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Abstract

Exonic enrichment of histone marks hints at their role in regulating alternative splicing. This study aims to connect the transcriptome and
epigenome in the context of splicing outcomes in embryonic cell lines. The tools rIMATS and MANorm were used to obtain estimates of dif-
ferential inclusion of exons and differential enrichment of epigenetic signals, respectively. Two classes of alternative exons were identified in
embryonic cell lines: those differentially co-occurring with at least one mark among H3K27ac, H3K27me3, H3K36me3, H3K9me3, and H3K4me3,
and those marked by neither of these marks. Binary classifiers were trained using RNA-binding protein (RBP) binding affinities on the flanking
regions of these exons. This resulted in a set of RBPs, whose putative binding was predicted to associate local chromatin modification marking
an exon with its differential inclusion, some of which have been experimentally shown to interact with histone mark reader proteins. \We spec-
ulate that sequence signals harbored at exon-intron flanks regulate differential splicing of exons, marked by at least one of the five epigenetic
signatures. Finally, eCLIP data from ENCODE for the HepG2 and K562 cell lines support TIA1 and U2AF2 as potential episplicing RBPs, as

predicted by our model in the embryonic cell lines.

Introduction

An important aspect of protein diversity is the alternative in-
clusion of exons in mRNA transcripts of genes. It is ubiqui-
tously known that by regulating chromatin accessibility, his-
tone modifications promote or repress transcription [1]. Splic-
ing events that occur in a co-transcriptional manner suggest
that the regulatory effects of the chromatin state may ex-
tend beyond DNA to the transcribed RNA, influencing splic-
ing events. Multiple studies have shown that specific post-
transcriptional histone modifications may be enriched at ex-
ons [2-5]. Hence, the chromatin context is speculated to reg-
ulate splicing, either indirectly by guiding transcription kinet-
ics [6-9], or mechanistically through chromatin-adaptor com-
plexes [10-12].

In addition to studies that uncovered chromatin-associated
splicing events at gene resolution [10, 13, 14], machine learn-
ing approaches have been used to decipher relationships be-
tween epigenetic modifications and splicing events at a larger
scale. One study on splicing events in the mammalian brain
used epigenomic signals to predict the type of alternative splic-
ing event of exons through a Random forest classifier [15].
Deep-learning models have been used to predict inclusion lev-
els of exons based on the epigenetic signals occurring in their
neighborhood [16, 17]. A Random Forest model was used by
Agirre et al. to classify exons into four different categories of
inclusion levels, based on the state of the adjacent chromatin
[18]. In a recent preprint, Manz et al. employ Random For-
est models and find observed and imputed epigenetic features
predictive of exon usage status [19].

Following up on previous studies that reported that dif-
ferential exon usage (DEU) is associated with local epige-
netic marks in embryonic development [20-22], this study fo-
cused on the analysis of epigenetics-associated splicing events
in early differentiation. The usage of an exon is determined
by the coordination of various cis and trans-regulatory ele-

ments, the most fundamental of which is the recognition of
the splice site by members of the spliceosome. Here, the pu-
tative binding affinities of RNA-binding proteins (RBP) at the
exon-intron junctions of differentially used exons were used to
predict their local chromatin state (Fig. 1). Via a Random For-
est classifier, a set of RBPs was determined that were purported
to show either stronger or weaker binding to the flanking re-
gions of exons marked by a differential histone modification
(DHM), relative to those of alternative exons not marked by
either of the histone marks of interest. Upon examining the
motifs of these RBPs, histone mark-specific enrichment of se-
quence signals was found, suggesting the presence of another
layer of splicing regulation connecting the chromatin to the
transcriptome. In fact, for the HepG2 and K562 cell lines,
there exists eCLIP evidence from the ENCODE project sup-
porting the binding of two of these predicted RBPs, TIA1, and
U2AF2, in parallel to changes in the H3K36me3 signal adja-
cent to skipped exons.

Materials and methods

High-throughput sequencing datasets

Transcriptomic data were obtained from the resources of the
ENCODE project for ectodermal, endodermal, mesodermal,
neuronal stem cells, H1, K562, and HepG2 cell lines, respec-
tively. The accompanying ChIP-Seq data for these biosamples
were downloaded for histone marks H3K27ac, H3K27me3,
H3K4me3,H3K9me3, and H3K36me3. The eCLIP data avail-
able for HepG2 and K562 cell lines were obtained from the
ENCODES3 project for 47 proteins. A detailed list of all con-
sidered data is shown in Supplementary Table S1.

Candidate Exons

All annotations were based on the Gencode human reference
GRCh38, release V24. To focus on splicing events from well-
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Figure 1. DHM signals and RNA-RBP interaction events were studied at
the exon-intron margins of alternative exons.

supported transcripts, only exons belonging to transcripts
with support levels (TSL) 1-3 were considered. Of these ex-
ons, those found within a 200 bp window of any annotated
transcription start sites (TSS) with support levels 1-5 were
excluded in order to avoid studying the effects of chromatin
marks associated with transcription initiation (Fig. 2A). The
remaining exons were considered candidate exons of inter-
est. The exon coordinates were obtained from the GFF3 file.
A combination of BEDtools [23] and bash utilities was used
to retrieve the candidate exons and their flanking sequences
(£200 bp).

DEU analysis

rMATS(V4.2.0) [24] was used to determine differential inclu-
sion and exclusion levels of exons of expressed genes in each
cell-line pair. Skipped and mutually exclusive exons supported
by junction reads were analyzed. Percent Spliced-In (PSI) val-
ues are computed as the ratio of the number of junction reads
supporting the inclusion of an exon to the total number of
junction reads supporting both inclusion and exclusion of that
exon. This test statistic returned by rMATS was used as the
DEU score. A DEU threshold of 0.2 was used to mark exons
with |[DEU| > 0.2 and prpr < 0.05 as alternative exons.
All other candidate exons of these differentially spliced genes
were given a DEU score of 0. The usage scores of candidate
exons were extrapolated to their flanks, as shown in Fig. 3,
using BEDtools.

DHM analysis

MANorm(V1.3.0) [25] was used in order to identify re-
gions with DHMs in a pairwise manner across all available
epigenomes, with default parameters. The log2 fold change
of the read density (M-value) at each peak region was used
as DHM score ( prpr < 0.05 ). Common (i.e., overlapping)
peaks identified in samples of both conditions were filtered
out. The intersect command from the BEDtools suite was used
to annotate candidate exon flanks with the peak scores re-
ported by MANorm. Zero imputation was performed to an-
notate flanks that possess no differential peaks. If more than
one peak was detected in the same flank, the peak with the
highest absolute DHM score was prioritized. Peaks covering
exons occurring within 200 bp of transcription start sites, and
also candidate exon flanks, were treated as peaks associated
with transcription initiation, and their annotations were sub-
sequently removed from the candidate exon flanks. Addition-
ally, annotations of peaks that failed to cover at least half an
exon’s length were removed. This ‘peak-leak’ filtering is illus-
trated in Fig. 2B.

DEU-DHM correlation

Pearson correlation was used to measure the association be-
tween DEU and DHM scores. Taking into account the effect of

sample size on correlation, genes with fewer than three flanks
were filtered out beforehand. For every histone mark, genes
with a strong and significant correlation (R > 0.5, prpr <
0.05) between the annotated absolute DHM and DEU scores
were obtained at the exon flanks (Fig. 3A). This group of genes
was additionally filtered to ensure that DHM peaks were an-
notated only to flanks with non-zero DEU scores, i.e., flanks
of alternative exons, and labeled as epispliced genes. Genes
whose exon flanks were annotated with DEU scores but with-
out DHM scores were classified as non-epispliced genes. The
alternative exons of the epispliced and non-epispliced genes
were labeled epispliced and non-epispliced exons, respectively.

RBP binding prediction

In order to compare the behavior of RBPs at the flanks of the
epispliced exons ( DEU & DHM ) relative to the flanks of the
non-epispliced exons ( DEU & —DHM ), MaxEntScan [26]
was employed to score the 3” and 5’ splice sites of these exons.

Query sequences

With the intention of elucidating the general splicing mech-
anism regulated by epigenetics, all flanks of epispliced exons
associated with a histone mark » C{H3K27ac, H3K27me3,
H3K36me3, H3K9me3, and H3K4me3} were consolidated
from all pairwise analyses of embryonic stem cells. As con-
trol, the flanks of non-epispliced exons that were reported in
at least 70% of the analyses were collected. This was done to
ensure there existed a set of common control exons while min-
imizing the effect of condition-specific splicing events. Fig. 3
illustrates this compilation.

Query binding motifs

RBP binding prediction was performed using RBPmap
[27](V1.2). All RBPs in the internal database of RBPmap were
considered. Additionally, RBPs for which eCLIP data in K562
and HepG2 cell lines were available on ENCODE3 were in-
cluded. In total, this resulted in 160 RBPs. For RBPs not in
the RBPmap internal database, motifs were collected from
cisBP-RNA [28], mCrossBase (minimum of 50 binding sites
to support the motif) [29], and other literature sources as de-
tailed in Supplementary Table S1. For every RBP, each query
exon flank was annotated with the putative binding score of
the RBP in that flank. If an RBP was reported to have more
than one putative binding site in a given flank, the strongest
binding event was prioritized. The binding affinities were re-
ported as Z-scores. A Z-score threshold of 2 was used to iden-
tify strong binding events, marking events with smaller affini-
ties as non-binding events. Zero imputation was performed
to handle exon flanks that had no predicted binding events
for a given RBP. The sequence logos of the RBP motifs were
generated using the Python library, Logomaker [30].

