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Abstract 

Exonic enrichment of histone marks hints at their role in regulating alternative splicing. This study aims to connect the transcriptome and 
epigenome in the context of splicing outcomes in embryonic cell lines. The tools rMATS and MANorm were used to obtain estimates of dif- 
ferential inclusion of e x ons and differential enrichment of epigenetic signals, respectiv ely. Tw o classes of alternative exons were identified in 
embryonic cell lines: those differentially co-occurring with at least one mark among H3K27ac, H3K27me3, H3K36me3, H3K9me3, and H3K4me3, 
and those marked by neither of these marks. Binary classifiers were trained using RNA-binding protein (RBP) binding affinities on the flanking 
regions of these e x ons. T his resulted in a set of RBPs, whose putative binding was predicted to associate local chromatin modification marking 
an e x on with its differential inclusion, some of which ha v e been e xperimentally sho wn to interact with histone mark reader proteins. We spec- 
ulate that sequence signals harbored at e x on-intron flanks regulate differential splicing of e x ons, mark ed b y at least one of the fiv e epigenetic 
signatures. Finally, eCLIP data from ENCODE for the HepG2 and K562 cell lines support TIA1 and U2AF2 as potential episplicing RBPs, as 
predicted by our model in the embryonic cell lines. 
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ntroduction 

n important aspect of protein diversity is the alternative in-
lusion of exons in mRNA transcripts of genes. It is ubiqui-
ously known that by regulating chromatin accessibility, his-
one modifications promote or repress transcription [ 1 ]. Splic-
ng events that occur in a co-transcriptional manner suggest
hat the regulatory effects of the chromatin state may ex-
end beyond DNA to the transcribed RNA, influencing splic-
ng events. Multiple studies have shown that specific post-
ranscriptional histone modifications may be enriched at ex-
ns [ 2–5 ]. Hence, the chromatin context is speculated to reg-
late splicing, either indirectly by guiding transcription kinet-
cs [ 6–9 ], or mechanistically through chromatin-adaptor com-
lexes [ 10–12 ]. 
In addition to studies that uncovered chromatin-associated

plicing events at gene resolution [ 10 , 13 , 14 ], machine learn-
ng approaches have been used to decipher relationships be-
ween epigenetic modifications and splicing events at a larger
cale. One study on splicing events in the mammalian brain
sed epigenomic signals to predict the type of alternative splic-
ng event of exons through a Random forest classifier [ 15 ].
eep-learning models have been used to predict inclusion lev-

ls of exons based on the epigenetic signals occurring in their
eighborhood [ 16 , 17 ]. A Random Forest model was used by
girre et al. to classify exons into four different categories of

nclusion levels, based on the state of the adjacent chromatin
 18 ]. In a recent preprint, Manz et al. employ Random For-
st models and find observed and imputed epigenetic features
redictive of exon usage status [ 19 ]. 
Following up on previous studies that reported that dif-

erential exon usage (DEU) is associated with local epige-
etic marks in embryonic development [ 20–22 ], this study fo-
used on the analysis of epigenetics-associated splicing events
n early differentiation. The usage of an exon is determined
y the coordination of various cis and trans-regulatory ele-
eceived: May 20, 2025. Revised: October 1, 2025. Accepted: October 23, 2025 
The Author(s) 2025. Published by Oxford University Press. 

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
ments, the most fundamental of which is the recognition of
the splice site by members of the spliceosome. Here, the pu-
tative binding affinities of RNA-binding proteins (RBP) at the
exon-intron junctions of differentially used exons were used to
predict their local chromatin state (Fig. 1 ). Via a Random For-
est classifier, a set of RBPs was determined that were purported
to show either stronger or weaker binding to the flanking re-
gions of exons marked by a differential histone modification
(DHM), relative to those of alternative exons not marked by
either of the histone marks of interest. Upon examining the
motifs of these RBPs, histone mark-specific enrichment of se-
quence signals was found, suggesting the presence of another
layer of splicing regulation connecting the chromatin to the
transcriptome. In fact, for the HepG2 and K562 cell lines,
there exists eCLIP evidence from the ENCODE project sup-
porting the binding of two of these predicted RBPs, TIA1, and
U2AF2, in parallel to changes in the H3K36me3 signal adja-
cent to skipped exons. 

Materials and methods 

High-throughput sequencing datasets 

Transcriptomic data were obtained from the resources of the
ENCODE project for ectodermal, endodermal, mesodermal,
neuronal stem cells, H1, K562, and HepG2 cell lines, respec-
tively. The accompanying ChIP-Seq data for these biosamples
were downloaded for histone marks H3K27ac, H3K27me3,
H3K4me3, H3K9me3, and H3K36me3. The eCLIP data avail-
able for HepG2 and K562 cell lines were obtained from the
ENCODE3 project for 47 proteins. A detailed list of all con-
sidered data is shown in Supplementary Table S1 . 

Candidate Exons 

All annotations were based on the Gencode human reference
GRCh38, release V24. To focus on splicing events from well-
ons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), 
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Figure 1. DHM signals and RNA–RBP interaction e v ents w ere studied at 
the e x on-intron margins of alternativ e e x ons. 
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supported transcripts, only exons belonging to transcripts
with support levels (TSL) 1–3 were considered. Of these ex-
ons, those found within a 200 bp window of any annotated
transcription start sites (TSS) with support levels 1–5 were
excluded in order to avoid studying the effects of chromatin
marks associated with transcription initiation (Fig. 2 A). The
remaining exons were considered candidate exons of inter-
est. The exon coordinates were obtained from the GFF3 file.
A combination of BEDtools [ 23 ] and bash utilities was used
to retrieve the candidate exons and their flanking sequences
( ±200 bp). 

DEU analysis 

rMATS(V4.2.0) [ 24 ] was used to determine differential inclu-
sion and exclusion levels of exons of expressed genes in each
cell-line pair. Skipped and mutually exclusive exons supported
by junction reads were analyzed. Percent Spliced-In (PSI) val-
ues are computed as the ratio of the number of junction reads
supporting the inclusion of an exon to the total number of
junction reads supporting both inclusion and exclusion of that
exon. This test statistic returned by rMATS was used as the
DEU score. A DEU threshold of 0.2 was used to mark exons
with | DEU| ≥ 0 . 2 and p F DR 

< 0 . 05 as alternative exons.
All other candidate exons of these differentially spliced genes
were given a DEU score of 0. The usage scores of candidate
exons were extrapolated to their flanks, as shown in Fig. 3 ,
using BEDtools. 

