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Zusammenfassung

Diese Arbeit untersucht die Erkennung von Anomalien in longitudinalen klinischen Daten,
mit besonderem Schwerpunkt auf Anti-Doping-Anwendungen, bei denen die Uberwachung
von Sportlern die Identifizierung subtiler, zeitlich eingebetteter Abweichungen in biologis-
chen Profilen erfordert. Im Gegensatz zu Einzelprobenbewertungen ermoglichen Léingss-
chnittdaten die Analyse der intraindividuellen Dynamik im Zeitverlauf und unterstiitzen so
die Erkennung abnormaler Muster, die sonst moglicherweise verborgen bleiben wiirden. Eine
groB3e Herausforderung im Anti-Doping-Bereich ist der Einsatz ausgekliigelter Manipulation-
sstrategien durch einige Sportler, um positive Dopingtests zu umgehen. Ein Beispiel hierfiir
ist der Probenaustausch, bei dem die biologischen Proben von Athleten absichtlich durch die
Proben einer anderen Person oder durch zuvor gelagerte ,,saubere” Proben ersetzt werden.
Solche Praktiken untergraben die Zuverlédssigkeit herkommlicher Testmethoden, bei denen
in der Regel davon ausgegangen wird, dass jede Probe authentisch und unverfélscht ist. Im
Gegensatz dazu ermdglicht die longitudinale Anomalieerkennung die Identifizierung von Un-
stimmigkeiten innerhalb der biologischen Entwicklung eines Athleten und bietet somit eine
Moglichkeit, UnregelméBigkeiten aufzudecken, die auf einen moglichen Probenaustausch
hindeuten. Die Erkennung solcher Anomalien ist aufgrund verschiedener Herausforderun-
gen im Zusammenhang mit Lingsschnittdaten oder dem Bereich der Dopingbekdmpfung
selbst schwierig. Um diesen Herausforderungen zu begegnen, ist diese Arbeit in drei Teile
gegliedert.

Der erste Teil der Arbeit stellt Methoden zur Langsschnitt-Anomalieerkennung vor, die
sich mit den zentralen Herausforderungen unregelméBiger Probenahmeintervalle, heterogener
Profilldngen, begrenzter Probenanzahlen pro Athlet und der Knappheit von Ground-Truth-
Labels befassen. Es werden zwei sich ergidnzende Architekturen vorgeschlagen. Das Self
Attention-based Convolutional Neural Network (SACNN) geht diese Probleme an, indem es
aus unregelmiBigen Profilen strukturierte Teilsequenzen konstruiert und aufmerksamkeits-
gewichtete Faltungsschichten anwendet, um strukturelle und zeitliche Abhiingigkeiten zu
lernen und so subtile kontextuelle Anomalien wie Probenvertauschungen zu erfassen. Parallel
dazu bewiltigt das Subsampling-based Convolutional Neural Network (SCNN) die Heraus-

forderungen durch eine Subsampling- und Aggregationsstrategie, bei der tripletbasierte
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Segmente verwendet werden, um unterschiedliche Konsistenzen zu erfassen, was eine zu-
verlidssige Anomalieerkennung selbst bei Profilen mit nur zwei Proben ermoglicht. Beide
Modelle reduzieren die Abhingigkeit von expliziten Anomalie-Labels, indem sie individual-
isierte Baselines lernen. Sie werden unter hochspezifischen Einschriankungen trainiert, wobei
die Bewertungen anhand realer Anti-Doping-Datensiitze einschlielich DNA-verifizierter
Anomalien durchgefiihrt werden.

Der zweite Teil der Arbeit bezieht Stoffwechselwegstrukturen in das Modelllernen ein und
stellt so sicher, dass die Modellausgaben nicht nur genau, sondern auch biologisch plausibel
sind. Es werden zwei sich ergidnzende Ansitze vorgeschlagen. Structural-Temporal Tokeniza-
tion for Large Language Models (STT-LLM) fiihrt eine neuartige Tokenisierungsstrategie
ein, die das metabolische strukturelle und zeitliche Verhalten klinischer Parameter aus
Langsschnittprofilen codiert, sodass ressourceneffiziente Sprachmodelle klinische Daten
unter Beibehaltung des biologischen Kontexts verarbeiten konnen. Parallel dazu bettet Graph-
based Modelling for Metabolism Pathways (GRAMP) das Steroid-Stoffwechselnetzwerk in
eine Graph-Attention-Architektur ein, wodurch das Modell durch Informationsverbreitung
tiber metabolisch verkniipfte Biomarker wegkonsistente Anomalien erkennen kann.

Der dritte Teil der Arbeit konzentriert sich auf interpretierbare und doméneninformierte
Argumentation zur Entscheidungsunterstiitzung. Es werden zwei sich erginzende Erk-
larungsinstrumente vorgeschlagen. Metabolism Pathway-driven Prompting (MPP) verwendet
strukturierte Graphen des Steroidstoffwechselwegs, um Sprachmodelle bei der Generierung
von textuellen Erklidrungen fiir markierte Anomalien anzuleiten und erkannte Abweichungen
mit plausiblen biologischen Mechanismen zu verkniipfen. Digital Athlete Passport (DAP)
bietet einen visuellen Analyseansatz, bei dem hochdimensionale longitudinale klinische
Profile in niedrigdimensionale Rdume projiziert werden, um Abweichungen und Trajek-
torienverschiebungen zu visualisieren, unterstiitzt durch PCA-basierte Interpretation und
Zentroid-Tracking. Alle Modelle sind in CASPIAN integriert, einem Software-Framework,
das es Fachleuten ermoglicht, Erkennungs-, strukturbewusste Modellierungs- und Inter-
pretierbarkeitsmethoden flexibel zu kombinieren. Zusammen bieten diese Beitrdge einen
umfassenden Ansatz zur Anomalieerkennung in longitudinalen klinischen Profilen und er-
moglichen eine biologisch fundierte und erklidrbare Uberwachung in Bereichen mit hohem

Risiko, wie z. B. Anti-Doping und dariiber hinaus.



Abstract

This thesis investigates anomaly detection in longitudinal clinical data, with a particular focus
on anti-doping applications where athlete monitoring requires identifying subtle, temporally
embedded deviations in biological profiles. Unlike single-sample assessments, longitudinal
data allows the analysis of intra-individual dynamics over time, supporting the detection of
abnormal patterns that may otherwise remain hidden. A major challenge in anti-doping is the
use of sophisticated manipulation strategies by some athletes to evade positive doping tests.
An example is sample swapping, in which athletes’ biological samples may be deliberately
substituted with those of another individual or with previously stored “clean” samples. Such
practices undermine the reliability of conventional testing methods, which typically assume
each sample to be authentic and unaltered. In contrast, longitudinal anomaly detection
allows for the identification of inconsistencies within an athlete’s biological trajectory,
thereby offering a means of uncovering irregularities suggestive of potential swapping events.
Detecting such anomalies is difficult due to different challenges related to longitudinal data
or the domain of anti-doping itself. To address these challenges, this thesis is categorized
into three parts.

The first part of the thesis introduces methods for longitudinal anomaly detection that
address the key challenges of irregular sampling intervals, heterogeneous profile lengths,
limited numbers of samples per athlete, and the scarcity of ground-truth labels. Two comple-
mentary architectures are proposed. The Self Attention-based Convolutional Neural Network
(SACNN) addresses these issues by constructing structured subsequences from irregular
profiles and applying attention-weighted convolutional layers to learn structural-temporal
dependencies, thereby capturing subtle contextual anomalies such as sample swapping. In
parallel, the Subsampling-based Convolutional Neural Network (SCNN) handles the chal-
lenges through a subsampling and aggregation strategy, where triplet-based segments are
used to capture differential consistency, allowing reliable anomaly detection even in profiles
with as few as two samples. Both models reduce reliance on explicit anomaly labels by
learning individualized baselines. They are trained under high-specificity constraints, with
evaluations performed on real-world anti-doping datasets including DNA-verified anomalies.
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The second part of the thesis incorporates metabolic pathway structures into model
learning, ensuring that outputs are not only accurate but also biologically plausible. Two
complementary approaches are proposed. Structural-Temporal Tokenization for Large
Language Models (STT-LLM) introduces a novel tokenization strategy that encodes both
the metabolic structure and temporal behaviour of clinical parameters from longitudinal
profiles, enabling resource-efficient language models to process clinical data while preserving
biological context. In parallel, Graph-based Modelling for Metabolism Pathways (GRAMP)
embeds the steroid metabolic network into a graph attention architecture, allowing the model
to detect pathway-consistent anomalies through information propagation across metabolically
linked biomarkers.

The third part of the thesis focuses on interpretable and domain-informed reasoning
for decision support. Two complementary explanation tools are proposed. Metabolism
Pathway-driven Prompting (MPP) uses structured graphs of the steroid metabolism pathway
to guide language models in generating textual explanations for flagged anomalies, linking
detected deviations to plausible biological mechanisms. Digital Athlete Passport (DAP)
offers a visual analytics approach, projecting high-dimensional longitudinal clinical profiles
into lower-dimensional spaces to visualize deviations and trajectory shifts, supported by
PCA-based interpretation and centroid tracking. All models are integrated into CASPIAN,
a software framework that allows domain experts to flexibly combine detection, structure-
aware modelling, and interpretability methods. Together, these contributions provide a
comprehensive approach to anomaly detection in longitudinal clinical profiles, allowing
biologically grounded and explainable monitoring in high-stakes domains such as anti-doping

and beyond.
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Chapter 1
Introduction

"The thing that doesn’t fit is the thing that is most interesting." - Richard Feynman

The famous quote by Richard Feynman reflects a foundational principle of scientific ex-
ploration, i.e., meaningful insights often emerge from deviations that challenge expectations.
Longitudinal clinical data refers to repeated observations collected from the same subject
over time, offering a unique perspective for analyzing individual-level dynamics that are
not visible in cross-sectional datasets [254, 6]. Unlike single measurements, longitudinal
data captures temporal dependencies and trends, making it particularly valuable for under-
standing gradual changes in health or physiology. In clinical research, longitudinal analysis
has become essential for identifying early indicators of disease progression and underlying
physiological changes [114, 246, 196]. The increasing availability of temporal health data
through electronic health records, diagnostic laboratory systems, and home-based monitoring
technologies further improves its potential [208, 79, 259]. For example, studies on masked
hypertension show that patients with normal blood pressure values during clinical visits may
exhibit abnormal rises in home environments, with trends over weeks revealing patterns that
individual measurements overlook [222]. Such examples highlight the diagnostic value of lon-
gitudinal context for establishing patient-specific baselines and monitoring subtle deviations.
These deviations, seemingly minor in isolation, can signal clinically meaningful shifts when
viewed against an individual’s temporal trajectory. Detecting them requires robust anomaly
detection methods that can distinguish true pathological changes from normal physiological
variability. By flagging irregularities embedded within longitudinal data, anomaly detection
enables earlier interventions, supports personalized treatment decisions, and improves the
reliability of monitoring systems in high-stakes domains such as anti-doping analysis in

sports.
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Anomaly detection methods are developed to identify patterns that do not fit the expected
behaviour and can flag these early signs, allowing earlier intervention and closer monitoring
before clinical symptoms appear [127, 49, 113]. This approach has become increasingly
valuable in remote health monitoring, where wearable devices produce continuous data
streams that capture heart rate, oxygen saturation, and physical activity [252, 293]. In
conditions such as atrial fibrillation or bipolar disorder, symptoms may occur occasionally
and remain undetected in clinic visits [63, 95]. Detecting early signs of deterioration requires
models that can separate true physiological changes from background variability. When
analyzed longitudinally, shifts in sleep cycles, activity patterns, or heart rhythm can provide
the earliest signal of an acute event or relapse [299, 142]. Personalized anomaly detection
supports timely intervention [216], improving patient outcomes [13] while reducing strain on
healthcare systems. These represent only a few examples; many other domains also benefit
from anomaly detection in longitudinal clinical data, which highlights its broad applicability
and importance.

This thesis mainly focuses on anomaly detection in longitudinal clinical data, particularly
for the application in anti-doping analysis in sports [192, 279]. Broadly, doping can be
understood in two ways: first, the practice of using prohibited substances or methods to
enhance performance, and second, the deliberate hiding of such practices to avoid detection.
Athletes seeking a competitive advantage often engage in strategies such as micro-dosing or
timing interventions to reduce the likelihood of detection during scheduled tests [237, 180].
To counter these practices, the World Anti-Doping Agency (WADA) introduced the Athlete
Biological Passport (ABP), a longitudinal monitoring system that tracks variables such as
haemoglobin concentration and steroid hormones over time [273, 272]. The ABP aims
to detect changes in an athlete’s biological parameters that may indicate manipulation.
For example, a suppressed epitestosterone level followed by an uncharacteristic rise in
testosterone may individually fall within population norms, yet represent a manipulated
pattern when evaluated longitudinally [187]. Detecting such trends requires models that
account for short-term irregularities and long-term drifts relative to an athlete’s historical
profile.

Blood doping is one of the most prominent examples of manipulation that can be detected
through longitudinal monitoring [205, 225, 131]. Athletes may increase their red blood cell
mass using erythropoiesis-stimulating agents like human recombinant erythropoietin (thEPO)
or by receiving stored blood transfusions [247, 76]. These interventions improve endurance
but change haematological parameters such as haemoglobin concentration and reticulocyte
percentage. While direct detection is challenging, such practices often leave physiological

signatures that deviate from an athlete’s normal range [94]. The case of Lance Armstrong,



a Tour de France champion, shows the limitations of traditional testing and the potential
of longitudinal analysis [224, 64]. Reports show that Armstrong never failed a doping test
during his career, yet retrospective analysis of blood data combined with testimony and
stored samples revealed fluctuations in haematological markers inconsistent with natural
variation or training effects [60, 34]. This case highlights the importance of temporal models
that assess intra-individual consistency rather than relying on population thresholds.

Another form of doping is sample swapping, which cannot be detected through substance
analysis alone but shows itself through longitudinal inconsistency [281]. In such cases, an
athlete may submit a urine or blood sample that does not originate from their own body,
often timed to overlap with periods of high doping risk [283]. At the time of collection,
the substituted sample may appear analytically clean and meet all laboratory criteria, but
it changes the longitudinal trajectory of the athlete’s biological profile [249]. Such manip-
ulation creates abrupt changes in biomarker patterns, particularly in variables like steroid
ratios or haematological markers that are physiologically implausible when compared with
prior data. One of the most extensively documented examples occurred during the 2014
Sochi Winter Olympics [110], where investigations revealed that clean urine samples were
swapped behind laboratory walls through a "mouse hole" to evade detection [213]. While the
substituted samples appeared clean in isolation, analysis of athlete profiles over time revealed
inconsistencies that triggered suspicion. Later, the investigation report by Richard McLaren
confirmed these irregularities through forensic and longitudinal evidence [193]. This case
demonstrated the need for integrating anomaly-aware models with temporal biomarker analy-
sis that can uncover the most sophisticated forms of manipulation. Together, these examples
demonstrate not only the ingenuity of doping practices but also the necessity of longitudinal
anomaly detection methods that are robust and context-aware.

From disease monitoring to high-stakes sports regulation, longitudinal anomaly detection
plays an important role in identifying meaningful deviations, enabling early intervention,
and safeguarding system integrity. Yet, working with longitudinal clinical data introduces
significant methodological challenges. Measurements are often collected at irregular intervals,
profiles vary in length across individuals, and the number of samples available per subject
can be very limited. In addition, biological data are inherently noisy, with missing values
and natural variability that complicate the distinction between normal fluctuations and
clinically relevant anomalies. In anti-doping, these challenges are compounded by the
strategic behaviours of athletes who deliberately seek to evade detection. Doping practices
such as micro-dosing or blood transfusions can create only subtle deviations that unfold
gradually, while concealment strategies like sample swapping introduce abrupt but deceptive

shifts in biomarker profiles. Ground-truth labels of confirmed doping cases are scarce,
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making supervised model training difficult, and false positives carry serious ethical and
legal consequences. At the same time, any detected anomalies must be interpretable and
biologically plausible to be admissible in regulatory or forensic contexts. Despite existing
tools such as the Athlete Biological Passport, current approaches are still limited in their
ability to address these complexities, highlighting a gap for methodological innovation. This
work is motivated by these challenges and aims to develop methods for interpretable, domain-
aware anomaly detection in longitudinal clinical data. By addressing both the data-related
complexities and the domain-specific needs, the work aims to contribute new approaches
that improve the reliability, fairness, and practical utility of anomaly detection in real-world

clinical and sports settings.

1.1 Research Problem

In anti-doping analysis, detecting anomalies has particular significance for identifying drug
abuse and monitoring atypical physiological patterns that may arise from manipulation
or pathology [127]. With the increasing availability of longitudinal data collected from
different sporting events, there is growing potential to detect subtle deviations in an athlete’s
longitudinal profile [93]. However, working with such data poses a set of methodological and
domain-specific challenges that require models capable of understanding complex, dynamic,
and often incomplete behaviour. This thesis focuses on two main categories of challenges:
those arising from the nature of longitudinal clinical data itself, and those specific to the
domain of anti-doping.

The first set of challenges arises from the structural properties of longitudinal clinical
data. Biomarker levels naturally fluctuate due to circadian rhythms, environmental conditions,
training cycles, or transient illnesses, creating a background of variability that is unrelated to
doping practices [156]. For example, the urinary testosterone/epitestosterone (T/E) ratio may
rise temporarily after intensive training sessions or shift due to inter-individual enzymatic
differences, yet such changes can still fall within an athlete’s normal physiology [290].
Therefore, anomaly detection cannot rely on static population thresholds but should be
evaluated against each athlete’s historical trajectory. This difficulty is compounded by the
sparsity and irregularity of testing data, i.e., athletes are not sampled at fixed intervals,
and months may pass between urine collections, leaving profiles with large temporal gaps
and missing entries. In practice, many athletes, particularly those who are younger or
less frequently tested, may have only two or three recorded samples over several years.
Under such conditions, distinguishing between genuine manipulations, such as sample

swapping or micro-dosing, and natural physiological variation becomes highly non-trivial.
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Models that overlook irregular sampling, heterogeneous profile lengths, or the individualized
temporal context risk either falsely flagging clean athletes or missing sophisticated doping
interventions.

Next, unlike clinical domains where ground-truth labels may be available through di-
agnostic confirmation, in anti-doping a flagged profile rarely comes with definitive proof
of doping unless validated by DNA testing or expert investigation [318]. This scarcity of
labelled anomalies limits the use of supervised learning approaches. Moreover, athletes
actively employ concealment strategies such as micro-dosing or sample swapping, which
produce either subtle shifts or abrupt inconsistencies that are difficult to capture using stan-
dard algorithms. For instance, during the Sochi Winter Olympics, urine sample substitution
initially produced profiles that looked analytically normal but later revealed longitudinal
inconsistencies inconsistent with genuine physiology [193]. In this high-stakes setting, mod-
els should achieve high specificity to avoid unfairly sanctioning clean athletes, while also
remaining interpretable enough for regulatory and forensic use.

Another challenge lies in the limited integration of biological knowledge into machine
learning systems [348, 5]. Many existing approaches treat biomarkers as independent, static
features, ignoring the structured biochemical pathways in which they operate [4]. For
example, testosterone, epitestosterone, and their downstream metabolites are linked through
enzymatic reactions that constrain how they co-vary [199]. Ignoring these interdependencies
risks generating anomalies that contradict known biology or overlooking those that emerge
only through coordinated deviations across markers. Therefore, pathway-aware models
are needed to improve both the performance and interpretability of anomaly detection in
longitudinal analysis.

Finally, an important challenge lies in the interpretability and reasoning capabilities of
anomaly detection systems. In anti-doping, flagged anomalies should not only be statistically
significant but also accompanied by explanations that clinicians and legal experts can under-
stand. For example, when a longitudinal steroid profile is flagged, decision-makers require a
clear rationale grounded in physiology (e.g., implausible metabolite ratios or sudden devia-
tions inconsistent with known training effects). Without transparent reasoning, even accurate
models risk being unusable in practice, as results that cannot be explained or defended are
unlikely to be admissible in regulatory or forensic settings.

To address these challenges, this thesis develops anomaly detection methods tailored to
the complexities of longitudinal clinical data. The work emphasizes three key aspects: (i)
modeling irregular and individualized temporal profiles to distinguish true manipulations
from natural variability; (ii) incorporating domain-specific constraints, including metabolic

pathway structures, to ensure biological plausibility; and (ii1) improving interpretability
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and reasoning so that detected anomalies can be explained and supported in regulatory and

clinical contexts. Therefore, the following research questions are addressed:

RQ1 (What): What kinds of deviations can be considered anomalies in longitudinal clini-
cal data, and how they can be modeled to capture the inherent complexity of longitudinal
data?

This question addresses the fundamental challenge of defining and detecting anomalies
in longitudinal clinical data. Unlike cross-sectional measurements, longitudinal profiles
are shaped by complex temporal dynamics, individual variability, and irregular sampling.
Anomalies may appear as gradual drifts within an individual’s profile (intra-individual)
or as deviations from expected physiological patterns observed across populations (inter-
individual). For example, a sudden drop in testosterone may be abnormal for one athlete, even
if the value still lies within population reference ranges. Similarly, irregular fluctuations in
steroid ratios may seem plausible in isolation but become suspicious when viewed against an
athlete’s established baseline. Capturing these variations requires models that can represent
the inherent complexity of longitudinal data and distinguish between natural variability and
true manipulation. Therefore, studying this question is important for developing robust
anomaly detection approaches that go beyond fixed thresholds and traditional rule-based

systems.

RQ2 (Why): Why incorporating domain knowledge (such as metabolic pathways) is

important for improving the performance of anomaly detection methods?

Longitudinal clinical data are inherently structured by the underlying biology of the
human body, particularly in domains like metabolism and endocrinology. Many clinical
parameters are not independent, i.e., they follow well-established biochemical pathways. For
example, changes in the steroid biosynthesis pathway may result in coordinated changes
across several hormones, such as testosterone, epitestosterone, etc. Ignoring such dependen-
cies can lead to false positives or biologically implausible anomaly detection results. This
research question examines the significance of incorporating domain-specific structures into
anomaly detection models. By incorporating this knowledge, models can better differentiate
between pathological patterns and normal physiological adaptations. Studying this question
is required for creating biologically meaningful algorithms that align with expert knowledge

and improve trust in model predictions across anti-doping and other clinical applications.

RQ3 (How): How can interpretable anomaly detection methods be designed to provide

domain-informed reasoning that supports decision-making?
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In high-stakes environments like anti-doping, anomaly detection is only useful if its
decisions are interpretable and actionable. Black-box models that flag samples as abnormal
without providing clear explanations are of limited use to regulatory bodies. This research
question addresses the design of models that not only detect anomalies but also provide
transparent reasoning, grounded in the domain’s terminology. For example, a system de-
tecting abnormal steroid profiles in athletes should explain which specific markers deviated
from expected trends, how they relate within a metabolic pathway, and why the pattern
is statistically or biologically suspicious. Studying this question is important for bridging
the gap between complex systems and practical decision-making, ensuring that the models

developed are not just technically accurate but also clinically trustworthy and ethically usable.

1.2 Thesis Objectives

The objectives of this thesis are defined based on research gaps in the literature on anomaly
detection in longitudinal clinical data. While existing approaches in statistical modeling and
machine learning have made progress, they often struggle to fully capture the complexity
of longitudinal profiles, adapt to the domain-specific requirements of anti-doping, and
produce outputs that are both reliable and interpretable. Therefore, this thesis aims to
develop methods that address these limitations by advancing temporal modeling, integrating
biological knowledge, and ensuring interpretability and reasoning. Achieving these objectives
is important for improving the robustness and practical utility of anomaly detection in real-
world applications such as anti-doping and clinical monitoring.
Objective 1: Anomaly detection under the complexity of longitudinal data

Longitudinal data offer the ability to detect anomalies by tracking intra-individual variation
over time [83, 62]. However, such data are inherently complex: measurements are often
irregularly spaced and heterogeneous in length [296, 150]. In anti-doping, for example, an
athlete may be tested only a few times per year, resulting in profiles that contain long gaps and
very few observations [270, 313]. Biomarker values also fluctuate naturally due to training
cycles, circadian rthythms, and environmental factors, complicating the task of distinguishing
manipulation from normal variability [156, 290]. Traditional statistical approaches, such as
mixed-effects or autoregressive models [151, 261], typically assume regular sampling and
sufficient density, while many machine learning methods require large, balanced datasets to
perform reliably [135, 236]. In addition, the domain itself presents the challenge of limited
ground-truth labels, since suspicious profiles in anti-doping are rarely confirmed as anomalies
without expert or forensic validation. This scarcity makes supervised learning approaches
difficult to apply directly. Together, these challenges highlight the need for methods that can
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flexibly handle irregular sampling, heterogeneous profile lengths, and limited labelled data,
while still enabling anomaly detection that reflects the true complexity of longitudinal clinical
profiles. Therefore, the first objective of this thesis is to design methods that capture these
temporal dynamics and reliably identify anomalies without depending on dense, uniformly
collected, or fully labelled data.

Objective 2: Incorporation of metabolic pathway structure into anomaly detection
Most existing approaches treat biomarkers as independent parameters, neglecting the bio-
chemical interactions between them. In reality, these markers are interconnected through
metabolic pathways and enzymatic processes that constrain how they can vary under nor-
mal physiology. For example, the testosterone/epitestosterone (T/E) ratio has long been
recognized as an indicator of doping precisely because of its metabolic coupling [69, 272]. Ig-
noring such dependencies risks detecting statistical outliers that are biologically implausible
or, conversely, missing coordinated deviations that signal manipulation. Research in graph
learning and structured modeling demonstrates the value of embedding prior knowledge
into machine learning systems [298, 195, 28]. Yet, the application of such strategies to
longitudinal clinical profiles remains limited, despite the availability of well-characterized
pathways in fields such as metabolism and endocrinology. This gap highlights the importance
of aligning anomaly detection methods with biological plausibility, so that detected anoma-
lies are not only statistically robust but also interpretable in a physiological and regulatory
context. Therefore, the second objective of this thesis is to design methods that incorporate
metabolic pathway structure into anomaly detection frameworks, ensuring that results are
both statistically valid and biologically consistent.

Objective 3: Interpretability and domain-informed reasoning in anomaly detection
The increasing use of machine learning in anomaly detection has raised significant concerns
about interpretability. While black-box models can achieve strong predictive accuracy [112],
their ambiguity limits their utility in sensitive biomedical and regulatory settings. In anti-
doping, flagged anomalies should be scientifically defensible and accompanied by transparent
reasoning to withstand legal and forensic scrutiny [270, 249]. Similarly, in clinical contexts,
decision-support systems must provide outputs that clinicians can assess against estab-
lished medical knowledge [263, 204]. Existing explanation methods such as SHAP and
LIME [240, 179] offer feature-level insights, but these are often abstract, domain-agnostic,
and difficult for experts to translate into meaningful physiological narratives. This gap
highlights the need for anomaly detection frameworks that combine statistical modeling
with domain knowledge, enabling outputs that are interpretable, biologically plausible, and

aligned with expert reasoning. Therefore, the third objective of this thesis is to develop
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interpretable anomaly detection approaches that embed domain-informed reasoning, ensuring
that explanations are transparent and trusted in both biomedical and regulatory applications.

These objectives directly address gaps identified in the literature and show the method-
ological developments presented in the subsequent chapters. By pursuing these objectives,
this thesis contributes an anomaly detection framework that is both data-driven and biolog-
ically grounded. The models developed here are intended to serve as practical tools for

real-world longitudinal monitoring tasks.

1.3 Contributions of the Thesis

This thesis presents a set of significant contributions in the field of anomaly detection in lon-
gitudinal clinical analysis, with particular focus on applications in anti-doping analysis. The
research addresses three key challenges: i) the detection of anomalies that exhibit challenges
related to the longitudinal data complexity, ii) the integration of biological domain knowledge
into model architectures to ensure physiological plausibility, and iii) the development of
interpretable outputs that align with domain reasoning and support expert decision-making.
These works are combined into a unified framework that allows robust and transparent
analysis of anomalies in complex longitudinal biomarker profiles. The main contributions of

this thesis can be summarized as follows:

1. Anomaly Detection for Longitudinal Data

Detecting anomalies in longitudinal clinical data is inherently difficult due to these key
challenges: (i) irregular sampling intervals, (ii) heterogeneous profile lengths, (iii) limited
numbers of samples per athlete, and (iv) the scarcity of labelled anomalies. These challenges
are particularly critical in anti-doping, where athlete monitoring data often contain only
a handful of urine samples collected over long periods, making it difficult to distinguish
between natural variability and deliberate manipulation. To address these challenges, this
thesis introduces two complementary neural architectures that adopt different strategies while
targeting the same set of constraints.

The Self Attention-based Convolutional Neural Network (SACNN) addresses irregu-
lar sampling and heterogeneous profile lengths by constructing structured subsequences
from each athlete’s profile and applying attention-weighted convolutional layers to capture
both temporal dependencies and structural relationships among biomarkers. The attention
mechanism enables the model to focus on contextually informative samples within irregular

trajectories, while convolutional filters capture local interactions across biomarkers. An
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adversarial training module further improves robustness under covariate shifts, reducing the
dependency on scarce ground-truth anomalies. Profile-level anomaly scores are obtained
through aggregation across subsequences, allowing SACNN to detect subtle irregularities
such as sample swapping with high sensitivity.

The Subsampling-based Convolutional Neural Network (SCNN) addresses the same
challenges from a different angle by leveraging a triplet-based subsampling strategy. Each
athlete’s profile is decomposed into multiple temporally ordered subsamples, which are
processed by convolutional layers to extract implicit differential features. This design is
particularly effective for limited-data settings, where even profiles with only two samples can
be expanded into informative subsamples. By aggregating predictions across subsamples,
SCNN produces reliable anomaly scores while operating under high-specificity constraints,
thereby minimizing costly false positives in anti-doping investigations. Evaluation on both
synthetic manipulations and DNA-verified real-world cases shows that SCNN consistently
outperforms baseline methods, enabling cost-effective pre-screening of suspicious profiles
and reducing the reliance on extensive DNA testing.

Together, SACNN and SCNN provide two complementary strategies for anomaly de-
tection in longitudinal anti-doping data: one emphasizing attention-based representation of
irregular trajectories, and the other relying on data-efficient subsampling for sparse profiles.
Both models show that it is possible to overcome the inherent limitations of longitudinal

athlete monitoring data without requiring large collections of labelled anomalies.

2. Incorporation of Metabolism Pathway Structure into Anomaly Detec-
tion

Anomaly detection in longitudinal clinical data requires models that follow the underlying
biological information. In clinical analysis, different clinical parameters do not behave inde-
pendently but are connected through biochemical pathways and temporal dynamics. Models
that ignore these structured dependencies often produce biologically implausible results or
fail to capture complex anomalies. This thesis introduces two complementary approaches to
address this challenge by embedding domain structure into the model architecture at different
levels of representation.

Structural-Temporal Tokenization for Large Language Models (STT-LLM) is an ap-
proach that extends the capabilities of large language models (LLMs) to longitudinal clinical
data by converting structured temporal sequences into LLM-compatible token represen-
tations. STT-LLM constructs joint embeddings that capture both temporal dynamics and

pathway-informed dependencies. These embeddings are then discretized through a two-
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stream tokenization process: a structural tokenizer that encodes node-level relationships
based on steroid metabolism pathway graphs, and a temporal tokenizer that encodes lon-
gitudinal changes over time. The resulting token sequences are directly input to the LLM
backbone without modifying its architecture. STT-LLM has been evaluated on real-world
steroid datasets for tasks such as anomaly detection and sequence forecasting, where it
outperforms pretrained and fine-tuned LLM baselines. The model allows resource-efficient
deployment under strict privacy and computation constraints while preserving interpretability
through its token structure.

GRAph-based modeling for Metabolism Pathway (GRAMP) addresses biological struc-
ture integration through a graph neural network approach. It represents the steroid metabolism
pathway as a directed graph, where nodes correspond to biomarkers and edges encode en-
zymatic interactions. GRAMP leverages graph attention networks to propagate contextual
information through the graph, allowing the model to detect changes that may not be visible
when examining individual parameters independently. Each node representation is informed
by its upstream and downstream biochemical neighbours, allowing the model to capture
physiologically consistent patterns of co-variation. GRAMP is particularly effective in
identifying pathway-level anomalies such as those induced by hormonal suppression or
exogenous substance use, where multiple connected markers deviate coherently. The model
improves anomaly detection performance by reducing false positives, and offers interpretable
subgraph-level explanations, making it suitable for expert-driven evaluation in regulatory
settings.

Together, STT-LLM and GRAMP show two different but synergistic strategies for
incorporating biological structure into machine learning models for longitudinal clinical
analysis: (i) embedding-guided tokenization for language models and (ii) graph-based neural
interpretation. Both approaches allow biologically grounded anomaly detection in complex
longitudinal clinical data.

3. Interpretability and Domain-Informed Reasoning for Decision Sup-
port

In domains such as anti-doping, where decisions have legal and reputational consequences,
anomaly detection models should provide more than accurate predictions. They should offer
explanations that are transparent and comprehensible to domain experts. To address this
requirement, the thesis introduces two complementary methods: (i) a language-based rea-
soning method, and (ii) a visual trajectory analysis framework that improves interpretability

from both linguistic and visual perspectives.
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Metabolism Pathway-driven Prompting (MPP) is a prompting method that guides lan-
guage models to reason about anomalies in longitudinal clinical data using structured bio-
logical knowledge. The method combines two sources of information: temporal differences
between samples and a domain-specific metabolic pathway graph. Steroid biomarkers are
modeled as nodes in a directed graph, with edges representing enzymatic relationships.
In parallel, a temporal graph captures distance-based dynamics across time points. These
representations are translated into structured textual prompts, allowing the LLM to integrate
physiological dependencies and temporal shifts when evaluating whether a test sample con-
stitutes an anomaly. MPP is implemented as a three-stage pipeline, where an initial zero-shot
prediction is refined through domain-informed prompts. The empirical results across multiple
LLMs and datasets show significant performance improvements over conventional zero-shot
and in-context learning prompting methods. MPP improves both anomaly detection and rea-
soning capability, producing pathway-consistent rationales that align with domain knowledge
in anti-doping.

Digital Athlete Passport (DAP) is an unsupervised visual analytics method developed
to support the detection and interpretation of suspicious steroid profiles, with a focus on
identifying sample swapping cases in anti-doping. The model addresses a major limitation
of existing statistical methods, which lack the capability to visualize and quantify intra-
individual profile consistency when no ground-truth labels are available. The model projects
high-dimensional longitudinal clinical data into three-dimensional space using principal
component analysis, capturing variance driven by key physiological trends. A trajectory is
formed by connecting an athlete’s historical samples in the reduced space, and new samples
are scored based on their deviation from the centroid of past observations. DAP computes
both cumulative and consecutive distance metrics and flags outliers using a defined rule
informed by historical distributions. The method also quantifies feature contributions to the
principal components, offering marker-level interpretability. By evaluating real-world steroid
datasets, DAP identifies sample swaps and profile inconsistencies, including DNA-verified
cases, while providing clear visual diagnostics for the domain expert.

Together, MPP and DAP provide a dual-layered interpretability interface for the anomaly
detection framework, one that leverages the generative reasoning capabilities of LLMs and
another that offers geometric and statistical insight into profile evolution. These methods
enable domain experts to validate model outputs with confidence and to ground decisions in

biologically plausible and explainable evidence.
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4. Software Framework for Anomaly Detection

For the practical deployment of the methods proposed in this thesis, a software framework
for longitudinal anomaly detection (CASPIAN) has been developed. CASPIAN is designed
as a flexible software tool that brings together all the individual models into a single platform
for longitudinal anomaly detection in anti-doping and clinical contexts. Rather than imple-
menting a single pipeline, the framework allows domain experts to select appropriate models
based on their specific requirements and analytical goals. For example, an anti-doping official
reviewing an athlete’s steroid profile can begin with SCNN for anomaly detection in limited
sample cases, apply GRAMP to assess whether observed deviations align with plausible
biochemical pathways, and use MPP to generate a textual explanation for regulatory report-
ing. As a tool, it bridges the gap between data-driven anomaly detection and human-centred
decision-making, promoting adaptability and operational usability in longitudinal clinical

analysis.

1.4 Structure of the Thesis

This thesis is structured into five main sections. The structure reflects the cumulative nature
of this thesis, with each chapter building on the methodological foundations and practical

implementation.

Section I: Introduction and Preliminaries

* Chapter 1: Introduction
This chapter introduces the research problem and scope of the thesis. It establishes
the importance of anomaly detection in longitudinal clinical data, particularly in anti-
doping contexts, and outlines the research questions and contributions addressed in

this work.

» Chapter 2: Theoretical Background
This chapter provides the theoretical foundation for the thesis. It outlines the key
concepts and challenges related to anomaly detection in longitudinal clinical data.
It reviews relevant existing methods and positions this work within the anti-doping

context.
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Section II: Anomaly Detection for Longitudinal Data

* Chapter 3: SACNN - Self Attention-based Convolutional Neural Network
This chapter introduces SACNN, a neural architecture that leverages self-attention
and convolution networks to model structural-temporal behaviour. It addresses the
challenge of detecting subtle anomalies in irregularly sampled data without enough

labelled supervision.

* Chapter 4: SCNN - Subsampling-based Convolutional Neural Network
This chapter presents SCNN, which extends anomaly detection to athletes with limited
profiles. The model uses a subsampling strategy to construct profile embeddings and
compute anomaly scores when conventional methods are not applicable due to limited
data.

Section III: Incorporation of Metabolism Pathway Structure

* Chapter 5: STT-LLM - Structural-Temporal Tokenization for Large Language Models
This chapter explains STT-LLM, a method for embedding metabolism pathway struc-
ture and temporal dependencies of different biomarker into language model-compatible
tokens. It allows small LLMs to process longitudinal clinical data without modifica-
tions in LLLM backbone, supporting tasks such as anomaly detection and forecasting

under resource constraints.

