer of single-cell diagnostics to human samples in the clinical 
setting. 

This technical brief details the methods and procedures employed for 
the investigation of human tissue samples preserved in RNALater at − 80 
◦C, and processed for single-cell miRNA sequencing. The study aimed to 
assess a proof of concept workflow for an enzyme free tissue-to-single- 
cell conversion using a TissueGrinder and subsequent isolation of indi
vidual cells for miRNA-Seq analysis. 

2. Material and methods 

2.1. Human sample collection 

Tissue samples from two human donors of the miRNATissueAtlas2 
were used [22]. The bodies were obtained as donations for research and 
teaching purposes. The local institutional reviewer board (Ethikkom
mission der Ärztekammer des Saarlandes – Nr. 329/20) approved the 
study. The donor of the liver and spleen sample died on heart failure. 
The donor of the cortex sample also died on heart failure, but had the 
concomitant diagnosis of lung cancer. Upon arrival at the Department of 
Anatomy, between 8- and 48-h post-mortem, tissue samples were 
collected. Samples were immediately put in RNALater (Thermo Fisher 
Scientific) and stored at − 80 ◦C. 

2.2. Enzyme-free tissue dissociation 

The thawed tissue sample was placed in a petri dish filled with 1 ml 
PBS (Life Technologies) and cutted with a scalpel into smaller pieces. 
Every sample was distributed on two dissociation experiments. The 
tissue pieces were placed into the grinding gear of a TissueGrinder tube 
(Fast Forward Discoveries GmbH) and the grinding gear was filled with 
800 µl PBS. For tissue dissociation of the spleen sample, the Tissue 
Grinder program spleen and a 70 µm filter or a modified version of the 
spleen program (50 % lower rpms at all steps) and a 40 µm filter were 
used. For the liver sample, the program liver or a modified version of the 
liver program (50 % lower rpms and 5 s shorter at all steps) and a 70 µm 
filter were used. For the cortex sample, a modified version of the spleen 

program and a 100 µm filter was used. Next, the TissueGrinder tube was 
centrifuged for 5 min at 300 g. The grinding gear was opened, washed 
with 3–5 ml PBS and centrifuged again for 1 min. The cell count and the 
amount of dead cells of the resulting single cell suspension were deter
mined using a Countess (Invitrogen). 

2.3. Single cell isolation 

A live-dead staining was performed using Trypan Blue Stain 0.4 % 
(Invitrogen). Cell suspensions were placed on AdcellTM diagnostic 
slides (Thermo Fisher Scientific). Single living cells were isolated under 
the microscope in 1 µl PBS using a micromanipulator (Patchman NP2) 
with pump (CellTram, both Eppendorf) and placed into 2 µl of lysis 
buffer (0.2 % Triton X-100 (Sigma-Aldrich)) and 4 U recombinant RNase 
inhibitor (Clontech Takara). Samples were stored at − 80 ◦C for up to six 
months. 

2.4. Library preparation for miRNA sequencing 

The preparation of the single cell miRNA sequencing libraries was 
performed as described in Hücker et al., 2021, Nature Comm. [15] for 
the SBN_CL protocol with minor modifications. First, 5.8S rRNA masking 
and 3′ CL adapter ligation were performed. To prepare the Excess 
Adapter Removal mix, 5 µM RT primer (Biomers), 0.2 U 1 U µl-1 RNase I 
and 5 mM DTT (both Biozym) were mixed and incubation at 37 ◦C for 30 
min, at 70 ◦C for 20 min and forever at 8 ◦C was performed. Then, 0.5 µl 
5 U µl-1 Lambda Exonuclease and 0.5 µl 50 U µl-1 5′ Deadenylase (both 
NEB) were added to the mix per sample. 2 µl of the Excess Adapter 
Removal mix were pipetted to every sample and incubated for 15 min at 
30 ◦C, for 15 min at 37 ◦C and forever at 8 ◦C. Ligation of the 5′ CL 
adapter and reverse transcription were performed as described in the 
original SBN_CL protocol. For the first PCR amplification, 12.5 µl per 
sample of the following mix were prepared: 1 µM RP1 oligo (Biomers), 
1x Phusion HF Buffer (Thermo Fisher Scientific), 0.15 mM dNTPs 
(Roche), 1.3 U RNase I and 5 mM DTT (both Biozym) and incubated for 
30 min at 37 ◦C, for 20 min at 70 ◦C and forever at 8 ◦C. Next, 1 U 
Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific) per 
sample were added. Then, 13 µl of the PCR1 mix were pipetted to every 
sample (total volume 30 µl) and the following PCR program was used: 30 
s at 98 ◦C, 13 cycles of 10 s at 98 ◦C, 30 s at 60 ◦C, 30 s at 72 ◦C, followed 
by a final elongation of 5 min at 72 ◦C and storage at 8 ◦C. For the second 
PCR amplification, 23.25 µl per sample of the PCR2 mix were prepared: 
0.8 µM RP1 oligo (Biomers), 1x Phusion HF Buffer (Thermo Fisher Sci
entific), 0.2 mM dNTPs (Roche), 2.35 U RNase I and 5 mM DTT (both 
Biozym) and incubated for 30 min at 37 ◦C, for 20 min at 70 ◦C and 
forever at 8 ◦C. Next, 0.5 U Phusion Hot Start II DNA Polymerase 
(Thermo Fisher Scientific) per sample were added. Then, 23.5 µl PCR2 
mix were pipetted in a fresh 0.2 ml PCR tube and 1 µl sample after PCR1 
and 0.5 µl of an 100 µM individual index primer were added. For PCR2 
the following program was used: 30 s at 98 ◦C, 13 cycles of 10 s at 98 ◦C, 
30 s at 67 ◦C, 30 s at 72 ◦C, followed by a final elongation of 5 min at 72 
◦C and storage at 8 ◦C. Finally, Ampure XP Bead (Beckman Coulter) size 
selection was performed using bead to sample ratios of 1x and 1.6x. 

The concentration of every miRNA library was determined using the 
Qubit High Sensitivity DNA kit (Life Technologies). If necessary, the 
samples were diluted to 1.8 ng µl− 1 and the fragment length distribution 
was evaluated on a Bioanalyzer High Sensitivity dsDNA chip (Agilent 
Technologies). 

2.5. Sequencing 

The miRNA libraries were quantified using the KAPA Library 
Quantification Kit for Illumina (Roche). All libraries were pooled in 
equimolar concentration and sequenced on an Illumina MiSeq instru
ment. A final concentration of 18 pM library spiked with 5 % PhiX 
(Illumina) was sequenced (75 bp, single read) using a MiSeq Reagent Kit 
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V3 – 150 Cycles (Illumina). 

2.6. Bioinformatic analysis 

The bioinformatic analysis of the cell miRNA sequencing libraries 
were conducted following the methodology outlined in Hücker et al., 
2021, published in Nature Communications [15]. Here, a concise sum
mary of the described procedures is provided for clarity and reference. In 
the Bioinformatics analysis, Illumina BCL files were converted to FASTQ 
format using bcl2fastq (2.19.0.316). Reads with unique molecular 
identifiers (UMIs) had their UMIs incorporated into the header. After 
adapter and quality trimming with cutadapt (2.1042), reads were 
mapped to the human genome (GRCh38) using STAR (2.7.5b). RNA 
classes were assigned using featureCounts (1.5.2) based on annotations 
from GENCODE, miRBase, piRBase, and GtRNAdb. Unannotated regions 
were labeled "unmapped" Reads were hierarchically assigned to cate
gories, with prioritization in cases of ambiguity. miRNA expression was 
quantified with mirquantify (1.0.1) from miRMaster (2.0) [23], and 
deduplication was performed with UMI-tools (1.0.0). Data were 
analyzed with and without subsampling using R and Seurat (4.4.0), and 
various visualizations and analysis were conducted for miRNA vari
ability, clustering, and enrichment. 

3. Results 

In order investigate the viability of converting tissues, initially stored 
in RNALater at − 80 ◦C for two years, into a single-cell suspension a 
TissueGrinder was used. Subsequently, the isolated individual cells were 
processed for analysis in miRNA lysis buffer, paving the way for miRNA- 
Seq investigations. This workflow (Fig. 1) outlines a comprehensive 
procedure for obtaining high-quality miRNA-Seq data from RNALater- 
stored tissues. Initially, following rapid autopsy, tissue samples un
dergo immediate immersion in RNALater, ensuring the stabilization of 
RNA. Subsequently, these RNALater-preserved tissues are stored at − 80 
◦C until required for processing. Upon thawing, tissues undergo effective 
dissociation into a single-cell suspension facilitated by the Tissue
Grinder. The TissueGrinder’s grinding unit exert controlled mechanical 
forces, ensuring gentle yet effective disruption of tissue structures, 
thereby maximizing cell yield and preserving cellular viability. This 
method is a key component and contributes to the overall success of the 
proof of concept workflow, providing a technological advancement in 
single-cell dissociation for subsequent miRNA-Seq analysis from 
RNALater-stored tissues. The generated single-cell population is then 
picked from the suspension using a micromanipulator. Following this, 

single cells are lysed in a specialized miRNA lysis buffer, and the 
resultant lysates are stored at − 80 ◦C until they undergo library prep
aration. Libraries are prepared using a dedicated miRNA-Seq kit, and the 
generated sequences are subjected to next-generation sequencing (NGS). 
The resulting miRNA-Seq data are subjected to thorough analysis, 
enabling the identification of differentially expressed miRNAs and an 
exploration of their biological significance. This integrated workflow 
stands as a robust and reproducible approach for single-cell miRNA-Seq 
analysis from RNALater-stored tissues. 

3.1. Sample overview 

Table 1 presents a comprehensive summary of the samples included 
in the study, outlining the experimental protocols for tissue digestion 
(TG Protocols), cell viability assessments, cell yield data, and the specific 
cells selected for subsequent miRNA sequencing analysis. The tissues 
exhibited reduced rigidity compared to fresh specimens, necessitating a 
cautious and gentle dissociation approach. For the liver and spleen, the 
method resulted in a uniform single-cell suspension, although the liver 
exhibited a reduced proportion of viable cells, indicating increased 
susceptibility to freezing. Conversely, the cortex presented a more 
challenging scenario, with only a limited number of viable individual 
cells observed under the microscope, potentially attributed to the higher 
fat content in brain tissues, thereby increasing the complexity of the 
dissociation process. 

3.2. Quality control miRNA sequencing 

Quality control in miRNA sequencing is a critical step that ensures 
the reliability and accuracy of the obtained miRNA data. This process 
involves the assessment of sequence data, the removal of low-quality 
reads, and the validation of miRNA profiles, ultimately guaranteeing 
the robustness of downstream analysis. Beyond general quality control 
measures, our approach incorporates a bioinformatical evaluation of 
sample quality. Prior to downstream analysis, we assessed the distri
bution of base quality scores, identified and discarded low-quality reads, 
and validated miRNA profiles. This stringent quality control framework 
not only enhances the reliability of miRNA expression data but also 
addresses potential biases introduced during library preparation and 
sequencing. By implementing these measures, we ensure the generation 
of high-quality data, thereby fortifying the foundation for subsequent 
bioinformatic analysis and contributing to the overall robustness of the 
study’s findings. 

Fig. 2A presents the total count of miRNA Seq reads obtained per 

Fig. 1. To examine the feasibility of converting tissues, obtained from Saarbrücken University, preserved in RNALater at − 80 ◦C, into a single-cell suspension 
utilizing a TissueGrinder, with subsequent isolation of individual cells into miRNA lysis buffer for miRNA-Seq analysis. (Image Source: Created with BioRender.com). 
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individual cell, which averages at approximately 600,000 reads per cell. 
Notably, with the exception of two outliers observed in the liver sam
ples, the distribution of read counts across the cells exhibits a consistent 
and uniform pattern, aligning with our anticipated expectations. Fig. 2B 
depicts the initial bioinformatic assessment conducted subsequent to 
sequencing. During this quality control phase, some reads are excluded 
due to their inadequate data quality, indicating a substantial level of 
inaccuracy in the determination of the DNA sequence at the specific 
position (indicated in light grey, and designated as "lost in QC"). An 
intriguing characteristic of miRNA libraries is the relatively elevated 
occurrence of "empty" reads, in which only the adapters were sequenced, 
without any accompanying insert. Purification methods are ineffectual 
in eliminating these reads, given that their size differs by only 20 base 
pairs from those containing an insert (illustrated in dark grey as "adapter 
dimers"). In our miRNA-Seq protocol, chemically modified adapters and 
a step to remove unligated 3′ adapter are used to reduce the amount of 
adapter only reads, but even these measures are not able to completely 
avoid ligation of adapters to each other. Subsequent to the quality 
control phase, all retained reads are subjected to alignment against the 
human genome. Unmapped reads, depicted in blue, represent those that 
failed to align with the human genome. Conversely, green-shaded reads 
denote successful alignment with the human genome, yet they do not 
correspond to annotated miRNAs. The pink-shaded region, labeled as 
"miRNAs," illustrates the proportion of reads that align with annotated 
miRNAs within the human genome. It is evident from the figure that 
only a minute fraction of all reads (approximately 1–5 %) align with 
miRNAs, a pattern consistently observed in other single cell miRNA 
Sequencing studies [15]. The single-cell miRNA sequencing data were 

successfully preprocessed, with a high percentage of reads mapped to 
the reference genome and a low percentage of adapter dimers and 
miRNAs. This data is now ready for further analysis to identify differ
entially expressed miRNAs between cell types. 

3.3. Mapping of reads and number of miRNA per cell 

Mapping of reads and determination of the number of miRNA per cell 
is a fundamental aspect of miRNA sequencing analysis. This step in
volves aligning sequencing reads to a reference genome or miRNA 
database to identify and quantify miRNA species within individual cells. 
The results provide insights into the miRNA expression landscape, 
enabling the characterization of tissue-specific miRNA profiles. 

Within this section, a comprehensive breakdown of the reads that 
successfully aligned to the human genome (corresponding to the green 
and pink segments in the preceding image is provided (Fig. 3)). In this 
detailed view, annotations for the specific positions to which the reads 
mapped are presented. Notably, the pink portion represents the pro
portion of miRNA reads in relation to the overall reads, with larger 
proportions observed in liver and cortex samples compared to spleen 
samples. Additionally, it is evident that a substantial number of reads 
have mapped to mRNA and intergenic regions. These observed values 
are consistent with the findings from prior miRNA-Seq dataset, indi
cating a degree of similarity in the distribution of reads across these 
regions. 

In Fig. 4A we conducted a UMAP analysis with the aim of simplifying 
the data’s complexity. The resulting two-dimensional plot reveals only 
the values that exhibit the greatest dissimilarity among individual cells 

Table 1 
Sample overview, TG protocols, cell viability, cell yield, picked cells for miRNA sequencing. *In the case of the spleen samples, while our initial intent was to sequence a 
total of 20 individual cells, it is imperative to note that due to a technical error encountered during the library production process, we were only able to successfully 
sequence 10 of the intended cells.  

Tissue 
type 

RIN Dissociation 
protocol 

Filter 
[µm] 

Cell Yield [cells/ 
ml] 

Viability Number of picked single 
cells [-] 

Number of sequenced single 
cells [-] 

Sample ID 

Liver 3,9 
Liver 70 3,99E+05 30 % 10 

20 
Liver SC1–10_Liver 

Liver Modified 70 4,80E+05 45 % 10 Liver SC11–20_Liver 
modified 

Spleen 2,4 
Spleen 70 2,58E+05 93 % 10 

10* 
Spleen SC1–10_Spleen 

Spleen modified 40 2,16E+06 90 % 10 Splee SC11–20_Spleen 
modified 

Cortex 5 Spleen modified 100 6,45E+04 64 % 3 3 Cortex SC1–3_Spleen  

Fig. 2. Summarizing the results of single-cell miRNA sequencing data preprocessing. A) The chart shows the number of sequenced reads for each tissue sample, B) 
Number of reads lost in quality control (QC) and mapped to the reference genome. The chart also shows the percentage of reads that were adapter dimers 
and miRNAs. 
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within this dataset. The analysis distinctly illustrates that cells origi
nating from the same tissue consistently cluster together, indicating a 
higher degree of similarity and shared characteristics compared to cells 
derived from distinct tissues. Within Fig. 4B–D, we provide an insight 
into the number of distinct miRNAs detected within individual cells, 
categorized by the three respective tissue types. For single liver and 
cortex cells, more different miRNAs could be detected compared to 
single spleen cells. Notably, these numerical findings align with the 

miRNA diversity observed in other single-cell studies, underlining the 
consistency and congruity of our results in comparison to broader 
research in the field. 

4. Discussion 

The findings presented in this study have substantial implications for 
the preservation and analysis of tissues for miRNA research. Our 

Fig. 3. Mapping of Illumina reads to the human genome.  

Fig. 4. In Fig. 4 A, depicts UMAP analysis to simplify data complexity, revealing the most dissimilar cell values in a two-dimensional plot. Cells from the same tissue 
consistently cluster together, indicating heightened similarity among them compared to cells from different tissues. Fig. 4B–D depicts the count of distinct miRNAs 
within individual cells, segmented by tissue type (rpmm; Cortex: th = 100, Liver: th = 100, Spleen: th = 500). A comprehensive overview of sequencing metrics for 
single-cell miRNA analysis can be found in the supplement. 
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investigation revealed that tissues stored in RNALater at − 80 ◦C for an 
extended period of approximately two years maintained the potential 
for extracting single-cell suspensions, demonstrating robust cell viability 
suitable for single-cell miRNA analysis with the enzyme-free Tissue
Grinder technique. 

Single-cell miRNA-seq necessitates the effective integration of two 
distinct techniques: the isolation of specific individual cells from cul
tures, tissues, or dissociated cell suspensions, and subsequently, the 
conversion of the limited cellular RNA into cDNA, followed by the high- 
throughput sequencing of cDNA libraries [24]. In deviation from earlier 
published research, this study provides the initial evidence supporting 
enzyme-free tissue dissociation followed by miRNA sequencing. En
zymes are commonly employed for tissue dissociation, requiring incu
bation at 37 ◦C for variable durations depending on the tissue type. This 
temperature activates the cellular transcriptional machinery, potentially 
leading to alterations in gene expression in response to the dissociation 
process and other environmental stresses [25,26]. As opposed to 
enzyme-based approaches, we hypothesize that rapid and enzyme-free 
dissociation enables improved control over pre-analytic variables, fa
cilitates standardization, and minimizes transcriptional drift [27,28]. 
Nevertheless, a comprehensive exploration of these aspects awaits 
further investigation. In this study, we successfully demonstrated the 
feasibility in principle, utilizing various archived tissue samples. 

