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We introduce a topological invariant of games, based on homotopy theory, that measures their 
complexity. We examine it in the context of the ``Texas Hold’em'' variant of poker, and show that 
the invariant’s value is at least 4. We deduce that evaluating the strength of a pair of cards in 
Texas Hold’em is an intricate problem, and that even the notion of who is bluffing against whom 
is ill-defined in some situations. The use of higher topological methods to study intransitivity of 
multi-player games seems new.

1. Introduction

In the popular ``Texas Hold’em'' variant of poker (see e.g. Ethier, 2010, Chapter 22), you and each of your opponents are dealt 
two cards, and five cards will be dealt to the table. The winner is the player making the best 5-card poker game out of their and the 
table’s cards. Suppose you hold 𝐽♣10♣ and two other players respectively hold 2♢2♡ and 𝐾♣2♣. Who is the favourite? And what 
happens after one of the opponents folds?

Knowing the winning probabilities of a hand against another one is fundamental to any poker strategy, and are at the heart of 
von Neumann’s analysis of poker (von Neumann, 1928). What we argue, however, is that winning probabilities give at best partial 
information on the current game state, and sometimes are devoid of game-theoretic value.

Let us pause to consider a much simpler game, ``Rock, Paper, Scissors'' (RPS). It would be absurd, in a televised retransmission 
of a RPS match, to display winning probabilities for each player, since by the game’s symmetry each player wins against one play 
and loses against another. Win probabilities are routinely shown in televised poker, but we shall argue that the situation, there, is far 
worse, due both to the richness of the game and to the high number of players (typically, 8).

But first, the situation of RPS does occur in poker: for the pairs 𝐽♣10♣, 2♢2♡ and 𝐾♣2♣ we can check that the 1-on-1 winning 
chances are

𝑤(𝐽♣10♣,2♢2♡) = 54%, 𝑤(2♢2♡,𝐾♣2♣) = 63%, 𝑤(𝐾♣2♣, 𝐽♣10♣) = 55%.

This means that the same player may become the favourite or the underdog depending on which of its opponents folds.
To model such seemingly paradoxical phenomena, we introduce a topological invariant of a game, and apply computational tools 

to derive a non-trivial result for poker. We avoid any discussion on the exact winning probabilities to concentrate only on who wins: 
we therefore have a set 𝑋 of player hands, and an antisymmetric relation 𝑟 ⊆ 𝑋 ×𝑋, namely a relation such that for all 𝑥, 𝑦 ∈𝑋 at 
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most one of 𝑟(𝑥, 𝑦), 𝑥 = 𝑦, 𝑟(𝑦,𝑥) holds. An antisymmetric relation 𝑟 ⊆ 𝑋 ×𝑋 is a partial order if and only if it is transitive: 𝑋 does not 
contain elements 𝑅,𝑃 ,𝑆 with 𝑟(𝑅,𝑃 ), 𝑟(𝑃 ,𝑆), 𝑟(𝑆,𝑅).

This property can be interpreted topologically, by means of a simplicial complex, see §2. Start from a set 𝑋 of points, and attach 
edges, triangles, etc.: a (#𝐶 − 1)-simplex to each collection 𝐶 ⊆ 𝑋 of points such that the restriction of 𝑟 to 𝐶 × 𝐶 is transitive. The 
resulting simplicial complex is denoted by K𝑋 . This construction is classical when starting with a partial order: the theory of simplicial 
complexes and of partially ordered sets are essentially equivalent, see Björner (1995) for its applications to topology. However, we 
may also apply it to our relation 𝑟, and study the topology of K𝑋 . In the situation of ``Rock, Paper, Scissors'', the resulting complex 
K𝑋 is topologically a circle:

𝑅𝑃

𝑆

We posit that the complexity of a game is related to the topological complexity of K𝑋 . As a useful numerical invariant, we consider 
the maximal homological dimension of a subcomplex. This is the maximum 𝑛 ∈ℕ, over all 𝑌 ⊆𝑋, such that 𝐻𝑛(K𝑌 ) ≠ 0; see §2 for 
details.

Definition 1. In this article, a game with state set 𝑋 consists in a set 𝑋 and an antisymmetric relation 𝑟 ⊆ 𝑋 × 𝑋. We take the 
meaning of 𝑟(𝑥, 𝑦) to be ``𝑦 beats 𝑥''. Equivalently, 𝑋 is the set of strategies of a zero-sum two-player game with payoff function 
𝑝 ∶ 𝑋 ×𝑋→ {−1,1}, given by 𝑝(𝑥, 𝑦) = −1⇔ 𝑟(𝑥, 𝑦).

The intransitivity complex of the game is the simplicial complex K𝑋 with vertex set 𝑋 and simplices {𝐶 ⊆ 𝑋 ∶ 𝑟 ↾ (𝐶 ×
𝐶) is transitive}.

