
PHYSICAL REVIEW RESEARCH 7, 043020 (2025)

Optimal spatial searches with long-range tunneling
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A quantum walk on a lattice is a paradigm of a quantum search in a database. The database qubit strings are
the lattice sites, qubit rotations are tunneling events, and the target site is tagged by an energy shift. For quantum
walks on a continuous time, the walker diffuses across the lattice and the search ends when it localizes at the
target site. The search time T can exhibit Grover’s optimal scaling with the lattice size N , namely, T ∼ √

N ,
on an all-connected, complete lattice. For finite-range tunneling between sites, instead, Grover’s optimal scaling
is warranted when the lattice is a hypercube of d > 4 dimensions. Here, we show that Grover’s optimum can
be reached in lower dimensions on lattices of long-range interacting particles, when the interaction strength
scales algebraically with the distance r as 1/rα and 0 < α < 3d/2. For α < d the dynamics mimics the one of a
globally connected graph. For d < α < d + 2, the quantum search on the graph can be mapped to a short-range
model on a hypercube with spatial dimension ds = 2d/(α − d ), indicating that the search is optimal for ds > 4.
Our work identifies an exact relation between criticality of long-range and short-range systems, it provides a
quantitative demonstration of the resources that long-range interactions provide for quantum technologies, and
indicates when existing experimental platforms can implement efficient analog quantum search algorithms.

DOI: 10.1103/cv26-dk1q

I. INTRODUCTION

Grover’s quantum search algorithm is a paradigm of
quantum computing advantage as it holds the promise of a
quadratic speedup with respect to a classical search [1–3]. In
fact, for an unstructured search the computational time scales
with the number of entries N of a database as TQ ∼ √

N ,
which shall be compared with the classical counterpart, where
TC ∼ N . The quantum algorithm thus ideally belongs to a
more favorable time complexity class. The latter refers to the
scaling of the time needed to run an algorithm with the size
of the database, and is a central concept of complexity theory
in computer science. Practical overheads of digital quantum
circuits can severely reduce the advantage with respect to
the classical counterpart [4]. In this context, analog quan-
tum platforms—such as those leveraging continuous-time
quantum walks—may exhibit reduced overhead and inherent
resilience to certain types of noise, allowing one to fully
exploit the speedup provided by quantum mechanics.

The analog implementation of Grover’s quantum search
in continuous time realizes a quantum walk on a complete
graph, whose vertices are the elements of the database and
in which the target state is tagged by an energy shift [5].
Starting from a uniform superposition of all the graph’s ver-
tices, the dynamics localizes the walker in the target site
over a computational time T ∼ √

N . Global connectivity is a
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sufficient but not necessary condition: Grover’s optimal scal-
ing can be achieved in strongly regular graphs [6–9], random
graphs satisfying certain requirements on the edges’ probabil-
ity distribution [10,11], and in spatial searches on hypercubes
with dimension d > 4 and nearest-neighbor coupling between
vertices [12,13]. In the latter case, hypercubes with d < 4 fail
to realize the Grover speedup.

Spatial searches on hypercubes establish a direct con-
nection between quantum search algorithms and dynamical
localization on lattices, implemented in photonic architec-
tures [14–16] and dipole traps [17–19]. The requirement of
d > 4 spatial dimensions, however, is a demanding condition.
Yet, most physical implementations are based on particles
whose interactions are longer-ranged and scale with the dis-
tance r as 1/rα with α > 0 [20]. These systems can realize
long-range XY models, where a single excitation performs
a quantum walk with the tunneling amplitude scaling as
1/rα [21,22]. The resulting graph is all-connected, whereby
the edge capacities decrease with the Euclidean distance
between the connected vertices, as illustrated in Fig. 1. In
abstract terms, the exponent α of the edges’ algebraically de-
caying capacity interpolates between two very distinct limits
of the time complexity of the spatial search: the nearest-
neighbour case (α → ∞), where Grover speedup is found
for hypercubes of dimension d > 4, and the complete graph
(α = 0), where the notion of spatial dimension is lost. Clari-
fying under which conditions long-range interacting systems
are a resource for quantum algorithms, and what the intimate
connection between graph connectivity and dimensionality
is, would permit to assess the computational resources of
these systems and to identify advantageous experimental
implementations.

2643-1564/2025/7(4)/043020(28) 043020-1 Published by the American Physical Society

https://orcid.org/0000-0002-6696-3235
https://orcid.org/0009-0002-5544-4461
https://orcid.org/0000-0003-2183-8120
https://orcid.org/0000-0002-8283-1005
https://orcid.org/0000-0002-1946-3684
https://ror.org/01jdpyv68
https://ror.org/00rcxh774
https://crossmark.crossref.org/dialog/?doi=10.1103/cv26-dk1q&domain=pdf&date_stamp=2025-10-06
https://doi.org/10.1103/cv26-dk1q
https://creativecommons.org/licenses/by/4.0/


EMMA C. KING et al. PHYSICAL REVIEW RESEARCH 7, 043020 (2025)

FIG. 1. (a) Illustrative graphic of search on a cubic lattice (hyper-
cube with d = 3) with nearest-neighbor couplings (α → ∞). Target
node is depicted in red. (b) Schematic of the power-law scaling of
the connectivity of a single site �i in a two-dimensional cubic lattice.

In this work we show that simple arrays of long-range
interacting atoms or molecules, in which interactions scale
algebraically with the distance r as 1/rα , can implement an
optimal analog quantum search [23]. We identify the con-
dition on the exponent α and on the spatial dimension d ,
for which Grover optimal scaling can be realized. This is
done by performing a formal mapping between a long-range
quantum walk on a cubic lattice of dimension d � 3 and a
short-range quantum walk on a lattice in spatial dimension
ds = ds(d, α), corresponding to the spectral dimension of the
graph. In doing so, we also provide a formal demonstration of
the role of the spectral dimension in connecting criticality of
long-range systems with the corresponding short-range ones
for a dynamics that is central to several quantum algorithms.

II. SEARCH BY QUANTUM WALK IN CONTINUOUS TIME

The database comprises N sites on a d-dimensional hy-
percube, with vertices (nodes) identified in space by the
d-dimensional vector �i ≡ (i1, . . . , id ) with i j = 1, . . . , n and
n = N1/d . The states {|i1, . . . , id〉} form a basis of the Hilbert
space of the single walker. Denoting by |w〉 the target state,
the dynamics is governed by the dimensionless Hamiltonian

Ĥα = −γ0Lα − |w〉〈w|, (1)

with the Laplacian Lα encoding the graph’s properties. In
the formulation of Ref. [5], the graph is complete. Cor-
respondingly, the Laplacian is L0 = N |s〉〈s|, where |s〉 =∑

i1,...,in
|�i〉/√N is the uniform superposition of all states

of the database. Preparing the database in the extended
state |s〉 reduces the dynamics to a two-dimensional Hilbert
space, consisting of the state |r〉 = ∑

i1,...,in 
=w |�i〉/√N − 1
and the localized state |w〉. In the reduced Hilbert
space the eigenvalues of Ĥα have an energy gap �E =√

4γ0(1 − N ) + (γ0N + 1)2 and the transfer amplitude at time
t , A(t ) = 〈w|e−iĤαt |s〉, is a rotation in the two-dimensional
subspace. We denote by T the minimal time at which the
fidelity F (T ) = |A(T )|2 reaches unity. This time scales as
T ∝ 1/�E = √

N/2 when γ0 is set at the critical point γc =
1/N separating the extended ground state |s〉 from the local-
ized ground state |w〉. Next, we address the open question
of the conditions under which such a dramatic reduction in
the dynamically explored Hilbert space dimension occurs in
long-range tunneling models of arbitrary dimension d .

A. Power-law tunneling

Assume now that the Laplacian of Eq. (1) has the form

Lα =
∑
�i 
=�j

1

|�i − �j|α (|�i〉〈�j| + H.c.) − ε0I, (2)

with | . . . | the Euclidean norm of the vector, α > 0 the tunnel-
ing power-law exponent, and ε0 a real scalar, multiplying the
identity I and to be determined. With this Laplacian, Hamil-
tonian (1) generalizes the dynamics to all-connected graphs
but with edge capacities that decay algebraically with the
Euclidean distance, as illustrated in Fig. 1(b). This family of
graphs includes the complete graph in the limit α → 0. In the
opposite limit, α → ∞, the corresponding graph is a hyper-
cube with nearest-neighbor coupling in d spatial dimensions:
Grover’s optimum is reached for d > 4 after setting ε0 = 0
and choosing γ0 at the critical point of the phase transition
between the extended ground state |s〉 and the localized state
|w〉 [12].

We now determine the time complexity class as a function
of α and N , namely, the scaling of the time T with N and α,
where T now is the time at which the transfer probability am-
plitude A(T ) reaches its first maximum [24]. For this purpose,
we first generalize the derivation of Ref. [12] to power-law
Laplacians (2). This is achieved by decomposing the transfer
amplitude A(t ) using the eigenstates |ψi〉 of Ĥα at eigenvalue
Ei:

A(t ) =
N∑

i=1

Wi S∗
i e−iEit ≈

∑
i=0,1

Wi S∗
i e−iEit , (3)

where Wi = 〈w|ψi〉 and Si = 〈s|ψi〉 are the overlaps of the
eigenstate |ψi〉 with the target and extended state, respectively.
We now identify the conditions for which the sum in Eq. (3)
can be reduced to the sole contribution of ground and first
excited states.

B. Conditions for reduction in Hilbert space

Information about the scalar products Wi and Si in Eq. (3)
is extracted from the projections 〈 j|Ĥα|ψi〉 = Ei〈 j|ψi〉. It
is convenient to make use of the transcendental equa-
tion Fα (Ei ) = 1, whose roots are the eigenvalues Ei [12].
The transcendental equation is derived by recasting the time-
independent Schrödinger equation for the search Hamiltonian
Ĥα as

|ψi〉 = Wi(−γ0Lα − Ei )
−1|w〉,

and taking the projection onto |w〉 [25]. It reads

Fα (E ) = 1

N

∑
�k∈BZ

1

γ0Eα (�k) − E
, (4)

where Eα (�k) = ∑
�j 
=�0 cos(�k · �j)/| �j|α − ε0 are the eigenval-

ues of the Laplacian Lα and the sum runs over the
first Brillouin zone. The expression for the overlap Wi is
found from the normalization condition 〈ψi|ψi〉 = 1, giving
|Wi|2 = 1/F ′(Ei ), with F ′

α (Ei ) ≡ dFα (E )/dE |E=Ei . More-
over, |Si|2 = |Wi|2/NE2

i , and the probability amplitude takes
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Localized ground state Extended ground state

FIG. 2. Participation ratio 1/
∑

j |〈 j|ψ0〉|4 for the ground state
|ψ0〉 vs γ0, with the critical value γ0 = γc separating the extended
from the localized ground state. Inset shows scalar products |Si=0,1|2
and |Wi=0,1|2 and the energy gap E1 − E0 as a function of parameter
γ0. We set d = 1 and α = 0.6; qualitatively similar results hold for
other dimensions and tunneling exponents.

the compact form

A(t ) = 1√
N

∑
i

1

|Ei|F ′
α (Ei )

e−iEit . (5)

The behavior of the transcendental function permits to iden-
tify the condition when the sum can be reduced to the first
two terms. We first assume that |E0|, |E1| � γ0Eα (�k) for all
�k 
= 0, namely, that there is an energy gap between the two
lowest eigenvalues and the rest of the spectrum. This requires
setting ε0 = ∑

�j 
=�0 1/| �j|α − Eα (�0). To find an expression for
the overlaps, we perform the Taylor expansion of F (E ) and
of its derivative:

Fα (Ei ) ≈ −1

NEi
+ S(α)

1

γ0
+ S(α)

2

γ 2
0

Ei, F ′
α (Ei ) ≈ 1

NE2
i

+ S(α)
2

γ 2
0

,

(6)
with i = 0, 1 and S(α)

� = ∑
�k 
=�0[Eα (�k)]−�/N , Eq. (8). Using

that the overlap |Wi|2 = 1/F ′(Ei ), then W0 ≈ W1 and S0 ≈
S1. Together with the truncated expression for F ′

α (Ei=0,1),
this provides an equation connecting the two lowest energy
eigenvalues:

−E0

(
1

NE2
0

+ S(α)
2

γ 2
0

)
+ E1

(
1

NE2
1

+ S(α)
2

γ 2
0

)
≈ 0. (7)

Solving for γ0 gives γ0 =
√

E0E1NS(α)
2 . To make the ex-

pression explicit, one must insert the energies, which
themselves depend on the parameter γ0. We extract the
energies from the truncated form of transcendental equa-
tion F (E ) = 1 in Eq. (6): Ei = γ0/(2S(α)

2 )[γ0 − S(α)
1 ±√

(S(α)
1 − γ0)2 + 4S(α)

2 /N]. Inserting this into the expression
for γ0 gives the trivial solution γ0 = 0 and the critical value
γ0 = γc = S(α)

1 , separating the extended from the localized
ground state; see Fig. 2.

This analysis shows that the sum in Eq. (3) can be reduced
to the sole contribution of ground and first excited states, |ψ0〉
and |ψ1〉, respectively, after setting ε0 = ∑

�j 
=0 1/| �j|α − Eα (�0)

and γ0 to the value γc = S(α)
1 . Here,

S(α)
� =

∑
�k 
=�0

[Eα (�k)]−�/N, (8)

where the sum runs over the first Brillouin zone of the hyper-
cube and Eα (�k) are the eigenvalues of the Laplacian Lα (2). For
γ0 = γc the two lowest energies read E1 = −E0 = χα/

√
N ,

where

χα = S(α)
1

/√
S(α)

2 , (9)

with |χα| � 1. The transfer amplitude is approximated by the
expression A(t ) ≈ χα sin(χαt/

√
N ) and the first maximum

is reached at T ≈ π
√

N/(2χα ) with fidelity F (T ) = |χα|2.
Grover’s optimum is reached when χα → 1.

