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Here we give an overview of recent theoretical and experi
mental work on modeling the mechanics and dynamics of the 
cytoskeleton. The cytoskeleton is a multicomponent, complex 
and active material that is essential to cell mechanics and 
dynamics. We focus on one of the main components of this 
material, namely actin filaments. We discuss these filaments 
and their interactions with other proteins within the cytoskel
eton. To fully understand the cytoskeleton, it is important to 
consider both theoretical and experimental work in calculo, in 
silico, in vitro, in vivo, and in situ. We review the current state 
of knowledge and look forward to further work to come on 
aspects not yet understood.
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Introduction
The cytoskeleton, made up of protein filaments and 

numerous regulatory proteins, is crucial for cell dy

namics. It is required for cell division, migration, adhe

sion, and many more cellular processes [1]. In order to 

understand how the cytoskeleton controls cell me

chanics and dynamics, we need a combination of 

modeling and experiments. Much work has been done 

on both approaches, but the multicomponent, complex 

cytoskeleton is still beyond our full comprehension. We 

now have a number of excellent models, but experi

mental observations, especially in living cells, reveal 

gaps in our ability to connect models to experiments. In 

this work, we review what is known, highlight exciting 

new work, and outline remaining open questions.

In the following, we consider the cytoskeleton, starting 

with actin only and building up its components section 

by section. We consider what has been found using 

analytical ‘pen and paper’ mathematical models (in 

calculo), computational simulations (in silico), experi

ments on components (in vitro), experiments in cells 

(in vivo or in cellulo) and finally, experiments in envi

ronments such as tissues (in situ) (Figure 1). In our 

opinion, all these different methods of study are 

necessary to gain a full understanding of how the cyto

skeleton controls and affects cell dynamics.

Actin
G-actin (globular actin) proteins polymerize to form 

filaments of F-actin (filamentous actin), with a thick

ness around 8 nm. This is an active process consuming 

energy provided by the hydrolysis of adenosine 

triphosphate (ATP). Cells are maintained out of equi

librium with an excess of ATP driving the polymeriza

tion of actin. The reverse process of depolymerization, 

disassembling filaments, also occurs in cells. The poly

merization and depolymerization of actin filaments are 

biochemical reactions that happen stochastically, due to 

the underlying random nature of the Brownian motion of 

the molecules involved. In vitro, overall rates of poly

merization and depolymerization of actin can be 

controlled by salt and ATP concentrations. We owe 

much of our understanding of this to the careful work of 

Pollard [2].

New, in vitro, work shows the effect on actin dynamics 

of a limited pool of actin monomers [3]. In this and 

many in vitro experiments, the issue of aging in actin 

monomers still remains a considerable unknown [3] and 

is therefore usually ignored in modeling.

Numerous actin-binding proteins regulate the (de) 

polymerization of actin filaments by activating nucle

ation of new filaments (formins) or branches (Arp2/3), 

and by activating/inhibiting (de)polymerization, 
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capping to prevent further dynamics at a tip, severing to 

cut a filament etc. [4—6] (Figure 2).

The Brownian ratchet model [7] elegantly explains the 

way cells can harness the process of active polymeriza

tion of actin to exert forces on cellular components, such 

as the lipid membrane. This can result in diverse dy

namics such as deformations of the membrane (e.g. 

lamellipodium, filopodia, phagocytosis) or the beautiful 

transport mechanism used by Listeria, which can be 

reconstituted on beads [3].

Computational modeling of actin (de)polymerization 

often uses Monte Carlo methods to simulate polymeri

zation and depolymerization of filaments as a stochastic 

process [8,9]. The package Cytosim [10], originally 

developed for microtubules, is now also widely used for 

actin [11].

Electron or optical microscopy with fluorescent actin 

can now trace the dynamics of individual filaments, and 

image analysis software that can automatically track fil

aments is available [12]. Once individual filaments 

meet, cross each other, or branch and begin to form a 

network, tracking becomes increasingly difficult. Im

provements to super-resolution microscopy and image 

analysis will greatly enhance our knowledge of the 

structure of actin networks [13].