The intransitivity dimension of the game is the maximal homological dimension of induced subcomplexes of K𝑋 .

The motivation behind this choice of invariant is the following: on the one hand, it is natural to consider restrictions of the state 
set 𝑋 to subsets, and to consider the restricted subgames. There could, for example, exist a dominating state 𝑥∞ ∈𝑋 with 𝑟(𝑥,𝑥∞)
for all 𝑥 ∈𝑋 ⧵ {𝑥∞}, in which case K𝑋 would be a cone with apex 𝑥∞, and hence homologically trivial; this justifies the choice of 
an invariant that considers arbitrary subsets of 𝑋. There may nevertheless be complicated, intransitive games in which 𝑥∞ does not 
appear. Homological dimension is a nice, numerical invariant whose non-vanishing in dimension 𝑑 captures the idea that ``something 
non-trivial happens in dimension 𝑑''.

We describe our main results, pertaining to general properties of the invariant K𝑋 and its application to poker, in the next 
subsection. Section 2 recalls the basics of simplicial complexes and homology theory, while Section 3 details the intransitivity complex 
we introduce. Section 4 proves the results from §1.1, and Section 5 concludes with some perspectives. Further examples of K𝑋 , coming 
from intransitive dice are given in §5.3.

1.1. Main results

We first note that our invariant has full range:

Theorem 1. For every 𝑛∈ ℕ there exists a game whose intransitivity dimension is 𝑛.

The game arising from Theorem 1’s proof is somewhat contrived, and we devote our attention to natural games, that already 
occurred in nature (or at least in the literature).

There is a natural generalization of ``Rock, Paper, Scissors'', made popular by the television series ``The big bang theory'', in which 
two additional characters, ``Spock'' and ``Lizard'' appear; see Lu et al. (2022). Mathematically, the 𝑛th RPS game has 𝑋 =ℤ∕(2𝑛+1)ℤ, 
a cyclic group of odd order, and 𝑟(𝑥, 𝑦) if and only if 𝑦− 𝑥 ∈ {1,… , 𝑛}. The special case 𝑛 = 1 is the classical RPS game, and 𝑛 = 2 is 
the ``Rock, Paper, Scissors, Spock, Lizard'' game.

Theorem 2. In the 𝑛th RPS game, the complex K𝑛 consists of a cycle of (2𝑛+1) simplices of dimension 𝑛, each sharing an (𝑛−1)-face with 
its neighbour. The intransitivity dimension is 1.

We then turn to an in-depth examination of poker, and more specifically the Texas Hold’em variant. Poker has a storied history in 
game theory, starting with the seminal works of Borel Borel (1938) and von Neumann von Neumann (1928), and is deeply investigated 
in the monumental von Neumann and Morgenstern (1944); see Ferguson and Ferguson (2003) for an account. Von Neumann and 
Morgenstern already consider poker with more than two players, but concentrate on these players forming coalitions of one group 
against another. Three-player poker is considered in Nash and Shapley (1950), and shown to be orders of magnitude more complex 
than two-player poker.

In contrast with these works in ideal settings, we consider actual poker, with 52 cards. We address the most fundamental problem, 
that of comparing hand strengths. Our problem can be phrased as follows. Imagine that 𝑛 pairs have been dealt at the table, but that the 
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𝑛 players have not yet taken a seat. Which place should you select? Naturally, you should select ``the best hand'', but as in RPS and other 
intransitive games there could not be a best hand among those available.

We consider the set 𝑋 = {(𝑖, 𝑗) ∶ 1 ≤ 𝑖 < 𝑗 ≤ 52} of pairs of cards, and the relation

𝑟((𝑖, 𝑗), (𝑘,𝓁))⟺

{
averaging over the 

(52−4
5 

)
remaining cards,

pair (𝑘,𝓁) wins with more than 50% chance.

We sometimes write ‘(𝑖, 𝑗) < (𝑘,𝓁)’ for 𝑟((𝑖, 𝑗), (𝑘,𝓁)), without implying transitivity.
Our result is that the homotopy type of Texas Hold’em is quite rich; in other words, there are intricate card configurations in which 

every player could be winning against another one; thus even the concept of ``bluff'' (see e.g. Cassidy, 2015) needs to be revisited 
since it is impossible to define, at some moments, who is bluffing against whom:

Theorem 3. The intransitivity dimension of Texas Hold’em is at least 4.

More precisely, the simplicial complex K𝑋 contains essential 4-dimensional subcomplexes: subcomplexes that are not homotopically 
equivalent to < 4-dimensional ones. In fact we shall exhibit 𝑆4 as such a subcomplex of K𝑋 .

If there were a 4-dimensional simplex in K𝑋 , it could be interpreted as follows: there is a configuration with 5 players such that no 
hand is better than the others, but as soon as a player folds the remaining 4 are linearly ordered. Loosely speaking, our result shows that 
the same phenomenon occurs with coalitions instead of players.