C. Time complexity and spectral gap

The scaling T ∼ √
N is obtained when the two lowest en-

ergies are well separated from the rest of the spectrum. For the
choice of parameters in which the ground state of the Lapla-
cian is almost degenerate with the target state, this condition
can be reformulated as E1 − E0 � δα , where δα = Eα (�k1) −
Eα (�0) is the spectral gap of the Laplacian, namely, the energy
difference between the Laplacian’s ground state and the first
excited eigenstate at |�k1| = 2π/N1/d . The spectral gap is pro-
portional to the algebraic connectivity a(G) = Eα (�k1) of the
graph G [26,27], whose magnitude provides indications on
the graph’s robustness. Increases of the algebraic connectivity
have been linked to shorter characteristic path lengths between
sites, resulting in faster propagation [28,29]. Interestingly, the
condition for the optimal search sets a lower bound on the
spectral gap:

δα > cα/
√

N, (10)

where cα is a positive constant and we have used that E1 −
E0 = 2χα/

√
N at the optimal value γ0 = γc. We note that

the same condition has been found for the optimal search in
a random graph [30], suggesting that this is the necessary
requirement that a generic graph shall satisfy for achieving
Grover’s optimum.

We now derive the asymptotic scaling of the spectral gap.
To provide a scaling behavior with a well-defined thermody-
namic limit, we analyze the rescaled gap �α = δα/Eα (�kmax)
with |�kmax| = √

dπ . This rescaling corresponds to the op-
eration Lα → L′

α = Lα/Eα (�kmax) and γ0 → γ ′
0 = γ0Eα (�kmax),

which does not change the Hamiltonian but now makes the
rescaled bandwidth and critical value independent of N . In the
rescaled framework, γ ′

c = γcEα (�kmax) is finite for N → ∞ and
is the critical point of the quantum phase transition separating
the extended from the localized ground state. We restrict our
analysis to spatial dimensions d � 4 and find that

�α ≈

⎧⎪⎨
⎪⎩

1 − C (d )
1 (α) α ∈ [0, d )

C (d )
2 (α)N1−α/d α ∈ (d, d + 2)

C (d )
3 (α)N−2/d α � d + 2

⎫⎪⎬
⎪⎭, (11)

with α-dependent constants C (d )
i=1,2,3(α) of order 1 and ac-

curate up to a factor C ∈ [1, dα/2]. The detailed derivation,
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FIG. 3. Search optimality diagram illustrating the connection
between the spatial dimension d ∈ Z, in which the hypercube is
embedded, and the power-law tunneling exponent α, and how it
relates to the time complexity. The critical exponent αc = 3d/2,
represented by the white points, separates regimes in which we have
optimal (ds > 4, light blue) and suboptimal (ds < 4, dark blue) quan-
tum spatial search, distinguished by the critical spectral dimension
ds = 4.

including the explicit functional behavior of the coefficients, is
relegated to Appendixes A and B. Three distinct cases emerge.
(i) For α < d , the gap �α is independent of N . Therefore,
condition (10) is satisfied for sufficiently large N . Using other
words, for α < d the power-law tunneling becomes suffi-
ciently long-ranged to mimic a globally connected graph. (ii)
For α ∈ (d, d + 2) the spectral gap scales as N1−α/d and the
condition on optimality depends on the value that α takes
within the interval (d, d + 2). Finally, (iii) for α > d + 2 the
spectral gap scales as N−2/d and the quadratic speedup is
provably lost. This includes the nearest-neighbor tunneling of
Ref. [12] in the limiting case α → ∞.

Case (ii) is peculiar, since it identifies an additional ex-
ponent αc = 3d/2 separating the behavior of the gap: For
d + 2 > α > αc the quantity δα

√
N decreases with N , while

for αc > α > d it exhibits the opposite behavior [cf. Eq. (11)].
Hence, at fixed dimension d � 4, when α < αc, condi-
tion (10) holds asymptotically, and the Grover optimum is
attainable. For α > αc, instead, the gap condition is violated,
and the search time T reverts to the suboptimal scaling.
Equation (11) permits to establish an insightful connection
between α and d in determining the time complexity of the
quantum search, which we summarize in Fig. 3. This behav-
ior is linked to the Lieb-Robinson bound, namely, with the
maximal speed at which information can propagate across the
lattice [31–33]. It proves that the critical exponent αc = 3d/2
is associated with a phase transition in the time complexity
of the search problem. The order parameter is χα , Eq. (9),
its squared value is the fidelity, that quantifies the occupation
of the two lower energy eigenstates and is reminiscent of the
order parameter of Bose-Einstein condensation in interacting
systems [34]. The dependence of χα on α and d is reported
in Figs. 4(a)–4(c) for a range of values of N . The asymptotic
limit, for N → ∞, is displayed in Fig. 4(d) as a function of
α/d . The value αc = 3d/2 separates the regime at α > αc,
where the search dynamics spans over a size of the Hilbert
space with dimension of the order N , from the condensed
regime at α < αc, where the search occurs in the subspace
consisting of the extended state |s〉 and the target state |w〉. As
such, at α = αc a phase transition occurs, separating regimes
with different time complexities. This result applies to hyper-
cubes with spatial dimension d � 4 and arbitrary sizes. It thus
also encompasses the specific limit d = 1, where it rigorously
proves and generalizes conclusions drawn in Ref. [22] for
finite one-dimensional chains.

III. SPECTRAL DIMENSION AND CRITICALITY

We now focus on the regime where α ∈ (d, d + 2) and
perform a formal mapping of the long-range model of Eq. (1)
to an effective short-range model with a higher dimension D
that exhibits the same critical behavior. The existence of this
kind of mapping has been conjectured in the context of criti-
cality of long-range systems [20,35,36]. We now prove it for
the extended-localized quantum phase transition of Hamilto-
nian (1). To proceed, it is convenient to introduce the concept

(a) (b) (c) (d)

Optimal

Suboptimal Suboptimal Suboptimal
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FIG. 4. Upper bound to the search fidelity: χα as a function of the number of lattice sites N and long-range tunneling exponent α for
(a) d = 1, (b) d = 2, and (c) d = 3. Vertical lines correspond to α = d (solid) and α = αc = 3d/2 (dashed). Contours are shown for χα =
0.999, 0.99, 0.9. (d) Asymptotic behavior of χα , Eq. (9), in the limit N → ∞ as a function of α/d . In Appendix C we show that, for 0 < α < d ,
χα = 1, while for d < α < 3d/2 it decreases monotonically to zero as χα = √

3 − 2α/d/(2 − α/d ).
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of spectral dimension ds ∈ R+ [37,38], which characterizes a
fictitious diffusion process on the search space. This quantity
can be interpreted as the dimension perceived by the quantum
walker and, as we now demonstrate, coincides with the effec-
tive dimension D of an equivalent model that only includes
nearest-neighbor couplings.

The spectral dimension ds can be extracted when the den-
sity of states scales as a power-law in the low-energy limit.
Denoting by λ = Eα (�k)/Eα (�kmax) the rescaled eigenvalues,
then for λ � 1 the density of states scales as ρ(λ) ∼ λβ . The
associated cumulative distribution ρCD(λ) according to the
relation is

ρCD(λ) =
∫ λ

0
d�ρ(�) ∼ λds/2,

which defines the spectral dimension ds = 2(β + 1). This
connects the finite-size scaling of the gap with the spec-
tral dimension: In fact, for a gap � that vanishes in the
thermodynamic limit, ρCD(�) = 1/N ∼ �ds/2. Assume now
a nearest-neighbor model. In this case, the gap vanishes as
N−2/D and ρCD(�) ∼ �D/2. This establishes a direct link
between D and ds, and thus between the universal critical
behavior of the short-range and of the long-range model.
In the regime α ∈ (d, d + 2), by means of the spectral gap
scaling (11) we can extract the spectral dimension:

ds = 2d

α − d
= 2d

σ
, (12)

with σ = α − d . For α ∈ (d, d + 2), the spectral dimension
ds = 4 is the upper critical dimension of the long-range
quantum walk. This identifies the critical exponent α = αc =
3d/2, such that for α > αc at γc the ground state ceases to
transition to a truly localized ground state.

Equation (12) provides a simple means to assess the time
complexity of the quantum walk for lower-dimensional lat-
tices, d � 4. For algebraically decaying interactions with
exponent α ∈ (d, d + 2), the long-range model in d dimen-
sions can be mapped to a short-range model in D = ds

dimensions. One can then use the predictions of Ref. [39]
valid for continuous walks on a hypercube with short-range
hopping, and Grover’s optimal search is achieved for ds > 4.
We note that in the limit α → d+ the spectral dimension (12)
diverges: In this limit, in fact, the power-law tunneling be-
comes sufficiently long-ranged to mimic a globally connected
graph with α = 0. In contrast, at α = d + 2 we obtain ds = d ,
and the effective dimension D reduces to the real spatial
dimension d .

IV. EXPERIMENTAL IMPLEMENTATIONS

The relations of Sec. III have practical implications on
identifying physical platforms for analog quantum searches.
In fact, XY Hamiltonians are simulated by arrays of Rydberg
atoms [40,41]. Spin models with long-range coupling coeffi-
cients are being realized in chains of trapped ions [42–44], as
well as in ultracold atoms in optical cavities [45]. Individual
atom addressing permits to “tag” a target qubit and to perform
local measurements [23,44,46,47]. Our work demonstrates
that these platforms can realize an efficient analog quantum
search provided that the spatial dimensionality of the lattice

satisfies the relation α < 3d/2 � 6. For instance, Rydberg
interactions (α = 6) [40,46] might realize an efficient ana-
log search provided that the lattice geometry has the same
connectivity as a hypercube in four dimensions. Figure 4,
moreover, suggests that a quantum advantage can be reached
for databases of finite size. For dipolar interactions Grover’s
time complexity can be reached in a simple-cubic lattice
in three dimensions [48,49], while any scalable Coulomb
crystalline structure, from three dimensions down to the
Coulomb chain [50,51], can warrant Grover’s optimum. In
light of the fact that in certain platforms the interaction ex-
ponent is tunable [44,45], one could perform a constrained
optimization of exponent and lattice dimensionality (12) tak-
ing into account the experimental overhead.

V. OUTLOOK

In this work we have determined the time complexity of
quantum searches on a lattice with long-range tunneling. We
have considered tunneling amplitudes scaling with the dis-
tance r as 1/rα and identified the relation between exponent
α and dimensionality d for which Grover optimal scaling is
achieved, α � 3d/2. We have focused here on lattices with
cubic geometries, however we anticipate the bound ds = 4 to
apply more generally to other search spaces. The results could
also be further extended to search on fractals, where it has
been conjectured that the spectral dimension, as opposed to
the fractal dimension, is the appropriate metric to quantify the
search’s optimality [52–54].

From a broader perspective, this study brings to the fore
the tight connection between criticality and quantum search
algorithms. A key concept is the spectral dimension ds: The
value ds = 4 is the upper critical dimension of the localized-
extended quantum phase transition and of the dynamical
phase transition to the quadratic scaling of Grover’s opti-
mum. The critical exponent αc = 3d/2 separates an ergodic
to a localized phase. Since the spectral dimension ds has
been conjectured to govern universality in nonhomogeneous
systems [36,55,56], this study can additionally offer valu-
able insights into search optimality on diverse structures.
One interesting question is whether similar critical behavior
appears in other complexity measures, such as Solomonoff
Kolmogorov Chaitin (SKC) complexity, which quantifies the
shortest algorithmic description of a problem [57–59]. A
highly compressible search space with structured spectral
properties (low SKC complexity) may correspond to more
efficient quantum evolution and faster search times.

These concepts could be key for other kinds of dynamics
based on quantum searches, such as optimization problems
like, for instance, active learning agents [60]. Our insights
allows to quantitatively assess the resources that long-range
interactions offer for quantum search algorithms, and might
provide a key to determine the resource they can offer for
quantum information processing and quantum technologies in
general [20,31].

ACKNOWLEDGMENTS

E.C.K. and G.M. acknowledge helpful discussions with
Markus Bläser on the algebraic connectivity of graphs and

043020-5



EMMA C. KING et al. PHYSICAL REVIEW RESEARCH 7, 043020 (2025)

on time complexity of quantum algorithms. This work was
funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation)—Project-ID 429529648-TRR306
QuCoLiMa (“Quantum Cooperativity of Light and Mat-
ter”) and the QuantERA project “QNet: Quantum transport,
metastability, and neuromorphic applications in Quantum
Networks”—Project ID 532771420, by the German Min-
istry of Education and Research (BMBF) via the Project
NiQ (Noise in Quantum Algorithms), and the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy—EXC 2004/1-
390534769—Cluster of Excellence ML4Q (“Matter and Light
for Quantum Computing”). This research was supported in
part by the National Science Foundation Grants No. NSF
PHY-1748958 and No. NSF PHY-2309135 to the Kavli In-
stitute for Theoretical Physics (KITP).

DATA AVAILABILITY

Some of the data that support the findings of this article
are openly available [61]. All other data is such that it is
interoperable and reusable.

APPENDIX A: ASYMPTOTIC SCALING
OF THE LAPLACIAN SPECTRAL GAP

The asymptotic scaling of the spectral gap �α = [Eα (�k1) −
Eα (�0)]/Eα (�kmax) of the rescaled Laplacian is reported in
Eq. (11). Here we provide analytic expressions for the pref-
actors C (d )

i=1,2(α) for d = 1, . . . , 4, and compare the results

with exact numeric data. First, note that Eα (�k) = ∑
�j 
=�0 cos(�k ·

�j)/| �j|α − ε0 is the eigenenergy of the Laplacian Lα in the
unscaled framework, with ε0 = ∑

�j 
=0 1/| �j|α − Eα (�0) a con-

stant energy shift. The momentum vector �kmax is defined by
its magnitude |�kmax| = √

dπ . It follows that

�α = δα

Eα (�kmax)
=

∑
�j 
=0 cos(�k1 · �j)/| �j|α − κ0

Eα (�kmax)
, (A1)

where δα ≡ Eα (�k1) − Eα (�0) and κ0 ≡ ε0 + Eα (�0). The scaling
behavior of �α is determined by analyzing the numerator
and denominator of Eq. (A1) independently. To make the
calculations analytically tractable, we describe the distance
between the hypercube graph vertices using the Manhattan
norm, a p-norm ||�x||p = (

∑d
i=1 |xi|p)

1/p
with p = 1. This

gives the length of the shortest path constrained to move along
the graph’s edges (i.e., a “grid distance”), compared to the
Euclidean norm |�x| ≡ ||�x||2 which was used in the main text
and describes the shortest distance between the two vertices.
Since all norms in finite-dimensional spaces are equivalent,
we can make a statement about the scaling and prefactor
of the spectral gap independent of the norm that is chosen.
To make this more concrete, using the Cauchy-Schwarz and
Hölder’s inequality, we find the relation between p-norms as
||�x||p � ||�x||r � d1/r−1/p||�x||p, 0 < r < p. Therefore, | �j| �
|| �j||1 �

√
d| �j|, and the scaling of the spectral gap (A1) is evi-

dently unaffected by the choice of norm. We proceed by using
the Manhattan norm. Constants C (d )

i=1,2(α) reported in Table II
are accurate up to a factor C ∈ [1, dα/2] when implementing
the Euclidean norm.

