
Mirzac et al. 2025 | https://doi.org/10.34133/research.0863 1

RESEARCH ARTICLE

Cortical Single-Cell Primers of Abnormal Brain 
Activity in Parkinson’s Disease
Daniela  Mirzac1,2,3, Martin B.  Glaser4, Svenja L.  Kreis3, Florian  Ringel4, 
Manuel  Bange5, Damian M.  Herz5, Stanislav  A.  Groppa2, Lilia  Rotaru6, 
Viviane  Almeida1, Jenny  Blech1, Mohammadsaleh  Oshaghi7,  
Sebastian  Kunz8, Matthias  Klein8, Jonas  Paulsen7, Heiko J.  Luhmann3, 
Tobias  Bopp8, Philip L.  de Jager9, Sergiu  Groppa1†,  
and Gabriel  Gonzalez-Escamilla1*†

1Department of Neurology, Saarland University, Homburg, Germany. 2Department of Neurology nr. 2, 

Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova. 3Institute 

of Physiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany. 
4Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, 

Germany. 5Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, 

Mainz, Germany. 6Neurology and Neurosurgery Institute “Diomid Gherman”, Chisinau, Republic of Moldova. 
7Department of Biosciences, Faculty of Mathematics and Natural Sciences and Centre for Bioinformatics, 

Department of Informatics, University of Oslo, 0316 Oslo, Norway. 8Institute of Immunology, Research 

Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, 

Germany. 9Center for Translational & Computational Neuroimmunology, Department of Neurology and 

the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving 

Medical Center, New York, NY, USA.

*Address correspondence to: Gabriel.Gonzalez@uks.eu

†These authors contributed equally to this work.

Abnormal brain oscillatory activity is a well-established hallmark of bradykinesia and motor impairment 
in Parkinson’s disease (PD), yet its molecular underpinnings remain unclear. To address this gap, we 
analyzed over 100,000 single-cell RNA transcriptomes from fresh dorsolateral prefrontal cortex tissue 
of individuals with PD and non-PD controls, undergoing deep brain stimulation—2 cohorts, which open 
up an unprecedent window to the characterization of human cortical brain tissue, aiming to uncover 
the molecular mechanisms of abnormal brain oscillatory activity in PD. Fresh brain tissue samples offer 
a unique opportunity to precisely elucidate the molecular underpinnings of known, clinically relevant 
electrophysiological hallmarks of neurodegeneration, which can be used to inform targeted therapeutic 
strategies. We depicted in microglia and astrocytes enrichment of mitochondrial electron transport and 
oxidative phosphorylation pathways, which were directly linked to the increase of pathological brain 
activity and the decrease of prokinetic brain activity. Additionally, the abnormal phase–amplitude coupling 
of beta–gamma brain activity was related to the dysfunction of oligodendrocyte precursor cells and 
inflammasome activation mediated by lymphocyte-driven adaptive immunity. We identified a distinct set of 
dysregulated genes from the mitogen-activated protein kinase phosphorylation pathways, mitochondrial 
electron transport at the intersection of neuroinflammation and neurodegeneration, suggesting pivotal 
roles in PD pathology. This unique dataset provides unprecedented insights into the immune and metabolic 
dysregulation underlying PD, offering a mechanistic framework for understanding invasive transcriptomic 
biomarkers related to prokinetic and pathologic brain activity in PD.

Introduction

   Parkinson’s disease (PD) is the second most common neurode-
generative disorder, characterized by dopaminergic neuron loss 
along with the formation of intraneuronal α-synuclein inclusions 

called Lewy bodies [  1 ]. In PD, neuronal cell loss leads to altered 
neurotransmitter signaling and dysfunction of excitation–
inhibition balance, thus triggering abnormal patterns of action 
potentials, synaptic dysregulation, and pathologic oscillatory activ-
ity in widespread brain circuits [  2 ]. The motor symptoms of PD 
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are linked to abnormal synchronization of the basal ganglia-
thalamo-cortical circuits, which converge on the primary motor 
(M1) and the premotor cortex (PMC) [  3 ]. Pathophysiological 
oscillatory activity, particularly increased beta and reduced gamma 
activity [  4 –  6 ], is regarded as an electrophysiological hallmark of 
bradykinesia and rigidity in PD [  7 ,  8 ]. Increased cortical beta activ-
ity further reflects impaired cognitive top-down control, such as 
in motor inhibition [  9 ], while reduced gamma frequency oscilla-
tions in the prefrontal cortex and PMC associate with exacerbated 
movement symptoms in PD [  10 ]. Growing body of evidence indi-
cates that the coupling between the phases and amplitudes (PAC) 
of this pathological oscillatory activity may serve as possible 
mechanism of disrupted brain network dynamics in PD [  11 ]. 
Particularly, increased beta–gamma PAC in regions involved 
in motor control, including the sensory motor cortices, has been 
consistently reported to be associated with the severity of the motor 
symptoms [  12 ,  13 ]. Yet, the molecular mechanisms underlying 
abnormal pathophysiological oscillatory activity remain unknown.

   Recently, a tight interrelation between the pathological cor-
tical brain activity in PD and immunometabolic dysregulation 
has been shown in PD patients [  14 ]. In this work, the authors 
suggest that abnormal cell types and their gene expression may 
be targeted through therapeutic interventions with direct 
impact to pathological cortical brain activity. Accordingly, it 
has been suggested that beta oscillations are related to an 
altered redox environment or have an abnormal sensitivity 
to superoxide redox parameters [  15 ]. Gamma oscillations are 
associated to the disruption of central nervous system (CNS) 
homeostasis, which may be regulated via diverse functions of 
microglia, specifically immune responses and metabolic path-
ways [  16 ]. Thus, glial cells, including microglia, play a pivotal 
role in neuroinflammation, which in turn exacerbates disease 
progression over time and may accelerate apoptosis through 
the intrinsic mitochondrial pathway [  17 ,  18 ].

   Previous studies have attempted to assess the molecular 
underpinnings of PD pathology using postmortem brain sam-
ples, particularly from the substantia nigra [  19 –  21 ], whereas 
other studies on living participants have aimed at noninvasively 
or minimally invasively track disease progression [ 21 ]. However, 
the transcriptomic profiles from postmortem data present an 
altered molecular landscape due to RNA/protein degradation 
after death, while peripheral markers contain cell types and mol-
ecules that may not cross into the brain, thus only partially mir-
roring CNS immune profiles and often diverging in signature 
and behavior, leaving unanswered how real-time, dynamic cel-
lular and molecular interactions occur in the brain.