There is a long history of associating numbers to games; integers for Sprague (1936); Grundy (1939) or generalized (and in 
particular not necessarily ordered) numbers for Conway (2001). We view topological invariants as a new powerful tool supplementing 
these more classical invariants.

1.2. Acknowledgments

The calculations have made heavy use of the computer algebra program Oscar (The OSCAR Team, 2025), as well as the poker 
hand evaluator PokerHandEvaluator.jl.

2. Simplicial complexes

This section is a very brief introduction to the algebraic topology necessary for the definition of our invariant. It may be skipped 
by experts in topology, as well as those readers content with the informal definition above.

2.1. Abstract simplicial complexes

An abstract simplicial complex is a collection Δ of subsets of some set 𝑆 , subject to the axiom: for all 𝑋 ∈Δ and all 𝑌 ⊆𝑋 one has 
𝑌 ∈Δ. Every 𝑋 ∈Δ is called a simplex, and its dimension is #𝑋 − 1.

This notion generalizes that of graphs; indeed, if all elements of Δ have cardinality at most 2, then each {𝑥, 𝑦} ∈ Δ represents an 
edge connecting 𝑥 with 𝑦, and Δ carries precisely the information of an undirected, simple graph.

To every simplex 𝑋 ∈Δ one may associate its geometric realization |𝑋|, which is a standard simplex in ℝ𝑆 : by definition,|𝑋| = {𝑥 ∈ [0,1]𝑆 ∶
∑
𝑠∈𝑆

𝑥𝑠 = 1, 𝑥𝑠 > 0⇒ 𝑠 ∈𝑋}.

Then the geometric realization of Δ is the topological space

|Δ| = ⋃
𝑋∈Δ

|𝑋| = {
𝑥 ∈ [0,1]𝑆 ∶

∑
𝑠∈𝑆

𝑥𝑠 = 1, {𝑠 ∶ 𝑥𝑠 > 0} ∈ Δ
}
.

For example, 𝑆 = {1,2,3} and Δ = {∅,{1},{2},{3},{1,2},{1,3},{2,3}} is the complex associated with RPS, and its geometric 
realization is a triangle without its interior—and therefore homeomorphic to a circle:

𝑥

𝑦

𝑧
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A subcomplex of a simplicial complex Δ is simply a subset of Δ that is also a simplicial complex, namely that contains subsets of its 
elements. The geometric realization of a subcomplex is naturally contained in the geometric realization of Δ. An induced subcomplex 
on a subset 𝑆′ ⊂ 𝑆 is a maximal subcomplex subject to the condition that its simplices are subsets of 𝑆′; it may directly be defined as

Δ𝑆′ = {𝑋 ∈Δ ∶𝑋 ⊆ 𝑆′} = {𝑋 ∩𝑆′ ∶𝑋 ∈Δ}.

We insist that being an induced subcomplex is a quite restrictive notion; for example, the triangle above is a subcomplex of the full 
simplex P({1,2,3}), but is not an induced subcomplex; indeed the only induced subcomplexes of a simplex are simplices themselves.

A fundamental construction is the join. Given two simplicial complexes Δ,Δ′ on sets 𝑆,𝑆′ respectively, their join is the simplicial 
complex

Δ⋆Δ′ = {𝑋 ⊔ 𝑌 ∶𝑋 ∈Δ, 𝑌 ∈Δ′} ⊆P(𝑆 ⊔ 𝑆′).

If 𝑋,𝑌 are respectively subsets of ℝ𝑚 and ℝ𝑛, their geometric join is the union of all lines between 𝑋×(0,… ,0)×0 and (0,… ,0)×𝑌 ×1
in ℝ𝑚+𝑛+1; and the geometric realization of a join of simplicial complexes is the geometric join of their realizations. For example, the 
join of two simplices of dimension 𝑚,𝑛 is a simplex of dimension 𝑚+ 𝑛+ 1, and the join of two spheres 𝑆𝑚,𝑆𝑛 is 𝑆𝑚 ⋆𝑆𝑛 ≅ 𝑆𝑚+𝑛+1.

2.2. Homology

Let Δ be an abstract simplicial complex, and for every 𝑛 let 𝐶𝑛 be the real vector space with basis the set of 𝑛-dimensional simplices 
in Δ (so 𝐶𝑛 ≅ℝ𝑑(𝑛) where 𝑑(𝑛) is the number of 𝑛-dimensional simplices in Δ). Assume that the set 𝑆 is ordered, and that elements 
of simplices are always written in ascending order. The boundary of an 𝑛-dimensional simplex 𝑋 = {𝑠0,… , 𝑠𝑛} is by definition the 
linear combination

𝜕𝑋 =
𝑛 ∑
𝑖=0 

(−1)𝑖 ⋅ {𝑠0,… , 𝑠𝑖,… , 𝑠𝑛}

where the notation …̂ indicates a term that has been removed. Thus 𝜕𝑋 ∈ 𝐶𝑛−1 and extending the boundary by linearity gives a 
linear map 𝜕 = 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1.