DHM analysis 

MANorm(V1.3.0) [ 25 ] was used in order to identify re-
gions with DHMs in a pairwise manner across all available
epigenomes, with default parameters. The log2 fold change
of the read density (M-value) at each peak region was used
as DHM score ( p F DR 

< 0 . 05 ). Common (i.e., overlapping)
peaks identified in samples of both conditions were filtered
out. The intersect command from the BEDtools suite was used
to annotate candidate exon flanks with the peak scores re-
ported by MANorm. Zero imputation was performed to an-
notate flanks that possess no differential peaks. If more than
one peak was detected in the same flank, the peak with the
highest absolute DHM score was prioritized. Peaks covering
exons occurring within 200 bp of transcription start sites, and
also candidate exon flanks, were treated as peaks associated
with transcription initiation, and their annotations were sub-
sequently removed from the candidate exon flanks. Addition-
ally, annotations of peaks that failed to cover at least half an
exon’s length were removed. This ‘peak-leak’ filtering is illus-
trated in Fig. 2 B. 

DEU–DHM correlation 

Pearson correlation was used to measure the association be-
tween DEU and DHM scores. Taking into account the effect of
sample size on correlation, genes with fewer than three flanks 
were filtered out beforehand. For every histone mark, genes 
with a strong and significant correlation (R ≥ 0 . 5 , p F DR 

< 

0 . 05) between the annotated absolute DHM and DEU scores 
were obtained at the exon flanks (Fig. 3 A). This group of genes 
was additionally filtered to ensure that DHM peaks were an- 
notated only to flanks with non-zero DEU scores, i.e., flanks 
of alternative exons, and labeled as epispliced genes. Genes 
whose exon flanks were annotated with DEU scores but with- 
out DHM scores were classified as non-epispliced genes. The 
alternative exons of the epispliced and non-epispliced genes 
were labeled epispliced and non-epispliced exons, respectively.

RBP binding prediction 

In order to compare the behavior of RBPs at the flanks of the 
epispliced exons ( DEU & DHM ) relative to the flanks of the 
non-epispliced exons ( DEU & ¬ DHM ), MaxEntScan [ 26 ] 
was employed to score the 3’ and 5’ splice sites of these exons.

Query sequences 
With the intention of elucidating the general splicing mech- 
anism regulated by epigenetics, all flanks of epispliced exons 
associated with a histone mark h ⊆{H3K27ac, H3K27me3,
H3K36me3, H3K9me3, and H3K4me3} were consolidated 

from all pairwise analyses of embryonic stem cells. As con- 
trol, the flanks of non-epispliced exons that were reported in 

at least 70% of the analyses were collected. This was done to 

ensure there existed a set of common control exons while min- 
imizing the effect of condition-specific splicing events. Fig. 3 

illustrates this compilation. 

Query binding motifs 
RBP binding prediction was performed using RBPmap 

[ 27 ](V1.2). All RBPs in the internal database of RBPmap were 
considered. Additionally, RBPs for which eCLIP data in K562 

and HepG2 cell lines were available on ENCODE3 were in- 
cluded. In total, this resulted in 160 RBPs. For RBPs not in 

the RBPmap internal database, motifs were collected from 

cisBP-RNA [ 28 ], mCrossBase (minimum of 50 binding sites 
to support the motif) [ 29 ], and other literature sources as de- 
tailed in Supplementary Table S1 . For every RBP, each query 
exon flank was annotated with the putative binding score of 
the RBP in that flank. If an RBP was reported to have more 
than one putative binding site in a given flank, the strongest 
binding event was prioritized. The binding affinities were re- 
ported as Z-scores. A Z-score threshold of 2 was used to iden- 
tify strong binding events, marking events with smaller affini- 
ties as non-binding events. Zero imputation was performed 

to handle exon flanks that had no predicted binding events 
for a given RBP. The sequence logos of the RBP motifs were 
generated using the Python library, Log omak er [ 30 ]. 

Binary classification 

For every histone mark, the feature matrix consisted of the 
predicted binding scores of the 160 RBPs at the considered 

epispliced and non-epispliced exon flanks, and the corre- 
sponding binary class labels ( Supplementary Table S2 ). Base- 
line predictions were generated based on the original class 
stratification. The Random Forest binary classifiers and base- 
line models were implemented using the Python package 
sklearn [ 31 ]. Pearson correlation and Principal Component 
Analyses were performed to determine the need for feature se- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Figure 2. (A) Exons occurring in a window of ±200 bp of any TSS were excluded. (B) Peaks annotating flanks of exons within 200 bp of TSS were not 
used in this analysis. Peaks were required to cover at least half of an exon in order to be annotated to its flanks. 

Figure 3. (A) By correlating DEU and DHM scores annotated to e x on flanks in a gene-wise manner, genes with an absolute correlation coefficient larger 
than or equal to 0.5 ( p F DR < 0 . 05 ) were designated as epispliced genes . (B) Genes not possessing DHM annotations were classified as non-epispliced 
genes. The flanking regions ( ±200 bp ) of the alternative exons of these genes were extracted for further analysis. 
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lection. The models were run with default parameters, using
the Gini impurity measure to determine optimal node splits.
Class imbalance was addressed using weights inversely pro-
portional to class frequency. A Stratified cross-validation strat-
egy (K = 5) with 200 trees and 10 repeats per fold was chosen
to ensure robustness. The models were interpreted using the
SHAP values of the features. SHAP aids in understanding the
model’s interpretability on a per-observation basis. Features
that have high absolute SHAP values are anticipated to have
a greater impact on classification. In the current study, SHAP
values were used to clarify the classification of each exon flank
as belonging to an epispliced or non-epispliced exon, respec-
tively, by assessing how much the binding score of each RBP
contributes to that prediction. 

Validation using eCLIP evidence 

Processed eCLIP data were procured from ENCODE for the
HepG2 and K562 cell lines. The epispliced exon flanks were
obtained from genes with differential splicing events in the
HepG2 and K562 cell lines. To ensure confidence, only DEU
events reported by rMATS with a minimum of 10 reads sup-
porting them were considered. The differential ChIP-Seq and
eCLIP peaks occurring within these flanking regions were ob-
tained using Bedtools intersect, and visualized using the Gviz
[ 32 ] package. The ChIP seq alignment files were normalized
relative to each other using bamCompare [ 33 ] to obtain cov-
erage tracks. 

RBP expression analysis 

The read summarization tool featureCounts [ 34 ] was incorpo-
rated to generate a count matrix of all detected genes in the five
embryonic cell lines, as well as the two cancer cell lines. The
varying library sizes were normalized using the TMM method
from edgeR [ 35 ]. TMM-normalized TPM values were log 2 -
transformed and visualized. 

PPI with Chromatin-regulator proteins 

The proteins that were functionally associated with the
five histone marks were obtained from UniProt. Additional
proteins were obtained from the EpiFactors database [ 36 ].
This was done by filtering for the histone marks of in-
terest in the ’Target’ column. The list of proteins is pro-
vided in Supplementary Table S1 . PPI networks between
RBPs and chromatin-associated proteins were obtained us-
ing STRING [ 37 ] using two filters: Int eract io nso urces :
Experiment , Int eract io nsco re ≥ 0 . 4 . 