   To fill this gap, while providing deeper evidence on the mecha-
nisms of abnormal oscillatory activity in PD, we leverage single-cell 
RNA sequencing (scRNA-seq) from fresh dorsolateral prefrontal 
cortex (DLPFC) from living patients, offering a timely and unparal-
leled opportunity to link cell-specific transcriptomics with clini-
cally relevant electrophysiological phenotypes. Further, we provide 
cell type-specific biological relevance, as well as potential mecha-
nisms driven by targetable genes. Our data-driven framework may 
serve as basis for detailed characterizations of in vivo pathophysiol-
ogy and deliver more reliable biomarkers for neurodegeneration.   

Results

Broad cell type composition of PD and non-PD
   To characterize the molecular single-cell gene expression sig-
natures of PD in vivo, we studied a novel scRNA-seq dataset 

from fresh DLPFC tissue from patients who underwent deep 
brain stimulation (DBS) surgery [ 14 ]. The dataset includes 
101,691 RNA transcriptomes across 2 groups: 9 PD subjects 
and 5 non-PD subjects (Fig.  1 A). After filtering and quality 
control, we retained 49,330 RNA transcriptomes for the down-
stream analysis, with an average of 3,500 cells per subject. This 
amounted to 36,216 cells for the PD cohort and 13,114 cells for 
the non-PD cohort (Fig.  1 C).        

   Following cross-sample alignment and graph-based clustering, 
all sequencing data were integrated and represented according to 
their spatial arrangements, independently to their donor (Fig.  1 A 
and Methods). This resulted in 11 distinct cell types with specific 
cell type marker expression (Fig.  1 B and Methods). The majority 
of cell populations in our data consisted of glial cells. In order of 
frequency, we observed microglia 47% in the PDb (patients with 
PD and brain biopsies) and 49% in the non-PD, oligodendrocytes 
39% and 36%, OPCs (oligodendrocyte precursor cells) 8% and 
5%, and astrocytes 2% and 3%, respectively (Fig.  1 C). To mini-
mize the influence of cell variability, the present dataset employs 
highly matched biological replicates to reduce background and 
technical noise. Therefore, there were no significant group differ-
ences in cell frequency for each cell type (Fig.  1 D).   

Cell type-specific transcriptome profiling identifies 
metabolic and inflammatory pathways dysregulated 
in PD compared with non-PD
   Emerging evidence indicates the implication of astrocytes, 
microglia, oligodendrocytes, and oligodendrocyte progenitor 
cells in PD pathogenesis [ 19 ,  22 –  25 ]. Thus, we further selected 
the most prevalent cell types in our dataset (n = 4) to explore 
their molecular profiles. We performed differential gene expres-
sion analysis, followed by unbiased gene set enrichment analy-
sis (see Methods), identifying differently enriched and depleted 
pathways.

   In microglia, the resident immune cells in the brain that func-
tion as the neural tissue’s defense system and contribute to the 
development and maintenance of neural circuits [  26 ], we identi-
fied 34 up-regulated and 40 down-regulated pathways in PDb 
compared to non-PD (Fig.  2 A and B). Our findings are consistent 
with the general consensus of significant dysregulation of mito-
chondrial pathways in PDb [  27 –  30 ]. However, the results differ 
to the depleted mitochondrial-related pathways found in particu-
lar regions such as the caudate and putamen [  31 ], thus suggesting 
region-specific dysregulations. Furthermore, we observed abnor-
mal pathways supporting metabolic dysregulation in microglia 
(Fig.  2 A to C). The key dysregulated genes in PDb, namely, 
HSP90AA1, HSPA1A, HSPD1, and DNAJA4, are involved in 
folding and misfolding of proteins.        

   Misfolded proteins may not only disrupt mitochondrial func-
tion and endocytosis, functions also affected in our patients, but 
also potentially modulate innate immune responses [ 17 ]. Pathways 
related to innate immune responses directly observed in our data 
were related to humoral immune response, and complement acti-
vation through the classical pathway (Fig.  2 A and C) and to genome 
architecture and regulation was also down-regulated (Fig.  2 A and 
C). The former is consistent with previous studies showing dys-
regulated inflammation-related pathways in PD compared to non-
PD [  32 ]. The latter results corroborate previous findings of a 
PD-associated gene expression regulation system [  33 ].

   Despite previously being considered to be passive cells, cur-
rent evidence sets astrocytes as active contributors of brain 
homeostasis [  34 ]. Microglia–astrocyte interactions represent a 
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delicate balance exhibiting altered gene expression profiles that 
are predicted to affect their function [  35 ], and in our dataset, 
the disease-specific transcriptome changes in the astrocytes 
were similar to those observed in microglia. We identified 25 
enriched and 2 depleted gene ontology terms for biological pro-
cesses (GO BP) terms (Fig.  2 D to F), corroborating previous 
studies showing altered vesicle handling and synaptic vesicle 
dynamics in PD [  36 –  38 ]. Moreover, further pathways were 
involved in antigen presentation via major histocompatibility 
complex (MHC) class II complexes, suggesting that astrocytes 
may function as antigen-presenting cells in PD, as shown in cell 
culture studies [  39 ], and become reactive adopting a pro-inflam-
matory phenotype in response to activated microglia [  40 ,  41 ].

   In our study, we identified similar and concordant transcrip-
tome abnormalities in oligodendrocytes and OPCs, when com-
paring PDb and non-PD. For oligodendrocytes, we identified 84 
enriched and 20 depleted GO BP terms, and for OPCs, we identi-
fied 388 enriched and 39 depleted GO BP terms. In both cell 
types, we reported a cluster of dysregulated immune and meta-
bolic pathways, as we described above in microglia and astrocytes 
(Fig.  2 G, I, J, and L). Unlike other cell types, both oligodendro-
cytes and OPCs presented a cluster of enriched pathways related 
to immune activation and cytokine signaling (Fig.  2 G, H, J, and 
K). These findings align with cytokine signaling and stress 

response to unfolded protein pathways, indicating the participa-
tion of these 2 glial cell types in the neuroinflammatory process 
[  20 ,  42 ]. The enrichment of interleukin-1 (IL-1) pathway in OPCs 
reflects an inflammatory state of PDb compared with non-PD 
and is consistent with literature findings [  43 ]. Recent reviews 
explore the further implications of these findings with other 
clinical indicators and at the peripheral level [ 43 ,  44 ].