By a fundamental calculation, boundaries have no boundary, that is, 𝜕𝑛−1(𝜕𝑛𝑋) = 0. We have therefore im(𝜕𝑛+1) ⊆ ker(𝜕𝑛), and we 
define the homology groups

𝐻𝑛(Δ) ∶=
ker(𝜕𝑛) 
im(𝜕𝑛+1)

.

The homology groups are real vector spaces; the Betti numbers of Δ are the dimensions 𝛽𝑛(Δ) = dim𝐻𝑛(Δ) of these vector spaces, and 
serve as fundamental numerical invariants of Δ. Note that the field ℝ may be replaced by any other ring 𝕜 (for example ℤ), leading 
to homology with coefficients 𝐻𝑛(Δ;𝕜).

Continuing again with the example of the triangle above, we have 𝜕{1,2} = {1} − {2} and 𝜕{1} = 0, etc., so

𝐻1(Triangle) = ℝ ⋅ {1} +ℝ ⋅ {2} +ℝ ⋅ {3} 
ℝ ⋅ ({1} − {2}) +ℝ ⋅ ({1} − {3}) +ℝ ⋅ ({2} − {3})

≅ℝ.

We recall that a homotopy between two maps ℎ0, ℎ1 ∶ 𝑋 → 𝑌 is a smooth deformation of one into the other; the maps are then 
called homotopic. Two spaces 𝑋,𝑌 are homotopy equivalent if there are maps 𝑓 ∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 →𝑋 such that 𝑔 ◦ 𝑓 and 𝑓 ◦ 𝑔
are homotopic to the identity maps respectively of 𝑋 and 𝑌 ; and that a space 𝑋 is contractible if it is homotopy equivalent to a point.

The homology groups may be defined for arbitrary topological spaces, and are homeomorphism invariants—actually, even ho
motopy invariants. Thus 𝐻1(Triangle) ≅ ℝ implies that the triangle is not homotopy equivalent to a segment. These groups carry 
useful information; for example, 𝐻0(𝑋) ≅ ℝ if and only if 𝑋 is connected, and more generally 𝐻0(𝑋) ≅ ℝ𝑑 if 𝑋 has 𝑑 connected 
components. If Δ is 1-dimensional, namely represents a graph, then 𝐻1(Δ) ≅ℝ𝑒 where 𝑒 measures the number of independent cycles 
in the graph.

Two simplicial complexes may be different as complexes, yet define homeomorphic spaces; this is the case, for example, for a 
triangle and a square. Homotopy equivalence is a yet coarser relation between spaces; for example, a circle 𝑆1 and a Möbius band 
𝑀 are homotopy equivalent: the map 𝑆1 →𝑀 is the inclusion of 𝑆1 as a core curve of the Möbius band, and the map 𝑀 → 𝑆1 is 
the retraction to the core curve. If two spaces 𝑋,𝑌 are homotopy equivalent, then their homology groups are isomorphic.

The homological dimension of Δ is the maximal 𝑛 such that 𝐻𝑛(Δ) is non-trivial. In particular, homotopy equivalent spaces have 
same homological dimension, and if 𝑋 is contractible then its homological dimension is 0.

For example, if Δ is homeomorphic to the 𝑛-dimensional sphere 𝑆𝑛, then 𝐻0(Δ) ≅𝐻𝑛(Δ) ≅ ℝ, the other groups being trivial. 
Spheres are basic examples of spaces, in that every space may be obtained, up to homotopy, by repeatedly attaching spheres. Here the 
non-triviality of homology in dimension 𝑛 is at the heart of numerous results, e.g. Chichilnisky’s proof of Arrow’s theorem (Baryshnikov 
and Arrow, 2023).

3. The intransitivity complex

Let 𝑟 ⊆ 𝑋 × 𝑋 be a relation on a set 𝑋. We assume that 𝑟 is antisymmetric: for all 𝑥, 𝑦 ∈ 𝑋 at most one of 𝑟(𝑥, 𝑦), 𝑥 = 𝑦, 𝑟(𝑦,𝑥)
holds. If exactly one of the three alternatives above holds, then 𝑟 is called a tournament, the terminology coming from the results in 
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an all-play-all tournament. An antisymmetric relation 𝑟 ⊆ 𝑋 ×𝑋 is a partial order if and only if it is transitive: 𝑋 does not contain 
elements 𝑅,𝑃 ,𝑆 with 𝑟(𝑅,𝑃 ), 𝑟(𝑃 ,𝑆), 𝑟(𝑆,𝑅); and it is a total order if and only if it is a transitive tournament.