Actin filaments have a persistence length of order of 

20 μm, meaning that on the scale of a cell they are 

semiflexible polymers. Much work [14] has been done 

in the field of polymer physics on the properties of 

networks of semiflexible polymers, with actin often used 

as an example. An important property of the structure of 

networks is their mesh size, which greatly affects their 

mechanical properties. In addition to the mechanical 

properties arising from the mesh size and semiflexible 

nature of the filaments, actin networks can be dynamic 

due to (de)polymerization. This means that over time

scales of minutes they ‘turnover’ [2] i.e. filaments 

depolymerize and repolymerize in ways that can relax 

stresses and change the structure of the network [15].

Crosslinked actin
As well as actin filaments interacting sterically with each 

other, they can also be chemically crosslinked by actin- 

binding proteins. Actin filaments can be bound together 

in bundles [16], increasing their overall persistence 

length (rigidity) and force-generating power. Filaments 

can also be crosslinked to form an isotropic network. 

The mechanical properties of crosslinked networks are 

different from those that are not crosslinked. In partic

ular, they are more rigid [17,18]. Actin filaments are 

dynamic, and so are the crosslinks in actin networks. 

Crosslinking proteins bind and unbind on particular 

timescales, allowing relaxation of stresses and changes to 

the structure of the network. Recent theoretical work 

has shown that active binding and unbinding of cross

links to semiflexible polymers can generate contractility 

[19]. The balance of crosslinks and bundles within an 

actin network greatly affects the mechanical properties 

of the network [17,18]. Recently, it has become possible 

to begin to test the theory of these mechanical and 

structural properties in cells in vivo [12] using various 

experimental methods and models [1] (Figure 3).

However, there is much more happening in the cyto

skeleton of cells than just a crosslinked semiflexible 

filament network with bundles. In particular, the action 

of myosin molecular motors transforms the material into 

an active gel with mechanical properties and dynamics 

beyond those possible in a passive material.

Actomyosin
Myosin is a family of proteins that bind to actin. Myosins 

can act as passive crosslinkers, but can also act as active 

molecular motors. They can bind to actin filaments and 

move along them in a directional manner, sensing the 

direction inherent in the actin filaments. Some molec

ular motors are completely nonprocessive, which means 

Figure 1 

Schematic representation of methods to model and study the cytoskeleton and cell dynamics.
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that they perform a single step along a filament before 

falling off. Others are very processive, performing many 

steps before unbinding from the filament. Myosin mo

lecular motors often cluster together, forming ‘mini-fil

aments’ and can simultaneously bind to more than one 

actin filament in a network. If myosins are bound to two 

parallel actin filaments in a bundle, they can move along 

the bundle without causing stress to the actin network. 

However, when myosin binds to two filaments in 

opposite directions, the motors try to move in opposite 

directions, causing stress in the system. Bundles of 

antiparallel filaments with myosin bound are found in 

cell structures known as stress fibers, with the action of 

the myosin exerting contractile stress on the structure. 

A classical example of actomyosin contraction is in 

muscle sarcomeres. Recent molecular dynamics 

Figure 2 

Schematic representation of actin and actin binding proteins.

Figure 3 

Actin organization in cells. a) Fluorescence image of MCF 10 A cells. Actin is stained green, nucleus blue. The scale bar corresponds to 10 μm. b) 
Scanning electron microscopy image of a MCF 10 A cell from which the cell membrane has been extracted. The scale bar corresponds to 10 μm. Red 
inset: zoom on one area of the actin cortex. Scale bar represents: 1 μm. c) Outline of the actin cortex meshes in b), generated with [20].
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simulations have provided insight into force generation 

at a submolecular level [21].