Binary classification

For every histone mark, the feature matrix consisted of the
predicted binding scores of the 160 RBPs at the considered
epispliced and non-epispliced exon flanks, and the corre-
sponding binary class labels (Supplementary Table S2). Base-
line predictions were generated based on the original class
stratification. The Random Forest binary classifiers and base-
line models were implemented using the Python package
sklearn [31]. Pearson correlation and Principal Component
Analyses were performed to determine the need for feature se-

9z0z Aenuer |z uo Jasn sapuejees sap JaelsIaAluN Aq 8899/ €8/19Liebl/y///a1014e/qebieu/woo dno-olwapese//:sdjiy woly papeojumoq


https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data

A
iy

200 bp

B
B B

200 bp

200 bp

X
P

—

|

CJ O
) )
) O

RNA-binding proteins connect Exon usage to the chromatin

Differential Histone Mark 1 Differential Histone Mark 2

I
= 33—
-

|M-value]

[M-value]  |M-value| M-value| |M-valus|

M-value]

l Peak-leaks Filtering

[M-value] M-valus]

Figure 2. (A) Exons occurring in a window of £200bp of any TSS were excluded. (B) Peaks annotating flanks of exons within 200 bp of TSS were not
used in this analysis. Peaks were required to cover at least half of an exon in order to be annotated to its flanks.
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Figure 3. (A) By correlating DEU and DHM scores annotated to exon flanks in a gene-wise manner, genes with an absolute correlation coefficient larger
than or equal to 0.5 (prpr < 0.05) were designated as epispliced genes. (B) Genes not possessing DHM annotations were classified as non-epispliced
genes. The flanking regions (£200bp) of the alternative exons of these genes were extracted for further analysis.
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lection. The models were run with default parameters, using
the Gini impurity measure to determine optimal node splits.
Class imbalance was addressed using weights inversely pro-
portional to class frequency. A Stratified cross-validation strat-
egy (K = 5) with 200 trees and 10 repeats per fold was chosen
to ensure robustness. The models were interpreted using the
SHAP values of the features. SHAP aids in understanding the
model’s interpretability on a per-observation basis. Features
that have high absolute SHAP values are anticipated to have
a greater impact on classification. In the current study, SHAP
values were used to clarify the classification of each exon flank
as belonging to an epispliced or non-epispliced exon, respec-
tively, by assessing how much the binding score of each RBP
contributes to that prediction.

Validation using eCLIP evidence

Processed eCLIP data were procured from ENCODE for the
HepG2 and K562 cell lines. The epispliced exon flanks were
obtained from genes with differential splicing events in the
HepG2 and K562 cell lines. To ensure confidence, only DEU
events reported by rMATS with a minimum of 10 reads sup-
porting them were considered. The differential ChIP-Seq and
eCLIP peaks occurring within these flanking regions were ob-
tained using Bedtools intersect, and visualized using the Gviz
[32] package. The ChIP seq alignment files were normalized
relative to each other using bamCompare [33] to obtain cov-
erage tracks.

RBP expression analysis

The read summarization tool featureCounts [34] was incorpo-
rated to generate a count matrix of all detected genes in the five
embryonic cell lines, as well as the two cancer cell lines. The
varying library sizes were normalized using the TMM method
from edgeR [35]. TMM-normalized TPM values were log;-
transformed and visualized.

PPI with Chromatin-regulator proteins

The proteins that were functionally associated with the
five histone marks were obtained from UniProt. Additional
proteins were obtained from the EpiFactors database [36].
This was done by filtering for the histone marks of in-
terest in the ’Target’ column. The list of proteins is pro-
vided in Supplementary Table S1. PPI networks between
RBPs and chromatin-associated proteins were obtained us-
ing STRING [37] using two filters: Interactionsources :
Experiment, Interactionscore > 0.4 .

Statistical analyses

For each of the five histone marks, RBPs with differen-
tial predicted binding preferences between the flanking re-
gions of epispliced ( DEU & DHM ) and non-epispliced (
DEU & —DHM ) exons were identified. They were termed
episplicing or non-episplicing RBPs, depending on their rela-
tive binding strength. The SciPy implementation of Welch’s t-
test was used to test the null hypothesis that the mean binding
scores of these RBPs do not vary between the different exon
classes.: epispliced exons ( DEU & DHM ), non-epispliced
exons ( DEU & —=DHM ), and constitutive exons with dereg-
ulated histone signals (=DEU & DHM ).

Results

Exon-skipping events of genes are associated with
local epigenetic changes

Data from five cell lineages were analyzed, belonging to differ-
ent stages of differentiation: H1 cell line, ectodermal cell, en-
dodermal cell, mesodermal cell, and neuronal stem cell. Based
on the availability of histone modification ChIP-Seq data for
these biosamples in the ENCODE compendium, H3K27ac,
H3K27me3, H3K36me3, H3K9me3, and H3K4me3 were
chosen as the epigenetic signals of interest in this study. Af-
ter preliminary filtering, a list of exons from well-supported
transcripts was obtained. The tool rMATS was employed
to characterize differential inclusion levels, i.e., DEU scores
of these candidate exons. Then, the M-values of the ChIP-
Seq peaks returned by MANorm were used as the DHM
scores.

In order to identify epigenetic signals at the exon-intron
boundaries, flanking regions of length +200bp were obtained
for the differentially-used exons as target sequences of interest.
These exon flanks were then annotated with the DEU scores of
the exons they were derived from, and with the DHM scores
of the histone mark peaks occurring in these regions. As con-
ducted in a previous study [20], we grouped and correlated the
two scores in a gene-wise manner and extracted those genes
whose absolute DEU and DHM values were Pearson corre-
lated such that R > 0.5, pepr < 0.05; these resulting genes
were categorized as epispliced genes (Fig. 4A, Supplementary
Fig. S4). It was hypothesized that alternative splicing events
of these genes may be regulated by the histone mark enriched
in the +200bp region of the differentially spliced exons. Epis-
pliced genes associated with each of the five histone marks
were obtained in each of the 10 pairwise analyses among the
five cell lines (Fig. 4B, Supplementary Table S2). While most
of the identified epispliced genes were associated with a single
histone modification, there were a few cases in which the DEU
event(s) of the same gene coincided with two different histone
signals (Fig. 4D, Supplementary Table S2). Fig. 4C shows the
differential usage of an exon of gene HDAC2 between neu-
ronal and mesodermal cells; the differential inclusion of the
exon in neuronal stem cells is correlated with the differential
magnitudes of the H3K36me3 and H3K39me3 peaks in the
mesodermal and neuronal cell lines, respectively.

RBP binding affinities can predict the local
epigenetic state of alternative exons

Next, the binding preference of RBP at the flanking regions
of the alternative exons of the epispliced genes, the epispliced
exons, was investigated. For comparison, non-epispliced genes
were defined as those whose alternative splicing events were
not associated with the chromatin state; the flanking regions
of their alternative exons were treated as controls. For each
histone mark, the epispliced and non-epispliced exon flanks
were combined across the ten pairwise analyses into a sin-
gle dataset, without overlaps between the classes. This com-
binatorial approach enables the study of episplicing in a de-
velopmental context, while also handling the disadvantage
of data insufficiency in individual pairwise comparisons. As
shown in Supplementary Table S1, histone ChIP-Seq data
were available for H3K27ac, H3K27me3, H3K4me3, and
H3K9me3 in all cell lines, resulting in a common set of non-
epispliced exon flanks. Meanwhile, ChIP-Seq data were not
available for H3K36me3 in the ectodermal cell line, result-
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Figure 4. Genes whose alternative splicing events were correlated to histone modifications annotated only to alternative exons were called epispliced
genes (R > 0.5, prpr < 0.05); their alternative exons were called epispliced exons. (A) Manhattan plot illustrating the multistep filtering of candidate
genes to obtain epispliced genes associated with H3K36me3. Genes passing (R > 0.5) and failing (R < 0.5) the correlation coefficient thresholding are
represented using dot and cross-markers, respectively. Candidate genes additionally filtered based on alternative exon-specific DHM peak enrichment
are represented using diamond markers. Supplementary Fig. S4 shows similar plots for the other histone mark-associated epispliced genes. (B) Number
of epispliced genes found for five histone marks from all pairwise analyses across the embryonic cell lines. The number of epispliced genes associated
with H3K36me3 shown here corresponds to the number of diamond markers in A. (C) Two transcripts of an epispliced gene, HDAC2, whose alternative
exon inclusion was associated with the deregulation of H3K36me3 and H3K9me3 in the neuronal and mesodermal cell lines (highlighted in yellow). The
APSI score is positive for exons differentially included in the mesodermal cell. For each of the two histone marks shown, the normalized read densities
of peak regions (pgpr < 0.05) as reported by MAnorm are shown in the upper track, with the normalized read coverage obtained using bamCompare
right below. The coverage tracks are provided to visualize the pattern of read density at the exon-intron boundaries within each biosample. Since the
underlying normalization approaches of MAnorm and bamCompare differ greatly, the normalized read densities at the peak regions reported by these
tools are not always concordant. (D) Number of epispliced genes available for each histone mark, including those reported for two different marks.

ing in episplicing analysis only being carried out for six pair- Using the RBPmap-derived binding scores of the 160 RBPs
wise analyses, as opposed to 10, explaining its elevated num- on these exon flanks, random forest classifiers were trained
ber of non-epispliced exon flanks relative to the other marks  to classify flanks as derived from either epispliced or non-
(Supplementary Fig. S1A). Then, the tool RBPmap was used  epispliced exons (Supplementary Fig. S1A, Supplementary
to predict putative binding positions of 160 RBPs on the epis- ~ Table S2). Based on the PR-AUC metric, the optimistic perfor-
pliced and non-epispliced exon flanks (Fig. SA). When visual- mance of the models indicated the ability to distinguish the
izing the correlation among the RBPs based on their putative flanks of epispliced exons from non-epispliced exons based
binding strengths, we observed that in addition to the pro- on the binding affinities of RBPs (Fig. 5C). The datasets of
teins from the same family (CPEB, KHDRBS, RBMS, PABPC), the H3K27me3 and H3K4me3 models were skewed toward

some proteins with similar binding motifs showed strong as-  the negative class (Supplementary Fig. S1A); the effect of this
sociation with each other (Supplementary Fig. S5). As there  class imbalance is reflected by their specificity and recall scores
were only a few such correlated RBPs, feature selection was (Supplementary Fig. S1B). The recall-precision trade-off of
not performed. This choice was further supported by the in- these models shows that these models were highly cautious. As

ability of the top principal components to capture most of the  this study prioritizes the accurate prediction of epispliced exon
variability in the data (Supplementary Fig. S6). flanks, an emphasis was placed on minimizing false positives
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Figure 5. (A) Construction of the feature matrix. For a given exon flank, if an RBP was reported by RBPmap to have more than one putative binding site
in a given flank, the strongest binding event was prioritized. (B) Putative binding scores of the identified episplicing and non-episplicing RBPs associated
with H3K36me3. The flanking sequences of the non-epispliced exons are marked in gray, while those of the epispliced exons are highlighted in green.
Likewise, the episplicing and non-episplicing RBPs associated with H3K36me3 are annotated in green and grey, respectively. (C) Performance of the

random forest binary classifiers in comparison with baseline models.

over false negatives. We proceeded to interpret these models
despite their low recall, as they demonstrate reasonable preci-
sion (Supplementary Figs S1B and S7).