   Within observed altered pathways in OPCs, key dysregu-
lated genes, P2RX7 and PRKCB, are involved in neuroinflam-
matory processes. Specific only for oligodendrocytes was the 
enrichment of the “dopaminergic neuron differentiation” path-
way (Fig.  2 H), which is in line with the respective cell function, 
and has already been reported as an altered pathway in PD [ 36 ]. 
Similar to the microglia, in OPCs, we attested abnormal protein 
refolding (Fig.  2 K).   

Cell type-specific gene coexpression correlates of 
abnormal brain oscillatory activity
   To validate the robustness of the observed oscillatory activity 
abnormalities in PDb, a large group of 91 PD patients was 
recruited and contrasted against 38 age- and sex-matched 
healthy controls. PD and PDb had identical electrophysiological 
hallmarks (Fig.  3 A) as compared to controls for bradykinesia 

Fig. 1. Overview of the experimental approach and scRNA-seq data. (A) Workflow for the generation of the scRNA-seq dataset [14]. Experimental approach from surgical 
retrieval of DLPFC samples to fresh tissue processing, single-cell isolation, and data analysis. t-SNE map visualization of the cell clusters of 9 PD and 5 non-PD samples 
integrated in the downstream analysis. This panel was partially created with BioRender.com. (B) Cell types annotation according to expression of known marker genes [82]. 
Average expression colored by corresponding cell type. (C) Stacked bar plots depicting cell count and cell percentage distributions of all cell types across cohorts of PDb and 
non-PD subjects. (D) Box plot of cell frequency of all cell types across individual patients. Labeled by cohort and cell type. SMCs, smooth muscle cell; PDb, Pakrinson's disease 
patients with brain biopsies; Non-PD, patients without PD.
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hallmarks (PD versus control: T = 2.77, P = 0.003; PDb versus 
control: T = 2.68, P = 0.005) and rigidity hallmarks (PD versus 
control: T = 1.8, P = 0.037; PDb versus control: T = 2.34, P = 
0.012). PAC abnormalities were also found for PD versus control 
(T = 1.81, P = 0.036) and marginally significant in PDb (T = 1, 
﻿P = 0.05). The replication of bradykinesia and rigidity hallmarks 
and the consistent directionality of the trending PAC abnormali-
ties suggest that the PDb cohort captures the same biological 

features despite the reduced statistical power, altogether match-
ing previous reports of abnormal brain activity in PD [ 4 – 6 , 8 ]. 
We then investigated the multifactorial association [through 
weighted gene coexpression network analysis (WGCNA)] of 
pathological oscillatory activity with molecular features com-
bined in distinct modules for each cell type.        

   In microglia, 2 (out of 15 total) individual modules correlated 
with the pathological brain activity—module 1 (containing 

Fig. 2. Transcriptomic analysis of human cortical cell types (microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells). (A) Volcano plot of the differentially 
expressed genes in microglia cell type in PD versus non-PD group [83]. (B) Gene set enrichment analysis (GSEA) plots of the gene ontology biological processes (GOBP) pathways 
enriched in microglia cell type [84]. Top 5 terms with positive normalized enrichment score (NES) are shown. (C) Top 5 terms with negative NES shown. (D) Volcano plot of the 
differentially expressed genes in astrocytes in PD versus non-PD group. (E) GSEA plots of the GOBP pathways enriched in OPC cell type. Top 5 terms with positive NES shown. 
(F) Top 2 terms with negative NES shown. (G) Volcano plot of the differentially expressed genes in oligodendrocytes cell type in PD versus non-PD group. (H) GSEA plots of the GOBP 
pathways enriched in astrocyte cell type. Top 5 terms with positive NES shown. (I) Top 5 terms with negative NES shown. (J) Volcano plot of the differentially expressed genes in OPC-
type in PD versus non-PD group. (K) GSEA plots of the GOBP pathways enriched in astrocyte cell type. Top 5 terms with positive NES shown. (L) Top 5 terms with negative NES shown.
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969 genes) and module 2 (212 genes), whereas in OPCs, 2 (out of 
12 total) modules emerged—module 1 (2,393 genes) and module 
2 (3,200 genes) (Fig.  3 B and D). From these, microglia module 1 

and OPC module 1 exclusively correlated with the motor symptom 
hallmarks but not with their coupling, suggesting that the abnormal 
oscillatory activity could mainly reflect molecular changes in 

Fig. 3. Electropathophysiological hallmarks of PD associated with cell type-specific modules of genes. (A) Spectral power for frequencies ranging from 1 to 40 Hz (top left) 
and normalized power from frequencies ranging from 40 to 85 Hz (bottom left). The vertical dotted lines mark the ranges of the beta and narrow gamma bands. Patients with 
PD (green) present increased cortical beta and reduced cortical narrowband gamma power in comparison to non-PD (blue). The spectral plots (right) show increased cortical 
phase–amplitude coupling between the phase of beta and the amplitude of gamma power in PD compared to non-PD. (B) Correlations between WGCNA microglia modules 
and EEG hallmarks. R2 value of the correlation for each comparison shown in the table. Results are colored by R2 value. Statistically significant results are shown with asterisk. 
(C) Correlations between WGCNA astrocyte modules and hallmark data. R2 value of the correlation for each comparison shown. Results are colored by R2 value. Statistically 
significant results are shown with asterisk. (D) Correlations between WGCNA OPC-type modules and EEG hallmarks. R2 value of the correlation for each comparison shown. 
Results are colored by R2 value. Statistically significant results are shown with asterisk. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

D
ow

nloaded from
 https://spj.science.org at Saarlaendische U

niversitaets- und L
andesbibliothek on January 19, 2026

https://doi.org/10.34133/research.0863


Mirzac et al. 2025 | https://doi.org/10.34133/research.0863 6

microglia and OPCs. The analysis on oligodendrocytes did not 
reveal any associated modules (results not shown). In astrocytes, 2 
(out of 9 total) individual modules correlated with PAC (Fig.  3 C).