* Chapter 6: GRAMP - GRAph-based modeling for Metabolism Pathway
The chapter introduces GRAMP, which models the metabolism pathway as a directed
graph and applies a graph attention mechanism to capture physiologically consistent
marker interactions. It demonstrates how domain-specific dependencies improve

anomaly detection accuracy and biological relevance.

Section IV: Interpretability and Domain-Informed Reasoning

* Chapter 7: MPP - Metabolism Pathway-driven Prompting
This chapter presents MPP, a method that integrates pathway knowledge into LLMs to
generate textual reasoning for flagged anomalies. It highlights how language-based

explanations can align with domain reasoning in forensic and clinical decision-making.

* Chapter 8: DAP - Digital Athlete Passport
This chapter introduces DAP, a visual analytic framework for assessing different
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biomarker trajectories using dimensionality reduction and centroid-based analysis. It

highlights early detection and transparency in model outputs.

Section V: Conclusion and Limitation

* Chapter 9: Software Framework for Longitudinal Anomaly Detection
This chapter presents CASPIAN, a framework that contains all models developed in
this thesis. It explains how each model can be used by the domain experts based on

task complexity and interpretability needs.

* Chapter 10: Conclusion
The final chapter summarizes the key results of the thesis, discusses limitations, and
outlines directions for future work. It also discusses how the research questions are
addressed in this thesis.

1.5 Author Contributions

This thesis presents work that has been conducted in collaboration with different co-authors
across multiple research projects and publications. As the first author, Rahman, M.R. led the
conceptualization and implementation of all the methodological contributions presented in
this thesis. This includes formulating the core research ideas, designing novel architectures,
conducting technical developments, performing experimental evaluations, analyzing the
results, and drafting publications associated with each chapter. The technical developments
were supported by student assistants, Khaliq, L.A., Hammouda, M., Liu, R., and Hussain, M.

Domain expertise in the anti-doping context was provided by Piper, T. and Geyer, H., who
contributed specialized knowledge in steroid metabolism and interpretation of athlete biologi-
cal profiles. Access to the real-world longitudinal steroid profile datasets used throughout this
thesis was provided by Equey, T., Baume, N., and Aikin, R., who are members of the research
consortium. Supervisory guidance was provided by Maass, W., who provided continuous

feedback throughout the development of all methods and reviewed all the publications.






Chapter 2

Theoretical Background

2.1 Introduction

Longitudinal data forms the backbone of many modern analytical frameworks across disci-
plines such as health analytics in sports [83, 73]. In contrast to cross-sectional data, which
captures a static snapshot of observations at a single time point, longitudinal data comprises
repeated measurements collected from the same subjects over time [241]. This temporal
dimension enables us to observe dynamic changes and infer causal relationships that are
not accessible in static datasets [86, 111]. From a modeling perspective, longitudinal data
introduces both methodological challenges and opportunities. Temporal dependencies violate
the independent and identically distributed (i.i.d.) assumptions common in standard statistical
and machine learning models [104]. Specialized approaches, such as linear mixed-effects
models, autoregressive processes, Gaussian processes, and temporal deep learning archi-
tectures, are required to capture intra-subject correlations, irregular sampling intervals, and
evolving dynamics [83]. The incorporation of subject-specific random effects and time-
varying covariates not only allows more accurate predictions but also provides a foundation
for individualized anomaly detection, which is the focus of this work.

Applications of longitudinal analysis extend far beyond health analytics. In behavioural
science, longitudinal studies are instrumental in tracking cognitive development and be-
havioural responses across life stages or interventions [253]. These data help differentiate
cohort effects from true developmental trends, allowing for more robust conclusions. In per-
sonalized medicine, repeated measurements across treatment phases enable the optimization
of therapies adapted to individual biological responses, improving treatment efficacy and
minimizing side effects [96]. In epidemiology, longitudinal designs have been critical for
monitoring disease progression in populations, enabling early detection of risk factors and

shaping preventive strategies. In the domain of sports analytics, longitudinal data has become
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central to anti-doping research and management. The Athlete Biological Passport (ABP) is a
prominent example, employing time-series data of haematological and steroid biomarkers to
detect subtle but consistent deviations from an athlete’s physiological baseline [317]. Un-
like traditional snapshot-based doping tests, the ABP leverages within-subject longitudinal
variability to flag suspicious patterns that might indicate the use of performance-enhancing
substances. This shows how longitudinal data, when combined with anomaly detection
methods, can safeguard fairness in sports and ensure the integrity of competition.

Despite its broad utility, the analysis of longitudinal data poses several computational
and methodological challenges, including irregular sampling intervals, heterogeneous profile
lengths, missing values, and evolving data distributions [50]. In anti-doping, for example,
the irregularity of testing schedules and the limited number of available samples create
profiles that are difficult to model reliably, while in clinical contexts, noisy instrumental
measurements and missing visits add further complexity. These challenges require robust
theoretical frameworks and advanced modeling techniques that can extract meaningful
insights while avoiding false positives and negatives. Furthermore, anomaly detection in
longitudinal settings is not only a statistical exercise but also a domain-driven problem that
must integrate biological plausibility and expert interpretability.

This chapter provides the theoretical foundation for longitudinal clinical analysis, includ-
ing formal definitions, structural representations, key statistical properties, and challenges
associated with anomaly detection in temporal settings. By grounding the discussion in real-
world applications and methodological rigour, the chapter sets the stage for the subsequent

technical developments of anomaly detection models presented in later chapters.

2.2 Definition of Longitudinal Data

Longitudinal data refers to observations obtained by repeatedly measuring the same subjects
across multiple time points [62, 116, 265]. Unlike cross-sectional datasets that provide a
single snapshot per subject, longitudinal data captures temporal dynamics, allowing for

intra-subject trend modeling and inter-subject variability analysis.
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Definition 1. Longitudinal data consists of repeated measurements y;; and associated
covariates X;j collected from the same subjects over multiple time points. Mathematically,
it is defined as:

2 ={(ijxij) |i=1,...,N; j=1,...,n},

where y;;j € R is the scalar response variable for subject i at time point j, X;; € RP is the
corresponding p-dimensional covariate vector, N is the total number of subjects, and n; is

the number of time-indexed observations for subject i, which may vary across subjects.

Consider a longitudinal study involving N subjects indexed as i = 1,...,N. For each
subject i, measurements are taken at n; time points, where n; may vary across subjects
(unbalanced design) or remain constant (balanced design). The key components are defined

as follows:

Response Variable (y;;) The scalar response y;; € R denotes the observed outcome for
subject i at time step j, where j € {1,...,n;}. This variable represents the target signal in
longitudinal modeling, typically reflecting temporally-evolving phenomena such as clinical
severity scores, biomarker levels, or athlete performance metrics [62].

yij is treated as a temporally-indexed dependent variable whose evolution is influenced
by covariates x;; and potentially latent subject-specific or time-varying stochastic processes.
This aligns with dynamic systems modeling and time-series prediction tasks in which the
system state is only partially observed through noisy measurements. In many longitudinal
learning scenarios, the response series y; is the primary output to be predicted or analyzed
for anomalies or change points. For each subject i, the full temporal response trajectory is

represented as a column vector:

yil
2 .
yi= yf ,  wherey,; € R". 2.1
yini
This vector-valued response series may exhibit both inter-subject heterogeneity and
intra-subject temporal dependencies. Models working on longitudinal data typically assume

that y;; is not i.i.d., but exhibits temporal autocorrelation.

Covariates (x;;) The covariate vector x;; € R” encodes the explanatory features associated
with subject i at time step j. These covariates serve as inputs for modeling the conditional
distribution of the response variable y;;, and may capture temporal or contextual information
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relevant to the underlying process dynamics [62]. In longitudinal modeling, covariates are

typically categorized as:

* Time-invariant covariates: Features that remain fixed for each subject over time,
such as gender, baseline demographics, or group membership. These variables explain

inter-subject heterogeneity and can be treated as global identifiers.

* Time-varying covariates: Features that evolve across time steps within a subject,
such as drug dosage, environmental exposure, physical activity, or dynamic clinical
test results. These inputs model intra-subject temporal variation and are crucial for

sequence modeling tasks such as forecasting or anomaly detection.

Each covariate vector is structured as:

Xjj = . c Rp7 2.2)

Xijp
where x; ;. € R denotes the value of the k' covariate at time step j for subject i. The full

covariate matrix for subject i can be written as:

X;=| | eRWP, 2.3)

Xin;
where n; is the number of time points and p is the covariate dimension. This matrix
representation enables downstream learning architectures to capture structural and temporal

correlations across covariates, and serves as the primary input for modeling tasks such as

classification, sequence prediction, or anomaly scoring.

Longitudinal Data Structure

Longitudinal datasets are commonly organized in the long format, where each row represents
a single temporally-indexed observation for a specific subject [116]. This tabular layout is
particularly well-suited for dynamic querying, batch processing, and integration with time-
series learning frameworks. In this representation, the dataset consists of tuples (i, j,yij, Xi;)-
A simplified illustration of this structure is shown in Table 2.1.
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Table 2.1 Structure of Longitudinal Data in Long Format

Subject Observation Response Covariates
1 1 Vi1 Xt o Xip
1 2 V12 X121ttt X12p
1 ny Vi Xingl 0 Xlagp
N 1 VN1 XN1T o XNIp
N 2 N2 xXN21 ottt XN2p
N ny YNny XNnyl " XNnyp

2.3 Anomaly Detection in Longitudinal Data

Anomaly detection in longitudinal data involves identifying temporal observations that
deviate from expected patterns of behaviour over time [84, 176, 23]. Unlike static anomaly
detection, this problem is compounded by temporal dependencies, individual variability, and
irregular sampling. Such detection is important in domains such as anti-doping and clinical
trials, where early identification of abnormal dynamics can inform timely intervention or
diagnosis.

Definition 2. An anomaly is defined as a time-indexed observation that significantly
deviates from expected temporal behaviour, either within the subject’s trajectory or relative

to the population baseline. Mathematically, it is defined as any observation X;; for which:

1, ifD(x;;, N;) >0
Anomaly(x;;) = fD(ijs )
0, otherwise

where Nj; represents the modeled normal behavior for subject i at time j, D(-,-) is a

distance or deviation measure, and 6 € R is a selected threshold.

This formulation accommodates both point-level deviations at individual time points
and trajectory-level deviations across the full temporal sequence. The choice of deviation
measure D governs the granularity of detection, whether computed per time step or over the
entire sequence, and calculated as a distance, log-likelihood under a generative model, or
reconstruction error from an autoencoder. The threshold 9 is typically selected via domain-
specific constraints or by leveraging the statistical distribution of scores under the learned
normal model.



24 Theoretical Background

2.3.1 Types of Anomalies

In longitudinal data, anomalies can be categorized into two types based on their scope and
nature: global anomaly and local anomaly. These distinctions are important for adapting
detection methods to the specific characteristics of the data and the underlying processes
being monitored.

Global Anomaly

A global anomaly represents a subject-level deviation where the entire temporal trajectory ex-
hibits atypical dynamics relative to population-level patterns rather than isolated outliers [84].
Global anomalies show altered progression trends or long-term deviations in the subject’s
profile. These anomalies often signal underlying behavioural drift or performance deteriora-
tion and are typically detected using sequence-level modeling and population-normalized
distance metrics.

Definition 3. A subject i is said to exhibit a global anomaly if their entire longitudinal
profile X; diverges substantially from population-level normative behavior. This condition
can be formalized as:

D(X;,Z) > o¢

where & represents the learned distribution or manifold capturing typical population
trajectories, D(-,-) is a sequence-level divergence measure, and 8¢ € R is the global
anomaly threshold.

It indicates a systemic shift in the subject’s behaviour, such as a significant change in
performance metrics or a chronic health condition. This type of anomaly is characterized by
deviations that are consistent across multiple time points, suggesting a persistent change in
the underlying process. For example, in clinical monitoring, a patient exhibiting consistent
deviations in vital signs across visits may signal the onset of a chronic condition [197].
Similarly, in anti-doping analysis, an athlete whose longitudinal steroid profile continuously
diverges from established biological norms across competition seasons or testing periods may
indicate the use of performance-enhancing substances [98]. Such anomalies are important to
detect, as they often reflect long-term interventions or physiological adaptations that standard

pointwise anomaly detection techniques may fail to capture.
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Local Anomaly

A local anomaly refers to a temporally isolated deviation at a specific time point within a
subject’s longitudinal profile [84]. Unlike global anomalies, which span multiple observa-
tions, local anomalies are confined to individual time steps and typically signify transient
irregularities rather than systemic shifts. These deviations may result from short-term external

influences or momentary physiological fluctuations.

Definition 4. An observation X;; is considered a local anomaly if it deviates markedly
from the subject’s own historical or expected temporal dynamics. This condition can be

formalized as:

D (xij, ;) > 6

where J; denotes the subject-specific model of temporal consistency, and Oy, € R is the

local anomaly threshold.

Local anomalies reflect abrupt, short-lived deviations from the expected temporal be-
haviour of a subject, typically confined to a single or a few consecutive time points. For
example, in anti-doping, an athlete may experience a sudden spike in a specific steroid
biomarker on a single test date, which potentially signals acute doping activity or biological
manipulation intended to evade longitudinal tracking systems [98]. Similarly, a temporary
drop in performance metrics due to fatigue, minor injury, or environmental stressors can also
manifest as local anomalies. Identifying such deviations is essential for targeted retesting

and maintaining the integrity of dynamic monitoring frameworks.

2.4 Challenges in Anomaly Detection

Anomaly detection in longitudinal data is inherently complex due to the temporal evolution
of data, subject-specific patterns, and other factors [62, 116, 265]. Therefore, detecting
anomalies requires careful modeling of both the temporal structure and cross-sectional
variability. The key challenges are outlined below.

Temporal Behaviour within Longitudinal Profile

Longitudinal data are inherently temporal, exhibiting strong dependencies between obser-
vations across adjacent time points [50]. For a given subject i, the observation at time ¢ is
often conditionally dependent on past values, and this temporal structure should be explicitly

modeled to avoid false anomaly detection. Formally, such dependencies can be represented
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as:

X = f(Xi(tfl)aXi(172)7 - 7Xi(tfk)) + & (24)

where f denotes an autoregressive function or a learned temporal transformation, and &;
is a stochastic noise term. In clinical monitoring, failing to account for temporal causality
can result in false positives. For example, in blood glucose monitoring, a rise in glucose
levels post-meal is a physiologically expected pattern [145]. Without temporal modeling,
such patterns may be erroneously flagged as anomalous despite being contextually normal.
Accurately capturing these temporal correlations is thus essential for improving the precision

and reliability of anomaly detection systems in longitudinal settings.

Variability Across Subjects

A fundamental challenge in longitudinal anomaly detection lies in the significant inter-
subject variability inherent in real-world datasets [308]. Each subject i may follow a unique
distribution P(X;), influenced by individual characteristics or baseline levels. A sample x;;
that appears rare or anomalous under the global distribution P(X) may be entirely typical
when evaluated under the subject-specific distribution P(X;).

This heterogeneity implies that a global anomaly scoring function may lead to misclassi-
fication, particularly for subjects with naturally divergent patterns. To address this, anomaly
detection models should support personalization through subject-specific scoring functions:

Anomaly(X;;) = D(X;;,%i}) (2.5)

where X;; denotes the expected value or predictive estimate of x;; based on subject i’s

historical trajectory.

Irregular Time Intervals and Missing Data

Another challenge in longitudinal data analysis is the presence of irregular time intervals
and missing observations [148, 150, 128]. In practice, measurements are often recorded at
non-uniform time steps, and data may be intermittently missing due to equipment failure
or resource limitations. Let Af;; = f;j —1;;_1) denote the time gap between consecutive
observations for subject i. When Ar;; varies across time points, models that assume regularly
sampled time series become unreliable or invalid.

Additionally, missing values denoted as x;; = NaN further complicate anomaly detection,
particularly when they occur non-randomly or in correlated patterns. These issues require
models that can handle both temporal irregularity and incomplete data. Recent advances
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in attention-based models with time encoding and imputation-aware training offer scalable

solutions for handling these irregularities in modern deep learning pipelines [146, 36].

High Dimensionality and Multivariate Complexity

Longitudinal observations are often multivariate, with each time point x;; € R? compris-
ing multiple correlated clinical parameters. In high-dimensional settings, conventional
distance-based anomaly detection methods face significant challenges due to the curse of
dimensionality [71, 226]. As the feature dimension p — oo, pairwise distances between
points become increasingly similar, reducing the discriminative power of distance metrics.
Mathematically, for any two distinct centers i and v, the following asymptotic behavior can
be observed:

[1xij — mll — [1xij — Vi
i — gl
This phenomenon of distance concentration implies that the relative difference between

—0 (2.6)

distances collapses, making it difficult to distinguish anomalies from normal samples based
purely on Euclidean distances [149]. Moreover, anomalies may not be evident in marginal
distributions but may emerge through complex interactions across subsets of parameters. This
necessitates the use of dimensionality reduction techniques and feature selection mechanisms
to project the longitudinal data into more informative subspaces. The attention mechanisms
and multivariate temporal encoders have shown promise in isolating feature combinations
that are most relevant for detecting subtle, high-dimensional anomalies without discarding
semantically important signals [9, 335].

Concept Drift and Evolving Behavior

In longitudinal settings, the underlying data distribution of a subject may evolve over time,
known as concept drift [177]. This dynamic behaviour violates the stationarity assumption
often made by conventional anomaly detection models. Mathematically, for subject i, the

probability distribution at time ¢ may differ from that at a future time point ¢ + &, such that:

P(xit) # P(Xj(41)) (2.7)

This drift reflects intervention-driven changes in the subject’s physiological or behavioural
state. For example, in clinical monitoring, a patient’s clinical profile may evolve due to
treatment effects, recovery processes, or even ageing [103]. Without accounting for such

evolution, models may incorrectly classify expected transitions as anomalies or miss emerging
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abnormal patterns altogether. Therefore, modeling concept drift is essential for maintaining
the relevance and accuracy of longitudinal anomaly detection over extended monitoring

periods.

Lack of Labeled Anomalies

A major limitation in longitudinal anomaly detection is the scarcity or complete absence of
labeled anomalies [50, 35]. Annotating anomalies often requires domain expertise, which is
time-consuming and can be inherently subjective, especially when deviations are subtle or
context-dependent. As a result, supervised learning approaches that rely on explicit ground
truth labels are typically infeasible. In such cases, models should operate under unsupervised
or semi-supervised paradigms, learning to characterize the normal data distribution and flag-
ging deviations from it. A common approach involves training a model f (x;j) to reconstruct
or predict observations under the assumption of normality and then computing an anomaly

score based on deviation magnitude:

Anomaly(xij) = [|xi; — f (xi;)]| (2.8)

Here, f may represent a generative model or a probabilistic estimator of the normal data
manifold. However, the absence of ground truth labels complicates model evaluation. Con-
sequently, alternative validation strategies are employed, including the use of synthetically
injected anomalies, expert-in-the-loop validation and statistical consistency metrics. These
surrogate evaluations are important for benchmarking and model selection in real-world

applications where labelled anomalies are scarce or ambiguous.

Evaluation and Interpretability

Evaluating anomaly detection methods in longitudinal settings also presents challenges to the
interpretability of flagged outputs, particularly in high-stakes domains such as anti-doping.
Black-box anomaly scores are insufficient when actionable decisions depend on understand-
ing why an observation was flagged. Instead, models should offer explanations that identify
which clinical parameters and time points contributed most to the anomaly decision. More
advanced interpretability techniques, such as SHAP values [256] or attention heatmaps [106],
can be integrated into deep learning frameworks to generate fine-grained explanations. These
techniques support expert-in-the-loop validation, improve model trustworthiness, and facili-

tate compliance with transparency requirements in regulated domains.
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2.5 Current Approaches for Anomaly Detection

2.5.1 Statistical Methods

Statistical methods form the foundational layer of anomaly detection in longitudinal data
analysis. These approaches offer mathematically grounded techniques that model data be-
haviour over time to identify deviations indicative of abnormal events or systemic disruptions.
Broadly, they can be categorized into six classes: univariate outlier detection, classical time
series modeling, time series decomposition, statistical process control, structural change
detection, and filtering and probabilistic modeling. This categorization reflects an evolution
from static, point-based anomaly detection techniques to dynamic, time-aware frameworks
that accommodate the complexities of longitudinal data. Each category addresses a specific
aspect of temporal variation and pattern recognition, enabling domain experts to select appro-
priate techniques based on data structure, sampling frequency, and the nature of expected
anomalies.

At the most basic level, univariate methods such as the z-score [345] and Interquartile
Range (IQR) [297] detect anomalies by identifying samples that fall outside predefined
statistical thresholds. The z-score assumes normality and flags data points that deviate
significantly from the mean, while the IQR method isolates outliers based on percentile
ranges, providing greater robustness to skewed distributions. While computationally simple
and easily interpretable, these methods treat each sample in isolation, disregarding temporal
correlations and context, which makes them insufficient for capturing subtle longitudinal
anomalies that manifest over time. Nonetheless, they are often used in early screening stages
or for parameter-specific alerts, especially in datasets with uniform sampling.

To incorporate temporal dependencies, classical time series models such as Moving Aver-
age [346], Exponential Smoothing [121], and AutoRegressive Integrated Moving Average
(ARIMA) [329] are used to forecast future values and identify anomalies as deviations from
expected trajectories. ARIMA models are well-suited for capturing linear autocorrelations
and trends, offering a principled way to distinguish between natural temporal variation and
unexpected shifts. In scenarios where seasonality is a dominant feature, such as circadian
hormonal cycles or periodic clinical measurements, time series decomposition techniques
like Seasonal-Trend decomposition (STL) [305] are used to extract trend and seasonal compo-
nents from the residual signal. Anomalies are then detected within these residuals, assuming
they represent irregular behaviour that is not accounted for by the systematic components.
However, such models often rely on well-structured and complete temporal sequences, which

may not be applicable in real-world clinical monitoring, where sampling is irregular.
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Further temporal sensitivity can be achieved through Statistical Process Control methods,
including Shewhart charts [143], and Cumulative Sum (CUSUM) [48]. These control charts
were originally developed for industrial quality assurance but have been adapted for clinical
and environmental monitoring. Shewhart charts are effective in detecting large, abrupt
changes, whereas CUSUM excel at identifying small, persistent shifts. Although powerful,
these methods typically assume independent and identically distributed observations and
normality, assumptions that rarely hold in complex physiological processes. To overcome
these constraints, structural change detection techniques such as Pruned Exact Linear Time
(PELT) [15] identify unknown change points in the mean or variance of a sequence. This
method is particularly relevant in longitudinal data settings where anomalies may correspond
to regime shifts, such as transitions from healthy to diseased states or the effect of a pharma-
cological intervention. It is especially valuable when prior knowledge of anomaly locations
is unavailable, but careful tuning of penalty functions is often required to avoid overfitting or
false positives.

Filtering and probabilistic modeling frameworks such as Kalman Filters [125] and Gaus-
sian Process Regression (GPR) [101] represent the most sophisticated statistical approaches.
Kalman Filters are ideal for modeling systems governed by latent states, enabling recursive
estimation and real-time tracking of physiological trends. They can adapt to changing system
dynamics and measurement noise, making them suitable for applications like wearable sensor
monitoring or adaptive clinical surveillance. GPR is a non-parametric Bayesian method
that not only provides point estimates but also quantifies prediction uncertainty through
confidence intervals. This probabilistic treatment of time series is well-aligned with the
goals of anomaly detection, as observations that fall outside high-probability regions can
be flagged as suspicious. While these models offer significant power and flexibility, they
are computationally expensive and require rigorous tuning of kernel functions and prior
assumptions. Nevertheless, they are among the most promising methods for high-resolution
anomaly detection in longitudinal clinical data.

Statistical methods provide a comprehensive toolkit for detecting anomalies in longitudi-
nal data, ranging from simple univariate thresholds to complex temporal and probabilistic
frameworks. Their value lies in their theoretical grounding and adaptability to various tem-
poral structures. While limited in their ability to capture non-linear or high-dimensional
relationships inherent in clinical datasets, they provide essential baselines. They are often
integrated into more advanced machine learning and hybrid systems. A detailed compara-
tive overview of these methods is presented in Table 2.2 for selecting the most appropriate

techniques in anomaly detection scenarios.



Table 2.2 Detailed comparison of statistical methods used for anomaly detection in longitudinal data.

Statistical Method Type Description Strengths Limitations Reference
Z-score Method Univariate  The z-score method calculates the number of - Easy to implement and understand. - Assumes the data follows a normal [345, 130,
Analysis standard deviations a sample is from the mean - Computationally inexpensive, mak- distribution; may not perform well 333, 332]
of the dataset. It is computed as ing it suitable for large datasets. with skewed or non-Gaussian data.
- Provides a clear measure of how - The mean and standard deviation
7= Xij — HX; unusual a sample is relative to the can be influenced by extreme values,
OX; dataset. potentially distorting the z-score cal-
where x;; is the sample, px, is the mean, and Ox; culation.
is the standard deviation of longitudinal profile.
Samples with a z-score beyond a certain thresh-
old (commonly +3) are considered anomalies.
Interquartile Range Univariate The IQR method identifies outliers by measuring - Less sensitive to extreme values - Does not account for temporal de- [297, 138,
(IQR) Analysis the spread of the middle 50% of the data. Itis and non-normal data distributions. ~ pendencies in the data. 268]
calculated as the difference between the third - Simple to calculate and does not - The multiplier (commonly 1.5) is
quartile (Q3) and the first quartile (Q1): require complex statistical software. arbitrary and may not be optimal for
- Can be easily visualized using box all datasets.
IQR = Q03 —-01 plots. - Primarily used for single-variable
analysis; not directly applicable to
samples below Q1 — 1.5 x IQR or above 03 + multivariate datasets.
1.5 X IQR are considered anomalies.
Moving Average / Ex- Time Series These methods smooth longitudinal data to iden- - Effective at identifying underlying - Both methods can introduce a lag, [346, 289,
ponential Smoothing  Smoothing  tify underlying trends and detect anomalies as trends by smoothing out short-term causing delays in detecting sudden 121, 105,
deviations from the expected pattern. The mov- fluctuations. changes or anomalies. 88]

ing average calculates the average of samples
within a fixed-size window that moves over the
data, while exponential smoothing applies ex-
ponentially decreasing weights to past observa-
tions, giving more importance to recent samples.

- Exponential smoothing can adapt
to changes more responsively by ad-
justing the smoothing parameter.

- Relatively easy to implement and
understand.

- Choosing appropriate window sizes
or smoothing parameters can be
subjective and may require domain
knowledge.

- Standard implementations do not
account for seasonal patterns with-
out modifications.
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Statistical Method Type Description Strengths Limitations Reference
AutoRegressive Inte- Time Series ARIMA models capture various components of - Effectively models linear relation- - Struggles with data exhibiting non- [329, 147,
grated Moving Aver- Analysis a time series: autoregression (AR), differenc- ships in time-series data. linear patterns. 2, 186, 276,
age (ARIMA) ing (I), and moving average (MA). By modeling - Provides a framework for making - Selecting appropriate values for 202]
the dependencies between observations and dif- short to medium-term forecasts. AR, I, and MA components can be
ferencing to achieve stationarity, ARIMA can challenging and often requires ex-
forecast future points and detect anomalies as pertise.
deviations from these forecasts. - The model assumes stationarity;
non-stationary data require transfor-
mation, which may not always be
straightforward.
Seasonal Decomposi- Time Series Decomposes a time series into its constituent - Capable of managing complex and - STL focuses on a single seasonal [305, 306,
tion (STL) Decomposi- components: trend, seasonal, and residual. The nonlinear seasonal patterns. component and may not detect mul- 16, 72]
tion Seasonal-Trend decomposition is a versatile and - Resistant to outliers, ensuring reli- tiple seasonalities effectively.
robust method that allows for flexible seasonal able decomposition. - Requires complete seasonal cycles
and trend extraction. By analyzing the residual for accurate decomposition, which
component, anomalies can be detected as devia- can be limiting with incomplete
tions from the expected behavior. data.
Control Charts (She- Statistical  Control charts are used to monitor process sta- - Simple to implement and effective - Less effective at detecting small or [143, 30,
whart, CUSUM) Process bility over time by plotting specific statistics of for detecting large process shifts. gradual shifts in the process. 320, 48, 32,
Control process measurements and comparing them to - More sensitive to small and persis- - Can be slow to detect large shifts 139]

control limits.

Shewhart Charts detect large shifts by monitor-
ing if samples fall outside control limits, typi-
cally set at +3 standard deviations from the pro-
cess mean.

CUSUM (Cumulative Sum) Charts are designed
to detect small shifts by accumulating the sum of
deviations from the target value, signaling when
the cumulative sum exceeds a certain threshold.

tent shifts.

and may be more complex to imple-
ment.

(43
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Statistical Method Type Description Strengths Limitations Reference
Change Point Detec- Structural Identifies points in time where the statistical - Effective at detecting abrupt - May produce false positives in [15, 169,
tion (PELT) Change properties of longitudinal data change signif- changes in the data generating pro- noisy data. 89]
Analysis icantly, indicating potential regime shifts or cess. - Performance depends on the choice
anomalies. - Applicable to various types of of penalty parameters, which can be
data and can detect multiple change challenging to set appropriately.
points.
Kalman Filter Time Series Kalman filters are used to estimate hidden states - Well-suited for modeling time- - Requires accurate specification [125, 228,
Filtering in dynamic systems by modeling the observed varying processes and systems with of the system dynamics and noise 303, 40, 14,
data as a combination of hidden states and noise. hidden states. characteristics; incorrect models can  115]
Anomalies can be detected by analyzing the - Provides real-time estimates and lead to poor performance.
residuals and identifying significant deviations. updates as new data becomes avail- - Standard Kalman Filters assume
able. linearity; may not perform well with
nonlinear systems without modifica-
tions like Extended Kalman Filters.
Gaussian Process Re- Probabilistic The GPR is used to model normal temporal be- - Provides confidence bounds for - Computationally expensive for [101, 46,
gression (GPR) Modeling havior, and anomalies are flagged when observa- predictions, which is useful for prob- large datasets due to &(n°) complex- 24, 321, 44]

tions fall outside a specified confidence interval
(e.g., 95%). GPR can flexibly model non-linear
temporal dynamics by selecting appropriate ker-
nels such as the RBF kernel.

abilistic anomaly scoring.

- Capable of modeling complex, non-
linear temporal dependencies by us-
ing custom kernels.

- Naturally incorporates prior knowl-
edge and handles small data regimes
well.

ity in training and @ (n?) in predic-
tion, where n is the number of obser-
vations.

- Performance is sensitive to the
choice of kernel and its hyperparam-
eters.
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2.5.2 ML-based Methods

Machine learning (ML) approaches have become increasingly central to anomaly detection in
longitudinal data, particularly due to their ability to model non-linear dynamics and temporal
evolution in complex systems. Unlike statistical methods that often rely on rigid assumptions
or handcrafted features, ML models can learn directly from data to identify patterns and
deviations. This capability is especially necessary in longitudinal clinical data, where repeated
measurements across time introduce intricate dependencies that are subject- and context-
specific. ML methods used in longitudinal anomaly detection can be broadly categorized into
probabilistic models, distance- and density-based techniques, and representation learning
methods. This taxonomy reflects both the algorithmic structure and how each method
captures temporal structure and latent behavior, which are key considerations in modeling
irregular and noisy real-world clinical datasets.

Probabilistic models such as Hidden Markov Models (HMMs) [163] and Bayesian
Networks [67] represent some of the machine learning approaches for sequential anomaly
detection. HMMs capture temporal dynamics by modeling the system as a sequence of
latent states governed by transition probabilities, with observed data emitted probabilistically
based on the current hidden state. This makes them particularly suitable for systems where
behavior evolves through unobserved regimes, such as stages of disease progression or
phases in physiological cycles. Bayesian Networks use directed acyclic graphs to encode
conditional dependencies among variables and support inference under uncertainty. These
models are effective in integrating prior domain knowledge, which is often available in
clinical applications, but suffer from scalability issues and strong assumptions such as
conditional independence and stationarity. In practice, their performance can degrade in
high-dimensional, irregularly sampled data, limiting their applicability to more constrained
settings.

Distance- and density-based models provide an alternative that is intuitive and unsu-
pervised, relying on the assumption that normal data points occur in dense clusters, while
anomalies lie in low-density regions. Methods like k-Nearest Neighbors (k-NN) [38] flag
anomalies by comparing the distance to neighboring points, whereas DBSCAN [274] iden-
tifies outliers as points that do not belong to any sufficiently dense cluster. These methods
require minimal assumptions about the data distribution and are easily interpretable, which
makes them attractive in domains with limited labeled data. However, their simplicity comes
at a cost, 1.e., they do not explicitly model temporal structure and tend to perform poorly
in high-dimensional feature spaces due to the curse of dimensionality. Additionally, they
lack robustness when handling irregular longitudinal sequences, making them suboptimal for

clinical monitoring tasks without extensive feature engineering or data preprocessing.
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Effective and flexible ML approaches for anomaly detection in longitudinal data fall
under the representation learning category, particularly deep learning-based methods. These
models automatically learn latent representations of temporal dynamics, enabling them to
detect complex deviations in multivariate time series. Autoencoders [334] learn to reconstruct
inputs and identify anomalies as instances with high reconstruction error, while Recurrent
Neural Networks (RNNs) [275] and their extensions, such as Long Short-Term Memory
(LSTM) [185] networks, model sequential dependencies explicitly. These architectures are
well-suited to capturing long-range temporal context in different domains. More advanced
approaches like Generative Adversarial Networks (GANs) [278] learn to generate realistic
data and use reconstruction or discrimination loss for anomaly detection. Additionally,
ensemble methods like Isolation Forests [324] isolate anomalies using random partitioning
trees and can perform well when combined with engineered clinical parameters. Despite their
versatility, these models are often data-hungry and suffer from limited interpretability. These
are the challenges that are particularly important in high-stakes domains such as anti-doping
and clinical monitoring, where transparency and domain alignment are paramount. A detailed

comparative summary of machine learning methods is presented in Table 2.3.



Table 2.3 Detailed comparison of machine learning methods used for anomaly detection in longitudinal data.

ML Method Type Description Strengths Limitations Reference
Isolation Forest Unsupervised Builds an ensemble of randomly selected trees. - Fast and efficient for large-scale - Not ideal for temporal dependen- [324, 307,
Anomalies are expected to be isolated faster due datasets cies 221, 160,
to fewer splits needed, reflecting their rarity and - No assumptions about data distri- - May fail with dense, clustered 229]
distinctness. The anomaly score is based on the bution anomalies
average path length of a sample. - Effective in high-dimensional - Hyperparameters (e.g., contamina-
spaces tion) require tuning
Autoencoders Unsupervised Neural networks trained to encode and recon- - Captures non-linear dependencies - May reconstruct anomalies well, [334, 336,
struct input. Anomalies are detected based - Suitable for high-dimensional and reducing detection 227, 284,
on high reconstruction error, assuming that the complex data - Sensitive to architecture and thresh- 311, 42]
model is trained primarily on "normal” data pat- - Adaptable with CNNs or LSTMs old tuning
terns. for temporal sequences - Requires enough training data
One-Class SVM Supervised Learns a decision boundary around normal data - Strong theoretical foundation - Computationally expensive on [183, 118,
(semi) by projecting data into a high-dimensional space. - Works well in high-dimensional large datasets 11, 78, 257]
Anything outside the learned hypersphere is space - Requires tuning of kernel and nu
flagged as anomalous. - Suitable when only normal class is parameter
labeled - Sensitive to outliers in training data
Hidden Markov Mod- Unsupervised Probabilistic model assuming that the system - Well-suited for sequential data - Assumes Markov property (short [163, 159,
els (HMM) being modeled is a Markov process with hidden - Good interpretability via hidden memory) 87]
states. Observations are linked to state transi- states - Does not capture long-range depen-
tions; anomalies are flagged when observation - Incorporates probabilistic uncer- dencies
likelihood is low. tainty - Sensitive to number of hidden
states
Long Short-Term Supervised A type of RNN designed to capture long-term - Captures long-range, complex tem- - Requires large labeled datasets [185, 167,
Memory (LSTM) dependencies in sequence data. Learns to predict poral dependencies - Sensitive to vanishing/exploding 211, 227,
future values or reconstruct sequences; anoma- - Effective in longitudinal and multi- gradients 122]

lies are detected via high prediction or recon-
struction error.

variate time-series data
- Can model both prediction and re-
construction tasks

- Computationally expensive to train
and deploy
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ML Method Type Description Strengths Limitations Reference
Hierarchical Tempo- Unsupervised HTM models temporal patterns in streaming - Online learning (no retraining) - Complex configuration [322, 12,
ral Memory (HTM) data using sparse distributed representations. It - Suitable for streaming and non- - Less mature and limited commu- 243, 19,
continuously learns and adapts, flagging data stationary data nity support 198]
that doesn’t match its learned patterns.
k-Nearest Neighbors Unsupervised Calculates the distance to the k nearest neigh- - Simple and intuitive - Poor scalability with large datasets [38, 152,
(k-NN) bors; samples with distances above a certain - No training phase; works well with - Sensitive to choice of k and dis- 158, 302]
threshold are considered anomalies. Typically small datasets tance metric
uses Euclidean or Mahalanobis distance. - No strong distributional assump- - Does not model temporal depen-
tions dencies directly
DBSCAN Unsupervised Clustering method based on density. Points in - Detects arbitrarily shaped clusters - Struggles with varying density in  [274, 309,
low-density regions (outside dense clusters) are - Robust to noise and outliers data 280, 58]
considered outliers. It doesn’t require the num- - No need to specify number of clus- - Parameter sensitivity
ber of clusters in advance. ters - Not suited for very high-
dimensional data
GANs Supervised Trains a generator to produce synthetic se- - Learns complex data distributions - GANs are hard to train and prone [278, 162,
quences and a discriminator to distinguish real - Powerful for high-dimensional to instability 155, 347,
from fake data. Anomalies are detected via poor time series - Mode collapse can occur 165, 47,
reconstruction or discrimination performance. - Requires careful architecture and 327]
loss design
Bayesian Networks Unsupervised Models probabilistic relationships between vari- - Encodes causal/conditional struc- - Requires structural learning or do- [67, 175,
ables in a graph structure. Anomalies are identi- ture explicitly main input 81, 66, 209]

fied based on low probability given the learned
conditional dependencies.