In Table I we summarize the large-N asymptotic results for
δα and Eα (�kmax) of Eq. (A1), with detailed derivations and nu-
meric checks provided in Appendix B. With these results, we
extract the scaling behavior with N of the spectral gap. Two
regimes need to be considered: α < d and d < α < d + 2.
For α < d , both the numerator and denominator of Eq. (A1)
diverge in the limit N → ∞. Applying l’Hôpital’s rule, we
evaluate the N → ∞ limit. Previously of an indeterminate
form, the asymptotic limit of the spectral gap is converted into
a limit that can be evaluated directly. This leads to explicit ana-
lytic expressions for the constants C (d )

1 (α) of the main text, all
of which are independent of N , see Eqs. (A15), (A17), (A19),
and (A21) of Table II.

To extract the scaling in the regime d < α < d + 2 we
require a different approach. Note that for α > d the term scal-
ing as ∼N1−α/d in κ0 asymptotically satisfies cN1−α/d � 1,
with c an α-dependent prefactor, as reported in Table I [see
Eqs. (A5), (A8), (A11), and (A14)]. Defining x ≡ cN1−α/d ,
we expand the spectral gap (A1) around x = 0. Generically,
the spectral gap (A1) written in terms of x takes the form
�α ≈ x+ f (α,N )

x+g(α) , with f (α, N ) ∼ N1−α/d and g(α) simply an
α-dependent constant. Performing now the small-x expansion,
we obtain

�α ≈ f

g
+ (g − f )

g2
x + O(x2), (A2)

where the first term f /g is the leading-order contribu-
tion. From Table I we insert the appropriate functions
f (α, N ) and g(α), leading to the asymptotic results for the
spectral gap, �α ≈ f /g. These results give the analytic ex-
pressions for the prefactors C (d )

2 (α) of the main text, see
Eqs. (A16), (A18), (A20), and (A22) of Table II.

To benchmark our analytic results for the spectral gap,
see Table II, we perform comparisons with exact numeric
results, refer to Figs. 5–8. In all cases, subfigure (a) demon-
strates the agreement between the analytic spectral gap �α ≈
1 − C (d )

1 (α) with α ∈ [0, d ) and the exact numeric results.
Close to the transition point α ≈ d , finite-size effects become
apparent and the accuracy of our analytic approximations
deteriorates. To recover the analytic behavior of the gap in
the limits α → d+ and α → d−, system sizes exceeding those
that are numerically tractable would be required. In subfig-
ures (b) we provide comparisons for the second asymptotic
regime, α ∈ (d, d + 2). Overall, good agreement is observed
between analytic and numeric results. As before, toward the
edges of this region in α we observe deviations from the
analytic predictions. We expect these errors to decrease with
increasing N , see subfigures (c). Figures 5–8 indicate that the
asymptotic results of the main text, together with the constants
of Table II, provide a realistic, quantitative description of �α

in the large-N limit.
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(a) (b) (c)

FIG. 5. Spectral gap �α of a one-dimensional hypercube as a function of (a) the power-law exponent α ∈ [0, 1), (b) the power-law exponent
α ∈ (1, 3), and (c) the system size N , i.e., the number of vertices in the hypercube graph. Data points correspond to exact numeric results,
while solid curves represent the asymptotic results in Eq. (11) of the main text, with the constants C (1)

i=1,2 defined in Table II; see Eqs. (A15)
and (A16).

(a) (b) (c)

FIG. 6. Spectral gap �α of a two-dimensional hypercubic lattice as a function of (a) the power-law exponent α ∈ [0, 2), (b) the power-law
exponent α ∈ (2, 4), and (c) the system size n = N1/2, i.e., the number of vertices along each dimension in the hypercube graph. Data points
correspond to exact numeric results, while solid curves represent the asymptotic results in Eq. (11) of the main text, with the constants C (2)

i=1,2

defined in Table II; see Eqs. (A17) and (A18).

(a) (b) (c)

FIG. 7. Spectral gap �α of a three-dimensional hypercube as a function of (a) the power-law exponent α ∈ [0, 3), (b) the power-law
exponent α ∈ (3, 5), and (c) the system size n = N1/3, i.e., the number of vertices along each dimension in the hypercube graph. Data points
correspond to exact numeric results, while solid curves represent the asymptotic results in Eq. (11) of the main text, with the constants C (3)

i=1,2

defined in Table II; see Eqs. (A19) and (A20).

(a) (b) (c)

FIG. 8. Spectral gap �α of a four-dimensional hypercube as a function of (a) the power-law exponent α ∈ [0, 4), (b) the power-law
exponent α ∈ (4, 6), and (c) the system size n = N1/4, i.e., the number of vertices along each dimension in the hypercube graph. Data points
correspond to exact numeric results, while solid curves represent the asymptotic results in Eq. (11) of the main text, with the constants C (3)

i=1,2

defined in Table II; see Eqs. (A21) and (A22).
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TABLE I. Asymptotic scaling of the (unscaled) spectral gap δα , the largest eigenenergy Eα (�kmax) for normalization, and the energy
shift κ0 ≡ ε0 + Eα (�0). Results are reported for d ∈ [1, 4] and α < d + 2 to leading-order in N , with subdominant contributions of order
O(N1−1/d−α/d ) being neglected. For compactness, we introduced the following N-independent function: Kn(z) ≡ En(iπz) + En(−iπz), where
En(x) is the exponential integral function. Note that ζ (s), �(s) and pFq(a; b; z) denote the Riemann ζ function, � function, and generalized
hypergeometric function, respectively. For α > d + 2 the well-established asymptotic scaling of the gap δα ∼ N−2/d is recovered and is not
reported in this table.

Dimension d = 1 α < 3

Unscaled spectral gap:

δα ≈ −κ0 + 2ζ (α) + 2απα−1 sin

(
πα

2

)
�(1 − α) N1−α (A3)

Largest eigenenergy:

Eα (kmax) ≈ −ε0 + (22−α − 2)ζ (α) (A4)

Constant energy shift:

κ0 ≈ 2ζ (α) + −2α

α − 1
N1−α (A5)

Dimension d = 2 α < 4 (α �= 1)

Unscaled spectral gap:

δα ≈ −κ0 + 4ζ (α − 1) −
⎡
⎣2α

1F2

(
2−α

2 ; 1
2 , 4−α

2 ; − π2

4

)
(α − 2)(α − 1)

+2Kα−1(2) − 2α−1Kα−1(1)

(α − 1)

⎤
⎦N1−α/2 (A6)

Largest eigenenergy:

Eα (�kmax) ≈ −ε0 + (24−α − 4)ζ (α − 1) (A7)

Constant energy shift:

κ0 ≈ 4ζ (α − 1) + 4 − 2α+1

(α − 2)(α − 1)
N1−α/2 (A8)

Dimension d = 3 α < 5 (α �= 1, 2)

Unscaled spectral gap:

δα ≈ −κ0 + 4ζ (α − 2) + 2ζ (α) +
⎡
⎣ −

2α
1F2

(
3−α

2 ; 1
2 , 5−α

2 ; − π2

4

)
(α − 3)(α − 2)(α − 1)

+2αKα−2(1) − 4Kα−2(2) − 2α−133−αKα−2(3)

(α − 2)(α − 1)

⎤
⎦N1−α/3 (A9)

Largest eigenenergy:

Eα (�kmax) ≈ −ε0 + (25−α − 4)ζ (α − 2) + (22−α − 2)ζ (α) (A10)

Constant energy shift:

κ0 ≈ 4ζ (α − 2) + 2ζ (α) − 31−α (9(2α ) − 8(3α ) + 6α )

(α − 3)(α − 2)(α − 1)
N1−α/3 (A11)
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TABLE I. (Continued.)

Dimension d = 4 α < 6 (α �= 1, 2, 3)

Unscaled spectral gap:

δα ≈ −κ0 + 8

3
ζ (α − 3) + 16

3
ζ (α − 1) −

⎡
⎣ 2α

1F2

(
4−α

2 ; 1
2 , 6−α

2 ; − π2

4

)
(α − 4)(α − 3)(α − 2)(α − 1)

−3 2α−1Kα−3(1) − 2α34−αKα−3(3) − 27−αKα−3(4)

(α − 3)(α − 2)(α − 1)

⎤
⎦N1−α/4 (A12)

Largest eigenenergy:

Eα (�kmax) ≈ −ε0 + 1

3
(27−α − 23)ζ (α − 3) + 1

3
(26−α − 24)ζ (α − 1) (A13)

Constant energy shift:

κ0 ≈ 8

3
ζ (α − 3) + 16

3
ζ (α − 1) − 4(−26−α + 2α + 2α34−α − 24)

(α − 4)(α − 3)(α − 2)(α − 1)
N1−α/4 (A14)

TABLE II. Analytic expressions for the constants C (d )
i=1,2(α) appearing in the asymptotic scaling of the spectral gap: �α ≈ 1 −

C (d )
1 (α), α ∈ [0, d ), and �α ≈ C (d )

2 (α)N1−α/d , α ∈ (d, d + 2); see Eq. (11) of the main text. For compactness, we introduced the follow-
ing N-independent functions: h(α) = (22−α − 4)ζ (α), f (α) = (24−α − 8)ζ (α − 1), g(α) = (25−α − 8)ζ (α − 2) + (22−α − 4)ζ (α), j(α) =
−3−124−α ((2α − 8)ζ (α − 3) + 2(2α − 2)ζ (α − 1)), and Kn(z) ≡ En(iπz) + En(−iπz), where ζ (s) is the Riemann ζ function and En(x) is
the exponential integral function. The notation �(s) and pFq(a; b; z) is used to denote the � function and generalized hypergeometric function,
respectively. Constants C (d )

i=1,2(α) are exact (asymptotically) for d = 1, and accurate up to a factor C ∈ [1, dα/2] for d = 2, 3, 4.

Dimension d = 1 α < 1 1 < α < 3

C (1)
1 (α) = (1 − α)πα−1 sin(πα/2)�(1 − α) (A15) C (1)

2 (α) =
[

2απα−1(α − 1) sin(πα/2)�(1 − α) + 2α

h(α) (α − 1)

]
(A16)

Dimension d = 2 α < 2 2 < α < 4

C (2)
1 (α) =

1F2

(
2−α

2 ; 1
2 , 4−α

2 ; − π2

4

)
2 − 22−α

C (2)
2 (α) = 1

f (α)

⎡
⎣ 2α+1 − 4

(α − 2)(α − 1)
− 2Kα−1(2) − 2α−1Kα−1(1)

(α − 1)

− (α − 2)Kα−1(2)

2 − 2α
+ (α − 2)Kα−1(1)

23−α − 4
(A17) −

2α
1F2

(
2−α

2 ; 1
2 , 4−α

2 ; − π2

4

)
(α − 2)(α − 1)

⎤
⎦ (A18)

Dimension d = 3 α < 3 3 < α < 5

C (3)
1 (α) =

1F2

(
3−α

2 ; 1
2 , 5−α

2 ; − π2

4

)
3(32−α − 23−α + 1)

− (α − 3) C (3)
2 (α) = 1

g(α)

⎡
⎣ −

2α
1F2

(
3−α

2 ; 1
2 , 5−α

2 ; − π2

4

)
(α − 3)(α − 2)(α − 1)

+ 2αKα−2(1) − 4Kα−2(2)

(α − 2)(α − 1)

×2α+1Kα−2(1) − 8Kα−2(2) − 33−α2αKα−2(3)

6(32−α2α + 2α − 8)
(A19)

−2α−133−αKα−2(3)

(α − 2)(α − 1)
+ 31−α (9(2α ) − 8(3α ) + 6α )

(α − 3)(α − 2)(α − 1)

⎤
⎦ (A20)
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TABLE II. (Continued.)

Dimension d = 4 α < 4 4 < α < 6

C (4)
1 (α) =

2−2
1F2

(
4−α

2 ; 1
2 , 6−α

2 ; − π2

4

)
(−3 2α+3 + 4α − 64)4−α + 34−α

C (4)
2 (α) = 1

j(α)

⎡
⎣ −

2α
1F2

(
4−α

2 ; 1
2 , 6−α

2 ; − π2

4

)
(α − 4)(α − 3)(α − 2)(α − 1)

+ 3 2α−1Kα−3(1)

(α − 3)(α − 2)(α − 1)

−3 4α (α − 4)(Kα−3(1) − 54 3−αKα−3(3))

8(−3 2α+3 + 4α − 43 + 34−α 4α )
−6−α (81 4αKα−3(3) + 128 3αKα−3(4))

(α − 3)(α − 2)(α − 1)

+ 28(α − 4)Kα−3(4)

8(−3 2α+3 + 4α − 43 + 34−α 4α )
(A21) + 4(−26−α + 2α + 2α34−α − 24)

(α − 4)(α − 3)(α − 2)(α − 1)

⎤
⎦ (A22)

APPENDIX B: DETAILED DERIVATIONS
OF δα AND Eα(�kmax )

Here, we provide in-depth calculations of the spectral gap
scaling with N , see Appendix A for the final results. For
clarity, we separate the computations according to the hyper-
cubic lattice dimension, with Appendixes B 1–B 4, containing
derivations for the constant energy shift κ0, the unscaled spec-
tral gap δα , and the eigenenergy Eα (�kmax) with the largest
magnitude. For our analysis we assume, without loss of gen-
erality, that lattices comprise an even number of sites in each
dimension, such that n = N1/d ∈ {2x | x ∈ N}, and we drop
the α subscript for convenience. Moreover, the Hurwitz ζ

function ζ (η, x) = ∑∞
n=0(n + x)−η for Re(η) > 1, and ex-

tended by analytic continuation to other η 
= 1, will be of
central importance [62]. For future reference, we state its
large-x asymptotic series expansion as follows [63]:

ζ (η, x) ∼ x−η

2
+ x1−η

η − 1
+ O(x−1−η ), (B1)

where η 
= 1 and x � 1. Finally, note that we use the Man-
hattan norm in all the derivations of this section. Refer to
Appendix A for a detailed discussion on this matter.