   Overall, abnormal oscillatory activity coupling was associated 
with microglia, OPCs, and astrocytes, evidencing a common and 
cohesive involvement [ 20 ] as the molecular mechanism underly-
ing the PAC, specifically affecting metabolic regulation in microg-
lia and OPCs, with inflammasome involvement.   

Biological substrate driving pathophysiological 
brain activity
   To attest biological meaning to the identified gene modules, we 
evaluated the association between their molecular activity (e.g., 
pathway dysregulations in PDb as compared to non-PD) with 
abnormal brain activity.

   Microglia module 1, correlated with beta (R 2 = 0.692, P = 
0.005) and gamma power (R 2 = 0.557, P = 0.021), consisted of 
263 BP and 33 molecular function (MF) overrepresented terms 
(Fig.  4 A). OPC module 1, correlated with bradykinesia-related 
(R 2 = 0.455, P = 0.046) and rigidity-related hallmark activity (R 2 = 
0.498, P = 0.034), consisted of 55 BP and 42 MF overrepresented 
terms (Fig.  4 A). Microglia module 2, correlated with PAC (R 2 = 
0.546, P = 0.023), comprised 12 BP overrepresented terms. OPC 
module 2 (R 2 = 0.5, P = 0.033) comprised 55 BP and 27 MF 
overrepresented terms. Astrocyte module 1 (5,146 genes; R 2 = 
0.494, P = 0.035) comprised 55 BP and 59 MF overrepresented 
terms. Astrocyte module 2 (2,093 genes; R 2 = 0.56, P = 0.02) 
comprised 56 BP and 43 MF overrepresented terms (Fig.  4 A).        

   As the transcriptome profiling (Fig.  2 ) and the correlation (Fig. 
 3 ) analyses were performed independently, we then overlapped 

Fig. 4. Cell type-specific biological relevance for clinically established EEG hallmarks. (A) Enrichment map for overrepresentation analysis on gene ontology pathways as 
provided by PANTHER [86] for relevant WGCNA modules: microglia in blue, OPCs in green, and astrocytes in pink. Size of the circle corresponds to the count of genes in each 
term, color-coded by FDR, filtered only for statistically significant results (FDR < 0.05). (B) Overlap between the pathways enriched with gene set enrichment analysis versus 
overrepresentation analysis for each cell type. (C) Overlap between the genes enriched with gene set enrichment analysis versus overrepresentation analysis for each cell type.
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the resulting genes, revealing genes and pathways dysregulated 
in PD, directly correlating with the abnormal oscillatory patterns 
(Fig.  4 B and C; see Methods).   

Putative genes of abnormal brain oscillatory  
activity in PD
   Further, we looked for the overlap between the genes from the 
modules in each cell type and the corresponding overrepre-
sented genes from the comparison between PDb and non-PD. 
This method ensures that we only explore relevant dysregulated 
genes in the context of the modules when assessing protein–
protein interactions in STRING. In microglia, we report an 
overlap of 59 genes; in OPCs, we report an overlap of 530 genes; 
and in astrocytes, we report an overlap of 134 genes (Fig.  4 C).

   Within microglia, 49 genes are attributed to module 1 and 
10 genes to module 2. When analyzing the core driver genes of 
module 1 (Fig.  5 A), we highlight 2 directions—one dysmeta-
bolic (e.g., HSP90AA1, DNAJA4, HSPA1A, and HSPD1) and 
one inflammatory (e.g., CCL2, CCL3, CCL4, and CXCL8). In 

module 2 (Fig.  5 B), not all genes interacted with each other, 
resulting in a single functionally significant gene set. In the 
OPCs, the overlap analysis resulted in a higher number of rel-
evant genes: 220 in module 1 (Fig.  5 C) and 310 in module 2 
(Fig.  5 D). In both modules, the core drivers are genes related 
to the inflammasome—CCL2, P2RX7, and PRKCB in module 
1 and CD74, CD86, CD40, and ICAM1 in module 2. Within 
the astrocyte cell type, we highlight 93 genes in module 1 (Fig. 
 5 E) and 41 genes in module 2 (Fig.  5 F). The genes in module 
1 (NDUF family, SDHC, and ATPF1A) encode subunits or 
assembly factors of mitochondrial complexes I, II, and V, which 
are essential for oxidative phosphorylation and adenosine tri-
phosphate (ATP) production [  45 ], thus revealing core compo-
nents of cellular metabolism and mitochondrial function. 
Module 2 includes genes involved in antigen presentation and 
immune signaling (CD74 and HLADRB1), oxidative stress and 
inflammation (CYBB and HSPA1B), and mitochondrial com-
plex I assembly and function (NDUFS8, NDUFA8, NDUFAF6, 
and NDUFAF2). These suggest a link between disrupted metab-
olism, immune dysfunction, and disease progression.        

Fig. 5. Protein–protein interaction networks of dysregulated genes. (A) Network of protein–protein interaction of dysregulated genes included in microglia module 1 (in blue). 
(B) Network of protein–protein interaction of dysregulated genes included in microglia module 2 (in blue). (C) Network of protein–protein interaction of dysregulated genes 
included in OPC module 1 (in green). (D) Network of protein–protein interaction of dysregulated genes included in OPC module 2 (in green). (E) Network of protein–protein 
interaction of dysregulated genes included in astrocyte module 1 (in pink). (F) Network of protein–protein interaction of dysregulated genes included in astrocyte module 1 
(in pink). Genes colored by rank according to the number connections in STRING [87].

D
ow

nloaded from
 https://spj.science.org at Saarlaendische U

niversitaets- und L
andesbibliothek on January 19, 2026

https://doi.org/10.34133/research.0863


Mirzac et al. 2025 | https://doi.org/10.34133/research.0863 8

   Next, we performed an intersection between the gene sets (GO 
terms) overrepresented in the modules with the terms overrep-
resented in the transcriptomic comparison between PDb and 
non-PD. While there was no overlap in the astrocytes, there was 
one in microglia and OPCs of 12 terms and 1 term, respectively 
(Fig.  4 B). Thus, we can infer that the abnormal rhythmic oscillations 
in PD may reflect dysregulations guided by microglia and OPCs.

   The overlapping pathways related to metabolic dysregula-
tion, such as “protein refolding” and “heat shock response” were 
overrepresented, whereas the pathways related to immunity 
were underrepresented, regardless of cell type (Fig.  6 A).        

