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Abstract

Background/Objectives: Keratoconus (KC) is the most common corneal ectasia. This
condition affects quality of vision, especially when it is progressive, and a timely and
stage-related treatment is mandatory. Therefore, early diagnosis is crucial to preserve
visual acuity. Medical data may be used either in their raw state or in a preprocessed
form. Software modifications introduced through updates may potentially affect
outcomes. Unlike preprocessed data, raw data preserve their original format across
software versions and provide a more consistent basis for clinical analysis. The objec-
tive of this study was to distinguish between healthy and KC corneas from raw optical
coherence tomography data by using a convolutional neural network. Methods: In to-
tal, 2737 eye examinations acquired with the Casia2 anterior-segment optical coherence
tomography (Tomey, Nagoya, Japan) were decided by three experienced ophthalmol-
ogists to belong to one of three classes: ‘normal’, ‘ectasia’, or ‘other disease’. Each
eye examination consisted of sixteen meridional slice images. The dataset included
744 examinations. DenseNet121, EfficientNet-B0, MobileNetV3-Large and ResNet18
were modified for use as convolutional neural networks for prediction. All reported
metric values were rounded to four decimal places. Results: The overall accuracy for
the modified DenseNet121, modified EfficientNet-B0, modified MobileNetV3-Large
and modified ResNet18 is 91.27%, 91.27%, 92.86% and 89.68%, respectively. The
macro-averaged sensitivity, macro-averaged specificity, macro-averaged Positive Pre-
dictive Value and macro-averaged F1 score for the modified DenseNet121, modified
EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 are reported
as 91.27%, 91.27%, 92.86% and 89.68%; 95.63%, 95.63%, 96.43% and 94.84%; 91.58%
91.65%, 92.91% and 90.24%; and 91.35%, 91.29%, 92.85% and 89.81%, respectively.
Conclusions: The successful use of a convolutional neural network with raw optical
coherence tomography data demonstrates the potential of raw data to be used instead
of preprocessed data for diagnosing KC in ophthalmology.

Keywords: CNN; cornea; deep learning; ectasia; eye; GUI; keratoconus; OCT; raw data;
vision

1. Introduction
Sight is an important ability for human beings, and quality of life can be affected by

eye problems. Human eyes contain tissues and structures such as the cornea, lens, retina
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and optic nerve. The cornea covers the outer surface of the eyeball. Corneal conditions
commonly include refractive errors such as myopia, hyperopia and astigmatism, as well as
keratoconus (KC) and inflammation [1].

KC, as a quasi-inflammatory disease, is a bilateral condition that causes progres-
sive thinning and steepening of the cornea and affects between 50 and 230 individuals
per 100,000 [2,3]. Diagnosis of this disease typically occurs in the second or third
decade of life. Eye rubbing is regarded as a major risk factor in the KC develop-
ment [4]. Early KC can be detected using various diagnostic methods [5], including
handheld keratoscopes (Placido disks) [6], slit-lamp biomicroscopy [7] and ultrasonic
pachymetry [8], as well as corneal topography [9] and tomography techniques [10]
such as Scheimpflug imaging [6] and anterior-segment Optical Coherence Tomography
(OCT) [11]. OCT employs low-coherence interferometry with near-infrared light to gen-
erate high-resolution images of tissue morphology, including corneal layer-thickness
maps [12].

Artificial intelligence (AI) has become increasingly valuable in ophthalmology,
particularly for image analysis. Since the 1970s, its application in diagnosing eye
diseases has grown substantially. Applications of artificial intelligence are being ex-
plored in the diagnosis and management of glaucoma, KC, cataracts and other anterior
segment diseases [13]. There has been a growing volume of research assessing the
implementation of AI-based methods for diagnosing anterior segment diseases, with
particular emphasis on KC detection through anterior-segment OCT imaging [14]. Us-
ing AI to detect KC dates back to the earliest study by Maeda et al. [15] in 1994. Several
deep learning approaches have been proposed in recent years for KC detection and
the classification of the cornea through various corneal imaging techniques [16–21].