Statistical analyses 

For each of the five histone marks, RBPs with differen-
tial predicted binding preferences between the flanking re-
gions of epispliced ( DEU & DHM ) and non-epispliced (
DEU & ¬ DHM ) exons were identified. They were termed
episplicing or non-episplicing RBPs, depending on their rela-
tive binding strength. The SciPy implementation of W elch’ s t-
test was used to test the null hypothesis that the mean binding
scores of these RBPs do not vary between the different exon
classes.: epispliced exons ( DEU & DHM ), non-epispliced
exons ( DEU & ¬ DHM ), and constitutive exons with dereg-
ulated histone signals ( ¬ DEU & DHM ). 
Results 

Exon-skipping events of genes are associated with 

local epigenetic changes 

Data from five cell lineages were analyzed, belonging to differ- 
ent stages of differentiation: H1 cell line, ectodermal cell, en- 
dodermal cell, mesodermal cell, and neuronal stem cell. Based 

on the availability of histone modification ChIP-Seq data for 
these biosamples in the ENCODE compendium, H3K27ac,
H3K27me3, H3K36me3, H3K9me3, and H3K4me3 were 
chosen as the epigenetic signals of interest in this study. Af- 
ter preliminary filtering, a list of exons from well-supported 

transcripts was obtained. The tool rMATS was employed 

to characterize differential inclusion levels, i.e., DEU scores 
of these candidate exons. Then, the M-values of the ChIP- 
Seq peaks returned by MANorm were used as the DHM 

scores. 
In order to identify epigenetic signals at the exon-intron 

boundaries, flanking regions of length ±200bp were obtained 

for the differentially-used exons as target sequences of interest.
These exon flanks were then annotated with the DEU scores of 
the exons they were derived from, and with the DHM scores 
of the histone mark peaks occurring in these regions. As con- 
ducted in a previous study [ 20 ], we grouped and correlated the 
two scores in a gene-wise manner and extracted those genes 
whose absolute DEU and DHM values were Pearson corre- 
lated such that R ≥ 0 . 5 , p F DR 

< 0 . 05 ; these resulting genes 
were categorized as epispliced genes (Fig. 4 A, Supplementary 
Fig. S4 ). It was hypothesized that alternative splicing events 
of these genes may be regulated by the histone mark enriched 

in the ±200bp region of the differentially spliced exons. Epis- 
pliced genes associated with each of the five histone marks 
were obtained in each of the 10 pairwise analyses among the 
five cell lines (Fig. 4 B, Supplementary Table S2 ). While most 
of the identified epispliced genes were associated with a single 
histone modification, there were a few cases in which the DEU 

event(s) of the same gene coincided with two different histone 
signals (Fig. 4 D, Supplementary Table S2 ). Fig. 4 C shows the 
differential usage of an exon of gene HDAC2 between neu- 
ronal and mesodermal cells; the differential inclusion of the 
exon in neuronal stem cells is correlated with the differential 
magnitudes of the H3K36me3 and H3K39me3 peaks in the 
mesodermal and neuronal cell lines, respectively. 

RBP binding affinities can predict the local 
epigenetic state of alternative exons 

Next, the binding preference of RBP at the flanking regions 
of the alternative exons of the epispliced genes, the epispliced 

exons, was investigated. For comparison, non-epispliced genes 
were defined as those whose alternative splicing events were 
not associated with the chromatin state; the flanking regions 
of their alternative exons were treated as controls. For each 

histone mark, the epispliced and non-epispliced exon flanks 
were combined across the ten pairwise analyses into a sin- 
gle dataset, without overlaps between the classes. This com- 
binatorial approach enables the study of episplicing in a de- 
velopmental context, while also handling the disadvantage 
of data insufficiency in individual pairwise comparisons. As 
shown in Supplementary Table S1 , histone ChIP-Seq data 
were available for H3K27ac, H3K27me3, H3K4me3, and 

H3K9me3 in all cell lines, resulting in a common set of non- 
epispliced exon flanks. Meanwhile, ChIP-Seq data were not 
available for H3K36me3 in the ectodermal cell line, result- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Figure 4. Genes whose alternative splicing events were correlated to histone modifications annotated only to alternative exons were called epispliced 
genes ( R ≥ 0 . 5 , p F DR < 0 . 05 ); their alternative exons were called epispliced exons . (A) Manhattan plot illustrating the multistep filtering of candidate 
genes to obtain epispliced genes associated with H3K36me3. Genes passing ( R ≥ 0 . 5 ) and failing ( R < 0 . 5 ) the correlation coefficient thresholding are 
represented using dot and cross-markers, respectively. Candidate genes additionally filtered based on alternative exon-specific DHM peak enrichment 
are represented using diamond markers. Supplementary Fig. S4 shows similar plots for the other histone mark-associated epispliced genes. (B) Number 
of epispliced genes found for five histone marks from all pairwise analyses across the embryonic cell lines. The number of epispliced genes associated 
with H3K36me3 shown here corresponds to the number of diamond markers in A . (C) Two transcripts of an epispliced gene, HD A C2, whose alternative 
e x on inclusion was associated with the deregulation of H3K36me3 and H3K9me3 in the neuronal and mesodermal cell lines (highlighted in yellow). The 
�P SI score is positive for exons differentially included in the mesodermal cell. For each of the two histone marks shown, the normalized read densities 
of peak regions ( p F DR < 0 . 05 ) as reported by MAnorm are shown in the upper track, with the normalized read coverage obtained using bamCompare 
right below. The coverage tracks are provided to visualize the pattern of read density at the exon-intron boundaries within each biosample. Since the 
underlying normalization approaches of MAnorm and bamCompare differ greatly, the normalized read densities at the peak regions reported by these 
tools are not alw a y s concordant. (D) Number of epispliced genes a v ailable f or each histone mark, including those reported f or tw o different marks. 
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ng in episplicing analysis only being carried out for six pair-
ise analyses, as opposed to 10, explaining its elevated num-
er of non-epispliced exon flanks relative to the other marks
 Supplementary Fig. S1 A). Then, the tool RBPmap was used
o predict putative binding positions of 160 RBPs on the epis-
liced and non-epispliced exon flanks (Fig. 5 A). When visual-
zing the correlation among the RBPs based on their putative
inding strengths, we observed that in addition to the pro-
eins from the same family (CPEB, KHDRBS, RBMS, PABPC),
ome proteins with similar binding motifs showed strong as-
ociation with each other ( Supplementary Fig. S5 ). As there
ere only a few such correlated RBPs, feature selection was
ot performed. This choice was further supported by the in-
bility of the top principal components to capture most of the
ariability in the data ( Supplementary Fig. S6 ). 
Using the RBPmap-derived binding scores of the 160 RBPs
on these exon flanks, random forest classifiers were trained
to classify flanks as derived from either epispliced or non-
epispliced exons ( Supplementary Fig. S1 A, Supplementary
Table S2 ). Based on the PR -A UC metric, the optimistic perfor-
mance of the models indicated the ability to distinguish the
flanks of epispliced exons from non-epispliced exons based
on the binding affinities of RBPs (Fig. 5 C). The datasets of
the H3K27me3 and H3K4me3 models were skewed toward
the negative class ( Supplementary Fig. S1 A); the effect of this
class imbalance is reflected by their specificity and recall scores
( Supplementary Fig. S1 B). The recall-precision trade-off of
these models shows that these models were highly cautious. As
this study prioritizes the accurate prediction of epispliced exon
flanks, an emphasis was placed on minimizing false positives