In case of tissue samples, preparation and isolation of single cells are 
additional very difficult steps in single-cell analysis [29]. The ability to 
effectively preserve tissue samples for this duration without compro
mising cell viability and miRNA integrity is a noteworthy achievement. 
This feature extends the window of opportunity for researchers to access 
archived tissue specimens and perform in-depth miRNA-Seq analysis. 
The detection of specific mutations or mutation spectra and/or per
turbed gene expression profiles is crucial for the selection of modern 
drugs for personalised therapy [30]. This has significant implications for 
studies requiring long-term sample storage, retrospective analysis, and 
the utilization of biobanks with archived samples. 

Importantly, the miRNA profiles obtained from these preserved tis
sues displayed a level of comparability with miRNA data from other cell 
cultures and research results performed with fresh cells [15]. This 
consistency underscores the reliability and validity of the preservation 
and isolation methods employed in our study. It indicates that the 
miRNA profiles derived from the preserved tissues are representative of 
the biological information they contain and are not significantly altered 
during the storage period. 

5. Limitations 

The technical brief faced several limitations that warrant acknowl
edgment. Firstly, the availability of tissue samples from healthy body 
donors through a rapid autopsy program inherently restricted the size 
and diversity of our sample pool. Additionally, the time frame between 
sample removal, processing and RNA stabilization remains crucial for 
preserving RNA integrity. Despite efforts to minimize time frames, the 
logistical challenges entail that not all preserved samples present the 
necessary quality for downstream analysis. In order to draw biologically 
meaningful conclusions, a significantly larger number of samples or cells 
from different healthy donors, comprising different age groups and 
genders, would have been required. Since we directly used a single cell 
suspension from disaggregated tissue for miRNA analysis without up
stream fluorescence-activated cell sorting (FACS) to select different cell 
types, we could not analyze a sufficient number of single cells per cell 
type, which limited the statistical interpretability of our results. 
Addressing these limitations in future studies could provide a more 
comprehensive understanding of miRNA expression patterns in different 
cell types derived from healthy donor tissues, thereby advancing our 
knowledge of physiological processes of cellular behavior and cellular 
heterogeneity within organs. 

6. Conclusion 

In conclusion, our study demonstrates the feasibility of preserving 
tissues in RNALater at − 80 ◦C for an extended duration of approximately 
two years while maintaining the integrity of miRNA. This preservation 
method, coupled with the TissueGrinder technique, offers an effective 
means of converting tissues into single-cell suspensions for miRNA-Seq 
analysis. Moreover, our results emphasize the comparability of miRNA 
profiles obtained from these preserved tissues with those derived from 
other sources, confirming the utility and robustness of this preservation 
and isolation approach in advancing miRNA-related research. This 
approach holds the potential to benefit a wide range of scientific in
vestigations and the long-term storage of invaluable tissue specimens. 
Single cell miRNA-seq could be used to identify specific cell types in 
which miRNAs are highly expressed. This information could be used to 
develop new biomarkers for diseases that are specific to certain cell 
types. Additionally, single cell RNA-seq could be used to study the ef
fects of drugs and other treatments on miRNA expression in individual 
cells. This information could be used to develop new and more 
personalized treatments for diseases. 
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[20] Soteriou D, Kubánková M, Schweitzer C, et al. Rapid single-cell physical 
phenotyping of mechanically dissociated tissue biopsies. Nat Biomed Eng 2023. 
https://doi.org/10.1038/s41551-023-01015-3. 

[21] Scheuermann S, Lehmann JM, Ramani Mohan R, et al. TissueGrinder, a novel 
technology for rapid generation of patient-derived single cell suspensions from 
solid tumors by mechanical tissue dissociation. Front Med (Lausanne) 2022;9: 
721639. https://doi.org/10.3389/fmed.2022.721639. 
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Abstract 

Single-cell RNA sequencing (RNA-seq) has re v olutioniz ed our understanding of cell biology, de v elopmental and pathoph y siological molecular pro- 
cesses, paving the way toward novel diagnostic and therapeutic approaches. However, most of the gene regulatory processes on the single-cell 
le v el are still unknown, including post-transcriptional control conferred by microRNA s (miRNA s). Like the established single-cell gene expression 
analy sis, adv anced computational expertise is required to comprehensively process newly emerging single-cell miRNA-seq datasets. A web 
serv er pro viding a w orkflo w tailored f or single-cell miRNA-seq data with a self-explanatory interface is currently not a v ailable. Here, w e present 
SingmiR, enabling the rapid (pre-)processing and quantification of human miRNAs from noncoding single-cell samples. It performs read trimming 
for different library preparation protocols, generates automated quality control reports and provides feature-normalized count files. Numerous 
standard and advanced analyses such as dimension reduction, clustered feature heatmaps, sample correlation heatmaps and differential expres- 
sion statistics are implemented. We aim to speed up the prototyping pipeline for biologists developing single-cell miRNA-seq protocols on small 
to medium-sized datasets. SingmiR is freely available to all users without the need for a login at https:// www.ccb.uni-saarland.de/ singmir . 

Gr aphical abstr act 

Introduction 

One of the best studied classes of noncoding RNAs is mi- 
croRNAs (miRNAs), 20–25 nt long molecules that regulate 
potentially up to 60% of the coding genes found in humans, 
either degrading messenger RNA (mRNA) or repressing pro- 
tein translation, mainly through 3 

′ -UTR (untranslated region) 
binding ( 1 ,2 ). miRNAs play a key role in the regulation of cell 
states and are increasingly relevant biomarkers in new disease 
diagnostic and therapeutic approaches, e.g. the overexpres- 
sion of miRNAs in lymphomas ( 3 ) or in cancer ( 4 ). Despite 
their importance and possible improvement to diagnostics, we 
are currently limited to quantifying miRNAs with bulk se- 
quencing experiments only. For instance, we know the mRNA 

expression patterns of circulating tumor cells from single- 

cell studies ( 5 ) but so far could not study in detail, through 

bulk sequencing alone, how the miRNome is shaping rare 
cell populations. Besides, miRNAs regulate genes and path- 
ways ( 6 ), the analysis of which is typically accomplished with 

software tools ( 7 ,8 ) that are well established for bulk stud- 
ies but so far are not tailored for single-cell sequencing data. 
To date, depth and availability of single-cell miRNA sequenc- 
ing (miRNA-seq) datasets are lacking behind their mRNA 

counterparts, primarily due to persisting experimental chal- 
lenges, which render the selective enrichment and subsequent 
sequencing of miRNA molecules an intricate affair . However , 
a few protocols exist that are continuously optimized for a 
better quantitative yield, while there is no commercial op- 
tion currently on the market. Attempts to estimate miRNA 
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abundance in isolated cells based on primary miRNA ex- 
pression in single-nucleus sequencing data have produced ex- 
tremely sparse count matrices that show high variability ( 9 ). 
Even at the higher RNA quantities of standard bulk sequenc- 
ing approaches, it can be challenging to quantify miRNA lev- 
els accurately. For example, the presence of other classes of 
noncoding RNA ( 10–12 ) and the formation of adapter dimers 
( 13 ) are inevitable sources of bias. Existing technical issues 
are further complicated by the small RNA input quantities 
typically required for high-resolution single-cell libraries. The 
primary ideas to tackle these challenges are to remove excess 
adapters by combining digestion and size selection ( 14 ,15 ), re- 
duction of adapter dimer formation by adapter chemical mod- 
ification ( 16 ), mitigation of ligation bias by introducing degen- 
erated bases to adapters ( 11 ) and polyadenylation ( 17 ). Perfor- 
mance optimization is therefore an ongoing effort, for which a 
recent benchmark provided new quantitative and qualitative 
grounds ( 18 ). 

There exists a whole ecosystem of tools to analyze miRNA 

data: stand-alone tools such as miRDeep* ( 19 ) and web ser- 
vices such as miRMaster2.0 ( 20 ), sRNAbench / sRNAtoolbox 

( 21 ), CBS-miRSeq ( 22 ) and others [a complete list is provided 

in miRMaster ( 20 )]. However, currently no such tools exist 
for single-cell data analysis, which is projected to rapidly in- 
crease in the next few years due to newly developed proto- 
cols ( 18 ). The above-mentioned standard tools cannot be used 

right away for the single-cell analysis because they do not sup- 
port the specific parameters used in such protocols, especially 
regarding the different adapter and barcode sequences as well 
as unique molecular identifier (UMI) layouts required. 

We thus made our analysis pipeline available through a web 

server. We include the option to perform common compara- 
tive analyses, for instance embeddings by popular dimension 

reduction techniques, correlation and expression-based clus- 
tering, differential expression (DE) analyses and more. We aim 

to enable life science researchers planning to analyze and com- 
pare different single-cell miRNA-seq datasets with the neces- 
sary toolset, without requiring any computational or bioinfor- 
matics expertise. 

Materials and methods 

The computational workflow of SingmiR consists of two 

main stages. First, the alignment and trimming pipeline, 
which removes the adapters specific to the library prepara- 
tion method used, aligns the reads to the human genome 
and quantifies miRNA abundances. Second, an optional anal- 
ysis pipeline computes overview plots and statistics for the 
processed user dataset. A comprehensive submission inter- 
face guides the user through the necessary steps, such as pro- 
viding data and specifying details for an optional in-depth 

analysis. The results page allows to download all results for 
both computational pipelines and displays multiple adjustable 
visualizations. 

Alignment pipeline 

SingmiR accepts inputs in the form of gzip compressed fastq 

files with the option to include a metadata file for down- 
stream analysis. In the current implementation, each fastq 

file corresponds to one biological cell. Once uploaded, the 
data are extracted and the UMI sequence is added to the 
fastq file headers using a Python (version 3.12) script. It is 

Table 1. Trimming parameters and met adat a from the case study re- 
quired for SingmiR 

Protocol 3 ′ Adapter 5 ′ Adapter Method UMI length 

SB Sandberg Sandberg SB 8 
SB_4N 4N 4N SB 8 
SB_CL CleanTag CleanTag SB 8 
SB_C3 Sandberg C3 SB 6 
SBN Sandberg Sandberg SBN 8 
SBN_4N 4N 4N SBN 8 
SBN_CL CleanTag CleanTag SBN 8 
CL CleanTag CleanTag CleanTag 8 
CL_16C CleanTag CleanTag CleanTag 8 
CL_4N 4N 4N CleanTag 8 
CL_Block CleanTag Block CleanTag 6 
CL_C3 CleanTag C3 CleanTag 6 
CL_Rand Rand CleanTag CleanTag 6 
CL_SB Sandberg Sandberg CleanTag 8 
CL_UMI6 CleanTag CleanTag UMI6 CleanTag 8 
4N 4N 4N 4N 0 
4N_C3 4N C3 4N 0 
4N_CL CleanTag CleanTag 4N 0 
CATS CATS CATS CATS 0 

trimmed using cutadapt, version 2.10 ( 23 ), which utilizes 
the Illumina Universal adapter sequence, pcr primer sequence 
and truseq adapter sequences along with the adapter param- 
eters uploaded with the fastq files. The details of the trim- 
ming are stated in Table 1 . Fastqc, version 0.11.8 ( https:// 
www.bioinformatics.babraham.ac.uk/ projects/ fastqc/ ) is used 

to perform quality metric checking for trimmed and raw reads. 
For the miRNA quantification, the cutadapt cleaned reads are 
mapped using bowtie, version 1.3.1 ( 24 ) against the human- 
derived miRNA from miRBase V22 ( 25 ) with 15-bp flanks. 
Fumi_tools, version 0.12.2 ( https://ccb- gitlab.cs.uni- saarland. 
de/ tobias/ fumi _ tools ) is used to deduplicate the resulting bam 

files and in-house scripts were used to produce count and 

normalized matrices. Due to the recent emergence of trans- 
fer RNA-derived fragments (tRF) as a noncoding RNA reg- 
ulator and their structural similarity to miRNAs ( 26 ), tRFs 
were detected by mapping against transfer RNA with bowtie, 
subsequent deduplication with Fumi_tools and finally quanti- 
fied using MINTmap 1.0 ( 27 ). The quantification for tRFs is 
made separately available as downloadable count matrix. 

To quickly quantify all other classes of RNA, 
the cutadapt cleaned reads are also mapped us- 
ing the STAR algorithm, version 2.5.3a ( 28 ) against 
an index of the human genome (GRCh38) using 
the parameters –outSAMstrandField intronMotif –
outFilterMultimapNmax 50 –outFilterScoreMinOverLread 

–outFilterMultimapScoreRange 0 –outFilterMatchNmin 

18 –outFilterMatchNminOverLread 0 –
outFilterMismatchNoverLmax 0.04 –alignIntronMax 1. 
Next, the generated bam file is compared against the 
GRCh38 annotation in order quantify the reads mapped 

to any gene in the human genome. The deduplicated and 

mapped reads are compared against annotations extracted 

from GENCODE v25, piRBase v1 and GtRNAdb v18.1, 
overall containing rRNA, Mt rRNA, snoRNA, snRNA, 
sRNA, scaRNA, scRNA, piRBase, misc RNA, ribozyme, 
coding exons, lncRNA, ncRNA and protein-coding genes, 
using the featureCounts [included in subread in version 1.5.2 

( 29 )] using the options -F SAF -O -M -f –fracOverlap 0 -s 
0. We perform a reads per million mapped miRNA normal- 
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ization to account for the differences in reads per file and 

coverage per miRNA. The trimming, mapping and feature 
count statistics are compiled into a MultiQC summary report 
in version 1.20.0 ( 30 ) and shared with the user. The rpmmm- 
normalized matrix is used to produce further downstream 

analyses according to the user selection. Both the MultiQC 

and the expression matrix files (miRNAs, other RNAs and 

tRFs) are available for download. 

Analysis pipeline 

In addition to the raw data, a metadata sheet must be up- 
loaded containing important sample parameters (one sample 
per row) and additional but optional descriptive information 

(column variables) for each sample. The user can select cate- 
gories from the metadata sheet for an optional analysis of the 
miRNA features, as outlined in the following. To gain a deeper 
understanding of the dataset, we employ principal component 
analysis (PCA) and uniform manifold approximation and pro- 
jection (UMAP) ( 31 ) as dimension reduction techniques. The 
resulting scatter plots are colored according to selected cate- 
gories. In addition, a UMAP analysis is available for various 
preselected parameters to reveal higher order relationships be- 
tween the samples and cells. We aim to discover batch effects 
and biologically relevant parameters by performing a princi- 
pal variance component analysis (PVCA) on the selected cat- 
egories. The residual category sums the variance in the data 
that cannot be associated with any of the categories provided 

in the metadata sheet. 
A hierarchical clustering using the Euclidean distance and 

a complete linkage is performed on the standardized rpmmm- 
normalized log 2 -transformed expression values and on the 
sample correlation values calculated according to either Pear- 
son or Spearman. When using the expression values, we per- 
formed clustering for different feature sets, all miRNAs, only 
expressed miRNA and top miRNAs determined by the high- 
est coefficient of variation. We also provide the correspond- 
ing P -values calculated with the R function cor.test and ad- 
justed with the Benjamini–Hochberg procedure, which con- 
trols the false discovery rate at an alpha level, together with 

a correlation plot indicating the significance of each value 
( *** P < 0.001, ** P < 0.01 and 

* P < 0.05). All results are pre- 
sented in the form of a heatmap. 

Performing DE analysis for all possible categories comes 
at increased computational costs. Therefore, DE analysis is 
performed in an interactive manner where the user selects a 
comparison, and the results are calculated on demand. This 
way, any comparison deemed valuable can be explored later in 

more detail. Besides the fold changes, we provide the P -values 
and adjusted P -values for t -tests and Wilcoxon signed-rank 

tests. The user can choose between the Benjamini–Hochberg 
procedure and the Bonferroni correction at a default alpha 
level of 0.05, the latter of which is known for its strong regu- 
lation of family-wise error levels. Additional measures include 
the effect size according to Cohen’s d and the area under the 
receiver operator curve. Graphical representations in the form 

of volcano and scatter plots accompany the DE analysis in ta- 
ble form. 

Web server implementation 

The web server providing the front end and the underlying 
mechanics utilizes the Django Python web framework, ver- 
sion 2.1.7 ( https:// djangoproject.com/ ) inside Docker contain- 
ers ( https:// www.docker.com/ ). Following data submission, we 

use the task queue manager Celery, version 5.2.7 ( http://docs. 
celeryproject.org ) together with the in-memory data structure 
store Redis, version 5.0 ( https:// redis.io/ ) to efficiently han- 
dle concurrent tasks. Both the alignment and analysis em- 
ploy a Snakemake pipeline, version 7.30.1 ( 32 ). Additionally, 
the front end of the website uses Bootstrap, version 5.1.3 

( https:// getbootstrap.com/ ) and Font Awesome, version 6.1.1 

( https:// fontawesome.com/ ) for design purposes, as well as 
jQuery, version 3.7.1 ( https:// jquery.com/ ). 

Results 

To test the capabilities of our web server, raw data from a pre- 
viously published high-quality single-cell miRNA-seq dataset 
were re-analyzed with SingmiR ( 18 ). This study covers differ- 
ent sample types, of which we first process the samples from 

the second stage. In detail, these are 48 samples equal to 48 

single-cell profiles obtained from the human breast cancer cell 
line MCF7, generated with eight different protocols (six sam- 
ples each). To visualize expression profiles, we consider the re- 
sults of the downstream analysis module. In addition to this, 
users have several quality measurements available through the 
MultiQC report. We restrict our re-analysis here to a single 
category also examined by the original study, i.e. comparing 
different versions of the experimental protocol. PCA (Figure 
1 A) and UMAP (Figure 1 B) provide an initial overview of 
the sample variability and clustering. Color legends of UMAP 

plots can be modified by various preselected parameters; to 

exemplify this, we show a single parameter specification. We 
recognize a clustering for some of the protocols, for exam- 
ple for the protocol ‘SBN_CL’. The PVCA indicates that the 
largest variance in the data can be found for the combination 

of the 5 

′ adapter and the method (33.8%) variables, next to 

the combination of the 5 

′ adapter with the UMI length (23%) 
(Figure 1 C). A clustered heatmap of the log 2 -transformed ex- 
pression reveals miRNA clusters across the samples / cells. Sep- 
arately clustered heatmaps for different feature sets, i.e. us- 
ing all given miRNAs, only the expressed miRNAs or the top 

miRNAs based on the highest variance across all cells, respec- 
tively , are computed automatically . Annotation bars above the 
plot highlight the sample / cell clustering of the individual cat- 
egories for the top 250 miRNAs (see the ‘Materials and meth- 
ods’ section) (Figure 1 D). To investigate cell similarity, we cal- 
culate the Pearson correlation values for all miRNAs between 

all cell combinations and display a row- and column-clustered 

heatmap (Figure 1 E). We observe a strong correlation between 

samples of the protocols ‘4N’, ‘SBN_CL’, ‘SBN’ and ‘SB’. DE 

analysis can be performed on demand for any category of in- 
terest with at least two groups. We compare ‘SBN_CL’ against 
‘4N_CL’ using volcano plots for fold change against raw and 

adjusted P -values of a t -test (Figure 1 F and G) and a Wilcoxon 

rank-sum test (Figure 1 H and I). In addition, the effect size, 
which is calculated using Cohen’s d , is plotted against the fold 

change (Figure 1 J) and indicates a considerable upregulation 

of seven miRNAs for the protocol ‘SBN_CL’. Yet only one 
significantly deregulated miRNA (hsa-miR-21-5p) remains for 
the adjusted P -value from the Wilcoxon rank-sum test and five 
significant deregulated miRNAs (hsa-miR -182-5p, hsa-miR - 
25-3p, hsa-miR -92a-3p, hsa-miR -183-5p and hsa-miR-21-5p) 
in the case of the t -test. 