- Supports reasoning under uncer-
tainty
- Integrates domain knowledge

- Scalability challenges with many
variables
- Less common for temporal data
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2.6 Summary

This chapter provided the theoretical foundation for detecting anomalies in longitudinal
clinical data. Longitudinal data offer unique opportunities to model within-subject variability
and detect deviations that are not apparent in static cross-sectional data. The formal definition
of longitudinal data introduced the structure of response variables and covariates across time
points, establishing the basis for temporal modeling. The distinction between time-invariant
and time-varying covariates was detailed to prepare for designing algorithms that can process
irregular, multivariate time series.

A key focus of this chapter was the precise formulation of anomalies in longitudinal
settings for addressing RQ1 and introduced two primary types of anomalies: global and
local. Global anomalies represent sustained deviations across an individual’s entire profile
when compared to a population reference, while local anomalies are short-term deviations
relative to the subject’s own past behavior. These definitions highlight the necessity for
models that can account for both intra-individual temporal consistency and inter-individual
population structure. Since labeled anomalies are unavailable in real-world clinical and
anti-doping settings, the chapter emphasized unsupervised and self-supervised strategies
where models learn normative patterns and identify deviations without requiring explicit
labels. The chapter also identified the computational challenges inherent in this domain,
including temporal autocorrelation, high inter-subject variability, irregular sampling and
concept drift. Each of these factors complicates anomaly detection and necessitates model
architectures that go beyond standard i.i.d. assumptions. For example, capturing temporal
dependencies is essential for distinguishing between natural physiological variation and
meaningful deviations, while handling irregular time intervals is important for preserving
signal integrity in sparsely sampled datasets. These issues motivate the design decisions
in the later chapters, which introduce structure-aware, temporally adaptive models that are
robust to such complexities.

The chapter concluded with a review of current methods for anomaly detection, including
classical statistical models and machine learning approaches. While statistical methods
offer well-defined assumptions, they often struggle with the high-dimensional, nonlinear,
and irregular nature of modern clinical data. Machine learning techniques provide greater
modeling capacity but require careful design to preserve interpretability and accommodate
unlabeled sequences. This synthesis of conventional and modern perspectives sets the stage
for the thesis contributions, which aim to bridge this gap by developing interpretable models
for detecting anomalies in longitudinal clinical data, particularly in the context of athlete

monitoring in anti-doping.
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Chapter 3

SACNN: Self Attention-based
Convolutional Neural Network

3.1 Introduction

ISports events, such as the Olympic Games or FIFA World Cup, attract the attention of
billions of people around the world. However, the fraudulent behavior by athletes to im-
prove their performance in these events raises many social issues due to ethical and moral
reasons [245]. The impact of this can be seen at both individual and societal levels, e.g.,
disqualification of athletes, or even ban of a nation from competing in future events, etc. [144].
Therefore, it is a global concern that follows international sporting events worldwide, and
anti-doping analysis is a crucial measure to fight against these activities in sports [31]. During
the recent investigation at the Olympic Games 2014 in Sochi, a new form of fraudulent
activity was found. Some athletes try to swap/exchange their doped samples with another
individual’s clean sample to evade positive tests. This form of doping is referred to as ’sample
swapping’ [193]. This simple but new form of fraudulent activity became a threat to the
whole anti-doping decision-making organization. The anti-doping organization maintains a
longitudinal profile of every athlete, which contains records of all the samples collected from
that athlete so far for the doping tests [317].

Sports events, such as the Olympic Games or FIFA World Cup, attract the attention of
billions of people around the world. However, fraudulent behavior by athletes to improve their

performance in these events raises many social issues due to ethical and moral reasons [245].

Based on Publication: Rahman, M.R., Khaliq, L.A., Piper, T., Geyer, H., Equey, T., Baume, N., Aikin, R.
Maass, W. (2024). SACNN: Self Attention-based Convolutional Neural Network for Fraudulent Behaviour
Detection in Sports. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2024), Main Track.
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The impact of this can be seen at both individual and societal levels, e.g., disqualification of
athletes, or even ban of a nation from competing in future events, etc. [144]. Therefore, it is a
global concern that follows international sporting events worldwide, and anti-doping analysis
is a crucial measure to fight against these activities in sports [31]. During the investigation
at the Olympic Games 2014 in Sochi, a new form of fraudulent activity was uncovered:
some athletes attempted to swap/exchange their doped samples with another individual’s
clean sample to evade positive tests. This form of manipulation, referred to as ‘sample
swapping’ [193], became a serious threat to the integrity of anti-doping organizations. To
counter such strategies, these organizations maintain a longitudinal profile of every athlete,
containing records of all samples collected for doping tests [317].

The primary way to detect sample swapping is to perform DNA analysis across all
collected samples [189]. However, this method is both expensive and time-consuming, with
estimated costs exceeding $300 million annually [184]. Alternative approaches monitor each
sample against athlete-specific reference ranges to detect unusually high values [234, 223,
270]. However, such interpretations fail to address the fundamental challenges highlighted in
RQI1: (i) the temporal behavior of biomarkers, where an athlete’s physiology evolves over
time and fixed ranges may introduce bias, and (ii) the structural behavior of biomarkers, where
values are interdependent as part of steroid metabolism pathways [250, 231]. In addition,
longitudinal profiles are typically irregularly sampled, with some athletes contributing only
a few measurements per year, making it difficult to distinguish genuine manipulation from
natural variability. From a domain perspective, the scarcity of confirmed ground-truth labels
adds a further challenge: flagged anomalies are rarely validated as true positives unless costly
DNA testing or expert review is conducted. Together, these issues demand anomaly detection
approaches that are robust to limited, irregular data while also operating effectively without
extensive labeled training sets.

This scenario can be well represented as an anomaly detection problem in longitudinal
clinical profiles [77], where the anomalous profile is determined based on both structural
and temporal behavior. Many existing models for sequential anomaly detection have been
explored [167, 343, 251]. However, these models typically rely on manually defined feature
spaces and fail to automatically learn the joint impact of temporal evolution and structural
dependencies. Moreover, their dependence on labeled anomalies limits their applicability in
anti-doping, where such labels are rare. Addressing this gap requires methods that can model
the inherent complexity of longitudinal data without relying on fixed feature definitions and
uniformly collected datasets, or comprehensive ground-truth annotations. Recent advances,
such as attention mechanisms for automatic feature learning [292, 269] and convolutional

networks for structural-temporal representations [39, 288], suggest promising directions.
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Therefore, this chapter presents a novel approach, the Self-Attention Convolutional Neural
Network (SACNN), which jointly models structural-temporal behavior through embedding
maps that capture both intrinsic biomarker relationships and their temporal evolution. This
model serves as an adaptive approach for preliminary screening, flagging suspicious profiles
for confirmatory DNA testing. In doing so, it minimizes false positives while ensuring that
no athlete faces unjust penalties without irrefutable evidence. The main contributions of this

work can be summarized as follows:

* A novel architecture is proposed based on a self-attention mechanism, convolution
layers, and adversarial attack for detecting sample swapping by capturing embeddings
from the longitudinal profiles of athletes. To the best of my knowledge, this is the
first time a fraud detection problem in sports has been addressed by considering

structural-temporal behavior.

* The method is extensively evaluated on various real-world datasets collected by anti-
doping organizations and associated laboratories. The experimental results show the
efficacy of the proposed model, which could detect more fraudulent athletes with
relatively high specificity compared with SoTA baseline models.

* A case study is performed to demonstrate the performance of the proposed model on

real-world fraudulent athlete profiles that were tested using DNA analysis.

3.2 Related Work

Attentional Convolution Neural Network

Many recent studies have shown the advantage of combining an attention mechanism with
convolutional networks for a wide range of applications [292, 269], such as medical image
segmentation [102], language understanding [258], etc. For example, the attentional convolu-
tion network is well exploited in many NLP-related tasks, e.g. text classification [164, 325],
sequence-to-sequence prediction [74], document understanding [210], etc. [43] employed an
attention model for learning structural-temporal features in fraud detection. This approach
develops from a similar intuition and integrates an attention network to generate embedding
maps that consider both structural and temporal aspects and let convolutional filters learn the

relationships from these embedding maps.
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Fraudulent Detection in Sports

Detection of fraudulent activities like doping using machine learning is not new in the sports
anti-doping community. A Bayesian approach was proposed for the detection of abnormal
values in longitudinal profiles [270]. Several studies [239, 310, 304, 230] used different
ML algorithms for detecting anomalous samples in the profile. However, the problem of
investigating sample swapping has not so far been addressed by machine learning. Currently,
it is mainly detected by laboratory-based methods. Studies like [282, 223] showed how
different biochemical techniques like gas chromatography-mass spectrometry, DNA-STR
analysis, etc., can be used to detect sample swapping. However, these methods ignore the

joint feature learning on structural and temporal relationships.

3.3 Preliminaries

Sample A sample x;; refers to a urine sample collected from the athlete for the doping
test, where each parameter represents the metabolites in human steroid metabolism. This
metabolism pathway is a biological mechanism that follows structural relationship [231].
Testing sample x7 refers to the sample under consideration for the similarity check with the

other samples in the longitudinal profile.

Longitudinal Profile A longitudinal profile of an athlete X; = {x;1,Xj2, ..., Xj, } refers to a
sequence of samples collected from that athlete at different times, where n; denotes the total
number of samples collected from subject i. When n; = 2, it is defined as limited longitudinal
profile X; ji, = {xi1,X2}. In this case, it is difficult to compute x;; ~ X;3. The fraudulent
behavior refers to when an athlete performs sample swapping, i.e. exchanges their doped
sample with a clean sample from another individual. In this case, if the collected sample is

xr, it will not match other samples in the longitudinal profile.

3.4 Self Attention-based Convolutional Neural Network
(SACNN)

The proposed model consists of three main components: 1) subsequence generator, ii)
attentional convolution neural network, and iii) aggregate function together with adversarial

training, as shown in Fig. 3.1.
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3.4 Self Attention-based Convolutional Neural Network (SACNN)
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3.4.1 Subsequence Generator

The input data is a collection of longitudinal sequences 2 = {X{,Xp,...Xy} with length of
the sequences ny,ny,...ny respectively. Since each sequence is of a different length and the
model requires input of fixed dimensions, subsequences of fixed dimensions are generated
from the given sequence. The subsequence generator performs this operation in two steps.
First, it scans whether the sequence is a limited sequence X; j;,,. In this case, it is not possible
to generate the subsequences, so the random generator randomly generates m additional
samples based on sample x;; within the measurement uncertainty limit of £10% and x;,
can be treated as xr. It is a standard systematical uncertainty caused by the quantification
instrument taken from biochemical domain experts [316]. The output of the random generator
is the sequence consisting of x;;, m generated samples, and x;>. Next, the generator encodes

each sequence into a set of subsequences denoted by E(X;) as shown below:

E(Xi):{el,ez,...,eL}, e; CX; 3.1)

Each subsequence e; has a fixed length denoted by /en(e;) and consists of ¢; = {x;;, X;(j+1),
ooy Xi(xg — 1),XT}, Xijs - Xi(xy—1) € Xi. In this case, the similarity of x7 is compared with the
other samples in the subsequence. The generator generates sequences corresponding to all
the possible combinations of the samples by keeping the longitudinal aspect. This step is
similar to the sliding window operation. However, the main difference in this case is that all
possible combinations of the samples with x7 are considered, allowing the model to learn the
structural-temporal relationships within all the combinations. The number of subsequences L
can be calculated by:

L(nj,ng,) = (3.2)

n;! ixr
(len(e;)!(n; —len(e))!)
where n; represents the number of samples in the sequence X;, and ny, represents the

number of testing samples under consideration. These subsequences are then normalized

separately. Therefore, the output is a set of normalized subsequences.

3.4.2 Attentional Convolution Neural Network
The network architecture consists of an input layer, four SAC units and a fully connected

layer.

Input Layer The input layer is the Conv1D layer with 32 filters (1 x 1 x 32). It takes sub-

sequence e; as input to perform a convolution operation and generates low-level embeddings
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for the given subsequence while preserving the structural dimension. Therefore, the output
is in a tensor format y € RN *NaxN3 “wwhere Ny, N,, N3 denote the length of subsequence,

number of parameters, number of filters respectively.

SAC Unit Each unit comprises a self-attention layer, a 2D convolution layer and batch
normalization.

1) Self-Attention Layer: Fig. 3.2 shows the layered architecture where the input tensor is
first flattened using the reshaping layer. This is to make sure 2D embedding sequence is fed

into the attention layer.

% c RNI XNy X N3 - RN1~N2><N3 (33)

The self-attention layer is used for two reasons. Firstly, the structural-temporal relation-
ships of the embedding subsequence are of interest, i.e., each parameter of each sample is
compared with itself. The attentional weights represent this relationship and can be used to
generate high-level embeddings. Secondly, it increases the receptive field of the convolutional
layer without adding computational costs associated with very large filter sizes.

The self-attention layer maps a query Q; and a set of key-value pairs (Kj;,V;) to an output.
The output is computed as a weighted sum of the values, where the weight assigned to
each value is computed using the given query and the key. In this case, given the low-
level embedding sequence from the input layer, the dot-product attention operation can be
computed as:

2T
H; = so ftmax (%)Vl) (3.4)

The single attention layer performing # multi-head attention operation can be computed
as:

MultiHead = Concat(Hy,Ha, ..., Hy,)w’ (3.5)

where Q; = x.w2, K; = x.wK, Vi = x.w! and the learned attentional weights of the

attention layer are:

le,le,w}/ e RN1-N2xN3 (3.6)

W;) c Rh.N3 XN1.Ny (37)
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The output of the attention layer consists of high-level embeddings with the same struc-
tural dimensions, i.e. ' € RM-M2*N; The reshaping layer changes back the dimension to

x4 € RN*N2XNs for the convolution layer.

Multi-Head Attention

Weights

Ny XNz XN
st NS NLxN € RN1XN2 %Ny
€ RMiXNyxNy Xaee € RN1N2XNs

|
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Fig. 3.2 Architecture of the self-attention layer used in SACNN. The input feature maps are
reshaped from a 3D to 2D representation and passed through linear projections to generate
query (Q), key (K), and value (V) matrices. Scaled dot-product attention computes atten-
tional weights, which are then reshaped back to match the original feature map dimensions,
producing the final embedding maps.

2) 2D Convolution Layer: The convolution layer is used for three reasons. First, it can
learn the structural relationship using filters, which is useful for this task. Second, it can learn
more complex patterns from structural space by stacking multiple filters. Lastly, stochastic
gradient descent algorithms on commercial hardware could efficiently optimize the network.

A Conv2D layer with v filters (u# x u x v) and padding is used to preserve the structural

dimension, where v = len(e;). It can be represented by:

u—1lu—1
Sii= ("= ZO Y it i Cos (3.8)
a=0b=

where Cf ; is " filter which convolves over the embedding map y*’

and represents the
element-wise weights. Thus, the output feature map S”’” is obtained by different Conv2D

filters:

%conv Sout -0 (Z Sc —}—blas> c RN]XNzXV (39)

where o denotes the Leaky-ReLLU activation function.
3) Batch Normalization: Batch normalization is used to reduce internal covariate shift

caused by the attention and convolutional layers and for faster and more stable training.
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%BN :BN(XCOW> — '}’sznv‘i‘ﬁ c RN1><N2><V (310)

where v and 3 are learnable parameters and ¥“°" denotes normalized input to zero mean

and unit variance.

Fully-Connected Layer The output of the last SAC unit is first flattened using a global
average pooling layer to 3V € RV . A fully connected layer is used, which takes the flattened
input and evaluates the probability of whether it corresponds to a fraudulent trade. If the
probability is greater than the threshold value P, the subsequence can be classified as

anomalous.

Y1 =f(x®) = o(W xBN + B) (3.11)

where 7 denotes weight matrix and 2 represents bias vector. The cross-entropy loss

was used, defined as:

L
.ﬁfsm:—%lzl(yz-logyz+(1—yz)-log(l—yz)) (3.12)
where y; € {0, 1} denotes the predicted label for the subsequence, and y; € {0, 1} denotes
the ground truth label, which is set to 1 if the subsequence is anomalous and 0 otherwise.
F(xBN) is the detection function that maps x5V to probability of whether the current subse-
quence is fraudulent. The proposed model can be optimized through the standard stochastic
gradient descent algorithm. The Adam optimizer was used to learn the weights, with the
learning rate set to 0.001 and the batch size to 256.

3.4.3 Aggregate Function

Since predictions y; are obtained for each subsequence separately from the fully connected
layer. Therefore, an aggregate function is required to combine each prediction and determine
the final decision on the longitudinal sequence. The aggregate function tells the likelihood of
the given sequence being anomalous. The final classification of the longitudinal sequence

can be calculated by:

17 % Zf:l YI 2 Ehres
Vi= (3.13)

0, else
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where the value of F;,,; is arbitrary and can be set accordingly to achieve high specificity.

3.4.4 Adversarial Training

Adversarial training was used for two reasons. First, it adds novelty to the model by
recognizing and classifying variations in the input data that it may not have seen before.
This can improve the model’s generalization capability and make it more robust to unseen
profiles. Second, it is used as fairness-aware training that helps to eliminate discrimination
or bias in the predictions. This can be done by incorporating fairness constraints into the
training process, such as ensuring that the model’s predictions are not systematically worse
for certain demographic groups (e.g. based on gender, race, etc.). The Generalized Universal
Adversarial Perturbation (GUAP) [340] is a SOoTA adversarial attack that was employed
to generate adversarial samples for the model. A GUAP attack aims to generate single
perturbations to the multiple inputs that cause the model to make a mistake. The generated
samples can be represented as:

0%,
Cady = €+ Q (p—n ap"’) (3.14)

A loss function was used that penalizes the model for producing outputs different from

the original input. So, the total loss function for the model can be represented as:

Lotal = A-Lya+ (1 —A).Rate(Fooling) (3.15)

where p denotes the perturbation vector, o denotes perturbation constant, 1) represents

learning rate, and A controls the balance between the two loss functions.

3.5 Experiments

3.5.1 Datasets

The experiments are performed on real-world athlete datasets consisting of steroid longitu-
dinal profiles with 11 parameters (Table 3.1) gathered by anti-doping agencies at various
athletic events worldwide. The data is extracted from the Anti-Doping Administration &
Management System (ADAMS) database [312], where each dataset contains < 20% anoma-
lous profiles, i.e., one sample is swapped in each profile (ny, = 1). In addition, the dataset

Steroid-My;,, and Steroid-Fj;,, represent the case of limited longitudinal profile Xj;,,,.
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Table 3.1 Description of all the datasets used in this experiment.

Datasets Athlete  Profiles  Samples len(e))

Steroid-M Male 755 4214 3-20

Steroid-F Female 375 2307 3-20
Steroid-My;,,, Male 737 1474 2
Steroid-Fy;, Female 293 586 2

3.5.2 Baseline Methods

The following SoTA models were employed to compare the performance of the proposed

model.

e Beta-VAE: [120] Variational autoencoder uses modified reconstruction loss to find

anomaly in a sequence.

e V-LSTM: [167] Sliding window based approach uses joint learning of VAE and LSTM

to generate low-dimensional embeddings for anomaly detection.

* SUOD: [343] Ensemble approach produce acceleration to different heterogeneous

models for anomaly detection.

* XGBOD: [342] Semi-supervised boosting algorithm to extract useful embeddings

from the sequence to detect outlier.

* LSCP: [344] Unsupervised parallel ensemble algorithm which selects competent

detectors in the local region of a sequential instance to detect outlier.

* AnoGAN: [251] Deep convolutional generative adversarial network that learns a

manifold of normal anatomical variability to detect anomalies.

* IsoForest: [168] Unsupervised learning approach that constructs multiple trees which

isolate observations with different characteristics to identify outliers.

3.5.3 Experimental Settings

The Steroid-All dataset [234] was used for training and validating all the models, containing
50,450 clean profiles from both male and female athletes. In this dataset, 50% of the profiles
were randomly selected, and one sample in each selected profile was manually swapped
with a sample from a different profile and labeled as an anomalous profile (class 1). The

other 50% of the profiles were labeled as clean profiles (class 0). Each profile is normalized
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separately, i.e. all the samples within the profile are normalized to the unit norm. The 80%
of the dataset was used for training all the models, and 20% for the validation, and the
performance of SACNN was evaluated against the baseline models. High specificity in the
model’s performance is required, as mandated by the anti-doping domain, to avoid false
negatives and unnecessary DNA testing (thereby reducing unnecessary costs) and better
reflect real-world conditions. Therefore, the baseline models’ hyperparameters are optimized

to achieve optimal sensitivity under high specificity (99 +0.1)%.

3.6 Results

3.6.1 Performance Comparison

The performance of SACNN was compared with different baseline models on different
steroid datasets for the anomaly detection task, as shown in Table 3.2. The uncertainties
are evaluated using the 5-fold cross-validation method. XGBOD and V-LSTM have proven
competitive in all baselines, demonstrating the necessity of embedding extraction models for
anomaly detection. However, even with an accuracy of > 70%, Beta-VAE could not detect
any anomalous profiles (sensitivity of < 1%). In the case of limited profiles, it is observed
that all the models except SUOD show poor performance on Steroid-M;;,, dataset (in terms
of sensitivity). However, for the Steroid-F;;,, dataset, XGBOD and V-LSTM show better
performance. The accuracy of all the models is much better because of the highly imbalanced
nature of the datasets. The proposed SACNN outperforms all the baselines, i.e., generating
structural-temporal embeddings that prove to be effective. SACNN achieves the sensitivity
value of > 50% and AU value of > 80% on all the datasets.

3.6.2 Precision-Recall Curve

Fig. 3.3 shows ROC and PRC curves for all the models evaluated on the Steroid-M dataset.
The proposed SACNN model performs better than all the baseline models concerning both
curves. The results of V-LSTM, SUOD and LSCP are quite similar. All of them are much
better than Beta-VAE. This might be because the fraudulent behavior in longitudinal profiles
is too complex for a simple autoencoder model to address. Among all the baselines, XGBOD
is shown to be the most competitive. It might be because it generates a deep representation
of parameters into embeddings using a boosting algorithm.

The proposed SACNN model consistently outperforms other SOTA baseline models. The

reason is: (1) it deals with both structural and temporal behavior and generates embedding
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Fig. 3.3 ROC and Precision-Recall (PR) curves comparing SACNN with baseline models on
the Steroid-M dataset. SACNN achieves the highest performance, with a ROC-AUC of 0.964,
outperforming all baselines. The PR curve further shows SACNN’s improved precision
across recall values, particularly in the high-recall region, which is important for anomaly
detection.

maps using an attention network, contrasted with XGBOD, which only deals with the struc-
tural pattern and cannot address the temporal behavior of the longitudinal profile; (2) SACNN
uses a convolutional network for better pattern learning from the generated embedding maps.
This model works even better at the very beginning of the curve compared to the other
baselines. Moreover, this model can accurately detect more anomalous longitudinal profiles
with a high specificity, which is quite promising.

3.6.3 Parameter Sensitivity

The study was performed on the impact of different values of threshold parameters on the
performance of the SACNN model. Both threshold parameters (P,.s and Fyj,.5) were varied
from O to 1 with a step of 0.1, and the sensitivity and specificity of the model were evaluated.
As shown in Fig. 3.4, it can be easily found that these parameters greatly influence the model
performance. Sensitivity is reduced as the values of Py, and Fy,., are increased; however,
specificity is improved due to the trade-off between the two. However, it was observed that
P;res has a greater impact than Fy,., as it serves as the threshold applied to the predictions
of each subsequence individually. Therefore, P,j,.; = 0.5 and Fjj,.; = 0.5 were set as the
default setting, while P, = 0.8 and F;j,.; = 0.6 were set for the high specificity setting

corresponding to a 99% specificity value.
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Fig. 3.4 Sensitivity analysis of SACNN threshold parameters P,j,.s and F;j;.s. The plot shows
how changes in the decision thresholds affect the sensitivity and specificity of the model.
The color map encodes specificity values, with higher regions corresponding to settings that

prioritize precision. Two operating points, i.e., default and high specificity, are shown for
reference.



Table 3.2 Evaluation results of SACNN and all the baseline models on different datasets at high specificity setting. AC = accuracy, SP
= specificity, SN = sensitivity and AU = area under ROC curve.

SHNSY 9'€

Datasets Mtr Beta-VAE V-LSTM SUOD XGBOD LSCP AnoGAN IsoForest SACNN
Steroid-M AC 0.75£0.04 0.81+0.03 0.79£0.02 0.85+0.01 0.78+0.03 0.774+0.02 0.79+0.00 0.93+0.02
SP  0.99£0.01 0.99+£0.01 0.99+0.01 0.9940.01 0.99£0.01 0.99+£0.01 0.99+0.01 0.9940.01
SN  0.01£0.01 0.31£0.04 0.20+0.04 0.424+0.02 0.13£0.05 0.09+0.03 0.304+0.01 0.74+0.03
AU  0.50£0.00 0.75+0.03 0.73£0.02 0.794+0.00 0.61£0.02 0.604+0.01 0.74+0.01 0.9240.01
Steroid-F AC 0.7840.02 0.83+0.03 0.79£0.02 0.844+0.03 0.78+0.02 0.784+0.01 0.82+0.01 0.90+0.03
SP  0.994+0.01 0.99+0.01 0.99+0.01 0.9940.01 0.99£0.01 0.99+0.01 0.99+0.01 0.9940.01
SN  0.00£0.00 0.3840.05 0.10+£0.03 0.404+0.04 0.01+0.03 0.00£0.00 0.36+0.01 0.65£0.03
AU 0.50£0.01 0.77+0.04 0.65£0.01 0.79+0.03 0.53£0.01 0.504+0.00 0.78+0.01 0.8540.01
Steroid-M;;,, AC 0.72+0.04 0.80+0.03 0.814+0.01 0.82+£0.02 0.79+0.02 0.774+0.03 0.774+0.02 0.90-+£0.02
SP  0.99+0.01 0.9940.01 0.99+£0.01 0.9940.01 0.99+0.01 0.99£0.01 0.9940.01 0.99+0.01
SN  0.02+0.01 0.234+0.02 0.34+0.04 0.31+0.02 0.29+0.01 0.184+0.04 0.28+0.01 0.70=£0.01
AU 0.524+0.00 0.78+0.01 0.76+£0.03 0.774+0.00 0.66+0.00 0.604+0.02 0.74+0.02 0.9040.00
Steroid-F;;,, AC 0.71+0.03 0.794+0.02 0.77+0.02 0.79+£0.01 0.73+0.03 0.734+0.02 0.75+0.03 0.84+0.01
SP  0.99+0.01 0.9940.01 0.99+0.01 0.9940.01 0.99+0.01 0.99£0.01 0.994+0.01 0.99+0.01
SN  0.01£0.02 0.474+0.04 0.09+0.03 0.504+0.00 0.18+0.03 0.14£0.03 0.334+0.01 0.52+0.00
AU 0.51+0.00 0.724£0.02 0.54+0.01 0.74+0.00 0.614+0.02 0.59+0.01 0.70+£0.01 0.81+0.00

sS



56 SACNN: Self Attention-based Convolutional Neural Network

Table 3.3 Ablation studies showing the model performance evaluated on Steroid-M dataset at
high specificity setting. The first block shows the effect of removing key components such as
self-attention (w/o Art), adversarial training (w/o Adv), and masking (w Mask), as well as
the impact of adding additional samples (w Add Samp). The second block evaluates model
depth by varying the number of SAC units.

Model AC SN AU  # Parameters
w/o Att 0.871 0.505 0.829 1.6M
w/o Adv 0.893 0.658 0.823 1.2M
w Mask 0.841 0.418 0.790 2.0M
w Add Samp 0.858 0.490 0.816 2.0M
1 SAC 0.860 0.502 0.815 50k
2 SAC 0.873 0.523 0.834 180k
3 SAC 0.890 0.642 0.856 600k
5 SAC 0.903 0.664 0.880 7.1M
SACNN 0.926 0.737 0.916 2.0M

3.6.4 Ablation Studies

The effect of different components in the proposed model was studied. First, the attention
layer in the SAC units was removed (denoted as w/o Att), and it was observed that the
model’s performance was degraded because the convolutional network is now learning
the structural relationship of the normalized subsequences instead of structural-temporal
embedding maps. This shows the importance of considering the structural-temporal behavior
of the sequence. Second, the adversarial attack was removed from the model (denoted as w/o
Adv), and it was observed that the model is less robust to the variation in input data. Next,
the number of SAC units in the model was varied, and the performance was evaluated. It was
observed that the model performed better by adding SAC units up to a certain point, after
which the performance began to drop. The reason might be that adding a SAC unit helps to
evolve the embedding maps, but once it is fully generated, adding more units will introduce
overfitting. Moreover, adding SAC units exponentially increases the number of trainable
parameters. Therefore, 4 SAC units were selected for the SACNN model. The results of the
ablation study are shown in Table 3.3.

In addition, two different model variants were tested to understand the significance of the
subsequence generator. Instead of generating subsequences of length /en(e;): 1) additional
samples were generated in the profile based on other samples to achieve uniform sequence
length, denoted as w Add Samp; ii) the additional samples were masked with padding,

denoted as w Mask. It was observed that adding additional samples to shorter sequences
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Fig. 3.5 Sensitivity of SACNN as a function of subsequence length len(e;). The plot
compares two subsequence generation strategies: all combinations (blue) and sliding window
(red). SACNN achieves consistently higher sensitivity using all combinations, with shorter
subsequences yielding better performance. Shaded areas represent standard deviation across
different runs.

introduces a bias in the model’s decision, as X7 is known to be dissimilar to the masked or
generated samples. Fig. 3.5 shows the effect of different subsequence lengths len(e;) on
the model’s performance for both sliding windows and this approach of considering all the
combinations for defining the subsequences. It was found that 3 was an optimal subsequence
length for this model.

3.7 Case Study

A study was performed on real-world proven cases to understand the structural-temporal
patterns of the longitudinal profile from the embedding maps. These longitudinal profiles
were tested using DNA analysis performed by an accredited anti-doping laboratory and found
that 2 profiles were proven for sample swapping, 5 for doping and 22 for clean profiles.
This model could able to detect all the sample swapping and doping cases and 20/22 clean
profiles. One clean and one anomalous profile (sample swapping) were selected, and the
subsequences, along with the embedding maps generated from each SAC unit, were plotted,
as shown in Fig. 3.6. The total number of embedding maps generated by the attention
mechanism depends on the output of the Conv2D layer of the previous SAC unit. Therefore,
these maps represent high-level embeddings. One embedding map from each was plotted
to understand how the attentional weights in these maps evolve. In the case of the clean

subsequence, higher weights were observed in the embedding map of SAC unit 4 compared
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to the anomalous subsequence, indicating a strong structural-temporal relationship among
the three samples. Furthermore, the evolution of the embedding maps also demonstrates why
at least 4 SAC units are necessary.

Structural-Temporal Embedding Maps

Subsequence Embedding Map (1/32) Embedding Map (1/64) Embedding Map (1/128) Embedding Map (1/256)
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Fig. 3.6 Visualization of structural-temporal embedding maps across different SAC units
for clean and anomalous subsequences. Each row shows the progression of feature rep-
resentations through the SAC units. The clean and anomalous inputs produce distinctly
different activation patterns, particularly in later SAC units, highlighting the model’s ability
to progressively refine structural-temporal features for anomaly detection.

3.8 Summary

This chapter introduced the Self Attention-based Convolutional Neural Network (SACNN),
an architecture designed to detect anomalies in longitudinal clinical data, particularly in the
context of anti-doping analysis in sports. The method addresses the limitations of existing
approaches that often ignore the temporal dynamics and structural interdependencies inherent
in biological profiles such as urinary steroid profiles. It responds directly to the challenges
outlined in RQ1, namely: irregularly sampled data, heterogeneous profile lengths, limited
numbers of samples per athlete, and the scarcity of labeled anomaly data.

SACNN solves these challenges through several key innovations. To handle irregular
sampling intervals and heterogeneous profile lengths, the model uses a subsequence generator
that constructs all valid longitudinal combinations leading up to the test sample, ensuring
that meaningful context is preserved even when data are sparse or unevenly distributed.
The integration of multi-head self-attention with 2D convolutional layers enables the model
to capture both local biomarker interactions and long-range temporal dependencies, dy-
namically weighting time points according to their relevance for the current prediction.
This design allows SACNN to adapt to variability across athletes and testing schedules,
avoiding the pitfalls of static thresholds. To address the challenge of limited samples per
profile, subsequence expansion using a random generator provides a richer training signal
even in cases where athletes contribute only a few samples over multiple years. Finally,
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the scarcity of ground-truth anomalies is mitigated by semi-supervised training objectives:
contrastive learning extracts individualized patterns of normal physiology, while adversarial
augmentation simulates realistic intra-individual variability, reducing overfitting and im-
proving generalization under covariate shifts. Together, these innovations allow SACNN to
detect clinically relevant anomalies in longitudinal data without enough explicit labels, by
learning context-sensitive representations of normal physiology and identifying deviations
from subject-specific baselines. This capability is important in anti-doping, where natural
fluctuations may mask manipulation, and few ground-truth cases exist to guide supervised
approaches.

As a result, SACNN can detect subtle manipulations, such as sample swapping, by
modeling divergence from subject-specific baselines rather than relying on population norms
or predefined cutoffs. Extensive empirical evaluation shows the model’s effectiveness across
multiple real-world datasets, including limited-profile scenarios and gender-specific sub-
groups. Compared to baseline models such as XGBoost, VAE, and ensemble-based classifiers,
SACNN achieves significantly higher sensitivity at a fixed high specificity threshold, which
is an essential operational requirement in anti-doping programs where false positives carry
substantial investigative and legal costs. For example, SACNN maintained performance
above 70% sensitivity at 99% specificity across datasets for both male and female athletes.
Moreover, a detailed case study using DNA-verified doping cases highlights SACNN’s ability
to generate interpretable attention maps that distinguish clean from anomalous profiles based
on learned structural-temporal features, offering transparency to domain experts.

In addition to its strong empirical performance, SACNN contributes conceptually by
demonstrating a principled way to capture domain-specific structure in longitudinal sequence
learning for anomaly detection. The use of attention not only increases performance but also
improves interpretability, an essential feature in expert-governed domains like sports regula-
tion and healthcare. By explicitly addressing the four main challenges in RQ1, SACNN shows
how anomaly detection systems can remain robust and deployable in practice, while reducing
reliance on costly biochemical confirmation methods such as DNA testing. The frame-
work is also generalizable beyond anti-doping, with potential applications in endocrinology,
pharmacology, and other fields that rely on longitudinal clinical monitoring.






Chapter 4

SCNN: Subsampling-based Convolutional
Neural Network

4.1 Introduction

"Doping in sports is the practice of using prohibited substances, e.g., performance-enhancing
drugs (PEDs), to gain an undue advantage over competitors [17]. Aside from the risks it
poses to athletes’ health, the practice affects the basic principles of fair competition. The
World Anti-Doping Agency (WADA) leads the worldwide effort against doping, but the
problem continues to be present in many sports events and competitions [18]. The number of
athletes involved in doping activities is considerably higher than those detected using doping
tests. A study conducted in 2017 determined that the percentage of elite athletes using PEDs
might be between 14% and 39%, which is much higher than the small number of positive
tests reported in official statistics [S55]. WADA disclosed in its 2018 annual report that from
322,000 samples tested globally, only 1.43% were found to be adverse or atypical, showing a
significant under-detection [313]. Economically, substantial resources are allocated annually
to doping prevention, including testing and educational programs aimed at athletes and
support personnel [90]. This comprehensive look at sports doping points to both individual
failure and systemic problems within sports governance and societal values.

Sample swapping is an unfair practice involving the exchange of biological samples,
such as urine or blood, to avoid a positive doping test. It can usually be seen when a doped
athlete’s sample containing a high level of a prohibited substance is swapped with a clean

sample from another individual [206]. Such practices undermine the value of sports and

'Based on Publication: Rahman, M.R., Khalig, L.A., Piper, T., Geyer, H., Equey, T., Baume, N., Aikin, R.,
Maass, W. (2024). Analyzing the Unseen: Leveraging Data Analytics to Combat the Societal Challenge of
Doping in Sports. International Conference on Information Systems, (ICIS 2024), Main Track.
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challenge anti-doping agencies striving to ensure fairness among athletes. Currently, the
screening for prohibited substances and the possibility of sample swapping in sports is carried
out through different techniques, including biochemical methods and data analytics. Bio-
chemical techniques, including Isotope Ratio Mass Spectroscopy (IRMS) [20], Gas Liquid
Chromatography-Mass Spectrometry (GLC-MS) [281], and High-Performance Liquid Chro-
matography (HPLC) [20], are among the most important methods for detecting prohibited
substances in athletes’ urine and blood samples. Although these techniques work, they are
costly and take time to set up. While DNA testing is effective for verifying athlete identity, it
remains expensive and involves complicated lab processes that may delay the testing process,
especially during competition times [178].

Regarding data analytical techniques, the Athlete Biological Passport (ABP) monitors
various biological parameters over time to detect any abnormal values in an athlete’s pro-
file [223]. Moreover, machine learning algorithms and statistical techniques are employed
to analyze the longitudinal profiles of athletes to identify patterns indicative of doping prac-
tices [231, 234, 137]. However, the performance of these models is limited by the challenges
of longitudinal data, i.e., irregular sampling, heterogeneous profile lengths, and the domain-
specific challenge of scarce ground-truth labels. Most anomalies flagged in practice are not
conclusively labeled unless verified by costly DNA testing or expert review, which restricts
the applicability of supervised learning approaches. This motivates the need for adaptive
anomaly detection methods that can work effectively under limited data availability and
without reliance on explicit labels.