   In microglia, module 1 more strongly associated with abnor-
mal brain activity, evidencing impaired metabolism as a possible 
molecular basis for antikinetic activity (Fig.  6 A). The differen-
tial gene expression identified 4 up-regulated genes in PDb 
compared to non-PD: HSP90AA1, HSPA1A, HSPD1, and 
DNAJA4 (Fig.  6 B).

   In microglia module 2 and OPC module 2, which mainly 
correlated with PAC, altered pathways of immune response 
emerged (Fig.  6 A), evidencing that abnormal brain oscillations 
related to motor dysfunction are susceptible to the disruption 
of microglia activity, involving depletion of immune pathways. 
We have identified 2 up-regulated genes in OPCs in PDb com-
pared to non-PD: P2RX7 and PRKCB (Fig.  6 B). Identification 
of these pathway-specific genes unveils a novel spectrum of 
molecular targets, offering a strategic entry point for modulat-
ing disease pathology.    

Discussion
   In the present study, we demonstrate that the pathological increase 
in beta power and the decrease in gamma power, as electrophysi-
ological hallmarks of PD, are tightly related with dysregulated 
molecular pathways. More specifically, transcriptional changes 
in microglia, astrocytes, OPCs, and oligodendrocytes high-
lighted key involvement of metabolic and immune pathways. 

The dysregulated pathways in microglia and astrocytes were 
related to protein homeostasis and metabolism, while in OPCs, 
oligodendrocytes and astrocytes were related to the inflamma-
some pathways. The common involvement of multiple glial cell 
types provides evidence for a common link between neuroinflam-
mation and neurodegeneration mediated through metabolic 
pathways, which converge on a small number of key genes.

   Beta frequency oscillations, recognized as antikinetic in PD, 
are proposed to be modulated by the redox environment and to 
be sensitive to superoxide redox parameters [ 15 ]. Gamma fre-
quency oscillations, considered to be prokinetic in PD, are 
reported susceptible to the disruption of CNS homeostasis, 
which may be associated with diverse functions of microglia, not 
only immune response and metabolic pathways but also converg-
ing on mitochondrial reactive oxygen species (ROS) synthesis 
[ 16 ]. From the main up-regulated genes in our study, HSPD1, 
P2RX7, and PRKCB are implicated in dysregulated mitochon-
drial metabolism as follows. P2RX7 is a member of the P2X 
family, known to have up-regulated expression in microglia, 
astrocytes, oligodendrocytes, and OPCs, under neuroinflamma-
tory conditions [  46 ]. PRKCB is localized at the mitochondrial 
level, being implicated in the regulation of mitochondrial integ-
rity, oxidative phosphorylation, hypoxic stress, and vascular 
dysfunction and triggering mitogen-activated protein kinase 
(MAPK) phosphorylation pathways [  47 ]. Increased levels in heat 
shock protein family D (HSPD), as well as the other previously 
mentioned chaperones HSP90AA1 and HSPA1A, are known to 
be associated with PD [ 20 , 21 ,  48 ,  49 ].

   Particularly, HSPD1 is involved in protein folding within 
mitochondria [  50 ]. Mitochondrial protein dysfunction leads 
to excessive oxidative stress and cell damage, processes that are 
correlated with PD [ 14 ]. P2RX7 are ion-gated channels acti-
vated by ATP [  51 ]. P2X receptors promote exchange of cations, 
mainly Ca2+, Na+, Mg2+, K+, and Ca2+ induced intracellular 
pathways. These channel receptors are key elements for the 
communication between neuronal and glial cells and establish 

Fig. 6. Pathway directionality and gene expression. (A) Ridgeplot visualization of the overlapping pathways for microglia (in blue) and OPCs (in green). Pathways with 
corresponding genes from the overlapping analysis between the differential transcriptome profiling analysis and correlation analysis with the electropathophysiological 
hallmarks. Normalized enriched score from the differential transcriptome profiling analysis [84]. Gene expression values for each individual gene from the differential gene 
expression analysis [83]. (B) Heatmap of the expression level from downstream analysis [81] of relevant genes aggregated at the patient level.
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a direct link between pathological brain oscillatory activity and 
cell metabolism. Indeed, under increased ATP conditions, acti-
vation of P2RX7 leads to the already discussed neuroinflam-
matory changes. PRKCB inhibits autophagy by negatively 
modulating the mitochondrial homeostasis [  52 ]. The fragmen-
tation of dysfunctional mitochondria, which precedes autoph-
agy, is modulated by a specific ubiquitin ligase, PARK2, and its 
interaction with the kinase PINK1 [  53 ]. Following the accu-
mulation of PINK1, the consequent induction of PARK2 sta-
bilization initiates mitochondrion engulfment [ 52 ]. Importantly, 
not only dysregulations of PINK1 and PARK2 are relevant in 
PD pathophysiology, but also mutations within these genes are 
directly linked to early-onset PD [  54 ].

   Indeed, by altering the cell energy level, mitochondrial metab-
olism plays a critical role in the pathogenesis of neurodegenerative 
disorders such as PD [  55 ]. Our data confirm previous suggestions 
[ 45 ,  56 ] of immunometabolism as the potential key determi-
nant of cell type-specific molecular dysregulation at the inter-
face between neuroinflammation and neurodegeneration [  57 ]. 
Accumulating evidence demonstrates that α-synuclein pathology 
directly contributes to mitochondrial dysfunction through several 
independent mechanisms. These include inhibition of complex 
I, disruption of mitochondrial protein import via TOM20, inter-
ference with ATP synthase and mitochondrial permeability tran-
sition pore opening, and dysregulated calcium exchange due to 
loosened mitochondria contacts [ 56 ]. Collectively, these mecha-
nisms converge on a shared pathological phenotype of elevated 
oxidative stress, impaired mitochondrial membrane potential, and 
reduced mitochondrial respiration. Specifically, dysregulation in 
PD-related genes such as PRKN and LRRK2 contributes to mito-
chondrial dysfunction through distinct but converging mecha-
nisms: Parkin (PRKN) regulates mitophagy and inflammation 
[  58 ], while LRRK2 disrupts mitophagy, mitochondrial membrane 
potential, and degradation in a cell type-specific manner [  59 ]. 
Additionally, targeting neuroinflammation via the kynurenine 
pathway yields protective effects on mitochondrial function, oxi-
dative stress, and dopaminergic signaling in a 6-hidroxidopamina 
(6-OHDA)-induced PD mouse model [  60 ], supporting mito-
chondrial driven immune-metabolic modulation as a therapeutic 
strategy in PD.