In the study by Hücker et al., another high-quality dataset is 
presented, consisting of 48 samples from 8 different cell lines 
(6 samples each), which was obtained using the most promis- 
ing protocol ‘SBN_CL’. Thus, we also use this dataset to test 
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Figure 1. SingmiR results of the stage 2 dataset from ( 18 ) using the downstream analysis module. The comparison selected for the DE analysis is 
protocol ‘SBN CL’ versus ‘4N CL’. ( A ) Results of PCA. ( B ) Results of a UMAP analy sis. ( C ) R esults of the PVCA. ( D ) Results of the hierarchical clustering of 
the top 250 standardized log 2 -transformed rpmmm-normalized miRNA values selected by the coefficient of variation. ( E ) Sample correlation calculated 
with Pearson and grouped by hierarchical clustering. ( F ) Volcano plot of the raw P -values from a t -test. ( G ) Volcano plot of the adjusted P -values from a 
t -test (used adjusting method is the Benjamini–Hochberg procedure). ( H ) Volcano plot of the raw P -values from a Wilcoxon rank-sum test. ( I ) Volcano plot 
of the adjusted P -values from a Wilcoxon rank-sum test (used adjusting method is the Benjamini–Hochberg procedure). ( J ) Scatter plot showing the 
effect size (Cohen’s d ) and the log 2 -transformed fold change. 
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Figure 2. SingmiR results of the first stage 3 dataset from ( 18 ) using the downstream analysis module. The comparison selected for the DE analysis is 
cell line ‘HT29’ versus ‘KG1’. ( A ) Results of PCA. ( B ) Results of a UMAP analysis. ( C ) Results of the hierarchical clustering of the expressed standardized 
log 2 -transformed miRNAs selected by the coefficient of variation. ( D ) Sample correlation calculated with Pearson and grouped by hierarchical clustering. 
( E ) Volcano plot of the raw P -values from a t -test. ( F ) Volcano plot of the adjusted P -values from a t -test (used adjusting method is the 
Benjamini–Hochberg procedure). ( G ) Volcano plot of the raw P -values from a Wilcoxon rank-sum test. ( H ) Volcano plot of the adjusted P -values from a 
Wilco x on rank-sum test (used adjusting method is the Benjamini–Hochberg procedure). ( I ) Scatter plot showing the effect size (Cohen’s d ) and the 
log 2 -transf ormed f old change. 
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our web server. The resulting embedding for PCA and UMAP 

shows a good separation of the samples by cell line origin (Fig- 
ure 2 A and B). This is also reflected in the clustering of the ex- 
pression values and the correlation values (Figure 2 C and D). 
As for this dataset there is only one categorical metadata vari- 
able with more than one level available, no PVCA can be per- 
formed. A DE analysis between the two cell lines ‘HT29’ and 

‘KG1’ shows strong and significant fold changes, thus yield- 
ing numerous significantly deregulated miRNAs (Figure 2 E–
I). The results table for the comparison of the cell line ‘HT29’ 
to all other cell lines (‘A549’, ‘BJ’, ‘HepG2’, ‘Jurkat’, ‘KG1’, 
‘REH’ and ‘THP-1’) is included in the supplementary mate- 
rial ( Supplementary Table S1 ). By filtering for features that 
are significantly deregulated across all comparisons, we ob- 
tain three upregulated miRNAs (hsa-miRNA-200b-3p, hsa- 
miRNA-10a-5p and hsa-miRNA-141-3p). Remarkably, these 
miRNAs have been previously associated with human disease, 
namely in the context of colorectal and ovarian cancers ( 33–
36 ). Consequently, it is plausible to observe a high expression 

predominantly in ‘HT29’, which had been derived from a hu- 
man colon adenocarcinoma ( 37–40 ). While not pursued fur- 
ther in this work, the presented downstream analysis can serve 
as a starting point for further investigations. 

Discussion 

The current absence of a graphical user interface (GUI) based 

single-cell RNA-seq analysis pipeline for noncoding RNAs so 

far required researchers to have sufficient computational ex- 
pertise to eventually generate reliable results. As a compre- 
hensive best-practice and easy-to-use workflow, the here pre- 
sented web server will hopefully enhance comparability be- 
tween novel datasets and facilitate fast pilot studies where the 
analysis is currently conducted by the experimenter ( 41 ,42 ). 
After having demonstrated the capabilities of SingmiR with 

previously published datasets ( 18 ), the here presented web 

server is well positioned to serve as a useful tool for upcom- 
ing and larger single-cell miRNA-seq studies. Additionally, the 
development of techniques that aim to predict miRNA activ- 
ity based on single-cell mRNA data ( 43 ) indicates interest in 

this field. Recent advancements in sequencing technology ( 44 ) 
and the need to study miRNA activity in complex tissues con- 
tribute to the increasing emergence of single-cell studies ( 45 ). 
Therefore, we anticipate that our server will not only simplify 
the analysis of initial pilot stage projects but also serve as a 
stepping stone to a greater understanding of the single-cell 
miRNA landscape. Therefore, we hope to provide a useful 
tool to enable benchmarking studies for single-cell miRNA- 
seq, as previously done for small RNA-seq methods ( 11 ). 
While we currently only support low-throughput sequencing 
data, generating up to a few hundred thousand reads for one 
cell replicate per fastq file, the expansion to high-throughput 
data marks a promising way forward, supporting novel high- 
throughput protocols once they have been established in the 
single-cell community. To further advance the development of 
SingmiR, we encourage the community to provide us feedback 

and to propose new features of interest. 
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Experimental capture of miRNA targetomes: disease-specific 3′
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The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on
individual targets, and the sheer number of estimated miRNA–target gene interactions (MTIs), which is around 44,571,700.
Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller
numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a
systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by
analyzing 410 predicted target genes, both of which were previously associated with Parkinson’s disease (PD). After performing
13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses
increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study
contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted
MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses
on the MTI level is available online (https://ccb-web.cs.uni-saarland.de/utr-seremato), and all the data have been added to the
miRATBase database (https://ccb-web.cs.uni-saarland.de/miratbase).

Experimental & Molecular Medicine (2024) 56:935–945; https://doi.org/10.1038/s12276-024-01202-5

INTRODUCTION
miRNAs posttranscriptionally regulate the expression of target
genes mainly by binding to the 3′ untranslated region (3′UTR) and
rarely to the 5′UTR or the open reading frame of their target
genes1–3. Depending on the complementarity of the miRNA seed
region and the corresponding 3′UTR sequence of the target
genes, posttranscriptional regulation can lead to mRNA destabi-
lization, degradation, or inhibition of protein translation4–7.
Therefore, miRNAs regulate many target genes and are associated
with a variety of cellular processes and different human
diseases8–10. Although hundreds to thousands of papers connect
miRNAs to genes involved in diseases, the basis for this link, (i.e.,
evidence of a miRNA targeting a gene and affecting a given
disease), is often missing or purely descriptive. Recently, miRNAs
have been proposed to be powerful regulators of ribosome
biogenesis, suggesting new applications for microRNA-mimic
chemotherapeutics11. Consequently, miRNAs have been identified
as biomarkers and candidates for these and other therapeutic
approaches12–15. However, incorporating miRNAs in different
therapeutic strategies requires the best possible knowledge of
their target genes to avoid adverse side effects16,17. Notably, the
exact mechanism through which miRNAs target genes is not fully

understood. For example, studies suggest that argonaute binding
within 3′-untranslated regions poorly predicts gene repression18.
Unfortunately, the full spectrum of miRNA–target gene interac-

tions (MTIs) has not been fully elucidated due to the sheer number
of more than 40 million MTIs19. This number also explains why
knowledge about MTIs is mostly based on prediction algorithms
that frequently yield heterogeneous and partially unspecific
results20. Approaches to providing experimental evidence for
MTIs are frequently only descriptive and complicated by the
pleiotropic effect of each miRNA and by rather limited effects on
each single target21. Ideally, functional assays would take into
account the different cellular backgrounds since MTIs are likely
specific to tissues, cell types and disease states22. This, however,
complicates the task of collecting further experimental evidence
for MTIs since the potential MTIs would each have to be tested in
specific cellular contexts. Although high-throughput methods
such as CLIP-seq (cross-linking immunoprecipitation-high-
throughput sequencing) or CLASH (cross-linking, ligation, and
sequencing of hybrids) have the power to identify an enormous
number of potential MTIs, they cannot discriminate between a
functional MTI causing the downregulation of the target gene at
the protein level and a short binding of the miRNA to its target
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followed by the release of mRNA and miRNA from the RISC
without any functional relevance. Here, we aimed to validate the
complete target spectra of specific miRNAs under standardized
conditions in a specific disease context. Since miRNAs have
increasingly gained attention in Parkinson’s disease (PD) research,
we selected this disease, which is the second most common
neurodegenerative disorder, to test our targetome capturing
technique23–25.
We calculated a maximum of 44,571,700 miRNA–target gene

interactions (MTIs) based on 19,379 protein-coding human genes
(GENCODE Release version 42) and an estimated number of 2300
human miRNAs23. This calculation does not acknowledge the
possibility of obtaining different transcripts from single genes or
from different tissue- and cell type-specific MTIs. Since the first
reviews on methods for miRNA target validation in 200821,
reporter assays are still considered the primary method for
functionally analyzing the binding of a miRNA to a single target.
However, the efficacy of this method is limited. Even in a
simplified scenario with a single miRNA tested for all its predicted
interactions to human protein-coding genes, our semiautomated
high-throughput miRNA interaction reporter assay (HiTmIR) as it is
used in this study enables at maximum the analysis of 120 3′UTR
sequences within two weeks (assuming 20 target UTRs per 96-well
plate, at an analysis time of 12 plates per week, and four
replicates). Hence, the analysis of all 8,069 highly confidently
predicted MTIs for miR-129-5p would take more than two years.
To narrow the scope of this task, we limited our analysis to
Parkinson’s disease, as described above26,27 (Fig. 1a). Notably, we
selected the miRNAs and the mRNAs based only on their
association with PD without considering whether the mRNAs
were predicted as targets of the chosen miRNAs. Since there are
no publicly available human 3′UTR libraries that are enriched for
genes belonging to a given disease phenotype and/or specific
biological pathway, we generated a 3′UTR library that contained
410 potential miRNA target genes, all of which were reported to
be involved in signaling pathways associated with PD.
In detail, these pathways included 14 PD- and dopamine-

associated signaling pathways, including the signaling pathway
dopaminergic synapse (KEGG, hsa04728), dopamine metabolic
process (Gene Ontology, GO:0042417), and dopaminergic neuro-
genesis (WikiPathways, WP2855). We synthetized the 3′UTRs of the
410 genes as approx. 675 bp long fragments to account for length
restrictions of the reporter gene plasmids, as addressed in our
previous studies23. The fragments were designed with a 30 bp
overlap between consecutive fragments of a 3′UTR. The resulting
library with 1,280 3′UTR sequences cloned in the reporter plasmid
pMIR-RNL-TK (Supplementary Table 1) enables target screening of
any miRNA. With this study, we aimed to validate the disease-
specific targetomes of four miRNAs. Using a library of 3′UTRs
specific to PD allowed us to assess the effect of disease-associated
miRNAs on the regulation of key pathological players, enabling
the elucidation of disease-associated miRNA‒target‒gene net-
works. The advantages of this method include flexibility in testing
numerous disease-associated miRNAs; reproducibility, reliability
and comparability of results due to the use of a standardized test
method with identical 3′UTR sequences; and the possibility of
further investigating the fundamental mechanisms of synergistic
miR targeting in future studies.

MATERIALS AND METHODS
Cell lines
The cell lines HEK 293 T (ACC 635) and SH-SY5Y (ACC 209) were purchased
from the German Collection of Microorganisms and Cell Cultures (DSMZ).
The authenticity of the cell lines was confirmed by short tandem repeat
(STR) fingerprinting by the supplier. The cell lines were cultivated in DMEM
(Life Technologies, Darmstadt, Germany) supplemented with penicillin
(100 U/ml), streptomycin (100 µg/ml) and either 10% [v/v] FCS for 293T

cells or 20% [v/v] FCS for SH-SY5Y cells. Subculturing was performed two
times a week for no more than three months after the start of culture.

miRNA expression plasmids
Sequence inserts representing miRNA precursor sequences with additional
nucleotides up- and downstream of the precursor sequence for miR-129,
miR-133b, and miR-873 were either synthesized by Eurofins Genomics
(Ebersberg, Germany) or amplified by PCR using sequence-specific primers
with human genomic DNA as a template and subsequently cloned and
inserted into the expression plasmid pSG5 (Agilent Technologies, Santa
Clara, California) using the EcoR I and BamH I restriction sites. The
expression plasmid pSG5-miR-129 harbors the nucleotides 128207756-
128208053[+] of human chromosome 7 (GRCh38/hg38), the pSG5-miR-
133b nucleotides 52148873-52149091[+] of human chromosome 6
(GRCh38/hg38), and the pSG5-miR-873 nucleotides 28888786-28889058[-]
of human chromosome 9 (GRCh38/hg38). Cloned sequences of the miRNA
expression plasmids were verified by Sanger sequencing. Cloning of
pSG5-miR-133b was performed as described in our previous study19.

3′UTR reporter plasmids
As positive controls for regulatory effects, sequence inserts containing two
copies of the complementary sequence for the respective miRNAs as well as
additional random flanking nucleotides with no self-complementary sites
were generated in silico. Respective sequences were synthesized by Eurofins
Genomics (Ebersberg, Germany) and cloned and inserted into the reporter
plasmid pMIR-RNL-TK using the SpeI and SacI restriction sites for the positive
controls of miR-129-5p, miR-129-3p, and miR-873-5p. Cloning of the pMIR-
miR-133b positive control was performed employing the SpeI and NaeI
restriction sites. Reporter plasmids of the PD-specific 3′UTR library containing
approx. 675 bp long fragments of 3′UTR sequences of PD-associated target
genes were synthesized and cloned and inserted into the reporter plasmid
pMIR-RNL-TK employing SpeI and SacI restriction sites. The synthesis of 28 3′
UTR sequence fragments failed. The remaining 1,280 3′UTR sequences were
cloned and inserted into the reporter plasmid pMIR-RNL-TK, and the correct
cloning of all reporter constructs was verified by Sanger sequencing. A
complete list of all 3′UTR sequences of the PD-specific 3′UTR library, including
the respective NM accession numbers, is given in Supplementary Table 1.

Northern blot analysis
Ectopic miRNA expression and correct miRNA processing in 293 T cells
were verified by Northern blotting. To do so, 293 T cells were seeded at
2.5 × 105 cells per well in a 6-well plate. After 24 h, the cells were
transfected with 2 µg of empty pSG5 plasmid or 2 µg of miRNA expression
plasmid using Polyfect transfection reagent according to the manufac-
turer’s instructions (Qiagen, Hilden, Germany). After an additional 48 h, the
cells were lysed using QiAzol Lysis Reagent (Qiagen, Hilden, Germany).
Total RNA was isolated using a miRNeasy Mini Kit following the
manufacturer’s protocol (Qiagen, Hilden, Germany). Northern blotting
was performed employing radiolabeled DNA probes specific for miR-129-
5p (5′CTTTTTGCGGTCTGGGCTTGCCCTGTCTC3′), miR-129-1-3p (5′
AAGCCCTTACCCCAAAAAGTATCCTGTCTC3′), and miR-873-5p (5′GCAG-
GAACTTGTGAGTCTCCTCCTGTCTC3′) as described previously19.

Library-based miRNA target gene reporter-assay (LiMTaR)
To construct the PD-specific 3′UTR library, we selected 416 target genes
from 14 PD-associated pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG)28, Gene Ontology (GO)29, WikiPathways30 and
Reactome31 databases. The 3′UTR sequences of the respective target
genes were split into approximately 675 bp fragments, with an overlap of
30 bp between consecutive fragments. The respective sequences were
synthesized and cloned and inserted into pMIR-RNL-TK. Twenty-eight 3′
UTR sequence fragments were excluded due to critical sequence motifs
that prevented correct synthesis. In total, we generated a PD-specific 3′UTR
library that included 1,280 reporter plasmids containing 3′UTR sequences
of the 410 PD-associated genes. To test the impact of the miRNAs miR-129-
5p, miR-129-1-3p, miR-133b and miR-873-5p on PD-related genes, we
selected the corresponding 3′UTR reporter plasmids harboring the
respective binding site(s) for each miRNA from the 3′UTR library. To verify
the validity of the HITmiR-Assay, each 96-well plate contained 2 positive
controls (sensor reporter plasmids harboring 2 sequences complementary
to the respective miRNA) at various positions to exclude positioning
effects. The results of these positive controls are depicted in Supplemen-
tary Fig. 1. High-throughput analysis of reporter constructs of our
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PD-specific 3′UTR library was performed by a liquid handling system as
described by our group previously23. In brief, 293T cells were seeded at
3.2 × 104 cells per well in a 96-well plate using the liquid handling system
epMotion® 5075 (Eppendorf, Hamburg, Germany). After 24 h, the cells
were transfected with 50 ng/well of either the reporter plasmid pMIR-RNL-
TK, with or without an insert, and 200 ng/well of the miRNA expression
plasmid containing either the respective miRNA or no insert with PolyFect
transfection reagent (Qiagen, Hilden, Germany). After an additional 48 h,
the cells were lysed in passive lysis buffer (Promega, Madison, WI, USA).
Luciferase substrates from the Dual-Luciferase® Reporter Assay System

(Promega, Madison, WI, USA) were added to the cell lysates, and luciferase
activity was measured using a GloMax Navigator microplate luminometer
(Promega, Madison, WI, USA). High-throughput dual-luciferase assays were
performed four times in technical duplicates. Statistical significance was
calculated by Welch’s t test in GraphPad Prism 9.