In this chapter, a method is presented that uses a convolutional-based approach to support
anti-doping experts in efficiently identifying sample swapping cases. It pre-screens all
samples collected during competitions and flags only suspicious samples, allowing further
biochemical tests to be performed. Unlike existing baselines, the model is specifically
designed to handle irregular longitudinal profiles and to detect inconsistencies even when only
a few samples are available for an athlete. By learning implicit differential consistency across
subsequences, the model reduces dependence on ground-truth anomalies while providing
a low-cost pre-screening tool. This reduces costs and processing times associated with
unnecessary testing of clean samples while strengthening the evidence base for confirmatory

investigations. The main contributions of this work can be summarized as follows:

* A data-driven approach is proposed for identifying sample swapping cases in sports
that applies a convolutional network on the longitudinal profiles of athletes to quantify

similarity with other samples collected from the same athlete.
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* The method explicitly addresses challenges of irregular and limited longitudinal pro-
files, allowing anomaly detection in cases where current SOTA methods have limita-

tions.

* The approach is designed to work under scarce ground-truth labels, learning implicit

patterns of consistency without requiring fully annotated anomaly datasets.

* Performance evaluations are performed on data collected from real-world athletes and

DNA-proven sample swapping cases conducted by an accredited laboratory.

4.2 Related Work

Laboratory-based Biochemical Testing

The laboratory-based methods include biochemical testing of the blood and urine samples
collected from the athletes. A study showed how different factors influence the behavior
of longitudinal profile patterns to find suspicious profiles [188]. Another study showed
a multidisciplinary approach to determine identical urine samples [281]. The approach
includes numerous analytical strategies, i.e., gas chromatography-mass spectrometry with
steroid and metabolite profiling, gas chromatography nitrogen/phosphorus detector analysis,
high-performance liquid chromatography, and DNA-STR analysis [281]. Moreover, the mass
spectrometry, immunological doping control, and forensic chemistry methodologies have
also been proven to be useful in finding sample manipulation by athletes [282, 223]. Their
recent study showed how the large interindividual variability of the steroidal parameters
could be used to find sample swapping cases. All these methods have high costs and long
processing times associated with them, which makes it difficult to perform at large scale,

especially during athletic competitions like the Olympic Games.

Data-driven Methods for Anomaly Detection

Several studies in anti-doping analytics discuss the use of data-driven approaches to detect
doping activities in sports events. The doping activities are mainly classified into blood
doping, steroid doping, and sample swapping. While much of the research has focused on
blood and steroid doping, less work has been done to address the issue of sample swapping.
For example, different machine learning algorithms were applied to identify the presence
of erythropoietin (doping substance) in athletes’ blood samples [230]. A study employed
different machine learning algorithms to determine the athletes with the highest risk of doping

based on their performance data [137]. The use of machine learning to evaluate how much an
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athlete’s steroid profile deviates from normal population profiles [200, 310]. However, there
is less research work focusing on sample swapping using a data-driven approach. The current
SoTA method for detecting sample swapping remains the Bayesian method of the Adaptive
Model, which is often followed by laboratory testing like DNA testing [270, 223]. In the
recent works, the concept of Digital Athlete Passport (DAP) based on athletes’ individual
profiles was proposed to identify suspicious activity [234].

However, all these works suffer from three main limitations. First, while analyzing the
athlete profile, they consider the complete longitudinal profile at the same time. This approach
can lead to overfitting, where the model becomes too adapted to the specific samples already
in the profile used for analysis and does not generalize well to new, unseen samples belonging
to the same profile [234, 310]. Additionally, using the complete longitudinal profile at
once may introduce bias, particularly if certain patterns in the profile are overemphasized,
potentially leading to inaccurate decisions [214]. Second, many approaches fail to adequately
consider the longitudinal aspect of athlete profiles [137, 200]. Without accounting for these
temporal dynamics, model may miss significant patterns that could be indicative of fraudulent
activities or natural variations, thus reducing the effectiveness of the models in identifying
genuine cases of irregularities [25]. Third, these methods require more than two samples in
the athlete longitudinal profile, which is problematic for new and young athletes with limited
samples collected [234]. This requirement restricts the applicability of current methods to
only those athletes with extensive historical data, thereby excluding a segment of newer or
younger athletes. Therefore, these works suggest the need to develop a more robust adaptive

model to analyze longitudinal athlete profiles in a more efficient manner.

4.3 Preliminaries

The aim of this study is to develop a model capable of identifying sample swapping by
examining the longitudinal profiles of athletes. The model should be able to detect whether
a newly collected steroid profile matches previous samples collected from the athlete over
time. The model should determine the relatedness between each collected sample and all the
previous samples in the longitudinal profile of the athlete to identify any suspicious activity.

Longitudinal Profile The longitudinal profile of each athlete consists of one or more
steroid profiles (urine samples) collected at different times. Therefore, the longitudinal
profile can be defined as X; = {x;1,Xp2,...,Xi;} € R%*P where X;1,X;, ... represent the

steroid samples for subject i, n; denotes the number of samples collected from subject i, and
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p represents the total number of steroid parameters. The testing sample X7, i.e., the sample
under consideration, is represented to determine its similarity with previous samples.

It is investigated whether x7 belongs to the same athlete i based on the other samples
contained in the longitudinal profile. For example, consider three athletes with longitudinal
profiles X1, X», and X3 as depicted in Fig. 4.1. Athlete X; and X3 have clean profiles with
all samples being similar to each other while athlete X; has an anomalous profile. Let us
suppose samples X4 and X7 of athlete X, are under investigation, i.e., Xr = {X4,X27}, and
could either belong to athlete X, or have been swapped to evade a positive doping result. It
is also possible that both samples are from another athlete but not X, (e.g., X24,X27 € X1)
or even from different athletes (e.g., X4 € X1,X27 € X3). So, the goal is to identify such
samples in the longitudinal profile of athletes. Therefore, an iterative algorithm is required to
examine the similarity of each sample with every other sample in the longitudinal profile as
denoted by the following expression:

Y Y (xij~xip, Vi, kN, j#k) 4.1
j=1k=1

Limited Profile To determine the similarity between x7 and other samples in the longitudi-
nal profile, it is necessary to have a minimum of two other samples from the same athlete.
However, in real-world situations, the number of samples may be limited X; i, = {X;1,X;2 }.
In this scenario, calculating X;; ~ X;» can be challenging. Therefore, a solution is needed to

address the issue of limited samples in the longitudinal profiles of athletes.

T T t

Fig. 4.1 Illustration of longitudinal steroid profiles for athletes X, X, and X3. The white
color indicates observed values for the samples, while the red color in X;’s profile indicates
anomalous samples.
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4.4 Subsampling-based Convolutional Neural Network (SCNN)

The primary way to find the similarity among the samples is to evaluate the arithmetic
difference of each steroid parameter of the samples within the longitudinal profile by the

following expression:

ni—1 ni—

A= ; 6(XT,X,‘J') = Z

L p
Z ‘xT,k —Xjjk|, P = parameter space 4.2)
j=1k=1
Minimizing this expression results in:
d*A
dZX,' j

>0 = xr€X; (4-3)

However, the longitudinal profile contains both primary and derived parameters. There-
fore, calculating the arithmetic difference explicitly and using a classifier to train on the
difference leads to the loss of some implicit differential information. Therefore, automatic fea-
ture learning is needed, which allows the model to learn this implicit differential information
by itself without being explicitly provided with it.

The proposed Subsampling-based Convolutional Neural Network (SCNN) consists of
three main components: (i) subsample generator, (ii) convolutional neural network, and (iii)
aggregate function, as shown in Fig. 4.2. The model converts the longitudinal profile into a
set of subsamples, which are used to create a set of embedding maps by different filters of the
convolutional network. These embedding maps consist of the implicit differential information
among the samples within the subsample. Finally, the model decision is computed by

aggregating the predictions on the network’s output over all the subsamples.

4.4.1 Subsample Generator

Let us consider the longitudinal profile of dimension (n; X p), where each sample is a 1D
array of p parameters, i.e., (1 X p). The subsample generator consists of a subsampler and a
random generator which perform two operations. First, the subsampler scans whether the
profile consists of limited samples. In the case of limited samples, the subsampler passes
the profile to the random generator, which randomly generates additional samples based on
sample x;; within the uncertainty limit of the measurement and quantification device, i.e.,
410%. This limit is set by the domain experts of anti-doping [318]. This uncertainty limit is
considered as a reference range of the concentration values for the particular sample, and any

value within this range could be representative of the same sample. Therefore, the uncertainty
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limit is used for the generation of additional samples that could effectively represent the same
sample.

Next, the subsampler converts the longitudinal profile into a set of subsamples denoted
by E(X;) = {e1,e2,...,eL}, e; C X; where:

el:{xijuxikaxT}v j7k€{1727-"ani}7j7ék (44)

The length of a subsample is set to 3, i.e., each subsample is a (3 x p) array (2D
data) consisting of 3 samples. Subsamples are generated corresponding to all the possible
combinations of the samples, with their temporal order taken into account. The last sample
of each subsample is always x7, which is compared with the other two previous samples.
The number of generated subsamples L can be calculated by:

A Txp
L(ni,ng,) = <ﬁ) (4.5)

n; — 3
where n; represents the number of samples in the longitudinal profile for subject i, and

nx, represents the number of testing samples under consideration for the fraudulent trade.

4.4.2 Convolutional Neural Network

The generated subsamples are used as input to the convolutional neural network. The
architecture of the convolutional network consists of two 2D convolutional units and two
dense units. The first convolutional unit applies filters of size (3 x 1) on the input subsample
with the ReLU activation function. Filter size (3 x 1) is used to compute the implicit
differential information of the three samples across each parameter separately. Similarly, the
second unit filters are applied to the output of the first unit. The dropout layer is added to
avoid overfitting. The output embedding map is then flattened, and batch normalization is
applied before passing it to the dense units. The final output is obtained from the second
dense unit with one neuron and sigmoid activation function.

The output of the convolutional network ¥;, tells whether the x7 is similar to the other
two samples within the subsample e;. A probability threshold Py is defined, which can be
set to achieve the desired specificity level. The binary cross-entropy loss function is used to

train the convolutional network, as shown by the following equation:

1 L
Zace =—7 Y (vi-logdi+ (1=y1) -log (1-3) ) (4.6)
=1
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where §; represents the predicted label and y; denotes the actual label of the subsample

ej.

4.4.3 Aggregate Function

The output of the convolutional network for all the subsamples of the profile is fed into the
aggregate function to determine the final prediction of whether the testing sample belongs
to the same longitudinal profile of the athlete or not. The hard voting criterion is used, i.e.,
the voting is based on the output class predicted by the convolutional network for each
subsample.

Let us consider the prediction class for each subsample to be §1,¥>,...,¥.. Then the

overall prediction on the longitudinal profile by the model can be calculated by:

1, iyL §,>F
yi _ LZl_l Y: = Fihres (47)
0, else

where the value of Fis can be set to achieve the desired specificity level.

4.5 Experiments

4.5.1 Datasets

WADA and international sports federations maintain historical data for each athlete through
doping tests conducted at various national and international athletic events. These records
are managed in the Anti-Doping Administration Management System (ADAMS) database,
as described in the International Standard for Testing and Investigations [318]. For this study,
the data was extracted from the ADAMS database, which contains longitudinal profiles of
different athletes (represented by anonymized unique IDs) tested between 1 September 2018
and 31 March 2021.

Each longitudinal profile consists of a collection of steroid samples that include both
primary and derived steroid parameters representing the concentration values of different
steroid metabolites. The six primary parameters are androsterone (A), etiocholanolone (Etio),
epitestosterone (E), testosterone (T), Sa-androstanediol (SaAdiol), and 5 -androstanediol
(5B Adiol), and their five ratios (T/E, A/Etio, A/T, SacAdiol/5 Adiol, and 5axAdiol/E) have a
direct first-order dependence on the primary parameters, as described in TD2021EAAS [316].
From this extracted data, two different types of datasets are defined, i.e., training and testing

datasets, by stratifying based on gender and the number of samples within each profile.
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Training Dataset The Steroid-All dataset is used for training the model. It consists of
254,478 urine samples from 65,039 athletes, with each athlete having 2-20 steroid samples in
their longitudinal profile [234]. Table 4.1 summarizes the distribution of the samples across
male and female athletes.

Table 4.1 Data statistics of longitudinal profiles used for training the model.

Athlete Profiles Samples
Male 52,152 166,237
Female 12,887 88,241
Total 65,039 254,478

Testing Dataset Four different datasets are used to assess the performance of the model
as listed in Table 4.2. Fig. 4.3 shows the distribution of the number of steroid samples in
the longitudinal profiles of athletes for the training (Steroid-All) and testing (Steroid-M and
Steroid-F) datasets. A peak at 2 is observed for the Steroid-All dataset indicating that the
majority of athletes have only two samples in their profiles. This suggests that most athletes

are young, early in their sports careers, and have undergone fewer doping tests.

Training Data Testing Data
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Fig. 4.3 Sample distribution per athlete profile in training and testing datasets. The left plot
shows the number of longitudinal profiles by sample count for male and female athletes
in the training dataset. The right plot presents the same distribution for the testing dataset,
comparing the Steroid-M and Steroid-F cohorts. Most profiles have between 2 and 5 samples,
reflecting the imbalance in real-world data.
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Table 4.2 Description of testing datasets used for model evaluation. The table outlines four
datasets consisting of male and female athlete profiles.

Datasets Description

Steroid-M This dataset contains 4,214 steroid samples corresponding
to 755 steroid profiles from male athletes, where each profile
consists of at least 3 samples. In this dataset, around 20%
of the profiles are manipulated, where the last sample in the
profile is replaced by a different sample from another athlete.

Steroid-F Similar to the Steroid-M dataset, this dataset contains 2,307
steroid samples corresponding to 375 steroid profiles of
female athletes, where each profile consists of at least 3
samples.

Steroid-M;y;,, This dataset represents the case of limited samples in the
profile (X /i), where one sample has to be compared against
the other to determine the similarity. It contains 1,474 steroid
samples corresponding to 737 steroid profiles of male ath-
letes, where each profile consists of only 2 samples.

Steroid-Fj;, Similar to Steroid-My;,,,, this dataset also represents the case
of limited samples for female athletes. It contains 586 steroid
samples corresponding to 293 steroid profiles, where each
profile consists of only 2 samples.

4.5.2 Baseline Methods

The following SoTA models were employed to compare the performance of the proposed
model.

* Logistic Regression (LR) [219]: A sigmoid function is used to calculate the probabili-

ties of different classes.

* Support Vector Machine (SVM) [52]: Steroid samples are labeled into different
classes by identifying the hyperplane that maximizes the margin between the two

classes; the radial basis function is used as the kernel.

* Extra Trees (ET) [91]: A classifier is trained with 150 randomized decision trees on

various subsamples of the longitudinal profiles for classification tasks.

 Random Forest (RF) [29]: A classifier is trained with 100 decision trees on the

longitudinal profiles for classification.

* Gradient Boosting (XGB) [41]: A classifier is trained with a subsample rate of 0.8,

using individual profiles as input.
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* Neural Network (NN) [191]: A fully connected network with five layers is trained on
individual profiles using a learning rate of 0.001 to minimize the binary cross-entropy

loss function.

* Bayesian Method (BM) [270]: Calculates personalized thresholds for each parameter
based on the prior distribution of the reference population. Compares a new sample
against a critical range defined by a given specificity under normal conditions. Effective

for detecting suspicious samples and considered state-of-the-art in anti-doping.

* Digital Athlete Passport (DAP) [234]: Uses principal component analysis and cen-
troid concept to reduce correlated parameters to a smaller set of mutually independent
components. Provides a complete visualization of the longitudinal profile in a three-

dimensional space.

4.5.3 Experimental Settings

The Steroid-All dataset was used for the training and validation of the proposed SCNN model
as well as all baseline models. In this dataset, longitudinal profiles were randomly selected,
and in 50% of the cases, the last sample was swapped with a sample from a different athlete
and labeled as swapped profiles (class 1). The remaining 50% of the profiles were considered
clean and labeled accordingly (class 0). Each profile was normalized separately, i.e., all
samples within a profile were normalized to unit norm. The dataset was randomly partitioned

into 80% for training and 20% for validation.

Hyperparameters Hyperparameters are optimized on the training set. Table 4.3 shows
the best hyperparameters found after optimizing the model using the Optuna [3]. In order to
prevent the model from overfitting on the training data, in addition to using dropout, an early

stopping criterion is used when the validation accuracy does not increase for 10 iterations.

4.6 Results

4.6.1 Performance Comparison

The performance of the SCNN model was compared with baseline models for detecting
sample swapping across different testing datasets, as shown in Table 4.4. The evaluation was
conducted using accuracy (AC), specificity (SP), sensitivity (SN), and area under the ROC
curve (AU) as performance metrics. Due to domain-specific constraints, high-specificity
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Table 4.3 Hyperparameter configuration for the SCNN model. The table shows the key

architectural and training hyperparameters selected after model optimization.

Hyperparameter Value
Convolutional layers 2
Dense layers 2
1%t Conv (# filters) 128

2" Conv (# filters) 32

Filter size 3x1
Dropout 0.2
Optimizer Adam
Learning rate le-4
# Epochs 200

conditions are required to minimize false positive cases (cost factor). Therefore, the configu-

ration of all models was adjusted to enable performance comparison at a specificity level of

99 £2%.

Table 4.4 Evaluation results of SCNN and all the baseline models on different testing datasets.
BM and DAP models cannot be evaluated on Steroid-M;;,,, and Steroid-F;;,, datasets because
these models need at least 3 steroid samples in the longitudinal profile.

Datasets Metrics LR SVM ET RF XGB NN BM DAP SCNN
AC 0.754 0.849 0.804 0.816 0.895 0.857 0.760 0.810 0.915

Steroid-M SP 1.000 0.988 0.986 0.994 0.991 0980 0.920 0978 0.978
SN 0.000 0.387 0.210 0.258 0.618 0.457 0.730 0.750 0.721

AU 0.500 0.779 0.706 0.722 0.871 0.811 - - 0.915

AC 0.779 0.832 0.797 0.797 0.889 0.850 0.850 0.869 0.901

Steroid-F Sp 1.000 0.993 1.000 1.000 0.999 1.000 0.850 0.890 0.960
SN 0.000 0.265 0.000 0.084 0.482 0360 0.380 0.610 0.617

AU 0.500 0.766 0.566 0.534 0.841 0.734 - - 0.901

AC 0.723 0.863 0.737 0.745 0.871 0.798 - - 0.871

Steroid-M; Sp 1.000 0.992 1.000 1.000 0.991 0.996 - - 0.959
SN 0.000 0.589 0.000 0.042 0.625 0.367 - - 0.532

AU 0.500 0.758 0.524 0.539 0.774 0.637 - - 0.871

AC 0.700 0.823 0.703 0.710 0.829 0.700 - - 0.813

Steroid-F); Sp 1.000 0.992 1.000 1.000 0.994 0.999 - - 0.956
SN 0.000 0.443 0.011 0.034 0.455 0.000 - - 0.514

AU 0.500 0.714 0.500 0.517 0.722 0.500 - - 0.754

Overall, LR could not detect any swapped profile correctly and showed poor performance.

On a similar note, multiple decision tree-based models (i.e., ET and RF) also show sensitivity

values < 25%. This shows that the tree-based approach is not suitable for determining the
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relatedness among the samples. Moreover, it can be observed that all the models (except DAP,
BM, XGB) exhibit poor performance in terms of sensitivity. However, the accuracy of all the
models is much better because the dataset is highly imbalanced. For the datasets consisting
of only 2 samples in the longitudinal profile, only SVM and XGB achieved sensitivity values
> 50% among all the baseline models.

The proposed SCNN model outperforms all the baseline models, including the current
SoTA methods on all the datasets. It achieves a sensitivity of 72% and 62% on Steroid-M
and Steroid-F datasets, respectively. It achieves an overall accuracy of > 81% for all the
datasets. The model also performed well in the case of a limited sample dataset, where it
achieved an accuracy of > 81%. It is observed that this model shows better performance on
the profiles of male athletes compared to female athletes. This is because the training dataset
contains relatively more profiles for male athletes than female athletes.

4.6.2 Precision-Recall Curve

Fig. 4.4 shows the ROC and Precision-Recall (PRC) curve for SCNN against other baselines
for the Steroid-M dataset at a normal setting. The requirement that BM and DAP models
need at least 3 samples to perform analysis shows their inability to find fraudulent trade in

limited cases datasets.

ROC Curve PR Curve

08 0.8

06 0.6

Precision

04

True Positive Rate

— = RF-AUC = 0.505 -= RF
021 == ET-AUC =0.505 021 == ET
== XGB-AUC = 0.941 -= XGB
== SVM-AUC = 0.941 -= 5VM
== NN-AUC = 0.863 -= NN
0.0 === SCNN-AUC = 0.962 0.0 | === SCNN

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 06 08 10

False Positive Rate Recall

Fig. 4.4 ROC and Precision-Recall (PR) curves for SCNN and baseline models on the Steroid-
M dataset under normal settings. SCNN achieves the highest AUC value, showing better
discrimination and precision-recall performance compared to all the baseline methods. BM
and DAP models are excluded from these plots as they do not produce continuous decision
scores, being based on Bayesian and clustering techniques.

In addition, the dataset consists of the longitudinal profile of confirmed positive cases of

steroid doping by the laboratory, i.e., use of prohibited substance. The model successfully
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flagged these longitudinal profiles as suspicious. The limited number of confirmed sample
swapping cases during this evaluation indicates the less prevalence nature of such cases in
real-world sports. However, identifying sample swapping cases in the anti-doping analysis
is a crucial and demanding task. The evaluations demonstrate that this method produces
promising results with the potential to improve the current adaptive model of flagging sample
swapping cases.

4.6.3 Parameter Sensitivity

The effect of different values of Fiyes and Pyyres On the performance of the SCNN model was
also examined. Let us consider a 2D space spanned by Fiyres X Pihres, Where Finres, Pihres €
{0.5,0.6,0.7,0.8,0.9}, and each point in the space represents a different setting of the model.
The model was evaluated at every point in the space, and the sensitivity and specificity values
were analyzed. Fipres = 0.5 and Py = 0.5 represent the normal setting, and Fipes = 0.7 and
Pares = 0.8 represent the high specificity setting, as shown in Fig. 4.5.
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Fig. 4.5 The plot showing the performance of SCNN model under varying threshold settings.
It shows the sensitivity of the model along the vertical axis, with specificity encoded via
the color map. The plot highlights the trade-off between sensitivity and specificity, with the
normal and high-specificity settings annotated.
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4.6.4 Ablation Studies

To evaluate the effect of subsample length on model performance, an ablation study was
conducted in which the proposed model was tested using subsamples of varying lengths.
Performance was measured in terms of sensitivity under high-specificity conditions. As
shown in Fig. 4.6, the results demonstrate how different subsample lengths affect the model’s
ability to effectively capture relevant patterns when all possible combinations of steroid
samples from the longitudinal profile are considered in defining the subsamples.

The results show that 3 is an optimum subsample length for the model, which demon-
strates that the model is capable of capturing well the likelihood of relatedness among the
samples when the testing sample is compared with two other randomly selected samples.
Choosing a larger length for the subsample can cause overfitting of the model, and therefore,

the performance drops drastically.
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Fig. 4.6 Sensitivity of the SCNN model on the testing dataset as a function of subsample
length. The plot compares performance on Steroid-M and Steroid-F datasets, showing that
shorter subsample lengths yield higher sensitivity. Steroid-M consistently achieves better
sensitivity across all lengths, with optimal performance around lengths 3-5. Shaded regions
indicate standard error.

4.7 Case Study

A case study was performed in which the model was tested on longitudinal profiles provided
by the laboratory. These profiles consists of two real-world sample swapping cases confirmed
by DNA analysis. The term "case" refers to the longitudinal profiles of real-world athletes

who were identified as having been involved in sample swapping. In these cases, samples that
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were purported to belong to a particular athlete were proven by DNA analysis to belong to
someone else. These two longitudinal profiles included multiple suspicious samples (testing
samples), where none of them were from the same athlete. Both profiles were successfully
triggered by the SCNN model and identified as sample swapping cases, as shown in Table 4.5.

Table 4.5 Performance of different models on DNA-verified longitudinal profiles. The
table shows the percentage of profiles correctly identified in three case categories: sample
swapping, steroid doping, and clean profiles.

Cases Profiles LR SVM ET RF XGB NN BM DAP SCNN
Sample Swapping 2 0.00 000 000 0.00 050 050 1.00 1.00 1.00
Steroid Doping 5 0.00 020 020 060 020 080 1.00 1.00 1.00
Clean Profiles 23 0.17 021 033 021 043 054 078 082 091

4.8 Summary

This chapter presented the Subsampling-based Convolutional Neural Network (SCNN), a
deep network for anomaly detection in heterogeneous longitudinal clinical data, specifically
targeting sample swapping in anti-doping analysis. The model addresses one of the most
important challenges in real-world longitudinal data analysis: the limited number of samples
available for each individual. This is particularly necessary in anti-doping contexts where
athletes, especially younger or less frequently tested ones, may only have two recorded
samples over long time periods. Like SACNN, SCNN addresses the four challenges high-
lighted in RQ1, i.e., irregular sampling, heterogeneous profile lengths, limited numbers of
samples per athlete, and the scarcity of labeled anomaly data, but it approaches them through
a fundamentally different strategy based on subsampling and aggregation.

To overcome irregular sampling intervals and heterogeneous profile lengths, SCNN
decomposes each athlete’s trajectory into multiple temporally ordered subsamples or triplets,
creating consistent and comparable inputs regardless of profile length or spacing. This
subsampling strategy also mitigates the problem of limited samples per athlete, since even
profiles with only two or three entries can generate informative subsample units. The
convolutional encoders then extract implicit differential features across these subsamples,
capturing relational consistency rather than absolute values. Finally, SCNN reduces reliance
on ground-truth anomaly labels by aggregating predictions across all subsamples, producing
robust profile-level anomaly scores without requiring direct supervision from annotated

doping cases. Through this design, SCNN is able to identify irregularities such as sample
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manipulation and profile inconsistency by modeling deviations in intra-individual temporal
consistency.

Empirical evaluations on both synthetic and real-world datasets, including DNA-confirmed
cases of sample manipulation, demonstrated that SCNN consistently outperforms SoTA base-
line models and domain-specific approaches. The SCNN achieved sensitivity values above
70% at a high specificity threshold of 99%, which is a requirement in anti-doping applications
where false positives lead to costly follow-up testing and reputational risks. The model’s
capacity to detect anomalies even in profiles with only two samples shows a significant
advancement over current methods, most of which are inapplicable under such conditions.
These findings underscore the robustness and adaptability of SCNN across diverse testing
conditions, athlete populations, and data sparsity regimes.

In addition to empirical success, SCNN makes a broader methodological contribution by
introducing a data-efficient strategy for anomaly detection in irregular longitudinal datasets.
By focusing on subsample-level consistency and aggregation, SCNN demonstrates that
robust anomaly detection is possible even under extreme data limitations. This makes SCNN
particularly valuable in anti-doping contexts, where many younger athletes have limited
longitudinal histories. Beyond sports, the approach offers general applicability to other
domains of longitudinal clinical monitoring where data sparsity and irregularity are inherent,

such as rare disease tracking or personalized medicine.
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Chapter 5

STT-LLM: Structural-Temporal
Tokenization for Large Language Models

5.1 Introduction

Large Language Models (LLMs) have demonstrated impressive generalization abilities
across diverse natural language and multimodal tasks, including question answering, rea-
soning, and code generation [37, 190, 300]. This has led to growing interest in adapting
LLMs to scientific domains, particularly those with limited supervision and complex data
structures. However, most LLLMs are pretrained on unstructured textual corpora and rely
on discrete token sequences, making them not well-suited for directly modeling numerical,
structured, and temporal data [235, 207]. Longitudinal clinical data, such as hormone levels
or biomarker trajectories, are inherently multivariate, irregularly sampled, and often linked
through biological pathways or physiological graphs [174]. These structured dependencies,
such as enzymatic relationships in steroid metabolism, are important for anomaly detection
in anti-doping, since deviations are often meaningful only when considered in relation to
other biomarkers. Ignoring these dependencies risks detecting statistical outliers that lack
biological plausibility or missing coordinated manipulations that occur across multiple mark-
ers. Therefore, bridging this gap between natural language-oriented LLLMs and longitudinal
clinical profiles remains a fundamental challenge, directly motivating RQ?2.

Challenge 1: Longitudinal clinical data contain structured dependencies that LLMs
are not natively equipped to model. Standard LLMs operate on sequences of discrete

tokens optimized for text [207, 133]. In contrast, longitudinal clinical profiles consist of

IBased on Publication: Rahman, M.R., Hammouda, M., Maass, W. (2025). Structural-Temporal Tokeniza-
tion for Resource-Efficient Language Models on Longitudinal Clinical Profile. In Proceedings of the Neural
Information Processing Systems (NeurIPS 2025), Main Track. (under review)
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multivariate, continuous signals recorded over irregular time intervals, often augmented
with domain-specific structure such as metabolic pathway graphs [260]. In anti-doping, for
example, testosterone and epitestosterone levels are tightly coupled through shared metabolic
pathways, and deviations are only meaningful when modeled jointly. Prior work in graph-
based modeling [92, 75, 182] and time-series transformers [285, 109, 328] addresses such
complexities using specialized architectures, but these remain incompatible with generic
LLM inference pipelines and fail to embed structured priors effectively [153, 51]. As a result,
LLMs show poor alignment when applied to anomaly detection and forecasting tasks in
high-dimensional clinical trajectories.

Challenge 2: Resource and privacy constraints prevent large-scale LLM deployment
in clinical and decentralized settings. LLMs are typically hosted on cloud infrastructure,
raising significant privacy and regulatory concerns [54]. Moreover, their large parameter
counts and memory footprints limit deployment on edge devices, where real-time inference is
desirable. While parameter-efficient fine-tuning strategies [108, 338] have reduced compute
costs, they do not resolve the issue of token mismatch in domain adaptation [248], which
requires dedicated preprocessing and embedding alignment. Further, while techniques like
federated learning [339] address decentralized training, they do not solve the core issue of
aligning LLLM inference with structured, pathway-informed clinical inputs.

To address these challenges, this chapter introduces the Structural-Temporal Tokenization
framework (STT-LLM), designed to incorporate biological pathway structure into anomaly
detection for longitudinal clinical profiles. Unlike conventional LLM approaches that treat
clinical measurements as flat sequences or tabular inputs [244], STT-LLM integrates a graph
formulation to model structural dependencies (e.g., metabolic pathways) and applies self-
attention mechanisms to capture temporal evolution. These components are combined into a
unified structural-temporal embedding. To bridge the embedding space with LLM input ex-
pectations, specialized structural and temporal tokenizers are designed to transform the joint
embeddings into token sequences compatible with LLMs. The resulting tokenized representa-
tions are then processed by a pre-trained LLM equipped with low-rank adaptation for efficient
task-specific learning. This design allows STT-LLM to support different clinical downstream
tasks under resource constraints, enabling low-latency, privacy-preserving inference on local
hardware. To evaluate the framework, STT-LLM is applied to a domain-specific benchmark
consisting of steroid profiles from real-world athletes in sports. Two main tasks are examined:
1) sequence forecasting and ii) anomaly detection under both zero-shot and few-shot settings.
Comparisons against open-source LLMs (LLaMA-2/3 [287, 99], Mistral [134], Phi-4 [1],
Falcon [8], etc.) show that STT-LLM outperforms all baselines by significant margins. In

the low-shot setting, STT-LLM achieves over 10% improvement in error reduction and
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higher sensitivity in anomaly detection, demonstrating strong generalization for irregular
time-series. These results highlight that integrating structural priors, such as metabolic
pathway constraints, into LLLM-based frameworks is important for biologically valid and
operationally useful anomaly detection in anti-doping and beyond. The key contributions of

this chapter are:

» STT-LLM is proposed as a unified structural-temporal embedding framework by incor-
porating domain-specific pathway structure into anomaly detection while modeling
temporal dynamics in longitudinal profiles.

» The model consists of specialized tokenizers that transform structural-temporal embed-
dings into token sequences compatible with LLMs, enabling seamless integration with
general-purpose language models.

* Experimental results show strong performance on clinical sequence prediction and
anomaly detection tasks, including a case study on DNA-verified steroid profiles where

STT-LLM outperforms baseline LL.Ms while remaining resource-efficient.

5.2 Related Work

Tokenization and Embedding for Domain Adaptation

Tokenization plays a foundational role in aligning raw inputs with the internal representations
of LLMs, yet it remains a relatively underexplored area in domain adaptation compared to
pretraining and fine-tuning strategies. Classical methods such as byte-pair encoding [255] and
WordPiece [323] are effective for natural language but poorly suited for specialized domains
where tokens may have domain-specific semantics or structural meaning. Recent efforts have
explored task-aware token selection for domain generalization and efficiency [126, 170].
TAPEX [171], TabLLM [117], and TABBIE [129] adapt LLMs to tabular inputs through spe-
cialized token formats and training objectives. In graph-based domains, GraphPrompt [277]
and Graph-of-Thought [22] integrate graph embeddings via soft prompts or fusion modules,
enabling zero-shot reasoning over relational data. More broadly, vocabulary refinement ap-
proaches have focused on low-resource adaptation [349, 97], cross-lingual transfer [194, 166],
and code modeling [45, 53], often requiring new subword vocabularies or embedding reini-
tialization. Embedding strategies range from mean-pooling and distance-based transfer [173]
to hypernetwork-based token generation [80], but typically rely on auxiliary models or
task-specific heuristics. While these methods promise, they often require retraining large

models or domain-specific infrastructure.



84 STT-LLM: Structural-Temporal Tokenization for Large Language Models

LLM:s for Longitudinal Clinical Modeling

Recent work has explored repurposing LLMs for general time-series tasks through prompt
augmentation and embedding reprogramming strategies [233]. For example, models such
as Time-LLM [136] and UniTime [172] demonstrate that pretrained LLMs can be repro-
grammed to model time-indexed data by projecting temporal patches into token sequences.
Despite these advances, most frameworks treat time-series data as flat or fully textified
inputs, neglecting the temporal granularity and variable semantics critical in clinical moni-
toring. Moreover, forecasting from clinical narratives has been explored through timeline
extraction [85] and event ordering [157], but often relies on fixed annotation spans and
lacks fine-grained temporal resolution. Structured longitudinal clinical data models tradi-
tionally rely on physiological scores or structured features (e.g., SOFA, SAPS) [124, 212],
whereas more recent models aim to build patient-specific representations from narrative texts
and structured labs [132, 21]. However, the gap between LLMs and domain-specific data
distributions remains a key challenge, particularly under zero- or few-shot settings.

5.3 Preliminaries

Let us consider longitudinal clinical profile consisting of repeated measurements of multiple
parameters across time. Formally, the longitudinal clinical profile for a given individual can
be represented as X; = [x;;] € RP*", where p is the number of parameters, 7; is the number
of samples in profile X;, and x;; denotes the parameter k of the j-th sample. The clinical data
may also include structural information encoded as a feature interaction graph A € RP*?,
where Ay ; represents the relationships between parameter k and /. The two primary clinical

tasks are aimed to be addressed:

Sequence Prediction Given the observed sequence up to time ¢, denoted as X 1; =
[Xij]j=1,..s» the future values are aimed to be predicted for r + 1 as X; ;1 = fo(Xi1.4,4),
where fp is a predictive function parameterized by 6. The function fp models both temporal

dependencies across time and structural dependencies among parameters.

Anomaly Detection Irregular patterns in the longitudinal clinical profile can be identified
at two levels: 1) Local anomaly detection to identify anomalous samples within an individual
clinical profile, meaning that one or more samples x;; may show abnormal behavior relative

to the individual’s own trajectory. Let us consider for each sample, a local anomaly score

: local __ ,local s _ P N o
is computed ;3 = g4 (xij,Xj), where X;; = [X;j.1,...,Xij,p), Xij = [Kij.1,---,%ijp), and

gg’cal is a scoring function parameterized by ¢. One or more samples can be flagged as
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locally anomalous if their scores exceed a predefined threshold “Aoca = {J | s%?cal > Elocal }- 11)
Global anomaly detection to determine whether the entire clinical profile of an individual is
anomalous. Specifically, an individual profile is considered globally anomalous if any sample
(preferably the most recent observation in the clinical domain) is identified as anomalous.
global __ local

= where n; denotes the final sample

The global anomaly score is defined as s; in

index in the profile. A profile is classified as globally anomalous if s?l(’bal > Eglobal-

5.4 STT-LLM: Structural-Temporal Tokenization for Large
Language Models

STT-LLM is proposed which integrates joint structural-temporal embeddings, along with
structural and temporal tokenizers, to effectively capture and represent the intricate structural
and temporal relationships inherent in longitudinal clinical and similar datasets, as shown in
(Fig. 5.1).

5.4.1 Input Prompt

The input prompt I consists of two components: the task P, which is a textual description
providing instructions, and the longitudinal clinical profile X;, which contains multivariate
time-series measurements. The task prompt P is processed using a pre-trained language
tokenizer to produce token embeddings Zp., while the longitudinal clinical data X; is fed into
the proposed tokenization framework that integrates structural and temporal dependencies.
This dual processing strategy enables the model to align semantic task instructions with rich

domain-specific data representations.