Consider the simplicial complex K𝑋 with vertex set 𝑋 and simplices the ordered subsets of (𝑋,𝑟), namely 𝐶 ⊆𝑋 is a simplex if 
and only if the restriction of 𝑟 to 𝐶 ×𝐶 is transitive. It is clear that this construction produces a simplicial complex, since a subset of 
a transitive relation is still transitive.

This construction is classical when starting with a partial order; then the complex K𝑋 is flag, meaning that whenever all the faces 
of a simplex belong to K𝑋 , then the simplex itself also belongs to K𝑋 . We apply it to the possibly non-transitive relation 𝑟, and study 
the topology of K𝑋 . For example, if 𝑟 is dominated in the sense that for all 𝑥, 𝑦 ∈𝑋 there exists 𝑧 with 𝑟(𝑥, 𝑧) and 𝑟(𝑦, 𝑧), then K𝑋 is 
contractible.

Simple game-theoretical properties may then be translated to topology. For example, if there is a maximal element in 𝑋 in the 
sense of an element 𝑥 ∈𝑋 with 𝑟(𝑦,𝑥) for all 𝑦 ≠ 𝑥, then K𝑋 is a cone with apex 𝑥.

There is a vast literature in game theory that makes highly non-trivial use of graph theory. We highlight in particular (Johnston 
et al., 2024), which considers the ``best-response'' graph in some games: given 𝑛 players respectively with options (pure strategies) 
𝑋1,… ,𝑋𝑛, this is the graph with vertex set 𝑋1 ×⋯ ×𝑋𝑛 and an edge from (𝑥1,… , 𝑥𝑖,… , 𝑥𝑛) to (𝑥1,… , 𝑥′

𝑖
,… , 𝑥𝑛) whenever player 

#𝑖 gains from switching his play from 𝑥𝑖 to 𝑥′
𝑖

given that the other players play 𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑛). They study connectivity 
properties of this graph for ``generic'' games, and it is quite possible that the tools we propose yield further information on the nature 
of generic games.

The seminal paper by Nash (1950) also makes fundamental appeal to topology; there, the existence of an equilibrium point is 
proven by considering a best-response graph in a continuous context, and using convexity as a strong form of contractibility to deduce 
the existence of a fixed point.

As we mentioned, it is possible for K𝑋 to be contractible even if for a rich relation 𝑟, e.g. if 𝑋 contains a maximal element. This 
is our motivation to consider induced subcomplexes of K𝑋 , namely all simplicial complexes K𝑌 obtained by restricting the set 𝑋 to 
a subset 𝑌 .

4. Proofs

We prove in this section the results announced in the introduction.

4.1. Theorem 1: arbitrary intransitivity dimension

Every edge orientation on a simple graph may be viewed as a game, by interpreting the vertex set as the options (pure strategies), 
and the oriented edge 𝑥→ 𝑦 as ``option 𝑦 wins against 𝑥''. In particular, a tournament �- an edge orientation of the complete graph 
— yields a game. We move freely between orientations on a simple graph and antisymmetric relations by writing 𝑟(𝑥, 𝑦) whenever 
there is an edge 𝑥→ 𝑦.

Given two games (𝑋,𝑟) and (𝑋′, 𝑟′), we may consider their join 𝑋⋆𝑋′: this is the game with options 𝑋 ⊔𝑋′ and winning relation 
𝑟′′ given by

𝑟′′(𝑥, 𝑦)⇔
⎧⎪⎨⎪⎩

𝑥, 𝑦 ∈𝑋 and 𝑟(𝑥, 𝑦),
or 𝑥, 𝑦 ∈𝑋′ and 𝑟′(𝑥, 𝑦),
or 𝑥 ∈𝑋,𝑦 ∈𝑋′.

In other words, all options in 𝑋′ are better than those in 𝑋, and options are otherwise compared in their respective sets.
It is easy to see that the join of games is compatible with the construction of the intransitivity complex:

K𝑋⋆𝑋′ ≅ K𝑋 ⋆K𝑋′ .

From this, we deduce that any join may appear as an intransitivity complex; for example, the sphere 𝑆𝑛 , which is the 𝑛-fold 
iterated join of 0-dimensional spheres 𝑆0; or the sphere 𝑆2𝑛−1, which is the 𝑛-fold iterated join of circles.

Consider, for concreteness, the game with 3𝑛 options 𝑋 = {𝑅,𝑃 ,𝑆} × {1,… , 𝑛}, and the winning relation

𝑟((𝑅, 𝑖), (𝑃 , 𝑗))⇔ 𝑖 < 𝑗, 𝑟((𝑃 , 𝑖), (𝑆, 𝑗))⇔ 𝑖 < 𝑗, 𝑟((𝑆, 𝑖), (𝑅, 𝑗))⇔ 𝑖 < 𝑗.