1. One-dimensional hypercube (d = 1)

Constant energy shift. The energy shift κ0 is expressed as

κ0 =
N/2∑

j=−N/2+1;
j 
=0

| j|−α

= 2
N/2∑
j=1

j−α −
(

N

2

)−α

= 2H (α)
N/2 − 2αN−α, (B2)

where H (r)
N = ∑N

i=1 1/ir is the harmonic number of order
r [62]. For α 
= 1, the harmonic number in Eq. (B2) can
be recast in terms of the Hurwitz and Riemann ζ functions,
leading to κ0 = 2ζ (α) − 2ζ (α, N/2 + 1) − 2αN−α . Asymp-
totically ζ (α, N/2 + 1) ≈ ζ (α, N/2), and we use the series
expansion of the Hurwitz ζ function, Eq. (B1), to extract the

asymptotic behavior of κ0 to leading order:

κ0 ≈ 2ζ (α) − 2α

α − 1
N1−α + O(N−α ). (B3)

For α > 1, the N-dependent terms decay as a power-law,
approaching zero for large N , and κ0 thus tends toward
the real scalar value 2ζ (α). In contrast, for α < 1, κ0 will
scale as ∼N1−α . This behavior is depicted in Fig. 9(a),
together with the absolute percentage deviation (APD) of
approximation (B3).

Scaling of δ and E (�kmax). A rigorous treatment of δ and
E (�kmax) is provided in the Supplemental Material of Ref. [22].
Following their approach, we recover the asymptotic expres-
sions to leading-order as

δ ≈ −κ0 + 2ζ (α) + 2απα−1 sin

(
πα

2

)
�(1 − α)N1−α

+ 2
∞∑
j=1

ζ (α − 2 j)

(2 j)!
(2π i)2 jN−2 j,

E (�kmax) ≈ −ε0 + (22−α − 2)ζ (α), (B4)

provided N � 1. The accuracy of these expressions is as-
sessed through a comparison to exact numeric results; see
Fig. 9.

2. Two-dimensional hypercube (d = 2)

Constant energy shift. For the two-dimensional hypercubic
lattice, κ0 is defined as

κ0 =
∑
�j 
=�0

1/|| �j||α1 =
n/2∑

j1, j2=−n/2+1;
| j1|+| j2|
=0

(| j1| + | j2|)−α, (B5)

where || . . . ||1 denotes the Manhattan norm (geodesic/
shortest-path distance), n = N1/d and �j ≡ ( j1, j2). Equa-
tion (B5) can be recast into the following equivalent form:

κ0 = [1 + 21+α (n − 1)]n−α +
n/2−1∑

j=1

[4 j1−α + 4 j(n − j)−α],

(B6)
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(a) (b) (c)

FIG. 9. (a) Comparison of the exact numeric value (solid curve) of κ0 (B2) with the asymptotic result (B3) (dashed). Inset shows the
absolute percentage deviation, APD = 100 × |(E − A)/E|, of the asymptotic result A from the exact result E as a function of α. We set
N = 100. (b) Scaling of the spectral gap δ (B4) (solid curves) with N , and a comparison to exact numeric results (data points). (c) A comparison
between analytic (B4) (solid curves) and exact numeric results (data points) for E (�kmax). In both (b) and (c) dashed horizontal lines represent
the case of nearest-neighbor hopping (α → ∞).

which is amenable to an asymptotic analysis. The leading-order contribution of the first term is O(n1−α ). To understand the
limiting behavior of the second term of Eq. (B6) as n → ∞, we express the summations in terms of the Hurwitz ζ function
ζ (η, x), and then use the asymptotic series expansion of Eq. (B1). After some algebra, we obtain

n/2−1∑
j=1

4 j1−α = 4
∞∑
j=1

j1−α − 4
∞∑
j=0

( j + n/2)1−α = 4ζ (α − 1)− 4ζ (α − 1, n/2) ≈ 4ζ (α − 1)− 2αn1−α − 2α

α − 2
n2−α + O(n−α ),

(B7)
n/2−1∑

j=1

4 j(n − j)−α = 4
n−1∑

j=n/2+1

[n j−α − j1−α] = 4n

[
ζ

(
α,

n

2
+ 1

)
− ζ (α, n)

]
− 4

[
ζ

(
α − 1,

n

2
+ 1

)
− ζ (α − 1, n)

]

≈ 2αn1−α + 2α (α − 3) + 4

(α − 2)(α − 1)
n2−α + O(n−α ). (B8)

Substituting the results of Eqs. (B7) and (B8) into Eq. (B6) leads to

κ0 ≈ 4ζ (α − 1) + 4 − 2α+1

(α − 2)(α − 1)
n2−α + O(n1−α ). (B9)

As observed for the one-dimensional case in Appendix B 1, there are two important regimes: (i) When α < 2, the n-dependent
term dominates such that κ0 ∼ n2−α , and (ii) for α > 2, κ0 is approximated by the real constant 4ζ (α − 1). Due to the suppression
of contributions from the terms scaling as ∼nx, x < 0, this approximation improves as n becomes larger. The accuracy of the
asymptotic result (B9) is assessed in Fig. 10(a).

Scaling of δ and E (�kmax). By definition, the unscaled spectral gap is

δ = −κ0 +
∑
�j 
=�0

cos(�k1 · �j)/|| �j||α1 = −κ0 +
n/2∑

j1, j2=−n/2+1;
| j1|+| j2|
=0

(| j1| + | j2|)−α cos (2π j1/n), (B10)

(a) (b) (c)

FIG. 10. (a) Comparison of the exact numeric value (solid curve) of κ0 (B5) with the asymptotic result (B9) (dashed). Inset shows the
absolute percentage deviation, APD = 100 × |(E − A)/E|, of the asymptotic result A from the exact result E as a function of α. We set
n = N1/d = 40. (b) Scaling of the spectral gap δ (A6) (solid curves) with n, and a comparison to exact numeric results (data points). (c) A
comparison between analytic (A7) (solid curves) and exact numeric results (data points) for E (�kmax). In panels (b) and (c) dashed horizontal
lines represent the case of nearest-neighbor hopping (α → ∞).
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which can be written in the equivalent form:

δ = −κ0 + 4
n/2∑

j1, j2=1

cos (2π j1/n)

( j1 + j2)α
+ 2

n/2∑
j2=1

j−α
2 + 2

n/2∑
j2=1

(
n

2
+ j2

)−α

+
n/2∑

j1=−n/2+1;
j1 
=0

cos (2π j1/n)

| j1|α −
n/2∑

j1=−n/2+1;
j1 
=0

cos (2π j1/n)(| j1| + n
2

)α

≈ −κ0 + 4ζ (α) + 4
n/2∑

j1, j2=1

cos (2π j1/n)( j1 + j2)−α

︸ ︷︷ ︸
(∗)

+ O(n1−α ). (B11)

Simplification was performed by noting that the final two terms, treated in the one-dimensional case, give 2ζ (α) and terms of
order n1−α . Now, focusing on the term denoted by (∗) in Eq. (B11), we recast the summation exactly as

(∗) = 4
n/2∑

j1, j2=1

cos (2π j1/n)( j1 + j2)−α = 4
n/2∑
j1=1

cos (2π j1/n)[ζ (α, j1 + 1) − ζ (α, j1 + n/2 + 1)]. (B12)

To evaluate the finite sum (B12) containing the Hurwitz ζ functions, we approximate it in terms of an integral and subsequently
use the machinery of calculus to extract the asymptotic result. For this purpose, we implement the Euler–Maclaurin formula

b∑
k=a+1

f (k) =
∫ b

a
f (x) dx + 1

2
[ f (a) − f (b)] +

�p/2�∑
k=1

B2k

(2k)!
( f (2k−1)(b) − f (2k−1)(a)) + Rp, (B13)

where a, b are natural numbers and f : R → R is a continuous function for real k ∈ [a, b]. Provided f (k) is p times continuously
differentiable on the interval [a, b] for p ∈ Z+, the difference between the summation and integral depends on terms containing
the k-th Bernoulli number, Bk , as well as the error term Rp. Disregarding the error terms, which we later numerically show to
have negligible impact on the final results, see Fig. 10(b), the summation of Eq. (B12) is approximated as

(∗) ≈ 4ζ (α − 1) − 4ζ (α) + 4
∫ n/2

0
dx cos(2πx/n)ζ (α, x + 1) − 4

∫ n/2

0
dx cos(2πx/n)ζ (α, x + n/2 + 1). (B14)

Performing a change of variable x → ny/2, followed by a series expansion of the Hurwitz ζ function (B1), Eq. (B14) simplifies
to

(∗) ≈ 4ζ (α − 1) − 4ζ (α) + 2α

α − 1

[∫ 1

0
dy cos(πy) y1−α −

∫ 1

0
dy cos(πy) (y + 1)1−α

]
n2−α + O(n1−α ), (B15)

where only leading-order terms are explicitly written. The integrals (B15) can be computed analytically, and written in terms of
the generalized hypergeometric function pFq(a; b; z) [62] and the exponential integral function En(x) [62] as

∫ 1

0
dy cos(πy) y1−α = − 1F2

(
1 − α

2 ; 1
2 , 2 − α

2 ; −π2

4

)
α − 2

, for α < 2, (B16)∫ 1

0
dy cos(πy) (y + 1)1−α = −1

2
[Eα−1(−iπ ) + Eα−1(iπ ) − 22−α{Eα−1(−2iπ ) + Eα−1(2iπ )}]. (B17)

For the first integral we require α < 2 to ensure convergence. This restriction on the range of α is not problematic, since the
O(n2−α ) term of Eq. (B15), to which the integrals are a prefactor, is asymptotically suppressed when α > 2 and the term (∗)
tends to the constant 4ζ (α − 1) − 4ζ (α). Thus, in the regime where the O(n2−α ) term is dominant, the integral is guaranteed to
converge. Finally, Eq. (B15), together with the intregrals (B16) and (B17), is substituted back into Eq. (B11) to give the scaling
of δ, see Eq. (A6). This asymptotic result is in close agreement with exact numeric results for large n; see Fig. 10(b).

To determine the scaling of E (�kmax), we start with the definition

E (�kmax) = −ε0 +
∑
�j 
=�0

cos(�kmax · �j)/|| �j||α1 = −ε0 +
n/2∑

j1, j2=−n/2+1;
| j1|+| j2|
=0

(| j1| + | j2|)−α cos (π j1 + π j2). (B18)

Since j1 + j2 ∈ Z, we perform the replacement cos(π j1 + π j2) → (−1) j1+ j2 and shift the summation indices such that the
absolute values may be dropped. After some algebra, we arrive at

E (�kmax) = −ε0 +
n/2∑

j1, j2=0;
j1+ j2 
=0

(−1) j1+ j2 ( j1 + j2)−α + 2
n/2∑
j1=0

n/2−1∑
j2=1

(−1) j1− j2 ( j1 + j2)−α +
n/2−1∑
j1, j2=1

(−1) j1+ j2 ( j1 + j2)−α. (B19)
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The second term of Eq. (B19) can be recast in terms of two summations, each running over a single summation index:

n/2∑
j1, j2=0;
j1+ j2 
=0

(−1) j1+ j2 ( j1 + j2)−α =
n/2∑
j=1

j−α (−1) j ( j + 1)+
n/2∑
j=1

(n − j + 1)−α (−1)n− j+1 j ≈ (22−α − 1)ζ (α − 1)+ (21−α − 1)ζ (α),

(B20)
where the final step assumes n � 1. The third term (B19) can be treated similarly. To leading-order, we find

2
n/2∑
j1=0

n/2−1∑
j2=1

(−1) j1− j2

( j1 + j2)α
= 2

n/2−1∑
j=1

j−α (−1) j j + 2

(
2

n

)α

(−1)n/2

(
n

2
− 1

)
+ 2

n/2−1∑
j=1

(n − j)−α (−1)n− j j

= (23−α − 2)ζ (α − 1) + (−1)n/2
(
2αn1−α − 21+αn−α

) + 2
n−1∑

j=n/2+1

j−α (−1) j (n − j) (B21)

≈ (23−α − 2)ζ (α − 1) + O(n1−α ), (B22)

where the second term of line (B21) is sub-leading-order, and the third term is negligible when n is large. The latter statement
can be verified by writing the summation explicitly in terms of Hurwitz ζ functions, ζ (η, x), yielding

2
n−1∑

j=n/2+1

j−α (−1) j (n − j) = 22−αin

[
ζ

(
α − 1,

n

4
+ 1

2

)
− ζ

(
α − 1,

n

4
+ 1

)
+ e

iπn
2

{
ζ

(
α − 1,

n

2

)
− ζ

(
α − 1,

n

2
+ 1

2

)

− n

2
ζ

(
α,

n

2

)
+ n

2
ζ

(
α,

n

2
+ 1

2

)}
− n

2
ζ

(
α,

n

4
+ 1

2

)
+ n

2
ζ

(
α,

n

4
+ 1

)]
. (B23)

Now, note that n/4 + 1/2 ≈ n/4 + 1 and n/2 ≈ n/2 + 1/2 for large n. This implies that, asymptotically, ζ (η, n
4 + 1

2 ) ≈
ζ (η, n

4 + 1) and ζ (η, n
2 ) ≈ ζ (η, n

2 + 1
2 ) for both η = α and η = α − 1, and the entire summation tends to zero in large-n limit.