In this study, raw OCT data obtained from the Casia2 (Tomey, Nagoya, Japan)
were used to diagnose the condition of the cornea. Data can generally be used in their
original format or in a preprocessed form, which bears the risk of changes with software
updates. In contrast to preprocessed data, raw data grabbed by the instrument typically
remain unchanged with new software tools and updates, and potentially offer a more
reliable foundation for analysis. The objective of this study is to use raw OCT data to
diagnose corneal conditions and to develop a method for automatically distinguishing
healthy corneas from KC and other conditions, using data labelled by three experienced
ophthalmologists (PD Dr. Alaa Din Abdin, PD Dr. Elias Flockerzi and Univ.-Prof. Dr.
Nóra Szentmáry).

2. Materials and Methods
2.1. Data

Patient data were collected at the Department of Ophthalmology, Saarland University
Medical Centre, Homburg, Germany, using the cornea/anterior-segment optical coherence
tomography device Casia2 (Tomey, Nagoya, Japan) [22], a swept-source OCT-based device
that captures anterior segment images of the eye. The Casia2 generates raw data in 3dv
format, with each file linked to a corneal map. Each 3dv file contains information for sixteen
equi-angular meridional images. The images were stored in sixteen-bit unsigned integer
format, with pixel values ranging from 0 to 65,535. Figure 1 shows information from a raw
data file of the Casia2.
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Figure 1. Information from a raw data file.

A Python script was developed to extract sixteen images from each 3dv file. Each
image, originally sized at 800 pixels wide and 1464 pixels tall, was stored as a greyscale
Portable Network Graphics (PNG) file. Figure 2 shows sixteen images extracted from the
same raw data file as presented in Figure 1.

A total of 2737 eye examinations, each containing sixteen equi-angular meridional
images with the aspect ratio adjusted to 1.629 (width divided by height) to better repre-
sent the realistic shape of the eye, were decided by three experienced ophthalmologists
(PD Dr. Alaa Din Abdin, PD Dr. Elias Flockerzi and Univ.-Prof. Dr. Nóra Szentmáry) to
belong to one of three classes: ‘normal’, which indicates a normal eye; ‘ectasia’, which
indicates corneal ectasia; or ‘other disease’, which included eyes with penetrating ker-
atoplasty, subepithelial or stromal scarring, corneal dystrophies, Salzmann’s nodules
or pterygia. All three experienced ophthalmologists were in agreement in labelling
1325 eye examinations as ‘normal’, 212 eye examinations as ‘ectasia’ and 266 eye ex-
aminations as ‘other disease’. The split was performed at the eye examination level,
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based on the sixteen equi-angular meridional images, rather than at the patient level.
Since the labelled eye examinations were not balanced, it was decided to reduce the
number of ‘normal’ eye examinations to make the dataset more balanced. All 212 eye
examinations categorised as ‘ectasia’ and all 266 examinations classified as ‘other disease’
were used, while 266 ‘normal’ eye examinations were randomly selected to achieve a
more balanced dataset. It was decided to create a balanced dataset for both the validation
and test datasets. To allocate approximately 60% of the dataset for training, 20% for
validation and 20% for testing, it was decided to use 42 of the 212 ‘ectasia’-labelled eye
examinations (approximately 20%), for the test dataset and another 42 (approximately
20%) for the validation dataset and the remaining 128 for the training dataset. To create
balanced validation and test datasets, it was decided to use 42 ‘normal’-labelled eye
examinations and 42 ‘other disease’-labelled eye examinations for the validation dataset,
another 42 ‘normal’-labelled and 42 ‘other disease’-labelled eye examinations for the
test dataset, and the remaining 182 ‘normal’-labelled and 182 ‘other disease’-labelled
eye examinations for training. After randomly shuffling the rows corresponding to
the ‘normal’ class in a CSV file containing the image file names and labels of 212 eye
examinations categorised as ‘ectasia’, 266 eye examinations categorised as ‘other disease’
and 266 eye examinations categorised as ‘normal’, the first 182 eye examinations were
selected for the training dataset, the next 42 for the validation dataset and the following
42 for the test dataset. The ‘ectasia’ class was split in a similar manner. After randomly
shuffling the rows corresponding to this class in the same CSV file, the first 128 eye
examinations were selected for the training dataset, the next 42 for the validation dataset
and the following 42 for the test dataset. The ‘other disease’ class was also split in the
same way. After randomly shuffling the rows corresponding to this class in the same
CSV file, the first 182 eye examinations were selected for the training dataset, the next 42
for the validation dataset and the following 42 for the test dataset.