RBPs preferentially bind to skipped exons marked
by a histone mark

Key features that contributed to model performance were
identified, which proved challenging, considering that RBP
binding events could not be treated as independent occur-
rences. SHAP values of the RBPs were used as the basis
to interpret the model, to identify which RBPs play a cru-
cial role in successfully distinguishing the exon flanks be-
tween the two categories. The RBPs with preferential pre-
dicted binding to flanks of epispliced exons relative to the
non-epispliced exons were identified, see Fig. 6A. The model
prediction for each exon flank is influenced by the magni-
tude of correlation between the features. RBPs with similar
constituent binding domains and motifs exhibit comparable
binding affinities [38]. This results in highly correlated RBPs,
which may be treated as redundant features and attribute

low importance by the model [39]. Therefore, to avoid dis-
carding relevant RBPs, Pearson correlation was computed to
find those whose binding scores were strongly correlated to
those of the RBPs selected using the SHAP scores (R > 0.7,
pepr < 0.05). These resulting RBPs were classified as episplic-
ing RBPs (Supplementary Table S3). Adding correlated RBPs
increased the number of episplicing RBPs by 1,17, 9, and 14
for H3K27me3, H3K36me3, H3K9me3, and H3K4me3, re-
spectively (Supplementary Fig. S10).

Additionally, the same method above was used to identify
RBPs whose binding events were predictive of non-epispliced
exons. By definition, these non-episplicing RBPs were ex-
pected to preferentially bind to alternative exons not marked
by any of the five histone marks. The overlap between the non-
episplicing RBPs obtained from the five histone-mark mod-
els was minimal (Supplementary Table S4). This implied that
their splicing preferences were histone-mark specific, such that
non-episplicing RBPs identified from a specific histone mark
model were predicted to exhibit weak binding to the flank-
ing regions of the alternative exons, which are marked by that
chromatin modification. This was reiterated by the overlaps
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Figure 6. (A) SHAP values of the RBPs are positively and negatively associated with H3K36me3. Mean SHAP values of the RBPs were used to
ascertain key model predictors, such that the RBPs are inferred to bind preferentially to either epispliced or non-epispliced exon flanks. RBPs whose
predicted binding was associated with a strong, positive SHAP value in most flanking regions of epispliced exons were classified as episplicing RBPs,
while those with marked weak binding in epispliced exon flanks were labeled as non-episplicing RBPs. The list of episplicing and non-episplicing RBPs
was expanded to include the RBPs that were strongly correlated to them (R >= 0.7, prpg < 0.05). SHAP plots of the other histone-mark features are
shown in Supplementary Fig. S9. (B) Binding motifs of episplicing RBPs associated with H3K36me3 (in green) are predominantly AU-rich, while the
non-episplicing RBPs (in gray) displayed GC-richness. Supplementary Fig. S14 shows the binding motifs of the other histone mark-associated proteins.

between the episplicing RBPs and non-episplicing RBPs of dif-
ferent models. For instance, there were overlaps between epis-
plicing RBPs from the H3K36me3, H3K9me3, and H3K4me3
models with the non-episplicing RBPs from the H3K27me3
model, and vice versa (Supplementary Tables S3 and S4,
Supplementary Fig. S14). This suggests that for each histone
mark, the binding events of the episplicing and non-episplicing
RBPs were to be interpreted within the bounds of the classifier
pertaining to that histone mark.

Alternatively-included exons have relatively weaker splice
sites than constitutive exons [40, 41]. Accordingly, a dif-
ference in predicted splice site strengths between the epis-
pliced and non-epispliced alternative exons was not observed
(Supplementary Fig. S8). However, core splicecosomal RBPs
were predicted to exhibit a differential preference for ei-
ther the epispliced or non-epispliced exons. For instance,
U2AF2 was predicted as an episplicing RBP associated with
H3K36me3 and H3K4me3, and as a non-episplicing RBP
of H3K27me3-marked exons (Supplementary Tables S3, S4).

The recognition and binding of U2AF2 at 3’ splice sites is fre-
quently observed [42]. This RBP’s tendency for non-specific
binding suggests that it may be regarded as an artifact. It
could also be argued that it is categorized as an episplic-
ing RBP because of its RNA-binding motif resemblance to
other predicted key model features (Fig. 8). However, previ-
ous studies have connected spliceosomal proteins to episplic-
ing; it has been shown that the spliceosome interacts with
the H3K4me3 reader CHD1 via member proteins of the U2-
snRNP complex [43]. Additionally, a recent study has shown
the increased inclusion of exons affected by U2AF2 interact-
ing with H3K36me3-annotated chromatin [44].

Sequence specificity of histone mark enrichment
around exons

Then, the binding motifs of the episplicing and non-
episplicing RBPs associated with each histone mark were com-
pared. Fig. 6B shows that episplicing RBPs associated with
H3K36me3 are enriched in AU-rich motifs, while the bind-
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ing motifs of non-episplicing RBPs were GC-rich. This proved
similar for the RBPs associated with H3K9me3 and H3K4me3
(Supplementary Fig. 14C and D), as expected, considering
the large overlap in the episplicing and non-episplicing RBPs
between the three marks (Supplementary Tables S3 and S4).
This also supports the possible combinatorial regulation of
splicing by these histone marks, as hinted in Fig. 4D. To
some extent, the RNA motif enrichment was inverted in
H3K27me3 (Supplementary Fig. S14B) with the episplicing
and non-episplicing RBPs showing an enrichment of GC
and AU motifs, respectively. This cross-overlap between epis-
plicing and non-episplicing RBPs of H3K36me3, H3K9me3
and H3K4me3, and H3K27me3 was previously discussed
(Supplementary Tables S3 and S4). It was difficult to ver-
ify a principal motif choice among the episplicing RBPs of
H3K27ac (Supplementary Fig. S14A). This could be explained
by the poor correlation between the binding events of these
RBPs (Supplementary Fig. S10C).

Based on these findings, a question arises of whether RBP
binding affinities alone suffice to classify exon flanks. Upon vi-
sualizing the feature matrices of the five models as heatmaps,
it became apparent that the RBPs do not exhibit an exclu-
sive preference for either sequence class. However, episplic-
ing and non-episplicing RBPs associated with H3K36me3
and H3K9me3 are enriched in strong and weak binding
strengths at their respective epispliced exon flank sequences
(Fig. 5B, Supplementary Fig. 11C). No similar pattern of dif-
ferential binding affinity was detected for the episplicing and
non-episplicing RBPs associated with H3K27ac, H3K27me3,
and H3K4me3 (Supplementary Fig. S11A, S11B, S11D). An-
other contributing factor was the imbalance in the datasets of
H3K27me3 and H3K4me3 (Supplementary Fig. S1A), which
complicated determining the differential preference of the
RBPs between the two classes, based solely on visualization.
Welch’s t-test was employed to compare the binding scores of
the episplicing and non-episplicing RBPs obtained for each hi-
stone mark model between the flanking sequences of the epis-
pliced and non-epispliced exons (Supplementary Fig. S12). A
significant difference (prpr < 0.05) in binding strength dis-
tributions of episplicing RBPs associated with H3K36me3,
H3K9me3, and H3K4me3 between the flanking sequences
of the two exon types was found. Additionally, the bind-
ing score distribution of the non-episplicing RBPs associated
with H3K27ac, H3K27me3, and H3K9me3 also varied signif-
icantly (prpr < 0.05) between the two exon classes.

Considering that the performance of each classifier is at-
tributed to the predictive power of its important features, i.e.,
the episplicing and non-episplicing RBPs, it was expected that
the performance of the classifier would deteriorate without
the information provided by these features. Surprisingly, that
was not the case. Upon observing the most important features
of these new models (Supplementary Fig. S15), a similarity
in their motifs was revealed, namely regarding those of the
episplicing and non-episplicing RBPs reported by the original
model (Fig. 6, Supplementary Fig. S14). This restates the pres-
ence of certain binding motifs in the vicinity of exons enriched
with differential epigenetic modifications.

Consequently, it was expected that these predicted epis-
plicing RBPs would bind neighborhoods of exons marked by
deregulated histone signals regardless of the inclusion status
of the exons. In order to further study this, exons with lo-
cal differential histone peaks were collected for constitutively
spliced genes ( =DEU & DHM ). The binding score dis-

tributions of the episplicing and non-episplicing RBPs were
compared using Welch’s t-test across the flanking regions of
these exons, along with those of epispliced ( DEU & DHM
) and non-epispliced ( DEU & —DHM ) exons (Fig. 7,
Supplementary Fig. S13, Supplementary Table S2). Interest-
ingly, the binding scores of the episplicing RBPs associated
with H3K36me3, H3K9me3, and H3K4me3 were stronger at
the regions surrounding the alternative (epispliced) exons rel-
ative to the constitutive exons (prpr < 0.01). However, they
show stronger putative binding at the flanks of the constitu-
tive exons than those of non-epispliced exons in the case of
H3K36me3 (prpr < 0.001), suggesting a bias of H3K36me3
deposition at AU-rich sequence motifs. AU-rich regions are
commonly found in the 3°UTR regions of mRNAs [45]. The
enrichment of H3K36me3 at 3°UTR elements [46, 47] further
supports this supposed preference. Furthermore, RBPs that
bind these regions play roles in 3°UTR-linked RNA biogen-
esis and splicing [48].