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Figure 5. (A) Construction of the feature matrix. For a given exon flank, if an RBP was reported by RBPmap to have more than one putative binding site 
in a given flank, the strongest binding event was prioritized. (B) Putative binding scores of the identified episplicing and non-episplicing RBPs associated 
with H3K36me3. The flanking sequences of the non-epispliced exons are marked in gray, while those of the epispliced exons are highlighted in green. 
Lik e wise, the episplicing and non-episplicing RBPs associated with H3K36me3 are annotated in green and grey, respectively. (C) Performance of the 
random forest binary classifiers in comparison with baseline models. 
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over false negatives. We proceeded to interpret these models
despite their low recall, as they demonstrate reasonable preci-
sion ( Supplementary Figs S1 B and S7 ). 

RBPs preferentially bind to skipped exons marked 

by a histone mark 

Key features that contributed to model performance were
identified, which proved challenging, considering that RBP
binding events could not be treated as independent occur-
rences. SHAP values of the RBPs were used as the basis
to interpret the model, to identify which RBPs play a cru-
cial role in successfully distinguishing the exon flanks be-
tween the two categories. The RBPs with preferential pre-
dicted binding to flanks of epispliced exons relative to the
non-epispliced exons were identified, see Fig. 6 A. The model
prediction for each exon flank is influenced by the magni-
tude of correlation between the features. RBPs with similar
constituent binding domains and motifs exhibit comparable
binding affinities [ 38 ]. This results in highly correlated RBPs,
which may be treated as redundant features and attribute
low importance by the model [ 39 ]. Therefore, to avoid dis- 
carding relevant RBPs, Pearson correlation was computed to 

find those whose binding scores were strongly correlated to 

those of the RBPs selected using the SHAP scores (R ≥ 0 . 7 , 

p F DR 

< 0 . 05) . These resulting RBPs were classified as episplic- 
ing RBPs ( Supplementary Table S3 ). Adding correlated RBPs 
increased the number of episplicing RBPs by 1, 17, 9, and 14 

for H3K27me3, H3K36me3, H3K9me3, and H3K4me3, re- 
spectively ( Supplementary Fig. S10 ). 

Additionally, the same method above was used to identify 
RBPs whose binding events were predictive of non-epispliced 

exons. By definition, these non-episplicing RBPs were ex- 
pected to preferentially bind to alternative exons not marked 

by any of the five histone marks. The overlap between the non- 
episplicing RBPs obtained from the five histone-mark mod- 
els was minimal ( Supplementary Table S4 ). This implied that 
their splicing preferences were histone-mark specific, such that 
non-episplicing RBPs identified from a specific histone mark 

model were predicted to exhibit weak binding to the flank- 
ing regions of the alternative exons, which are marked by that 
chromatin modification. This was reiterated by the overlaps 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Figure 6. (A) SHAP values of the RBPs are positively and negatively associated with H3K36me3. Mean SHAP values of the RBPs were used to 
ascertain k e y model predictors, such that the RBPs are inf erred to bind pref erentially to either epispliced or non-epispliced e x on flanks. RBPs whose 
predicted binding was associated with a strong, positive SHAP value in most flanking regions of epispliced exons were classified as episplicing RBPs , 
while those with marked weak binding in epispliced exon flanks were labeled as non-episplicing RBPs . The list of episplicing and non-episplicing RBPs 
w as e xpanded to include the RBPs that w ere strongly correlated to them ( R > = 0.7 , p FDR < 0.05 ). SHAP plots of the other histone-mark features are 
shown in Supplementary Fig. S9 . (B) Binding motifs of episplicing RBPs associated with H3K36me3 (in green) are predominantly AU-rich, while the 
non-episplicing RBPs (in gray) displayed GC-richness. Supplementary Fig. S14 shows the binding motifs of the other histone mark-associated proteins. 
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etween the episplicing RBPs and non-episplicing RBPs of dif-
erent models. For instance, there were overlaps between epis-
licing RBPs from the H3K36me3, H3K9me3, and H3K4me3
odels with the non-episplicing RBPs from the H3K27me3
odel, and vice versa ( Supplementary Tables S3 and S4 ,

upplementary Fig. S14 ). This suggests that for each histone
ark, the binding events of the episplicing and non-episplicing
BPs were to be interpreted within the bounds of the classifier
ertaining to that histone mark. 
Alternatively-included exons have relatively weaker splice

ites than constitutive exons [ 40 , 41 ]. Accordingly, a dif-
erence in predicted splice site strengths between the epis-
liced and non-epispliced alternative exons was not observed
 Supplementary Fig. S8 ). However, core spliceosomal RBPs
ere predicted to exhibit a differential preference for ei-

her the epispliced or non-epispliced exons. For instance,
2AF2 was predicted as an episplicing RBP associated with
3K36me3 and H3K4me3, and as a non-episplicing RBP

f H3K27me3-marked exons ( Supplementary Tables S3 , S4 ).
The recognition and binding of U2AF2 at 3’ splice sites is fre-
quently observed [ 42 ]. This RBP’s tendency for non-specific
binding suggests that it may be regarded as an artifact. It
could also be argued that it is categorized as an episplic-
ing RBP because of its RNA-binding motif resemblance to
other predicted key model features (Fig. 8 ). However, previ-
ous studies have connected spliceosomal proteins to episplic-
ing; it has been shown that the spliceosome interacts with
the H3K4me3 reader CHD1 via member proteins of the U2-
snRNP complex [ 43 ]. Additionally, a recent study has shown
the increased inclusion of exons affected by U2AF2 interact-
ing with H3K36me3-annotated chromatin [ 44 ]. 