Eye examinations for which the labels did not match were excluded from the anal-
ysis. The training dataset included 182 eye examinations for the ‘normal’ class, 128 eye
examinations for the ‘ectasia’ class and 182 eye examinations for the ‘other disease’ class
(approximately 66.13% of the total dataset). The validation dataset included 42 eye exami-
nations for each class (approximately 16.93% of the total dataset), and the test dataset also
included 42 eye examinations for each class (approximately 16.93% of the total dataset)
to ensure a balanced distribution. Table 1 summarises the label distribution across the
training, validation and test datasets.

Table 1. Label distribution across training, validation and test datasets.

Dataset Normal Ectasia Other Disease Total

Training 182 128 182 492

Validation 42 42 42 126

Test 42 42 42 126
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Figure 2. Sixteen equi-angular meridional images extracted from a raw data file.
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2.2. Training Architectures

A Convolutional Neural Network (CNN) is a specialised form of artificial neural
network structured for image data. It operates by means of convolutional layers that ap-
ply kernels, or filters, to detect features and form feature maps [23,24]. In this study, four
CNN models from well-established deep learning architectures were selected. DenseNets
offer advantages, such as easing the vanishing-gradient problem, strengthening feature
propagation and reducing the number of parameters, and they were evaluated on the
CIFAR-10, CIFAR-100, ImageNet and SVHN datasets [25]. EfficientNets use a compound
scaling method, which can improve accuracy better than other single-dimension scaling
methods, and they were evaluated on the Birdsnap, CIFAR-10, CIFAR-100, FGVC Air-
craft, Flowers, Food-101, ImageNet, Oxford-IIIT Pets and Stanford Cars datasets [26].
MobileNets can be applied to mobile and embedded vision applications, and they were
evaluated on ImageNet dataset [27]. ResNets have residual networks that are easier
to optimise, and they were evaluated on the CIFAR-10 and ImageNet datasets [28]. In
this study, DenseNet121, EfficientNet-B0, MobileNetV3-Large and ResNet18 were used
as the CNN models. The images were resized to 224 × 224 pixels to match the input
dimensions required by the models. The resized images were normalised between −1
and 1. The models were trained from scratch using Python (version 3.13.5) and the
PyTorch library (version 2.7.1) [29]. Training was performed on a system with an Intel(R)
Xeon(R) Central Processing Unit (CPU) E5-1650 v2 @ 3.50 GHz 3.50 GHz processor and
32 GB of Random-Access Memory (RAM). The training process consisted of 200 full
passes through the dataset. The Python scripts were designed to test the CNN models
corresponding to the epoch that achieved the highest validation accuracy among the
200 epochs on the test dataset; if more than one epoch achieved the same highest valida-
tion accuracy, the model from the epoch with the highest training accuracy among them
was used for evaluation on the test dataset. A batch size of 8 was applied consistently
across the training, validation and test sets to ensure stable learning dynamics. To opti-
mise the classification performance, the cross-entropy loss function [30] was selected as
the loss metric. The models were optimised using the AdamW optimiser [31]. The initial
learning rate was set to 0.01. To adjust the learning rate dynamically during training,
a scheduler was employed to reduce the rate by a factor of 0.1 when no improvement
occurred over 10 consecutive epochs. Additionally, a weight decay [32] value of 0.05 was
applied to regularise the models and reduce the risk of overfitting [33] by constraining
the magnitude of the learned parameters.

To accommodate the specific nature of the input data, each group of sixteen resized
images was treated as a single volumetric instance and combined into a sixteen-channel
input. This stack was then fed into the modified models. To enable the models to process
this multi-channel input, the architectures were altered by modifying the first convolutional
layer to accept sixteen input channels instead of the standard 3-channel Red–Green–Blue
(RGB) format. Furthermore, the classification head of the networks, originally designed for
a 1000-class output in ImageNet tasks, was adapted to output three predictions, correspond-
ing to one of the three target classes: ‘normal’, ‘ectasia’ or ‘other disease’. Table 2 shows the
differences between the original DenseNet121, EfficientNet-B0, MobileNetV3-Large and
ResNet18 models and their modified versions used in this study.