The non-episplicing RBPs associated with H3K9me3,
H3K27ac, and H3K27me3 exhibit significantly stronger pu-
tative binding at the exon-intron regions of non-epispliced
exons relative to the alternative and constitutive exons with
DHM annotations (prpr < 0.001). While the binding scores
of the episplicing RBPs associated with H3K27me3 do not dif-
fer significantly between alternative (epispliced) and constitu-
tive exons (Supplementary Fig. S13B), the binding pattern of
non-episplicing RBPs is significantly stronger at the flanks of
epispliced exons relative to constitutive exons with differential
histone signal annotations (prpr < 0.001) (Supplementary
Fig. S13D).

Episplicing in HepG2-K562 cell lines

Tissue-specific epigenetic states tailor the transcriptional pro-
files in corresponding tissues [49, 50]. We wanted to deter-
mine if these findings were specific to the embryonic cell
lines or could apply to other tissues as well. To that extent,
we analyzed whether eCLIP peaks were detected for any of
the predicted episplicing RBPs within + 200 bp of alterna-
tive exons tagged by the histone marks of interest in each of
the two cancer cell lines, K562 and HepG2. There was no
ChIP-Seq data available for H3K27me3 in the HepG2 and
K562 cell lines. Hence, the eCLIP evidence of the episplicing
RBPs predicted to associate with H3K27me3 could not be re-
viewed. Notably, only 11 of the 47 proteins for which eCLIP
data were available were reported as episplicing RBPs. Specif-
ically, eCLIP data could be analyzed for 4, 5, 1, and 7 epis-
plicing RBPs, whose binding was predicted to associate with
H3K27ac, H3K36me3, H3K9me3, and H3K4me3, respec-
tively (Supplementary Tables S1, S3). The expression levels
of all predicted episplicing RBPs are shown in Supplementary
Fig. S18.

As expected, the epispliced genes associated with
H3K36me3 were overrepresented relative to the other
marks (Supplementary Fig. S3A). TIA1 and U2AF2 were
predicted to associate with H3K36me3 (Fig. 8); eCLIP peaks
of these two RBPs were found in the vicinity of the epispliced
exons acquired from the HepG2-K562 cell-line pair. A total
of 5885 high-confidence peaks for TIA1 in K562 and 10,732
peaks for U2AF2 in HepG2 were identified from ENCODE3.
Assuming a uniform genomic distribution of these eCLIP
peaks, the probability of detecting at least one peak within a
200 bp exon flank window is highly significant, with P-values
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Figure 7. For each of the five histone marks, RBPs with differential predicted binding preferences between the flanking regions of epispliced

(DEU & DHM) and non-epispliced (DEU & —DHM) exons were identified. They were termed episplicing or non-episplicing RBPs, depending on their
relative binding strength. The distributions of their mean binding affinities at exon-flanking regions were compared across three classes of exons:
epispliced (DEU & DHM), non-epispliced (DEU & =DHM), and constitutive exons with deregulated histone signals (=DEU & DHM). (A-C) show the
binding score distributions of episplicing RBPs predicted to associate with H3K36me3, H3K9me3, and H3K4me3, respectively. (D-F) show the binding
score distributions of non-episplicing RBPs predicted to show weak binding to alternative exons marked by H3K36me3, H3K9me3, and H3K4me3,
respectively. Supplementary Fig. S13 shows the distribution plots for H3K27ac and H3K27me3.
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Figure 8. SHAP scores of TIA1 reported in the H3K36me3 model are
plotted against its predicted binding scores at the epispliced and
non-epispliced exon flanks. The plot also displays the similarity of the
binding score distribution between TIA1 and U2AF2.

of 3.923 x 10~* for TIA1 and 7.154 x 10~* for U2AF2.
Experimental evidence of direct interaction between these
RBPs and proteins associated with H3K36me3 was not found
in the current literature. The coordination of the splicing,
epigenetic, and RBP-binding signals for two genes can be
observed in Table 1; inspecting the table, there are varying
patterns between exon usage, histone modifications, and RBP

binding between K562 and HepG2, which can be categorized
into three cases.

Case 1: Exon inclusion is positively correlated with the histone
mark and eCLIP peaks

In this case, the histone mark is assumed to regulate the splic-
ing of these exons by interacting with RBPs binding to a 200
bp window around them. For instance, CD46 is a member of
the immune complement system, with roles in both innate and
adaptive immune responses [51]. The differential inclusion of
exon 13 in its mRNA results in two non-identical protein
products with varying C-terminal domains, leading to dissim-
ilar molecular signaling characteristics [52, 53]. Increased in-
clusion of this exon was detected in the K562 cell line (Fig. 9A)
in concordance with the enrichment of an H3K36me3 peak
marking this exon, along with an eCLIP peak for TIA1, a pre-
dicted episplicing RBP, at the 3’ exon flank. TIA1 was shown
to influence the recruitment of the U1 snRNP to the 5’ splice
sites by binding the downstream neighboring regions of the
splice sites [54-56]. Tang et al. conducted knockdown and
overexpression assays to characterize the role of specific RBPs
in the inclusion of this exon in HeLa, HEK293T, and Jurkat
cell lines [57]. Interestingly, it was found that TIA1 and TIAL1
promote exon inclusion, while SRSF1 and PTBP1 suppress it.
As eCLIP peak evidence was available for the two repressor
proteins, their binding around this exon could be examined.
While the study by Tang et al. postulated that PTBP1 pro-
motes exon 13 exclusion by binding its exonic silencing el-
ement, an eCLIP peak of PTBP1 was detected upstream of
exon 13 in HepG2 cells, where the exon usage is downregu-
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Table 1. For certain episplicing RBPs predicted in embryonic cell lines, eCLIP peaks were detected in a 200 bp window around epispliced exons identified
in K662 and HepG2. For these two cell lines, epispliced genes were identified based on their RNA-Seq and ChIP-Seq data, as before. This returned 6, 29,
1, and 3 genes for H3K27ac, H3K36me3, H3K9me3, and H3K4me3, respectively (Supplementary Fig. S3A, Supplementary Table S2)

Gene Exon coordinates DEU DHM eCLIP Case

CD46 chr1:207790253-207790345 K562 H3K36me3 K562 TIA1 K562 Case 1
MAP3KS chr10:30437176-30437406 HepG2 H3K36me3 K562 TIA1 K562 Case 2
TMTC4 chr13:100656381-100656468 K562 H3K36me3 HepG2 U2AF2 HepG2 Case 2
ARF4 chr3:57577316-57577387 HepG2 H3K36me3 HepG2 U2AF2 K562 Case 3
CD46 chr1:207790253-207790345 K562 H3K36me3 K562 U2AF2 HepG2 Case 3
PUS7 chr7:105468337-105468463 K562 H3K36me3 K562 U2AF2 HepG2 Case 3
RPS6KB1 chr17:59912684-59912804 K562 H3K36me3 K562 U2AF2 HepG2 Case 3

lated. No similar peaks of SRSF1 were found in either cell line.
In mesenchymal cells, the binding of PTBP1 has been linked
to H3K36me3-associated exclusion of exon 3b of the gene
FRGR2 [10]. Additionally, SRSF1 interacts with a H3K36me3
reader, Psip1 [11]. Wang et al. observed that TIA1 and TIAL1
bind the same regions, using iCLIP data in HeLa cells [58].
Altogether, these findings imply a possible epigenetic regula-
tory mechanism underlying the inclusion of exon 13 of CD46.

Case 2: Exon inclusion is negatively correlated with the his-
tone mark and eCLIP peaks

The histone mark is now assumed to inhibit splicing of these
exons by interacting with RBPs binding to a £200bp window
around them. Exon 2 of the gene MAP3KS is differentially
included in the HepG2 cell line. However, a H3K36me3 ChIP-
Seq peak marks the exon in the K562 cell line, along with a
downstream TIA1 peak (Fig. 9B). MAP3KS8 is an oncogene
and kinase that participates in the inflammatory response of
various conditions [59-61]. The protein diversity of MAP3K8
is attributed to two alternate translation initiation sites [62].
The downstream effect of the differential usage of exon 2 is
not extensively reported. Contrary to the discussion above, in
this context, the binding of TIA1 seems to be associated with
decreased exon inclusion. The dual role of TIA1 in affecting
exon usage has been presented by previous studies, as well [58,
63].

Case 3: eCLIP peak is negatively correlated with the histone
mark and exon usage

Here, binding of U2AF2, another splicing regulator predicted
as an episplicing RBP (Supplementary Table S3), was detected
at the 5’ region of the 13th exon of CD46, overlapping the
intron-exon boundary in the HepG2 cell line (Fig. 9A). It is a
subunit of a heterodimer that is part of the snRNP U2 Auxil-
iary Factor complex, which recognizes conserved splicing sig-
nals at the 3 splice site of an intron, facilitating assembly of
the spliceosomal machinery at this region. Knockdown studies
of the RBP have shown both increased and decreased inclu-
sion of skipped exons [42, 64], extending its role to include
splicing repression.

Splicing events in which a histone mark was negatively cor-
related with exon usage and eCLIP peaks were also identi-
fied. Here, the histone mark is assumed to inhibit splicing
of these exons by regulating the transcriptional kinetics or
interacting with RBPs that do not possess eCLIP data on
ENCODES3. All usage events of epispliced exons from the
K562-HepG2 comparison under these categories are listed in
Supplementary Table S6.