Sequence specificity of histone mark enrichment 
around exons 

Then, the binding motifs of the episplicing and non-
episplicing RBPs associated with each histone mark were com-
pared. Fig. 6 B shows that episplicing RBPs associated with
H3K36me3 are enriched in AU-rich motifs, while the bind-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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ing motifs of non-episplicing RBPs were GC-rich. This proved
similar for the RBPs associated with H3K9me3 and H3K4me3
( Supplementary Fig. 14 C and D), as expected, considering
the large overlap in the episplicing and non-episplicing RBPs
between the three marks ( Supplementary Tables S3 and S4 ).
This also supports the possible combinatorial regulation of
splicing by these histone marks, as hinted in Fig. 4 D. To
some extent, the RNA motif enrichment was inverted in
H3K27me3 ( Supplementary Fig. S14 B) with the episplicing
and non-episplicing RBPs showing an enrichment of GC
and AU motifs, respectively. This cross-overlap between epis-
plicing and non-episplicing RBPs of H3K36me3, H3K9me3
and H3K4me3, and H3K27me3 was previously discussed
( Supplementary Tables S3 and S4 ). It was difficult to ver-
ify a principal motif choice among the episplicing RBPs of
H3K27ac ( Supplementary Fig. S14 A). This could be explained
by the poor correlation between the binding events of these
RBPs ( Supplementary Fig. S10 C). 

Based on these findings, a question arises of whether RBP
binding affinities alone suffice to classify exon flanks. Upon vi-
sualizing the feature matrices of the five models as heatmaps,
it became apparent that the RBPs do not exhibit an exclu-
sive preference for either sequence class. However, episplic-
ing and non-episplicing RBPs associated with H3K36me3
and H3K9me3 are enriched in strong and weak binding
strengths at their respective epispliced exon flank sequences
(Fig. 5 B, Supplementary Fig. 11 C). No similar pattern of dif-
ferential binding affinity was detected for the episplicing and
non-episplicing RBPs associated with H3K27ac, H3K27me3,
and H3K4me3 ( Supplementary Fig. S11 A, S11 B, S11 D). An-
other contributing factor was the imbalance in the datasets of
H3K27me3 and H3K4me3 ( Supplementary Fig. S1 A), which
complicated determining the differential preference of the
RBPs between the two classes, based solely on visualization.
W elch’ s t-test was employed to compare the binding scores of
the episplicing and non-episplicing RBPs obtained for each hi-
stone mark model between the flanking sequences of the epis-
pliced and non-epispliced exons ( Supplementary Fig. S12 ). A
significant difference ( p F DR 

≤ 0 . 05 ) in binding strength dis-
tributions of episplicing RBPs associated with H3K36me3,
H3K9me3, and H3K4me3 between the flanking sequences
of the two exon types was found. Additionally, the bind-
ing score distribution of the non-episplicing RBPs associated
with H3K27ac, H3K27me3, and H3K9me3 also varied signif-
icantly ( p F DR 

≤ 0 . 05 ) between the two exon classes. 
Considering that the performance of each classifier is at-

tributed to the predictive power of its important features, i.e.,
the episplicing and non-episplicing RBPs, it was expected that
the performance of the classifier would deteriorate without
the information provided by these features. Surprisingly, that
was not the case. Upon observing the most important features
of these new models ( Supplementary Fig. S15 ), a similarity
in their motifs was revealed, namely regarding those of the
episplicing and non-episplicing RBPs reported by the original
model (Fig. 6 , Supplementary Fig. S14 ). This restates the pres-
ence of certain binding motifs in the vicinity of exons enriched
with differential epigenetic modifications. 

Consequently, it was expected that these predicted epis-
plicing RBPs would bind neighborhoods of exons marked by
deregulated histone signals regardless of the inclusion status
of the exons. In order to further study this, exons with lo-
cal differential histone peaks were collected for constitutively
spliced genes ( ¬ DEU & DHM ). The binding score dis-
tributions of the episplicing and non-episplicing RBPs were 
compared using W elch’ s t-test across the flanking regions of 
these exons, along with those of epispliced ( DEU & DHM 

) and non-epispliced ( DEU & ¬ DHM ) exons (Fig. 7 ,
Supplementary Fig. S13 , Supplementary Table S2 ). Interest- 
ingly, the binding scores of the episplicing RBPs associated 

with H3K36me3, H3K9me3, and H3K4me3 were stronger at 
the regions surrounding the alternative (epispliced) exons rel- 
ative to the constitutive exons ( p F DR 

≤ 0 . 01 ). However, they 
show stronger putative binding at the flanks of the constitu- 
tive exons than those of non-epispliced exons in the case of 
H3K36me3 ( p F DR 

≤ 0 . 001 ), suggesting a bias of H3K36me3 

deposition at AU-rich sequence motifs. AU-rich regions are 
commonly found in the 3’UTR regions of mRNAs [ 45 ]. The 
enrichment of H3K36me3 at 3’UTR elements [ 46 , 47 ] further 
supports this supposed preference. Furthermore, RBPs that 
bind these regions play roles in 3’UTR-linked RNA biogen- 
esis and splicing [ 48 ]. 

The non-episplicing RBPs associated with H3K9me3,
H3K27ac, and H3K27me3 exhibit significantly stronger pu- 
tative binding at the exon-intron regions of non-epispliced 

exons relative to the alternative and constitutive exons with 

DHM annotations ( p F DR 

≤ 0 . 001 ). While the binding scores 
of the episplicing RBPs associated with H3K27me3 do not dif- 
fer significantly between alternative (epispliced) and constitu- 
tive exons ( Supplementary Fig. S13 B), the binding pattern of 
non-episplicing RBPs is significantly stronger at the flanks of 
epispliced exons relative to constitutive exons with differential 
histone signal annotations ( p F DR 

≤ 0 . 001 ) ( Supplementary 
Fig. S13 D). 

Episplicing in HepG2-K562 cell lines 

Tissue-specific epigenetic states tailor the transcriptional pro- 
files in corresponding tissues [ 49 , 50 ]. We wanted to deter- 
mine if these findings were specific to the embryonic cell 
lines or could apply to other tissues as well. To that extent,
we analyzed whether eCLIP peaks were detected for any of 
the predicted episplicing RBPs within ± 200 bp of alterna- 
tive exons tagged by the histone marks of interest in each of 
the two cancer cell lines, K562 and HepG2. There was no 

ChIP-Seq data available for H3K27me3 in the HepG2 and 

K562 cell lines. Hence, the eCLIP evidence of the episplicing 
RBPs predicted to associate with H3K27me3 could not be re- 
viewed. Notably, only 11 of the 47 proteins for which eCLIP 

data were available were reported as episplicing RBPs. Specif- 
ically, eCLIP data could be analyzed for 4, 5, 1, and 7 epis- 
plicing RBPs, whose binding was predicted to associate with 

H3K27ac, H3K36me3, H3K9me3, and H3K4me3, respec- 
tively ( Supplementary Tables S1 , S3 ). The expression levels 
of all predicted episplicing RBPs are shown in Supplementary 
Fig. S18 . 