Quantitative real-time PCR
Ectopic expression of miR-129-5p in SHSY5Y cells was verified by
quantitative real-time PCR (Supplementary Fig. 2). SH-SY5Y cells were

Fig. 1 Library-based miRNA target gene reporter assay. a Selection of MTIs. The MTIs were defined in a staged concept. Using PD as the
disease phenotype, we collected data on 14 PD pathways involving 410 genes. From these genes, 1280 3′UTR reporter constructs were
derived considering length constraints. We selected four relevant PD miRNAs unrelated to the analyzed genes. Via computational prediction,
for the miR-129-5p 320 3′UTR reporter construct, 95 3′UTR constructs were used for miR-129-1-3p, 100 3′UTR constructs were used for miR-
133b, and 190 3′UTR constructs were identified for miR-873-5p harboring at least one canonical binding site on the respective miRNA. In total,
705 MTIs for the four chosen miRNAs were analyzed. The 3′UTRs of the target genes harboring more than one exclusive miRNA binding site
are shown in Supplementary Table 7, and the overlaps are visualized in Supplementary Fig. 1. b Northern blot analysis of miR-129-5p. 293 T
cells were transfected with miRNA expression plasmids containing the sequence of miR-129-5p, miR-129-1-3p, or miR-873-5p. After 48 h, RNA
was isolated, and Northern blot analysis was performed with specific probes against the indicated miRNAs. c Northern blot analysis of miR-
129-1-3p. 293T cells were transfected with a miRNA expression plasmid containing the sequence of miR-129-1-3p. After 48 h, RNA was
isolated, and Northern blot analysis was performed with specific probes against miR-129-1-3p. d Northern blot analysis of miR-873-5p.
293 T cells were transfected with a miRNA expression plasmid containing the sequence of miR-873-5p. After 48 h, RNA was isolated, and
Northern blot analysis was performed with specific probes against miR-873-5p.
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seeded at 4.5 ×105 cells per well in a 6-well plate. After 24 h, the cells were
transfected with either Allstars Negative Control (ANC; Qiagen, Hilden,
Germany) or the miR-129-5p miScript miRNA Mimic (MIMAT0000242,
sequence: 5′CUUUUUGCGGUCUGGGCUUGC3′; Qiagen, Hilden, Germany)
using HiPerFect Transfection Reagent (Qiagen, Hilden, Germany). After an
additional 48 h, the cells were lysed using QiAzol Lysis Reagent (Qiagen,
Hilden, Germany). Total RNA was isolated using miRNeasy Mini Kit
following the manufacturer’s protocol (Qiagen, Hilden, Germany). Total
RNA (150 ng) was reverse transcribed using miScript II RT Kit (Qiagen,
Hilden, Germany). qPCR was performed using the miScript Primer Assay
(Qiagen, Hilden, Germany) with primers specific for miR-129-5p via the
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City,
United States). RNU6B (Qiagen, Hilden, Germany) served as an endogenous
control. The statistical significance of differences among three indepen-
dent replicates was calculated by Student’s t test in GraphPad Prism 9.

Western blot analysis
For Western blot analysis, SH-SY5Y cells were transfected with the miR-129-
5p mimic as described above. After 48 h, the cells were harvested, lysed in
2x sample buffer (130mM Tris/HCl, 6% [v/v] SDS, 10% [v/v] 3-mercapto-1,2-
propandiol, and 10% [v/v] glycerol) and sonicated three times for three
seconds each. Total protein extract (10 µg) was electrophoresed in a 4-15%
TGX gel (Bio-Rad Laboratories, Inc., Hercules, California, USA). The proteins
were electroblotted onto nitrocellulose membranes (Whatman, GE
Healthcare, Freiburg, Germany). Unspecific antibody binding was blocked
by preincubation of the nitrocellulose membrane in 5% TBS milk with 0.1%
Tween 20 for 30min. SNCA was detected by a polyclonal rabbit antibody
(#2642), COMT by a monoclonal rabbit antibody (#14368), CLOCK by a
monoclonal rabbit antibody (#5157), and AKT3 by a monoclonal rabbit
antibody (#14982), all of which were purchased from Cell Signaling
Technology (Danvers, MA, USA). α-Tubulin served as an endogenous control
and was detected by a monoclonal rabbit antibody (#2125 Cell Signaling
Technology, Danvers, MA, USA). A secondary anti-rabbit antibody was
purchased from Sigma‒Aldrich (A0545; Sigma Aldrich, Munich, Germany).

Identification of miRNA binding sites in 3′UTR sequences in
silico and secondary structure matching
In this analysis, we included miR-7-5p and -34a-5p from our previous study,
which were also tested with our standardized high-throughput miRNA
interaction reporter assay (HiTmIR) in the context of PD23. For miR-129-5p,
miR-129-1-3p, miR-133b, miR-873-5p, miR-7-5p and miR-34a-5p, we aligned
the 3′UTR sequences of the target genes with the seed sequences of the
respective miRNAs, focusing on the 8-mer, 7-mer-m8, 7-mer- A1, and 6-mer
binding sites. Next, we searched for exact hits of these canonical binding
sites in the 3′UTR sequences for each gene. For each 3′UTR sequence, we
computed the secondary structure using RNAfold32. Here, we computed the
minimum free energy and partition function; we did not allow GU pairs at
the end of the helices and avoided isolated base pairs. We matched the
dot-bracket notation of the folded 3′ UTR sequence for each binding site
and computed the percentage of bound bases within the local secondary
structure (identified by “(“ or “)”). We then related the percentage of bases
bound within each binding site to the corresponding reduction in relative
light units (RLUs) that was measured for each individual MTI.

Calculation of the coverage score of binding sites in the 3′
UTRs
Using the Graph Modeling Language representation obtained from
ViennaRNA (version 2.5.1), we determined a coverage value that provides
information on how many bases are found in the 2D local area around the
seed region. For each base in a seed sequence, a value that represents how
many bases are located within a circle with a radius (r) around the seed
base is assigned; this process is performed by using the Euclidean distance.
To obtain the coverage value, we summed the values of the individual
bases of the seed and divided this value by the number of bases in the
seed to normalize seeds of different lengths. If more than one seed region
was found, we always considered the seed with the smallest coverage
value, corresponding to the most accessible site, for further analysis. For
the calculation of correlations, we used Pearson correlation.
Formally, the coverage score is defined as follows: Let Br xð Þ :¼
x 2 R2j jjxjj2 � r

� �
be the 2-dimensional ball of radius r 2 R�0 and

χAðxÞ :¼
1; if x 2 A

0; if x=2A
�

the indicator function. The RNA secondary structure of a UTR sequence is
given as a graph G with G ¼ V; Eð Þ, where V denotes the vertices and E the
edges. In our case, the vertices correspond to the bases and the edges to
the molecular compounds and to the hydrogen bonds. There is an edge
ei 2 E between two vertices vi , viþ1 2 V since the two bases are next to
each other in the RNA secondary structure, so the edge ei corresponds to a
molecular compound. There is an edge ek 2 E with k ≥ jVj if there is a
hydrogen bond between two vertices vi ; vj 2 V and i < j. Let Sl � V be the
set of vertices contained in the l-th seed region of a miRNA.
The coverage score for this miRNA, the seed region Sl and a fixed r 2 R�0

were defined as follows:
P

sl2Sl
P

v2V χBr slð Þ vð Þ
jSl j

where
P

v2V χBr slð Þ vð Þ gives the number of bases in a 2-dimensional ball
around the seed bases sl . Therefore, the coverage score yields the sum of
the number of bases in the radius of the seed bases normalized by the
number of bases in the seed region.
The calculations were carried out with python with the packages pandas

(version 3.10.8), numpy (1.24.2), matplotlib (3.7.0), networkX (3.0), pillow
(9.4.0) and scipy (1.10.1). The package scipy with the included interpolation
method and the package Pillow were used to obtain line art figures.

RESULTS
Identification of 705 MTIs between the 410 genes and 4 PD-
miRNAs
To demonstrate the potential of the PD-specific 3′UTR library, we
explored the complex miRNA‒target interactions of four well-
known PD-related miRNAs (miR-129-5p, miR-129-1-3p, miR-133b,
and miR-873-5p)23,33–35 (Fig. 1a). Notably, we intentionally
selected the miRNAs independently of the 3′UTR library to obtain
unbiased insights. The relation to PD was the only common
selection criterion between the miRNAs and the genes. We first
cloned the miRNAs into the expression plasmid pSG5 and verified
the constructs by Sanger sequencing. We next transfected the
miRNA expression plasmids into 293 T cells. While Northern blot
validation for miR-133b has been previously described19, we
demonstrated the correct miRNA processing and ectopic expres-
sion of miR-129-5p, miR-129-1-3p, and miR-873-5p in 293T cells
(Fig. 1b–d). Because the miRNAs and genes were selected
independently of each other, we identified potential targets of
the four miRNAs in the 3′UTR library of the PD-associated genes. In
silico consensus target prediction revealed 8069 potential target
genes for miR-129-5p (Supplementary Table 2), 3844 for miR-129-
1-3p (Supplementary Table 3), 3845 for miR-133b (Supplementary
Table 4), and 6620 for miR-873-5p (Supplementary Table 5). Out of
the PD-specific 3′UTR library, we subsequently extracted those
plasmids that harbored a canonical miRNA binding site for the
respective miRNA by sequence alignment of the 3′UTR sequences
with the canonical binding sites (8-mer, 7-mer-m8, 7-mer- A1, 6-
mer). As a result, we identified 320 3′UTR subregions with binding
sites for miR-129-5p, 95 3′UTR subregions for miR-129-1-3p, 100 3′
UTR subregions for miR-133b, and 190 3′UTR subregions for miR-
873-5p (Supplementary Table 6). As mentioned, we split the 3′
UTRs into 1280 overlapping fragments to account for length
restrictions and obtain optimal results. In sum, 705 potential MTIs
remained and were tested by our semiautomated reporter assay:
140 genes predicted for miR-129-5p were represented by 320 3′
UTR reporter constructs, 60 genes predicted for miR-129-1-3p
were represented by 95 3′UTR reporter constructs, 69 genes
predicted for miR-133b were represented by 100 3′UTR reporter
constructs, and 102 genes predicted for miR-873-5p were
represented by 190 3′UTR reporter constructs (Fig. 1a).
The target gene 3′UTR reporter constructs harboring more than

one exclusive miRNA binding site for one of the four tested
miRNAs are summarized in Supplementary Table 7, and the
overlap between the target gene 3′UTR constructs for these
miRNAs is visualized in Supplementary Fig. 3. We identified 22
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target gene 3′UTR vectors with binding sites for miR-873-5p and
miR-133b, 6 for miR-133b and miR-129-1-3p, 25 for miR-133b and
miR-129-5p, 5 for miR-129-1-3p and miR-129-5p, 14 for miR-873-
5p and miR-129-1-3p, and 43 for miR-873-5p and miR-129-5p. A
few of the target gene 3′UTR constructs harbored binding sites for
3 different miRNAs: 4 constructs harbored binding sites for miR-
873-5p, miR-133b and miR-129-1-3p; 1 construct harbored binding
sites for miR-133b, miR-129-1-3p and miR-129-5p; 3 constructs
harbored binding sites for miR-873-5p, miR-133b and miR-129-5p;
and 1 construct harbored binding sites for miR-873-5p, miR-129-1-
3p, and miR-129-5p.

The semiautomated reporter assay validated up to 80% of the
MTIs for miR-129-1-3p
To experimentally validate the MTIs between the in silico-identified
UTRs of the library and the four miRNAs, we performed our
semiautomated HiTmIR assays for all 705 predicted MTIs. Following
cotransfection of a miRNA with the reporter plasmid, the assay
indicated functional binding of the tested miRNAs to the
respective 3′UTR as a reduction in RLUs. We distributed the 705
MTIs along with positive and negative controls on 35.25 96-well
plates. Each dual luciferase assay was then performed four times,
resulting in 35.25 × 4 × 96= 13,536 single transfections (Fig. 2a–d).
The validated MTIs are shown in the upper left quadrant of a
volcano plot (Fig. 2g). In line with the original miRATBase criteria,
we required a mean reduction to <90% of the relative light units
(RLU) compared to the empty miRNA expression vector. As a
second criterion, we required a significant nominal p value at an
alpha level of 0.05. Notably, the results were presented as the
maximal reduction and the maximal significance of all 3′UTR
sequences representing that gene. Interestingly, the four miRNAs
varied significantly with respect to the number of targeted 3′UTRs
and the target effect size (Fig. 2f, g). Out of a total of 320 predicted
and tested 3′UTR constructs (i.e., predicted and tested MTIs), 215
were suppressed by miR-129-5p (i.e., verified MTIs). Out of 95
predicted and tested 3′UTR constructs (i.e., predicted and tested
MTIs), 76 were suppressed by miR-129-1-3p (i.e., verified MTIs). Out
of 190 predicted and tested 3′UTR constructs (i.e., predicted and
tested MTIs), 96 were suppressed by miR-873-5p (i.e., verified MTIs).
Out of 100 predicted and tested 3′UTR constructs (i.e., predicted
and tested MTIs), 55 were suppressed by miR-133 (i.e., verified
MTIs). Among these, the validation rate was highest for miR-129-1-
3p (80%), while the lowest rate was 50.5% for miR-873-5p.
To understand whether these patterns persist when focusing on

stronger reductions, we repeated the consideration with a
reduction to less than 70% of the original intensity. Among the
320 3′UTR subregions with binding sites for miR-129-5p, we
observed 50 respective reporter plasmids. The original expression
of the target gene COX4I2 (cytochrome c oxidase subunit 4I2) was
reduced by 6.4% by miR-129-5p, representing the most powerful
targeting effect (p < 10-6). For miR-129-1-3p, we detected a highly
significant reduction in RLUs (p < 0.001) for most reporter
plasmids. Of the 95 3′UTR sequences for that miRNA, 21 reporter
plasmids exhibited a significant RLU reduction to less than 70% of
their original expression. The expression of KCNJ9 (potassium
inwardly rectifying channel subfamily J member 9) was reduced
the most (39.2% reduction). For miR-133b (10 UTRs) and miR-873-
5p (9 UTRs) less robust targeting effects were observed. miR-133b
decreased the original expression of the target gene KCNJ9 by
26.0%, which was the lowest overall reduction. For miR-873-5p,
45.7% of the RLU of the 3′UTR of the target gene dopamine beta-
hydroxylase_2 (DBH_2) remained. The lower number of target
genes of miR-133b and miR-873-5p compared to miR-129-5p and
miR-129-1-3p is indicative of the differences in the functional
abilities of the respective miRNAs. Remarkably, we also identified
few genes with a significant upregulation in the target validation
(see also the “right” arm in the volcano plot, Fig. 2e), contrasting
the expected patterns of reduced activity. The targeting of the

PPP2R5D gene (protein phosphatase 2 regulatory subunit B′delta)
by miR-133b increased its activity by 130%, indicating a
significantly increased expression level (p= 0.008). There is
increasing evidence that miRNAs can also act as positive
regulators of target genes. Recent studies have reported that
miRNAs can positively regulate their target genes by binding to
the promoter sequences of their respective target genes in the
nucleus36,37. However, the mechanisms by which a miRNA induces
the transcription of a target gene are not fully understood.
The astonishing variability of the results motivated a more

detailed look at the positive and negative binding events for MTIs.
In the following section, we address the questions of whether and
to what extent the binding site, (i.e., the number or the
composition of the complementary nucleotides between UTR
sequences and miRNAs), contributes to the variation that we
found for the tested miRNAs. For the standardized validation
experiments, we considered the 3′UTRs based on the binding site
type (6-mer, 7-mer-A1, 7-mer-m8, 8-mer) and the number of
miRNA binding sites. Generally, we expect a greater reduction in
the RLU for 7-mer and 8-mer binding sites than for 6-mer binding
sites. For this analysis, we additionally included data on the targets
miR-7-5p and -34a-5p from our previous study; these data were
also obtained with our standardized high-throughput miRNA
interaction reporter assay (HiTmIR)23. For miR-129-5p, the most
prominent reduction was detected for the 7-mer-m8 binding site
(Fig. 3a). Surprisingly, we found 7-mer and 8-mer binding sites
within the 3′UTR sequence of this miRNA that did not reduce the
RLU of the target gene. Similarly, we found a limited influence of
the binding site type on the RLU for miR-129-1-3p (Fig. 3b). In this
case, a 6-mer binding site yielded the most reduced RLU in the
target 3′UTR. For miR-133b, we detected a significant decrease in
the RLU at the 8-mer sites compared to the 6-mer sites (Fig. 3c).
For miR-873-5p, we did not detect a significant difference
between the target site types. The 7-mer-A1 target site yielded
the strongest RLU reduction (Fig. 3d). After reanalyzing the data
from our previous study on miR-7-5p (Fig. 3e) and miR-34a-5p
(Fig. 3f), we found a significant negative correlation between the
number of binding nucleotides and the reduction in the RLU. In
particular, the presence of an 8-mer binding site resulted in a
significant reduction compared to that of the other binding sites.
The GC content of the respective seed sequences ranged from
16.7% in the seed region of miR-129-5p to 66.7% in the seed
regions of miR-129-1-3p and miR-34a-5p and was not related to
the correlation between binding and RLU reduction. Notably, for
reporter plasmids containing more than one miRNA binding site,
we did not observe a significant correlation between the number
of miRNA binding sites and the reduction in RLU (Supplementary
Fig. 4).
Finally, we summarized the MTI results from the UTR level to the

gene level based on the above criteria. We identified a total of 214
potential target genes for at least one of the tested miRNAs (miR-
129-5p, miR-129-1-3p, miR-133b, and miR-873-5p; Supplementary
Table 8). Considering the MTIs at the gene level as edges in a
bipartite graph with 214 genes potentially targeted by at least one
miRNA of the four miRNAs results in 214 × 4= 856 edges (Fig. 3g).
Overall, we provide computational evidence for 372 of the 856
edges (43.5%). Based on our experimental data, we considered a
gene to be repressed if one of its UTR-based MTIs showed a
significant reduction to at most 90%. By analyzing the experi-
mental results of the 372 edges with positive computational
evidence, we reached a confirmation rate of 76.9% (i.e., we
validated 286 target genes). Overall, 286 of the 856 edges (33.4%)
in the bipartite graph had computational and experimental target
evidence. Three genes (CXCL12 (C-X-C motif chemokine ligand
12), RAB3B (RAB3B, a member of the RAS oncogene family), and
SYT1 (synaptotagmin 1)) were targets of all four miRNAs. There
were 23 additional genes that were targets of 3 of the four
miRNAs and 52 genes that were targets of two of the four miRNAs.
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In total, 101 genes were targeted by exactly one miRNA, and no
experimental evidence could be found for 35 of the original 214
target genes.
To put the results in the context of currently available

targetomes, we compared the number of MTIs to the number of

formerly validated MTIs deposited in miRTarBase. Compared to
previously published MTIs entered in miRTarBase, we extended
the number of MTIs validated by a reporter assay for each miRNA.
Including the results of our previous study, we increased the
number of validated target gene interactions from 46 to 115 for