Determining the asymptotic behavior of the final term of Eq. (B19) follows the procedure taken in Eq. (B20). We simply state
the result as

n/2−1∑
j1, j2=1

(−1) j1+ j2 ( j1 + j2)−α ≈ (22−α − 1)ζ (α − 1) − (21−α − 1)ζ (α). (B24)

Substituting Eqs. (B20), (B22), and (B24) into Eq. (B19), we recover the asymptotic result (A7), provided in Table I. Figure 10(c)
provides an assessment of the accuracy of this asymptotic result for ε0 = 0 and a range of α values.

3. Three-dimensional hypercube (d = 3)

Constant energy shift. In hypercubic lattices of three dimensions, κ0 may be treated via an expansion into a series of
summations, followed by various approximations and simplifications. Recalling that || . . . ||1 denotes the Manhattan norm,
n = N1/3 and �j ≡ ( j1, j2, j3), the definition of the energy κ0 leads to

κ0 =
∑
�j 
=�0

1/|| �j||α1 =
n/2∑

j1, j2, j3=−n/2+1;
| j1|+| j2|+| j3|
=0

(| j1| + | j2| + | j3|)−α = 8
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α + 12
n/2−1∑
j1, j2=1

(
j1 + j2 + n

2

)−α

+ 12
n/2−1∑
j1, j2=1

( j1 + j2)−α + 6
n/2−1∑
j1=1

( j1 + n)−α + 12
n/2−1∑
j1=1

(
j1 + n

2

)−α

+ 6
n/2−1∑
j1=1

( j1)−α + O(n−α ). (B25)

We proceed by performing an asymptotic expansion of each term in Eq. (B25) independently, after which we combine the results
to obtain the scaling of κ0 (A11). Starting with the first term in Eq. (B25), we reformulate the triple summation over indices j1,
j2 and j3 as a collection of summations with single indices:

8
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α = 4
n/2+1∑

j=1

( j − 1)( j − 2) j−α

︸ ︷︷ ︸
(a)

+
n/2+n/4∑
j=n/2+2

[−8 j2 + 12 jn − 3n(n + 2) + 8] j−α

︸ ︷︷ ︸
(c)
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+ 4
n/2−1∑

j=1

j( j + 1)

[
3n

2
− j − 2

]−α

︸ ︷︷ ︸
(b)

+
n/2+n/4−3∑

j=n/2

[6(2 j + 3)n − 8( j + 1)( j + 3) − 3n2]

[
3n

2
− j − 2

]−α

︸ ︷︷ ︸
(d )

. (B26)

Note that the summation upper bounds in (c) and (d ) contain the fraction n/4. For convenience, we hereafter assume that
mod(n, 4) = 0, where mod is the standard modulo operation giving the remainder on division of n by 4. In the limit of large n,
our results apply to lattices with any number of sites. Now, terms (a) and (c) can be rewritten exactly in terms of the difference
of infinite sums, giving expressions in terms of the Hurwitz ζ function ζ (η, x) and Riemann ζ function ζ (η). After some algebra,
these terms exhibit the following asymptotic behavior:

(a) = −4

[
ζ

(
α − 2,

n

2
+ 2

)
− 3ζ

(
α − 1,

n

2
+ 2

)
+ 2ζ

(
α,

n

2
+ 2

)
− ζ (α − 2) + 3ζ (α − 1) − 2ζ (α)

]

≈ 4ζ (α − 2) − 12ζ (α − 1) + 8ζ (α) − 2α+2n−α + 2α (3α − 7)

α − 1
n1−α − 2α−1(α − 8)

α − 2
n2−α − 2α−1

α − 3
n3−α + O(n−1−α ),

(B27)

(c) = −8ζ

(
α − 2,

n

2
+ 2

)
+ 8ζ

(
α − 2,

3n

4
+ 1

)
+ 12nζ

(
α − 1,

n

2
+ 2

)
− 12nζ

(
α − 1,

3n

4
+ 1

)

− (3n(n + 2) − 8)

[
ζ

(
α,

n

2
+ 2

)
− ζ

(
α,

3n

4
+ 1

)]

≈ 2α+23−α (3α − 2α )n−α +
(

2
3

)α
[3 2α (α − 3) + 3α (7 − 3α)]

α − 1
n1−α − 2α−23−α (3 2α − 2 3α )(α − 7)

α − 1
n2−α

+ 2α−33−α[4 3α (α − 4)(α + 1) − 9 2α (α − 5)α]

(α − 3)(α − 2)(α − 1)
n3−α + O(n−1−α ). (B28)

To evaluate terms (b) and (d ) of Eq. (B26) we shift the summation indices, such that the denominator undergoes the
transformation [ 3n

2 − j − 2]−α −→ j−α . In their new form, summations (b) and (d ) can be written as the differences of the
Hurwitz ζ function infinite summations. Applying this, we find the asymptotic expansions

(b) =
3n/2−3∑
j=n−1

(2 j − 3n + 2)(2 j − 3n + 4) j−α

= −4ζ

(
α − 2,

3n

2
− 2

)
+ 4ζ (α − 2, n − 1) + 12(n − 1)ζ

(
α − 1,

3n

2
− 2

)

− 12(n − 1)ζ (α − 1, n − 1) + (3n − 4)(3n − 2)

[
ζ (α, n − 1) − ζ

(
α,

3n

2
− 2

)]

≈ 22 3−α (3α − 2α )n−α − 3−α[3α (3α − 11) + 3 2α+2]

α − 1
n1−α + 3−α[3α (α − 10)(α − 5) − 27 2α+1]

2(α − 2)(α − 1)
n2−α

+ 3−α (3α ((α − 9)α + 26) − 27 2α )

(α − 3)(α − 2)(α − 1)
n3−α + O(n−1−α ), (B29)

(d ) =
n−2∑

j=3n/4+1

[−8 j2 + 12 jn − 3n(n + 2) + 8] j−α = −8ζ

(
α − 2,

3n

4
+ 1

)
+ 8ζ (α − 2, n − 1) + 12nζ

(
α − 1,

3n

4
+ 1

)

− 12nζ (α − 1, n − 1) − (3n(n + 2) − 8)

[
ζ

(
α,

3n

4
+ 1

)
− ζ (α, n − 1)

]

≈ 22 3−α (4α − 3α )n−α + 3−α[3α (3α − 11) − 3 4α (α − 3)]

α − 1
n1−α + 3−α[3 4α (α − 7) − 2 3α (α − 13)]

4(α − 1)
n2−α

+ 3−α[9 4α (α − 5)α − 8 3α (α2 − 9α + 2)]

8(α − 3)(α − 2)(α − 1)
n3−α + O(n−1−α ). (B30)
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Combing the results of Eqs. (B27)–(B30), we arrive at an asymptotic expression for the first term of Eq. (B25):

8
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α ≈ 4ζ (α − 2) − 12ζ (α − 1) + 8ζ (α) − 31−α (9 2α − 8 3α + 6α )

(α − 3)(α − 2)(α − 1)
n3−α + O(n2−α ), (B31)

where we keep only leading-order terms in n and constants. Determining the large-n behavior of the remaining terms in Eq. (B25)
is more straightforward. For the second term we find

12
n/2−1∑
j1, j2=1

(
j1 + j2 + n

2

)−α

= 12
n/2∑
j=1

( j − 1)

(
j + n

2

)−α

+ 12
n/2−2∑

j=1

j

(
3n

2
− j − 1

)−α

= 12

[
ζ

(
α − 1,

3n

2
− 1

)
− ζ (α − 1, n + 1) +

(
1 − 3n

2

)[
ζ

(
α,

3n

2
− 1

)
− ζ (α, n + 1)

]

+ 2αn−α + ζ

(
α − 1,

n

2

)
− ζ (α − 1, n + 1) − 1

2
(n + 2)

[
ζ

(
α,

n

2

)
− ζ (α, n + 1)

]]

≈ −2α+131−α (3α − 3)

α − 1
n1−α + 31−α (9 2α − 8 3α + 6α )

(α − 2)(α − 1)
n2−α + O(n−α ). (B32)

Since the leading-order contribution scales as ∼n3−α , see Eq. (B31), the result above indicates that the contribution of the second
term to κ0, see Eq. (B25), is negligible for n � 1. We can determine the asymptotic behavior of the third term in Eq. (B25)
following a similar sequence of steps:

12
n/2−1∑
j1, j2=1

( j1 + j2)−α = 12
n/2∑
j=1

( j − 1) j−α + 12
n−2∑

j=n/2+1

(n − j − 1) j−α

= −12

[
2ζ

(
α − 1,

n

2
+ 1

)
− ζ (α − 1, n − 1)− nζ

(
α,

n

2
+ 1

)
+ (n − 1)ζ (α, n − 1) − ζ (α − 1) + ζ (α)

]

≈ 12ζ (α − 1) − 12ζ (α) + 12

α − 1
n1−α + 6(2α − 2)

(α − 2)(α − 1)
n2−α + O(n−α ). (B33)

Crucially, the expansion contains two n-independent terms, which will contribute to the value of κ0 when α > 3. The dominant n-
dependent term in the expansion scales as ∼n2−α , inferring that the contribution will be sub-leading-order in the final expansion.
The final three terms in Eq. (B25) can each be directly reformulated in terms of the difference of two appropriate infinite sums.
This allows us to express the summations in terms of the well-known Hurwitz ζ function, and expand using the asymptotic result
of Eq. (B1), as before. The calculations are summarized as follows:

n/2−1∑
j1=1

6

( j1 + n)α
=

∞∑
j1=0

6

( j1 + n + 1)α
− 6

∞∑
j1=0

(
j1 + 3n

2

)−α

= 6ζ (α, n + 1) − 6ζ

(
α,

3n

2

)

≈ 31−α (2 3α − 3 2α )n1−α

α − 1
+ O(n−α ), (B34)

12
n/2−1∑
j1=1

(
j1 + n

2

)−α

= 12

⎡
⎣ ∞∑

j1=0

(
j1 + n

2
+ 1

)−α

−
∞∑

j1=0

( j1 + n)−α

⎤
⎦

= 12

[
ζ

(
α,

n

2
+ 1

)
− ζ (α, n)

]
≈ 6(2α − 2)

α − 1
n1−α + O(n−α ), (B35)

6
n/2−1∑
j1=1

( j1)−α = 6
∞∑

j1=1

( j1)−α − 6
∞∑

j1=0

(
j1 + n

2

)−α

= 6ζ (α) − 6ζ

(
α,

n

2

)
≈ 6ζ (α) − 6 2α−1

α − 1
n1−α + O(n−α ). (B36)

The scaling n1−α is sub-leading-order in all of the above expressions. We therefore disregard these subdominant contributions in
the full expansion of κ0 where the leading-order contribution scales as ∼n3−α . Finally, combining Eqs. (B31)–(B36), the energy
κ0 (B25) takes the form

κ0 ≈ 4ζ (α − 2) + 2ζ (α) − 31−α (9 2α − 8 3α + 6α )

(α − 3)(α − 2)(α − 1)
n3−α + O(n2−α ), (B37)
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(a) (b) (c)

FIG. 11. (a) Comparison of the exact numeric value (solid curve) of κ0 (B25) with the asymptotic result (B37) (dashed). Inset shows
the absolute percentage deviation, APD = 100 × |(E − A)/E|, of the asymptotic result A from the exact result E as a function of α. We set
n = N1/3 = 32. (b) Scaling of the spectral gap δ (A9) (solid curves) with n, and a comparison to exact numeric results (data points). (c) A
comparison between analytic (A10) (solid curves) and exact numeric results (data points) for E (�kmax). In both (b) and (c) dashed horizontal
lines represent the case of nearest-neighbor hopping (α → ∞).

as reported in Table I. For α < 3, κ0 ∼ n3−α , meanwhile κ0 is well-approximated by the α-dependent constant 4ζ (α − 2) +
2ζ (α) in the regime α > 3. Figure 11(a) provides an indication of how well the asymptotics of Eq. (B37) describe κ0, even for
comparatively small n.