5.4.2 Structural-Temporal Embeddings

Structural Component Given an adjacency matrix A and a degree matrix D of feature
interaction graph, the normalized graph Laplacian . =1 — D 2AD™: (I: identity matrix, D:
node degrees) [140]. This normalized Laplacian . encodes important structural properties
such as connectivity and community structure. The eigen-decomposition is calculated as
L =UAU! (U: eigenvectors, A: eigenvalues). To obtain the structural embedding, the
eigenvectors are projected through a learnable transformation: Eg = Wg U + bgg (Wgy, bEg:

trainable parameters).
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Temporal Component The temporal behavior in the longitudinal clinical profile is modeled

using an attention mechanism as:

Attention(Q, K, V) = softmax <Q—KT> Vv (5.1)
Vi

where Q, K, V are linear projections [292]. To incorporate temporal order, positional en-
codings are added, defined as PE,, ;) = sin (%) and PE 55 2i11) = €OS (%)
(pos: position, i: dimension index). These encodings allow the model to distinguish between
positions in the input sequence. The attention output A7, is passed through a feed-forward
network to produce Zsr = ReLU(ATWET1 + bET1 )WET2 + bET2 and layer normalization is
applied to produce Er = LayerNorm(Zs7 ). This architecture stabilizes training and facili-
tates gradient flow. The resulting temporal embeddings E7 capture dynamic patterns and
dependencies important for modeling longitudinal clinical profiles. Finally, the structural and
temporal embeddings are concatenated to form the unified structural-temporal embedding
E(X;) = Eg||Er € R(PT%)%P_This joint embedding ensures comprehensive integration of
structural and temporal information, preparing the longitudinal clinical data for tokenization

and modeling.

5.4.3 Tokenization

Structural Tokenizer (S) The framework processes the structural aspects of the structural-
temporal embeddings by effectively encoding a parameter graph constructed from domain
knowledge in longitudinal clinical profile. The input structural representation of longitudinal
clinical profile A is combined with the learned structural-temporal embedding E(X;), yielding

the concatenated input:
Xs =A|[E(X;), XgeRZrHm)xp (5.2)

The combined input Xg is then processed through a multi-layer perceptron (MLP) with

two layers. The first layer applies a ReLU nonlinearity Hg = ReLU(XsWs, +bs,), Hs €
R(2p+ni)%dhiagen | followed by a linear transformation ZMLP — HoWs, +bs,, ZMIP € R(@p+ni)xdLim
where Wg, € RP*dhiaden Ws, € Rnidden ¥ dLLM bs,, bs, are trainable parameters. To ensure sta-

ble training and consistent scaling of the token embeddings, layer normalization is applied

Zg = LayerNorm(Zg’ILP ), Zs¢€ R@ptni)xdiim where dyyy is the target embedding dimen-
sion compatible with the downstream LLM. The resulting structural token embeddings Zg
encode both the structural relationships captured by the graph and the dynamic patterns
captured by the structural-temporal embeddings.



87

5.4 STT-LLM: Structural-Temporal Tokenization for Large Language Models

‘3uruny-ouy JUIIOYJQ 10J

s1oAe] uonuayne i1 1 (Yyo1) uoneidepy Yuey-mo| Suisn paydepe st NTT QUL NTT peuren-aid uozoij e 0} sgurppaquio jndut Jeuy
oy} w0y 0} (PMdz) surppaquuid uayo) pauren-aid yirm pajeudieduod are (Lz ‘S7) sindino 1oy, ‘s3urppaquid [erodwo) pue soouanbas
popped 3ursn sorweuAp [erodwa) sarnyded (1) 10z1uayo) ferodwa) oy o[IyMm ‘s1ahe] JTIN pue sydeis [exmonns eia uoneuliojur Aemyjed
wISI[ogeIdw $3ss2001d () I9ZIUY0) [BINONI)S Y], "SIOZIUINO0) PAJBIIPIp om] Jursn so[yold [edrur[d [eurpmiSuo] wolj UoewIojul
[er0dwo) pue [eINIONNS SAILITIIUL [OPOW Y], "BIBP [BITUID [BUIPMISUO] JOJ YJoMAWeI] IN'TT-LLS Y} JO 21n}oa)1ydIe [9poA [°S "SI

J19poduy
[exoduay, -
[euonUNY  — 2y

T — uy

juduoduio) erodwdy,

-mn=3 [«+—@a
uonisodwodq
uadiy uepede] f—

Juwduoduro)) jeanjonng

Suippaquy [eaodwd] [ean)donns

e
Surpoouy
uonisoq
[ — N
| N
_ uonuINy _
_ peo-pmpy | VHOT i
i
_ I
_ I
| L waon®ppv |
_ - |
_ |
_ |
| plemioy pasy _
[

l |
|
_ |
_ I
| Lo{ woN » ppv “
_ L |
[ T X _
ﬂ >

IIIIIIIIIIIIIIII 7

e N\ 4 3
3 o T e T S
\
)
; (1) 1dwoig ynduy N ] Y E
m \
\
= N ®
(*X) a1goad [edruIr) [eurpnyduoy (d) vser, § D K e =
[ 8 Z || s s |
3 SIS ||$
I ! e : Ak
Kouspuado(] [e10dWIdY, INOIABYDG [BANIONLYS | ioucp Lo Pooe e oino? 5% D / = @
ue sejewoue pebbey et Jo) /
/ ; - m%m:manm ue %nsau 5:%.“ ..mu. / 2ouanbag
- . solewoe sni) Bukuep AoIeoos £ D /
\ ‘ am  sowsod osye;  sezuiu y L JudJ papped
= x Sue pue  sjens)
/ éé“ o e o () 19zIUY O], [etodway,
\ >>\L<(\<<xE>k4( - opyoud oy u sejduies \ 4
\ oyj Jo jsas ey 0} pesedwiod swieyed
Jewsiouge syqyxe jey) ejdwes Aue s ~
Bey pue Ajpuep o} s ysej oy ‘spuod > (—— —— ——
5318 = (03 e [T\ E
\ sSurppaquuy [erodwoy-[eanonng JoupriBuc) uonD 6 sedoiy NeeL N D \
@ \
P 1 1 m \ E m m @
! =2 [ 13|55
) (s) 1dzIUdY 0], (2.4d) 1dZIUNO], m 2| IE 5|+~ E
J13z1udo], [erodurdy, [eIn)PNnS pauren-dag E) D SIS ||
B 7 W e X AB o]~ ®
o - (0,
/
dex
, BN [ [T [T T[T Y e
\ | o\ J
\ //___\ (§) 19ZIUN O], [BANJOINI)S
. J
INTT paute.y-aaq )
Surppoqur Surppaquuyg
e ppoquIg
T 1 [erodud], [emonng
/
/
(0) mdino uoyo, uayoy, uadOy,
[exodwoL, D [eIonng pouren-a1g
\ J
UOIRUSIBOUO)) @ ozoa1] Mﬁ S[qeurel], 7
2.IMPNYILY PPOIN IN'TT-LLS ) ’



88 STT-LLM: Structural-Temporal Tokenization for Large Language Models

Temporal Tokenizer (7) To handle sequences of varying lengths (heterogeneity), the
following steps are applied: 1) Padding: Sequences shorter than np.x are zero-padded to
ensure uniform input dimensions and ii) Masking: Mask M € R"max indicates valid time steps,
with 1 marking real measurements and 0 marking padded positions. This ensures the model
focuses computations on valid temporal entries. The padded temporal sequence Xp}added is

combined with the structural-temporal embedding E(X;):
X7 = XPUYB(X)), X € Rimatpom)<p (5.3)

where npax 1s the maximum sequence length of longitudinal clinical profile in the batch. The
concatenated temporal input is passed through a two-layer MLP. The first layer applies a
nonlinear transformation Hr = ReLU(XrWr, +br,), Hr € R (tmax+p+ni) X dniaden  followed
by a second linear layer ZY'¥ = Hy Wy, + by, ZMP € R (tmax+p+ni)xdim While the MLP
processes the entire longitudinal profile, the mask M ensures only valid time steps influence
the learned embeddings. Finally, layer normalization is applied to stabilize learning and
ensure consistent scaling Zr = LayerNorm(ZM'P),  Zy € RUmatp+ni)xdim  The resulting
temporal token embeddings Zr effectively capture both the temporal evolution and structural

context, which allows the model to handle variable-length sequences robustly.

5.4.4 Model Training

The output token embeddings Zpye, Zg, and Zr are concatenated using Z = Zpy||Zs||Z7,
where Z € RE*4im | with L denoting the token sequence length and dj;y the embedding
dimension compatible with the LLM backbone. This combined representation is passed
to a pre-trained LLM, which has been augmented with LoRA adapter O = Adapter(LLM),
where O represents the model output for different downstream tasks, such as sequence
prediction and anomaly detection over longitudinal clinical profiles. During training, the
tokenizers (S, T') are trained jointly with the LoRA adapter, while the core LLM weights
remain frozen. This setup allows efficient adaptation to specific downstream tasks with
minimal computational overhead, leveraging the generalization capabilities of the pre-trained
LLM while enabling domain-specific adaptation through the tokenizers and LoRA layers.
The training objective functions can be defined according to the downstream task.

5.5 Experiments

STT-LLM is applied for doping analytics in sports, where detecting abnormal steroid patterns
over time is important for identifying potential prohibited drug abuse by athletes.
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5.5.1 Datasets

The models are evaluated on real-world athlete datasets consisting of longitudinal clinical
profile of steroid data profiled from human urine samples: Steroid-M (male), Steroid-F
(female), Steroid-My;;,, (male, limited), and Steroid-F;;,, (female, limited) [234, 232]. The
dataset includes measurements of six key steroid metabolites: testosterone (T), epitestos-
terone (E), etiocholanolone (Etio), androsterone (A), Sa-androstanediol (SaAdiol), and
5B-androstanediol (58 Adiol) following the steroid metabolism pathway to synthesize [223].
The profile lengths range from 2 to 20 samples per athlete, reflecting realistic variability
in longitudinal monitoring. These datasets cover diverse population groups and temporal
resolutions, allowing us to comprehensively evaluate STT-LLM under realistic conditions.

The detailed summary of the datasets are shown in Table 5.1.

Table 5.1 Data statistics used to evaluate the STT-LLM framework.

Datasets Gender # Profiles # Samples [en(n)

Steroid-M Male 755 4214 3-20
Steroid-F Female 375 2307 3-20
Steroid-My;,,  Male 737 1474 2
Steroid-Fj;,;, = Female 293 586 2

5.5.2 Baseline Methods

This model is compared against different small LLMs that can be deployed on resource-
efficient environment. The selected baselines include Qwen-2.5 (7B) [330], Falcon-3 (7B) [8],
Mistral (7B) [134], LLaMA-2 (7B) [287], LLaMA-3.1 (8B) [99], Phi-4 (7B) [1], and
DeepSeek-R1 (7B) [57]. Each model is fine-tuned on different downstream tasks using
its native tokenization strategy. These models typically fall within the 7-8 billion parameter
range, making them well-suited for efficient inference on local workstations without the need

for large-scale GPU infrastructure.

5.5.3 [Experimental Settings

All experiments were conducted on a workstation equipped with an NVIDIA TITAN RTX
GPU (24GB), Intel 19 processor, and 31GB total RAM. The same computational setup was
used for both STT-LLM and all baseline models to ensure fair and consistent comparisons.

The evaluation was performed under two settings: zero-shot, and few-shot (2-20 labeled
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examples as in-context prompts). The evaluation metrics used are RMSE, MAE, and MAPE
for sequence prediction, and accuracy, sensitivity, precision, F1-score, and AUC for anomaly
detection. A high specificity value (0.99) was set due to domain requirements. To account
for variability, all reported results are averaged over three independent runs with standard

deviations reported where applicable.

5.6 Results

5.6.1 Anomaly Detection

Zero-shot setting Table 5.2 and Fig. 5.2 shows that STT-LLM significantly outperforms
baseline models in both local and global anomaly detection under zero-shot conditions.
For local anomaly detection, STT-LLM achieves sensitivity of 15.0% on Steroid-M and
17.0% on Steroid-Fy;,,, while most baselines show near-zero sensitivity. This is because
these models default to classifying all samples as normal, resulting in artificially inflated
accuracy values around 95-96% but completely failing to identify any anomalous samples.
In contrast, STT-LLM trades a small drop in accuracy (87-88%) for substantial gains in
sensitivity and precision, reflecting its ability to detect true anomalies. In global anomaly
detection, all models achieve better accuracy, as the classification task is inherently less
sparse and the signal-to-noise ratio is higher. STT-LLM achieves the highest F1-scores (0.26
on Steroid-M, 0.29 on Steroid-F) and AUC values (0.57 on Steroid-M, 0.59 on Steroid-F),
outperforming baselines by up to ~10%. These results highlight STT-LLM’s ability to handle
both sparse (local) and dense (global) anomaly tasks, demonstrating increased robustness
and generalization compared to standard LLMs, especially in anomaly detection scenarios

where sensitivity is critical.

Few-shot setting Fig. 5.3 shows that STT-LLM achieves substantial gains in global
anomaly detection as the number of shots increases. Unlike the baselines, which often
exhibit unstable or noisy trends across shot sizes, STT-LLM shows consistent improvements
across most metrics. For sensitivity, STT-LLM increases from 0.15 (2 shots) to 0.6 (20
shots) on Steroid-M, representing more than a threefold improvement in detecting true
anomalies. Precision improves steadily as well, reaching near-perfect levels on Steroid-F and
Steroid-Fy;,,, indicating that the model sharply reduces false positives as supervision increases.
F1-score trends further highlight the balanced gains of STT-LLM, with performance rising
sharply between 2 and 20 shots, e.g., 0.15 to 0.7 (Steroid-M), demonstrating the model’s
ability to jointly improve sensitivity and precision. Overall, STT-LLM’s performance curves
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Fig. 5.2 Zero-shot global anomaly detection performance comparison across four datasets
using different pre-trained LLMs. STT-LLM consistently outperforms all baseline models,
particularly in sensitivity and F1-score, indicating its better capability to detect subtle
anomalies in longitudinal profiles.

remain smooth, while baselines frequently show oscillating or deteriorating patterns as shots

increase, reflecting their difficulty in integrating few-shot supervision effectively.
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Fig. 5.3 Few-shot global anomaly detection performance across different metrics. Perfor-
mance comparison of STT-LLM and baselines for global anomaly detection tasks on different
datasets. Metrics are evaluated at different shot settings (2, 5, 10, 15, 20). STT-LLM consis-
tently achieves higher F1-scores and improved sensitivity, indicating better anomaly detection
capability from limited examples.
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5.6.2 Sequence Prediction

Zero-shot setting Fig. 5.4 shows that STT-LLM consistently outperforms all LLM base-
lines by achieving the lowest error scores. For Steroid-M and Steroid-F, STT-LLM reduces
RMSE value (%100) to 79.3 and 68.4, respectively, while all baselines remain above 83,
indicating its improved ability to model metabolic patterns even without supervision. The
gains are even more pronounced in the limited datasets, where STT-LLM achieves strikingly
low RMSE value (%100) of 30.0 and 1.2, respectively, outperforming the next-best models
by large margins. For MAE value (%10), STT-LLM consistently achieves the lowest errors
across datasets, with values dropping to near 5-6 on the limited datasets, reflecting accurate
point-wise predictions.
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Fig. 5.4 Zero-shot sequence prediction performance of STT-LLM across different datasets.
The figure compares STT-LLM with several open-source LLMs on four steroid datasets.

STT-LLM consistently achieves the lowest error across all datasets and metrics, showing its
robustness in modeling longitudinal steroid profiles in a zero-shot setting.

Few-shot setting Table 5.3 and Fig. 5.5 shows several important findings. Contrary to
expectations, the error metrics increase as the number of shots increases from 5 to 20 across
all the models. This indicates that simply increasing the number of in-context examples
does not necessarily improve performance. The rise in error is likely due to including
heterogeneous and potentially noisy profiles as prompts, which may confuse the model
instead of guiding it, especially in a domain like longitudinal clinical monitoring, where
inter-individual variation is high. Despite this, STT-LLM consistently achieves the best
RMSE across all datasets and shot counts, demonstrating robust temporal generalization. For
example, at 5-shot, STT-LLM achieves the lowest RMSE on Steroid-My;,,, (1730.11), Steroid-
Fjim (1276.32), and maintains higher performance across more shots as well. Similarly, in
terms of MAE, this model outperforms baselines on Steroid-Fj;,, with a score of 643.71
(10-shot) and 642.90 (20-shot). STT-LLM maintains high overall stability and minimal
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fluctuation in MAPE compared to LLM baselines. These findings suggest that STT-LLM
outperforms baselines consistently in absolute error terms and demonstrates better resilience

to prompt variability and shot-induced drift.
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Fig. 5.5 Few-shot sequence prediction performance across multiple datasets. The figure shows
the performance of STT-LLM and several baseline LLMs across four datasets. Performance
is measured at varying shot levels (2, 5, 10, 15, 20). STT-LLM consistently outperforms the
baselines, particularly at low-shot settings, indicating stronger generalization capability from
limited examples.



Table 5.2 Local and global anomaly detection performance at the zero-shot setting for both local and global anomaly detection.
STT-LLM consistently shows higher sensitivity and F1-score, particularly in local anomaly detection tasks, showing its strength in

identifying subtle anomalous patterns without any prior exposure.

Datasets Model Local Anomaly Global Anomaly
Acct Senst Prect F11 AUCYT Acct Sens Prect F11 AUCYT
Qwen-2.5 0.96+£.01 0.00£.00 0.00£.00 0.00+£.00 0.47+.02 0.71£.02 0.08+.03 0.20+.02 0.11+.02 0.45+.02
Mistral 0.87+.02 0.05£.01 0.02+.01 0.03£.01 0.43+.02 0.71£.02 0.08+.02 0.23+.03 0.12+.02 0.47+.02
Falcon-3 0.94+.02 0.01+£.00 0.02+.01 0.01+.01 0.46+.02 0.72+.02 0.08+.02 0.28+.03 0.13+.02 0.53+.02
Steroid-M LLaMA-2 0.90£.02 0.05£.01 0.03£.01 0.04£.01 0.42+.02 0.71£.02 0.09+£.02 0.26+.02 0.14+.03 0.49+.02
LLaMA-3.1 0.87+£.02 0.07+£.01 0.03£.01 0.05£.01 0.51£.02 0.72+.02 0.14+.02 0.33+.03 0.19+.03 0.56+.02
Phi-4 0.87+£.02 0.08£.01 0.04+£.01 0.05£.01 0.50+.02 0.72+.02 0.03+£.01 0.15+.02 0.05+.01 0.46+.02
DeepSeek-R1  0.95+.01 0.02+.01 0.01+.01 0.01+.00 0.394+.02 0.70+.02 0.084.02 0.214+.02 0.114+.02 0.454+.02
STT-LLM 0.87+.02 0.15+.02 0.07+.01 0.09+.02 0.57+.02 0.73+.02 0.19+.03 0.41+.03 0.26+.03 0.57+.02
Qwen-2.5 0.87+.02 0.04+.01 0.02+.01 0.02+.01 0.46+.02 0.73£.02 0.04+.01 0.14+.02 0.06+.01 0.55+.02
Mistral 0.96+.01 0.00£.00 0.00+£.00 0.00+.00 0.62+.02 0.73+.02 0.12+.02 0.26+.03 0.16+.02 0.43+.02
Falcon-3 0.95+.01 0.00+£.00 0.00£.00 0.004£.00 0.60+.02 0.72+.02 0.09+.02 0.22+.02 0.13£.02 0.374+.02
Steroid-F LLaMA-2 0.87+£.02 0.06£.01 0.02+£.01 0.03£.01 0.55+£.02 0.73£.02 0.12+.02 0.26+.02 0.16+.02 0.47+.02
LLaMA-3.1 0.95£.01 0.01£.00 0.03£.01 0.02+.01 0.57+£.02 0.73£.02 0.10+£.02 0.23+.03 0.14+.02 0.49+.02
Phi-4 0.88+.02 0.06+£.01 0.02+.01 0.03£.01 0.50+.02 0.74+.02 0.08+.02 0.25+.02 0.13+.02 0.45+.02
DeepSeek-R1  0.874+.02 0.06+.01 0.02+.01 0.03+.01 0424+.02 0.73£.02 0.10£.02 0.22+.03 0.13+.02 0.50+.02
STT-LLM 0.87+.02 0.08+.01 0.03£.01 0.05+.01 0.47+.02 0.75+.02 0.23+.03 0.40+.03 0.29+.03 0.59+.02
Qwen-2.5 0.86+.02 0.00£.00 0.00£.00 0.00+.00 0.18+.01 0.62+.02 0.06+.02 0.30+.03 0.10+.02 0.54+.02
Mistral 0.96+.01 0.00£.00 0.00+£.00 0.00+.00 0.37+.02 0.61+.02 0.07+.02 0.31+.02 0.12+.02 0.42+.02
Falcon-3 0.88+£.02 0.08+£.01 0.03£.01 0.05£.01 0.44+.02 0.61+£.02 0.07+.02 0.32+.02 0.12+.02 0.53+.02
Steroid-Myim LLaMA-2 0.88+£.02 0.03£.01 0.01£.01 0.02+£.01 0.22+.01 0.61£.02 0.07+£.02 0.31+.02 0.12+.02 0.45+.02
LLaMA-3.1  0.884+.02 0.04+.01 0.02+.01 0.02+.01 0.394+.02 0.60+.02 0.044+.01 0.214+.02 0.074+.02 0.394+.02
Phi-4 0.89+.02 0.21+£.02 0.09+.01 0.12+.02 0.65+.02 0.61+.02 0.05+.01 0.25+.02 0.09+.01 0.44+.02
DeepSeek-R1  0.87+.02 0.06+.01 0.02+.01 0.03+.01 0.43+.02 0.60+.02 0.04+.01 0.194+.02 0.07+.01 0.45+.02
STT-LLM 0.88+£.02 0.36+.02 0.12+.02 0.18+.02 0.75+.02 0.64+.02 0.12+.02 0.47+.03 0.19+.02 0.55+.02
Qwen-2.5 0.88+.02 0.06+.01 0.06+.01 0.06+.01 0.14+.01 0.54+.02 0.10+.02 0.46+.03 0.16+.02 0.53+.02
Mistral 0.95£.01 0.01£.00 0.03£.00 0.02+.00 0.64+.02 0.51+£.02 0.04+.01 0.25+.02 0.07+.01 0.42+.02
Falcon-3 0.96+£.01 0.00£.00 0.00£.00 0.00+£.00 0.27+.02 0.55+£.02 0.13+.02 0.53+.03 0.21+.03 0.55+.02
Steroid-Fyim LLaMA-2 0.86+£.02 0.03+£.01 0.01£.01 0.02+.01 0.32+.02 0.54+.02 0.11+.02 0.48+.03 0.18+.02 0.50+.02
LLaMA-3.1  0.87+.02 0.00+.00 0.00+.00 0.00+.00 0.084+.01 0.524+.02 0.074+.01 0.364+.02 0.11+.01 0.46+.02
Phi-4 0.87+.02 0.07+.01 0.03£.01 0.04+.01 0.48+.02 0.53+.02 0.07+.01 0.41+.03 0.12+.02 0.48+.02
DeepSeek-R1  0.86+.02 0.10+.01 0.04+.01 0.06+.01 0.51+.02 0.54+.02 0.10+.02 0.484+.03 0.16+.02 0.54+.02
STT-LLM 0.87+£.02 0.17+.02 0.08+£.01 0.11+.02 0.54+.02 0.59+.02 0.15+.03 0.71+.03 0.25+.03 0.56+.02
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Table 5.3 Few-shot sequence prediction performance of different models across four datasets under 5, 10, 15, and 20-shot settings.
STT-LLM consistently achieves the lowest errors, showing its robustness and better predictive capabilities than baselines.

Datasets Model @5 @10 @15 @20
RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE| RMSE| MAE| MAPE|
Qwen-2.5 169599 899.99 111.99 169599 899.99 111.99 169599 899.99 111.99 169599 899.99 111.99
Mistral 1688.34 894.92  98.19 1690.63 896.48  94.69 1688.90 896.54 101.04 1692.39 899.84 110.19
Falcon-3 1688.02 896.54 101.17 1689.88 897.20 100.31 1690.39 897.48 100.01 1691.48 897.69 100.93
Steroid-M LLaMA-2 1687.80 895.81 98.21 1689.47 897.29 100.74 1690.01 896.86 100.47 1691.16 897.06  98.19
LLaMA-3.1 1688.57 896.78 100.27 1689.67 898.19 106.75 1690.56 897.17 101.46 1690.98 896.84 97.21
Phi-4 1688.20 896.62 100.38 1690.17 897.21 97.98 1690.04 897.36 102.87 1691.41 897.54 100.88
DeepSeek-R1  1688.05 896.73 100.33  1689.88 896.73  98.31 1690.31 897.17  98.81 1691.65 897.56  99.48
STT-LLM 1680.00 890.77 96.80 1681.57 891.27 96.79 1682.06 891.37 96.79 1683.51 891.87 96.81
Qwen-2.5 1395.99 699.99 129.99 139599 699.99 129.99 1395.99 699.99 129.99 1395.99 699.99 129.99
Mistral 1387.98 695.23 120.35 1392.05 697.48  92.08 1388.75 695.68 108.68 1390.98 696.63 107.37
Falcon-3 1388.12 695.07 93.71 1389.62 69541  93.80 1388.77 695.67 11524 1389.53 694.61 94.31
Steroid-F LLaMA-2 1387.93 69493  93.30 1388.86 695.52 109.01 1388.92 69491 100.61 1389.93 695.33 101.76
LLaMA-3.1 1388.67 695.34  94.12 1389.38 695.03  93.93 1388.72 695.19 106.55 1390.03 695.23 103.50
Phi-4 1388.07 695.39  98.83 1389.09 695.64 108.44 1389.50 694.70  99.72 1389.75 695.43 108.37
DeepSeek-R1  1388.48 695.47 102.55 1389.54 696.04 97.25 1389.05 695.14  98.93 1389.09 694.41  95.36
STT-LLM 1372.85 684.39 9494  1374.17 684.89 9492 137351 684.05 9491 137445 684.09 9491
Qwen-2.5 1750.99 901.99 106.99 1750.99 901.99 106.99 1750.99 901.99 106.99 1750.99 901.99 106.99
Mistral 1737.63 896.17  95.80 1742.02 899.45 103.07 1738.92 89842 103.42 1741.69 898.80 98.51
Falcon-3 1738.66 898.03 102.52 1740.75 898.42 98.74 173893 898.31 102.14 1742.69 900.19  97.78
Steroid-Mjim LLaMA-2 1738.65 897.73  99.46 174124 898.86 100.51 173890 898.48 103.02 1743.15 900.89 10291
LLaMA-3.1 1737.29 896.35 10098 1741.25 899.54 100.01 1739.00 898.11  98.56 1743.21 900.77  98.70
Phi-4 1738.51 898.01 10296 1741.42 898.43 97.71 1738.87 898.07  99.79 1743.05 900.66  98.94
DeepSeek-R1  1738.12 897.42 10040 1740.81 898.72  98.67 1739.72 898.67  99.97 1743.62 900.59  98.15
STT-LLM 1730.11 891.67 96.47 1733.18 893.01 96.47 173143 892.63 9647 1734.87 894.61 96.47
Qwen-2.5 1309.99 666.99 127.99 1309.99 666.99 127.99 1309.99 666.99 127.99 1309.99 666.99 127.99
Mistral 1292.73 657.49 123.29 1289.67 65438 118.12 1294.05 657.05 107.06 1286.36 652.15 126.36
Falcon-3 1291.65 655.82  97.87 1289.63 654.51 96.85 129477 656.69 102.03 1287.89 653.04 96.47
Steroid-Fyim LLaMA-2 1292.06 656.18 100.69 1289.05 653.63 93.96 1295.08 65697 101.13 1287.68 65431 106.19
LLaMA-3.1 1291.13 654.67  88.66 1289.66 654.13  93.20 1293.98 656.87 115.68 1287.32 653.76 108.22
Phi-4 1291.92 655.84 9249 1289.48 654.17 97.54 1294.68 656.39 102.23 1287.37 653.85 10741
DeepSeek-R1  1291.64 65594 101.25 1289.33 654.37 103.85 1294.89 656.59 97.21 1286.90 653.18 101.71
STT-LLM 1276.32 645.16 9492  1274.23 643.71 9489  1279.59 64590 94.89 1272.19 64290 94.86
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5.6.3 Ablation Studies

The ablations include removing all components (w/o all), structural tokenizer (w/o struc-
tural), temporal tokenizer (w/o temporal), embedding layer (w/o embeddings), and pairs of
components. Table 5.4 shows that STT-LLM achieves the lowest sequence prediction errors
(RMSE: 1664.59, MAPE: 96.80). Removing all components increases RMSE: +1.4%, MAE:
+1.7%, MAPE: +2.2% relative to STT-LLM. Removing embeddings alone increases MAPE
to 100.56 (+3.9%) and drops AUC to 0.5352 (-5.7%), highlighting the embedding layer’s
key role in aligning multimodal representations.

Table 5.4 Ablation study evaluating the contribution of structural and temporal components
and embeddings in STT-LLM. Removing any components results in degraded performance,
confirming their complementary roles. The STT-LLM model outperforms all ablated vari-
ants, especially in sensitivity and F1-score for anomaly detection, showing the synergy of
integrating structural and temporal embeddings with pre-trained LLM representations.

Model Variants Sequence Prediction Anomaly Detection (Global)
RMSE| MAE| MAPE| Acct Senst Prect F11 AUCT
w/o all 1687.71 896.39 9893 0.7179 0.1398 0.3291 0.1962 0.5609
w/o structural 1687.49 896.61 100.65 0.7152 0.0968 0.2769 0.1434 0.4964
w/o temporal 1682.45 892.85 9838 0.7126 0.1237 0.2987 0.1749 0.5500
w/o embeddings 1682.75 893.40 100.56 0.7139 0.1344 0.3125 0.1880 0.5352

w/o structural + temporal 1682.70 893.20  98.89  0.6967 0.0645 0.1791 0.0949 0.4877
w/o embeddings + temporal  1677.56 889.29  97.07  0.7245 0.1290 0.3429 0.1875 0.5474
w/o embeddings + structural 1679.16 891.78  97.35  0.7113 0.0914 0.2576 0.1349 0.4887
STT-LLM 1664.59 881.20 96.80  0.7338 0.1935 0.4138 0.2637 0.5675

For anomaly detection, STT-LLM achieves a good balance across different metrics.
Removing all components lowers sensitivity by -27.8%, and precision by -20.5% compared
to STT-LLM. Removing either the structural or temporal tokenizer reduces sensitivity by
-50% (0.0968 - 0.1237) and precision by -33% (0.2769 - 0.2987), showing that both structural
and temporal components are important for anomaly detection. When two components are
removed, the degradation is even sharper, e.g., w/o embeddings + structural drops AUC by -
14% (0.4887) relative to STT-LLM. Overall, the results demonstrate that all three components
act synergistically to deliver the robust generalization and performance gains of STT-LLM
across different tasks.
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5.7 Case Study

To evaluate the real-world applicability of the method, a case study was conducted on 29
longitudinal steroid profiles from real-world athletes, which were verified through DNA
analysis by a biomedical laboratory. Among these, 7 profiles were confirmed as anomalous
due to doping-related abnormalities, with domain experts providing detailed explanations,
and the remaining 22 were classified as clean. The clean profiles were used for sequence
prediction, and all 29 profiles were used for anomaly detection. The model achieved better
forecasting performance with RMSE: 1673.13, MAE: 868.93, and MAPE: 95.51. For
anomaly detection, the model perfectly identified all 7 anomalous cases with 100% sensitivity,
while only 2 clean profiles were misclassified (accuracy: 93.10%).

Contextual Reasoning Evaluation Model Training Time Performance UMAP of Output Token Embeddings
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Fig. 5.6 Evaluation of contextual reasoning quality (left), model training efficiency (center),
and output token embedding in UMAP representation (right). The radar chart on the left
shows the contextual reasoning performance across different metrics. The center bar chart
compares training time efficiency, highlighting STT-LLM’s faster convergence. The right
UMAP plot visualizes the clustering and separation of output token embeddings, with STT-
LLM demonstrating distinct embedding structure compared to baseline LLMs.

To evaluate the contextual reasoning ability of STT-LLM, a few-shot setup was adopted
in which 7 expert-annotated doping profiles were used to generate explanations for 500 addi-
tional profiles. These explanations were then used to train all models under identical training
conditions. Model performance was subsequently assessed on the original 7 profiles using
expert-provided ground-truth explanations. As shown in Fig. 5.6, STT-LLM was found to
outperform all competing LLM baselines across multiple evaluation metrics, demonstrating
higher alignment with expert interpretations. This result highlights the model’s capability
to capture clinically meaningful reasoning patterns from limited supervision. Additionally,
training efficiency was evaluated by measuring the time required for 10 epochs (convergence)
of fine-tuning. STT-LLM achieved the lowest training time (0.57 hours), substantially faster
than all other baselines (average: 1.1 hours), owing to its compact structural-temporal to-

kenization strategy, which reduces sequence length and computational overhead. Finally,



98 STT-LLM: Structural-Temporal Tokenization for Large Language Models

the output token embedding spaces of different models were visualized using UMAP rep-
resentation. Unlike tightly clustered distributions, the embeddings formed a continuous
ring-like topology, with STT-LLM occupying a transitional zone between LLaMA-3.1 and
Phi-4. This positioning suggests that STT-LLM maintains representational alignment with
general-purpose LLMs while introducing localized structure unique to its domain-aware

training.

5.8 Summary

This chapter introduced STT-LLM, a structural-temporal tokenization framework designed
to adapt large language models (LLMs) for use with longitudinal clinical data. Unlike
conventional LLMs, which operate on unstructured textual inputs, STT-LLM transforms
structured biomedical data into token sequences compatible with standard LLM architectures.
The framework constructs joint embeddings that encode both domain-specific structural
relationships, such as those defined by metabolic pathways and temporal dynamics across
time points. These embeddings are processed through two specialized tokenizers: one for
structural dependencies and one for temporal progression. The resulting tokens are used
directly by the LLM, enabling it to model longitudinal clinical data without modifying its
architecture.

STT-LLM directly addresses RQ2, which explores why incorporating domain knowledge
is important for improving anomaly detection in longitudinal data. Traditional time-series
models often treat features independently or rely on sequence alignment methods that do not
account for domain-specific feature interactions. STT-LLM incorporates this structured prior
knowledge explicitly into the model input through structural tokenization, which encodes the
biochemical relationships between biomarkers as node-level dependencies in a graph. This
enables the LLM to reason over biologically meaningful structures and to detect coordinated
changes across related biomarkers, rather than isolated fluctuations. The temporal tokenizer
complements this by preserving sequence order and allowing the model to learn deviation
patterns over time. By integrating structural and temporal behavior in a unified representation,
STT-LLM provides a mechanism for inductive bias that improves both generalization and
robustness in downstream tasks. This design allows anomaly detection to move beyond
simple statistical outliers to detecting biologically implausible trajectories based on known
pathway constraints, contributing to more precise and explainable decision support.

The model was evaluated on real-world steroid profiles in the context of anti-doping
analytics. Tasks included anomaly detection and sequence forecasting, both in zero-shot and
few-shot settings. STT-LLM outperformed several pre-trained and fine-tuned LLM baselines
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in these tasks, demonstrating that embedding-guided tokenization significantly improves
performance without requiring extensive retraining or access to large labeled datasets. The
approach enables efficient deployment in settings with limited computational resources and
strict privacy requirements, such as clinical laboratories or mobile health systems.

In summary, STT-LLM offers a general method for extending LLM capabilities to
structured clinical domains by integrating biological knowledge into the input representation.
It supports flexible and privacy-conscious inference while maintaining compatibility with
standard LLLM backbones. The framework is a step toward making large language models
usable in clinical decision support systems where structured, time-dependent, and biologically

coherent representations are essential.






Chapter 6

GRAMP: GRAph-based modeling for
Metabolism Pathway

6.1 Introduction

"Modeling biological pathways is an important aspect of biochemical research. Biological
pathways represent a series of interconnected molecular events that occur within a cell to carry
out specific functions, such as signal transduction, metabolism, and gene regulation [215].
Understanding these pathways can provide insights into the underlying mechanisms of
various cellular processes and aid in the discovery of novel therapeutic targets. There are
several approaches to modeling biological pathways, ranging from qualitative to quantitative
methods [264, 154, 123]. However, these methods have challenges like parameter estimation,
model complexity, dynamic behavior, etc. Therefore, using these methods for modeling
biological pathways leads to inaccurate predictions and limited applicability. However, these
methods have challenges like parameter estimation, model complexity, dynamic behavior,
etc. Therefore, using these methods for modeling biological pathways leads to inaccurate
predictions and limited applicability.

Many forensic investigations primarily focus on analyzing these biological pathways to
identify the fraudulent behavior of the individual, especially doping activities in sports [31].
Recent investigation at the 2014 Olympics Games in Sochi discovered a new form of
fraudulent behavior by athletes [193]. Athletes were found attempting to replace their doping

samples with clean samples obtained from other individuals to avoid positive test results.

IBased on Publication: Rahman, M.R., Hussain, M., Piper, T., Geyer, H., Equey, T., Baume, N., Aikin, R.,
Maass, W. (2023). modeling Metabolism Pathways using Graph Representation Learning for Fraud Detection
in Sports. In Proceedings of the IEEE International Conference on Digital Health, (ICDH 2023), Main Track.
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This fraudulent activity of sample swapping poses a substantial challenge in the forensic
investigations of the World Anti-Doping organization (WADA) and other organizations.

WADA maintains a longitudinal profile for every athlete, which includes a record of all
the samples collected from that athlete so far for the purpose of doping tests. Identifying
sample swapping in sports events can be a difficult task, and the conventional method
involves conducting DNA analysis on all samples [189], which is costly and time-consuming.
Furthermore, the majority of instances involving sample swapping remain undetectable.
Alternative methods, such as monitoring each sample and comparing it to the athlete’s
reference range to detect abnormally high values are available [234, 223, 271]. In addition,
machine learning has attracted considerable attention for detecting doping activities [271,
230]. Nevertheless, these approaches neglect an important factor, i.e., steroid metabolism
pathways [250]. In other words, the structural relationship of different metabolites in the
steroid metabolism pathways of the athlete is important to consider these dependencies when
comparing similarities within an athlete’s longitudinal profile. Therefore, there is a need for
a better method that incorporates the information about domain knowledge into the model
decision making.