Fig. 2 Analyzing the target efficacy of the PD-specific library. a Reporter assay results for miR-129-5p. The extracted reporter plasmids
corresponding to the predicted target genes of the four PD-associated miRNAs were analyzed for miRNA targeting ability via semiautomated
HiTmIR assays. First, 293T cells were cotransfected with the respective miRNA expression plasmid and different reporter plasmids. After 48 h,
the cells were lysed, and luciferase activity was determined. The RLU of the respective reporter plasmid was normalized to that of the
corresponding cotransfected miRNA with the empty vector pMIR-RNL-TK. The reporter plasmids with a detected RLU <70% are shown. LiMTaR
was performed four times in technical duplicates. The colors of the single bars represent the corresponding p values. b Reporter assay results
for miR-129-1-3p. c Reporter assay results for miR-133b. d Reporter assay results for miR-873-5p. e RLUs of all MTIs for all miRNAs measured by
the reporter assay versus the negative decade logarithm of the p value. The colors represent the four miRNAs (blue: miR-133b; red: miR-873-
5p; green: miR-129-5p; gray: miR-129-1-3p). All points in the upper left corner met our criterion of a reduction in gene activity at a significant
level. f Overall distribution of miRNA target regulation. The analyzed reporter plasmids were categorized by the detected RLU. g Heatmap
showing the targeting results as an adjacency matrix. Dark blue cells are sets of genes and miRNAs for which no computational evidence
exists and for which information has not been obtained. Light blue represents negative validation results (false-positive predictions), and red
represents verified interactions.
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Fig. 3 Impact of the miRNA binding sites within a reporter plasmid on miRNA-dependent regulation. We categorized the results by the
type of corresponding miRNA binding site within the 3′UTR sequence that was correlated with the respective RLU. The sequences of the
different miRNA binding sites for each miRNA are depicted at the top of each subpanel. a The 3′UTR sequence of miR-129-5p. b The 3′UTR
sequences of miR-129-1-3p. c The 3′UTR sequences of miR-133b. d The 3′UTR sequence of miR-873-5p. e The 3′UTR sequence of miR-7-5p.
f The 3′UTR sequence of miR-34a-5p. g Graph-based validation. Left panel: Complete target network. The four miRNAs are presented in the
middle as blue nodes, and the target genes are presented as smaller organ nodes. Right panel: validation of the target gene network. All
edges without experimental evidence from the previous graph were removed. h Comparison of miRNA‒target gene interactions in
miRTaRBase versus positive miRNA‒target gene interactions in miRATBase for miR-7-5p, miR-34a- 5p, miR-129-5p, miR-129-1-3p, miR-133b and
miR-873-5p. HiTmIR= high-throughput miRNA interaction reporter assay, LIMTaR= library-based miRNA target gene reporter assay (this
study), and miRTarBase=microRNA‒target interaction database.
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miR-7-5p (≙2.5-fold), from 132 to 244 for miR-34a-5p (≙1.8-fold),
from 27 to 142 for miR-129-5p (≙10.1-fold), from 3 to 55 for miR-
129-1-3p (≙18.3-fold), from 42 to 90 for miR-133b (≙2.1-fold), and
from 3 to 73 for miR-873-5p (≙24.3-fold) (Fig. 3h). Notably, the
opposite comparison demonstrated that none of the MTIs being
negative in our assay has been found positive in the miRTarBase.

Computational analysis highlights the limited influence of the
predicted local secondary structure
One of the original goals was to develop a resource that facilitates
improved target prediction by providing standardized reporter
assay results. In the last section, we described the effects of the
target sites on the miRNA targeting efficacy. One piece of
information that is not included in most target predictors is the
local secondary structure of the 3′UTR, not to mention more
complex information such as the tertiary structure. However, RNA
structures are known to generate natural cooperation between
single-stranded RNA-binding proteins and 3′UTRs38. Not surpris-
ingly, the secondary structure seems to affect the binding of
specific genes, as demonstrated for miR-159 in plants39. Our
standardized dataset allowed us to test this hypothesis at a larger
scale. While we acknowledge that the cloned 3′UTRs do not
necessarily reflect the physiological situation (this remains one of
the primary challenges of reporter assays), the cloned sequences
and the predictions made from the same sequences are
consistent.
Thus, sites that are less accessible in the 3′UTR due to folding

onto other sites in the same 3′UTR might impair the targeting

process. We thus compared the fraction of the seed binding
region within the 3′UTR that was paired with the reduction in the
RLU. We did not detect a significant correlation for any of the
miRNAs (Fig. 4a), indicating that the local folding structure has a
limited influence on the reporter assays. By extending the
consideration to 5- (Fig. 4b) and 50-base windows (Fig. 4c) to
the 3′ and 5′ end of the 3′UTR, we identified a tendency toward a
significant reduction in the number of MTIs (p < 10−5). The latter
aspect indicates that while the local secondary structure of the 3′
UTR seems to have a limited influence, the overall secondary, and
even the tertiary structure, may have an influence.
This investigation requires a more precise model of the region

surrounding each binding site. We implemented a score that
represents the region surrounding the binding site (Fig. 4d). More
precisely, we defined a circle with a variable diameter surrounding
each nucleotide in the seed region of the secondary structure and
counted the bases within this circle (Fig. 4e). The score was
calculated by adding up the counts for each seed base and
normalized by the number of bases in the seed. A high score
reflected a rather closed secondary structure, while a low score
reflected an open structure. By testing the radii between 0.8 and 6
length units, we identified patterns that differed significantly
between miRNAs. Depending on the miRNA, we observed weak
positive correlations between the coverage score and the RLU
(which reflects the original assumption of better binding when the
binding site is open) but also significant negative correlations
(Fig. 4f). For miR-129-1-3p, we identified significant negative
correlations between the coverage score and the RLU. These

Fig. 4 Correlation of the local secondary structure with the repression of target genes. a The scatter plot shows the percentage of closed
bases that are bound (y-axis) against the reduction in the RLU in %. The expected pattern is a positive correlation: the more closed a binding
site is, the lower the reduction in repression should be. The orange dots represent significantly (p value < 10−5) reduced target sites. b The
results when the binding site was extended by a window of 5 bases in the 3′ and 5′ directions. c The results when the binding site was
extended by a window of 50 bases in the 3′ and 5′ directions. d Schematic drawing of an example seed region (highlighted in orange) in a
secondary structure. The circle in blue shows the area around the binding site. e For each base in the binding site, a circle with variable radius
(r) was used to determine the number of nucleotides in proximity (bases in the circle are black circles with blue dots). We tested values of
0.8–5 length units for the radius to compute a coverage score for the binding site. f Scatter plot describing the correlation between the
coverage score and the RLU (x-axis) and the respective significance value (y-axis). The analysis was performed for each mina (colors) with
different radii (shapes). For miR-129-1-3p, we observed a pattern corresponding to the original hypothesis, however, the other miRNAs did not
display this pattern.
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examples highlight that developing a general model for improved
targeting of miRNAs via secondary structure is challenging and
that factors beyond the 3′UTR secondary structure also have to be
considered. A tool to visualize the binding sites of one or multiple
miRNAs within a UTR is freely available (https://ccb-web.cs.uni-
saarland.de/utr-seremato).

Effect of miRNA overexpression on endogenous protein
expression
To complement the expression analysis of miRNAs determined by
the dual luciferase assays with both exogenous reporter plasmids
and exogenous miRNA expression plasmids, we analyzed the
effect of exogenous miRNA on endogenous proteins by Western
blotting. For validation by Western blotting, we selected miR-129-
5p, which has been previously associated with PD23. We selected
proteins that have also been previously associated with PD and
were identified as potential mRNA targets of miR-129-5p by our
reporter assays. The neuronal cell line SH-SY5Y was transfected
with the respective miRNA mimics, and RT‒qPCR was used to
evaluate the ectopic expression of miR-129-5p (Supplementary
Fig. 2). Ectopic expression of miR-129-5p reduced the expression
of AKT3 (AKT serine/threonine kinase 3) to 65.8%, CLOCK (clock
circadian regulator) to 60.7%, COMT (catechol-O-methyltransfer-
ase) to 64%, and SNCA (α-synuclein) to 59% (Fig. 5a, b). In
summary, Western blot analysis confirmed the MTIs observed by
dual luciferase assays. This finding agrees with our previous
findings, which confirmed the results of dual luciferase assays and
Western blot analyses17,23,40–42.

DISCUSSION
Understanding the interactions between miRNAs and target genes
is central to the characterization of molecular signaling cascades,
including signaling cascades, in a disease context. As mentioned
above, there are more than 44,571,700 potential miRNA target
interactions (MTIs). Computational approaches are certainly the
first choice for tackling the task of elucidating complex networks.
Ultimately, however, these approaches require experimental
approaches to verify the predicted MTIs. We employed a
systematic approach for MTI determination under standardized
conditions by using a 3′UTR library enriched for genes associated
with Parkinson’s disease. We analyzed this library by more than
13,000 single transfections for a set of four miRNAs that have been
previously associated with PD. Mature miR-129-5p and miR-129-1-
3p, which are both processed from the same precursor, premir-
129, were significantly upregulated after the induction of a PD-like

phenotype in LUHMES cells, as shown in our previous study23. A
study by Kim et al. showed that the precursor premiR-129-2, which
can also be processed into the mature miR-129-5p, was enriched
in the midbrain of PD patients33. The same study showed a
significant reduction in the expression of the mir-133b precursor.
A significantly reduced miR-133b level was also demonstrated in
the plasma of PD patients and in different models mimicking a PD-
like phenotype33,43–45. miR-873-5p has been previously described
to be neuroprotective in a neuroinflammatory model of PD34.
Depending on the tested miRNA, differences were detected in

the overall RLU value distribution, the number of significant target
gene 3′UTR reporter plasmids and the positive rate. We found that
the effectiveness of miRNAs strongly varies between distinct
signaling pathways. Especially for miR-873-5p, most reporter
plasmids showed only a slight reduction in the RLU, a small
number of significant target genes and a low positive rate
compared to those of the other tested miRNAs. Although miRNAs
that regulate only small numbers of target genes in the dopamine
and PD-associated pathways might be less relevant for these
signaling pathways, these miRNAs might nevertheless impact the
pathogenesis of the disease via other signaling pathways. The
miR-873-5p, which has been primarily described as neuroprotec-
tive in the context of neuroinflammation, may regulate target
genes directly associated with the PD-associated immune
response34. Although our study focused on the generation of
miRNA‒target gene networks in affected dopaminergic neurons,
identifying target genes of miR-873-5p that are associated with
the immune system could further help to elucidate the role of this
miRNA in PD pathogenesis, especially in the context of
neuroinflammation.
While previous high-throughput studies on the impact of

miRNA binding often did not exclude indirect effects46,47, our
high-throughput analysis focused on direct interactions between a
miRNA binding site and the respective miRNA. The results of the
analysis of the binding sites of miR-34a-5p, miR-7-5p, miR-129-1-
3p and miR-133b were comparable to those of other miRNAs46,47.
The higher the number of potential binding nucleotides within a
3′UTR was, the greater the effect of miRNA-induced regulation
was. This, however, did not apply to reporter plasmids containing
a 7-mer-m8 binding site that showed a low or no reduction in the
RLU. In contrast, no significant effect between the different types
of binding sites was detected for the miRNAs miR-129-5p and miR-
873-5p. Several additional factors may contribute to MTIs,
including the surrounding sequence in the 3′UTR of the target
gene and the secondary structure of the mRNA47–50. The latter
hypothesis is supported by in silico predictions of the local

Fig. 5 Western blot analysis of miR-129-5p. SH-SY5Y cells were transfected with either ANC or the miRNA mimic. After 48 h, the changes in
the protein expression of AKT3, CLOCK, COMT, and SNCA induced by miR-129-5p were determined using specific antibodies against these
proteins. Western blot analysis for each protein was performed for three independent replicates. a Results of the analysis of the regulation of
SNCA, CLOCK, AKT3, and COMT protein expression by miR-129-5p. b Quantitative analysis of the changes in the protein expression of AKT3,
CLOCK, COMT, and SNCA induced by miR-129-5p are shown in the bar chart (mean ± standard deviation). Asterisks indicate a significant
reduction.
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secondary structure of mRNAs around the miRNA binding site,
indicating reduced accessibility of the miRNA binding site for
genes with high RLUs.
Independent of the mRNA secondary structure, the mere

flanking sequences, for example, 3′ complementarity, may also
influence the MTI as well as the nucleotide composition of the
miRNA seed region51. Of particular interest in this context are the
differences in the GC content ranging from 16.7% in the seed
region of miR-129-5p to 66.7% in the seed regions of miRNAs miR-
34a-5p and miR-129-1-3p. Notably, miRNAs with a low GC content
in the seed region were associated with noncanonical targeting51.
In addition to the analysis of specific MTIs, MTI networks that are
largely predicted only by in silico tools await further identification
and validation via experimental approaches. As recently shown,
target sites within mRNAs can act cooperatively, resulting in
greater repression of the target mRNA than that caused by
independent action at each site52. Similarly, the number of
miRNAs, the number of targets, and the availability of free RISCs
are important, as each plays a role in the development and status
of MTI networks.
The functional assays that are required to contribute to MTI

network analyses have severe limitations and biases. To analyze
the interactive effects of two or more miRNAs, transfection assays
can be used, but they do not allow us to define the stoichiometric
relationships between the miRNAs and their target MTIs. The
interpretability of cotransfection assays is further impacted by the
variable and/or frequently low transfection efficacy. Furthermore,
the cellular background can also affect the functionality of MTIs53.
Different cell types express varying amounts of different RNA-
binding proteins (RBPs)54, which can affect the ability of a miRNA
to regulate target genes. RBPs can modulate the secondary
structure of target 3′UTRs, enhancing the binding capability of
miRNAs55. On the other hand, RBPs binding to target 3′UTRs can
prevent miRNAs from binding by masking their binding motifs.
This can occur when RBPs bind to the same site as the miRNA or
when they bind to a nearby site that overlaps with the miRNA
binding site56,57.
Independent of these challenges, the presented systematic 3′

UTR library-based approach for targetome determination
provides a basis for subsequent MTI network analyses. To
acknowledge the complexity of this scenario, we employed a
standardized library-based functional approach with 13,536 sin-
gle transfections and identified a very dense MTI network with
447 MTIs for PD. Our approach to studying MTIs in a disease
context can serve as a foundation to experimentally validate
millions of potential MTIs, especially in specific disease
phenotypes. From our study, we derive the following concrete
scenarios and next steps: (1) Standardization of reporter assay
experiments is essential for obtaining sufficient high-quality
data and training artificial intelligence approaches to improve
the prediction of targets. (2) It is mandatory to perform
standardized experiments at the same scale for cooperative
binding scenarios. Only with the respective datasets paired with
improved computational models can the effects and side effects
of miRNA-mediated therapies be modeled, facilitating miRNA
therapeutic applications.
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Characterizing expression changes  
in noncoding RNAs during aging  
and heterochronic parabiosis across  
mouse tissues

Viktoria Wagner    1, Fabian Kern    1,2,3, Oliver Hahn2, Nicholas Schaum2, 
Nicole Ludwig4, Tobias Fehlmann    1, Annika Engel    1, Dominic Henn5, 
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Martin Hart4, Eckart Meese4, Steve Quake6, Tony Wyss-Coray    2,7,8   & 
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Molecular mechanisms of organismal and cell aging remain incompletely 
understood. We, therefore, generated a body-wide map of noncoding  
RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to  
27 months) and rejuvenated mice. We found molecular aging trajectories 
are largely tissue-specific except for eight broadly deregulated microRNAs 
(miRNAs). Their individual abundance mirrors their presence in circulating 
plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs 
were less present. For miR-29c-3p, we observe the largest correlation with 
aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic 
parabiosis, miR-29c-3p was the most prominent miRNA restored to similar 
levels found in young liver. miR-29c-3p targets the extracellular matrix 
and secretion pathways, known to be implicated in aging. We provide a 
map of organism-wide expression of ncRNAs with aging and rejuvenation 
and identify a set of broadly deregulated miRNAs, which may function as 
systemic regulators of aging via plasma and EVs.

One primary risk factor for cancer, diabetes, cardiovascular disorders 
and neurodegenerative diseases is aging1. Therefore, understanding 
the underlying mechanisms of this complex process is essential to 
improve quality of life by developing new therapies. Finding the most 
promising therapy target is challenging, as it is not possible for a single  
level of omics data to explain whether the changes discovered  
are causative to or the result of aging2. Epigenetic markers like DNA 

methylations have been identified as promising aging biomarkers3,4. 
Current research efforts, including transcriptomic studies of major 
organs in aged mice5,6, largely lack information covering the whole RNA 
diversity, for example, the diverse classes of noncoding RNAs (ncRNAs). 
Attempting to better differentiate cause and effect, we herein present 
the corresponding ncRNA dataset to the Tabula Muris Senis (TMS) 
cohort5. Such RNAs are part of epigenetic reprogramming and altered 
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and compared it with the sequence reference length (Extended Data 
Fig. 1d). Even though the fraction of the sequence covered by the maxi-
mal assembly decreased for larger RNAs (Spearman’s rho = −0.43), we 
verified that throughout all RNA classes, we were still able to reproduce 
for a subset up to 100% of the full-length reference (Supplementary 
Table 2). Therefore, we decided to include the full dataset as a refer-
ence for future studies while implementing restrictive filtering steps 
to increase the reliability of our data. Especially the somatic piRNAs 
exceeded the expected counts, likely driven by artifacts in piRNA 
annotation13 and calling for additional quality control filters. We first 
retained piRNAs encoded in prepachytene piRNA genomic clusters14,15 
to minimize the number of false positive hits. Next, we removed low 
abundant features across all ncRNA classes, keeping those with at least 
1 read mapped per million (rpmm) in at least one sample, resulting in 
the abundant dataset (Fig. 1a, right column). Applying this stringent 
filtering, the number of piRNAs in our dataset decreased from 43,799 
detected down to 43 abundant, likely removing most falsely annotated 
features13.