   Neuroinflammation is also associated with pathophysiologi-
cal brain activity. Dysregulated lymphocyte-mediated immu-
nity and the involvement of adaptive immune responses in PD 
[ 17 ,  61 ] correlate with increased PAC. Within these pathways, 
we reported on the up-regulation of the following genes: HSPD1, 
P2RX7, and PRKCB. Heat shock proteins related to HSP90 are 
known to regulate inflammatory processes, including the cellular 
damage-related P2X7R/NLRP3 inflammasome and the autopro-
teolytic activation of caspase-1, which ultimately leads to secre-
tion of the pro-inflammatory cytokine IL-1β. In our study, we 
observed differences in gene expression involving IL-1 pathway 
activation in PDb as compared to non-PD, potentially reflecting 
underlying inflammatory mechanisms relevant to PD. Future 
studies with matched cytokine profiling will be essential to fur-
ther validate these observations.

   HSPD1 was shown to have a role in an anti-neuroinflam-
matory response through microglial activation [ 49 ]. HSPD1 
up-regulation was reported in the substantia nigra and stria-
tum, regions included in the basal ganglia thalamic circuits [ 3 ], 
which we now expand to the cortical level.

   P2RX7 was shown to regulate the activation and prolifera-
tion of microglia, directly contributing to neuroinflammation 

through microglia-mediated neuronal death, glutamate-mediated 
excitotoxicity, and inflammasome activation that results in ini-
tiation, maturity, and release of the pro-inflammatory cytokines 
and generation of ROS and nitrogen species [  62 ]. P2RX7-
induced microglia activation has been detected in PD [  63 ]. In 
the brains of subjects with PD, α-synuclein binding and activat-
ing P2RX7 on microglia has been described [  64 ,  65 ]. Our find-
ings corroborate the hypothesis that microglial hyperactivation 
and subsequent neuroinflammation are concomitant during 
neurodegeneration [ 51 ]. In a rat model of PD, in which increased 
microglial activation was accompanied by P2RX7 overexpres-
sion, P2RX7 antagonists promote neuroregeneration via reduced 
microglial activation [  66 ]. Consequently, blocking P2RX7 in 
hemiparkinsonian rats reduced dopamine-induced dyskinesia 
and motor incoordination [  67 ].

   Thus, P2RX7 modulation is a promising option for treat-
ment of neurodegenerative diseases [ 46 ]. However, despite its 
apparent efficacy in preclinical studies, translating these find-
ings into human trials faces several challenges. For example, 
achieving sufficient blood–brain barrier (BBB) penetration, since 
many early compounds were designed for peripheral use, they 
fail to cross into the CNS [  68 ]. Another major challenge involves 
species-specific differences, as many antagonists show potent 
activity at human P2X7R but poor efficacy in rodents, hindering 
in vivo validation [  69 ]. Furthermore, some compounds like 
Brilliant Blue G suffer from nonspecificity, while others such 
as CE-224535 and GSK-1482160 show limited rodent recep-
tor affinity despite promising human-targeted results [ 68 –  70 ]. 
Nevertheless, newer brain-penetrant compounds like JNJ-
54175446 and JNJ-55308942 have progressed to phase II trials, 
indicating advances in overcoming pharmacokinetic and trans-
lational barriers [ 68 , 69 ]. Further drugs with anti-inflammatory 
properties targeting modulation of oxidative stress, mitochon-
drial dysfunction, and neuroinflammation might be of interest 
[  71 ,  72 ].

   Similarly, PRKCB was shown to promote increased infiltra-
tion of immune cells [ 61 ]. PRKCB overexpression, as seen in 
our results, has been previously reported in advanced neuro-
degenerative stages [i.e., PD and Alzheimer’s disease (AD)] 
[  73 ]. Conversely, underexpression of PRKCB leads to severe 
immunodeficiency [  74 ].

   Furthermore, neurodegeneration is associated with patho-
physiological brain activity. Protein folding and refolding, 
chaperone-mediated protein folding, and response to unfolded 
protein have been described in PD [ 20 , 42 ]. These dysregulated 
pathways have a strong association to increased beta and reduced 
gamma power. We reported on the up-regulation of HSP90AA1, 
HSPA1A, HSPD1, and DNAJA4 within the enriched metabolic 
pathways in PD. HSP90AA1 plays a significant role in synaptic 
homeostasis and protein pathology related to microglia function, 
and it is among the key factors that could aggravate the synaptic 
pathology [  75 ]. While HSP90AA1 down-regulation has been 
shown to reduce microglial activation and Aβ clearance in AD 
[ 75 ], HSP90AA1 has been reported to be up-regulated in PD 
and related to synaptic decline [ 20 , 48 ]. HSPA1A plays an impor-
tant role in the degradation of accumulated Parkin [  76 ] and has 
a key role in the ubiquitin–proteasome mechanism that is 
directly associated with the disease [  77 ]. HSPA1A up-regulation 
has been reported in the substantia nigra, which we expanded 
to the cortical level, but also in the blood at the peripheral level 
[ 21 ]. DNAJA4 is reported to be implicated in neurodegeneration-
related protein aggregation [  78 ].
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   Our study does not go without limitations. While our study’s 
novelty is unique reporting on transcriptomic changes in fresh 
cortical biopsies in living patients, it also has some technical 
limitations related to confounding batch effects, unequal cohort 
size, and different cell counts. Therefore, these factors were care-
fully considered when planning and implementing the bio
informatic downstream analysis. For instance, batch correction 
accounts for technical confounders like different runs and 
donors, and data integration prevents batches and groups to be 
dominating and ensures that the detected clusters reflect biologi-
cal relevance; differential expression through pseudobulking, 
followed by DESeq2, directly corrects for sample size differences, 
i.e., avoiding cell count inflation and model sample-level vari-
ance. Overall, our approach mitigates unequal representation 
while ensuring biological representation and not technical or 
size artifacts. Further, the control group included neuroinflam-
matory and non- inflammatory conditions. The inflammatory 
profile found in the PDb diverged from these patients, suggesting 
disease specificity rather than cohort-wise bias. However, future 
studies, including larger and stratified cohorts, may further refine 
these signatures. We explored the possibility of including healthy 
control samples from biobanks or previously published studies; 
however, there was a lack of availability of fresh samples from 
the same region, as our PDb and postmortem samples would 
not be comparable due to transcriptional changes directly related 
to the death process. Moreover, scRNA-seq methods have inher-
ent limitations related to dropout events and technical noise. 
Network and enrichment analyses (WGCNA, GSEA, PANTHER, 
enrichR, and STRING) are based on previously existing gene 
annotations and may miss novel or context-specific pathways. 
Additionally, statistical controlling for false positives may 
increase false negatives, potentially overlooking subtle but bio-
logically relevant signals. Finally, the microwell SCOPE-chip 
method (Singleron Biotechnologies) is less effective for human 
neurons because of their larger size and vulnerability to mem-
brane damage during mechanical and enzymatic dissociation. 
Both glial cells and neurons engage in a dynamic, bidirectional 
exchange of signals that shapes cortical oscillations, which are 
detectable in electroencephalographic (EEG) recordings [  79 ]. 
Therefore, although glial cells are more suitable to study develop-
ments in neuroinflammation and neurodegeneration based on 
their role as key modulators of immune responses and homeo-
stasis in the CNS, future studies may directly target neurons, e.g., 
using single-nuclei sequencing, to enrich our interpretations.