The previous section suggested a predisposition of
H3K36me3 enrichment at AU-rich regions (Fig. 7A). In the

K562-HepG2 comparison, out of 21 constitutive exons with
deregulated H3K36me3 annotations, 3 exons were anno-
tated with differential U2AF2 eCLIP peaks within a £200bp
boundary (Supplementary Table S7). The pattern of U2AF2
binding was positively correlated with DHM occurrence in
two of these exons. Additionally, eCLIP peaks were also re-
ported for EFTUD?2 in the vicinity of three exons; they were
positively correlated with H3K36me3 differential peak en-
richment. While EFTUD2 is not identified as an episplicing
RBP in this study, it has a binding motif characteristic of epis-
plicing RBPs of H3K36me3 (Supplementary Fig. S15F). The
H3K36me3 recognition protein ZMYND11 and the RBP EF-
TUD?2 form an adapter complex regulating intron retention
[12].

Discussion

In this study, two classes of alternative exons were identi-
fied: those differentially co-occurring with at least one mark
among H3K27ac, H3K27me3, H3K36me3, H3K9me3, and
H3K4me3, and those marked by neither of these marks. The
putative binding affinities of 160 RBPs at the exon-intron
boundaries of these exons were obtained. Importantly, to
date, only a subset of these RBPs possess functional annota-
tions related to splicing. The remaining RBPs are yet uncon-
nected to splicing, implicated in mRNA metabolism, or remain
poorly characterized. Biological data is often characterized by
high dimensionality. Based on the effectiveness of Random
Forests in handling p >> n datasets [65], binary classifiers
were trained for each of the five histone modifications consid-
ered in this study to predict the class of an alternatively-spliced
exon, based on putative binding scores of our candidate RBPs
atits 5’ and 3’ flanking regions. Stringent filtering criteria were
applied to identify high-confidence episplicing events, which
yielded a focused dataset for each model. To ensure robustness
of the models, we did not further distinguish whether certain
RBPs were predicted to bind upstream or downstream of a
specific exon; yet it is known that some RBPs exert different
effects depending on their binding position relative to the exon
[66]. It was examined whether the epigenetic signals occur-
ring in the transcription termination neighborhood could have
influenced the positive performance of the classifiers. How-
ever, the 3’ terminal exons were underrepresented in the com-
piled groups of epispliced exons (Supplementary Fig. S2). Us-
ing their SHAP measures, relatively important features were
obtained and classified as either episplicing or non-episplicing
RBPs. Upon inspecting the binding motifs of these RBPs, the
differential binding preference of certain protein-binding mo-
tifs could be discerned at the exonic neighborhoods (200bp)
marked by the epigenetic signals of interest. Not only were
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Figure 9. (A) An alternative exon of CD46 is marked by H3K36me3 and bound by TIA1 and U2AF2. (B) An exon of MAP3KS is differentially included and
marked by H3K36me3 in HepG2, but bound by TIA1 in Kb62. The differential exon extended by 200 bp on both sides is highlighted in yellow. The APS/
score is positive for exons differentially included in the K562 cell line and negative for exons differentially included in the HepG2 cell line. Few transcripts
are shown for ease of visualization. The normalized read densities of H3K36me3 peaks (prpr < 0.05) as reported by MAnorm are shown in the first
track, followed by the normalized read coverage obtained using bamCompare right below. The coverage tracks are provided to visualize the pattern of
read density at the exon-intron boundaries within each biosample. Since the underlying normalization approaches of MAnorm and bamCompare differ
greatly, the normalized read densities at the peak regions reported by these tools are not always concordant. Sashimi plots displaying RNA-Seq densities
at exon and junction regions are shown in Supplementary Figs S16 and S17.
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the average putative binding strengths of predicted episplicing
RBPs associated with H3K36me3, H3K9me3, and H3K4me3
stronger at the flanking regions of epispliced exons relative to
non-epsipliced exons, but also when compared to constitutive
exons with differential signal enrichment of the same histone
mark. Finally, eCLIP data from ENCODE in the HepG2 and
K562 cell lines were used to support TIA1 and U2AF2 as po-
tential episplicing RBPs, as predicted by our model in the em-
bryonic cell lines.

Epigenetic modifications have been indicated in regulating
local splicing events through their influence on the kinetics of
transcription, by affecting co-transcriptional splicing events,
or by means of protein-protein interactions (PPI) between
splicing factors and chromatin-reader proteins [67]. Experi-
mental evidence supporting direct PPIs between chromatin-
associated proteins and the predicted episplicing RBPs was
found using STRING (Supplementary Table S5), suggest-
ing potential adaptor mechanisms involved in embryonic
epigenetically-regulated alternative splicing events. The confi-
dence of these interactions, as reported by STRING, ranged
from moderate (0.5) to strong (> 0.7). Evidence of inter-
actions between these reader proteins and non-episplicing
RBPs exists, as well (Supplementary Table S5). BRD4 is a
bromodomain-containing protein that functions in maintain-
ing chromatin structure and recognizing histone acetylation
tags [68]. It co-purifies with XRCC6, a poorly characterized
RBP implicated in RNA editing [69, 70]. This RBP also in-
teracts with CREBP, a histone acetyltransferase [71], and also
with the core histone protein H31. RALY or HNRPCL2 reg-
ulates alternative splicing [72, 73]. This RBP also forms a PPI
with BRD1, which acts as a weak H3K36me3 reader [74]. A
recent investigation suggested that TRNAU1AP may function
as a splicing factor in this context [75]. Here, TRNAU1AP was
identified as an episplicing factor associated with H3K36me3,
H3K9me3, and H3K4me3 (Supplementary Table S3). Studies
in yeast show that this RBP interacts with SETD2, a H3K36
methyltransferase; SETD2 was shown to deposit H3K36me3
in a co-transcriptional manner [76, 77]. Furthermore, Almeida
et al. inhibited the splicing of select genes and subsequently
noticed a reduced recruitment of SETD2 [78], implying that
there is a bidirectional exchange of information between
post-transcriptional processing events and the epigenetic en-
vironment. The interaction between yeast homologs of TR-
NAU1AP and PHFSA has also been studied. Interestingly,
PHEFSA has roles in splicing, transcription, and the post-
translational modification of histones. It is a member of the U2
snRNP spliceosomal complex. PHF5SA also regulates RNA Pol
II elongation and deposition of H3K36me3 marks by interact-
ing with the PAF1C complex [79]. RC3H1, an RBP with an
unknown role in splicing, interacts with TRIM28, a recruiter
of H3K9me3 writer SET proteins [80], which also interacts
with HP1 [81], a reader protein of H3K9me3. KHDRBS1
binds RNA with roles in alternative splicing [82], addition-
ally interfacing with TRIM28. We postulate that H3K36me3
may act as a switch controlling the binding of RBPs, which in
turn may regulate splicing outcomes (Fig. 7A, Supplementary
Table S7).

Luco et al. reported that skipped exons with weaker PTB-
binding sites were prone to the influence of an adaptor com-
plex comprised of the splicing factor PTBP1 and the chro-
matin reader protein MRG135, bridging exon usage with local
H3K36me3 modifications [10]. This may account for PTBP1
not being reported as an episplicing RBP within this study,

considering that the binding strengths of RBPs were used as
a positive indicator, bridging the splicing events of alterna-
tive exons with their adjacent epigenetic state. Comparing
the binding scores, PTBP1 was moderately correlated with
some of the identified H3K36me3-associated episplicing RBPs
(R~ 0.5, prpr < 0.05). PTBP1 is predicted, however, as an
episplicing RBP associated with H3K4me3 (Supplementary
Figs S9D and S14D). The Psip1-SRSF1 complex was shown to
regulate the inclusion of exons in the vicinity of H3K36me3
deregulation [11]. However, the binding scores of SRSF1 were
poorly correlated with the identified reported episplicing RBPs
(R~ 0.3, prpr < 0.05). The findings of this study are not in-
tended to restrict the components of the (epi)splicing control
module solely to the important RBPs identified by the classi-
fiers. Instead, we recommend using the shared characteristics
of the binding motifs of these RBPs as a framework to un-
cover an additional layer of splicing-associated regulatory se-
quence signals. For instance, Yearim et al. demonstrated that
HP1, a chromodomain protein that recognizes H3K9me3, in-
teracts with members of the U2 snRNP [83]. While U2AF2
was identified here as an episplicing RBP associated with
H3K36me3 and H3K4me3, the motif similarity among the
episplicing RBPs of H3K9me3, with these two marks, sup-
ports the possibility of U2AF2 functioning as an episplicing
RBP of H3K9me3, as well.

The potential epigenetic regulation of microexon inclusion
has also been reported within the scope of this study. These ex-
ons are ~30 nucleotides in length [84] and have been strongly
associated with neuronal splicing events during development
[85, 86], as well as in some neurological pathologies [87].
While the mean lengths of the epispliced exons ranged be-
tween 125 and 140 base pairs (Supplementary Fig. S3B), nine
such epispliced microexons were detected (Supplementary
Table S8). Four of these exons were differentially used in
the neuronal cell line. Carlo et al. indicated the role of SF1
in microexon definition, whereby it increases recognition of
upstream exons [88]. Remarkably, SF1 was identified here
as an episplicing RBP associated with H3K36me3. Another
study has notably reported regulatory roles of PTBP1 and
RBFOX in microexon usage [89]. As mentioned previously,
PTBP1 is an RBP known to bridge exon-specific H3K36me3
enrichment with differential inclusion of the exon [10]. RB-
FOX1 was predicted here as an episplicing RBP associated
with H3K27ac (Supplementary Figs S11A, S14A).