Clustering by ncRNA expression using t-distributed stochastic 
neighbor embedding (t-SNE), samples split into tissue-specific groups 
(Fig. 1b). One cluster contained skin, GAT and SCAT samples, which 
likely can be explained by their biological and functional close rela-
tionship of containing similar cell types. To check whether relevant 
biological factors outweigh technical ones, we performed a principal 
variance component analysis. The highest proportion of variance in the 
data was explained by tissue identity (Extended Data Fig. 2a). Annotat-
ing the t-SNE plot by animal sex revealed a uniform spread, excluding 
it as a major driver of the observed variance (Extended Data Fig. 2b).

Following our main objective to identify organ-specific aging 
trajectories, we added a tissue-specific, that is, local filtering to check 
whether ncRNA expression changed not only between tissues but also 
with age (cf. Methods). On the locally-filtered data, we calculated read 
count percentages for all RNA classes. As for the detected reads, we 
observed tissue-specific distributions (Fig. 1c). Analyzing those over 
time, we identified two clusters of tissues (Extended Data Fig. 2c). 
One exhibited a stable count distribution (mean variance < 4.5%) and  
the other showed high variance within the count distribution (mean 
variance > 4.5%). Specifically, 3 of 16 tissues showed high variance 
(brain, BAT and limb muscle), while most tissues (13–16) were charac
terized by a stable read distribution (including marrow and liver)  
(Fig. 1d and Extended Data Fig. 3). In the brain, the share of snRNA reads 
decreased from 77.9% to 10.0%, while the share of miRNAs increased 
from 9.1% to 28.5%. In BAT, the miRNA share grew steadily from 4.1%  
to 26.4% and the rRNA share dropped from 62.7% to 27.8%.

The observed variations of the RNA classes prompted us to  
assess the expression changes during aging for the individual ncRNAs. 
Therefore, we determined the Spearman rank correlation of age with 
the expression of every ncRNA in each tissue separately. We identified 
31 tRNA fragments that were substantially differentially expressed 
between 3 and 21 months (two-sided t-test, P adjust < 0.05). Eight 
tRNA fragments showed increased expression (in brain and lung) and  
23 showed decreased expression with age (in bone, limb muscle, skin 
and GAT). tRNA-related metabolism, transcription, modification  
and derivatives have vital roles in aging and longevity of organisms, 
as tRNA expression decreases with age16. We further observed that 
miRNAs displayed the strongest correlations with age over all tissues 
(exceeding the interval of −0.5 to 0.5; Fig. 1e). Given that miRNAs  
were captured in full-length by our sequencing platform, their high 
abundance across tissues and the fact that they exhibited the largest 
effect size, we further focused on miRNAs for downstream analysis.

MiRNA lifespan trajectories are largely tissue specific
For the intersection of miRNAs expressed in all tissues, we observed 
more markers being correlated positively than negatively with age  
(Fig. 2a and Supplementary Table 3). In contrast, large sets of miRNAs 

intercellular communication, which have been described as hallmarks 
of aging1,7. Further, they can have a role in intercellular communication 
via extracellular vesicles (EV)8. MicroRNAs (miRNA), a class of ncRNAs, 
target messenger RNA (mRNA) through base-pair binding and thereby 
regulate gene expression via post-transcriptional gene silencing7,9. 
Furthermore, miRNAs act as age-specific disease biomarkers10 and 
have been identified as regulators in aging-associated phenotypes11.

We analyzed eight classes of ncRNAs in TMS separately and 
together with the existing single-cell and bulk mRNA datasets5. The 
previously observed tissue-driven shifts in gene expression with aging 
that correlate with corresponding protein levels in plasma could be 
caused by epigenetic regulation mechanisms mediated by ncRNA. 
Furthermore, these may not only be implicated in aging but also have a 
role in the regenerative effects observed in aging interventions such as 
heterochronic parabiosis. Regenerative activities within young blood 
with translational implications for aged liver, muscle and brain have 
been observed before12. Therefore, we performed ncRNA sequencing 
of tissue samples following heterochronic parabiosis experiments, 
in which a young (3–4 months) and an aged (19 months) mouse share 
a common blood circulation. Our two datasets describe age- and 
rejuvenation-related ncRNA expression changes to reveal the potential 
of ncRNAs as targets for new pharmaceutical approaches.

Results
Mapping of ncRNA expression across mouse organs
We sequenced 771 tissue samples of the TMS cohort to map mole
cular shifts across the whole organism during healthy aging (Fig. 1a). 
The protocol enriches for small ncRNA, especially mature miRNAs. 
Even though full-length reads cover only small ncRNAs (miRNAs or 
piwi-interacting RNAs (piRNAs)) completely, the protocol generates 
measurable fragments of longer ncRNAs. This sequencing strategy 
extends the existing mRNA TMS dataset5 with miRNA, piRNA, long 
ncRNA (lncRNA), small nucleolar RNA (snoRNA), small nuclear RNA 
(snRNA), transfer RNA (tRNA), ribosomal RNA (rRNA) and small Cajal 
body-specific RNA (scaRNA). The tissue sample collection includes 
16 solid tissues of C57BL6/JN mice (bone (femurs and tibiae), brain 
(hemibrain), brown adipose tissue (BAT, interscapular depot), gonadal 
adipose tissue (GAT, inguinal depot), heart, kidney, limb muscle (tibialis 
anterior), liver, lung, bone marrow, mesenteric adipose tissue (MAT), 
pancreas, skin, small intestine (duodenum), spleen and subcutaneous 
adipose tissue (SCAT, posterior depot)). The selected time course covers  
the mouse lifespan from a developmental age of 1 month up to  
27 months (males: aged 1, 3, 6, 9, 12, 15, 18, 21, 24 and 27 months; females: 
aged 1, 3, 6, 9, 12, 15, 18 and 21 months). With up to six mice per timepoint, 
the study covers a maximum of 960 samples (16 organs × 10 timepoints ×  
6 replicates). As not all mice survived to the later timepoints and we 
further excluded 26 low-quality RNA samples, we finally included  
771 high-quality samples in the study (Supplementary Table 1).

We mapped resulting sequencing reads against 87,590 ncRNA 
sequences (Fig. 1a, left column) derived from established reference data-
bases (miRNAs, miRBase 22, tRNAs: GtRNAdb 18.1, piRNA: RNACentral 15,  
all other ncRNAs: Ensembl 100). Altogether, we detected reads  
mapping to 58,422 different ncRNAs (Fig. 1a, middle column), with 
miRNAs being the most abundant class. An average of 36.2% of reads 
across tissues mapped to miRNAs (Extended Data Fig. 1a). The distri-
bution of reads to RNA classes, however, varied substantially between 
tissues (P < 0.05, Kruskal–Wallis test; Extended Data Fig. 1b). We  
thus asked whether the variation in read distribution is related to the 
length of representatives. We generated aligned sequence profiles 
to quantify the length of sequences covered with our reads. First, 
we explored the percentage of sequence length covered versus the 
sequence reference length. Even for very long sequences exceeding 
10,000 bases, we partially recovered large fractions or even the com-
plete sequence (Extended Data Fig. 1c). We also computed the maximal 
assembly for each RNA, that is, the longest contiguous read mapping, 
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Fig. 1 | Atlas of noncoding RNA expression along the mouse lifespan. a, Study 
overview—data of the aging (TMS) cohort, consisting of mouse samples collected 
from 16 different tissues at ten different timepoints throughout the lifespan with 
maximal six replicates per timepoint varying due to sample and sequencing 
quality. A total of 771 samples were sequenced, and the reads were annotated 
to the 87,590 different RNA reference sequences from eight RNA classes. Of the 
RNAs in the databases listed on the left, 58,422 different ncRNAs were annotated 
in the raw reads and we found 7,883 noncoding features as abundant expressed 
in our TMS aging cohort. Created with BioRender. b, t-SNE visualization of all 

samples of the TMS cohort over all detected noncoding RNAs, colored by tissue 
of origin. c, Percentage of counts per RNA class, calculated on total counts 
per tissue after local filtering for all tissues in the TMS cohort, color coded by 
RNA-class color legend as indicated in a. d, Variation of mean count distribution 
per RNA class over the lifespan of the mouse in the brain, BAT, marrow and 
liver; calculated count percentages per sample after local filtering. Created 
with BioRender. e, Density plot of Spearman rank correlation of all expressed 
noncoding RNA with age in each individual tissue grouped by RNA classes, 
density scaled individually for every RNA class.

results 147



Nature Biotechnology | Volume 42 | January 2024 | 109–118 112

Article https://doi.org/10.1038/s41587-023-01751-6

were correlated with age in a specific tissue. For example, six miRNAs 
were negatively correlated exclusively in limb muscle and 37 were posi-
tively correlated only in BAT. One of these miRNAs, miR-107, regulates 
insulin sensitivity and is postulated as a target for the treatment of  
type 2 diabetes and obesity17. Its increase in aging could be connected 
to the fact that age is a risk factor for diabetes1.

Certain miRNAs were linearly correlated with age in more than 
one tissue (Fig. 2b). MiR-29a-3p was positively correlated in eight  
tissues, and miR-300-3p, miR-487b-3p and miR-541-5p were nega-
tively correlated in five tissues each. Based on these observations, we  
separated the miRNAs into the following three classes: nonaging- 
related, local aging and global aging miRNAs. Local aging miRNAs 
were defined as correlated with age in at least one tissue exceeding  
the interval of −0.5 to 0.5. We accordingly defined miRNAs correlated 
with age in more than five different tissues as globally aging. Follow-
ing these definitions, we identified the three mentioned negatively  
correlated miRNAs together with five positively correlated miRNAs 
(miR-29a-3p, miR-29c-3p, miR-155-5p, miR-184-3p and miR-1895)  
as globally aging.

We then examined whether nonlinear age-related expression 
changes occur as well. Using the 3m timepoint as a baseline, we calcu-
lated foldchanges (FC) for all later timepoints and respective P values. 
Based on this analysis, we determined the number of deregulated 
miRNAs (Fig. 2c). Most were deregulated in BAT, driven by the large 
fraction of positively correlated local aging miRNAs. Investigating the 
brain, we found a peak at the ages 12 and 18 months with a count of 412 
and 427 deregulated miRNAs, respectively. Most of all substantially 
deregulated miRNAs (77.6%) in brain showed the strongest effect at 
12 and 18 months (Fig. 2d, Extended Data Fig. 4a,b and Supplemen-
tary Table 4). The higher count of deregulated miRNA at certain time-
points matched our expectation, as we hypothesized that miRNAs were 
responsible for the regulation of the previously reported transcriptome 
changes18. We further confirmed that those effects were not driven by 
lowly expressed features—we projected the mean expression against 
the FC for all tissues and all ncRNAs per timepoint (Extended Data 
Fig. 5). In line with our assumption, substantial FCs could be observed 
across all expression scales.

To identify common patterns within the nonlinear changes over 
time, we calculated z scores for all miRNAs being expressed in every 
tissue. Each miRNA in every single tissue was displayed as an aging  
trajectory and clustered across all organs. Ten of the 20 clusters 
obtained were composed mainly of one tissue; thus, we propose the 
existence of organ-specific miRNA time course signatures (Fig. 2e). Half 
of the miRNAs in cluster 2, with a peak at 3 months and a late increase 
again at 24 months, originated from the skin. Cluster 9, which showed 
a peak at 12 and 18 months, was composed of 61.2% brain miRNAs. The 
expression of miRNAs in cluster 13 increased continuously from the 
age of 6 months on, and this trajectory was specific for BAT (70.6%). 
In summary, we determined 10 of the 20 clusters to be tissue-specific, 
with at least 30% of miRNA originating from a single tissue (Extended 
Data Fig. 6).

The global aging miRNAs marked an exception to this tissue- 
specific clustering. Trajectories from more than five different  

organs for seven global aging miRNAs clustered together. For instance, 
we found the trajectories of miR-29a-3p and miR-29c-3p from ten and 
eight different tissues in cluster 20, respectively (Fig. 2f). The expres-
sion of miRNAs within this cluster increased continuously with age. 
This consistent signature could be indicative of the regulation of  
key pathways across all organs upon aging. Thus, we investigated the 
relationship between miRNA and mRNA expression closer.

Transcriptome changes mirrored by global aging miRNAs
The previous analyses suggested five miRNAs as cross-organ aging 
markers increasing with age (Fig. 2b). Following the biological mecha-
nism, we expected repression of target genes with aging. We chose to 
identify potential new targets in an unbiased manner by correlating 
miRNA with mRNA expression levels from the TMS dataset5. In the first 
step, we defined targets by exhibiting a significant inverse correlation 
(r < −0.4, P < 0.05). To support the validity of our approach, we checked 
the share of predicted miRNA–mRNA interactions with conserved 
binding sites for the miRNAs. As a control, we compared this number  
against the share of conserved binding sites in the miRNA–mRNA inter-
actions predicted via positive correlation. For 7.3% (9 of 122) of the 
miRNA–mRNA interactions identified via inverse correlation, we found 
at least one conserved miRNA binding site, as compared to the 2.1% 
(120 of 54,992) miRNA–mRNA interactions in the control set (Fisher’s 
exact test, P = 0.0018). Because a gene can contain multiple binding 
sites across multiple 3′ UTRs and different site types exhibit different 
strengths, we repeated the analysis for each type of binding site. The 
amount of conserved 8mer binding sites is 6.3 times higher as compared 
to the control (4.91% inv. correlation, 0.78% control; P = 0.0006), for 
conserved 7mer-8m binding sites 3.8 times higher (4.92% inv. correla-
tion, 1.30% control; P = 0.0062) and for conserved 7mer-1a binding sites 
9.0 times higher (2.45% inv. correlation, 0.27% control; P = 0.0064).

The filtered target gene sets showed distinct overlaps (cf. Methods; 
Fig. 3a and Supplementary Table 5). Three of the six targets are shared 
among all miRNAs, Eln, Col1a1 and Col3a1, which have a role in pro-
tein digestion and absorption and encode extracellular matrix (ECM)  
proteins. These are already validated targets for miR-29b-1/miR-29a 
(ref. 19). Overall, enriched processes for all targets were dominated by 
ECM-associated processes, such as ECM organization, collagen fibril 
organization and ECM-receptor interaction (Fig. 3b)20. Senescent cells 
are known to exhibit altered expression and organization of ECM and 
the ‘senescence-associated secretory phenotype’1,21. Our data suggest 
that these effects could be regulated by global aging miRNAs. Another 
part of the network composed of mainly Y-chromosome-coded pro-
teins contained proteins related to ‘ubiquitin-proteasome depend-
ent proteolysis’ (Usp9y), histone modification introducing proteins 
(Kdm5d) and probable transcriptional activators (Zfy1, Zfy2). Hence, 
other layers of regulation mechanisms are targeted. The ‘AGE-RAGE 
signaling pathway in diabetic complications’ and ‘dysregulated miRNA 
targeting in insulin/PI3K-AKT signaling’ were enriched, supporting our 
suggestion of the importance of miRNA regulation in nutrient sensing.

Consistent with the enriched pathways for the targets of cross- 
organ aging miRNAs were the enriched pathways for the targets of 
the local aging miRNAs. The ‘PI3K-AKT signaling pathway’, ‘protein 

Fig. 2 | Global and tissue-specific miRNA expression patterns with aging.  
a, Heatmap of Spearman rank correlation values of the intersection of miRNAs 
expressed in all tissues, color coded for positively correlated in blue (r > 0.5), 
negatively correlated in red (r < −0.5) and not correlated in white (−0.5 < r < 0.5). 
b, Heatmap of miRNAs (anti-) correlated with age in at least two tissues, colored 
by number of tissues (anti-) correlated and divided into miRNA positively 
and negatively correlated with age. c, Heatmap for the count of deregulated 
miRNAs in each tissue at each subsequent timepoint. Deregulated miRNAs are 
determined by calculating the foldchange of all later timepoints versus 3 months 
of age and miRNA with foldchanges <2/3 or >3/2 are considered deregulated.  
d, Volcano plot of all miRNAs expressed in brain, log2(FC) versus −log10(P values)  

(two-sided t-test) calculated between mice aged 3 months and all later time
points with comparisons for 12 months (light red) and 18 months (light blue) 
highlighted. e, Whole organism miRNA trajectory clustering—z-scored 
trajectories of each expressed miRNA in each tissue over the entire lifespan of the 
mice were calculated. These trajectories were grouped into 20 clusters. Three 
clusters are displayed as examples, showing tissue-specific miRNA signatures. 
Cluster 2 is composed of 50.1% miRNAs originating from skin, cluster 9 of 61.2% 
miRNAs from brain and cluster 13 of 70.6% miRNAs from BAT. f, Cluster 20 of the 
whole organism miRNA trajectory clustering—the cluster contains two global 
aging miRNA, miR-29a-3p from ten different tissues and miR-29c-3p from eight 
different tissues.
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digestion and adsorption’, ‘metabolic pathways’, ‘adipocytokine sign-
aling pathway’ and ‘insulin resistance’ were found among the top 20 
locally enriched pathways in targeted mRNAs (Extended Data Fig. 6b).

Through a reduction of miRNA expression during aging, the 
repression of gene expression is potentially reduced or even lost. Gene 
targets for global aging miRNAs reducing repression with age were 
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identified via correlation (Fig. 2b) (r < −0.4, P < 0.05). The expression 
of three miRNAs, miR-300-3p, miR-487b-3p and miR-541-3p, decreased 
during the lifespan in five tissues. The overlap of their potential targets  
was high, with 138 of 327 predicted interactions (Fig. 3c and Supple
mentary Table 6). The identified targets exhibited a functional 
enrichment for pathways related to immune system processes, such 
as ‘cytokine–cytokine receptor interaction’, ‘Th1 and Th2 cell differen-
tiation’, ‘Th17 cell differentiation’, ‘chemokine signaling pathway’ and 
‘NF-kappa B signaling pathway’. The network was particularly dense in 
its center, with targets related to ‘adaptive immunity’, ‘immunoglobu-
lin’, ‘hematopoietic lineage’, ‘immune receptor activity’ and ‘cytokine 
activity’ (Fig. 3d). We also determined the locally enriched pathways 
for all miRNAs in every individual tissue whose expression decreased 
upon aging via inverse correlation with mRNA targets. These were 
similarly dominated by immune-related processes (Extended Data 
Fig. 6c). As immune senescence and inflammation are hallmarks of 
aging1, it is crucial to further investigate these potentially age-sensitive 
regulation mechanisms.