   Our findings highlight cell type-specific associations between 
cortical gene expression and electrophysiological features in PD, 
primarily exploring major glial cell types. Future studies focusing 
on replicating these findings will be crucial to confirm the extent 
of this coupling within neural populations. Additionally, back-
translating our observed associations into animal models or 
in vitro experimental conditions represents a necessary step to 
further evaluate the therapeutic potential of the identified can-
didate genes or clarifying their mechanistic roles in the transition 
from healthy to diseased brain states. In particular, experimental 
studies investigating the effect of P2RX7 antagonism on patho-
physiological activity in PD models, as well as targeted manip-
ulation of HSPD1/HSPA9 in glial cells in cell cultures or cell 
organoids, are essential to allow the assessment of their impact 
on brain activity and behavioral/clinical outputs.

   In conclusion, our findings establish a molecular basis for 
immunometabolism dysregulation as a central mechanism under-
lying the widely known electropathophysiological hallmarks of 

motor symptoms of PD. By directly linking glial transcriptomic 
alterations in fresh cortical tissue to pathophysiological brain 
activity, we provide novel evidence that bridges molecular and 
electrophysiological modalities in living patients. Within these 
cell-specific enriched metabolic pathways and depleted immune 
pathways, key genes are at the interface of the inflammasome and 
can therefore be implemented as biomarkers for patient stratifica-
tion or as targets for immunomodulatory therapies. These findings 
not only deepen the understanding of glial involvement in PD but 
also offer a mechanistic rationale for targeting glial immunometa-
bolic dysfunction as a strategy to modulate abnormal oscillatory 
activity. Furthermore, this work provides a framework for back-
translating oscillation-linked molecular signatures identified in 
humans into preclinical models, allowing experimental validation 
of candidate genes like P2RX7, HSPD1, and PRKCB in relation 
to disease mechanisms and treatment response.   

Methods

Ethics
   All participants provided written informed consent prior to 
inclusion in the study. The research adhered to the principles 
outlined in the Declaration of Helsinki and received approval 
from the local Ethics Committee 837.208.17 (11042). No com-
pensation was offered to the participants.   

Participant selection and description
   The electrophysiological study included 91 patients with PD 
(mean age ± standard deviation: 61.70 ± 11.51 years, 19 females) 
and 38 healthy controls (mean age: 61.84 ± 9.53 years, 19 females). 
PD patients and healthy control volunteers were enrolled at 
the University Medical Center of the Johannes Gutenberg 
University Mainz. EEG recordings were performed using a 
256-channel HydroCel Geodesic Sensor Net system (EGI 
Netstation, Eugene), referenced to Cz and sampled at 1,000 Hz. 
Participants underwent EEG measurements, including 5-min 
resting state, while seated in a comfortable, slightly reclined 
position with both forearms supported by armrests. They were 
instructed to keep their eyes closed, move as little as possible, 
let their mind wander (i.e., not think of something specific), 
and not fall asleep.

   For both EEG and the scRNA studies, patients were clinically 
evaluated by a movement disorders specialist at the Department 
of Neurology, University Medical Center of the Johannes 
Gutenberg University Mainz. Before study enrollment, all 
patients receiving DBS underwent comprehensive clinical 
screening and fulfilled all eligibility requirements for DBS [  80 ]. 
Additionally, a clinical neuropsychologist conducted assess-
ments to rule out cognitive impairment, >24 points in MoCA 
(Montreal Cognitive Assessment) and >138 for Mattis Dementia 
Rating Scale. PD patients in the scRNA study had a clinically 
confirmed diagnosis of PD according to the UK Parkinson’s 
Disease Society Brain Bank criteria; non-PD patients were 
selected on the basis of not having a main neurodegenerative or 
metabolic disease. All patients (PD and non-PD) enrolled for 
biopsy extraction were additionally screened by multiple physi-
cians and neurosurgeons and participated voluntarily. No com-
pensation was given. DLPFC samples, weighing 50 to 100 mg, 
were collected from beneath the skull borehole during DBS 
electrode implantation in 14 patients (mean age: 57.79 ± 
15.57 years, 9 females). This included 9 PD patients (mean 
age: 57.77 ± 15.3 years; mean disease duration: 10.1 ± 5.3 years) 
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and 5 non-PD individuals (mean age: 57.8 ± 16.2 years; mean 
disease duration: 13.4 ± 5.6 years).   

Sample processing
   DLPFC samples were taken during the DBS surgery by the 
neurosurgeon and immediately placed into sterile 50-ml cen-
trifuge tubes with Hanks’ balanced salt solution (HBSS) and 
transferred on ice to the service Laboratory. The samples were 
independently washed an additional 3 times in HBSS to remove 
blood and stored immediately in GEXSCOPE tissue preserva-
tion solution (Singleron Biotechnologies) at 4 °C. Samples were 
processed within 24 h using the manufacturer’s protocols for 
cDNA capture, quality control, library formation, and index 
hybridization. All brain samples met quality standards and 
yielded sufficient material for sequencing. Sequencing was out-
sourced and performed on NovaSeq 600 sequencer. Due to the 
mechanical and chemical digestion process, the microwell 
SCOPE-chip method (Singleron Biotechnologies) is less effec-
tive for human neurons because of their larger size and vulner-
ability to membrane damage.   