Scaling of δ and E (�kmax). For three spatial dimensions, the (unnormalized) spectral gap is given by

δ = −κ0 +
∑
�j 
=�0

cos(�k1 · �j)/|| �j||α1 = −κ0 +
n/2∑

j1, j2, j3=−n/2+1;
| j1|+| j2|+| j3|
=0

(| j1| + | j2| + | j3|)−α cos (2π j1/n). (B38)

Omitting intermediate steps, we shift the summation indices in Eq. (B38) such that ji ∈ Z > 0 for i = 1, 2, 3, leading to

δ = −κ0 + 12ζ (α − 1) − 6ζ (α) + 8
n/2−1∑

j1, j2, j3=1

cos(2π j1/n)( j1 + j2 + j3)−α

︸ ︷︷ ︸
(∗)

+ O(n2−α ). (B39)

A complete understanding of the scaling requires an asymptotic analysis of the term denoted by (∗). Since the argument of the
cosine is independent of ji=2,3, we can compute

n/2−1∑
j2, j3=1

( j1 + j2 + j3)−α =
n/2∑
j=1

( j − 1)( j + j1)−α +
n/2−2∑

j=1

j(n − 1 − j + j1)−α

= ζ (α − 1, j1 + 2) − ( j1 + 1)ζ (α, j1 + 2) − 2ζ

(
α − 1, j1 + n

2
+ 1

)
+ ζ (α − 1, j1 + n − 1)

+ (2 j1 + n)ζ

(
α, j1 + n

2
+ 1

)
− ( j1 + n − 1)ζ (α, j1 + n − 1). (B40)

Evidently, Eqs. (B39) and (B40) lead to

(∗) = 8
n/2−1∑
j1=1

cos

(
2π j1

n

)[
ζ (α − 1, j1 + 2) − ( j1 + 1)ζ (α, j1 + 2) − 2ζ

(
α − 1, j1 + n

2
+ 1

)
+ ζ (α − 1, j1 + n − 1)

+ (2 j1 + n)ζ

(
α, j1 + n

2
+ 1

)
− ( j1 + n − 1)ζ (α, j1 + n − 1)

]
. (B41)

The scaling analysis is identical for each term of the above expression, therefore we simply state the steps, followed by the
results for the six terms. As in the two-dimensional case, see Appendix B 2, we first approximate the summation by an integral
using the Euler-Maclaurin formula (B13). Disregarding the error terms, we perform a change of variable j1 → ny/2, followed
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by the Hurwitz ζ series expansion (B1). With some algebra, we obtain the six asymptotic results, written to leading-order in n:

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ (α − 1, j1 + 2) ∼ 8ζ (α − 2) − 8ζ (α − 1) + 2α

α − 2

[∫ 1

0
dy cos(πy) y2−α

]
n3−α, (B42a)

− 8
n/2−1∑
j1=1

cos

(
2π j1

n

)
( j1 + 1)ζ (α, j1 + 2) ∼ −4ζ (α − 2) − 4ζ (α − 1) + 8ζ (α) − 2α

α − 1

[∫ 1

0
dy cos(πy) y2−α

]
n3−α,

(B42b)

− 16
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ
(
α − 1, j1 + n

2
+ 1

)
∼ − 2α+1

α − 2

[∫ 1

0
dy cos(πy) (y + 1)2−α

]
n3−α, (B42c)

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ (α − 1, j1 + n − 1) ∼ 2α

α − 2

[∫ 1

0
dy cos(πy) (y + 2)2−α

]
n3−α, (B42d)

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + n)ζ

(
α, j1 + n

2
+ 1

)
∼ 2α+1

α − 1

[∫ 1

0
dy cos(πy) (y + 1)2−α

]
n3−α, (B42e)

− 8
n/2−1∑
j1=1

cos

(
2π j1

n

)
( j1 + n − 1)ζ (α, j1 + n − 1) ∼ − 2α

α − 1

[∫ 1

0
dy cos(πy) (y + 2)2−α

]
n3−α. (B42f)

The integrals (B42), contributing to the α-dependent prefactors of the O(n3−α ) terms, are computed exactly, with

∫ 1

0
dy cos(πy) y2−α = − 1F2

(
3
2 − α

2 ; 1
2 , 5

2 − α
2 ; −π2

4

)
α − 3

, for α < 3, (B43a)

∫ 1

0
dy cos(πy) (y + 1)2−α = −2−1Kα−2(1) + 22−αKα−2(2), (B43b)

∫ 1

0
dy cos(πy) (y + 2)2−α = 22−αKα−2(2) − 2−133−αKα−2(3). (B43c)

Here we use the compact notation Kn(z) ≡ En(iπz) + En(−iπz), with En(±iπz) the exponential integral function [62].
Substituting the asymptotic results (B42), together with the prefactors (B43), into Eq. (B41) leads to

(∗) ≈ 4ζ (α − 2) − 12ζ (α − 1) + 8ζ (α) −
[

2α
1F2

(
3−α

2 ; 1
2 , 5−α

2 ; −π2

4

)
(α − 3)(α − 2)(α − 1)

− 2αKα−2(1) − 4Kα−2(2) − 2α−133−αKα−2(3)

(α − 2)(α − 1)

]
n3−α.

(B44)
Finally, by replacing the term denoted by (∗) in Eq. (B39) by the above expression, we determine the scaling of the spectral gap;
see Eq. (A9). Refer to Fig. 11(b) for a comparison of this asymptotic result (A9) to exact numeric results.

The final quantity to evaluate is E (�kmax). We start from the definition

E (�kmax) = −ε0 +
∑
�j 
=�0

cos(�kmax · �j)/|| �j||α1 = −ε0 +
n/2∑

j1, j2, j3=−n/2+1;
| j1|+| j2|+| j3|
=0

(| j1| + | j2| + | j3|)−α cos (π j1 + π j2 + π j3). (B45)

Noting that cos(π j1 + π j2 + π j3) = (−1) j1+ j2+ j3 for j1 + j2 + j3 ∈ Z, we expand Eq. (B45):

E (�kmax) = −ε0 +
n/2∑

j1, j2, j3=0;
j1+ j2+ j3 
=0

( j1 + j2 + j3)−α (−1) j1+ j2+ j3 +
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α (−1) j1+ j2+ j3

+ 3
n/2∑

j1, j2=0

n/2−1∑
j3=1

( j1 + j2 + j3)−α (−1) j1+ j2− j3 + 3
n/2∑
j1=0

n/2−1∑
j2, j3=1

( j1 + j2 + j3)−α (−1) j1− j2− j3

︸ ︷︷ ︸
A

, (B46)

To analytically extract the scaling, we express the first and second term of Eq. (B46) as a series of summations that contain only
a single summation index. An identical strategy is implemented in the treatment of two-dimensional hypercubic lattices, see
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Appendix B 2. We obtain
n/2∑

j1, j2, j3=0;
j1+ j2+ j3 
=0

( j1 + j2 + j3)−α (−1) j1+ j2+ j3 =
n/2∑
x=1

1

2
(−1)x(x2 + 3x + 2)x−α +

n/2+1∑
x=1

1

2
(−1)3n/2−x+1x(x + 1)

(
3n

2
− x + 1

)−α

+
n/2−1∑

x=1

(−1)n/2+x

[
−x2 + n

2
x + 1

8
(n + 2)(n + 4)

](
n

2
+ x

)−α

, (B47)

and similarly for the second term of Eq. (B46). From the more transparent structure of Eq. (B47), it is possible to derive the
asymptotic results

n/2∑
j1, j2, j3=0;

j1+ j2+ j3 
=0

( j1 + j2 + j3)−α (−1) j1+ j2+ j3 ≈
(

22−α − 1

2

)
ζ (α − 2) +

(
3 21−α − 3

2

)
ζ (α − 1) + (21−α − 1)ζ (α), (B48)

n/2−1∑
j1, j2, j3=1

( j1 + j2 + j3)−α (−1) j1+ j2+ j3 ≈
(

22−α − 1

2

)
ζ (α − 2) −

(
3 21−α − 3

2

)
ζ (α − 1) + (21−α − 1)ζ (α). (B49)

In fact, this asymptotic behavior comes solely from the first term of Eq. (B47), since the other terms tend toward zero for
an increasing number of lattice sites n. See, for example, the calculation of Eq. (B23) for the two-dimensional lattice and the
discussion thereof. Now, we reformulate the final two terms of Eq. (B46), denoted by A, as

A = 3

2

n/2−1∑
x=1

x−α (−1)xx(x + 1) + 3

2

n/2∑
x=1

x−α (−1)xx(x − 1) + C, (B50)

where C → 0 for large n. As a result, A can be approximated by

A ≈ −3 2−α[(2α − 8)ζ (α − 2) + in(a + b)], (B51)

with a = 2ζ (α − 2, n
4 ) − 4ζ (α − 2, n

4 + 1
2 ) + 2ζ (α − 2, n

4 + 1) and b = ζ (α − 1, n
4 ) − ζ (α − 1, n

4 + 1). As argued in Ap-
pendix B 2, for very large n, we have that n/4 ≈ n/4 + 1/2 ≈ n/4 + 1. Asymptotically, the second term of Eq. (B51) then goes
to zero, such that A ≈ (3 23−α − 3)ζ (α − 2). Substituting the asymptotic results (B48), (B49) and A into the expression (B46)
for E (�kmax), we get

E (�kmax) ≈ −ε0 + (25−α − 4)ζ (α − 2) + (22−α − 2)ζ (α). (B52)

In Fig. 11(c) we demonstrate that this asymptotic result (B52) captures the true behavior of the largest eigenenergy well.

4. Four-dimensional hypercube (d = 4)

Constant energy shift. From the definition of κ0 we write

κ0 =
∑
�j 
=�0

1/|| �j||α1 =
n/2∑

j1, j2, j3, j4=−n/2+1;
| j1|+| j2|+| j3|+| j4|
=0

(| j1| + | j2| + | j3| + | j4|)−α

= 16
n/2−1∑

j1, j2, j3, j4=1

( j1 + j2 + j3 + j4)−α + 32
n/2−1∑

j1, j2, j3=1

(
j1 + j2 + j3 + n

2

)−α

+ 32
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α + 48
n/2−1∑
j1, j2=1

(
j1 + j2 + n

2

)−α

+ 24
n/2−1∑
j1, j2=1

( j1 + j2)−α + 24
n/2−1∑
j1, j2=1

( j1 + j2 + n)−α + 8
n/2−1∑
j1=1

(
j1 + 3n

2

)−α

+ 24
n/2−1∑
j1=1

( j1 + n)−α + 24
n/2−1∑
j1=1

(
j1 + n

2

)−α

+ 8
n/2−1∑
j1=1

( j1)−α + O(n−α ), (B53)

where || . . . ||1 denotes the Manhattan norm, n = N1/4 is the number of sites in each dimension and �j ≡ ( j1, j2, j3, j4). The
expansion (B53) can be treated on a term-by-term basis. Hereafter, we assume n � 14 for convenience. This does not impact on
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the validity of the asymptotic result, since we are only interested in the scaling behavior at large n. With this assumption, we
expand the first term of Eq. (B53):

n/2−1∑
j1, j2, j3,

j4=1

16

( j1 + j2 + j3 + j4)α
for n�14= 16

[
n/2+2∑

j=1

( j − 3)( j − 2)( j − 1)

6 jα︸ ︷︷ ︸
(a)

+
n/2−1∑

j=1

j( j + 1)( j + 2)

6(− j + 2n − 3)α︸ ︷︷ ︸
(b)

+ 1

2

n/2−2∑
j=1

(− j3 + j2
(

n
2 − 4

) + j
(

n2

4 − 3
) + n

24

(
n2 − 4

))(
j + n

2 + 2
)α

︸ ︷︷ ︸
(c)

+ 1

2

n/2−3∑
j=1

(− j3 + j2
(

n
2 − 4

) + j
(

n2

4 − 3
) + n

24 (n2 − 4)
)(− j + 3n

2 − 2
)α

︸ ︷︷ ︸
(d )

]
. (B54)

After some manipulation, terms (a)–(d ) can be rewritten exactly in terms of the differences of infinite sums. These infinite sums
have the structure of either the Hurwitz ζ function ζ (η, x) or the Riemann ζ function ζ (η), offering further simplification. The
asymptotic behavior is then extracted by applying the series expansion of Eq. (B1). After some algebra, term (a) of Eq. (B54)
exhibits the following asymptotic behavior:

(a) =
[
ζ

(
α − 2,

n

2
+ 3

)
− 1

6
ζ

(
α − 3,

n

2
+ 3

)
− 11

6
ζ

(
α − 1,

n

2
+ 3

)
+ ζ

(
α,

n

2
+ 3

)
+ 1

6
ζ (α − 3) − ζ (α − 2)

+ 11

6
ζ (α − 1) − ζ (α)

]

≈ ζ (α − 3)

6
− ζ (α − 2) + 11ζ (α − 1)

6
− ζ (α) + 2α−3(23 − 11α)

3(α − 1)
n1−α + 2α−3(3α − 17)

3(α − 2)
n2−α

− 2α−5(α − 15)

3(α − 3)
n3−α − 2α−5

3(α − 4)
n4−α + O(n−α ). (B55)

Similarly, we determine the asymptotics of the remaining three terms as

(b) =
2n−4∑

j=3n/2−2

(− j + 2n − 3)(− j + 2n − 2)(− j + 2n − 1)

6
j−α

= 1

6

[
− ζ

(
α − 3,

3n

2
− 2

)
+ ζ (α − 3, 2n − 3) + 6(n − 1)

[
ζ

(
α − 2,

3n

2
− 2

)
− ζ (α − 2, 2n − 3)

]

− (12(n − 2)n + 11)

[
ζ

(
α − 1,

3n

2
− 2

)
− ζ (α − 1, 2n − 3)

]

+ 2(n − 1)(2n − 3)(2n − 1)

[
ζ

(
α,

3n

2
− 2

)
− ζ (α, 2n − 3)

]]

≈ 2−α−33−α−1[4α (11α − 47) + 16 3α+1]

α − 1
n1−α + 2−α−33−α−1[176 3α − 3 4α ({α − 14}α + 57)]

(α − 2)(α − 1)
n2−α

+ [4α (α{(α − 42)α + 407} − 1518) + 512 3α+1]

2α+53α+1(α − 3)(α − 2)(α − 1)
n3−α + [4α (α{(α − 18)α + 143} − 510) + 512 3α]

2α+53α (α − 4)(α − 3)(α − 2)(α − 1)
n4−α + O(n−α ),

(B56)

(c) =
n∑

j=n/2+3

1

2
j−α

[(
n2

4
− 3

)(
j − n

2
− 2

)
−

(
j − n

2
− 2

)3

+
(

n

2
− 4

)(
j − n

2
− 2

)2

+ n

24
(n2 − 4)

]

= 1

2

[
ζ (α − 3, n + 1) − ζ

(
α − 3,

n

2
+ 3

)]
+ (n + 1)

[
ζ

(
α − 2,

n

2
+ 3

)
− ζ (α − 2, n + 1)

]

− 1

2
(n(n + 4) − 1)

[
ζ

(
α − 1,

n

2
+ 3

)
− ζ (α − 1, n + 1)

]
+ 1

12
(n(n + 2)(n + 4) − 12)

[
ζ

(
α,

n

2
+ 3

)
− ζ (α, n + 1)

]

≈ [(11 2α − 14)α − 23 2α + 38]

24(α − 1)
n1−α + [2α (α((α − 18)α + 47) + 18) − 4(α − 5)((α − 13)α + 6)]

96(α − 3)(α − 2)(α − 1)
n3−α

043020-19



EMMA C. KING et al. PHYSICAL REVIEW RESEARCH 7, 043020 (2025)

+
[
6α2 − 46α − 2α (α − 5)(3α − 5) + 56

]
24(α − 2)(α − 1)

n2−α + [−8(α − 7)(α − 2)α + 2α (α − 5)((α − 1)α + 6) + 96]

96(α − 4)(α − 3)(α − 2)(α − 1)
n4−α

+ O(n−α ), (B57)