As expected, the epispliced genes associated with 

H3K36me3 were overrepresented relative to the other 
marks ( Supplementary Fig. S3 A). TIA1 and U2AF2 were 
predicted to associate with H3K36me3 (Fig. 8 ); eCLIP peaks 
of these two RBPs were found in the vicinity of the epispliced 

exons acquired from the HepG2-K562 cell-line pair. A total 
of 5885 high-confidence peaks for TIA1 in K562 and 10,732 

peaks for U2AF2 in HepG2 were identified from ENCODE3.
Assuming a uniform genomic distribution of these eCLIP 

peaks, the probability of detecting at least one peak within a 
200 bp exon flank window is highly significant, with P -values 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Figure 7. For each of the five histone marks, RBPs with differential predicted binding preferences between the flanking regions of epispliced 
( D EU & D HM) and non-epispliced ( D EU & ¬ D HM) e x ons w ere identified. T he y w ere termed episplicing or non-episplicing RBPs, depending on their 
relative binding strength. The distributions of their mean binding affinities at exon-flanking regions were compared across three classes of exons: 
epispliced ( DEU & DHM), non-epispliced ( DEU & ¬ DHM), and constitutive exons with deregulated histone signals ( ¬ DEU & DHM). (A –C) show the 
binding score distributions of episplicing RBPs predicted to associate with H3K36me3, H3K9me3, and H3K4me3, respectively. (D–F) show the binding 
score distributions of non-episplicing RBPs predicted to show weak binding to alternative exons marked by H3K36me3, H3K9me3, and H3K4me3, 
respectively. Supplementary Fig. S13 shows the distribution plots for H3K27ac and H3K27me3. 

Figure 8. SHAP scores of TIA1 reported in the H3K36me3 model are 
plotted against its predicted binding scores at the epispliced and 
non-epispliced e x on flanks. T he plot also displa y s the similarity of the 
binding score distribution between TIA1 and U2AF2. 
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f 3 . 923 × 10 

−4 for TIA1 and 7 . 154 × 10 

−4 for U2AF2.
xperimental evidence of direct interaction between these
BPs and proteins associated with H3K36me3 was not found

n the current literature. The coordination of the splicing,
pigenetic, and RBP-binding signals for two genes can be
bserved in Table 1 ; inspecting the table, there are varying
atterns between exon usage, histone modifications, and RBP
binding between K562 and HepG2, which can be categorized
into three cases. 

Case 1: Exon inclusion is positi vel y correlated with the histone
mark and eCLIP peaks 
In this case, the histone mark is assumed to regulate the splic-
ing of these exons by interacting with RBPs binding to a ±200
bp window around them. For instance, CD46 is a member of
the immune complement system, with roles in both innate and
adaptive immune responses [ 51 ]. The differential inclusion of
exon 13 in its mRNA results in two non-identical protein
products with varying C-terminal domains, leading to dissim-
ilar molecular signaling characteristics [ 52 , 53 ]. Increased in-
clusion of this exon was detected in the K562 cell line (Fig. 9 A)
in concordance with the enrichment of an H3K36me3 peak
marking this exon, along with an eCLIP peak for TIA1, a pre-
dicted episplicing RBP, at the 3’ exon flank. TIA1 was shown
to influence the recruitment of the U1 snRNP to the 5’ splice
sites by binding the downstream neighboring regions of the
splice sites [ 54–56 ]. Tang et al. conducted knockdown and
overexpression assays to characterize the role of specific RBPs
in the inclusion of this exon in HeLa, HEK293T, and Jurkat
cell lines [ 57 ]. Interestingly, it was found that TIA1 and TIAL1
promote exon inclusion, while SRSF1 and PTBP1 suppress it.
As eCLIP peak evidence was available for the two repressor
proteins, their binding around this exon could be examined.
While the study by Tang et al. postulated that PTBP1 pro-
motes exon 13 exclusion by binding its exonic silencing el-
ement, an eCLIP peak of PTBP1 was detected upstream of
exon 13 in HepG2 cells, where the exon usage is downregu-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
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Table 1. For certain episplicing RBPs predicted in embryonic cell lines, eCLIP peaks were detected in a 200 bp window around epispliced exons identified 
in K562 and HepG2. For these two cell lines, epispliced genes were identified based on their RNA-Seq and ChIP-Seq data, as before. This returned 6, 29, 
1, and 3 genes for H3K27ac, H3K36me3, H3K9me3, and H3K4me3, respectively ( Supplementary Fig. S3 A, Supplementary Table S2 ) 

Gene Exon coordinates DEU DHM eCLIP Case 

CD46 chr1:207790253-207790345 K562 H3K36me3 K562 TIA1 K562 Case 1 
MAP3K8 chr10:30437176-30437406 HepG2 H3K36me3 K562 TIA1 K562 Case 2 
TMTC4 chr13:100656381-100656468 K562 H3K36me3 HepG2 U2AF2 HepG2 Case 2 
ARF4 chr3:57577316-57577387 HepG2 H3K36me3 HepG2 U2AF2 K562 Case 3 
CD46 chr1:207790253-207790345 K562 H3K36me3 K562 U2AF2 HepG2 Case 3 
PUS7 chr7:105468337-105468463 K562 H3K36me3 K562 U2AF2 HepG2 Case 3 
RPS6KB1 chr17:59912684-59912804 K562 H3K36me3 K562 U2AF2 HepG2 Case 3 
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lated. No similar peaks of SRSF1 were found in either cell line.
In mesenchymal cells, the binding of PTBP1 has been linked
to H3K36me3-associated exclusion of exon 3b of the gene
FRGR2 [ 10 ]. Additionally, SRSF1 interacts with a H3K36me3
reader, Psip1 [ 11 ]. Wang et al. observed that TIA1 and TIAL1
bind the same regions, using iCLIP data in HeLa cells [ 58 ]. 

Altogether, these findings imply a possible epigenetic regula-
tory mechanism underlying the inclusion of exon 13 of CD46.

Case 2: Exon inclusion is negati vel y correlated with the his-
tone mark and eCLIP peaks 
The histone mark is now assumed to inhibit splicing of these
exons by interacting with RBPs binding to a ±200bp window
around them. Exon 2 of the gene MAP3K8 is differentially
included in the HepG2 cell line. However, a H3K36me3 ChIP-
Seq peak marks the exon in the K562 cell line, along with a
downstream TIA1 peak (Fig. 9 B). MAP3K8 is an oncogene
and kinase that participates in the inflammatory response of
various conditions [ 59–61 ]. The protein diversity of MAP3K8
is attributed to two alternate translation initiation sites [ 62 ].
The downstream effect of the differential usage of exon 2 is
not extensively reported. Contrary to the discussion above, in
this context, the binding of TIA1 seems to be associated with
decreased exon inclusion. The dual role of TIA1 in affecting
exon usage has been presented by previous studies, as well [ 58 ,
63 ]. 