The approaches used to observe the epigenetic regulation
of splicing outcomes in this study have some caveats. A win-
dow size of 200 bp was used to identify deregulated histone
signals at the exon boundaries. The splicing of non-epispliced
exons is hypothesized to be independent of the epigenetic state
since they lack deregulated histone peaks in their 200 bp-long
flanks. However, there might be differential histone signals
outside this fixed window [19] that may regulate the splicing
of these exons. A smaller window offers a more confident view
of episplicing events at the cost of missing long-range interac-
tions. In other cases, filtering approaches may lead to the ex-
clusion of valid episplicing events. For instance, histone modi-
fication peaks localizing within a 200 bp window to transcrip-
tion start sites were treated as those functionally associated
solely with transcription. However, these differential modifi-
cation events could play dual roles in transcriptional and splic-
ing regulation. It is also worth mentioning that RBPmap uses
a sequence similarity-based approach to predict RNA-RBP
crosstalk, without considering the influence of RNA structural
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conformation on the strength of these predicted interactions.
Alternative tools that utilize predicted [90-92] or experimen-
tal [93] RNA structural information along with the sequence
features may offer more precise RBP-binding predictions.

By focusing on coordinated changes in exon usage and hi-
stone modifications in embryonic cell lines, epigenetic regula-
tion of splicing events in differentiation could be examined in
greater detail. Specifically, histone mark-specific patterns were
observed among the regulatory elements comprising exon-
intron junctions. Exons marked individually or in combina-
tion by H3K36me3, H3K9me3, and H3K4me3 exhibited sim-
ilar RBP-binding motifs. Future work would require similar
investigations in other cellular contexts to verify if these find-
ings are specific to embryonic differentiation or are part of a
general splicing mechanism.

Acknowledgements

We thank Reini Luco (Institut Pasteur, France) and Kevin
Moreau (Institut Pasteur, France) for insightful feedback on
the project.

Author contributions: H.R. (Conceptualization [lead],
Data curation [lead], Formal analysis [lead], Investigation
[lead], Methodology [lead], Software [lead], Writing — orig-
inal draft[lead]), H.T.T.D. (Conceptualization [supporting],
Methodology [supporting]), V.H. (Conceptualization [sup-
porting], Formal analysis [supporting], Supervision [lead],
Writing — review & editing[supporting])

Supplementary data

Supplementary data is available at NAR Genomics & Bioin-
formatics online.

Conflict of interest

None declared.

Data availability

RNA-Seq, ChIP-Seq, and eCLIP data used in this study
were obtained from the ENCODE resource at https://www.
encodeproject.org/. The list of biosamples and their accession
IDs used in this study can be found in Supplementary Table S1.
The analysis code is accessible via https://doi.org/10.5281/
zenodo.17242005.

References

1. Bannister AJ, Kouzarides T. Regulation of chromatin by histone
modifications. Cell Res 2011;21:381-95.
https://doi.org/10.1038/cr.2011.22

2. Spies N, Nielsen CB, Padgett RA et al. Biased chromatin signatures
around polyadenylation sites and exons. Mol Cell
2009;36:245-54. https://doi.org/10.1016/j.molcel.2009.10.008

3. Schwartz S, Meshorer E, Ast G. Chromatin organization marks
exon-intron structure. Nat Struct Mol Biol 2009;16:990-5.
https://doi.org/10.1038/nsmb.1659

4. Andersson R, Enroth S, Rada-Iglesias A et al. Nucleosomes are
well positioned in exons and carry characteristic histone
modifications. Genome Res 2009;19:1732-41.
https://doi.org/10.1101/gr.092353.109

RNA-binding proteins connect Exon usage to the chromatin 13

S. Tilgner H, Nikolaou C, Althammer S et al. Nucleosome
positioning as a determinant of exon recognition. Nat Struct Mol
Biol 2009;16:996-1001. https://doi.org/10.1038/nsmb.1658

6. Saint-André V, Batsché E, Rachez C et al. Histone H3 lysine 9
trimethylation and HP1y favor inclusion of alternative exons. Nat
Struct Mol Biol 2011;18:337-44.
https://doi.org/10.1038/nsmb.1995

7. Allé M, Buggiano V, Fededa JP et al. Control of alternative splicing
through siRNA-mediated transcriptional gene silencing. Nat Struct
Mol Biol 2009;16:717-724. https://doi.org/10.1038/nsmb.1620

8. Schor IE, Rascovan N, Pelisch F et al. Neuronal cell depolarization
induces intragenic chromatin modifications affecting NCAM
alternative splicing. Proc Natl Acad Sci 2009;106:4325-30.
https://doi.org/10.1073/pnas.0810666106

9. Zhou HL, Hinman MN, Barron VA et al. Hu proteins regulate
alternative splicing by inducing localized histone hyperacetylation
in an RNA-dependent manner. Proc Natl Acad Sci
2011;108:E627-35. https://doi.org/10.1073/pnas. 1103344108

10. Luco RF, Pan Q, Tominaga K et al. Regulation of alternative
splicing by histone modifications. Science 2010;327:996-1000.
https://doi.org/10.1126/science.1184208

11. Pradeepa MM, Sutherland HG, Ule J et al. Psip1/Ledgf p52 binds
methylated histone H3K36 and splicing factors and contributes to
the regulation of alternative splicing. PLoS Genet
2012;8:¢1002717. https://doi.org/10.1371/journal.pgen.1002717

12. Guo R, Zheng L, Park JW et al. BS69/ZMYND11 reads and
connects histone H3. 3 lysine 36 trimethylation-decorated
chromatin to regulated pre-mRNA processing. Mol Cell
2014;56:298-310. https://doi.org/10.1016/j.molcel.2014.08.022

13. Gonzalez I, Munita R, Agirre E e al. A IncRNA regulates
alternative splicing via establishment of a splicing-specific
chromatin signature. Nat Struct Mol Biol 2015;22:370-6.
https://doi.org/10.1038/nsmb.3005

14. Segelle A, Nunez-Alvarez Y, Oldfield AJ et al. Histone marks
regulate the epithelial-to-mesenchymal transition via alternative
splicing. Cell Rep 2022;38:110357.
https://doi.org/10.1016/j.celrep.2022.110357

15. Hu Q, Kim EJ, Feng J et al. Histone posttranslational
modifications predict specific alternative exon subtypes in
mammalian brain. PLoS Comput Biol 2017;13:¢1005602.
https://doi.org/10.1371/journal.pcbi. 1005602

16. Xu Y, Wang Y, Luo J et al. Deep learning of the splicing (epi)
genetic code reveals a novel candidate mechanism linking histone
modifications to ESC fate decision. Nucleic Acids Res
2017;45:12100-12. https://doi.org/10.1093/nar/gkx870

17. Lee D, Zhang J, Liu J et al. Epigenome-based splicing prediction
using a recurrent neural network. PLoS Comput Biol
2020;16:e1008006. https://doi.org/10.1371/journal.pcbi. 1008006

18. Agirre E, Oldfield A, Bellora N ez al. Splicing-associated chromatin
signatures: a combinatorial and position-dependent role for
histone marks in splicing definition. Nat Commun 2021;12:682.
https://doi.org/10.1038/s41467-021-20979-x

19. Manz Q, List M. Revisiting evidence for epigenetic control of
alternative splicing. bioRxiv,
https://doi.org/10.1101/2024.08.30.610315, 1 September 2024,
preprint: not peer reviewed.

20. Do HTT, Shanak S, Barghash A et al. Differential exon usage of
developmental genes is associated with deregulated epigenetic
marks. Sci Rep 2023;13:12256.
https://doi.org/10.1038/s41598-023-38879-z

21. Xu Y, Zhao W, Olson SD et al. Alternative splicing links histone
modifications to stem cell fate decision. Genome Biol
2018;19:1-21. https://doi.org/10.1186/s13059-018-1512-3

22. Hu Q, Greene CS, Heller EA. Specific histone modifications
associate with alternative exon selection during mammalian
development. Nucleic Acids Res 2020;48:4709-24.
https://doi.org/10.1093/nar/gkaa248

23. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26:841-2.
https://doi.org/10.1093/bioinformatics/btq033

9z0z Aenuer |z uo Jasn sapuejees sap JaelsIaAluN Aq 8899/ €8/19Liebl/y///a1014e/qebieu/woo dno-olwapese//:sdjiy woly papeojumoq


https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://www.encodeproject.org/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf161#supplementary-data
https://doi.org/10.5281/zenodo.17242005
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1016/j.molcel.2009.10.008
https://doi.org/10.1038/nsmb.1659
https://doi.org/10.1101/gr.092353.109
https://doi.org/10.1038/nsmb.1658
https://doi.org/10.1038/nsmb.1995
https://doi.org/10.1038/nsmb.1620
https://doi.org/10.1073/pnas.0810666106
https://doi.org/10.1073/pnas.1103344108
https://doi.org/10.1126/science.1184208
https://doi.org/10.1371/journal.pgen.1002717
https://doi.org/10.1016/j.molcel.2014.08.022
https://doi.org/10.1038/nsmb.3005
https://doi.org/10.1016/j.celrep.2022.110357
https://doi.org/10.1371/journal.pcbi.1005602
https://doi.org/10.1093/nar/gkx870
https://doi.org/10.1371/journal.pcbi.1008006
https://doi.org/10.1038/s41467-021-20979-x
https://doi.org/10.1101/2024.08.30.610315
https://doi.org/10.1038/s41598-023-38879-z
https://doi.org/10.1186/s13059-018-1512-3
https://doi.org/10.1093/nar/gkaa248
https://doi.org/10.1093/bioinformatics/btq033

14

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Robertson et al.