Figure 3 shows the process, from obtaining data from the Casia2 to predicting one of
the three classes.
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Table 2. Comparison of the original CNN models with their modified versions. Abbreviation:
CNN = Convolutional Neural Network.

CNN Model Number of
Input Channels

Number of
Output Features

DenseNet121 3 1000

Modified DenseNet121 16 3

EfficientNet-B0 3 1000

Modified EfficientNet-B0 16 3

MobileNetV3-Large 3 1000

Modified MobileNetV3-Large 16 3

ResNet18 3 1000

Modified ResNet18 16 3

Figure 3. Data acquisition to three-class classification workflow. Abbreviation: CNN = Convolutional
Neural Network.

2.3. Evaluation Metrics

For each class, the numbers of True Positives (TPs), False Positives (FPs), True Neg-
atives (TNs) and False Negatives (FNs) were computed using a one-vs.-rest approach.
These values were used to derive standard evaluation metrics adapted for multi-class
classification, including accuracy, sensitivity, specificity, Positive Predictive Value (PPV)
and F1 score. The metrics were calculated according to the definitions provided in [34],
with macro-averaging strategies applied where appropriate to ensure fair assessment across
all classes. All reported metric values were rounded to four decimal places.

2.4. Gradient-Weighted Class Activation Mapping

Gradient-Weighted Class Activation Mapping (Grad-CAM) [35] was used to visualise
the regions of the CNN architectures that are most influential in distinguishing between the
three classes: ‘normal’, ‘ectasia’ and ‘other disease’ on the test dataset. The Grad-CAMs for
each predicted class were averaged to produce a representative Grad-CAM pattern for that
class. The Python scripts were designed to use the model corresponding to the epoch that
achieved the highest validation accuracy among the 200 epochs to generate Grad-CAM
on the test dataset; if more than one epoch achieved the same highest validation accuracy,
the model from the epoch with the highest training accuracy among them was used for
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generating Grad-CAM on the test dataset. For each modified CNN model, Grad-CAM was
applied to the last convolutional layer.

2.5. Graphical User Interface

A Graphical User Interface (GUI) can help users visualize the prediction results. The
GUI was created by using Tkinter (version 8.6), OpenCV (cv2, version 4.12.0), Matplotlib
(version 3.10.3), NumPy (version 2.2.6) and Pathlib (Python version 3.13.5). The selected CNN
architecture, based on its performance on the test dataset, was implemented by using PyTorch
(version 2.7.1). The GUI was developed on the system running Python (version 3.13.5).

3. Results
The training and validation accuracies of the modified CNN models over 200 epochs

are shown in Figure 4.

Figure 4. Training and validation accuracies of the modified CNN models over epochs. Abbreviation:
CNN = Convolutional Neural Network.

The training and validation losses of the modified CNN models over 200 epochs are
shown in Figure 5.

Figure 5. Training and validation losses of the modified CNN models over epochs. Abbreviation:
CNN = Convolutional Neural Network.
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The distribution of predictions among the classes for the modified CNN models is
shown in the confusion matrix in Figure 6.

Figure 6. Confusion matrices of the modified CNN models: (A) modified DenseNet121, (B) modified
Effi-cientNet-B0, (C) modified MobileNetV3-Large and (D) modified ResNet18.

Figure 7 shows the averaged Grad-CAM for each predicted class of the modified CNN
models in the test dataset. The CNNs’ decision importance was colour-coded from blue,
for little or no influence, to red, for strong influence on the prediction. Each Grad-CAM
for each prediction was overlaid on the average of all sixteen resized extracted images.
The averaged Grad-CAM for each class was overlaid on the average of all those averaged
images, where the lighter areas represent the averaged background images.

Table 3 shows the performance metrics of the modified DenseNet121, modified
EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 evaluated on the
test dataset by using seed number one.