In an isotropic network, mini-filaments of myosin can 

bind to actin filaments in different directions, and this 

also causes contraction in the system. There has been 

some interesting theoretical work done on why, in 

practice, actomyosin networks are seen to be contractile 

not extensile [22]. Working with actomyosin in vitro is 

challenging. Meticulous work over the past couple of 

decades has developed experimental protocols, which 

are now routinely used to control and study in vitro 

actomyosin networks. In vivo experiments are harder to 

decipher due to our lack of knowledge of all the com

ponents and the interactions between actomyosin net

works and their cellular surroundings. In cells, most 

actomyosin is positioned around the edge of the cell in 

what is known as the actin cortex, on the inside of the 

cell membrane [1,23].

Active gel or active matter theory at the continuum 

hydrodynamics level has been remarkably successful in 

describing the behavior of contractile actomyosin net

works [24,25]. Recent applications of active gel theory 

include several studies [26—29]. The theory has been 

applied to a number of important cell processes 

including cell migration [30]. It is also used at a larger 

length scale for multicellular systems such as tissues 

[26]. The early theoretical work has led to a new field of 

biophysics known as active matter, which now has its 

own conferences and active research communities. This 

is a fruitful area of study with fundamental questions 

and numerous applications open to exploration.

Most applications of active gel theory focus on long time 

scales in the fluid limit to study cell migration, tissue 

dynamics etc. However, some work has focused on 

length and timescales in which the actin cytoskeleton 

acts as an active solid [31]. The nature of the full 

viscoelastic behavior of actomyosin remains a key open 

question. There are many possible models of viscoelas

ticity, and it is far from obvious which are most appro

priate for the behavior of actomyosin, the actin cortex, 

the cytoskeleton, or tissues. Some work uses linear 

viscoelastic models such as the Maxwell or Kelvin-Voigt 

models, or combinations thereof [24,26,32]. Many 

studies describe the material as glassy (see the recent 

review [33]).

A new development consists of attempts to use machine 

learning methods to elucidate aspects of the cytoskel

eton and cell dynamics [34—36].

In vivo experiments give a plethora of different results 

that can be described by a number of different models. 

Some experimental techniques, such as Atomic Force 

Microscopy (AFM), give results that are notoriously 

difficult to analyze and are model-dependent, often 

using overly simplified models that can give wildly 

different values for elastic parameters [37]. Experi

ments often do not agree with measurements using 

different techniques, and different cell types appear to 

have very different mechanical properties, further 

complicating comparisons [38]. Inhomogeneities and 

anisotropic properties of the actin cytoskeleton are 

additional complexities in measuring mechanical prop

erties [12,39]. We expect the large amount of current 

work in this area will reveal important insights into 

understanding this complex material over the 

coming years.

Microtubules
Another important filament that makes up the cyto

skeleton is microtubules. Like actin, microtubules are 

made up of protein subunits that polymerize and 

depolymerize using, in this case, Guanosine-5’- 

triphosphate (GTP) hydrolysis as their biochemical fuel. 

However, microtubules are considerably larger (25 nm 

diameter) and stiffer, with persistence length extending 

into the millimeter range. Microtubules and actin have 

been widely studied separately, but comparatively little 

is known about their interactions and joint action. 

In vitro experiments tend to be on a larger length scale 

than that of a cell. In vivo, it is known that there are 

proteins that connect microtubules and actin, as well as 

the physical structural connections. The importance of 

microtubules and other filaments interacting with or 

penetrating the actin cortex is increasingly being 

recognized [40—44] and modeled, for example, with a 

tensegrity model [37]. Much remains to be discovered 

as to how these cytoskeleton components work together 

in cells.

Intermediate filaments
Traditionally, intermediate filaments have been some

what neglected compared to actin and microtubules. 