(d ) =
3n/2−3∑
j=n+1

1

2
j−α

[(
n2

4
− 3

)(
− j + 3n

2
− 2

)
−

(
− j + 3n

2
− 2

)3

+
(

n

2
− 4

)(
− j + 3n

2
− 2

)2

+ n

24
(n2 − 4)

]

= 1

2

[
ζ (α − 3, n + 1) − ζ

(
α − 3,

3n

2
− 2

)]
− (2n − 1)

[
ζ (α − 2, n + 1) − ζ

(
α − 2,

3n

2
− 2

)]

+ (n − 1)(5n + 1)

2

[
ζ (α−1, n + 1)−ζ

(
α−1,

3n

2
−2

)]
− (n(n(11n − 6) − 20) + 12)

12

[
ζ (α, n + 1) − ζ

(
α,

3n

2
− 2

)]

≈ 3−α−1[2 3α (7α − 19) + 2α (47 − 11α)]

8(α − 1)
n1−α + 3−α−1[3 2α (α − 11)(α − 3) − 2 3α (α − 5)(3α − 8)]

8(α − 2)(α − 1)
n2−α

+ 3−α−1[4 3α (α − 5)((α − 13)α + 6) + 2α (222 − α((α − 42)α + 407))]

32(α − 3)(α − 2)(α − 1)
n3−α

+ 3−α−1[8 3α ((α − 7)(α − 2)α + 60) − 3 2α (α((α − 18)α + 143) + 138)]

32(α − 4)(α − 3)(α − 2)(α − 1)
n4−α + O(n−α ). (B58)

Combining the results of Eqs. (B55)–(B58) up to O(n3−α ), which is the first sub-leading-order contribution to κ0 when d = 4,
we find

16
n/2−1∑

j1, j2, j3, j4=1

( j1 + j2 + j3 + j4)−α ≈ 8ζ (α − 3) + 88ζ (α − 1)

3
− 16(ζ (α − 2) + ζ (α))

− (3α (−3 2α+3 + 4α − 64) + 81 4α )

2α−23α (α − 4)(α − 3)(α − 2)(α − 1)
n4−α. (B59)

Moreover, it can be checked that the second term appearing in Eq. (B53) is O(n3−α ) and has no constants, i.e., no n-independent
terms. Therefore, its contribution can immediately be neglected in our asymptotic analysis. For the third term, see Eq. (B53), we
already derived the asymptotic expression in Appendix B 3. We therefore multiply Eq. (B31) by 4 to obtain

32
n/2−1∑

j1, j2, j3=1

( j1 + j2 + j3)−α ≈ 16ζ (α − 2) − 48ζ (α − 1) + 32ζ (α) − 22 31−α (9 2α − 8 3α + 6α )

(α − 3)(α − 2)(α − 1)
n3−α + O(n2−α ). (B60)

Likewise, the large-n asymptotic behavior of the fourth and fifth terms of Eq. (B53) is determined by Eqs. (B32) and (B33), up
to a constant prefactor. We simply state the results below, refering the reader back to Eqs. (B32) and (B33) for further details:

48
n/2−1∑
j1, j2=1

(
j1 + j2 + n

2

)−α

≈ −2α+331−α (3α − 3)

α − 1
n1−α + 22 31−α (9 2α − 8 3α + 6α )

(α − 2)(α − 1)
n2−α + O(n−α ), (B61)

24
n/2−1∑
j1, j2=1

( j1 + j2)−α ≈ 24ζ (α − 1) − 24ζ (α) + 24

α − 1
n1−α + 12(2α − 2)

(α − 2)(α − 1)
n2−α + O(n−α ). (B62)

In Eq. (B53) the sixth term can be treated similarly, such that

24
n/2−1∑
j1, j2=1

( j1 + j2 + n)−α = 24
n/2∑
j=1

( j − 1)( j + n)−α + 24
n/2−2∑

j=1

j(2n − j − 1)−α

= 24

[
3n ζ

(
α,

3n

2
+ 1

)
− 2ζ

(
α − 1,

3n

2
+ 1

)
+ ζ (α − 1, n) + ζ (α − 1, 2n − 1) − (n + 1) ζ (α, n)

+ (1 − 2n) ζ (α, 2n − 1) + n−α

]

≈ −3 23−α (2α − 2)

α − 1
n1−α + 22−α31−α[2 3α (2α + 4) − 9 4α]

(α − 2)(α − 1)
n2−α + O(n−α ). (B63)
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(a) (b) (c)

FIG. 12. (a) Comparison of the exact numeric value (solid curve) of κ0 (B53) with the asymptotic result (B65) (dashed). Inset shows
the absolute percentage deviation, APD = 100 × |(E − A)/E|, of the asymptotic result A from the exact result E as a function of α. We set
n = N1/4 = 20. (b) Scaling of the spectral gap δ (A12) (solid curves) with n, and a comparison to exact numeric results (data points). (c) A
comparison between analytic (A13) (solid curves) and exact numeric results (data points) for E (�kmax). In both (b) and (c) dashed horizontal
lines represent the case of nearest-neighbor hopping (α → ∞).

Note that the leading-order term of Eq. (B63) is sub-leading-order in the context of the full energy κ0, thus making a negligible
contribution to κ0 in the large-n limit. Finally, we combine the last four terms of κ0 (B53), for which the scaling follows directly
from the steps provided in Eqs. (B34)–(B36) of Appendix B 3, leading to

Last 4 terms: 8
n/2−1∑
j1=1

(
j1 + 3n

2

)−α

+ 24
n/2−1∑
j1=1

( j1 + n)−α + 24
n/2−1∑
j1=1

(
j1 + n

2

)−α

+ 8
n/2−1∑
j1=1

( j1)−α

= 8

[
H (α)

n/2−1 − 2ζ

(
α,

3n

2

)
+ 3ζ

(
α,

n

2
+ 1

)
− ζ (α, 2n) −

(
2α

3α
+ 3

)
n−α

]

≈ 8

[
ζ (α) + (−2 3α − 3 4α + 12α )

6α (α − 1)
n1−α

]
+ O(n−α ), (B64)

where only the α-dependent constant, 8ζ (α), will enter in the final asymptotic expansion of κ0. Using Eqs. (B59), (B60), (B62),
and (B64), we obtain, for large n,

κ0 ≈ 8

3
ζ (α − 3) + 16

3
ζ (α − 1) − 4(−26−α + 2α + 2α34−α − 24)

(α − 4)(α − 3)(α − 2)(α − 1)
n4−α + O(n3−α ). (B65)

As observed in Appendixes B 1–B 3, α = d separates two asymptotic regimes, each with distinct behavior. In the α < 4 regime,
κ0 ∼ n4−α . However, when α > 4, κ0 is approximated by an α-dependent constant 8

3ζ (α − 3) + 16
3 ζ (α − 1), which naturally

becomes more accurate with increasing n due to the suppression of sub-leading-order terms scaling as ∼nx−α , x < 4. For an
illustration of the accuracy of the asymptotic result (B65), refer to Fig. 12(a).

Scaling of δ and E (�kmax). The (unnormalized) spectral gap is expressed as

δ = −κ0 +
∑
�j 
=�0

cos(�k1 · �j)/|| �j||α1 = −κ0 +
n/2∑

j1, j2, j3, j4=−n/2+1;
| j1|+| j2|+| j3|+| j4|
=0

(| j1| + | j2| + | j3| + | j4|)−α cos (2π j1/n). (B66)

Following the same approach as in Appendixes B 2 and B 3, we recast the gap (B66) in a form that only accounts for constants
and leading-order contributions in n:

δ = −κ0 + 16ζ (α − 2) − 24ζ (α − 1) + 16ζ (α) + 16
n/2−1∑

j1, j2, j3, j4=1

cos(2π j1/n)( j1 + j2 + j3 + j4)−α

︸ ︷︷ ︸
(∗)

+O(n3−α ). (B67)

The quadruple summation, denoted by (∗) (B67), is simplified by evaluating the summations with indices ji=2,3,4, whereby

8
n/2−1∑

j2, j3, j4=1

( j1 + j2 + j3 + j4)−α = 4
n/2+1∑

j=1

( j − 2)( j − 1)( j + j1)−α +
3n/4∑

j=n/2+2

(−8 j2 + 12 jn − 3n(n + 2) + 8)( j + j1)−α

+
3n/4−3∑
j=n/2

[6n(2 j + 3) − 8( j + 1)( j + 3) − 3n2](− j + j1 + 3n
2 − 2

)α + 4
n/2−1∑

j=1

j( j + 1)(− j + j1 + 3n
2 − 2

)α . (B68)
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Exploiting this representation (B68) in terms of single-index summations, we express each summation as the difference of
infinite sums. After some manipulation and shifting of indices, the infinite summations evaluate to Hurwitz ζ functions ζ (η, x)
and Eq. (B68) reduces to

8
n/2−1∑

j2, j3, j4=1

( j1 + j2 + j3 + j4)−α = 4ζ (α − 2, j1 + 1) − 4(2 j1 + 3)ζ (α − 1, j1 + 1) + 4( j1 + 1)( j1 + 2)ζ (α, j1 + 1)

− 12ζ

(
α − 2, j1 + n

2
+ 2

)
− 4ζ

(
α − 2, j1 + 3n

2
− 2

)
+ 12ζ (α − 2, j1 + n − 1)

+ 12(2 j1 + n + 1)ζ

(
α − 1, j1 + n

2
+ 2

)
+ 4(2 j1 + 3n − 3)ζ

(
α − 1, j1 + 3n

2
− 2

)

− 12(2 j1 + 2n − 1)ζ (α − 1, j1 + n − 1) − 3(2 j1 + n)(2 j1 + n + 2)ζ
(
α, j1 + n

2
+ 2

)
+ (2 j1 + 3n − 2)(−2 j1 − 3n + 4)ζ

(
α, j1 + 3n

2
− 2

)
+ 12( j1 + n − 1)( j1 + n)ζ (α, j1 + n − 1). (B69)

Inserting this result into Eq. (B67), we now extract the asymptotic behavior of the term labeled by (∗). This involves computing
the twelve terms independently, and later combining the results. For transparency, we state the leading-order behavior with n
for each term below. The approach is identical to that implemented in the preceding sections: Approximate the summations by
integrals and perform a change of variable, followed by a large-n expansion of the Hurwitz ζ function (B1). Refer to Eqs. (B70a)–
(B70l) for the final results:

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ (α − 2, j1 + 1) ≈ 8ζ (α − 3) − 8ζ (α − 2) + 2α−1

(α − 3)

[∫ 1

0
dy cos(πy) y3−α

]
n4−α, (B70a)

−8
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + 3)ζ (α − 1, j1 + 1) ≈ 8(3ζ (α − 1) − ζ (α − 3) − 2ζ (α − 2))

− 2α

α − 2

[∫ 1

0
dy cos(πy) y3−α

]
n4−α, (B70b)

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
( j1 + 1)( j1 + 2)

[ζ (α, j1 + 1)]−1
≈ 8

(
ζ (α − 3)

3
+ ζ (α − 2) + 2ζ (α − 1)

3
− 2ζ (α)

)

+ 2α−1

α − 1

[∫ 1

0
dy cos(πy) y3−α

]
n4−α, (B70c)

− 24
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ
(
α − 2, j1 + n

2
+ 2

)
≈ −3 2α−1

α − 3

[∫ 1

0
dy cos(πy) (y + 1)3−α

]
n4−α, (B70d)

− 8
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ

(
α − 2, j1 + 3n

2
− 2

)
≈ − 2α−1

α − 3

[∫ 1

0
dy cos(πy) (y + 3)3−α

]
n4−α, (B70e)

24
n/2−1∑
j1=1

cos

(
2π j1

n

)
ζ (α − 2, j1 + n − 1) ≈ 3 2α−1

α − 3

[∫ 1

0
dy cos(πy) (y + 2)3−α

]
n4−α, (B70f)

24
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + n + 1)ζ

(
α − 1, j1 + n

2
+ 2

)
≈ 3 2α

α − 2

[∫ 1

0
dy cos(πy) (y + 1)3−α

]
n4−α, (B70g)

8
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + 3n − 3)ζ

(
α − 1, j1 + 3n

2
− 2

)
≈ 2α

α − 2

[∫ 1

0
dy cos(πy) (y + 3)3−α

]
n4−α, (B70h)

− 24
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + 2n − 1)ζ (α − 1, j1 + n − 1) ≈ − 3 2α

α − 2

[∫ 1

0
dy cos(πy) (y + 2)3−α

]
n4−α, (B70i)
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− 6
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + n)(2 j1 + n + 2)ζ

(
α, j1 + n

2
+ 2

)
≈ −3 2α−1

α − 1

[∫ 1

0
dy cos(πy) (y + 1)3−α

]
n4−α, (B70j)

2
n/2−1∑
j1=1

cos

(
2π j1

n

)
(2 j1 + 3n − 2)(−2 j1 − 3n + 4)ζ

(
α, j1 + 3n

2
− 2

)
≈ − 2α−1

α − 1

[∫ 1

0
dy cos(πy) (y + 3)3−α

]
n4−α,

(B70k)

24
n/2−1∑
j1=1

cos

(
2π j1

n

)
( j1 + n − 1)( j1 + n)ζ (α, j1 + n − 1) ≈ 3 2α−1

α − 1

[∫ 1

0
dy cos(πy) (y + 2)3−α

]
n4−α. (B70l)

In the asymptotic results, see Eqs. (B70a)–(B70l), there are several integrals, all contributing to the α-dependent prefactors
of the terms scaling as ∼n4−α . These have analytic solutions, and are given by

∫ 1

0
dy cos(πy) y3−α = − 1F2

(
2 − α

2 ; 1
2 , 3 − α

2 ; −π2

4

)
α − 4

, for α < 4, (B71a)

∫ 1

0
dy cos(πy) (y + 1)3−α = −1

2
Kα−3(1) + 23−αKα−3(2), (B71b)

∫ 1

0
dy cos(πy) (y + 2)3−α = 23−αKα−3(2) − 34−α

2
Kα−3(3), (B71c)

∫ 1

0
dy cos(πy) (y + 3)3−α = 27−2αKα−3(4) − 1

2
34−αKα−3(3), (B71d)

with 1F2 the generalized hypergeometric function and Kn(z) ≡ En(iπz) + En(−iπz), with En(±iπz) denoting the exponential
integral function, introduced to compactify notation. Combining Eqs. (B70a)–(B70l) with the explicit solutions (B71) of the
integrals, we obtain a simplified expression for the (∗) term (B67), leading to the spectral gap scaling

δ ≈ −κ0 + 8ζ (α − 3)

3
+ 16ζ (α − 1)

3
+ 2α

[
3 2−1Kα−3(1) − 34−αKα−3(3) − 27−2αKα−3(4)

(α − 3)(α − 2)(α − 1)

− 1F2
(
2 − α

2 ; 1
2 , 3 − α

2 ; −π2

4

)
(α − 4)(α − 3)(α − 2)(α − 1)

]
n4−α. (B72)

Result (B72) accurately approximates the unscaled spetcral gap δ when the number of lattice sites n along each spatial dimension
is sufficiently large, see Fig. 12(b).