Then K𝑋 ≅ 𝑆2𝑛−1.
This game is of course highly contrived, and only serves as an illustration of the range of the construction. We shall see later that 

poker exhibits such phenomena.
We also highlight the difference between two notions of intransitivity for a game: on the one hand, it may exhibit a large number of 

“independent'' intransitivity relations; this would appear as a large dimension of a low-degree homology group such as 𝐻1. On the other 
hand, it may exhibit a complex ``interlocking'' of intransitivity relations; this would appear as a non-trivial dimension of a high-degree 
homology group.

Consider, in contrast with the above example, the game with 3𝑛 options 𝑋 = {𝑅,𝑃 ,𝑆} × {1,… , 𝑛}, and the winning relation

∀𝑖 ∶ 𝑟((𝑅, 𝑖), (𝑃 , 𝑖)), 𝑟((𝑃 , 𝑖), (𝑆, 𝑖)), 𝑟((𝑆, 𝑖), (𝑅, 𝑖)).
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Then K𝑋 ≅ 𝑆1 ⊔⋯ ⊔ 𝑆1.
A referee kindly suggested the following example; the graph we consider is not directly the winning relationship, but rather a 

best-response graph. The game is ``robber vs detective'', where the robber hides a treasure in one of 100 locations, and the detective 
looks at a location; the payoff is +1 for the detective if she finds the treasure and −1 if she doesn’t; the payoff to the robber is 
the opposite. Thus the space 𝑋 is {1,… ,100}2, namely the position of the robber and the detective. The best-response graph has a 
“robber'' edge from (𝑥,𝑥) to (𝑦,𝑥) for all 𝑦 ≠ 𝑥, and a ``detective'' edge from (𝑥, 𝑦) to (𝑥,𝑥) for all 𝑥 ≠ 𝑦. In particular, there are no 
chains of length 2, so K𝑋 is 1-dimensional�-it is a simple graph. It is connected, so 𝐻0 ≅ℝ, and a direct calculation shows 𝐻1 ≅ℝ𝑒

for 𝑒 = #edges − #𝑋 = 992. Thus 𝐻1 grows quadratically in the number of locations while the homological degree remains constant 
= 1.

4.2. Theorem 2: generalized RPS games

For illustration of the intransitivity complex, we consider a generalization of the famous ``Rock, Paper, Scissors'' (RPS) game to a 
set of 2𝑛+ 1 items 𝑋 =ℤ∕(2𝑛+ 1)ℤ = {0,1,… ,2𝑛} considered modulo 2𝑛+ 1, with the rule

𝑟(𝑥, 𝑦)⇔ 𝑦− 𝑥 ∈ {1,… , 𝑛}.

The special case 𝑛 = 1 is classical RPS, with 𝑅 = 0, 𝑃 = 1, 𝑆 = 2. The special case 𝑛 = 2 was invented by Kass and Bryla (2025), and 
corresponds to

Rock = 0, Spock = 1, Paper = 2, Lizard = 3, Scissors = 4.

Its associated complex K𝑅𝑃𝑆𝑆𝐿 is a Möbius strip: 

For general 𝑛, the complex consists of 2𝑛 + 1 copies of the 𝑛-simplex, on the sets {𝑖, 𝑖 + 1,… , 𝑖 + 𝑛} for all 𝑖 ∈ ℤ∕(2𝑛 + 1)ℤ. Two 
consecutive simplices, say the 𝑖th and (𝑖+ 1)th, intersect on {𝑖+ 1,… , 𝑖+ 𝑛}, an (𝑛− 1)-simplex.

Even though the intransitivity complex K𝑅𝑃𝑆(𝑛) is 𝑛-dimensional, its homological dimension is 1, and furthermore all its sub
complexes are homotopy equivalent to a point or a circle, so the intransitivity dimension of 𝑅𝑃𝑆(𝑛) is 1. Consider indeed any subset 
𝑆 ⊆ {0,… ,2𝑛}. If 𝑆 is contained in a simplex {𝑖, 𝑖 + 1,… , 𝑖 + 𝑛} for some 𝑖, then the induced subcomplex (K𝑅𝑃𝑆(𝑛))𝑆 on 𝑆 is itself 
a simplex, and therefore homotopy equivalent to a point. Otherwise, list 𝑆 = {𝑠1,… , 𝑠𝑘} in increasing order, and map geometrically 
point 𝑠𝑘 to exp(2𝜋𝑖𝑘∕(2𝑛+1)) along a circle, with simplices mapped by linear extension; this provides a homotopy from the induced 
subcomplex (K𝑅𝑃𝑆(𝑛))𝑆 to the circle 𝑆1.