Over the past decade, several new scenarios from science or everyday life have benefited
from formulating a relationship between entities as a graph. Therefore, graph networks have
become increasingly popular in modeling complex systems due to their ability to capture
intricate relationships [286]. They can be used to model complex real-world networks like
biological pathways, where vertices represent biological entities, and edges indicate underly-
ing connectivity [119]. Employing graph networks to model domain knowledge facilitates
comprehensive coverage of important properties and theories in the field. Additionally, it
helps to comprehend the semantics in pathways, such as the functionalities among data and
the species associated with the data. The key contributions of this work are summarized as
follows:

* A graph-based modeling for metabolism pathway is presented, which is capable of
integrating domain knowledge of biological pathways into a machine learning model.
It comprises an attention mechanism designed to capture direct relationships between
different metabolites within the metabolic pathway to improve decision-making.

* Unlike previous methods, this model leverages both the structural and temporal rela-

tionships in steroid metabolism to obtain a more informative representation.

* The proposed method is evaluated on a real-world dataset collected by anti-doping
organizations and laboratories. Experimental results demonstrate the effectiveness of
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the model, which detects fraudulent athletes with relatively higher specificity compared
to SoTA method.

6.2 Related Work

Graph Representation Learning

Graph representation learning (GRL) [341] automates the discovery of meaningful vector
representations for nodes, edges, or entire graphs to facilitate downstream graph mining
applications. There are three main groups of GRL methods: i) network embedding mod-
els [220, 100, 68], which preserve the proximities among contextual nodes to capture graph
structure information; ii) graph neural networks (GNNs) [140, 294, 337], which aggregate
neighbor feature information to learn node embeddings; and iii) knowledge graph embedding
methods [27, 267, 59], which model the acceptability score of each fact triplet to learn node
and edge (i.e., entity and relation) embeddings by constructing the graph as a collection of
fact triplets. The GRL backbone is most commonly built using GNNs, which are currently
the SOTA in GRL. Recent advancements in GNNs, such as Graph Convolutional Networks
(GCNs) [140], Graph Attention Networks (GATs) [294], and GraphSAGE [107], have further
improved their expressive power and scalability. GAT's incorporate an attention mechanism
to calculate the weights of node neighborhoods during the aggregation of feature informa-
tion. By considering the correlations between different samples, it effectively captures the
interdependencies and relationships within the data. GraphSAGE is a semi-supervised model
that learns node embeddings by sampling neighboring nodes and aggregating their features
using functions like mean or max pooling.

In this chapter, a novel approach is proposed for detecting fraudulent activities in sports,
1.e., sample swapping using graph representation learning that incorporates the domain
knowledge of metabolism pathways into ML-based decision making. This approach can

assist anti-doping organizations for detecting fraudulent activities in sports.

6.3 Preliminaries

Sample A urine sample collected from a given athlete for performing a doping test can be
denoted as x;; = {x; J1>Xij2, 5 Xij »} € RP, where p represents the total number of parameters,
i represents the athlete, and j represents the sample index within the longitudinal profile.
Each sample contains a set of parameters that reflect the concentration levels of different

steroid metabolites in the human metabolism, as listed in Table 6.1.
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Table 6.1 List of metabolites present in each steroid sample along with their corresponding
chemical composition.

Parameter Description Molecular Formula
T Testosterone Ci9H7530,
E Epitestosterone Ci9Hy50,
Etio Etiocholanolone Ci9H300,
A Androsterone Ci19H300,
SaAdiol 5o-androstane-3a, 17 -diol Ci9H3,0,
5B Adiol 5B-androstane-3 ¢, 173-diol C19H3,0,

Longitudinal Profile The athlete’s longitudinal profile is defined as a sequence of samples
collected over time and is represented by X; = {X;1,Xp2, -+ ,Xin,; } € R"*?, where n; is the
total number of samples collected for athlete i. The longitudinal profile is unique to each
athlete and helps to track the steroid metabolites and their levels over time in athletes’
biological samples, such as urine (or blood). Longitudinal profiling provides a comprehensive
understanding of an athlete’s steroid metabolism patterns and can be used as a tool for anti-
doping agencies to the monitoring of changes in steroid profiles and the detection of potential

doping practices or irregularities in athletes’ hormone levels.

Anomalous Behavior The focus is placed on sample swapping, in which a contaminated
sample from an athlete is exchanged with a clean sample from another individual. This
results in a discrepancy between the sample under consideration (x7), and the rest of the
samples in the athlete’s longitudinal profile. Therefore, this problem can be well formulated
as a graph classification problem where each graph represents an athlete’s longitudinal profile.
The goal is to classify whether the given graph is suspicious of sample swapping or not. In
addition, the prevalence of sample swapping in the real-world situation is very low compared
to the clean athletic population. Therefore, this task can be formulated as anomaly detection

problem.

Steroid Metabolism Steroid metabolism refers to the processes involved in the synthesis,
transportation, and breakdown of steroids in the body. Steroids are lipids that are important
for a variety of physiological processes, including the regulation of metabolism [250].
Steroid hormones, such as testosterone and estrogen, are synthesized in the gonads and
adrenal glands and transported through the bloodstream to target tissues. Epitestosterone is a
steroid that is structurally similar to testosterone but is considered inactive. It is produced
in small amounts in the body and is primarily used as a marker for detecting the use of

performance-enhancing drugs. Etiocholanolone and androsterone are mainly produced in
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the adrenal glands and are only partly derived from the liver. SaAdiol and 58 Adiol are
assumed to be direct metabolites of testosterone, while etiocholanolone and androsterone
represent the end-products of androgen metabolism, and their urinary concentrations are
therefore definitely elevated after exogenous testosterone administrations. Fig. 6.1 represents
a simplified pathway which was chosen based on the urinary steroids measured. The
real metabolism is much more complicated, involving a multitude of additional enzymatic
reactions, intermediate metabolites, and regulatory mechanisms.

Steroid metabolism plays a significant role in athletic doping because it involves the use,
detection, and potential abuse of anabolic-androgenic steroids (AAS) by athletes to enhance
their performance [26]. Anabolic steroids are synthetic derivatives of testosterone, a naturally
occurring hormone in the body. They are known to promote muscle growth, increase strength
and endurance, and improve recovery time. In the context of doping, athletes may misuse

steroids in various ways, such as:

* Performance-enhancing substance: Anabolic steroids are used to enhance athletic
performance by increasing muscle mass, strength, and power. This can provide athletes

with a competitive edge over their opponents [26].

* Fat reduction: Steroids can promote the breakdown of fat and increase the metabolic
rate, leading to reduced body fat percentages. This can be advantageous for athletes

participating in sports where weight categories are a factor.

* Increased red blood cell production: Administration of testosterone can stimulate
the production of red blood cells. This can improve oxygen-carrying capacity and
endurance performance [242].

The significance of steroid metabolism in athlete doping lies in the detection and pre-
vention of illicit usage. Anti-doping organizations employ different methods to identify the
presence of steroids or their metabolites in athletes’ samples. These methods include urine
and blood tests, which can detect the misuse of steroids even if they have been administered
in different forms or masked through metabolism.

6.4 GRAph-based modeling for Metabolism Pathway (GRAMP)

A GRAph-based modeling approach for Metabolism Pathway (GRAMP) is proposed (Fig. 6.2),
which incorporates domain knowledge for the identification of sample swapping in sports.
The model consists of two main steps: i) embedding steroid metabolism into graph structure,

and 11) model architecture for graph classification.
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Fig. 6.1 Simplified human steroid metabolism pathway based on measured urinary steroids.
The diagram shows the interconnected sequence of biochemical conversions involved in the
synthesis and degradation of key steroid hormones.

6.4.1 Embedding Steroid Metabolism into Graph Structure

To embed the steroid metabolism pathway into a graph structure, each metabolite is consid-
ered as an individual node in the graph. The edges between these nodes are used to represent
the connections and interactions between metabolites and reactions. For example, an edge
may denote the conversion of testosterone to androsterone catalyzed by a specific enzyme. By
representing the pathway as a graph, the structural relationships and dependencies between
metabolites can be captured, enabling the discovery of important patterns and interactions

within the steroid metabolism process.

Graph Construction A graph G; = (V;, E;) with directed edges consists of nodes V; =
{Xi1,Xi2," -+ ,Xip, } and edges E; C V; x V;. The graph is constructed for each longitudinal
profile of the athlete and the graph representation of the steroid metabolism pathway is
defined as follows:

n;
Vi= || Vij = Vi Vi -+ 1 Vi } 6.1)
j=1
n; n;
Ei= || || Eijx CVixVi (6.2)
j=lk=1
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where n; denotes the total number of samples in the longitudinal profile for athlete i, and

|| represents the concatenation operation. Each sample can be represented as:

Vi.j = {XijoXij1,Xij2, - Xijp } (6.3)

Eijx € VijxVij (6.4)

where x; o represents the master node for each sample and x;;; to x;;, nodes represent

each metabolites.

Master Node A master node is defined for every sample in the longitudinal profile of
the athlete. These master nodes are interconnected in a homogeneous graph representation.
Considering that all metabolites originate from a common parent compound, the master node

is defined as the cumulative representation of all metabolites within a given sample.

P
Xijo =Y Xijk (6.5)
k=1

where x; o is the master node for sample j of athlete i, and x; j represents the metabolite
k in the sample. The master node serves as a central point of reference for each sample,
capturing the overall characteristics of the metabolites present in that sample.

6.4.2 Model Architecture for Graph Classification

Once the steroid metabolism pathway has been transformed into a graph structure, a suitable
model architecture is required for graph classification. The goal is to effectively utilize the
learned graph representations to classify whether the graph representing the longitudinal
profile of the athlete is normal or anomalous. If there is an anomalous case, it means at least
one sample is manipulated and swapped with a clean sample from another individual.

The GCN assigns equal importance to all neighboring nodes, which may not be suitable
for this graph classification task as certain nodes or metabolites could contain more important
information than others. Hence, the Graph Attention Network (GAT) model [294] architec-
ture proves to be an optimal choice, which incorporates attention mechanisms to focus on
important nodes and edges within the graph during the learning process. It assigns different
attention weights to neighboring nodes based on their relevance to the current node, enabling
the model to effectively aggregate and learn from the graph’s structural information. By
applying the GAT model to the graph representation of the steroid metabolism pathway, the

relevant features and interactions between metabolites can be effectively captured. The GAT
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model is trained using labeled data, optimizing the attention weights and model parameters
to achieve high-performance graph classification on the steroid metabolism pathway data.
Table 6.2 show the detailed model architecture of the GRAMP model, including the graph
attention mechanism acting on different nodes of a graph structure.

Graph Attention Layer It takes a collection of node features as input, denoted as h; =
{hi,hy,...;hy,}, where m is the total number of nodes in graph G;, i.e., m = n; X p. Since
each node is represented with a single metabolism parameter, /; € R.

Self-attention is performed on the nodes using a shared attentional mechanism that
computes attention coefficients a;; for each pair of nodes i and j in the graph. The attention

coefficients are computed as follows:

a,-j = CZT [Wh,'| |Whj] (6.6)

where W € R is learnable shared weight matrix applied to each node. The attention
coefficient a’ indicates the importance of the node j’s value to node i. The model allows
every node to attend to every other node. Next, a non-linear activation function ¢;; = o(a;;)
is applied to the attention coefficients.

To ensure that the coefficients are easily comparable across different nodes, they are

normalized over all neighbors of node i using the softmax function:

exp(e;j)
Ykengh, €xp(eix)

where o;; represents the normalized attention coefficient from node i to node j, and Ngb;

0;j = softmax(e;j) = (6.7)

denotes the set of neighbors of node i in the metabolism pathway graph.
Finally, the output of the attention layer is computed by aggregating the features of
neighboring nodes weighted by their attention coefficients:

h;:G( Z OC,'jWhj) (6.8)
JENgb;

where o is a non-linear activation function, and W is a learnable weight matrix applied
to the features of neighboring nodes. This process allows the model to focus on the most

relevant nodes in the graph, effectively capturing the relationships between metabolites in

the steroid metabolism pathway.

Loss Function For the graph classification task of distinguishing anomalous and normal

longitudinal profiles, the binary cross-entropy (BCE) loss function was used as follow:
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Table 6.2 Detailed architecture of GRAMP model, showing the input output dimensions and
the number of attention heads used in each layer.

Layer Input Output Attention Heads
GATConvl Ix1 1x6 4

ReLU + Dropout - - -
GATConv2 4x6 1x6 4

ReLU + Dropout - - -
GATConv3 4x6 1x6 4

ReLU + Dropout - - -
GATConv4 4x6 1x6 1

ReLU + Dropout - - -
GlobalPooling - - -
Linearl Ix6 1x6 -

RelLLU - - -
Linear2 Ix6 1x1 -
Sigmoid - - -

1 N
Zce = =5 Y (vi-log§i+ (1-y:) -log (1-¥) ) (6.9)

i=1

where N is the total number of longitudinal profiles, y; is the true label for profile i, and ¥;
is the predicted probability for profile i. The model is trained to minimize this loss function,
thereby improving its ability to accurately classify graphs as either anomalous or clean.

6.5 Experiments

6.5.1 Datasets

WADA and other anti-doping organizations across the world conduct doping tests throughout
the year at various national and international athletic events, which results in large-scale
historical blood and urine data for each athlete. The dataset represents the longitudinal
profiles of real-world male and female athletes [234]. It consists of 1,432 longitudinal
profiles corresponding to 7,545 samples, where each athlete may have between 3 and 20
samples in their profile. The dataset was randomly partitioned, with 80% used for training
and 20% for testing the algorithm. A summary of the number of samples belonging to male

and female athletes is provided in Table 6.3. Each sample comprises a set of biomarkers,
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referred to as steroid metabolism parameters, which exhibit significant changes upon steroid

administration, as listed in Table 6.1.

Table 6.3 Data statistics used for training and testing the GRAMP model.

Male Female

Profile Sample Profile Sample

Training 846 4349 301 1594
Testing 211 1121 74 481

Total 1057 5470 375 2075

6.5.2 Baseline Methods

A set of baseline models was selected to serve as a performance benchmark for comparing

the proposed GRAMP model. These baselines consist of both non-graph and graph-based

models that do not incorporate domain knowledge into the model training. This performance

comparison will help us to explore the potential impact of leveraging the steroid metabolism

pathway into the decision making using the GRAMP model. These baseline models were

trained and optimized using the training dataset.

Bayesian Method (SoTA) [271]: Determines personalized thresholds for each steroid
parameter by modeling prior distributions derived from a reference population. These

thresholds are then used to assess new samples.

Random Forest (RF) [29]: An ensemble learning method that combines multiple

decision trees to improve classification accuracy and improve interpretability.

XGBoost (XGB) [41]: Utilizes an optimized, distributed gradient boosting algorithm

to achieve high predictive performance on structured data.

Graph Convolutional Network (GCN) [140]: Learns representations of nodes in a

graph structure, where each node corresponds to a sample in the longitudinal profile.

Graph Isomorphism Network (GIN) [326]: Learns expressive node embeddings by
aggregating both local and global substructural information, with each node represent-

ing a sample.

Graph Attention Network (GAT) [294]: Applies attention mechanisms to graph
nodes for learning informative embeddings, achieving SoTA performance on various

graph-based tasks. Each node represents a sample.
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6.5.3 Experimental Settings

Given that the fraud detection problem has been framed as a supervised graph classification
task, it is important that a labeled dataset be used, comprising samples for each class, i.e.,
normal and anomalous profiles. A random selection was performed on the dataset, with 50%
of the profiles chosen. In each selected profile, one sample was manually replaced with a
sample from a different profile. These modified profiles were labeled as anomalous (labeled
as '1’). The remaining 50% of the profiles were considered normal (labeled as *0’). To ensure
consistency, each profile was normalized separately to unit norm.

All the models are implemented based on the SCIKIT-LEARN [218], XGBOOST [41], and
PYTORCH-GEOMETRIC [82] packages. One significant challenge during model training was
overfitting, which limits the model’s generalization capability. Since the training dataset is
small, addressing overfitting was identified as a critical concern in this analysis. Therefore,
the k-fold cross-validation method [238] was performed to train the models, with & set to 5.
Each fold was used as a validation set, while the remaining folds were collectively employed
as the training dataset, and the overall performance was determined by computing the mean
performance across all the folded models.

Each model comprises a set of hyperparameters that can be adjusted to improve the
training process. Consequently, conducting a coarse grid search is necessary to determine the
optimal combination of these hyperparameters. The hyperparameter optimization framework
is used to efficiently explore a substantial grid space while promptly eliminating unpromising
trials and implemented this framework using OPTUNA [3]. The optimized trained model
is deployed on the testing set, enabling predictions for previously unseen profiles. The
performance evaluation of each model was conducted using accuracy, sensitivity, specificity,

and area under the ROC curve.

6.6 Results

6.6.1 Performance Comparison

The performance of the GRAMP model was compared with all baseline models for detecting
fraudulent behaviour, i.e., sample swapping, on both male and female datasets, as presented
in Table 6.4 and Table 6.5, respectively. The uncertainties are calculated using a 5-fold cross-
validation approach. Among the baselines, SOTA and XGB demonstrated better performance,
highlighting the importance of bayesian and boosting models for fraud detection. Despite
an accuracy of over 60%, GIN was not able to successfully detect any anomalous profiles

(sensitivity below 40%). In case of female athletes, a similar trend can also be seen where
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SoTA and XGB showed better performance among baselines. Graph models (GCN, GIN,
GAT) show high specificity values but less accuracy compared to other baselines. This shows
that the homogenous graph structure, where each node representing the sample is unable
to leverage the metabolism pathways well. The proposed GRAMP model outperformed all
baselines, showing that adding domain knowledge by defining a graph structure based on
the metabolism pathway is effective. Sensitivity values exceeding 80% and AUC values

exceeding 90% were achieved on both male and female athletes.
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Fig. 6.2 Overview of the GRAMP model: i) The steroid metabolism pathway is embedded into
a graph structure by treating metabolites as nodes and defining their biochemical relationships
as edges. This is combined with the longitudinal steroid profile of an athlete to form a
time-resolved graph representation for each sample. ii) The graph classification architecture
leverages multiple Graph Attention Network (GAT) layers, each followed by RelLU activation
and dropout for regularization. Baseline and GRAMP-specific graph construction strategies
are shown, along with the internal mechanism of the attention computation.



Table 6.4 Performance comparison of the proposed GRAMP model and baseline methods on male athletes. The GRAMP model

consistently achieves the better scores across all metrics, showing its improved generalization capability.

Metrics SoTA RF XGB GCN GIN GAT GRAMP
Train Test Train Test Train Test Train Test Train Test Train Test Train Test
AC - 0.76 0.65+£0.01 0.66 0.73+0.01 0.74 0.684+0.02 0.69 0.62+0.04 0.67 0.66£0.08 0.72 0.89+0.04 0.91
SN - 0.73 0.65+£0.02 0.68 0.76+0.02 0.77 0.36+0.04 0.38 0.21+0.08 0.35 0.35£0.20 0.55 0.86£0.02 0.86
SP - 0.82 0.64+0.02 0.65 0.71+0.02 0.70 0.994+0.01 1.00 1.004£0.00 1.00 0.96+0.04 0.90 0.93+0.07 0.97
AU - - 0.65+0.01 0.73 0.73+0.01 0.81 0.674£0.05 0.79 0.83+0.04 0.89 0.75£0.08 0.83 0.91+£0.04 0.92
Table 6.5 Performance comparison of the proposed GRAMP model and baseline methods on female athletes. The GRAMP model
consistently achieves the better scores across all metrics, showing its improved generalization capability.
Metrics SoTA RF XGB GCN GIN GAT GRAMP
Train Test Train Test Train Test Train Test Train Test Train Test Train Test
AC - 0.71 0.64+0.01 0.63 0.76+0.03 0.73 0.68+0.05 0.68 0.564+0.05 0.60 0.52+0.03 0.53 0.70+£0.06 0.88
SN - 0.38 0.66+0.03 0.67 0.79+0.03 0.78 0.35+0.08 0.37 0.0840.06 0.21 0.084£0.04 0.11 0.60£0.17 0.82
SP - 0.85 0.62+£0.02 0.60 0.72+0.04 0.67 1.00+£0.00 1.00 1.004£0.00 1.00 1.00£0.00 0.97 0.82+0.14 0.95
AU - - 0.64£0.01 0.68 0.76+0.03 0.81 0.76+0.06 0.76 0.724+0.07 0.74 0.61£0.06 0.70 0.82+0.11 0.95
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6.6.2 Precision-Recall Curve

The ROC and PRC curves for all models evaluated on male and female datasets are presented
in Fig. 6.3. As depicted, the proposed model outperforms all the baseline models in both
curves. The results for graph models are quite similar and better than non-graph model
RF, possibly because the fraud activity in longitudinal profiles is too complex for a simple
classification model to handle. Of all the baselines, XGB is the most competitive, likely

because it generates a representation of parameters through a boosting algorithm.
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Fig. 6.3 ROC and PR curves comparing the performance of the proposed GRAMP model
and baseline models for male and female athletes. The proposed model consistently achieves
the highest AUC across both ROC and PR curves, showing better detection capability across
genders.

A longitudinal profile of both a male and a female athlete was randomly selected from the
testing dataset, and the pairwise attention coefficients for one of the samples were computed.
Fig. 6.4 illustrates the weighted contribution of the neighborhood to each node. It can be

observed that testosterone and epitestosterone exhibit the highest attention coefficients to
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the master node in comparison to other metabolism parameters. This indicates that higher
importance is assigned by the model to the message passing between the master node and

testosterone, as well as between the master node and epitestosterone.
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Fig. 6.4 Pairwise attention coefficients for a randomly selected sample from the randomly
selected longitudinal profile of male and female athletes. The attention heatmaps show the
significance and direction of information propagation between different steroid metabolites
within the GRAMP model. Higher attention weights indicate stronger influence from source
to destination node, thereby revealing the underlying dependencies and pathway-specific
interactions that contribute to the model’s interpretability.

Since the data for male athletes are generally more sparse than for female athletes, i.e.,
greater variation is observed in the concentration values of metabolism parameters in the
male body. Therefore, higher attention coefficient values are recorded for male athletes.
Additionally, two cases of information propagation are considered: i) when testosterone is the
source and the master node is the destination, indicating message passing from testosterone
to the master nodem and ii) when the master node is the source and testosterone is the
destination. For male athletes, relatively similar attention coefficient values are observed
in both cases, suggesting that bidirectional message passing is significant. In contrast, for
female athletes, relatively higher attention coefficients are observed in the latter case. A
similar pattern is also observed with epitestosterone.

Overall, the proposed GRAMP model consistently outperforms other SOTA baseline
models due to two factors. First, this model effectively captures the structural behavior of
longitudinal profiles through graph representation learning. Unlike other graph models such
as GCN, GIN, and GAT, which treat longitudinal profiles as homogeneous graph structures,
the model explicitly considers their structural characteristics. Next, the model incorporates

an attention mechanism that generates high-level embeddings, facilitating improved pattern
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learning. Consequently, GRAMP model outperforms other baselines, particularly at the initial
stages of the curve, and exhibits remarkable accuracy in detecting fraudulent longitudinal

profiles with high specificity, showcasing its promising capabilities.

6.6.3 Ablation Studies

The ablation studies were performed to study the effect of different components in the
GRAMP model, like the selection of the master node and the number of graph layers/hops.
First, different variations in the master node were tried by selecting different functions,
including SUM (nodes) (the sum of values of all nodes), T/E (the ratio of T and E), and
Avg(nodes) (the mean of values of all nodes). Fig. 6.5 shows the performance of the model in
all three variations on male and female athletes. Since the master node represents the entire
sample, it should contain information about all the metabolism parameters. Therefore, it
was observed that T/E shows low performance for male athletes because it only contains
information about testosterone and epitestosterone. On the other hand, Avg(nodes) shows
low performance for female athletes because the concentration values of all the metabolism
parameters have different scales, especially for female athletes due to data sparsity. Therefore,
averaging all the values would not be a feasible solution and selecting the sum of all the
values of all the metabolism parameters outperforms the other two variations for both male

and female athletes.
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Fig. 6.5 Performance of the GRAMP model under different configurations of the master node
for male and female athletes. The comparison shows how the choice of master node affects
the model’s capability in detecting and classifying sample swapping cases.

Next, to assess the importance of the attention layer, the number of GAT layers in the
model network was varied. Fig. 6.6 presents the model’s performance for both male and
female athletes. It was observed that the performance increased with the addition of GAT

layers up to a certain point, after which it began to decline. Four layers were found to be
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optimal for this problem, indicating that at least four hops are required for effective message

passing within the graph network.
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Fig. 6.6 Performance of the GRAMP method across different numbers of graph attention
layers for male and female athletes. The plots depict how different metrics vary with the
number of GAT layers.

6.7 Summary

Modeling biological pathways plays a crucial role in supporting decision-making in clinical
and forensic applications, including anti-doping investigations in sports. The issue of sample
swapping has emerged as a serious form of fraudulent behaviour, allowing athletes to avoid
positive doping test results. Many existing detection methods treat biomarkers as independent
variables and do not consider the underlying biological structure that connects these variables
through known metabolic pathways. To address this limitation, this chapter introduced
GRAMP, a graph-based anomaly detection model that incorporates domain knowledge
through graph representation learning. GRAMP models the steroid metabolism pathway as
a structured graph and uses graph attention mechanisms to learn meaningful embeddings
that reflect both direct and indirect relationships between steroid biomarkers. The model
was evaluated on real-world longitudinal datasets and demonstrated improved accuracy and
reduced false positives compared to existing SOTA approaches, validating its utility for
decision-making in anti-doping contexts.

GRAMP directly addresses RQ2, which concerns the role of domain knowledge in
improving the performance of anomaly detection systems. The existing models rely on sim-
plifying assumptions such as feature independence or uniform feature importance. GRAMP
overcomes these constraints by leveraging Graph Attention Networks, which enable it to
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learn context-sensitive node embeddings where the influence of each biomarker is modulated
by its neighbours in the metabolic pathway. This mechanism ensures that anomalies are
detected not just as statistical outliers in individual features but as pathway-level deviations
that manifest across biochemically related nodes. As such, GRAMP is particularly effective
in identifying manipulation patterns, such as hormonal suppression or synthetic enhance-
ment, that propagate through the network in coordinated and physiologically implausible
ways. The proposed model introduces a biologically informed computational framework that
utilizes attention mechanisms to provide not only performance gains but also interpretability.
By assigning edge-wise attention coefficients during training, GRAMP identifies the most
influential nodes and substructures responsible for anomalous predictions. Furthermore, the
use of metabolic graphs enables the model to generalize across athletes with varying profile
lengths and biological baselines, offering robustness in noisy data conditions, which is a
persistent challenge in real-world longitudinal datasets.

The evaluation showed that GRAMP achieves higher sensitivity and specificity than
existing methods, including the Bayesian model currently used by WADA. It correctly
identified more sample swapping cases and can reduce unnecessary DNA testing by up to
15%, showing clear operational advantages. GRAMP also outperformed non-graph models
by 17-25% in decision accuracy, and its robustness under sparse and noisy data conditions
further supports its use in real-world anti-doping workflows.

In conclusion, GRAMP provides a methodologically grounded approach for integrating
biological knowledge into anomaly detection systems using graph neural networks. By
capturing structured interactions among biomarkers, the model delivers biologically con-
sistent and interpretable outputs suitable for regulatory decision-making. This contributes
to both improved performance in detecting fraudulent behaviour and the broader goal of
integrating structured domain knowledge into machine learning models for clinical and

forensic applications.
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Chapter 7

MPP: Metabolism Pathway-driven
Prompting

7.1 Introduction

"Longitudinal clinical profiles represent repeated measurements of biological samples such
as blood, urine, or other biological specimens collected over time [254, 6]. These profiles are
important in capturing the dynamic nature of biological processes, as they provide a time-
evolving perspective of various physiological processes. The biomarkers measured within
these samples often reflect underlying metabolic pathways [201]. Detecting anomalies in
such data requires not only accurate statistical modeling but also interpretability, as clinicians
and regulators need to understand the rationale behind why a profile is considered suspicious.

In clinical settings, anomaly detection in these longitudinal profiles is an important
task [127]. Identifying abnormal behavior in such data can reveal critical insights, ranging
from disease diagnosis to sample tampering as potential doping activity in sports [203, 330].
It mainly helps clinicians to monitor biological and physiological changes over time and
detect suspicious behavior. Several studies have highlighted the potential and limitations
of Large Language Models (LLMs) in clinical domain-specific tasks [8, 134, 287]. Despite
their success in text generation, completion tasks, etc., their ability to process and analyze
longitudinal clinical data, particularly in the context of metabolic pathways and biological
changes, remains underexplored [99, 1]. Understanding how these models can leverage
metabolic information to make informed decisions is critical for improving their performance

in anomaly detection tasks.

'Based on Publication: Rahman, M.R., Liu, R., Maass, W. (2024). Incorporating Metabolic Information
into LLMs for Anomaly Detection in Clinical Time-Series. In Workshop on Time Series in the Age of Large
Models: Neural Information Processing Systems (NeurIPS 2024).
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Cholestrol

SaAdiol

5B Adiol

Fig. 7.1 Simplified representation of the steroid metabolism pathway, showing the bio-
chemical relationships between key urinary steroid metabolites. Nodes represent individual
metabolites, while directed edges indicate the metabolic conversions.

This chapter addresses RQ3, which concerns how anomaly detection systems can provide
interpretable and domain-informed reasoning. Specifically, a targeted prompting method is
proposed by integrating metabolic pathway structures into LL.Ms to improve their ability
to detect anomalies based on contextual understanding. The effectiveness of this approach
is demonstrated in the context of doping detection in sports, where it is applied to identify
suspicious urine samples within athletes’ longitudinal profiles. These profiles include the
concentrations of different metabolites, reflecting the steroid metabolism as shown in Fig. 7.1,
and are important for identifying potential doping activities [223, 231]. The key contributions

of this work can be summarized as follows:

* Metabolism Pathway-driven Prompting (MPP) is proposed, which incorporates infor-
mation about metabolic pathway structures and the temporal evolution of different
metabolites into LLMs for anomaly detection. This approach improves explainability

by enabling contextual reasoning grounded in domain-specific biochemical knowledge.

* The effectiveness of this method is demonstrated in the context of doping detection
in sports and compared with the baseline prompting methods like zero-shot learning,

in-context learning and chain-of-thought.

7.2 Related Work

Anomaly Detection in Longitudinal Profiles

Detecting anomalies in longitudinal clinical data is a key task in biomedical data analysis,

often used for disease monitoring, treatment assessment, and fraud detection in sports.
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Traditional methods such as Isolation Forests [168] and variational autoencoders like f3-
VAE [182] are widely used for unsupervised detection of outliers in high-dimensional data.
While effective in capturing statistical deviations, these models typically lack biological
interpretability. To address this, recent works in systems biology and metabolomics have
focused on integrating domain knowledge, such as biochemical pathway structures, into
data-driven models [99]. Graph-based representations of metabolic networks have shown
particular promise in modeling steroid metabolism for anomaly detection, especially in
anti-doping efforts [231], where the temporal and relational aspects of metabolite transitions

are critical for detecting suspicious physiological patterns.

Language Models for Biomedical Reasoning

In biomedical settings, models like BioGPT [181] and Clinical BERT [10] have been fine-
tuned for domain-specific applications including clinical note summarization, diagnosis
classification, and question answering. However, these models are predominantly trained on
unstructured textual data and are not inherently designed to reason over structured time-series
or graph-based clinical inputs. While prompting strategies such as zero-shot learning [260],
in-context learning [217], and chain-of-thought prompting [92] have been proposed to
improve LLLM generalization, they remain limited in clinical anomaly detection due to their
lack of temporal and physiological reasoning capabilities. Moreover, studies such as [1]
have highlighted that generic LLLMs often fail to recognize meaningful biomedical patterns
without structured domain adaptation. This work introduces a targeted prompting approach
that combines the temporal dynamics of clinical profiles with metabolic pathway graphs to

improve LLM reasoning and anomaly detection in structured biomedical time-series data.

7.3 Preliminaries

Let us consider the longitudinal profile of athletes X; = {X;1,Xp, ..., Xy, }, Where X; i ERP
with total p metabolite and X;; ; represents the measurement of metabolite k at time j.
The temporal difference is defined as Axl.ijk = Xjj k — X;(j—1)x Tepresenting the change in
metabolite k over time. The anomaly detection task is to learn a function f(x;;) that gives
an anomaly score to each sample x;; in the longitudinal profile X;. The function flags the

anomalous sample if the magnitude of the sum of Axl.Tj , exceeds a predefined threshold 0,
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indicating significant deviation from the expected change:

T
L, ‘25:1 AX;;

‘>6

f(Xij) = (71)

0, else

The metabolic structural difference is defined as Axﬁ.‘;{ k = Xijk — Xjj (k+1) Which needs to be

considered.

7.4 Metabolism Pathway-driven Prompting (MPP)

A targeted prompting method is proposed by integrating metabolic pathway structures and
their temporal evolution as shown in Fig. 7.2. First, LLM (Pre-Prompt I) is tasked to analyze
the longitudinal profile and detect anomalies using zero-shot learning. Here, the LLM usually
considers the temporal changes between consecutive samples. If these changes exceed the
statistically significant threshold, it flags the corresponding sample as anomalous with an
explanation. In a separate session, the LLM was provided with Pre-Prompt 11, which included
the temporal and metabolic graph representation of the given longitudinal profile, along with
a task to extract domain-specific contextual information from these graph structures. The
LLM generates a detailed textual explanation by assessing whether the temporal changes are
consistent with the expected metabolic behavior based on known pathways. Next, the textual
representation of domain knowledge is provided to the previous LLM, which is then tasked
to rethink (Prompt) by incorporating this domain-specific information. The LLM refines the
initial prediction by combining the domain-specific information and provide more accurate,

and contextually aware prediction.

7.4.1 Temporal Graph

The graph G = (Vr, E7) represents the change in concentration levels of different steroids
over time. Nodes are defined as V7 = {x;1,X;2, ..., X, }, where each node corresponds to the
sample in X; and the node feature represents the measurements for the p steroids. The edges
Er ={wr(x;1 = Xpn),wr (Xp = X33),. .. 7WT<Xi(n,~—l) — Xin;) } Tepresent transitions between
nodes over time, connecting the x;; between successive time points and the edge weights as
the Euclidean distance between the steroid levels at two time points and normalized to the
range [0, 1], incorporating the changes in all p steroids. For the edge connecting X;(,, 1) and
Xin;» the weight could be calculated as:
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Fig. 7.2 Schematic overview of the Metabolism Pathway-driven Prompting (MPP) method.
The method operates in two sessions: Session I leverages the LLM with a pre-prompt
derived directly from clinical longitudinal profiles to generate preliminary predictions and
explanations. Session II constructs both temporal and metabolic graphs to form a graph-based
textual representation, which is then used to refine the prompt through contextual reasoning.
The revised prediction integrates pathway knowledge and temporal trends, enabling more
biologically plausible and explainable outputs from the LLM.

P
Wr (Xi(n—1) = Xint) = | 3 (Kin—1)k — Xin; k)2 (7.2)
k=1
The temporal graph is represented as an adjacency matrix A7 where each entry A7 (xl-( j—1)sXi i)

represents the weight of the edge from node x;(;_) to node x;;:

0 wr(xi —xXn) wr(Xig— Xp3)
0 0 wr (Xiz — X,'3)
=10 0 0

wr (Xi1 — Xin,)
wr (Xi2 = Xin,)
Ar

wr (Xi3 = Xin,) (7.3)
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7.4.2 Metabolic Graph

The graph Gy = (Vir, Epr) represents the directional flow of p different metabolites in the
pathway. Nodes are defined as Vyy = {s1,s2,...,s,}, where each node s; represents a steroid.
The edges represent the interactions or metabolic conversions between these steroids. The
weight of an edge wy(s; — s;) represents the conversion rate from steroid s; to steroid
sj, where i, j = 1,2,...,p and i # j. If there is no conversion between two steroids, the
corresponding entry is zero. The metabolic graph is represented as an adjacency matrix Ay

where each entry Ay(s;,s ;) represents the weight of the edge from node s; to node s;:

0 wam(st —82) wu(si—s3) ... wu(si —sp)
WM(52 —>Sl) 0 WM(SZ —>S3) WM(Sz —>Sp)
Ay = WM(S3 — Sl) WM(53 — Sz) 0 WM(S3 — Sp) (7.4)
WM(Sp —>S1> WM<Sp —)Sz) WM(Sp —>S3) 0

7.5 Experiments

7.5.1 Datasets

Two real-world datasets (Steroid-M and Steroid-F) were used, consisting of longitudinal
steroid profiles collected from male and female athletes, respectively [234, 232]. The Steroid-
M dataset contains 755 profiles with 4214 samples and Steroid-F dataset contains 375 profiles

with 2307 samples. The data contains less than 20% anomalous longitudinal profile.

7.5.2 Baseline Methods

Experiments are conducted using different open-source LLMs: (i) LLaMa 2-7B [235], (i1)
Mistral-7B [207], (iii) Falcon-7B [174], and (iv) GPT2 [133]. These models are selected
due to their efficiency in providing quicker results, which is particularly suitable for the
size of the dataset. The performance of the proposed method is compared with various
baseline prompting methods, including Zero-Shot prompting (ZS) [260], In-Context Learning
(ICL) [217], and Chain-of-Thought (CoT) [92], as well as two non-LLM-based models,
IsoForest [75] and 3-VAE [182].
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7.5.3 [Experimental Settings

All experiments were conducted on a workstation equipped with an NVIDIA TITAN RTX
GPU (24GB), Intel 19 processor, and 31GB total RAM. The same computational setup
was used for all prompting methods and language models to ensure fair and consistent
comparisons. All models were run in inference mode without fine-tuning, using float16
precision where supported. The implementation was carried out using PyTorch (v2.1.0), and
the Hugging Face Transformers library (v4.39.1), with GPU acceleration enabled through
CUDA 12.1 and cuDNN 8.9.