We chose the global aging miR-29c-3p as an example for further 
investigation. In liver and kidney, expression increased monotonically 
over the lifespan as well as in BAT but at a lower baseline expression 
(Fig. 3e). In the lung, the steep increase during early adulthood ends 
at approximately 12 months of age. A general trend of miR-29c-3p 
expression increase was present in all tissues, but expression levels 
and the course of increase showed tissue-specific patterns (Extended 
Data Fig. 7).

miR-29c-3p exhibits an organ-specific rejuvenation response
Expansive beneficial effects on cognition, muscle strength and bone 
repair have been observed for heterochronic parabiosis via a shared 
common circulation, or systemic infusions of young blood22. We 
sequenced tissue samples from a parabiosis intervention cohort to 
determine whether the young blood in aged individuals influences 
small ncRNA expression. The cohort was composed of 176 samples 
from six different organs of isochronic young (IY) and aged (IA), and 
heterochronic young (HY) and aged mice (HA) (Supplementary Table 1).  
Rejuvenation, the reversion of aging aspects, is the desired outcome 
of the intervention. However, it is accompanied by accelerated aging, 
the negative effect of the young sharing their blood with the old. In 
our study, the rejuvenation effect was measured by comparing the 
expression levels in IA mice with those detected in HA mice. In turn, 
the accelerated aging effect was defined by the difference between 
IY and HY mice (Extended Data Fig. 8a). Healthy aging was defined as 
the comparison of mice from the TMS cohort aged 3 and 21 months 
(AGE), closely matching the age distribution of the parabiosis cohort at 
takedown. Clustering the samples using t-SNE revealed tissue identity 
as major driver of variance across the experimental groups (Extended 
Data Fig. 8b,c).

We assigned deregulated miRNAs to the following groups: either 
(1) uniquely deregulated in rejuvenation (REJ unique) or in accele
rated aging (ACC unique), or (2) deregulated in physiological aging 
as well as rejuvenation (REJ up and AGE down, REJ down and AGE up) 
or accelerated aging (AGE and ACC up/down). We found 233 uniquely 
deregulated miRNAs in rejuvenation and 43 in accelerated aging 

(Fig. 4a). Intriguingly, 17 age-related miRNAs were deregulated in the 
opposite direction in REJ. No miRNAs were deregulated in AGE and in  
the same direction in ACC, but the uniquely rejuvenated miRNAs  
were enriched in certain pathways in MAT (‘insulin resistance’, ‘adipo-
cytokine pathway’, ‘type 2 diabetes mellitus’), which again have a role 
in nutrient sensing.

For three global aging miRNAs, we discovered that changes in 
expression observed during healthy aging can be partially reversed in 
response to parabiosis. For miR-29c-3p, we measured a strong rejuvena-
tion effect in the liver, four times higher than the effect of accelerated 
aging (Fig. 4b). The other two global aging miRNAs miR-184-3p in the 
liver and miR-300-5p in GAT showed similar trends of reversed expres-
sion but with a lower magnitude (Extended Data Fig. 9a,b). Considering 
the pronounced globally aging versus local rejuvenation profile of 
miR-29c-3p, we chose to explore systemic effectors and mediators of 
these signals.

Expression of circulating mir-29 family increases with aging
MiRNAs can circulate in the plasma and EVs between organs. We 
thus assessed the abundance of miR-29c-3p in both plasma and the 
vesicle-bound fraction using an independent cohort23. Analyzing the 
expression at five timepoints across the lifespan from 2 to 18 months 
allowed us to correlate and compare the abundance of the miRNA in 
plasma and EVs. We observed an increase of miR-29c-3p expression 
correlated with age for both fractions (r = 0.56 (plasma) and 0.65 (EVs)). 
The share of positive global aging miRNAs detected as circulating  
was higher than the share of local aging miRNAs (38.3%) (Fig. 4c). This 
supports our hypothesis that miRNAs traveling via the shared circu
latory system could have a role in the positive effect of parabiosis.

MiR-29c-3p could regulate gene expression in pathways resulting 
in health improvements by entering the tissue via the blood in vesicles. 
Recently, miRNAs with certain sequences were shown to be more likely 
secreted in small EVs, and their capability to inhibit target genes in 
recipient cells is enhanced8. One so-called EXOmotif is CNGGNC, which 
is very similar to a sequence found in the mature mmu-miR-29c-3p 
CUGGUG. We performed luciferase assay experiments to validate 
our predictions for mir-29-family members on target genes related  
to aging. Lox and Adamts17 were validated as high confidence  
targets, and Vash1 was validated as a low confidence target (Extended 
Data Fig. 9c,d). Previously known targets from the literature  
(Eln, Col1a1, Col1a2, Col3a1 and Adam12), as well as Lox and Adamts17, 
are components in ECM processes (Fig. 4d), supporting our hypothesis 
that mir-29-family members have a crucial role in organismal aging  
due to their repressive regulatory function on these targets.

Discussion
We extended the TMS and parabiosis transcriptome datasets by bulk 
ncRNA sequencing and combined the data to highlight interactions of 
biomolecules and their functions to reveal potential regulatory mecha-
nisms of aging. We report organ-specific trajectories during aging for 
miRNAs using organism-wide clustering. We thereby observed enrich-
ment of miRNAs in pathways related to insulin resistance, especially 
for adipose tissue organ-specific miRNA trajectories. These results 
relate the miRNA expression changes to deregulated nutrient sensing.

Fig. 3 | mRNA target correlation analysis for global aging miRNAs. a, Venn 
diagram of predicted target transcripts of the five global aging miRNAs positively 
correlated with age in most tissues. Targets are identified via inverse correlation 
of expression values (Spearman’s rho < −0.4, Spearman’s statistics P < 0.05,  
two-sided); only miRNA–mRNA target predictions were selected that are 
correlated in at least two tissues for one of the five miRNAs. b, STRING network 
for all connected proteins encoded by target transcripts of the global aging 
miRNAs positively correlated with age (a); nodes are color coded for pathways  
in red for ‘ECM’, purple for ‘secreted’ and green for ‘dysregulated miRNA 
targeting in insulin PI3K-AKT signaling’. c, Venn diagram of predicted target 

transcripts of the three global aging miRNAs negatively correlated with age in 
most tissues. d, STRING network for all connected proteins encoded by target 
transcripts of the negatively with age correlated global aging miRNA negatively 
correlated with age (c); nodes are color coded for pathways in red for ‘immune 
receptor activity’, in purple for ‘cytokine activity’, in yellow for ‘hematopoietic 
cell lineage’, in pink for ‘adaptive immunity’ and in green for ‘immunoglobulin’. 
e, Expression of miR-29c-3p in reads per mapped million in the liver (r = 0.69), 
kidney (r = 0.56), lung (r = 0.51) and BAT (r = 0.48) over the mouse lifespan  
(mean per timepoint ± s.d.), created with BioRender.
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Moreover, we identified global aging miRNAs negatively and 
positively correlated with age. The increased expression levels of 
miR-29c-3p in age are partially reversible through heterochronic 

parabiosis. miR-29c is known as a negative regulator of RAG1 in B cells 
in mice and humans. Overexpression of miR-29c thereby reduces 
V(D)J recombination24, which is a major process shaping the immune 
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system repertoire, to support clearance of infectious agents, infected 
cells and cells on the verge of malignant transformation1. The global 
increase in this miRNA in several tissues and the already-known regu-
lation of the immune system suggest that the immune senescence 
aggravating the aging phenotype could be caused by this develop-
ment. Another age-related pathology is the process of cellular senes-
cence, which is regulated by the TGF-β/Smad pathway. TGF-β signaling 
involves miR-29-induced loss of H4K20me3 to promote senescence25. 
In a brain-specific miR-29 knockdown mouse, sex-specific effects on 
lifespan and reproduction were observed26. To prove that miR-29 has a 
causal role in processes responsible for cellular aging and rejuvenation, 
detailed knockdown or knockout experiments are needed.

Future studies should also focus on gathering single-cell miRNA 
data to explain which cell types are responsible for the expression 
of miRNA aging markers. High-throughput single-cell sequencing 
and vesicle sequencing could help us to distinguish between cellular  
miRNA expression and vesicles. MiRNAs can be transported via EVs 
and thereby mediate the regulation of aging-related processes27. 
Also, miRNA-mediated gene silencing, which we based our target-
ing analysis on and used for validation, is only one mode of action of  
gene expression regulation. Other modes of action worth mentioning 

are miRNA-mediated translational activation, miRNA-mediated 
transcriptional and post-transcriptional gene regulation within the 
nucleus28. A more detailed view of cell-type-specific and vesicular 
expression might explain why we found distinct miRNA trajectories 
of aging in adipose tissue while the strongest rejuvenation effects for 
global aging miRNAs, especially miR-29c-3p, occurred in the liver. 
The miRNA is known the be expressed highest in T and B cells24, but is  
also expressed in liver hepatocytes (Extended Data Fig. 10) and 
reported as a potential tumor suppressor in human29,30. Hence,  
revealing the responsible cell type could help illuminate which mecha-
nisms modulate miRNA expression levels. It is also necessary to discern 
which changes impact the transcriptome and proteome in different tis-
sues and cellular compositions, as miRNA targetomes can differ across 
cell types31. Currently, only a few different protocols for single-cell 
miRNA sequencing exist and no high-throughput gold standard is 
available32.

Another limitation of the study is the known issues of small RNA 
library production as adapter ligation bias, adapter dimer contamina-
tion, polymerase chain reaction (PCR) amplification bias, barcode bias 
and the influence of RNA degradation on ncRNA profiles33–35. The chal-
lenge of sequencing mainly fragments for six of the eight RNA classes is 
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related to these. Potentially, a major part of piRNA reads in the somatic 
tissues could have been derived from piRNA-sized fragments of other 
ncRNAs. These fragments are annotated in piRNA databases even 
though their biogenesis is perhaps independent of the PIWI pathway13. 
However, these piRNA-like small RNA are known to have important 
roles outside of the germline36. TRNA-derived small RNAs, which have a 
biological role by inhibiting translation or regulating gene expression, 
are studied likewise in aging and age-related diseases37. We decided 
not to exclude these data, so our study can be used as a reference for 
future studies aiming to analyze for instance tRNA-derived fragments 
or piRNA-like small RNAs in more detail. Of note, the fragments of 
longer ncRNAs are not necessarily surrogates of the full-length mature 
transcripts but can occur due to degradation processes. The biological 
function of respective mapping results remains to be explored.

In summary, our study provides a rich resource for biologists 
across many disciplines, as ncRNAs for all major organs across the 
entire lifespan of the mouse were sequenced. Reference data for healthy 
aging are important, because miRNAs are promising candidates for 
age-specific disease biomarkers10, and patterns of physiological aging 
must be defined not only in blood but also in every solid organ to  
promote the development of successful RNA-based therapies.

Online content
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maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Samples
Mouse tissues of the aging cohort were obtained, and RNA was iso-
lated as previously described5. From the National Institute on Ageing 
colony (Charles River) male and virgin female C57BL/6JN mice were 
shipped to the Veterinary Medical unit at the VA Palo Alto. The mice 
were housed on a 12-h light/dark cycle at 20–24 °C with food and water 
provided ad libitum. Humidity was monitored daily and between 23% 
and 55%. Mice from both cohorts were anesthetized with 2.5% vol/vol  
avertin, and mice were weighed and shaved. Blood was drawn via  
cardiac puncture before transcardial perfusion with 20 ml PBS. Dissec-
tion of organs was performed in the following order and then instantly 
frozen on dry ice: pancreas, spleen, brain, heart, lung, kidney, mesen-
teric adipose tissue, intestine (duodenum), gonadal adipose tissue, 
muscle (tibialis anterior), skin (dorsal), subcutaneous adipose tissue 
(inguinal pad), brown adipose tissue (interscapular pad), bone and 
bone marrow (femurs and tibiae). Bulk RNA samples of the hetero-
chronic parabiosis cohort consisting of male C57BL/6JN, C57BL/6J 
and C57BL/6-Tg(UBC-GFP)30Scha/J mice were collected as previously 
described22 (Supplementary Table 1). The 3- to 4.5-month-old and 
19-month-old mice were housed under the same conditions as the aging 
cohort mice. Suturing together the peritoneum of adjacent flanks of 
two mice, forming a continuous peritoneal cavity, accomplished the 
aging intervention parabiosis via the peritoneal method. To enable 
coordinated movement after surgery, adjacent knee joints and elbow 
joints were joined with nylon monofilament sutures, as well as skin 
with surgical autoclips. These procedures were conducted with aseptic 
conditions on heating pads, with mice under continuous isoflurane 
anesthesia. Mice were injected with Baytril (5 µg g−1), buprenorphine 
and 0.9% (wt/vol) sodium chloride to avoid infection, limit pain and 
promote hydration, as previously described in ref. 22. For 5 weeks, the 
pairs remained together, and organs were collected. First, heart, liver, 
kidney, then MAT and GAT, and finally limb muscle were collected in 
this order, all within 30–40 min. All animal care and procedures were 
carried out in accordance with institutional guidelines approved by 
the VA Palo Alto Committee on Animal Research (Protocol, LUO1736). 
RNA was isolated according to the manufacturer’s protocol with the 
miRNeasy Kit (Qiagen, 217084). All RNA samples were shipped to the 
Institute of Human Genetics. Samples of the TMS cohort were addition-
ally precipitated due to salt contamination. In brief, 150 ng of RNA was 
mixed with 3 M NAAC (pH 7.0) and 100% EtOH and incubated overnight 
at -20 °C. This was centrifuged at 20,817g at 4 °C for 60 min. Superna-
tant was discarded and the pellet was washed with 80% EtOH, followed 
by another centrifugation for 30 min (20,817g, 4 °C). Supernatant was 
again discarded, the pellet was dried on ice and resuspended in 50 µl 
1x TE buffer. Quality control of concentration was performed with 
the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), 
and the RNA integrity was determined using the Agilent RNA 6000 
Nano Kit (Agilent Technologies, 5067-1512) for randomized samples of  
the cohorts.

Sample size, randomization and blinding
No sample size choice was performed before the study. During mouse 
dissection, order and preparation of 96-well plates for cDNA creation 
randomization was performed. No blinding was performed; the authors 
were aware of all data and metadata-related variables during the entire 
course of the study.

Library preparation
Small RNA library preparation was performed using the MGIEasy Small 
RNA Library Prep Kit (Item 940-000196-00) and the high-throughput 
MGI SP-960 sample prep system according to the manufacturer’s 
protocols. In brief, 3′- and 5′-adapters were ligated to the RNA, and 
reverse transcription (RT) was performed using an RT primer, in which 
sample-specific barcodes were incorporated. The resulting cDNA was 

amplified in a PCR with 21 cycles. The amplification product was size 
selected and purified using AMPure Beads XP (Beckman Coulter). The 
size of the purified PCR products was checked using an Agilent DNA 
1000 Kit (Agilent Technologies), and the concentration was determined 
using Qubit 1X dsDNA High Sensitivity (Thermo Fisher Scientific). For 
each library, 16 samples, barcoded with barcodes 1–4, 13–16 and 25–32, 
were pooled in an equimolar fashion at a concentration of 4.56 ng µl−1. 
Pooled libraries were circularized and sent for sequencing. A total of 
65 libraries consisting of 947 samples were analyzed in the project.

Sequencing and data analysis
Samples were sequenced single-ended on the BGISEQ500RS using 
the High-throughput Sequencing Set (SE50) (Small RNA) as a service 
provided by BGI. The sequencing data were processed with miRMaster 
2.0 using standard settings38 and mapped read percentages were gener-
ated. Data analysis was performed using RStudio Software v4.0.3 with 
the following packages: viper v1.26.0, data.table v1.14.2, ggrepel v0.9.1, 
ggvenn v0.1.9, M3C v1.14.0, ggridges v0.5.3, forcats v0.5.1, purrr v0.3.4, 
tidyr v1.2.0, tibble v3.1.6, ggplot2 v3.3.5, tidyverse v1.3.1, viridisLite 
v0.4.0, ColorBrewer v1.1-2, reshape2 v1.4.4, pheatmap v1.0.12, Mfuzz 
v2.52.0, DynDoc v1.70.0, widgetTools v1.70.0, e1071 v1.7-9, stringr 
v1.4.0, dplyr v1.0.8, readr v2.1.2 and Biobase v2.52.0.

Samples were excluded if fewer than 2 million aligned reads were 
detected while allowing one mismatch per read. Using Bowtie (v1.2.3.), 
reads were mapped against the RNA sequence derived from the respec-
tive databases (miRNAs: miRBase 22, tRNAs: GtRNAdb 18.1, piRNA: 
RNACentral 15, all other ncRNAs: Ensembl 100). Only the first paralog 
was retained for analysis, additional paralogs are listed in Supplemen-
tary Table 7. As the lengths of the mature ncRNAs matched with our 
sequencing read length exclusively for miRNAs and piRNAs39, we calcu-
lated detailed covered sequence length statistics. These analyses verify 
that not only random fragments were sequenced for the other ncRNA 
classes. Such fragments can occur as a result of a physiological process 
like tRNA-derived fragments and have a regulatory role in aging37 or 
can be products of postmortem RNA degradation. The amount and 
distribution of degradation fragments are highly influenced by the 
RNA quality35. Covered read length, reference read length, longest 
covered region, covered percentage reference length, longest mapping 
read, total reads mapping and average covered read length are listed 
in Supplementary Table 2 for all detected ncRNA. All mature ncRNAs 
are represented by their highest counting precursor.

Percentages of aligned reads per sample derived from the  
miRMaster analysis were used to calculate mean percentages within 
each tissue and each timepoint. As a first filtering step, piRNAs were 
filtered for those encoded in prepachytene genomic piRNA clusters as 
an established method to identify true somatic piRNAs14,15.

For global analyses (analyses independent of the organ), sam-
ples were filtered for 1 rpmm in at least one sample in the cohort. As 
a global analysis, we performed a t-SNE and a principal variance com-
ponent analysis (PVCA). All samples were clustered in an unweighted 
t-SNE with a seed set to 40 using the M3C package. A t-SNE is an opti-
mized dimensionality reduction method used for the visualization of 
high-dimensional data40. A PVCA was used to estimate the variability 
of biological and technical parameters. Data dimensionality is reduced 
through a principal component analysis.