Sequencing data processing
   Raw reads were processed with CeleScope (v1.8.1, Singleron 
Biotechnologies) using the GRCh38 human genome as a refer-
ence. Quality control and downstream analysis were performed 
in Seurat (v4.3.0) [ 81 ], with filtering for cells based on detected 
genes, UMIs (unique molecular identifiers), and mitochondrial 
counts (>10%).

   Batch effects were harmonized using Seurat’s integration work-
flow, employing “FindIntegrationAnchors” and “IntegrateData” 
[ 81 ]. FindIntegrationAnchors() uses Canonical Correlation 
Analysis as the default integration method with the follow-
ing default values (2,000 features, normalization.method = 
“LogNormalize”, scale = TRUE, reduction = “cca”, dims = 1:30).

   Standard single-cell RNA-seq workflows were applied, includ-
ing principal components analysis (PCA), clustering, and 
t-stochastic neighborhood embedding (t-SNE) with a resolu-
tion of 0.5. The resolution was deepened in progressive itera-
tions until clear distinction between the vascular cell types 
appearing as different clusters. Cell clusters were manually 
annotated using known markers and public databases [ 82 ], and 
collapsed where appropriate to reflect a specific cellular level.

   Differential gene expression between PD and non-PD groups 
was assessed using the pseudobulk method for each cell type of 
interest, followed by DESeq2 (v1.34.0) [ 83 ]. Gene set enrichment 
analysis (GSEA) was performed using GO terms for biological 
processes (BP) via clusterProfiler (v4.2.2), and the results were 
visualized using enrichplot [ 84 ].

   Weighted gene correlation networks (WGCNA) were con-
structed per cell type, using an unsigned network with soft 
power and hierarchical clustering [  85 ]. Modules were created 
(“mergeCutHeight” = 0.4, “minModuleSize” = 100) and function-
ally profiled using GO terms (BP and MF) with PANTHER [ 86 ].

   Overlapping genes and terms from GSEA and WGCNA 
were highlighted with ggvenn and visualized using Ridgeplot 
(ggplot2). Overlapping genes were further entered into the 
STRING database to search for potential functional protein–
protein interactions [ 87 ].   

EEG data processing
   EEG data were processed in MATLAB (R2019b, Mathworks) 
using the FieldTrip toolbox (v20220310)[  88 ]. No subject was 

discarded due to low quality or incomplete data. Channels above 
the nasion-Oz line were included. Preprocessing steps involved 
re-referencing to a common grand average (“ft_preprocessing”), 
resampling to 250 Hz (“ft_resampledata”), and segmenting the 
data into 4-s epochs with 50% overlap. Data were detrended, fil-
tered (high pass: 1 Hz, low pass: 95 Hz, band stop: 47 to 53 Hz), 
and further segmented into 1-s nonoverlapping windows 
to exclude noisy channels and segments (“ft_rejectvisual”). 
Independent component analysis removed artifacts such as muscle 
activity, eye blinks, and eye movements. Rejected channels were 
interpolated using weighted averages (“ft_channelrepair”).

   Afterward, we performed the multitaper frequency trans-
formation using “ft_freqanalysis” with discrete prolate sphe-
roidal sequences and a frequency smoothing of 7 Hz for 
frequencies ranging from 1 to 100 Hz in 1-Hz steps across the 
1-s-long segments to analyze the spectral features of the data. 
Average beta band power for each participant was calculated 
as the mean power of frequencies between 13 and 35 Hz and 
89 channels of interest covering the fronto-central region. 
Narrowband gamma power for each participant was first nor-
malized by the average power across channels between 35 and 
100 Hz and then calculated as the mean power of frequencies 
between 60 and 80 Hz and the channels of interest.

   To investigate cross-frequency coupling, the beta–gamma 
phase–amplitude coupling was calculated as the modulation 
index [  89 ] with the “Matlab toolbox for estimating phase–
amplitude coupling” (find_pac_shf_fdr: frequency for beta phase 
and frequency for gamma amplitude,  https://data.mrc.ox.ac.uk/
data-set/matlab-toolbox-estimating-phase-amplitude-coupling ). 
The modulation index was then averaged within each subject 
across the fronto-central channels and frequencies of interest 
(beta: 13 to 35 Hz; narrow gamma band: 60 to 80 Hz).   

Statistical analysis
Sample sizes were not predetermined statistically
   EEG data analyses were conducted in FieldTrip ( https://www.
fieldtriptoolbox.org/ ), testing group differences (PD, PDb, and 
HC) in beta power, narrow gamma power, and PAC ( https://
github.com/sccn/PACTools ) using one-sided t tests based on 
prior hypotheses of increased beta and reduced gamma activity, 
as well as increased PAC [ 2 , 4 , 11 , 13 ].

  Statistical analyses on  scRNA-seq data were performed in 
RStudio (v1.4.1717), using established packages: Seurat, DESeq2, 
WGCNA, GSEA, PANTHER, and enrichR. Seurat: Log normaliza-
tion for scaling and variance stabilization; graph-based Louvain 
algorithm on the PCA-reduced data for clustering. DESeq2: 
Differential expression analysis with negative binomial modeling; 
﻿P values adjusted using family discovery rate (FDR) correction. 
GSEA: Uses a Kolmogorov–Smirnov-like test to calculate an 
enrichment score (ES) for gene sets in a ranked list. Significance is 
tested by phenotype-based permutation (shuffling sample labels) 
to create a null distribution. Normalized ES scores were used with 
FDR correction. FDR correction coupled with pseudobulk-based 
differential testing (DESeq2) accounts for multiple comparisons 
and sample size imbalance preserving sensitivity. WGCNA: 
Constructs gene coexpression networks by calculating pairwise 
correlations bet ween genes. It uses hierarchical clustering to identify 
modules of coexpressed genes. Module–trait associations are tested 
using Pearson’s correlation with phenotypic data. PANTHER and 
enrichR: Perform overrepresentation analysis using Fisher’s exact 
test to assess enrichment of gene sets. P values are adjusted for 
multiple testing using FDR correction. Network and enrichment 
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analyses (WGCNA, GSEA, PANTHER, enrichR, and STRING) 
were conducted depending on specific research questions.     
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