Graph structures were constructed using the NETWORKX (V3.2) package and trans-
formed into structured textual prompts. Classification metrics such as accuracy, sensitivity,
specificity, and F1-score are used for the anomaly detection task. To reduce randomness,
all experiments were repeated over three independent runs with fixed random seeds, and
results were averaged. The full prompt designs used in the MPP framework are shown in
Fig. 7.3, 7.4, 7.5. The prompts were designed to be concise yet informative, ensuring that
the LLMs could effectively leverage the metabolic pathway information while maintaining
clarity in the task description.

Pre-Prompt I: } ~
Task: Given the following longitudinal steroid profile of an athlete, where multiple urine samples have been
collected at different time points, each containing values for various steroid parameters such as A, Etio, E, T,
SaAdiol, and 5bAdiol, identify if any sample is anomalous compared to the others. If an anomalous sample
exists, return the sample number and provide an explanation for why it is considered anomalous. If no
anomalies are found, state that the profile is clean.

Longitudinal profile data:
Sample 4 Etio B T SaAdiol  SbAdiol
1 2208.064 1237.146 16.851 29.344 48518 122.957
2 2428.87 1360.864 18.534  26.406  48.518 135251
3 2428.87 1113.434 16.851 29.344  48.518  122.957
4 2208.064 1113.434 16.851 29.344 48518 122.957
5 1987.258 1360.864 15.162  29.344  48.518 135.251
6 2208.064 1113.434 16.851 26.406 53.37 110.662
7 2208.064 1237.152 18.534  32.275  43.667 110.662
8 1987.258 1113.434 16.851 29.344 53.37 122.957
9 1987.258 1360.864 18.534  29.344  43.667 135.251
10 3469.491 1922.573 17.402  27.341 70.835  132.211
Please perform anomaly detection and explain the findings. y

Fig. 7.3 Pre-Prompt I for Metabolism Pathway-driven Prompting. The task instructs the
language model to identify anomalous samples based on deviations from the rest of the
samples in the longitudinal profile and provide explanations for detected anomalies.
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7.6 Results

7.6.1 Performance Comparison

Table 7.1 shows that by incorporating domain-specific knowledge of metabolic pathways,
MPP improves the LLMs’ understanding of clinical data, leading to better performance. For
the LLaMA 2-7B model, MPP achieves an accuracy of 71.4% and an F1 score of 57.0%,
outperforming ZS’s 65.2% accuracy and 40.3% F1 score on Steroid-M. MPP improves
both sensitivity and specificity, which is important in clinical settings to balance correctly
identifying actual anomalies while minimizing false positives. In contrast, ICL and CoT
generally underperform due to their lack of domain-specific guidance, i.e., ICL with GPT2
on Steroid-M yields only 28.2% accuracy and a negligible 0.2% F1 score. This underper-
formance highlights the importance of incorporating domain knowledge, as MPP does, to

improve model performance for specialized tasks like clinical anomaly detection.

7.6.2 t-SNE Representation of Embeddings

Fig. 7.6 shows the cluster formation in the embedding space of the LLM output which
represents the distinct latent patterns captured by each prompting method. Across all models,
the MPP forms well-defined clusters, indicating that it consistently produces more structured
and distinct embeddings compared to the other prompting methods. This suggests that MPP
effectively captures relevant patterns for anomaly detection in clinical data, outperforming the
more dispersed clustering seen in ZS and ICL. The CoT also produces structured clusters, but
MPP shows greater distinction and compactness, especially in LLaMA 2-7B and Mistral-7B,
highlighting the efficacy of pathway-driven prompting.
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[ Pre-Prompt II: }
(

Information: Given the domain knowledge representing in form of structural and temporal graph explainin,
the steroid metabolism and the temporal evolution of metabolites respectively. In the structural graph, each
node represents a steroid metabolite, and edge weights represent conversion rates between from one
metabolite to another. In the temporal graph, each node represents a sample, and the edge weights represent
the distances between the samples, showing how the steroid profiles change over time.

distance.
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Task: Generate a textual representation of this domain knowledge for the given longitudinal profile by
extracting the biological information. Do not explain the graph structure.
* Include the detailed insights from the edge weights of the structural graph which represent the conversion

rate between the two metabolites.
* Include the detailed insights from the node matrix of the temporal graph which represent the concentration

level of different metabolites in every sample (node).
* Include the detailed insights from the edge weights of the temporal graph which represent the euclidean
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Fig. 7.4 Pre-Prompt II for Metabolism Pathway-driven Prompting. This prompt incorporates
domain knowledge from structural and temporal graphs to improve contextual reasoning.
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~)

Prompt: } \
Task: Below is the information about the domain knowledge of the structural and temporal behaviour of the
longitduinal steroid profile. Use this information and think again about the anomolous sample in the
longitudinal profile. If an anomalous sample exists, return the sample number and provide an explanation for
why it is considered anomalous. If no anomalies are found, state that the profile is clean. These insights
provide a detailed biological understanding of the temporal changes and metabolic conversion pathways,
offering clues about physiological states, potential anomalies, or patterns within the steroid profile over time.

Information:
The longitudinal profile of steroid metabolism provides significant biological insights, particularly when
analyzing the conversion rates and temporal evolution of steroid metabolites.

Metabolism Pathway:

The structural graph offers a detailed view of the steroid metabolism, focusing on how metabolites are

interconverted. The edge weights between metabolites represent the conversion rates, reflecting the intensity

or likelihood of one metabolite converting into another. For example:

* The conversion between Testosterone (T) and both Sa-androstanediol (5aAdiol) and 5p-androstanediol
(5bAdiol) has a conversion rate of 0.5, indicating that Testosterone is equally likely to be metabolized into
these two derivatives.

* A notable conversion occurs between 5aAdiol and metabolite A with a conversion rate of 1.0, suggesting a
very high or complete conversion of 5aAdiol into metabolite A.

* Additionally, 5bAdiol shows a weaker connection to Etiocholanolone (Etio) with a conversion rate of 0.1,
implying a less significant metabolic conversion between these metabolites.

* No direct conversions are observed between other metabolites like Etio, Epiandrosterone (Epi), or
metabolite A, indicating that these might represent metabolic endpoints or have indirect interactions not
captured by the direct edge weights.

Temporal Evolution:

The temporal graph shows the evolution of steroid profiles across various samples, with Euclidean distances

between nodes representing changes in metabolite concentrations over time. Larger distances between nodes

indicate more substantial changes in steroid profiles between samples:

» The smallest distances are seen between samples 2 and 3 (0.0845) and samples 3 and 4 (0.0661), indicating
minimal changes in the steroid profiles across these time points, reflecting stable or slightly fluctuating
metabolism.

» In contrast, a significant change is observed between samples 9 and 10, with a distance of 1.0, pointing to a
substantial shift in the steroid profile at this point in time, suggesting either a physiological response,
external intervention, or an anomaly in metabolism.

» The temporal progression from sample 5 to 6 also shows a moderate shift with a distance of 0.1426,
highlighting evolving metabolite levels.

* Metabolite A shows significant variation, starting at 2208.064 in sample 1 and rising to a peak of 3469.491
in sample 10. This indicates a substantial accumulation of metabolite A over time, suggesting it plays a key
role in metabolic progression or reflects a stress response.

» Etio levels fluctuate as well, starting at 1237.146 in sample 1, dropping to 1113.434 across several
samples, and rising to 1922.573 in sample 10, further indicating significant metabolic variation.

* SaAdiol levels remain relatively stable, around 48.518 across most samples, except for sample 6 (53.37)
and sample 10 (70.835), suggesting minor but important variations in Sa-reduction activity.

» The concentration of Testosterone (T) exhibits some variation, particularly peaking at 32.275 in sample 7,
but generally stabilizing around 29.344, implying consistent androgenic activity throughout most of the
samples.

o )

Fig. 7.5 Prompt for Metabolism Pathway-driven Prompting. The prompt integrates domain
knowledge from both the structural graph (representing metabolic conversion relationships)
and the temporal graph (capturing progression and fluctuation of metabolites over time)
to refine LLM reasoning. It guides the model to re-evaluate anomalous samples based on
biologically grounded insights, such as conversion rates and temporal shifts in metabolite
levels, enabling contextual understanding of potential anomalies in longitudinal steroid
profiles.
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Table 7.1 Performance comparison of the proposed MPP method with baseline prompting strategies across different LLMs on Steroid-
M and Steroid-F datasets. Non-LLM baselines, including IsoForest and 3-VAE, are also reported. The MPP method consistently
outperforms other methods across different metrics and models.

Model Method Steroid-M Steroid-F
AC SN SP F1 AC SN SP Fl1
7S 0652 0912 0563 0403 0402 0567 0382 0.250
ICL 0563 0012 0710 0.005 0.458 0.008 0.506 0.002
LLaMA 2-7B (1 0228 0526 0.130 0208 0426 0506 0381 0.250
MPP 0714 0966 0.630 0.570 0.634 0922 0464 0.592
7S 0763 0931 0632 0578 0.724 0.012 0.905 0.028
isra7s 1L 0.834 0920 0753 0.677 0506 0.026 0.636 0.009
stra CoT 0.501 0.894 0598 0517 0.626 0.012 0.752 0.002
MPP 0.895 0928 0.882 0.808 0.758 0.356 0.893 0.198
7S 0352 0960 0.125 0364 0395 0308 0474 0.406
Facon7s | ICL 0560 0.014 0710 0.005 0527 0472 0536 0.338
aleon- CoT 0.524 0.673 0432 0440 0388 0.024 0383 0.008
MPP 0767 0950 0.632 0.578 0.684 0.820 0522 0.605
7S 0326 0456 0282 0202 0201 0284 0.191 0.125
GPT2 ICL 0282 0006 0355 0.002 0229 0.004 0253 0.001
CoT 0.114 0263 0065 0.104 0213 0253 0.190 0.125

MPP 0.357 0.483 0.315 0.285 0.317 0.461 0.232 0.296

IsoForest 0.786 0.296 0.985 0.451 0.719 0.364 0.986 0.528
B-VAE  0.752 0.006 0.992 0.012 0.681 0.002 0.994 0.004

Non-LLM
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7.7 Summary

This chapter introduced Metabolism Pathway-driven Prompting (MPP), a method designed to
improve the reasoning capabilities of language models for detecting anomalies in structured
biomedical data. Unlike standard prompting strategies, MPP incorporates prior domain
knowledge by encoding metabolic and temporal dependencies into a prompt design, guiding
the LLM’s inference toward biologically plausible explanations. The method integrates
both the metabolic pathway topology and temporal progression of biomarkers, enabling
the LLLM to generate outputs that are not only accurate in identifying anomalies but also
aligned with biological interpretations. The approach was applied to real-world anti-doping
datasets focused on steroid metabolism, where MPP demonstrated improved sensitivity and
interpretability compared to standard prompting strategies.

MPP directly addresses RQ3, which concerns how anomaly detection models can be
designed to support domain-informed reasoning and interpretability. The interpretability
in LLLM-based systems is achieved when the model’s output is both accurate and grounded
in structured knowledge that is understandable by domain experts. MPP operationalizes
this principle by translating biological pathway graphs and biomarker trajectories into a
structured natural language prompt format. Each prompt captures relevant interactions
between biomarkers, such as enzyme-driven conversions, as well as temporal dynamics
that may indicate manipulation or physiological anomalies. This design shifts the LLM’s
role from generic question answering to context-sensitive reasoning over structured domain
content, enabling it to generate narrative explanations that reference specific metabolites,
their interdependencies, and the time-based context in which anomalies arise.

MPP leverages structured input embeddings to inject graph-based representations into a
natural language format that LLLMs can process without modifying their architecture. This
enables modularity and model-agnostic deployment, allowing it to work with different LLMs
and adapt to various biological pathways. The reasoning generated by MPP reflects causal
or correlative links across biomarkers, providing explanations such as, "Testosterone and
Epitestosterone decreased simultaneously, which is inconsistent with the expected ratio
defined by the steroid biosynthesis pathway." These structured prompts support users in
verifying the model’s rationale, increasing the reliability and practical applicability of the
detection process.

In conclusion, MPP provides a prompting-based solution that extends the utility of LLMs
for longitudinal clinical data analysis. By embedding domain knowledge into the prompt
structure, it improves the reasoning quality of LLLM outputs, addressing a key challenge in

anomaly detection for high-stakes settings. This contributes toward building trustworthy Al
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systems that are not only accurate but also usable by domain experts in forensic and clinical

workflows.



Chapter 8

DAP: Digital Athlete Passport

8.1 Introduction

Large sports events attract the attention of billions of people. Illegal performance en-
hancement by substances or methods can be traced back to the Olympic Games of Ancient
Greece [18]. In modern times, the case of Lance Armstrong revealed massive doping in
cycling and triggered investigations across multiple sports [64]. Consequently, the World
Anti-Doping Agency (WADA) was founded to identify and prosecute athletes found guilty
of doping [319]. From its beginning, anti-doping analytics has relied on methods inherited
from biology and biochemistry, analyzing urine and blood samples collected during and
beyond competition [178]. More recently, the success of machine learning has prompted
investigations into its applicability for doping analytics [270]. Yet, a persistent challenge
remains: decision-making in anti-doping is rarely grounded in absolute truth but instead
in evidence-based assessments qualified by expert judgement. This makes transparency
and interpretability central requirements for any computational system designed to support
anti-doping investigations. During the Olympic Winter Games at Sochi, a subsequent report
found that at least two female ice hockey players’ samples were swapped with a urine
sample containing male DNA, and others were found guilty of tampering with the original
samples [193]. Urine swapping is the act of exchanging urine with another individual’s or
the athlete’s stored clean urine to evade a positive test (WADA, 2020). More than 1000
athletes across 30 sports were involved in large-scale sample swapping at Sochi 2014. It was
a massive program of cheating and cover-ups that has been running on an unprecedented

scale since 2011 and will increase in future events [193]. This simple but new form of

'Based on Publication: Rahman, M.R., Piper, T., Geyer, H., Equey, T., Baume, N., Aikin, R., Maass, W.
(2022). Data Analytics for Uncovering Fraudulent Behaviour in Elite Sports. In Proceedings of the International
Conference on Information Systems (ICIS 2022), Main Track.
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doping became a threat to the whole anti-doping decision-making organization. Current
statistical methods are unable to reliably uncover such manipulations, raising questions about
the potential of data-driven approaches to complement existing workflows.

As described in WADA'’s Technical Document TD2021EAAS [316], testing laboratories
follow standardized procedures to measure steroid profiles using Gas Chromatography-
Mass Spectrometry (GC-MS) [188]. Results are stored in the Anti-Doping Administration
Management System (ADAMS), where an adaptive Bayesian model flags profiles for further
review [270]. While effective in detecting substance-based doping, this approach is less
reliable for detecting sample swapping, since deviations caused by substitution do not
necessarily exceed statistical thresholds derived from population distributions. Suspicious
cases require confirmatory procedures, such as GC/C/IRMS validation or DNA analysis [56],
both of which are resource-intensive. In large events like the Olympic Games, thousands
of samples are processed, and hundreds may be flagged as suspicious. Conducting DNA
analysis on all of them is prohibitively costly and time-consuming, underscoring the need
for complementary tools that can triage cases more efficiently. In recent years, data-driven
methods have shown promise in healthcare and forensic sciences [262, 33]. This motivates
their application to anti-doping, where models should not only achieve high performance but
also provide interpretable outputs that experts can trust. Unlike purely predictive models,
approaches in this domain should emphasize transparency, as inaccurate or poorly justified
decisions can have severe consequences for both athletes and institutions.

This chapter introduces the Digital Athlete Passport (DAP), a methodology designed
to detect suspicious cases of sample swapping while emphasizing interpretability. DAP
combines statistical and machine learning methods with visualization techniques to flag
potential anomalies and present intra-athlete profile similarities transparently. By doing so,
DAP bridges the gap between automated detection and human-centered decision-making,
providing expert users with visual evidence to validate predictions. The key contributions of

this work are:

* A data-driven methodology is introduced for detecting sample swapping, highlighting
interpretability and addressing limitations in existing detection methods.

* A model is developed that not only flags potential sample swapping incidents but also
visualizes intra-athlete steroid profile similarity for better transparency and understand-
ing.

* Comparative performance evaluation against baseline models demonstrates the effec-

tiveness of the proposed approach in real-world anti-doping datasets.
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8.2 Related Work

Fraud Detection in Anti-Doping Analytics

Doping activities can be classified into blood doping, steroid doping and sample swapping.
Most of the data-driven research done until now mainly focuses on blood doping and steroid
doping. For example, a study used different machine learning algorithms to detect the
presence of doping substance erythropoietin in athletes’ blood samples [230]. Some studies
applied different machine learning algorithms with resampling techniques to find athletes at
the highest risk of doping based on their performance data [137]. The Bayesian approach
was also used for the detection of blood doping by using the interindividual performance
data [200]. These studies mainly focused on blood doping. On the other hand, the literature
on steroid doping includes the use of Support Vector Machine on the athlete’s steroid profile
to find how much a profile deviates from the normal population profiles [239]. Another
study used machine learning algorithms such as Random Forest and XGBoost to predict
abnormalities in steroid profiles [310]. The statistical method like Hotelling’s 7, test and
Principal Component Analysis was also used to detect anomalous steroid profile [7]. All
these works consider reference population data to define a clean profile and use different
algorithms to find the deviation of anomalous steroid profile. However, this method cannot
be used to detect sample swapping where only the samples collected from the same athlete
should be considered for defining the clean profile. Therefore, there is a need to explore
data-driven methods for the sample swapping problem.

However, there is no study performed so far on addressing the problem of sample
swapping using a data-driven approach. The current SOTA method for finding the sample
swapping is still the Bayesian method of the Adaptive Model, followed by laboratory
testing [270]. Once triggered by the Adaptive Model, the confirmation tests like IRMS tests
or subsequent DNA analysis of the athlete are performed to verify whether the sample is from
the same athlete or is substituted by the athlete [223, 282]. However, these laboratory-based
approaches are too expensive and cannot be implemented on all the athletes’ samples during
large athletic events like Olympic Games. Moreover, it is also a time-consuming process
due to the fact that conducting each confirmation test requires a significant amount of time
and resources. This is the reason why in most cases, unscrupulous athletes are caught after
several months of the athletic event. This shows why there is a need to explore a new and
more efficient method in this direction.

In this work, the proposed model provides a solution to this problem by creating a
digital profile of an athlete. In this profile, the relatedness of all the athlete’s samples can

be visualized, and changes can be tracked as new samples are added to identify potential
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cases of sample swapping. This method is very cost-effective and detects sample swapping
in real-time. Therefore, this model can help the decision makers to flag the sample swapping
cases during the athletic event and explain their decisions. In this way, it will reduce the
number of laboratory-based testing needed and hence, cost and time beneficial.

8.3 Preliminaries

The aim of this study is to develop a method that can detect the sample swapping activity
performed by the athlete. In addition, the model should trigger whether a new steroid profile
matches with the steroid profile of previous samples of the athlete collected over time. So, a
visualization tool or a quantification measure is needed that can show the relatedness among
the steroid profiles of the same athlete. Therefore, a comprehensive analysis of steroid
profiles has to be conducted to understand the underlying principles of different biomarkers.

8.4 Digital Athlete Passport (DAP)

Data visualization is an important concept in the data-driven approach [295]. It helps to
explore data structure, detect outliers, identify trends/patterns or even interpret the result to
gain information. Therefore, it is important to visualize the steroid samples in either two- or
three-dimensional space. However, since the steroid profile consists of 11 parameters repre-
senting different biomarkers, the elevated values of any of these biomarkers can significantly
impact the other biomarkers. Therefore, the steroid profile should be visualized in a space
that takes into account all the parameters at the same time.

Let us consider a 3D space spanned by any three arbitrarily chosen parameters. A total
of 165 different spaces will be required to fully visualize a steroid profile and capture all
relevant aspects. Fig. 8.1 shows an example of the longitudinal steroid profile of an athlete
with a testing sample x7 in 8 different spaces (out of 165 spaces) spanned by three different
arbitrary chosen steroid parameters. Based on these plots, it is difficult to state whether the
testing sample X7 belongs to the same athlete profile or from another athlete since there is
no evidence of which space should be considered for decision making. Therefore, there is a
need to find a visualization aid that incorporates the behavior of all the parameters together.

In this work, Digital Athlete Passport (DAP) is proposed as an effective approach for
understanding the relatedness among steroid profiles and for providing a comprehensive
visualization concept for these profiles. DAP incorporates Principal Component Analysis
(PCA) and the concept of centroids to illustrate the similarity between steroid samples from

an athlete. Since there is a linear relationship between the steroid parameters, PCA helps
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Fig. 8.1 Longitudinal steroid profile of an athlete visualized across 8 different 3D projections,
each formed by selecting different combinations of steroid parameters. These plots helps
to uncover patterns and identify anomalies in the steroid profiles over time, showing how
different parameter combinations affect the structural representation of the athlete’s metabolic
trajectory.

to reduce correlated parameters to a smaller set of mutually-independent components that
explain a large percentage of the covariance in the original steroid parameter space. Other
dimensionality reduction algorithms, such as autoencoders, require large training datasets.
Given that each athlete’s longitudinal profile contains only 2 to 20 samples, they are not a
suitable choice for this context. Moreover, PCA with the centroid approach also helps to
solve the visualization problem by mapping the steroid sample from a multi-dimensional
space to three-dimensional space and tracking the changes in the overall profile of the athlete

when a new sample is added.

8.4.1 Principal Component Analysis

The PCA is an unsupervised learning technique [161] that projects the data into a new
space spanned by a set of basis vectors such that the maximum amount of information is
preserved in a lower number of basis vectors of the new space. The data is projected on these
basis vectors called principal components, which are orthogonal unit vectors that maximise
the variance in the data. The weights of each principal component represented by w(k) is

calculated by the following expression:

wik) = {WTX"(k)TXi(k)W} 8.1)
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where k = {1,2,3} and X; refers to the longitudinal profile. The transformed profile
X; consists of x;;(k) = x;; - w(k). The profile is transformed in such a way that it contains
the maximum variance in the first component, the second maximum variance in the second
component and so on. In DAP, PCA is applied to transform X; (consisting of 11 parameters)

into a set of 3 principal components.

8.4.2 Centroid

The concept of Centroid or Center-of-Mass (CoM) is common in classical mechanics [141],
which has a useful application in many domains. It refers to a unique point in the space
where the weighted relative position of the distributed points sums to zero. This means that
if different points are spanned in the space, the CoM is represented as the approximate center
of all these points and can be calculated using the following expression:

1 &
X com (k) = . Y xi(k), k={1,2,3} (8.2)
j=1

where X; coum (k) represents the centroid of all the transformed samples in the longitudinal
profile with k representing the three principal components of the transformed sample and #»;
represents the number of samples in longitudinal profile.

Whenever a new steroid sample is added to an athlete’s profile, it is important that
the relatedness of this sample to the previous samples be measured. This problem can be
addressed by tracking the position of the CoM. If the new steroid sample is located far from
the previous samples, a significant deviation in the position of the CoM will occur. Therefore,
the variation in the position of the CoM can serve as a useful measure for monitoring

consistency among steroid samples within a longitudinal profile.

8.4.3 DAP Algorithm

The longitudinal profile X; of the athlete comprising all prior samples and the testing sample

x7 to be checked for sample swapping is considered.

» Step I: The three principal components for each steroid sample were calculated to
visualize the longitudinal profile of the athlete in 3D space. Since at least three samples
are required for the profile. For this analysis, only longitudinal profiles consisting
of a minimum of three samples were considered. The PCA is performed on the first
three steroid samples of the athlete’s longitudinal profile after randomizing the order
of the samples to remove any kind of bias. The calculated weights for each principal

component are then used to transform the next steroid sample in the profile.
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* Step 2: The CoM point is calculated based on the transformed samples by the principal
components. This process is iterated until all the samples of the profile are considered,
including x7. This excludes the collinearity between the original parameters and hence
provides better values.

* Step 3: The three components of all the transformed samples are plotted in a 3D space,

as this representation captures most of the variance in the athlete’s longitudinal profile.

Fig. 8.2 presents a randomly selected athlete’s longitudinal profile visualized in three
arbitrarily chosen steroid parameter spaces (SPS), along with the corresponding transformed
samples in the principal component space (PCS) after applying the DAP algorithm. The CoM
(shown in black) represents the arithmetic center of all transformed samples. The position
of the TS (in orange), relative to the CoM and the other samples, indicates the likelihood of
whether x7 belongs to the same athlete profile. In this example, it can be observed in the
PCS that x7 does not align with the same athlete profile, which is a distinction that was not
evident in the SPS.

T DAP Algorithm
B ————

Fig. 8.2 Comparison of an athlete’s longitudinal steroid profile before and after applying DAP
algorithm. The left plot represents the steroid parameter space, where the profile is visualized
using selected steroid biomarkers. The right plot shows the same profile transformed into
principal component space after applying the DAP algorithm.

Consecutive Distance Understanding the change in the characteristics of an athlete’s
longitudinal profile upon the addition of a new steroid sample is important to note. In DAP,
this is achieved by tracking the position of the CoM each time a new steroid sample is added.
The underlying intuition is that greater similarity between the new sample and the existing
samples will result in smaller deviations of the CoM. Therefore, the consecutive distances
between CoM positions calculated after the addition of each new sample are computed.

Euclidean geometry is applied for the distance computation using the following expression:
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Algorithm 1 Digital Athlete Passport algorithm

Require: n; >3

10 Xi < X1, X2,X3

2: for k <3 do
w(k) + PCA(X;) > calculate weights
4 k+—k+1
5: while j # n; do
6: for k <3 do
7
8
9

w

x; (k) < x;j(k) - w(k)

k< k+1
if j > 3 then '
10: X (k) < %ij: L X (k) > centroid
11: dj |k 0 (k) —x 0 ()| > consecutive distance
12: Dj<«Dj+d; > cumulative distance
13: j—Jj+1
14: else
15: j—Jj+1
3 : : 2
4= & (Ken®) = xlcou(®) (83)
=1

where d; represents the distance shifted by CoM when the j"" sample is added to the
profile, and k represents the three components of the CoM in PCS. The value of d; is expected
to be small when the new sample is similar to the previous samples in the longitudinal profile.
However, if the new sample is from a different athlete, a significant spike in the value of d; is
observed, indicating that the new sample does not belong to the same athlete profile. This
distance is calculated for each sample added to the longitudinal profile and plotted against
the number of samples in the profile.

Cumulative Distance The total distance deviated by the CoM after all samples are added
to the profile is also calculated. This allows for tracking the extent to which the characteristics
of the profile are affected by the addition of new samples. It is observed that as more samples
are included in the longitudinal profile X;, the impact on the position of the CoM diminishes,
and the value of d; begins to decrease, unless a suspicious sample from a different athlete is
introduced. In such cases, a sudden spike is observed in the plot. The cumulative distance is

computed using the following expression:
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D;j=Yd; (8.4)

Here, D, represents the cumulative distance calculated up to the addition of the j " sample.
Since the CoM computation begins with the first three samples, the index j starts at 3. This
requirement arises because three components of the transformed sample are needed for the
DAP algorithm.

Contribution of Each Steroid Parameter Understanding the contribution of each steroid
parameter to the principal components is essential, as it helps determine the relevance of
specific parameters in the decision-making process. Therefore, the feature importance of
each steroid parameter within an athlete’s longitudinal profile was calculated in PCS. The
importance of each feature is reflected by the magnitude of its corresponding absolute values
in the eigenvectors of Xl-TX,-, i.e., the larger the absolute value, the greater the feature’s
contribution to that principal component. In DAP, this calculation is performed separately for
each longitudinal profile.

Variance Captured by Each Component Each principal component captures a specific
proportion of variance in the longitudinal profile data. The proportion of total variance

captured by the three principal components was calculated.

8.5 Experiments

8.5.1 Datasets

The data is extracted from the ADAMS database, which consists of real-world athlete data
collected from 1 September 2018 until 31 March 2021 and called Steroid-All. This data
contains 254,478 urine samples corresponding to 65,039 athletes, and each athlete could
have between 2 and 20 samples in their profile. Table 8.1 shows the summary of the number
of samples belonging to male and female athletes. For each athlete, only the raw steroid
profile values, gender, competition type (i.e., whether tested during the competition (INC) or
out of competition (OOQC)), specific gravity of the sample (SG), and an anonymized athlete
ID were extracted into an anonymized dataset, in accordance with the WADA International
Standard for the Protection of Privacy and Personal Information (ISPPPI) [315].

The steroid profile of the urine samples consists of a set of biomarkers called steroid
parameters that show significant changes in the administration of steroids. These parameters
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Table 8.1 Summary of the number of longitudinal profiles and associated steroid profiles for
male and female athletes in Steroid-All dataset.

Athletes Profiles Samples

Male 52,152 166,237
Female 12,887 88,241
Total 65,039 254,478

are testosterone (T), epitestosterone (E), etiocholanolone (Etio), androsterone (A), So-
androstanediol (SaAdiol), and 5f-androstanediol (58 Adiol), and their ratios T/E, A/Etio,
A/T, 5aAdiol/5B Adiol, 5axAdiol/E as described in TD2021EAAS [316].

Data Pre-processing

Missing Values In the dataset, some samples were found to contain missing values, marked
with O for all parameters. This issue could primarily be attributed to errors during data
extraction from the ADAMS database. However, it is also possible that the test results
were not reported or updated in ADAMS due to analytical issues encountered by the testing
laboratory. Since the objective is to assess similarity among samples within an athlete’s
longitudinal profile, imputing missing values using data from other profiles or athletes is not
a viable solution, as it could introduce bias into the profile. Therefore, all samples containing
missing values were removed. Fig. 8.3 presents the data distribution of the raw dataset and
the corresponding statistics after the removal of samples with missing values for both male
and female athletes.

Reference Ranges, LOQ and LOD Each steroid parameter is expected to lie within a
certain range. However, some samples were observed to contain abnormally high values
for specific parameters. To address this, the observed values were compared against the
maximum values reported by [291], and all samples containing off-values were removed.

Another issue is the Limit of Quantification (LOQ) refers to when the laboratory cannot
quantify the concentration of the steroid parameter by GC-MS, and therefore, is reported
as -1, whereas Limit of Detection (LOD) refers to when the chromatography peak signal of
the parameter cannot be detected (i.e., is below the detection capability of the assay) and
reported as -2. These values were replaced with the lowest concentration values measur-
able with an uncertainty not exceeding 30%, as specified in WADA Technical Document
TD2021EAAS [316].
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Fig. 8.3 Distribution of the number of samples per longitudinal profile for male (left) and
female (right) athletes. The blue bars represent the raw dataset containing all recorded
samples, while the orange bars represent the processed dataset after removing samples with
missing values. This comparison shows the extent of data loss due to missing entries.

Correction Due to Urinary Concentration Not all the collected samples have the same
concentration since some are more diluted than others. To compare the measured concentra-
tions between different samples, the urinary concentrations need to be normalized using the
urinary density. The concentration value of testosterone parameter of all the samples was
corrected to a specific gravity of 1.020 as given by TD2021DL [314]:

1.020—1
= sg—1 v
where T, represents the concentration value before the correction is applied and SG

(8.5)

represents the specific gravity of the sample. Similarly, the correction for A, Etio, E, SaxAdiol
and 5B Adiol was also applied. The steroid ratios are unaffected by the urinary specific
gravity.

8.5.2 Descriptive Analysis

The distribution of all the steroid parameters of the samples was tested by using the 2-sample
Kolmogorov-Smirnov test (K-S test) [65]. It is a standard test for deciding whether the two
distributions are consistent with each other. The K-S test was performed to compare the
distribution of samples collected during competition and out of competition for both male
and female athletes. The p-value for each steroid parameter shows that there is a significant
influence on the steroid profile of the samples due to the testing during the competition. In a
recent laboratory study, is was found that there is a confounding factor due to the physical

and mental stress on athletes, which causes a significant amount of elevated values in the
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profile [223]. The statistical results show a similar change and thus are consistent with their
findings.

Fig. 8.4 presents the statistical distribution of the testosterone parameter for both male
and female athletes. It can be observed that testosterone values are more dispersed among
male athletes compared to female athletes, resulting in lower inter-individual variance among
female samples. The linear relationship was observed between the six steorid parameters
and their ratio-based parameters. For example, T is directly proportional to the T/E ratio.
As a result, collinearity among the steroid parameters was observed. The distributions of
the steroid parameters were statistically described using the mean, median, and the first (Q1
= 0.25) and third (Q3 = 0.75) quartiles. Table 8.2 and 8.3 present the detailed descriptive
statistics of the steroid parameters for male and female athletes, respectively.

Testosterone Testosterone
0.14 005
Male INC
012 Bl Female B ooc

0.04

Probability
s

Probability
g

0.01

0.00 T T T u T T 0.00
0 20 40 60 80 100 120 40 60 80 100 120

Concentration Concentration

Fig. 8.4 Distribution of testosterone concentrations across different cohorts. The left plot
compares the distribution between male (blue) and female (red) athletes, highlighting the
generally higher values in male profiles. The right plot compares in-competition (INC) and
out-of-competition (OOC) samples of male athletes, indicating the variations in testosterone
levels potentially influenced by physiological or contextual factors.

8.5.3 Baseline Models

A set of baseline models was selected to compare the performance of the proposed model.
These models are trained and optimized on the training dataset. The models include Logistic
Regression (LR) [219], Support Vector Machine (SVM) [52], Random Forest [29], Gradient
Boosting (XGB) [41] and Bayesian Method of Adaptive Model (SoTA) [270].
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Table 8.2 Descriptive statistics of different steroid parameters for in-competition (INC) and
out-competition (OOC) steroid samples from male athletes. The table reports the mean and
standard deviation, minimum, interquartile range (IQ1 and IQ3), median, and maximum
values for each parameter, along with the p-values from the K-S test assessing distributional
differences between INC and OOC samples.

INC (n =79,653)

O0O0C (n = 88,098)

Parameter p-value
meand+sd min IQl median IQ3  max meand+sd min IQl median IQ3  max

A 3188+1186 117 1925 2786 3798 27052 3203+£1130 119 1624 2483 3247 24688 2.8e-14
Etio 21081101 41 1165 1785 3176 17700 2306+1275 31 1261 1740 3244 25949 2.0e-99
E 201+£88.5 0.5 125 218 261 913 200+£87.5 0.0 128 213 258 924 2.0e-01
T 2844186 0.5 125 213 381 148 30.0+£22.5 0.0 12.1 202 382 172 3.8e-99
SaAdiol 26.1+£16.7 0.0 12.1 20.7 338 148 27.0+£182 0.0 11.2 199 342 172 3.8e-99
5B Adiol 29.4+£172 00 142 232 372 148 304+182 0.0 13.1 219 378 172 3.8e-99
T/E 1.41+1.18 0.0 0.7 1.1 1.6 9.6 147123 00 0.7 1.1 1.7 10.0  6.0e-60
A/Etio 1474085 0.1 0.8 1.1 1.6 8.6 1.41+£0.81 0.0 0.8 1.1 1.6 8.7  2.0e-99
A/T 0.17+£0.13 0.0 0.1 0.1 0.2 1.2 0.16+0.12 0.0 0.1 0.1 0.2 1.2 3.8e-99
SaAdiol/58Adiol  0.71£0.5 0.0 0.3 0.5 0.9 3.6 0.72+0.5 0.0 03 0.5 0.9 3.6  3.8¢-99
SaAdiol/E 0.12+£0.7 0.0 0.1 0.3 06 249 0.15£23 0.0 0.1 0.3 1.7 17.2 0.0

Table 8.3 Descriptive statistics of different steroid parameters for in-competition (INC) and
out-competition (OOC) steroid samples from female athletes. The table reports the mean
and standard deviation, minimum, interquartile range (IQ1 and I1Q3), median, and maximum
values for each parameter, along with the p-values from the K-S test assessing distributional
differences between INC and OOC samples.

INC (n = 34,820) 0O0C (n =49,040)
Parameter p-value
meantsd min IQl median IQ3  max meantsd min IQl median IQ3  max
A 3233+1255 7.1 1408 1983 2476 27102 1977+1240 9.0 960 1179 1810 24922 2.8e-154
Etio 2178+1151 0.7 1240 1960 3174 21180 1387+1074 0.0 718 1077 1818 20940 2.0e-99
E 94.7+51.5 04 544 744 121 409 9384517 0.0 547 741 120 409  2.0e-01
T 9.3+7.5 0.1 44 74 129 48.0 10.0£82 0.0 4.2 7.2 13.2 472  3.8¢-99
SaAdiol 7.6+6.1 00 32 5.9 102 480 8.1+£6.7 00 3.1 5.7 10.7 472  3.8e-99
5B Adiol 8.2+6.5 0.0 3.7 6.4 109 48.0 8.7£7.0 00 3.6 6.2 1.2 472  3.8e-99
T/E 1.08+1.01 00 04 0.8 1.1 6.1 1.06+1.01 0.0 04 0.8 1.1 6.1 6.0e-60
A/Etio 1.48+0.7 0.1 0.8 1.1 1.6 6.1 141+0.7 0.0 0.8 1.1 1.6 6.1 2.0e-99
AT 0.17+0.13 0.0 0.1 0.1 0.2 1.2 0.16+0.12 0.0 0.1 0.1 0.2 1.2 3.8¢-99
SaAdiol/5Adiol  0.71+0.5 0.0 0.3 0.5 0.9 3.6 0.72+0.5 0.0 03 0.5 0.9 3.6 3.8e-99
SaAdiol/E 37435 00 1.7 2.8 4.6 16.1 3.9+4.4 00 1.8 2.8 4.8 172 7.7e-11
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8.5.4 Experimental Settings

The model provides a visualization aid to understand the similarity of the samples. Thus, the
primary way to evaluate whether a sample belongs to the same athlete can be done by domain
experts (human evaluation) after the application of the DAP algorithm on the longitudinal
profile of the athlete.