Case 3: eCLIP peak is negati vel y correlated with the histone
mark and exon usage 
Here, binding of U2AF2, another splicing regulator predicted
as an episplicing RBP ( Supplementary Table S3 ), was detected
at the 5’ region of the 13th exon of CD46, overlapping the
intron-exon boundary in the HepG2 cell line (Fig. 9 A). It is a
subunit of a heterodimer that is part of the snRNP U2 Auxil-
iary Factor complex, which recognizes conserved splicing sig-
nals at the 3’ splice site of an intron, facilitating assembly of
the spliceosomal machinery at this region. Knockdown studies
of the RBP have shown both increased and decreased inclu-
sion of skipped exons [ 42 , 64 ], extending its role to include
splicing repression. 

Splicing events in which a histone mark was negatively cor-
related with exon usage and eCLIP peaks were also identi-
fied. Here, the histone mark is assumed to inhibit splicing
of these exons by regulating the transcriptional kinetics or
interacting with RBPs that do not possess eCLIP data on
ENCODE3. All usage events of epispliced exons from the
K562-HepG2 comparison under these categories are listed in
Supplementary Table S6 . 

The previous section suggested a predisposition of
H3K36me3 enrichment at AU-rich regions (Fig. 7 A). In the
K562-HepG2 comparison, out of 21 constitutive exons with 

deregulated H3K36me3 annotations, 3 exons were anno- 
tated with differential U2AF2 eCLIP peaks within a ±200 b p
boundary ( Supplementary Table S7 ). The pattern of U2AF2 

binding was positively correlated with DHM occurrence in 

two of these exons. Additionally, eCLIP peaks were also re- 
ported for EFTUD2 in the vicinity of three exons; they were 
positively correlated with H3K36me3 differential peak en- 
richment. While EFTUD2 is not identified as an episplicing 
RBP in this study, it has a binding motif characteristic of epis- 
plicing RBPs of H3K36me3 ( Supplementary Fig. S15 F). The 
H3K36me3 recognition protein ZMYND11 and the RBP EF- 
TUD2 form an adapter complex regulating intron retention 

[ 12 ]. 

Discussion 

In this study, two classes of alternative exons were identi- 
fied: those differentially co-occurring with at least one mark 

among H3K27ac, H3K27me3, H3K36me3, H3K9me3, and 

H3K4me3, and those marked by neither of these marks. The 
putative binding affinities of 160 RBPs at the exon-intron 

boundaries of these exons were obtained. Importantly, to 

date, only a subset of these RBPs possess functional annota- 
tions related to splicing. The remaining RBPs are yet uncon- 
nected to splicing, implicated in mRNA metabolism, or remain 

poorly characterized. Biological data is often characterized by 
high dimensionality. Based on the effectiveness of Random 

Forests in handling p >> n datasets [ 65 ], binary classifiers 
were trained for each of the five histone modifications consid- 
ered in this study to predict the class of an alternatively-spliced 

exon, based on putative binding scores of our candidate RBPs 
at its 5’ and 3’ flanking regions. Stringent filtering criteria were 
applied to identify high-confidence episplicing events, which 

yielded a focused dataset for each model. To ensure robustness 
of the models, we did not further distinguish whether certain 

RBPs were predicted to bind upstream or downstream of a 
specific exon; yet it is known that some RBPs exert different 
effects depending on their binding position relative to the exon 

[ 66 ]. It was examined whether the epigenetic signals occur- 
ring in the transcription termination neighborhood could have 
influenced the positive performance of the classifiers. How- 
ever, the 3’ terminal exons were underrepresented in the com- 
piled groups of epispliced exons ( Supplementary Fig. S2 ). Us- 
ing their SHAP measures, relatively important features were 
obtained and classified as either episplicing or non-episplicing 
RBPs. Upon inspecting the binding motifs of these RBPs, the 
differential binding preference of certain protein-binding mo- 
tifs could be discerned at the exonic neighborhoods ( ±200 b p ) 
marked by the epigenetic signals of interest. Not only were 
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Figure 9. (A) An alternative exon of CD46 is marked by H3K36me3 and bound by TIA1 and U2AF2. (B) An exon of MAP3K8 is differentially included and 
mark ed b y H3K36me3 in HepG2, but bound b y TIA1 in K562. T he differential e x on e xtended b y 200 bp on both sides is highlighted in y ello w. T he �P SI
score is positive for exons differentially included in the K562 cell line and negative for exons differentially included in the HepG2 cell line. Few transcripts 
are shown for ease of visualization. The normalized read densities of H3K36me3 peaks ( p F DR < 0 . 05 ) as reported by MAnorm are shown in the first 
track, f ollo w ed b y the normaliz ed read co v erage obtained using bamCompare right belo w. T he co v erage tracks are pro vided to visualiz e the pattern of 
read density at the e x on-intron boundaries within each biosample. Since the underlying normalization approaches of MAnorm and bamCompare differ 
greatly, the normalized read densities at the peak regions reported by these tools are not alw a y s concordant. Sashimi plots displaying RNA-Seq densities 
at e x on and junction regions are sho wn in Supplementary Figs S16 and S17 . 
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the average putative binding strengths of predicted episplicing
RBPs associated with H3K36me3, H3K9me3, and H3K4me3
stronger at the flanking regions of epispliced exons relative to
non-epsipliced exons, but also when compared to constitutive
exons with differential signal enrichment of the same histone
mark. Finally, eCLIP data from ENCODE in the HepG2 and
K562 cell lines were used to support TIA1 and U2AF2 as po-
tential episplicing RBPs, as predicted by our model in the em-
bryonic cell lines. 