For local analyses, tissue-specific patterns were considered, fur-
ther requiring that ncRNAs were expressed with 1 rpmm in at least 10% 
of the samples for each tissue. Percentages of counts per RNA class 
and tissue were calculated with the total number of counts within a 
tissue and the respective mean number of counts of the RNA classes. 
Percentages of counts per tissue and timepoint were calculated with 
the percentage of counts per sample after local filtering with the total 
RNA class counts. Timepoint percentages were calculated as means 
of the corresponding samples at each timepoint and in each tissue. 
Spearman rank correlations with age of each ncRNA expressed in each 
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tissue were calculated and illustrated in a density plot grouped by RNA 
class. Spearman rank correlation between miRNA expression and age 
was categorized into positively (r > 0.5) and negatively (r < −0.5) cor-
related and annotated with P values (Supplementary Table 8). Based 
on this categorization, the number of tissues in which a miRNA was 
(anti-) correlated with age was determined. MiRNA FCs in each tissue 
were computed with the mean expression of each later timepoint, 
always comparing against 3 months. Features with mean expression of  
0 for 3 months of age were excluded from this analysis. FCs lower or 
higher than 2/3 and 3/2, respectively, were considered deregulated.  
P values were only calculated with t-tests for comparisons with at  
least three samples per timepoint and adjusted for each tissue and  
timepoint separately with the Benjamini and Hochberg method. 
For the volcano plots, log2(FC) was calculated and all FC equal to 0 
were discarded. Volcano plots for each tissue were generated with 
the −log10(P values) versus the log2(foldchange) and colored by time-
point. Organism-wide miRNA trajectory clustering was performed 
using the Mfuzz package, which clustered based on fuzzy c-means 
algorithms, and the number of clusters c between 2 and 20 was indi-
vidually determined for each clustering using the minimum centroid 
distance measure. For the organism-wide clustering of the z-scored 
miRNAs over all tissues, 20 was determined as optimal. A cluster was 
deemed tissue-specific if at least 30% of the miRNAs in a cluster were 
tissue-specific.

The coding transcriptome data for the same samples were 
obtained from the previous study5. mRNA targets of miRNAs were iden-
tified via negative correlation (P < 0.05, r < −0.4). For the local miRNA–
mRNA interaction analysis, miRNAs exceeding the age-correlation 
interval between −0.5 and 0.5 were considered. The more stringent 
filtering approach for aging miRNAs was chosen to discover a small 
set of strong candidates from the millions of possible miRNA–mRNA 
interactions. For the global analysis, we considered targets inversely 
correlated with either the positive global aging miRNAs (miR-29a-3p, 
miR-29c-3p, miR-155-5p, miR-184-3p and miR-1895) or the negative 
global aging miRNAs (miR-300-3p, miR-487b-3p and miR-541-5p) in at 
least two tissues, to obtain the filtered target gene set. Using STRING, 
the protein–protein association network database20, we illustrated 
known connections between proteins encoded by the predicted mRNA 
targets of the global miRNAs.

For pathway enrichment analysis, an overrepresentation analysis 
(ORA) was performed with the target mRNAs of global miRNAs using 
GeneTrail 3.2 (ref. 41). An ORA was performed to identify the pathways 
negatively and positively regulated locally in all tissues through the 
local aging miRNAs. The standard parameters were used, with FDR 
adjustment and 0.001 as significance level. Heatmaps for positive and 
negative regulation of miRNA on target mRNA expression were gener-
ated with the top 20 and 25 nondisease-related pathways, respectively, 
(lowest P values) regulated in most tissues.

For the parabiosis cohort, sequenced samples were analyzed with 
the same filtering criteria as TMS samples. We detected 50,776 ncRNAs 
in the raw reads of this cohort and we filtered 5,248 abundant ncRNAs 
for the global analysis (t-SNE). To quantify the effects of parabiosis in 
each tissue, FCs were calculated between IY and HY mice for the effect 
termed accelerated aging (ACC) and between IA and HA mice for the 
effect termed REJ. The effects of physiological aging (AGE) were defined 
as the FC between 3- and 21-month-old mice from the TMS cohort, 
corresponding to the ages of young and aged mice in the parabiosis 
experiment. As previously, FCs exceeding the interval of 2/3 and 3/2 
and a significant P value (P < 0.05) were considered as deregulated.

Expression data from the EVs study were obtained as previously 
reported in ref. 23. miRNAs were considered as expressed if they were 
detected with at least 1 rpmm for more than 10% of the samples of one 
group. The intersection between miRNAs expressed in circulating 
plasma and EVs and either global or local aging miRNAs was determined 
and visualized as a Venn diagram.

Cell lines
The HEK 293T (ACC 635) was purchased from the German collec-
tion of microorganisms and cell cultures (Deutsche Sammlung von  
Mikroorganismen und Zellkulturen, DSMZ). STR fingerprinting  
by DSMZ confirmed the authenticity of the cell line. The cells were 
cultivated with DMEM (Life Technologies) supplemented with  
Penicillin (100 U ml−1), Streptomycin (100 µg ml−1) and 10 % (vol/vol) FCS 
and passaged two times a week for not longer than 3 months.

miRNA expression plasmid and 3’UTR reporter plasmids
The cloning of the pSG5-miR-29a expression plasmid was described 
previously42. Targets for reporter plasmids were selected based on 
the predicted target genes for miR-29 from Fig. 3a, as miR-29a-3p and 
miR-29c-3p have the same seed sequence. Only target genes with at 
least a 7mer binding site and the lowest possible hamming distance 
between human and mouse 3’UTR and binding sites were selected. The 
3’UTR reporter constructs were synthesized and cloned into reporter 
plasmid pMIR-RNL-TK using SpeI and SacI restriction sites by GeneArt 
(Life Technologies GmbH). The reporter plasmid pMIR-COL1A2, which 
was identified by ref. 43 as direct target gene of miR-29a-3p, served as 
positive control. The results of the control experiments are given in 
Extended Data Fig. 7d. The complete list of all tested 3′UTR sequences, 
including the respective NM accession number, is given in Supplemen-
tary Table 9.

High-throughput miRNA interaction reporter assay
High-throughput analysis of reporter constructs was conducted by a 
liquid handling system and described previously in ref. 44. In brief, HEK 
293T cells were seeded at 3.2 × 104 cells per well in a 96-well plate using 
a liquid handling system epMotion 5,075 (Eppendorf). Twenty-four 
hours after seeding, cells were transfected with 50 ng per well of either 
reporter plasmid pMIR-RNL-TK, with or without insert, and 200 ng per 
well of miRNA expression plasmid pSG5-miR-29a or the empty expres-
sion vector pSG5. Forty-eight hours post-transfection, HEK 293T cells 
were lysed and the lysates were measured using a GloMax Navigator 
microplate luminometer (Promega) using Luciferase substrates of the 
Dual-Luciferase Reporter Assay System (Promega). High-throughput 
miRNA interaction reporter assay was conducted four times in  
technical duplicates.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are freely accessible from the Gene 
Expression Omnibus (GSE217458, GSE222857). Databases used in 
this study are miRBase 22 (https://www.mirbase.org/), GtRNSdb 18.1 
(http://gtrnadb.ucsc.edu/), RNACentral 15 (https://rnacentral.org/) 
and Ensembl 100 (https://useast.ensembl.org/index.html).

Code availability
All analyses have been carried out using freely available software pack-
ages. Custom code used to analyze the RNA-seq data and datasets 
generated and/or processed in the current study is available from the 
corresponding authors upon request.
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Extended Data Fig. 1 | Non-coding RNA read distribution. (A) Averaged 
percentage of mapped reads for all RNA classes over all TMS cohort samples.  
(B) Mapped RNA class read distribution in percent for each tissue, sorted 
descending by miRNA share. (C) Covered length analysis: Percentage covered 
of reference sequence with mapped reads versus sequence reference length, 

colored by RNA class for all ncRNAs detected in the raw reads for the TMS cohort 
(D) Percentage of longest covered region calculated with the maximal connected 
read length versus sequence reference length for all ncRNAs detected in the raw 
reads for the TMS cohort.
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Extended Data Fig. 2 | Variance analysis for ncRNA expression levels.  
(A) Principal variance component analysis of biological components (sex, age, 
tissue, mouse) and technical components (barcode, plate); factors connected 
with ':' were linearly combined. (B) Visualization of all samples of the TMS cohort 

over all abundant non-coding RNAs as a t-SNE, colored by sex. (C) Histogram 
of mean variance calculated in abundant count percentages of all RNA classes. 
Calculations for each tissue after local filtering over the time course. Threshold 
determined at 4.5% to separate highly variable and stable tissues.
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Extended Data Fig. 3 | Mean count percentages per RNA class over the lifespan in all organs. Mean count percentages per RNA class and over all timepoints,  
for each tissue in the TMS dataset. Calculations based on count shares per sample after local filtering.
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Extended Data Fig. 4 | Mean expression vs. log2 FC in all tissues for all ncRNAs. Log2 foldchanges (each timepoint vs 3 months) compared to mean expression 
values in reads per million mapped of all non-coding RNA (A) and only miRNA (B), red lines as reference for 2/3 and 3/2, colored by timepoint (as indicated in Fig. 1a).
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Extended Data Fig. 5 | Volcano plots for comparison 3 m to all later timepoints per organ. Volcano plots for each tissue, colored by timepoints (color code as 
indicated in Fig. 1a). Log2(FC) are plotted versus -log10(p-values) calculated in a two-sided t-test.
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Extended Data Fig. 6 | Whole organism miRNA aging trajectory clustering 
and enriched pathways of mRNAs targeted by local aging miRNAs. (A) Fuzzy 
c-means organism-wide z-scored trajectory clustering for all miRNAs in all tissues 
into 20 clusters. (B) Top 20 non-disease-related locally enriched significant 
pathways overlapping between tissues and mRNA targets identified via negative 
correlation with the aging miRNA set (r > 0.5, with age) in each individual tissue. 

(C) Top 25 non-disease-related locally enriched significant pathways overlapping 
between tissues. mRNA targets identified via negative correlation with miRNA 
correlated negatively with aging (r < -0.5) in each individual tissue (identified via 
overrepresentation analysis, hypergeometric test, two-sided, adjustment FDR, 
t-test < 0.001).
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Extended Data Fig. 7 | miR-29c-3p expression per tissue. Expression of global aging miRNA miR-29c-3p as reads per mapped million for all tissues at all measured 
timepoints.
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Extended Data Fig. 8 | Experimental design for the parabiosis study and 
variance analysis of samples. (A) Schematic plot of the experimental aging 
intervention and heterochronic parabiosis. Visualization of all samples of the 

parabiosis cohort over all detected non-coding features in a t-SNE, colored by 
tissue (B, color code as indicated in Fig. 1a) and treatment group (C, color code as 
indicated in Fig. 4b).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Observed rejuvenation effects of global aging miRNAs 
and validation experiments for predicted targets of miR-29c-3p. z-scored 
expression in the healthy aging cohort (TMS) for every timepoint and z-scored 
expression in the parabiosis cohort for the four different groups (IY, HY, HA and 
IA) for miR-184-3p in the liver (A) and miR-300-5p in GAT (B). The first to the third 
quartile are covered within the boxes with the median value shown as line inside 
the box. Maximum and minimum values are shown as whiskers or values up to 
1.5-times the interquartile range above and below the first or third quartile if 
outliers are present. (C) Measured RLU (relative light unit) in percent for all target 
constructs for miR-29; reduction to under 80% determines a high confidence 
target, reduction between 80-90% low confidence target (n = 4 biologically 
independent experiments for each target, each as technical duplicates). Color 
coded in dark green for significant reduction with a p-value ≤ 0.01 (ADAMTS17_1: 

0,0000004, ADAMTS17_2: 0,00000007, ADAM12_1: 0,00001, LOX_2: 0,0006, 
LOX_3: 0,000000001, VASH1_2: 0,0067), light green for significant reduction 
with a p-value ≤ 0.05 (AD-AM12_2: 0,0306) and in light brown for non-significant 
reduction with a p-value ≥ 0.05 (n.s; APLNR: 0,1485, LOX_1: 0,1892, VASH1_1: 
0,5457). P-values were calculated by an unpaired t-test. Data are shown as 
mean ± SD. (D) Control experiment results luciferase assay, negative control: 
vector alone and vector with miRNA and positive control with vector (pMIR+ 
pSG5; pMIR+miR-29a, PC miR-29a-3p + pSG5) and positive control (PC miR-29a-
3p + miR-29a) (n = 4 biologically independent experiments, each as technical 
duplicates; *** = p-value ≤ 0.001, n.s. = p-value ≥ 0.05). P-values were calculated 
by a Welsh’s t-test (pMIR+pSG5 vs. pMIR+miR-29a = 0,6314; PC miR-29a-3p+miR-
29a vs. PC miR-29a-3p + pSG5 p-value < 0,0001; PC miR-29a-3p+miR-29a vs. 
pMIR+miR-29a p-value < 0,0001.) Data are shown as mean ± SEM.
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Extended Data Fig. 10 | Human miR-29c-3p expression in cell lines. Expression of hsa-miR-29c-3p in human cell lines as normalized DESeq2 counts, Hepatocytes 
highlighted in red, data re-analysis from publication.
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D I S C U S S I O N

This work presents the development and application of a flexible computational

framework tailored to the analysis of microRNA (miRNA) datasets. The versa-

tility of this framework is evident from its use in a range of applied studies. It

successfully processed large, high-dimensional bulk datasets, revealing condition-

specific miRNA expression patterns related to variables such as disease status,

treatment, tissue type, age, and sex. Furthermore, the framework was adapted to

accommodate single-cell miRNA datasets and therefore expand its applicability

to cutting-edge research domains.

The field of tissue-specific bulk studies is particularly interesting, as it allows for

efficient investigation of heterogeneity within tissues. Recent research, including

this study, has also highlighted the importance of investigating sex differences in

miRNA expression, particularly in aging-related contexts [159–162]. While bulk

datasets provide valuable insights, they inherently mask the complex, cell-specific

expression patterns that single-cell approaches can uncover.

Single-cell resolution studies represent a promising direction for the future

of miRNA research [167, 349–353]. Recent advancements have yielded the first

insights into miRNA dynamics at the cellular level. Currently, the scalability and

high costs of single-cell high-throughput miRNA sequencing protocols present

significant challenges for conducting large-scale, cell-type-resolved studies. Hence,

a substantial effort is required to establish accurate, efficient and reproducible

workflows in the laboratory [4, 182, 191, 195]. Despite these challenges, it is likely

only a matter of time before these methods are refined and commercialized, much

like the trajectory observed for bulk and single-cell messenger-RNA (mRNA)

sequencing technologies, where costs have significantly decreased over time [178,

354–357].
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Nonetheless, challenges persist, particularly for single-cell miRNA studies.

The inherently low abundance of miRNAs per cell poses a substantial issue

and requires a balance between maximizing sequencing depth to detect weak

signals and minimizing technical noise [358, 359]. Additionally, single-cell mRNA

investigations have been shown to be affected by batch effects [257, 360–363].

To detect these effects the Principal Variance Component Analysis (PVCA) is

included in our framework which also indicates the proportion of variances for

experimental parameters [253, 271]. More generally, different library preparation

protocols or profiling techniques introduce a bias in the obtained expression

profile [364–366].

The expected popularity of fine-grained bulk up to high-throughput single-cell

miRNA studies or even the use of novel sequencing techniques [367, 368] leads

to large, multi-faceted datasets. Once a dataset is processed to an expression

table, it can be handled by our framework, regardless whether one dimension

of the table corresponds to real samples, cells or even localized spots. Any

gained granularity only leads to additional attributes which can be captured in a

metadata table, for example the cell to sample matching in single-cell resolved

datasets. Scaling our computational framework to larger datasets compared to the

ones encountered within this thesis is straightforward due to the use of workflow

management systems, which parallelize independent workloads. Furthermore,

exchanging implemented methods with novel, highly-efficient ones leads to a

direct performance improvement [369]. In general, adding new applications or

profiling specific methods is encouraged by the modular architecture of the

framework and the workflow management system.

outlook

Our web-based tool SingmiR [5] provides quality control and initial downstream

analyses. However, future efforts should focus on streamlining multiple analysis

tools regarding standardized interfaces and developing modular pipelines capable

of processing diverse types of expression data. Further, interfacing with existing

internal and external tools via a seamless data transfer facilitates user accessibil-
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ity and integration into broader research workflows. For example, linking the

tools miRMaster to the enrichment analysis platforms miEAA [328] enabled more

comprehensive analyses [184]. Following this approach, the results of SingmiR

could be linked to multiple web services, among those miEAA, miRPathDB,

miRTargetLink, miRNATissueAtlas [78, 319, 328, 329, 348, 370, 371]. Additionally, in-

tegrating our computational tools into universal workflow management platforms,

such as Galaxy [304], would significantly enhance their usability, accessibility and

visibility.

To accommodate for emerging high-throughput single-cell miRNA technolo-

gies, extending the alignment abilities of SingmiR to multiplexed single-cell

datasets represents a promising direction for further development [372].

Tissue-resolved miRNA studies currently offer an efficient means to address

cellular heterogeneity. In this work, the sex and age-resolved tissue-specific

datasets [7] and (Planned I) exemplify the potential of this approach. Notably, for

these miRNA datasets sample-matched mRNA datasets are present [150, 151].

Therefore, tighter integration of the analyses between the two ribonucleic acid

(RNA) types and their expression profiles promises a deeper understanding of

regulatory networks. Building upon this approach, future studies could expand

this scheme into multi-omics research by incorporating, for example, miRNA,

mRNA and proteomic datasets. These extensions would provide a more general

view of biological systems and are particularly relevant for clinical applications,

such as exploring the molecular mechanisms underlying neurodegenerative

diseases [373–377].

conclusion

In summary, the approaches presented in this dissertation constitute a powerful

framework for miRNA analysis. Through the integration of single-cell sequencing,

computational pipeline development, and tissue-resolved analyses, this work

paves the way to uncover intricate miRNA dynamics in any application scenario,

from time-series to case-control setups.
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Personally, on the one hand, approaching the research field coming from a

mathematics background, a theoretical discipline, enabled treating the research

questions with minor biologically driven expectations. While this approach oc-

casionally introduced challenges due to the limited reliance on biological as-

sumptions, the adoption of a data-driven approach allowed for an unbiased

exploration of the datasets. On the other hand, this work encompassed adapting

established tools to the specific requirements of miRNA studies, demonstrating

the utility of tailoring existing methodologies to novel applications. Bridging the

insights gained from mathematical foundations and molecular biological applica-

tion studies, harbors strong potential for the development of novel, integrated

methodologies in future research.
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