Figure 8 shows the GUI for corneal condition prediction. The GUI has three buttons:
‘File’, ‘Images’ and ‘Prediction’. The user can select a raw data file in .3dv format by clicking
the ‘File’ button. By clicking the ‘Images’ button, the user can view the extracted images,
which are automatically scaled, as shown in Figure 9. The user can obtain a prediction of the
corneal condition and the probabilities of each class, which are rounded to two decimal places,
by clicking the ‘Prediction’ button. Figure 10 shows the prediction output for a raw data file.
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Figure 7. Averaged Grad-CAM for each predicted class in the test dataset for modified DenseNet121,
(A) ‘normal’, (B) ‘ectasia’ and (C) ‘other disease’; for modified EfficientNet-B0, (D) ‘normal’, (E) ‘ecta-
sia’ and (F) ‘other disease’; for modified MobileNetV3-Large, (G) ‘normal’, (H) ‘ectasia’ and (I) ‘other
disease’; and for modified ResNet18, (J) ‘normal’, (K) ‘ectasia’ and (L) ‘other disease’. Abbreviation:
Grad-CAM = Gradient-Weighted Class Activation Mapping.
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Table 3. Performance metrics of the modified CNN models evaluated on the test dataset. Abbrevia-
tion: PPV = Positive Predictive Value.

Model Group Sensitivity Specificity PPV F1 Score Overall
Accuracy

Modified
DenseNet121

Normal 0.9048 0.9167 0.8444 0.8736

0.9127
Ectasia 0.9048 0.9881 0.9744 0.9383

Other disease 0.9286 0.9643 0.9286 0.9286

Macro-average 0.9127 0.9563 0.9158 0.9135

Modified
EfficientNet-B0

Normal 0.9524 0.9167 0.8511 0.8989

0.9127
Ectasia 0.9286 0.9762 0.9512 0.9398

Other disease 0.8571 0.9762 0.9474 0.9

Macro-average 0.9127 0.9563 0.9165 0.9129

Modified
MobileNetV3-

Large

Normal 0.9286 0.9524 0.9070 0.9176

0.9286
Ectasia 0.9524 0.9643 0.9302 0.9412

Other disease 0.9048 0.9762 0.95 0.9268

Macro-average 0.9286 0.9643 0.9291 0.9285

Modified ResNet18

Normal 0.9048 0.8929 0.8085 0.8539

0.8968
Ectasia 0.8809 0.9762 0.9487 0.9136

Other disease 0.9048 0.9762 0.95 0.9268

Macro-average 0.8968 0.9484 0.9024 0.8981

 

Figure 8. GUI for corneal condition prediction. Abbreviation: GUI = Graphical User Interface.
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Figure 9. Images extracted and scaled from the selected raw data file.

 

Figure 10. Prediction result of the selected raw data file.

4. Discussion
In this study, four deep learning models were modified to diagnose corneal conditions

using the raw data from the Casia2. The raw data exported from the Casia2 consist of
sixteen meridional images. Accordingly, sixteen channels were introduced to the modified
models to receive the sixteen images.

Among four modified CNN models, the modified MobileNetV3-Large achieved the
highest overall accuracy of 92.86%. For the modified MobileNetV3-Large, among the
200 epochs, epoch 89 achieved the highest accuracy on the validation dataset. The model
from epoch 89 was used for evaluation on the test dataset and for generating Grad-CAM.
According to the results, the modified MobileNetV3-Large correctly predicted 117 out of
126 examinations. The ‘ectasia’ class had the highest number of correct predictions, with
40 out of 42, followed by ‘normal’, with 39 out of 42, and ‘other disease’, with 38 out of
42. Since the modified MobileNetV3-Large had higher overall accuracy than the other
modified CNN models, it was run four additional times with seed numbers from two to five
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to validate the robustness and reliability of the results. Table 4 shows the mean ± standard
deviation for each performance metric across five runs of the modified MobileNetV3-Large
by using seed numbers from one to five.

Table 4. Performance metrics (mean ± standard deviation) of the modified MobileNetV3-
Large evaluated on the test dataset across five runs with different seed numbers. Abbreviation:
PPV = Positive Predictive Value.

Model Group Sensitivity Specificity PPV F1 Score Overall
Accuracy

Modified
MobileNetV3-

Large

Normal 0.9095 ± 0.0391 0.9048 ± 0.0895 0.8424 ± 0.1125 0.8703 ± 0.0631

0.8937 ± 0.0519
Ectasia 0.9191 ± 0.1019 0.9643 ± 0.0266 0.9332 ± 0.0475 0.9214 ± 0.0418

Other disease 0.8524 ± 0.0865 0.9714 ± 0.0065 0.9366 ± 0.0165 0.8910 ± 0.0528

Macro-average 0.8937 ± 0.0519 0.9468 ± 0.0260 0.9041 ± 0.0357 0.8942 ± 0.0502

There were four eye examinations that were predicted as ‘normal’ by the modified
MobileNetV3-Large but were diagnosed as ‘ectasia’ or ‘other disease’ by all three expe-
rienced ophthalmologists. For each of these four eye examinations, the first of sixteen
equi-angular meridional images, with the aspect ratio adjusted to 1.629 (width divided by
height) to better represent the realistic shape of the eye, is shown in Figure 11.