An additional evaluation metric was proposed to quantify sample swapping using the
DAP algorithm. Let the distances between the centroid x,}COM(k) and each sample in the
longitudinal profile X; be denoted as dy,d>, ... ,dy,, and let the distance between the centroid
and the testing sample X7 be dx,. The mean (L) and standard deviation (oy,) of all distances
were calculated. The idea is to compare dx, with the distribution of d; to classify the testing

sample x7 as an anomaly according to the following expression:

Anomalous, dy, > Ug + 30y
Decision = (8.6)
Clean, dx, < Ug. + 30y,

The decision rule of 30, was selected after conducting a sensitivity analysis on the
training dataset. The Steroid-All dataset was divided into a training set (80%) and a testing
set (20%), as shown in Table 8.4. From the dataset, 50% of the profiles were randomly
selected, and in each selected profile, the last sample was manually swapped with a sample
from a different athlete. These modified profiles were labelled as swapped profiles (class
1), while the remaining 50% of the profiles were labelled as clean profiles (class 0). This
procedure was implemented to simulate a scenario involving both swapped and clean cases
for classification purposes. A sensitivity analysis was performed on the decision rule to assess
its impact on various evaluation metrics. Table 8.5 presents the model’s performance on the
training dataset using different values for the decision rule: 10, 1.50,4, 204, 304, and 40,..
The results indicate that the model performs best with a decision rule of 36, achieving a high
accuracy of 0.83 for male athletes and 0.74 for female athletes. The sensitivity and specificity
values are also high, indicating that the model is effective in detecting swapped samples
while maintaining a low false positive rate. The model’s performance slightly decreases with
higher thresholds, suggesting that the decision rule should be carefully selected to balance
sensitivity and specificity.

For example, a sample swapping scenario was created in which the longitudinal profile of
an athlete was arbitrarily selected, and x7 (taken from another athlete’s longitudinal profile)
was added to the profile. The DAP algorithm was then applied to this longitudinal profile.
Fig. 8.5 presents the complete output of the DAP algorithm, including plots of the consecutive
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Table 8.4 Data statistics of the training and testing sets used in the study, showing the number
of longitudinal profiles and corresponding steroid samples for male and female athletes.

Athletes Training Testing

Profiles Samples Profiles Samples

Male 33,618 128,807 8,405 32,342
Female 12,572 67,498 3,144 16,762
Total 42,023 161,149 15,716 84,260

Table 8.5 Sensitivity analysis on the decision rule threshold using different standard deviation
multiples added to the mean distance, showing its effect on different metrics for male and
female athletes. This analysis helps evaluate the robustness of the model’s classification
performance with respect to threshold variations.

Athletes Metrics Uy +10, Uy +1.5045 Uy +204 Ug+305 Uy +40y,

AC 0.78 0.78 0.79 0.83 0.75
Male SN 0.82 0.75 0.72 0.72 0.56
SP 0.75 0.87 0.85 0.89 0.94
AC 0.72 0.73 0.72 0.74 0.67
Female SN 0.71 0.63 0.62 0.61 0.40
SP 0.74 0.81 0.84 0.88 0.93

distance, cumulative distance, feature contributions from each steroid parameter, and the
variance explained by each principal component. The 3D plot illustrates that the position of
x7 1is distant from both the CoM and the other samples within the athlete’s profile, allowing
experts to easily recognize x7 as suspicious. Furthermore, a noticeable spike in both the
consecutive and cumulative distances covered by the CoM upon the addition of x7 indicates
that the sample does not belong to the same athlete’s profile. The values of the proposed
evaluation metric dts = 39.3, dx = 8.8, and o4 = 4.5 further support the conclusion that this
is a swapped case. In practice, X7 usually appears at the end of X;, i.e., as the most recent X;;.
However, this example demonstrates that the model functions independently of the testing

sample’s position, indicating that sample order does not affect detection performance.

8.6 Results

8.6.1 Performance Comparison

For the comparative study, Table 8.6 shows that the DAP model could differentiate the

swapped X; from the clean athlete’s X; based on the proposed decision rule. The model
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Fig. 8.5 Fully functional overview of the Digital Athlete Passport visualization for a selected
athlete’s X;. (a) Projection of x;; into principal component space (PCS), showing temporal
clustering and outlier detection; (b) pairwise distance between consecutive CoM across X;;
segments to detect abrupt shifts; (c) cumulative distance showing the trajectory and deviation
magnitude over time; (d) contributions of each steroid parameter to the first three principal
components, indicating their relevance in variance separation; (e) proportion of variance
explained by each principal component, highlighting the dominance of PC1 in the data
representation.

achieves an accuracy of 81% on X; of male athletes. However, slightly lower performance
was observed on X; of female athletes. This is because the female athletes’ x;; have less
inter-individual variance than the male athletes. The results show that the ensemble method
like XGB shows comparable performance to the proposed model in terms of accuracy and
specificity. Since the prevalence of sample swapping cases is very low (<1%) in real-life
scenarios, high specificity values are important to minimize false positive cases (cost factor).
Overall, the proposed model shows better performance than the Bayesian approach (SoTA)
as well as all the baseline models in terms of different evaluation metrics.

8.7 Case Study

The DAP model was validated on two real-world sample swapping cases that had been
confirmed through subsequent DNA analysis conducted by one of WADA'’s accredited
laboratories. These longitudinal profiles contained more than one sample that did not
originate from the same athlete. The DAP algorithm successfully flagged both longitudinal



8.8 Summary 153

Table 8.6 Performance comparison of the proposed DAP method against baseline models
and the current SOTA approach.

. Male Female
Metrics
LR SVM RF XGB BM DAP LR SVM RF XGB BM DAP
AC 075 073 078 0.80 076 081 068 071 0.75 076 0.71 0.77
SN 000 038 025 061 073 075 000 026 0.08 048 038 0.61
SP 089 088 092 093 082 092 084 082 088 090 0.85 0.89

profiles as sample swapping cases, as shown in Table 8.7. Additionally, the model was
applied to longitudinal profiles that had been confirmed by the laboratory as positive steroid
doping cases (i.e., cases involving the administration of exogenous steroids). In these cases
as well, the model successfully identified the profiles as suspicious. The limited number
of confirmed sample swapping cases available for evaluation (only two) reflects the low
prevalence of such cases in real-world anti-doping investigations. Consequently, identifying
such instances remains both a critical and challenging task in anti-doping analysis. These
evaluations demonstrate that the proposed method yields promising results and could serve

as a valuable enhancement to current approaches for detecting sample swapping cases.

Table 8.7 Evaluation of the DAP model on DNA-verified cases compared with the existing
SoTA method. The table shows the percentage of confirmed profiles flagged as anomalous,
highlighting DAP’s high sensitivity to confirmed doping cases while slightly improving on
the BM method’s handling of clean profiles.

Cases # Confirmed Profiles % Flagged by BM % Flagged by DAP
Sample Swapping 2 100% 100%
Steroid Doping 5 100% 100%
Clean Profiles 23 78% 82%

8.8 Summary

This chapter presented the concept of the Digital Athlete Passport (DAP), an interpretable
and cost-effective anomaly detection framework designed to identify sample swapping in
longitudinal steroid profiles. The motivation for DAP arises from the growing concern over
fraudulent practices in elite sports, particularly the use of sample swapping to evade doping
detection. While current verification techniques such as DNA testing provide conclusive
evidence, they are financially and logistically demanding. DAP offers a data-driven alternative
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that supports decision-makers by flagging suspicious profiles without relying on costly
laboratory confirmation for every case.

DAP directly addresses RQ3, which concerns how anomaly detection systems can be
designed to provide domain-informed reasoning and interpretability. In this framework,
interpretability involves not only identifying anomalies but also explaining the rationale
behind them in a manner consistent with biological expectations. DAP achieves this through
a visual analytics pipeline that combines dimensionality reduction with distance-based
evaluation. Steroid profiles are projected into a low-dimensional principal component space
capturing physiological axes of variation, and each athlete’s trajectory is modeled over time.
New samples are assessed by their cumulative and consecutive distances from historical
trajectories, enabling both anomaly detection and contextual reasoning. Interpretability is
further improved by decomposing biomarker loadings on the principal components, which
shows which steroid parameters contribute most to flagged deviations and how these shifts
align with domain knowledge. For example, if a suspicious sample diverges due to a sharp
T/E imbalance, DAP highlights this feature-level change and links it to potential doping
behavior or physiological disruption. This explicit attribution, combined with trajectory
visualization, provides transparency and supports a human-in-the-loop decision process,
bridging algorithmic outputs with expert review.

Empirical evaluation on real-world sample swapping cases confirmed DAP’s effective-
ness, showing improved performance even without labeled training data. The framework
outperformed baseline and domain-specific models by providing not just improved detec-
tion but also actionable interpretability. Because DAP relies on unsupervised methods and
simple statistical rules, it is particularly suited for deployment in resource-constrained or
time-sensitive contexts, such as during international sporting events.

In conclusion, DAP contributes an interpretable and resource-efficient solution for
anomaly detection in anti-doping workflows. By integrating trajectory modeling, principal
component analysis, and biomarker attribution into a unified visual analytics framework, DAP
addresses the limitations of black-box models while advancing traceability and transparency.
It exemplifies how visual analytics and statistical reasoning can be combined to meet the
dual requirements of operational efficiency and scientific rigor in elite sports monitoring.



Section V: Conclusion and Limitations






Chapter 9

Software Framework for Longitudinal
Anomaly Detection

9.1 Introduction

The analysis of longitudinal clinical data plays an important role in clinical monitoring [6],
where it supports decision-making in anti-doping. These datasets help practitioners to
identify physiological anomalies that may indicate prohibited interventions [254]. In this
thesis, anti-doping is treated as a key application domain, providing a concrete use case for
demonstrating the utility of anomaly detection methods. However, it is important to note that
anti-doping is not a separate user group; rather, it represents one of the real-world domains
where experts require tools to interpret longitudinal profiles.

This chapter introduces CASPIAN, a software framework developed to apply anomaly
detection in longitudinal clinical analysis. CASPIAN is designed as a practical utility for the
domain experts (users), such as laboratory analysts and anti-doping regulatory authorities,
who need transparent and interpretable decision support in evaluating individual profiles.
Therefore, the purpose of this chapter is not to present new scientific contributions, but to
demonstrate how the methodological advances of this thesis can be integrated into a usable
software system that meets the practical needs of its users.

The framework has been designed around three user-driven requirements: (i) to provide
robust anomaly detection in longitudinal profiles, (ii) to integrate domain knowledge, such as
biochemical metabolism pathways, into anomaly validation, and (iii) to deliver interpretable
outputs that can be reviewed and trusted by human experts. CASPIAN has been implemented
as a full-stack software system with a graphical user interface that allows users to select
models and visualize analytical outputs. Emphasizing configurability and modularity, the
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system can be adapted to diverse clinical datasets while remaining accessible to non-technical
experts. By applying the methodological contributions of this thesis in a practical software
environment, CASPIAN bridges the gap between research and application. The following
sections provide a detailed overview of its architecture and user-facing interface, with specific

attention to how it can be deployed in the anti-doping domain.

9.2 CASPIAN Framework

As shown in Fig. 9.1, the CASPIAN software framework represents a multi-layered software
system developed to address the analytical and interpretative challenges in anomaly detection
within longitudinal clinical profiles. Structured around three conceptually distinct parallel
layers, CASPIAN allows independent yet coordinated processing of input longitudinal pro-
files through modular, model-specific components. The system integrates these layers within
a unified interface, allowing for simultaneous anomaly scoring, pathway-aware validation,
and interpretive reporting. This layered approach not only supports end-to-end detection and
explanation but also facilitates human-in-the-loop decision-making, ensuring that the outputs
are both statistically grounded and clinically interpretable.

9.2.1 Longitudinal Anomaly Detection

The first layer focuses on detecting irregularities in longitudinal profiles based on their

temporal structure.

* SACNN: This model captures global temporal dependencies using convolution and
self-attention mechanisms. It is particularly effective for profiles with three or more

samples and provides intra-individual modeling by learning profile-specific dynamics.

* SCNN: Designed for limited-sample profiles, SCNN can handle profiles with as few
as two samples. It uses strategic subsampling and convolutional feature extraction to

estimate trajectory-level deviations even under data constraints.

Both models serve as the first-pass detectors, flagging anomalies for further domain-based

scrutiny.

9.2.2 Domain Knowledge Integration

Recognizing that statistical anomalies may not always correlate to biological implausibility,

CASPIAN incorporates domain prior knowledge through two specialized models:
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Fig. 9.1 Overall architecture of the CASPIAN framework designed for anomaly detection in
longitudinal clinical profiles. It comprises three primary modules: (i) Longitudinal Anomaly
Detection using models such as SACNN and SCNN, (ii) Domain Knowledge Integration
through STT-LLM and GRAMP to incorporate metabolic and temporal pathway information,
and (iii) Interpretability & Reasoning using MPP and DAP to improve transparency via
visual trajectory and contextual textual explanations.

o STT-LLM: This model tokenizes longitudinal input into structured embeddings and
leverages large language models to reason about profile evolution. It can provide
zero-shot anomaly detection with temporal-biological awareness.

* GRAMP: This model integrates metabolic and biochemical interactions via graph
neural networks. By modeling pathway-level constraints and reactions, GRAMP
validates whether the detected anomalies violate expected metabolic behavior.

These models help contextualize anomalies, ensuring that flagged deviations are not just
statistically significant but also biologically meaningful.

9.2.3 Interpretability & Contextual Reasoning

CASPIAN focuses on transparency and user interpretability by incorporating dedicated

modules for explanation generation:

* MPP: This model generates domain-specific textual reasoning using biologically-
grounded prompts. For each anomaly, it offers biochemical justifications and trend
patterns.
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* DAP: This model performs trajectory-based visual analytics. Using PCA projections
and centroid deviation metrics, DAP shows how the individual profile diverges from

population norms over time.

The interpretability layer closes the loop between model output and expert decision-making,

supporting evidence-based anomaly validation.

9.3 Capabilities Across the Stack

The CASPIAN framework integrates a set of models, each designed to address specific
computational and domain-level requirements for anomaly detection in longitudinal clinical
data. The models span three functional layers, allowing the system to operate flexibly
across various clinical and regulatory contexts. SACNN and SCNN form the foundation
of the anomaly detection layer, offering complementary capabilities in sequence modeling.
By leveraging structured attention mechanisms, SACNN is adapted to detect subtle yet
meaningful deviations in profiles with higher temporal resolution. On the other hand,
SCNN addresses a significant real-world challenge, i.e., detecting anomalies in limited
data. Its ability to model trajectories with only two samples makes it particularly valuable
in longitudinal monitoring settings where frequent sampling is not feasible. Both models
contribute not only to anomaly localization but also to intra-individual trend modeling.
Beyond detection, CASPIAN’s strength lies in its layered incorporation of domain knowl-
edge and interpretability mechanisms, both of which are important for clinical validation and
regulatory decision-making. The STT-LLM model bridges temporal structure with textual
reasoning by reformulating metabolite pathway trajectories into structured prompts for large
language models, offering an interpretable and generalizable reasoning layer. GRAMP
introduces structured biological knowledge by modeling metabolic pathways as graphs,
capturing dynamic temporal-pathway interactions. Together, these modules allow CASPIAN
to evaluate the biological plausibility of detected anomalies rather than relying on statistical
thresholds alone. On the interpretability level, MPP generates structured domain-specific
textual explanations that help contextualize the anomaly, while DAP quantifies and visualizes
deviations in trajectory space, providing experts with a visual diagnostic interface. These
interpretability components are important for integrating CASPIAN into real-world clinical
workflows, where trust, transparency, and expert oversight are important. The functional dis-
tribution across models, as shown in Table 9.1, reflects the framework’s focus on modularity

and domain alignment.
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Table 9.1 Comprehensive comparison of different models’ capabilities within the CASPIAN
framework for anomaly detection, domain knowledge integration, and interpretability.

Longitudinal Anomaly Detection Domain Knowledge Integration Interpretability & Reasoning

Models Handles Intra- Metabolic / Temporal- Visual

Temporal - .. . . . Textual

Modeling Limited Ind1v1d.ual Blochf:mlcal Pathwgy Tra]ectqry Reasoning

Profile Modeling Prior Interaction Analysis

SACNN v v v
SCNN v v v
STT-LLM v v v v
GRAMP v
MPP v v v v
DAP v v v

9.4 User Interface and Workflow

CASPIAN is implemented as an interactive software platform that enables real-time explo-
ration and interpretation of longitudinal clinical data. At the center of the framework is a
user-facing dashboard that allows experts to assemble analysis pipelines tailored to their
investigative or regulatory tasks (see Fig. 9.2). Rather than functioning as a monolithic
black-box tool, CASPIAN provides modular components that can be configured to meet
different requirements. For example, an anti-doping laboratory analyst might prioritize
immediate anomaly detection and clear visual reporting to flag suspicious patterns in an
athlete’s biological profile, while an anti-doping regulatory authority may focus on trans-
parent explanations and pathway-informed reasoning to support expert panel reviews and
adjudication processes.

Each module within the interface has dedicated components that present key outputs in a
clear and interpretable way. Anomaly detectors return classification results with confidence
scores; pathway-based models display visual overlays of metabolic structures combined
with model inferences; reasoning model generates structured textual explanations; and
visualization model presents trajectory deviations and principal component contributions.
This layered design supports both high-level summaries for operational decision-making
and detailed drill-downs for expert validation. Therefore, the interface accommodates two
modes of use: research-oriented exploration, where reproducibility and fine-grained analysis
are emphasized, and operational deployment, where clarity and transparency are prioritized.
By combining configurability with interpretability, CASPIAN provides a practical decision-
support environment that can be applied across biomedical domains.
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Fig. 9.2 User interface and functional components of the CASPIAN software, which is
designed for detecting anomalies in longitudinal clinical data. The dashboard allows users to
select specific models tailored to their individual needs and requirements.

9.5 Summary

This chapter presented the design and operational implementation of CASPIAN, a multi-
model software framework developed to support biologically grounded and interpretable
anomaly detection in longitudinal clinical profiles. By structuring the system into three
modular and parallel analytical layers, CASPIAN addresses the key practical challenges
outlined in this thesis. It offers a flexible analytical environment that supports diverse
data contexts, including limited sample sizes, while maintaining fidelity to metabolic and
clinical principles. From deep sequence modeling to graph-based biological validation and
LLM-enabled explanations, each component of the framework is implemented to contribute
meaningfully to the detection pipeline, ensuring that outputs are not only accurate but also
interpretable and actionable. CASPIAN’s implementation as an interactive software platform
transforms the underlying methodological contributions of this work into a usable decision-
support system for anti-doping and the regulatory domain. Its dashboard interface, modular
configuration, and model-specific visualizations enable both research exploration and expert-

driven diagnostics. Whether applied to anti-doping investigations or biomarker trajectory
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analysis, CASPIAN provides an end-to-end solution for identifying and explaining anomalies

in complex longitudinal clinical data.






Chapter 10
Conclusion

This thesis addressed the problem of anomaly detection in longitudinal clinical data by
developing models that are robust to temporal complexity, domain variability, and data
imperfections. Longitudinal datasets are foundational to clinical monitoring [331] and anti-
doping in sports [70]. Therefore, this work was motivated by three important limitations in
the current state-of-the-art methods: 1) lack of robustness to temporal structure, ii) limited
integration of domain-specific knowledge, and iii) insufficient model interpretability. This
work aimed to bridge these gaps through a multifaceted modeling approach that highlights
personalized pattern learning, biologically grounded representations, and explainable outputs.

Modeling Temporal Dynamics for Anomaly Detection

A fundamental challenge in longitudinal clinical analysis lies in detecting anomalous patterns
when labeled anomaly samples are rare or unavailable. Direct supervised learning methods,
which rely heavily on annotated datasets, are often unsuitable in this setting [266]. In anti-
doping, obtaining explicit labels for anomalies is not only resource-intensive but can also
be practically impossible, as anomalies may be subtle, evolve slowly over time, or only
become apparent retrospectively. Therefore, there is a pressing need for models that can learn
normal temporal dynamics and identify deviations without requiring labeled anomaly data.
To address this problem, this thesis proposed two complementary models: the Self Attention-
based Convolutional Neural Network (SACNN) and the Subsampling-based Convolutional
Neural Network (SCNN). Both models are designed to operate in semi-supervised regimes,
capable of learning from the structure of the longitudinal profiles themselves.

The SACNN model introduced a novel combination of convolutional feature extraction
and self-attention mechanisms. The convolutional layers captured local structural patterns
among biomarkers at each time point, while the self-attention layers learned global temporal
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dependencies across the longitudinal sequence. This dual mechanism enabled SACNN to
model both short-term variations and long-range trends within clinical profiles, regardless of
the profile’s length. In particular, the architecture allowed for the generation of structural-
temporal embedding maps, preserving important temporal patterns that could signify subtle
anomalous shifts even across long monitoring periods. Extensive experimental evaluations
showed SACNN’s effectiveness. When applied to real-world longitudinal steroid profiles
of athletes, SACNN achieved an AUROC of 0.92 on the male athlete dataset (Steroid-M)
and maintained a sensitivity of over 73% at a high specificity threshold of 99%. Compared
to baselines such as Isolation Forest, B-VAE, and ensemble methods, SACNN consistently
outperformed across all metrics. A key strength of SACNN lies in its robustness, i.e., it effec-
tively handles longitudinal profiles of varying lengths and irregular sampling without reliance
on explicit anomaly labels. However, SACNN’s sophisticated architecture, particularly the
use of multiple self-attention layers and convolutional blocks, resulted in a relatively high
computational cost. While this complexity was beneficial for achieving better performance,
it necessitated greater computational resources during both training and inference.

The SCNN model is developed as a computationally lighter alternative, which is at-
tractive for resource-constrained environments due to its efficiency. SCNN retains much
of SACNN’s temporal modeling capabilities while significantly reducing model size and
complexity. It introduces a subsampling-based approach, generating multiple subsequences
from the available data and aggregating the learned representations through convolutional
layers. In experimental validations, SCNN achieved strong performance, maintaining an
AUROC above 0.81 on different longitudinal datasets and achieving a sensitivity exceeding
50% even when applied to limited profiles containing only two samples (Steroid-M;;,, and
Steroid-Fj;,, datasets). Although SCNN'’s performance was slightly lower than SACNN’s,
it shows remarkable efficiency and flexibility. The principal advantage of SCNN lies in its
lightweight design, enabling faster training and inference, with only a modest trade-off in
predictive performance. However, because it used a simpler representation strategy, SCNN
was somewhat less sensitive to subtle, long-range temporal anomalies compared to SACNN.
Both models were evaluated on real-world longitudinal steroid profiles, demonstrating their
ability to detect anomalies in a clinical context. The results highlighted the potential of these
models to improve the detection of subtle deviations in longitudinal data, paving the way for
more effective monitoring and intervention strategies in clinical practice.

The development of SACNN and SCNN directly addresses RQ1, which examines how
anomalies in longitudinal clinical data can be modeled and detected despite data complexity
like irregular sampling, heterogeneous profile lengths, and the scarcity of labeled anomaly

data. Both models adopt a semi-supervised paradigm that learns individualized baselines from
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within-subject histories rather than relying on population thresholds or annotated anomalies.
SACNN addresses irregularity and heterogeneity by constructing structured subsequences
and applying structural-temporal embeddings with attention-weighted convolution, thereby
enabling the detection of subtle anomalies. In contrast, SCNN addresses sparsity and
limited-sample scenarios by generating temporally ordered subsamples and learning implicit
differential consistency through convolutional encoders, enabling meaningful detection even
with only two samples. In both approaches, anomalies emerge not from direct supervision
but as deviations from learned intra-individual trajectories. This ability to learn personalized
normality and detect deviations without sufficient ground-truth anomaly labels is central
to answering RQ1 and is especially critical in domains such as anti-doping, where labeled

anomalies are scarce, costly, or unverifiable without invasive follow-up testing.

Incorporation of Metabolism Pathway Structure into Anomaly Detection

In longitudinal clinical analysis, biological markers do not evolve independently; rather,
they are intricately linked through underlying biochemical pathways such as metabolism,
endocrine regulation, or immune signaling [301]. Ignoring these structural relationships can
result in models that detect statistical anomalies without considering biological plausibility,
leading to false positives or clinically irrelevant findings. Therefore, effectively incorporating
domain-specific knowledge, such as metabolic pathway structures, into anomaly detection
models is important for improving both performance and interpretability. To address this
need, this thesis proposed two major contributions: Structural-Temporal Tokenization for
Large Language Models (STT-LLM) and GRAph-based modeling for Metabolism Pathway
(GRAMP). Both approaches were designed to leverage the inherent structure of biological
systems to improve anomaly detection in longitudinal profiles.

STT-LLM introduced a new framework for adapting large language models to longitudi-
nal clinical data by embedding metabolic and temporal structure into token representations.
Unlike conventional LLM applications focused on natural language, this method developed a
specialized tokenization mechanism that integrates both pathway-informed relationships and
temporal progression of different biomarkers into transformer-compatible input sequences.
The structural tokenizer captured connections among biomarkers based on known biochemi-
cal pathways, while the temporal tokenizer encoded the evolution of these markers over time.
Together, these components enabled STT-LLM to model complex longitudinal profiles using
pretrained language models without modifying their internal architecture. Experimental
results showed that STT-LLM outperformed baseline LLMs in both zero-shot and few-shot
anomaly detection tasks across multiple datasets. The model also demonstrated better gen-
eralization from limited examples and reduced training costs by employing lightweight
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fine-tuning techniques. STT-LLM offers a promising way for integrating domain-specific
structure into general-purpose models, combining biological grounding with computational
efficiency.

Building on a different architectural paradigm, the GRAMP model embedded the
metabolism pathway structure directly into a graph neural network. Each metabolite was
modeled as a node, with directed edges representing enzymatic reactions in the steroid
metabolism pathway. This graph-based representation enabled GRAMP to leverage known
biochemical dependencies during training and inference, allowing the model to learn physio-
logical patterns that extend beyond individual biomarker trajectories. GRAMP used graph
attention mechanisms to dynamically weigh relationships among metabolites, learning to
highlight interactions that were informative for detecting anomalies. When evaluated on
longitudinal steroid datasets, GRAMP achieved AUROC scores of 0.91 for male and 0.85
for female athletes, outperforming baseline models that ignored domain structure. GRAMP
not only improved accuracy but also improved biological specificity, i.e., flagged anomalies
were more consistent with plausible metabolic disruptions, as verified through domain expert
review and case study. The model’s reliance on metabolic pathway knowledge represents
both its strength and its limitations. While it enables high-fidelity anomaly detection when
accurate graphs are available, GRAMP’s applicability may be restricted in domains lacking
well-defined biochemical maps or in cases where the biological processes are only partially
understood.

Together, STT-LLM and GRAMP provide two complementary approaches to embedding
biological knowledge into anomaly detection pipelines. These development directly addresses
RQ2, which examines why the integration of domain knowledge is important for improving
anomaly detection in longitudinal clinical data. By embedding relational structure into the
learning process, both models demonstrated increased sensitivity to clinically meaningful
deviations and reduced the incidence of biologically implausible false positives. STT-LLM
achieves this through token-level encoding of structure and time into language models,
while GRAMP uses graph-based learning to enforce biochemical constraints during message
passing. These findings support the broader claim that embedding domain expertise into
model design can significantly improve the reliability of anomaly detection systems in

high-stakes clinical applications.

Interpretability and Domain-Informed Reasoning for Anti-Doping

In domains such as anti-doping, where decisions based on anomaly detection can have
significant ethical or legal consequences [61], interpretability is as important as predictive
performance. Black-box models that flag anomalies without providing understandable justifi-
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cations are insufficient for clinical or regulatory acceptance. Thus, a requirement for anomaly
detection models in longitudinal clinical data is to produce outputs that are transparent and
aligned with domain-expert reasoning. To meet this requirement, this thesis introduced two
complementary contributions: the Metabolism Pathway-driven Prompting (MPP) framework
and the Digital Athlete Passport (DAP) system. Both approaches were designed to support
post-hoc interpretability by offering biologically grounded and visually accessible justifi-
cations for anomaly decisions, facilitating communication between automated systems and
domain experts such as anti-doping officials and clinicians.

The MPP framework serves as a mechanism for generating human-readable explanations
using large language models. MPP encodes prior biological knowledge into structured natural
language prompts, guiding the pretrained LLLM to produce context-sensitive reasoning of
why a given longitudinal profile may be considered anomalous. Instead of providing only an
anomaly score, MPP enables the model to reference relevant metabolic pathways, temporal
patterns, and inter-marker relationships in its explanations. The framework was applied
to various pre-trained LLMs, including LLaMA-2 and Mistral-7B, and evaluated through
qualitative studies and expert feedback. Results showed that explanations generated by MPP
were not only more informative than standard anomaly scores but also aligned with expert
expectations regarding biochemical plausibility and temporal coherence. This interpretability
layer helped bridge the gap between machine learning predictions and real-world clinical or
regulatory reasoning. However, the quality of explanations depended on prompt design and
the intrinsic reasoning capabilities of the underlying LLM, highlighting the importance of
structured domain-informed prompting strategies.

In parallel, the Digital Athlete Passport (DAP) system was designed to provide a visual
representation of profile evolution and to indicate the status of anomalies. DAP reduces high-
dimensional longitudinal data into three principal components and overlays temporal data to
construct a personalized centroid per individual. New samples are projected into this reduced
space, and their distance from the centroid is used to assess anomaly likelihood. Unlike purely
numerical outputs, DAP offers an intuitive visualization of how an individual’s longitudinal
profile is evolving relative to their own history, enabling experts to detect trends such as
sudden spikes, gradual shifts, or emerging outliers. In evaluations on longitudinal steroid
datasets, DAP achieved over 85% sensitivity while offering a graphical summary interpretable
by users without extensive machine learning expertise. The system’s independence from
complex neural architectures and compatibility with standard clinical tools made it a practical
solution for daily monitoring. However, as with all projection-based methods, the risk of
information loss in dimensionality reduction remains, and subtle anomalies dispersed across

many biomarkers may be underrepresented.
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The combined development of MPP and DAP directly addresses RQ3, which examines
how anomaly detection models can be made interpretable and suitable for decision support
in anti-doping and clinical applications. MPP provides a textual explanation layer grounded
in biological reasoning and enabling transparency in model predictions. DAP complements
this by offering a visual summary of temporal deviations, facilitating intuitive analysis and
expert validation. Together, these systems ensure that anomaly detection does not remain
a technical exercise confined to algorithmic output but becomes a collaborative process
where domain knowledge and machine learning insights are integrated to inform sensitive,
high-impact decisions. Their successful application shows that interpretability in longitudinal
anomaly detection is not only desirable but feasible, and it can be operationalized through a

combination of prompt-based reasoning and human-centered visualization.

CASPIAN Software Framework

The models developed throughout this work were integrated into a unified framework,
CASPIAN. It adapts multiple complementary anomaly detection strategies, combining
structural-temporal modeling, explanation generation, and visual trajectory analysis within a
single system. It was designed in direct response to the challenges identified in this work.
To this end, CASPIAN accommodates both high-complexity and lightweight components,
allowing users to select appropriate models based on their computational resources and
interpretability requirements.

CASPIAN offers a flexible pipeline where SACNN and SCNN provide the temporal
anomaly detection backbone, GRAMP embeds domain-specific metabolic pathway structure,
STT-LLM and MPP deliver interpretability through tokenized reasoning and prompt-based
explanations, and DAP provides intuitive visual diagnostics. Through this modular architec-
ture, CASPIAN operates as a practical decision-support system rather than a rigid pipeline,
enabling domain experts to adapt workflows to their analytical needs. This flexibility makes
it well-suited for longitudinal monitoring tasks in diverse fields, ranging from anti-doping to
healthcare. By combining deep learning, domain knowledge, and transparent reasoning in
one deployable system, CASPIAN demonstrates the feasibility of building anomaly detection
frameworks that are not only technically robust but also practically usable in high-stakes
decision-making contexts.
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10.1 Limitations

Despite the substantial progress achieved through the models presented in this thesis, several
limitations of this work require careful consideration. These limitations stem from both the
inherent challenges of working with longitudinal clinical data and trade-offs in model design,
domain integration, and system implementation. Recognizing these constraints is important
for guiding future research and ensuring responsible deployment in real-world settings.

First, there are inherent limitations in the nature and scope of the available datasets. The
primary datasets used in this thesis were derived from real-world longitudinal steroid profiles
collected by anti-doping agencies and affiliated laboratories. While these datasets provided
valuable ground for experimentation, they were largely composed of healthy, elite athlete
populations. As a result, the demographic diversity and biological variability present in
general clinical populations were underrepresented. This may limit the external validity
and generalizability of the findings beyond the specific domain of anti-doping in sports.
Additionally, the number of confirmed anomalous events in the data was limited, and in many
cases, ground truth labels were inferred through expert agreement rather than direct clinical
validation.

Second, limitations arise from architectural complexity and computational requirements.
The SACNN model, while achieving SoTA performance in capturing structural and temporal
dependencies, incurred substantial computational costs due to its multi-layered self-attention
and convolutional design. Such resource demands may hinder deployment in low-power or
latency-sensitive environments. Although SCNN was introduced to address these concerns
through a lighter-weight architecture, it demonstrated a modest trade-off in performance.
This highlights the classic trade-off between model expressiveness and efficiency, which
remains a continuing challenge in longitudinal anomaly detection.

Third, the integration of biological pathway knowledge into modeling introduces spe-
cific challenges related to flexibility and generalizability. The STT-LLM framework, while
offering a scalable and token-efficient method for incorporating structural and temporal infor-
mation into large language models, depends on carefully engineered tokenization schemes
that reflect accurate and consistent biological relationships. In domains where pathway
information is noisy or sparsely annotated, the effectiveness of STT-LLM may be diminished,
and its generalization across biological systems could be constrained. On the other hand,
GRAMP embeds predefined metabolic pathways into graph neural networks, improving the
detection of biologically plausible anomalies. However, its reliance on fixed and curated
pathway structures introduces rigidity. In clinical scenarios where biochemical pathways

are incomplete or dynamically evolving, GRAMP’s applicability may be limited. Both
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approaches highlight the trade-off between incorporating domain-specific structure and
maintaining adaptability across diverse clinical contexts.

Finally, interpretability mechanisms also exhibit important limitations. The MPP frame-
work improved the quality of explanations, but the reliability and consistency of generated
outputs varied significantly across different LLMs and model configurations. This vari-
ability necessitates further research into explanation auditing and consistency checking.
The DAP system, while visually intuitive and accessible to non-technical users, relies on
dimensionality reduction methods such as PCA, which may obscure critical anomaly sig-
nals when these are dispersed across multiple low-dimensional spaces. Consequently, DAP
may under-represent subtle but clinically important deviations, particularly in complex or

high-dimensional biomarker landscapes.

10.2 Future Works

Building on the limitations identified in this thesis, several promising directions for future
research can be outlined to improve the generalizability and real-world applicability of
anomaly detection in longitudinal clinical analysis. A step-by-step trajectory of future
work can be expected, moving from data and methodological improvements toward broader
integration impact.

The first step lies in broadening the scope and diversity of datasets. The current study
has focused primarily on longitudinal steroid profiles from real-world athletes, which limits
the generalizability of findings to other populations. Future research should extend these
approaches to diverse clinical cohorts, including patients with chronic illnesses, individuals
across different age groups, and populations exposed to varying sociocultural and environ-
mental conditions. Collaborative efforts to construct large-scale and expertly annotated
longitudinal datasets would provide a foundation for standardized benchmarking and enable
more reliable evaluation across heterogeneous settings. The next step is the optimization
of model architectures for practical deployment. While the models developed in this thesis
demonstrated strong performance, their computational requirements vary, and some may
be unsuitable for resource-constrained environments. Future research could explore model
compression techniques such as pruning and quantization, as well as adaptive architectures
that dynamically adjust their complexity depending on data density and computational re-
sources. Such developments would facilitate the deployment of anomaly detection systems
in embedded clinical devices and anti-doping field laboratories.

Beyond efficiency, an important step is the deeper integration of biological domain

knowledge. Current models incorporate pathway structure to improve plausibility, but
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future research should explore patient-specific or dynamic pathway modeling approaches.
These would reflect individual baselines more accurately, rather than relying on static,
population-level networks. Advances in biomedical natural language processing could also
be leveraged to automate the extraction and continuous updating of pathway information
from scientific literature and databases, enabling models to evolve alongside expanding
biomedical knowledge. Such personalization and adaptability would significantly increase
the clinical relevance of anomaly detection outputs.

Improving interpretability remains another central direction. For visualization-based
approaches, future work could explore more expressive methods such as manifold learning or
graph-based trajectory representations, which may reduce information loss and better capture
complex temporal structures. For language model-based explanations, future research should
focus on improving explanation quality by fine-tuning models on domain-specific longitudinal
datasets, integrating techniques such as contrastive or counterfactual explanation generation,
and incorporating mechanisms for uncertainty quantification. These developments would
strengthen the transparency and trustworthiness of anomaly detection models in clinical and
regulatory applications.

Finally, future research should open the door to broader horizons by extending anomaly
detection beyond its current boundaries. One avenue involves exploring causal anomaly
detection frameworks, which would distinguish pathological changes from adaptations
and enable simulation of counterfactual patient trajectories. Another route lies in multi-
modal integration, combining laboratory biomarkers with data from wearables, imaging, and
electronic health records to support real-time anomaly detection in continuous monitoring
contexts. Extending these approaches beyond human clinical and anti-doping applications to
domains such as veterinary health or environmental biosurveillance could also demonstrate

the versatility and transferability of pathway-informed longitudinal anomaly detection.
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