Shen S, Park JW, Lu Zx et al. rMATS: robust and flexible
detection of differential alternative splicing from replicate
RNA-Seq data. Proc Natl Acad Sci 2014;111:E5593-601.
https://doi.org/10.1073/pnas. 1419161111

Shao Z, Zhang Y, Yuan GC ef al. MAnorm: a robust model for
quantitative comparison of ChIP-Seq data sets. Genome Biol
2012;13:1-17. https://doi.org/10.1186/gb-2012-13-3-r16

Yeo G, Burge CB. Maximum entropy modeling of short sequence
motifs with applications to RNA splicing signals. In: | Comput
Biol 2004;11:377-94.
https://doi.org/10.1089/1066527041410418

Paz I, Kosti I, Ares Jr M et al. RBPmap: a web server for mapping
binding sites of RNA-binding proteins. Nucleic Acids Res
2014;42:W361-7. https://doi.org/10.1093/nar/gku406

Ray D, Kazan H, Cook KB et al. A compendium of RNA-binding
motifs for decoding gene regulation. Nature 2013;499:172-7.
https://doi.org/10.1038/nature12311

Yamada K, Hamada M. Prediction of RNA-protein interactions
using a nucleotide language model. Bioinform Adv
2022;2:vbac023. https://doi.org/10.1093/bioadv/vbac023

Tareen A, Kinney JB. Logomaker: beautiful sequence logos in
Python. Bioinformatics 2020;36:2272-4.
https://doi.org/10.1093/bioinformatics/btz921

Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn:
Machine Learning in Python. ] Mach Learn Res 2011;12:2825-30.
Hahne F, Ivanek R. Visualizing genomic data using Gviz and
bioconductor. Methods Mol Biol 2016;1418:335-51.
https://doi.org/10.1007/978-1-4939-3578-9_16

Ramirez F, Diindar F, Diehl S et al. deepTools: a flexible platform
for exploring deep-sequencing data. Nucleic Acids Res
2014;42:W187-91. https://doi.org/10.1093/nar/gku365

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general
purpose program for assigning sequence reads to genomic features.
Bioinformatics 2014;30:923-30.
https://doi.org/10.1093/bioinformatics/btt656

Robinson MD, McCarthy D], Smyth GK. edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. bioinformatics 2010;26:139-40.
https://doi.org/10.1093/bioinformatics/btp616

Marakulina D, Vorontsov IE, Kulakovskiy IV et al. EpiFactors
2022: expansion and enhancement of a curated database of
human epigenetic factors and complexes. Nucleic Acids Res
2023;51:D564-70. https://doi.org/10.1093/nar/gkac989
Szklarczyk D, Kirsch R, Koutrouli M et al. The STRING database
in 2023: protein—protein association networks and functional
enrichment analyses for any sequenced genome of interest. Nucleic
Acids Res 2023;51:D638-46.
https://doi.org/10.1093/nar/gkac1000

Gerstberger S, Hafner M, Tuschl T. A census of human
RNA-binding proteins. Nat Rev Genet 2014;15:829-45.
https://doi.org/10.1038/nrg3813

Tolosi L, Lengauer T. Classification with correlated features:
unreliability of feature ranking and solutions. Bioinformatics
2011;27:1986-94. https://doi.org/10.1093/bioinformatics/btr300
Wang M, Marin A. Characterization and prediction of alternative
splice sites. Gene 2006;366:219-27.
https://doi.org/10.1016/j.gene.2005.07.015

Cui Y, Cai M, Stanley HE. Comparative analysis and classification
of cassette exons and constitutive exons. BioMed Res Int
2017;2017:7323508. https://doi.org/10.1155/2017/7323508
Shao C, Yang B, Wu T et al. Mechanisms for U2AF to define 3’
splice sites and regulate alternative splicing in the human genome.
Nat Struct Mol Biol 2014;21:997-1005.
https://doi.org/10.1038/nsmb.2906

Sims RJ, Millhouse S, Chen CF ez al. Recognition of trimethylated
histone H3 lysine 4 facilitates the recruitment of transcription
postinitiation factors and pre-mRNA splicing. Mol Cell
2007;28:665-76. https://doi.org/10.1016/j.molcel.2007.11.010

44,

45.

46.

47.

48.

49

50.

S1.

52.

53.

54.

5S.

56.

57.

58.

59.

60.

61.

Wu W, Ahmad K, Henikoff S. Chromatin-bound U2AF2 splicing
factor ensures exon inclusion. Mol Cell 2025;85:1982-98.
https://doi.org/10.1016/j.molcel.2025.04.013

Barreau C, Paillard L, Osborne HB. AU-rich elements and
associated factors: are there unifying principles? Nucleic Acids Res
2005;33:7138-50. https://doi.org/10.1093/nar/gki1012

Huang H, Weng H, Chen J. The biogenesis and precise control of
RNA m6A methylation. Trends Genet 2020;36:44-52.
https://doi.org/10.1016/j.tig.2019.10.011

Wilson C, Kanhere A. Investigating the role of CpG island DNA
methylation at 3’UTRs in cancer. bioRxiv,
https://doi.org/10.1101/2024.10.18.619008, 21 October 2024,
preprint: not peer reviewed.

Bakheet T, Hitti E, Al-Saif M et al. The AU-rich element landscape
across human transcriptome reveals a large proportion in introns
and regulation by ELAVL1/HuR. Biochimica et Biophysica Acta
(BBA)-Gene Regulatory Mechanisms 2018;1861:167-77.
https://doi.org/10.1016/j.bbagrm.2017.12.006

. Gutierrez-Arcelus M, Ongen H, Lappalainen T et al.

Tissue-specific effects of genetic and epigenetic variation on gene
regulation and splicing. PLoS Gener 2015;11:¢1004958.
https://doi.org/10.1371/journal.pgen.1004958

Koch CM, Andrews RM, Flicek P et al. The landscape of histone
modifications across 1% of the human genome in five human cell
lines. Genome Res 2007;17:691-707.
https://doi.org/10.1101/gr.5704207

Cardone J, Le Friec G, Kemper C. CD46 in innate and adaptive
immunity: an update. Clin Exp Immunol 2011;164:301-11.
https://doi.org/10.1111/1.1365-2249.2011.04400.x

Hirano A, Yang Z, Katayama Y et al. Human CD46 enhances
nitric oxide production in mouse macrophages in response to
measles virus infection in the presence of gamma interferon:
dependence on the CD46 cytoplasmic domains. | Virol
1999;73:4776-8S.
https://doi.org/10.1128/JV1.73.6.4776-4785.1999

Wang G, Liszewski MK, Chan AC ef al. Membrane cofactor
protein (MCP; CD46): isoform-specific tyrosine phosphorylation.
J Immunol 2000;164:1839-46.
https://doi.org/10.4049/jimmunol.164.4.1839

Forch P, Puig O, Kedersha N et al. The apoptosis-promoting
factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol
Cell 2000;6:1089-98.
https://doi.org/10.1016/S1097-2765(00)00107-6

Del Gatto-Konczak F, Bourgeois CF, Le Guiner C ef al. The
RNA-binding protein TIA-1 is a novel mammalian splicing
regulator acting through intron sequences adjacent to a 5’ splice
site. Mol Cell Biol 2000;20:6287-99.
https://doi.org/10.1128/MCB.20.17.6287-6299.2000

Forch P, Puig O, Martinez C et al. The splicing regulator TIA-1
interacts with U1-C to promote U1 snRNP recruitment to 5’ splice
sites. EMBO ] 2002;21:6882-92.
https://doi.org/10.1093/emboj/cdf668

Tang SJ, Luo S, Ho JX]J et al. Characterization of the regulation of
CD46 RNA alternative splicing. | Biol Chem 2016;291:14311-23.
https://doi.org/10.1074/jbc.M115.710350

Wang Z, Kayikci M, Briese M et al. iCLIP predicts the dual
splicing effects of TIA-RNA interactions. PLoS Biol
2010;8:1000530. https://doi.org/10.1371/journal.pbio.1000530
Jostins L, Ripke S, Weersma RK er al. Host—microbe interactions
have shaped the genetic architecture of inflammatory bowel
disease. Nature 2012;491:119-24.
https://doi.org/10.1038/nature11582

Sandhu G, Thelma B. New druggable targets for rheumatoid
arthritis based on insights from synovial biology. Front Immunol
2022;13:834247. https://doi.org/10.3389/fimmu.2022.834247
Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and
TNEFR superfamilies. Nat Rev Drug Discov 2013;12:147-68.
https://doi.org/10.1038/nrd3930

9z0z Aenuer |z uo Jasn sapuejees sap JaelsIaAluN Aq 8899/ €8/19Liebl/y///a1014e/qebieu/woo dno-olwapese//:sdjiy woly papeojumoq


https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1186/gb-2012-13-3-r16
https://doi.org/10.1089/1066527041410418
https://doi.org/10.1093/nar/gku406
https://doi.org/10.1038/nature12311
https://doi.org/10.1093/bioadv/vbac023
https://doi.org/10.1093/bioinformatics/btz921
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1093/nar/gku365
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gkac989
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1038/nrg3813
https://doi.org/10.1093/bioinformatics/btr300
https://doi.org/10.1016/j.gene.2005.07.015
https://doi.org/10.1155/2017/7323508
https://doi.org/10.1038/nsmb.2906
https://doi.org/10.1016/j.molcel.2007.11.010
https://doi.org/10.1016/j.molcel.2025.04.013
https://doi.org/10.1093/nar/gki1012
https://doi.org/10.1016/j.tig.2019.10.011
https://doi.org/10.1101/2024.10.18.619008
https://doi.org/10.1016/j.bbagrm.2017.12.006
https://doi.org/10.1371/journal.pgen.1004958
https://doi.org/10.1101/gr.5704207
https://doi.org/10.1111/j.1365-2249.2011.04400.x
https://doi.org/10.1128/JVI.73.6.4776-4785.1999
https://doi.org/10.4049/jimmunol.164.4.1839
https://doi.org/10.1016/S1097-2765(00)00107-6
https://doi.org/10.1128/MCB.20.17.6287-6299.2000
https://doi.org/10.1093/emboj/cdf668
https://doi.org/10.1074/jbc.M115.710350
https://doi.org/10.1371/journal.pbio.1000530
https://doi.org/10.1038/nature11582
https://doi.org/10.3389/fimmu.2022.834247
https://doi.org/10.1038/nrd3930

62.