 

Figure 11. First of sixteen equi-angular meridional images, with the aspect ratio adjusted to 1.629
(width divided by height). (A) ‘other disease’-labelled but predicted as ‘normal’. (B) ‘other disease’-
labelled but predicted as ‘normal’. (C) ‘other disease’-labelled but predicted as ‘normal’. (D) ‘ectasia’-
labelled but predicted as ‘normal’.

It was determined that Figure 11A shows an eye examined while wearing a contact
lens after penetrating keratoplasty; as the contact lens regularised the corneal surface, it was
predicted as ‘normal’ by the modified MobileNetV3-Large. Figure 11B shows an eye that has
undergone penetrating keratoplasty, which likely resulted in regularisation of the corneal
surface, and therefore it was also predicted as ‘normal’ by the modified MobileNetV3-Large.
Since the ‘other disease’ class contained eyes with penetrating keratoplasty, subepithelial or
stromal scarring, corneal dystrophies, Salzmann’s nodules, or pterygia, the wide variety of
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conditions within the 266 eye examinations may have limited the modified MobileNetV3-
Large’s ability to learn the differences among these diseases effectively. However, with
a larger number of keratoplasty samples, it is possible that the model would recognise
this condition better. Figure 11C was diagnosed as showing stromal corneal scarring and
Descemet’s folds indicative of endothelial dysfunction, along with vitreous prolapse into
the anterior chamber. No explanation could be provided as to why this case was predicted
as ‘normal’ by the modified MobileNetV3-Large. Figure 11D shows intrastromal corneal
ring segments implanted surgically due to ectasia; the resulting regularisation of the corneal
surface likely led to it being predicted as ‘normal’ by the modified MobileNetV3-Large.
Figure 12 shows the Grad-CAMs of these four eye examinations generated by the modified
MobileNetV3-Large.

Figure 12. Grad-CAMs of eye examinations generated by the modified MobileNetV3-Large. (A) ‘other
disease’-labelled but predicted as ‘normal’. (B) ‘other disease’-labelled but predicted as ‘normal’.
(C) ‘other disease’-labelled but predicted as ‘normal’. (D) ‘ectasia’-labelled but predicted as ‘normal’.
Abbreviation: Grad-CAM = Gradient-Weighted Class Activation Mapping.

Quanchareonsap et al. [16] tested three AI models based on EfficientNet-B7 to differen-
tiate between normal cornea, subclinical keratoconus and keratoconus using tomographic
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maps from the Pentacam and corneal biomechanics from the Corvis ST. AI model 1, which
used refractive maps from the Pentacam, achieved a macro-average accuracy of 93.6%, a
macro-average sensitivity of 86%, a macro-average specificity of 95.7% and a macro-average
PPV of 81.1%. For AI model 2, the dynamic corneal response and the Vinciguerra screening
report from the Corvis ST were added to AI model 1. AI model 2 achieved a macro-average
accuracy of 95.7%, a macro-average sensitivity of 73.7%, a macro-average specificity of
96.1% and a macro-average PPV of 95.3%. For AI model 3, the corneal biomechanical
index was incorporated into AI model 2. AI model 3 achieved a macro-average accuracy
of 95.7%, a macro-average sensitivity of 73.7%, a macro-average specificity of 96.1% and a
macro-average PPV of 95.3%. Zhang et al. [17] used the CorNet model for the diagnosis of
keratoconus using Corvis ST raw data. The dataset consisted of 1786 Corvis ST raw data
samples, with 70% allocated to the training set and 30% to the validation set. The CorNet
model achieved an accuracy of 92.13%, a sensitivity of 92.49%, a specificity of 91.54%, a
PPV of 94.77% and a F1 score of 93.62%. Abdelmotaal et al. [18] developed a DenseNet121-
based CNN model to distinguish between normal eyes and eyes with keratoconus using
734 Corvis ST videos from 734 eyes. The model achieved an accuracy of 89% on the test
set, which comprised 30% of a dataset of 502 subjects, with the remaining 70% used for
training and an accuracy of 88% on a separate dataset of 232 subjects. Fassbind et al. [19]
employed preprocessed OCT data from a Casia2 device to diagnose corneal conditions,
including healthy, keratoconus, post-laser, keratoglobus, pellucid marginal corneal degen-
eration, other and not appreciable, using the CorNeXt CNN model, which builds on the
ConvNeXt architecture [36]. The model achieved a weighted-average accuracy of 93.52%,
a weighted-average sensitivity of 84.30%, a weighted-average specificity of 99% and a
weighted-average F1 score of 88.17%. For keratoconus detection specifically, it achieved an
accuracy of 92.56%, a sensitivity of 84.07%, a specificity of 100% and an F1 score of 91.34%.