4.3. Theorem 3: Texas Hold’em

The proof of Theorem 3 is obtained through a quite complicated computer calculation.
Using the computer language Julia and its packages PlayingCards and PokerHandEvaluator, we computed the relation 𝑟. (We also 

independently re-implemented PokerHandEvaluator to make sure of its correctness.) The code is available on the Zenodo repository 
https://doi.org/10.5281/zenodo.7885276; the file poker-data.jl defines an array CARDPAIRS of size 1326 listing all pairs of 
cards, and the array r in the HDF5 dataset poker-data.hdf5 has size 1326× 1326× 3, in such a way that r[i,j,1:3]=(w,t,l) 
means that playing CARDPAIRS[i] against CARDPAIRS[j] results in w wins, t ties and l losses when considering all 

(48
5 
)

possible 
table cards; thus w+ t+ l = 1712304.

We then explored subsets 𝑌 ⊆𝑋, computed the corresponding simplicial complex K𝑌 using the computer algebra package Oscar 
and its Polymake interface, and its homology.

Let us begin with an example of an 𝑆1 in K𝑋 . Consider the hands 𝐴♣2♣, 3♣5♣, 2♢2♡. Note that 3♣5♣, known as ``Carabas'' in 
Russian, is a well-known tricky holding. The first wins against the second on average, because of the strength of the ace. The second 
wins against the third because of the possibilities of forming a flush. The third wins against the first because of the pair. These winning 
probabilities are respectively 0.591, 0.504, 0.620. We write these data in the following diagram:
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𝐴♣2♣ 3♣5♣

2♢2♡

0.591
0.620 0.50

4

It seemed useful to consider hands in which the cards are close, so we ordered the 52 cards by their value, kept each card 
independently with some probability 𝑝, and formed the pairs out these cards in increasing order. After a few thousand runs, our 
computer search came up with the subset

𝑌 = {𝐴♣𝐴♢, 𝐴♡𝐴♠, 6♢6♠, 𝐽♠𝑄♢, 10♡𝐽♡, 2♡2♠, 7♠10♣, 4♣6♣}.

The relations between these pairs are given in the following diagram:

𝐴♣𝐴♢ 𝐴♡𝐴♠

6♢6♠ 𝐽♠𝑄♢ 10♡𝐽♡

2♡2♠ 7♠10♣ 4♣6♣

A direct calculation showed that all its homology groups are trivial except 𝐻4(K𝑌 ) =ℝ.
In fact, this can be checked manually, assuming of course knowledge of the winning relation 𝑟. Indeed the first row defines an 

𝑆0, since these card holdings are incomparable; the second and the third row define 𝑆1, with 6♢6♠ > 𝐽♠𝑄♢ > 10♡𝐽♡ > 6♢6♠ and 
2♡2♠ > 7♠10♣ > 4♣6♣ > 2♡2♠; and the complex K𝑌 is the join of these three subcomplexes, totally ordered as {𝐴♣𝐴♢,𝐴♡𝐴♠} >
{6♢6♠, 𝐽♠𝑄♢,10♡𝐽♡}> {2♡2♠,7♠10♣,4♣6♣}, hence is homeomorphic to 𝑆4.

5. Outlook

We have barely scratched the surface of the topological complexity of Texas Hold’em. In particular, it does not seem possible to 
compute the homotopy type, or even just the homology, of K𝑋 with current technology.

Indeed, using the usual limit of 10 players per table, there are 
( 52 
2,…,2

)
= 52!∕21010!32! > 8 ⋅ 1022 collections of pairs of hands 

to consider, and for each a homological calculation to perform. Additionally, each homological calculation is feasible in the cases 
we considered, but can become quite expensive, since in general computing homology groups is NP-hard (Adamaszek and Stacho, 
2016). When considering such large datasets, researchers typically concentrate on 𝐻1 and possibly 𝐻2, while we are interested in 
higher-degree phenomena.

We could modify the game by taking into account the symmetries between the four suits. More precisely, there is a quotient game 
in which two hands are identified if they differ only by relabeling the suits (which is legitimate since the suits play no role in hand 
evaluation). There would then be 

(13
2 
)
+ 132 hands to consider, corresponding to the suited and offsuit possibilities, rather than 

(52
2 
)

hands as we considered here. The results would not fundamentally change.

5.1. Revealing table cards one at a time

We have made the simplifying assumption that all table cards are unknown. In actual Texas Hold’em, there are more than one 
bidding round, and more cards are progressively revealed. As more cards are revealed, 𝑋 shrinks to a subset 𝑋′ because fewer cards 
may appear in our opponents’ hands; it would be interesting to study the importance of the partial revealing of information, in the 
form of a failure of the inclusion 𝑋′ ↪𝑋 to induce a simplicial map.