Epigenetic modifications have been indicated in regulating
local splicing events through their influence on the kinetics of
transcription, by affecting co-transcriptional splicing events,
or by means of protein-protein interactions (PPI) between
splicing factors and chromatin-reader proteins [ 67 ]. Experi-
mental evidence supporting direct PPIs between chromatin-
associated proteins and the predicted episplicing RBPs was
found using STRING ( Supplementary Table S5 ), suggest-
ing potential adaptor mechanisms involved in embryonic
epigenetically-regulated alternative splicing events. The confi-
dence of these interactions, as reported by STRING, ranged
from moderate (0.5) to strong ( ≥ 0.7). Evidence of inter-
actions between these reader proteins and non-episplicing
RBPs exists, as well ( Supplementary Table S5 ). BRD4 is a
bromodomain-containing protein that functions in maintain-
ing chromatin structure and recognizing histone acetylation
tags [ 68 ]. It co-purifies with XRCC6, a poorly characterized
RBP implicated in RNA editing [ 69 , 70 ]. This RBP also in-
teracts with CREBP, a histone acetyltransferase [ 71 ], and also
with the core histone protein H31. RALY or HNRPCL2 reg-
ulates alternative splicing [ 72 , 73 ]. This RBP also forms a PPI
with BRD1, which acts as a weak H3K36me3 reader [ 74 ]. A
recent investigation suggested that TRNAU1AP may function
as a splicing factor in this context [ 75 ]. Here, TRNAU1AP was
identified as an episplicing factor associated with H3K36me3,
H3K9me3, and H3K4me3 ( Supplementary Table S3 ). Studies
in yeast show that this RBP interacts with SETD2, a H3K36
methyltransferase; SETD2 was shown to deposit H3K36me3
in a co-transcriptional manner [ 76 , 77 ]. Furthermore, Almeida
et al. inhibited the splicing of select genes and subsequently
noticed a reduced recruitment of SETD2 [ 78 ], implying that
there is a bidirectional exchange of information between
post-transcriptional processing events and the epigenetic en-
vironment. The interaction between yeast homologs of TR-
NAU1AP and PHF5A has also been studied. Interestingly,
PHF5A has roles in splicing, transcription, and the post-
translational modification of histones. It is a member of the U2
snRNP spliceosomal complex. PHF5A also regulates RNA Pol
II elongation and deposition of H3K36me3 marks by interact-
ing with the PAF1C complex [ 79 ]. RC3H1, an RBP with an
unknown role in splicing, interacts with TRIM28, a recruiter
of H3K9me3 writer SET proteins [ 80 ], which also interacts
with HP1 [ 81 ], a reader protein of H3K9me3. KHDRBS1
binds RNA with roles in alternative splicing [ 82 ], addition-
ally interfacing with TRIM28. We postulate that H3K36me3
may act as a switch controlling the binding of RBPs, which in
turn may regulate splicing outcomes (Fig. 7 A, Supplementary
Table S7 ). 

Luco et al. reported that skipped exons with weaker PTB-
binding sites were prone to the influence of an adaptor com-
plex comprised of the splicing factor PTBP1 and the chro-
matin reader protein MRG15, bridging exon usage with local
H3K36me3 modifications [ 10 ]. This may account for PTBP1
not being reported as an episplicing RBP within this study,
considering that the binding strengths of RBPs were used as 
a positive indicator, bridging the splicing events of alterna- 
tive exons with their adjacent epigenetic state. Comparing 
the binding scores, PTBP1 was moderately correlated with 

some of the identified H3K36me3-associated episplicing RBPs 
( R ≈ 0 . 5 , p F DR 

< 0 . 05 ). PTBP1 is predicted, however, as an
episplicing RBP associated with H3K4me3 ( Supplementary 
Figs S9 D and S14 D). The Psip1-SRSF1 complex was shown to 

regulate the inclusion of exons in the vicinity of H3K36me3 

deregulation [ 11 ]. However, the binding scores of SRSF1 were 
poorly correlated with the identified reported episplicing RBPs 
( R ≈ 0 . 3 , p F DR 

< 0 . 05 ). The findings of this study are not in-
tended to restrict the components of the (epi)splicing control 
module solely to the important RBPs identified by the classi- 
fiers. Instead, we recommend using the shared characteristics 
of the binding motifs of these RBPs as a framework to un- 
cover an additional layer of splicing-associated regulatory se- 
quence signals. For instance, Yearim et al. demonstrated that 
HP1, a chromodomain protein that recognizes H3K9me3, in- 
teracts with members of the U2 snRNP [ 83 ]. While U2AF2 

was identified here as an episplicing RBP associated with 

H3K36me3 and H3K4me3, the motif similarity among the 
episplicing RBPs of H3K9me3, with these two marks, sup- 
ports the possibility of U2AF2 functioning as an episplicing 
RBP of H3K9me3, as well. 

The potential epigenetic regulation of microexon inclusion 

has also been reported within the scope of this study. These ex- 
ons are ∼30 nucleotides in length [ 84 ] and have been strongly 
associated with neuronal splicing events during development 
[ 85 , 86 ], as well as in some neurological pathologies [ 87 ].
While the mean lengths of the epispliced exons ranged be- 
tween 125 and 140 base pairs ( Supplementary Fig. S3 B), nine 
such epispliced microexons were detected ( Supplementary 
Table S8 ). Four of these exons were differentially used in 

the neuronal cell line. Carlo et al. indicated the role of SF1 

in microexon definition, whereby it increases recognition of 
upstream exons [ 88 ]. Remarkably, SF1 was identified here 
as an episplicing RBP associated with H3K36me3. Another 
study has notably reported regulatory roles of PTBP1 and 

RBFOX in microexon usage [ 89 ]. As mentioned previously,
PTBP1 is an RBP known to bridge exon-specific H3K36me3 

enrichment with differential inclusion of the exon [ 10 ]. RB- 
FOX1 was predicted here as an episplicing RBP associated 

with H3K27ac ( Supplementary Figs S11 A, S14 A). 
The approaches used to observe the epigenetic regulation 

of splicing outcomes in this study have some caveats. A win- 
dow size of 200 bp was used to identify deregulated histone 
signals at the exon boundaries. The splicing of non-epispliced 

exons is hypothesized to be independent of the epigenetic state 
since they lack deregulated histone peaks in their 200 bp-long 
flanks. However, there might be differential histone signals 
outside this fixed window [ 19 ] that may regulate the splicing 
of these exons. A smaller window offers a more confident view 

of episplicing events at the cost of missing long-range interac- 
tions. In other cases, filtering approaches may lead to the ex- 
clusion of valid episplicing events. For instance, histone modi- 
fication peaks localizing within a 200 bp window to transcrip- 
tion start sites were treated as those functionally associated 

solely with transcription. However, these differential modifi- 
cation events could play dual roles in transcriptional and splic- 
ing regulation. It is also worth mentioning that RBPmap uses 
a sequence similarity-based approach to predict RNA-RBP 

crosstalk, without considering the influence of RNA structural 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data


RNA-binding proteins connect Exon usage to the chromatin 13 

c  

A  

t  

f
 

s  

t  

g  

o  

i  

t  

i  

i  

i  

g

A

W  

M  

t
 

D  

[  

i  

M  

p  

W

S

S  

f

C

N

D

R  

w  

e  

I  

T  

z

R

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/4/lqaf161/8376688 by U

niversitaet des Saarlandes user on 21 January 2026
onformation on the strength of these predicted interactions.
lternative tools that utilize predicted [ 90–92 ] or experimen-

al [ 93 ] RNA structural information along with the sequence
eatures may offer more precise RBP-binding predictions. 

By focusing on coordinated changes in exon usage and hi-
tone modifications in embryonic cell lines, epigenetic regula-
ion of splicing events in differentiation could be examined in
reater detail. Specifically, histone mark-specific patterns were
bserved among the regulatory elements comprising exon-

ntron junctions. Exons marked individually or in combina-
ion by H3K36me3, H3K9me3, and H3K4me3 exhibited sim-
lar RBP-binding motifs. Future work would require similar
nvestigations in other cellular contexts to verify if these find-
ngs are specific to embryonic differentiation or are part of a
eneral splicing mechanism. 
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