In comparison with [19], the macro-average F1 score of the modified MobileNetV3-
Large achieved in this study (92.85%) exceeded the weighted-average F1 score of 88.17%, de-
rived from the value reported in [19]. Moreover, the F1 score of the modified MobileNetV3-
Large in this study for the ‘ectasia’ class (94.12%) is higher than the F1 score of 91.34% for
the Keratoconus class, derived from the value reported in [19]. These findings indicate that
using raw OCT data can outperform approaches based on preprocessed data in diagnosing
corneal conditions.

Since the modified MobileNetV3-Large had higher overall accuracy than the other
modified CNN models, it was selected for application in the GUI. The modified
MobileNetV3-Large with a seed number of four achieved higher overall accuracy (94.44%)
than the model with seed number one reported in Table 3 (92.86%); therefore, this model
was used in the GUI. The GUI provides a classification of the corneal condition and the
probability for each class. The user can select a raw data file in .3dv format and has the
option to view the sixteen automatically scaled extracted images from the selected file, with
the ability to zoom in on each image. This feature allows the user to compare the diagnosis
provided by the GUI with what they observe in the images. The GUI helps ophthalmolo-
gists obtain a prediction from an eye examination taken with the Casia2 anterior-segment
OCT and allows them to determine the corneal condition regardless of changes to the
Casia2 software version.

However, this study has four limitations that must be considered. Firstly, only four
CNN models were modified and tested, and it is possible that other models could achieve
better results. Secondly, although 2737 eye examinations were decided to belong to one
of the three classes, 1325 of these were decided to be ‘normal’ by all three experienced
ophthalmologists. This represents approximately 73.49% (rounded to two decimal places)
of the 1803 eye examinations for which all the three experienced ophthalmologists decided
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on the same labels. To create a balanced test dataset, 42 eye examinations were selected
for each class, and this corresponded to approximately 16.93% (rounded to two decimal
places) of the total dataset. If the ‘ectasia’ and ‘other disease’ classes had more samples,
it would have been possible to train the architecture and test a larger number of samples
from these classes. Thirdly, mismatched cases between three experienced ophthalmologists
were disregarded, which may have affected the generalisability of the findings to all patient
populations. Fourthly, the dataset was monocentric. These limitations indicate areas for
further research and refinement, which may affect overall accuracy.

5. Conclusions
In this study, raw OCT data were used to diagnose corneal conditions, including

‘normal’, ‘ectasia’ and ‘other disease’. Using raw data has advantages over preprocessed
data, such as remaining unchanged with new software tools and updates and providing a
more reliable foundation for analysis. The successful application of four CNN architectures
with raw OCT data validates the use of raw OCT data for the diagnosis of corneal conditions
in ophthalmology. Moreover, the GUI helps ophthalmologists obtain a prediction from an
eye examination performed with the Casia2 anterior-segment OCT.
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CNN Convolutional Neural Network
CPU Central Processing Unit
CSV Comma-Separated Values
FP False Positive
FN False Negative
Grad-CAM Gradient-Weighted Class Activation Mapping
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GUI Graphical User Interface
KC Keratoconus
OCT Optical Coherence Tomography
PNG Portable Network Graphics
PPV Positive Predictive Value
RAM Random-Access Memory
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TP True Positive
TN True Negative
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