To normalize the spectral gap, we need to analyze the scaling of E (�kmax). Starting from the definition

E (�kmax) = −ε0 +
∑
�j 
=�0

cos(�kmax · �j)/|| �j||α1 = −ε0 +
n/2∑

j1, j2, j3, j4=−n/2+1;
| j1|+| j2|+| j3|+| j4|
=0

(| j1| + | j2| + | j3| + | j4|)−α cos (π j1 + π j2 + π j3 + π j4), (B73)

the cosine may be replaced by (−1)�, where � = j1 + j2 + j3 + j4 for compactness, since � ∈ Z. Then, upon expanding the
quadruple summation and shifting the summation indices, we have

E (�kmax) = −ε0 +
n/2∑

j1, j2, j3, j4=0;
� 
=0

�−α (−1)�

︸ ︷︷ ︸
(1)

+ 4
n/2−1∑
j1=1

n/2∑
j2, j3,
j4=0

�−α (−1)�

︸ ︷︷ ︸
(2)

+ 6
n/2−1∑
j1, j2=1

n/2∑
j3, j4=0

�−α (−1)�

︸ ︷︷ ︸
(3)

+ 4
n/2−1∑
j1, j2,
j3=1

n/2∑
j4=0

�−α (−1)�

︸ ︷︷ ︸
(4)

+
n/2−1∑
j1, j2,

j3, j4=1

�−α (−1)�

︸ ︷︷ ︸
(5)

.

(B74)
The asymptotic scaling of the five terms, labeled (1)–(5), can now be extracted by writing the quadruple summations as a series
of single summations. In fact, in each expansion, only one term is nonnegligible in the large-n limit. Collectively representing
terms with a negligible contribution by Ci, with i = 1, 2, 3, 4, 5 corresponding to term (i) in Eq. (B74), we write the single
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summations that contribute significantly to E (�kmax) as

(1) = 1

6

n/2∑
x=1

(−1)x(x3 + 6x2 + 11x + 6)x−α + C1

≈ (23−α − 2−1)

3
ζ (α − 3) + (23−α − 1)ζ (α − 2) + 11(21−α − 2−1)

3
ζ (α − 1) + (

21−α − 1
)
ζ (α),

(2) = 2

3

n/2−1∑
x=1

(−1)x(x + 1)(x + 2)x1−α + C2 ≈ 1

3
(25−α − 2)ζ (α − 3) + (24−α − 2)ζ (α − 2) + 1

3
(24−α − 22)ζ (α − 1),

(3) =
n/2∑
x=1

(−1)x(x − 1)(x + 1)x1−α + C3 ≈ (24−α − 1)ζ (α − 3) − (22−α − 1)ζ (α − 1),

(4) = 2

3

n/2+1∑
x=1

(−1)x(x − 1)(x − 2)x1−α + C4 ≈ 1

3
(25−α − 2)ζ (α − 3) − (24−α − 2)ζ (α − 2) + 1

3
(24−α − 22)ζ (α − 1),

(5) = 1

6

n/2+2∑
x=1

(−1)x(x − 3)(x − 2)(x − 1)x−α + C5

≈ 1

3
(23−α − 2−1)ζ (α − 3) − (23−α − 1)ζ (α − 2) + 11

3
(21−α − 2−1)ζ (α − 1) − (21−α − 1)ζ (α). (B75)

Substituting the asymptotic results (B75) into expression (B74), we observe that, to leading-order in n, E (�kmax) scales as

E (�kmax) ≈ −ε0 + 1
3 (27−α − 23)ζ (α − 3) + 1

3 (26−α − 24)ζ (α − 1). (B76)

Figure 12(c) shows that this asymptotic result (B76) provides a reliable description of the behavior of the Laplacian’s largest
eigenvalue, E (�kmax).

APPENDIX C: MAGNITUDE OF THE SEARCH FIDELITY

Here we further discuss the asymptotic behavior of the order parameter χα in the thermodynamic limit N → ∞, which in
turn determines the magnitude of the search fidelity, F (T ) = |χα|2. By definition, we have

χα = S(α)
1

/√
S(α)

2 , with S(α)
� = 1

N

∑
�k 
=�0

[Eα (�k)]−�, (C1)

where Eα (�k) are the eigenvalues of the Laplacian Lα . Noting that the hypercubic lattices are regular graphs with vertices of the
same degree, we can set the energy shift ε0 = 0 without loss of generality; see main text Eq. (2). With this, the energies take the
form Eα (�k) = ∑

�j 
=�0 cos(�k · �j)/| �j|α , where | �j| denotes the Euclidean norm. To proceed, we consider χα (C1) for two regimes of
the long-range tunneling exponent: (i) 0 � α < d , see Appendix C 1, and (ii) d < α < 3d/2, see Appendix C 2.

1. Regime (i): 0 � α < d

For strongly long-range tunneling, with exponent α ∈ [0, d ), the dominant contribution to the summation S(α)
� (C1) comes

from the eigenvalues Eα (�k) at low momentum values. Since �k = �0 is explicitly excluded, the main contribution will come from
the second smallest eigenvalue, i.e., the spectral gap δα . The remaining eigenvalues scale with the lattice size N , hence the
corresponding terms of S(α)

� , scaling as 1/Eα (�k), tend to zero in the limit N → ∞ for � > 0. Consequently, we may write
S(α)

� ≈ 1
2π

∫
BZ d�k δ−�

α + c�, where the term c�, containing contributions from the larger Laplacian eigenvalues, tends to zero for
N → ∞. It follows directly that χα ≈ δ−1

α /
√

δ−2
α = 1.

2. Regime (ii): d < α < 3d/2

The behavior of χα (C1) strongly depends on the momentum-dependence of the Laplacian eigenvalues Eα (�k) around
�k = �0, which we extract by approximating the summations by integrals,

∑
�j → ∫

d �j, with the integration extending over the

entire space, excluding the origin �j = �0. Considering each lattice dimension d � 4 independently, we perform an appropriate
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coorindate transformation and derive the following leading-order results:

Eα (�k) ∝
{

|�k|α−d , α ∈ (d, d + 2),

|�k|2, α > d + 2.
(C2)

Detailed calculations are provided in the itemized list below.
(i) In one dimension Eα (k) ≈ ∫ ∞

1 d j j−α cos k j. For α > 0 and k ∈ R the integral evaluates to

∫ ∞

1
d j j−α cos k j = 1F2

(
1
2 − α

2 ; 1
2 , 3

2 − α
2 ; − k2

4

)
α − 1

+ sin

(
πα

2

)
�(1 − α)|k|α−1, (C3)

with pFq(a; b; z) the generalized hypergeometric function and � the � function. Expanding in powers of the momentum k, we
find the leading-order behavior of the dispersion relation

Eα (k) ∝
{

sin
(

πα
2

)
�(1 − α)|k|α−1, α ∈ (1, 3),

− 1
2(α−3) k

2, α > 3.
(C4)

(ii) For two spatial dimensions, the eigenenergies can be approximated as Eα (�k) ≈ ∫ ∞
0 d j1

∫ ∞
0 d j2 ( j2

1 + j2
2 )−α/2 cos( j1k1 +

j2k2), where we require | �j| 
= 0. The latter requirement is included explicitly later. Converting to polar coordinates, the

area element transforms as d j1d j2 = rdrdθ with r = |�j| =
√

j2
1 + j2

2 and θ = arctan( j2/ j1), and we find the integral∫ ∞
1 dr r1−α

∫ π

0 dθ cos(rk cos(θ − θk )) where k ≡ |�k| and θk = arctan(k2/k1) is the angle providing the direction of the mo-

mentum vector �k. To evaluate the angular part of the integral, we perform the change of variable θ → θ ′ + θk , yielding the
simplified form

∫ ∞
1 dr r1−α

∫ π

0 dθ ′ cos(rk cos(θ ′)). The cosine term cos(rk cos(θ ′)) can be rewritten using the Jacobi–Anger
expansion. In its most generic form, eiz cos(θ ) ≡ ∑+∞

n=−∞ inJn(z)einθ with Jn(z) the n-th Bessel function of the first kind, giving a
convenient expansion of exponentials of trigonometric functions in the basis of their harmonics. We use the real-valued variation
cos(z cos(θ )) ≡ J0(z) + 2

∑∞
n=1(−1)nJ2n(z) cos(2nθ ). The angular integral is now easily evaluated, leaving only the integral

over the radial part:

π

∫ ∞

1
dr r1−αJ0(rk) = π

(
1F2

(
1 − α

2 ; 1, 2 − α
2 ; − k2

4

)
α − 2

− 2−αα �
(− α

2

)|k|α−2

�
(

α
2

)
)

(C5)

for k > 0, k ∈ R and α > 1/2. Performing a series expansion around k = 0, we obtain, to leading order in k,

Eα (�k) ∝
{

− 2−α−1πα�(−α/2)
�(α/2) |k|α−2, α ∈ (2, 4),

− π
8(α−4) k

2, α > 4.
(C6)

(iii) For d = 3 a similar procedure may be followed. After approximating the summation over �j by an integral, we
convert to spherical coordinates, with the volume element expressed as d �j = r2 sin θ dr dθ dφ, r = |�j|, such that Eα (�k) ≈∫ ∞

1 dr r2−α
∫ π

0 dθ cos(kr cos θ ) sin θ
∫ 2π

0 dφ. Due to the system being isotropic, we assumed �k is aligned along the z-axis,
allowing for simplification of the angular integrals. The azimuthal integral evaluates to 2π , while the angular integral is∫ π

0 dθ cos(kr cos θ ) sin θ = sin(kr)/kr. Substituting this result, we compute the radial component as∫ ∞

1
dr

sin(kr)

kr
r2−α = 1F2

(
3
2 − α

2 ; 3
2 , 5

2 − α
2 ; − k2

4

)
α − 3

+ sin

(
πα

2

)
�(2 − α)|k|α−3 (C7)

for k ∈ R and α > 1. A series expansion then yields the leading-order behavior of the Laplacian eigenenergies:

Eα (�k) ∝
{

2π sin
(

πα
2

)
�(2 − α)|k|α−3, α ∈ (3, 5),

− π
3(α−5) k

2, α > 5.
(C8)

(iv) In four spatial dimensions, we approximate the eigenenergy summation by an integral and then transform
to hyperspherical coorindates, with the volume element d �j = r3 sin2 θ dr dθ dφ1 dφ2. After simplification we obtain
Eα (�k) ≈ 4π

∫ ∞
1 dr r3−α

∫ π

0 dθ cos(kr cos θ ) sin2 θ . The remaining angular integral can be evaluated explicitly, giving∫ π

0 dθ cos(kr cos θ ) sin2 θ = πJ1(kr)/(kr) with Jn(z) the Bessel function of the first kind. Inserting this result into the radial
integral leads to

4π2
∫ ∞

1
dr

J1(kr)

kr
r3−α = π2�

(
2 − α

2

)(
24−α|k|α−4

�
(

α
2

) − 1F̃2

(
2 − α

2
; 2, 3 − α

2
; −k2

4

))
(C9)
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for k > 0, k ∈ R and α > 1.5, and where 1F̃2 is the regularized generalized hypergeometric function and � is the � function, as
before. The leading-order behavior of the eigenvalues is then extracted as

Eα (�k) ∝
⎧⎨
⎩

π224−α�(2− α
2 )

�( α
2 ) |k|α−4, α ∈ (4, 6),

− π2

4(α−6) k
2, α > 6.

(C10)

Combining the results for all spatial dimensions d ∈ [1, 4], we obtain Eq. (C2).
The next step involves computing S(a)

� . Since we are working in the thermodynamic limit, we approximate the discrete
momentum space by a continuum:

S(α)
� ≈ 1

2π

∫
BZ

d�k |�k|−(α−d )�, α ∈ (d, d + 2). (C11)

The prefactors coming from the eigenenergy approximation, Eqs. (C4), (C6), (C8) and (C10) and summarized in Eq. (C2), do
not contribute to the ratio of interest χα = S(α)

1 /
√

S(α)
2 and are therefore neglected. Notice now that the integrand (C11) depends

solely on the magnitude of the momentum vector �k, allowing for the transformation to spherical coorindates in d dimensions,
|�k| = r and d�k = �d rd−1dr, with �d the surface area of the unit sphere in d dimensions. Collecting the global prefactors and
denoting it by cd , we evaluate the integral:

S(α)
� ≈ cd

d + �(d − α)
. (C12)

The convergence criterion is Re[d + �(d − α)] > 0. For the cases we consider, the largest value of � is � = 2. This implies

that the integral S(α)
2 diverges for α > 3d/2. The value of χα = S(α)

1 /

√
S(α)

2 in the regime α > 3d/2 is therefore determined by

the rate of divergence of
√

S(α)
2 compared to S(α)

1 . More precisely, we find that χα → 0. Instead, in the regime α ∈ (d, 3d/2),
Eq. (C12) leads to

χα = S(α)
1√
S(α)

2

≈ √
cd

√
3 − 2α/d

2 − α/d
, (C13)

exhibiting the behavior of Fig. 3(d) of the main text, where χα acts as an order parameter and decreases monotonically to zero
for d < α < 3d/2. The coefficient cd can be determined numerically.
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