Unlike actin and microtubules, intermediate filaments 

do not actively turn over and are not known to interact 

with molecular motors, and are therefore passive fila

ments. However, their ubiquitous presence in vivo 

forms an important part of the mechanical properties of 

the cytoskeleton. An increasing amount of work is being 

done on these filaments, e.g. vimentin, and on their 

important effects on cell mechanics [45—48]. However, 

there is a large amount of work to be done to understand 

the role of these filaments in the cytoskeleton and how 

they interact with actin and microtubules.

Interactions with the nucleus
Interactions between the cytoskeleton and the nucleus 

is an area of increasing interest [49]. There are proteins 

that chemically connect cytoskeleton filaments to the 

nuclear membrane and the nuclear lamina on the inner 

side of the nuclear membrane. Models have shown how 

the cytoskeleton can exert mechanical forces to affect 
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the position and shape of the nucleus [50,51]. However, 

there remains a large amount still to be done, especially 

in connection with in vivo experimental work. How 

mechanical forces transmitted by the cytoskeleton to 

the nucleus affect gene expression is a fascinating area 

for future work.

Interactions with the cell membrane
The actin cortex is closely associated with the cell 

membrane [52]. In some in vivo experiments, it can be 

difficult to disentangle the two, with results quoted for 

membrane tension being dominated by the tension of 

the actin cortex rather than the lipid membrane. Some 

models assume a composite of the membrane and cortex 

as an elastic sheet [15]. More detailed models of the 

interaction between the actin cortex and the membrane 

allow for the study of processes such as blebbing, in 

which the connection is broken and then reformed [53], 

and phagocytosis, in which large membrane de

formations occur [54].

Experiments on actin reconstituted in Giant Unilamellar 

Vesicles (GUVs), liposomes, or on supported lipid bilayers 

are now contributing to understanding actin-membrane 

interactions [53,55—58].

Adhesion with substrates and other cells
The cytoskeleton is crucial for adhesion with substrates 

and with other cells. Cells on rigid substrates form stress 

fibers connected to the substrate by focal adhesions, a 

machinery of proteins that is mechanosensitive and has 

long been an area of interest for biophysicists. Models 

such as the molecular clutch or catch bonds [18,59,60] 

have been influential in understanding mechanosensi

tivity. The place of such substrate stiffness sensing in 

situ is a largely unexplored landscape [61]. Fascinating 

work on this in the brain is being undertaken 

by Ref. [62].

Adhesion between cells in tissues is of clear importance 

in development, life, and disease, such as cancer. Via 

adhesion between cells, large multicellular mechanical 

connections can be set up, controlling mechanics and 

dynamics of whole organs. Active matter theory can be 

applied to the tissue level [63,64].

Another model that has been remarkably successful in 

describing such multicellular tissues is the surprisingly 

simple vertex model, in which vertices are connected 

together in polygons with area and perimeter con

straints [65,66].

Figure 4 

Schematic representation of the interactions of actin with linker proteins, molecular motors, and cell organelles.
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Conclusion
In this article we have briefly overviewed many aspects 

of the cytoskeleton and raised open questions for cur

rent and future research. A common feature of these 

questions is the challenge of bridging the gap between 

theoretical modeling and experiments. This is essential 

for experimental data analysis and interpretation, and for 

testing our theoretical understanding. As we move from 

in vitro to in vivo or in situ experiments and from ob

servations to biophysical measurements, this challenge 

becomes harder. Tackling this will bring us closer to 

answering the overarching question of how the me

chanical and dynamical behavior of the cytoskeleton 

affects its interactions with its cellular environment. 

The future prospects for the field are bright due to 

advancing technology for biophysics experiments and 

developments in models and data analysis techniques. 

The increasing recognition of the importance of inter

disciplinary collaborations between theory and experi

ments will bring deep insights to the field.

In conclusion, we now have many building blocks 

(Figure 4) of understanding from in calculo and in silico 

modeling, combined with in vitro experiments. These 

are just beginning to be brought together to discover the 

inner workings of the cytoskeleton in vivo and in situ. 

The coming years are full of promise for understanding 

this essential part of living organisms.
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