63.

64.

65.

66.

67.

68.

69

70.

71.

72.

73.

74.

75.

76.

77.

Sobajima T, Aoki F, Kohmoto K. Activation of mitogen-activated
protein kinase during meiotic maturation in mouse oocytes.
Reproduction 1993;97:389-94.
https://doi.org/10.1530/jrf.0.0970389

Meyer C, Garzia A, Mazzola M et al. The TIA1 RNA-binding
protein family regulates EIF2AK2-mediated stress response and
cell cycle progression. Mol Cell 2018;69:622-35.
https://doi.org/10.1016/j.molcel.2018.01.011

Cho S, Moon H, Loh TJ et al. Splicing inhibition of U2AF65 leads
to alternative exon skipping. Proc Natl Acad Sci
2015;112:9926-31. https://doi.org/10.1073/pnas.1500639112
Genuer R, Poggi JM, Tuleau C. Random Forests: some
methodological insights. arXiv preprint arXiv:08113619, 2008.
Fu XD, Ares Jr M. Context-dependent control of alternative
splicing by RNA-binding proteins. Nat Rev Genet
2014;15:689-701. https:/doi.org/10.1038/nrg3778

Zhou HL, Luo G, Wise JA et al. Regulation of alternative splicing
by local histone modifications: potential roles for RNA-guided
mechanisms. Nucleic Acids Res 2013;42:701-13.
https://doi.org/10.1093/nar/gkt875

Sengupta D, Kannan A, Kern M et al. Disruption of BRD4 at
H3K27Ac-enriched enhancer region correlates with decreased
c-Myc expression in Merkel cell carcinoma. Epigenetics
2015;10:460-6. https://doi.org/10.1080/15592294.2015.1034416

. Quinones-Valdez G, Tran SS, Jun HI et al. Regulation of RNA

editing by RNA-binding proteins in human cells. Commun Biol
2019;2:19. https://doi.org/10.1038/s42003-018-0271-8
Shadrina O, Garanina I, Korolev S ef al. Analysis of RNA binding
properties of human Ku protein reveals its interactions with 7SK
snRNA and protein components of 7SK snRNP complex.
Biochimie 2020;171:110-23.
https://doi.org/10.1016/j.biochi.2020.02.016

Jin Q, Yu LR, Wang L et al. Distinct roles of
GCNS5/PCAF-mediated H3K9ac and CBP/p300-mediated
H3K18/27ac in nuclear receptor transactivation. EMBO |
2011;30:249-62. https://doi.org/10.1038/emboj.2010.318

Liang Z, Rehati A, Husaiyin E et al. RALY regulate the
proliferation and expression of immune/inflammatory response
genes via alternative splicing of FOS. Genes Immun
2022;23:246-54. https://doi.org/10.1038/s41435-022-00178-4
Liang Z, Rehati A, Husaiyin E et al. RALY regulate the
proliferation and expression of immune/inflammatory response
genes via alternative splicing of FOS. Genes Immun
2022;23:246-54. https://doi.org/10.1038/s41435-022-00178-4
Wu H, Zeng H, Lam R et al. Structural and histone binding ability
characterizations of human PWWP domains. PloS One
2011;6:€18919. https://doi.org/10.1371/journal.pone.0018919
Schmok JC, Jain M, Street LA ef al. Large-scale evaluation of the
ability of RNA-binding proteins to activate exon inclusion. Na¢
Biotechnol 2024;42:1429-41.

Sun X]J, Wei J, Wu XY et al. Identification and characterization of
a novel human histone H3 lysine 36-specific methyltransferase. |
Biol Chem 2005;280:35261-71.
https:/doi.org/10.1074/jbc.M504012200

Kizer KO, Phatnani HP, Shibata Y ez al. A novel domain in Set2
mediates RNA polymerase II interaction and couples histone H3
K36 methylation with transcript elongation. Mol Cell Biol
2005;25:3305-16.
https://doi.org/10.1128/MCB.25.8.3305-3316.2005

RNA-binding proteins connect Exon usage to the chromatin 15

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

De Almeida SF, Grosso AR, Koch F et al. Splicing enhances
recruitment of methyltransferase HYPB/Setd2 and methylation of
histone H3 Lys36. Nat Struct Mol Biol 2011;18:977-83.
https://doi.org/10.1038/nsmb.2123

Strikoudis A, Lazaris C, Trimarchi T et al. Regulation of
transcriptional elongation in pluripotency and cell differentiation
by the PHD-finger protein PhfSa. Nat Cell Biol 2016;18:1127-38.
https://doi.org/10.1038/ncb3424

Caron P, van Der Linden J, van Attikum H. Bon voyage: a
transcriptional journey around DNA breaks. DNA Repair
2019;82:102686. https://doi.org/10.1016/j.dnarep.2019.102686
Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted
silencing of murine leukemia virus in embryonic cells. Cell
2007;131:46-57. https://doi.org/10.1016/j.cell.2007.07.026
Wang B, Li L, Zhu Y et al. Sequence variants of KHDRBS1 as high
penetrance susceptibility risks for primary ovarian insufficiency by
mis-regulating mRNA alternative splicing. Hum Reprod
2017;32:2138-46. https://doi.org/10.1093/humrep/dex263
Yearim A, Gelfman S, Shayevitch R et al. HP1 is involved in
regulating the global impact of DNA methylation on alternative
splicing. Cell Rep 2015;10:1122-34.
https://doi.org/10.1016/j.celrep.2015.01.038

Ustianenko D, Weyn-Vanhentenryck SM, Zhang C. Microexons:
discovery, regulation, and function. Wiley Interdiscip Rev RNA
2017;8:¢1418. https://doi.org/10.1002/wrna.1418

Small SJ, Haines SL, Akeson RA. Polypeptide variation in an
N-CAM extracellular immunoglobulin-like fold is
developmentally regulated through alternative splicing. Neuron
1988;1:1007-17. https://doi.org/10.1016/0896-6273(88)90158-4
Irimia M, Weatheritt R], Ellis JD et al. A highly conserved program
of neuronal microexons is misregulated in autistic brains. Cell
2014;159:1511-23. https://doi.org/10.1016/j.cell.2014.11.035
Lee ]S, Lamarche-Vane N, Richard S. Microexon alternative
splicing of small GTPase regulators: Implication in central nervous
system diseases. Wiley Interdiscip Rev RNA 2022;13:e1678.
https://doi.org/10.1002/wrna.1678

Carlo T, Sierra R, Berget SM. A §’ splice site-proximal enhancer
binds SF1 and activates exon bridging of a microexon. Mol Cell
Biol 2000;20:3988-95.
https://doi.org/10.1128/MCB.20.11.3988-3995.2000

Li Y1, Sanchez-Pulido L, Haerty W et al. RBFOX and PTBP1
proteins regulate the alternative splicing of micro-exons in human
brain transcripts. Genome Res 2015;25:1-13.
https://doi.org/10.1101/gr.181990.114

Uhl M, Tran VD, Heyl F et al. RNAProt: an efficient and
feature-rich RNA binding protein binding site predictor.
GigaScience 2021;10:giab054.
https://doi.org/10.1093/gigascience/giab054

Pan X, Rijnbeek P, Yan J et al. Prediction of RNA-protein
sequence and structure binding preferences using deep
convolutional and recurrent neural networks. BMC Genomics
2018;19:511. https://doi.org/10.1186/s12864-018-4889-1
Maticzka D, Lange SJ, Costa F et al. GraphProt: modeling binding
preferences of RNA-binding proteins. Genome Biol 2014;15:R17.
https://doi.org/10.1186/gb-2014-15-1-r17

Xu Y, Zhu J, Huang W et al. PrismNet: predicting protein—-RNA
interaction using in vivo RNA structural information. Nucleic
Acids Res 2023;51:W468-77.
https://doi.org/10.1093/nar/gkad353

Received: May 20, 2025. Revised: October 1, 2025. Accepted: October 23,2025
© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:/creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

9z0z Aenuer |z uo Jasn sapuejees sap JaelsIaAluN Aq 8899/ €8/19Liebl/y///a1014e/qebieu/woo dno-olwapese//:sdjiy woly papeojumoq


https://doi.org/10.1530/jrf.0.0970389
https://doi.org/10.1016/j.molcel.2018.01.011
https://doi.org/10.1073/pnas.1500639112
https://doi.org/10.1038/nrg3778
https://doi.org/10.1093/nar/gkt875
https://doi.org/10.1080/15592294.2015.1034416
https://doi.org/10.1038/s42003-018-0271-8
https://doi.org/10.1016/j.biochi.2020.02.016
https://doi.org/10.1038/emboj.2010.318
https://doi.org/10.1038/s41435-022-00178-4
https://doi.org/10.1038/s41435-022-00178-4
https://doi.org/10.1371/journal.pone.0018919
https://doi.org/10.1074/jbc.M504012200
https://doi.org/10.1128/MCB.25.8.3305-3316.2005
https://doi.org/10.1038/nsmb.2123
https://doi.org/10.1038/ncb3424
https://doi.org/10.1016/j.dnarep.2019.102686
https://doi.org/10.1016/j.cell.2007.07.026
https://doi.org/10.1093/humrep/dex263
https://doi.org/10.1016/j.celrep.2015.01.038
https://doi.org/10.1002/wrna.1418
https://doi.org/10.1016/0896-6273(88)90158-4
https://doi.org/10.1016/j.cell.2014.11.035
https://doi.org/10.1002/wrna.1678
https://doi.org/10.1128/MCB.20.11.3988-3995.2000
https://doi.org/10.1101/gr.181990.114
https://doi.org/10.1093/gigascience/giab054
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1186/gb-2014-15-1-r17
https://doi.org/10.1093/nar/gkad353
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Data availability
	References