5.2. Sensitivity to data

As shown by the brief calculation above, the probabilities associated with edges in 𝑟 are typically not microscopically away from 
0.5. The closest one is 3𝑥3𝑦 versus 𝐴𝑥10𝑥 for two suits 𝑥 ≠ 𝑦 ∈ {♣,♢,♡,♠}, with winning probability 0.50007. The natural tool 
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with which to explore the sensitivity of K𝑋 is persistent homology: for a probability 𝑝 ∈ [0.5,1], consider the relation 𝑟𝑝 in which 
𝑟𝑝((𝑖, 𝑗), (𝑘,𝓁)) means that the probability that (𝑘,𝓁) wins is at least 𝑝, and the associated simplicial complex K𝑋,𝑝. We have for each 
0.5 ≤ 𝑝 < 𝑞 ≤ 1 inclusion maps K𝑌 ,𝑞 ↪ K𝑌 ,𝑝; what are their relative homologies, as 𝑌 ⊆𝑋 and 𝑝, 𝑞 vary?

5.3. Intransitive dice

The reader may be familiar with ``intransitive dice'', which are sets of dice such that the expected winning probability from one 
dice against another do not form a transitive relation. For example, three dice 𝐴,𝐵,𝐶 with faces labeled respectively by 3,3,3,3,3,6
and 2,2,2,5,5,5 and 1,4,4,4,4,4, each one beats the next one, so K{𝐴,𝐵,𝐶} is a triangle.

A set 𝑋 = {𝐴,𝐵,𝐶,𝐷,𝐸} of five intransitive dice was discovered by James Grime: their number of dots are respectively

𝐴 2 2 2 7 7 7
𝐵 1 1 6 6 6 6
𝐶 0 5 5 5 5 5
𝐷 4 4 4 4 4 9
𝐸 3 3 3 3 8 8,

and a direct calculation shows that K𝑋 coincides with K𝑅𝑃𝑆𝑆𝐿 = K𝑅𝑃𝑆(2), namely it is a Möbius strip.
Oskar van Deventer has found a collection of seven dice 𝑋 = {𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 ,𝐺}, whose number of dots are respectively

𝐴 2 2 14 14 17 17
𝐵 7 7 10 10 16 16
𝐶 5 5 13 13 15 15
𝐷 3 3 9 9 21 21
𝐸 1 1 12 12 20 20
𝐹 6 6 8 8 19 19
𝐺 4 4 11 11 18 18,

for which a simple calculation shows that K𝑋 is a 2-dimensional torus, consisting of triangles

{𝐴,𝐵,𝐷},{𝐴,𝐵,𝐹 },{𝐴,𝐶,𝐷},{𝐴,𝐶,𝐺},{𝐴,𝐸,𝐹 },{𝐴,𝐸,𝐺},{𝐵,𝐶,𝐸},

{𝐵,𝐶,𝐺},{𝐵,𝐷,𝐸},{𝐵,𝐹 ,𝐺},{𝐶,𝐷,𝐹 },{𝐶,𝐸,𝐹 },{𝐷,𝐸,𝐺},{𝐷,𝐹 ,𝐺} ∶

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝐺

5.4. Other intransitive games

There is a substantial literature on ``intransitive games'', see Gardner, 2001, Chapters 22 and 23, however only considering 2
players. One of the very interesting ones is the ``Penney game'' (Guibas and Odlyzko, 1981). Some parameter 𝑛 ∈ ℕ is fixed. Every 
player chooses a binary sequence of length 𝑛. An infinite binary sequence is then drawn at random, one bit at a time. The first player 
whose sequence shows up wins.

It is well known that this game is not transitive; for 𝑛 = 3, we have 011 > 110 > 100 > 001 > 011, and the associated complex 
K{0,1}3 is a bouquet of 3 circles. We computed the homology of the whole complex K{0,1}𝑛 for 𝑛 ≤ 6, giving for the last case

𝐻∗(K{0,1}6 ) = (0,0,0,0,0,ℝ38,ℝ149,ℝ12) for 0 ≤∗≤ 7.

There does not seem to be any obvious pattern to these numbers.
We mention interesting contributions by Poddiakov et al., see e.g. Poddiakov and Lebedev (2023), in which nested games are 

considered. In our language, this amounts to considering two games 𝑋,𝑌 , and putting on 𝑍 =𝑋 × 𝑌 the lexicographic relation:
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𝑟((𝑥, 𝑦), (𝑥′, 𝑦′)) if and only if 𝑟(𝑥,𝑥′) or (𝑥 = 𝑥′ and 𝑟(𝑦, 𝑦′)).

The associated simplicial complex K𝑍 has as simplices all 𝐶 ⊆𝑍 whose projection to 𝑋 is a simplex in K𝑋 and whose projection to 
𝑌 is a simplex in K𝑌 . This operation does not seem to have a pre-existing meaning in topology.

Poker is quite apart from these games in that it is a real-life game, with a large population of expert or professional players, in 
which it is essential to estimate with accuracy the winning chances relative to all the other participants. Our results show that these 
data must be considered globally, and that the one-on-one probabilities only serve as the carrier for a powerful, high-dimensional 
topological invariant.
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