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ABSTRACT

Recent advances in deep neural networks (DNNs) have led to remark-
able progress in natural language processing (NLP), largely driven by
the increasing scale of both model parameters and training data. How-
ever, collecting large-scale data often introduces noise—particularly
when relying on automated methods such as weak supervision to
reduce annotation costs. This noise can cause DNNs to learn incorrect
inductive biases and degrade their generalization ability. Therefore,
a deep understanding of data noise and the development of robust
learning strategies are essential for the effective deployment of DNNs
in real-world NLP applications.

In this thesis, we investigate how data noise affects model gen-
eralization and propose methods to address it in practical machine
learning scenarios. Our main contributions are as follows:

1. We demonstrate that feature-independent noise has only a mini-
mal impact on Pre-Trained Language Models (PLMs), such as
RoBERTs, in classification tasks. At the start of fine-tuning, these
models tend to ignore the noise and gradually improve their gen-
eralization ability. After reaching the point of best performance,
the models begin to memorize noise, which leads to a decline in
generalization. We apply an early-stopping mechanism guided
by a noisy validation set to stop training before noise memoriza-
tion occurs, and this yields a model with strong generalization.
This simple strategy achieves performance comparable to that of
more complex noise-handling methods.

2. In contrast, feature-dependent noise presents a greater challenge.
In various token and sequence classification tasks, PLMs quickly
overfit to this type of noise, and a noisy validation set is no
longer reliable for model selection. We demonstrate the necessity
of incorporating a small amount of clean validation data to
realign the model. To this end, we propose two methods that
leverage clean data to enhance performance in the presence of
feature-dependent noise.

3. The emergence of large language models (LLMs) has led to a
trend of unifying NLP tasks into generative tasks. We extend
our research within this context, focusing on machine trans-
lation as a representative task. Our findings show that LLMs
have inherent translation capabilities that can be elicited through
supervised fine-tuning with a small amount of data. However,
despite its small size, the quality of this data plays a crucial role:
LLMs are highly sensitive to noise during fine-tuning. For exam-
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ple, fine-tuning with 32 high-quality parallel samples results in
better generalization than using 1,024 medium-quality parallel
samples.

. Previous studies often regard noisy data as a byproduct of re-

ducing annotation costs through automatic processes like weak
supervision. We demonstrate that noisy data can be effectively in-
tegrated with gold annotations. In particular, by supplementing
gold annotations with lower-quality ones, LLMs can be trained
to differentiate between these annotations through preference
learning. We show that this approach significantly enhances
LLM performance in translation tasks.



ZUSAMMENFASSUNG

Aktuelle Fortschritte bei tiefen neuronalen Netzen (Deep Neural Net-
works, DNNs) haben zu bemerkenswerten Entwicklungen im Bereich
der natiirlichen Sprachverarbeitung (Natural Language Processing,
NLP) gefiihrt, insbesondere durch die Vergrofierung von Modellgro-
flen und das Training auf umfangreichen Datensdtzen. Allerdings
fiihrt die Erhebung grofiskaliger Daten hdufig zu Rauscheffekten-
insbesondere dann, wenn automatisierte Methoden wie schwache
Supervision (Weak Supervision) zur Reduzierung der Annotations-
kosten eingesetzt werden. Dieses Rauschen kann dazu fiihren, dass
DNNs fehlerhafte induktive Verzerrungen erlernen und ihre Genera-
lisierungsfahigkeit beeintrachtigt wird. Daher sind ein tiefgehendes
Verstdandnis von Datenrauschen und die Entwicklung robuster Lern-
strategien essenziell fiir den erfolgreichen Einsatz von DNNs in realen
NLP-Anwendungen.

In dieser Dissertation untersuchen wir den Einfluss von Datenrau-
schen auf die Generalisierung von Modellen und entwickeln Metho-
den zur Bewiltigung dieser Herausforderung in praktischen maschi-
nellen Lernszenarien. Unsere Hauptbeitrige sind wie folgt:

1. Wir zeigen, dass merkmalsunabhédngiges Rauschen nur einen
minimalen Einfluss auf vortrainierte Sprachmodelle (Pretrained
Language Models, PLMs) wie RoBERTa bei Klassifikationsauf-
gaben hat. Zu Beginn der Feinabstimmung ignorieren diese
Modelle das Rauschen weitgehend, was zu einer verbesserten
Generalisierung fiihrt. Allerdings erreicht diese Verbesserung
ein Maximum und nimmt anschliefSend wieder ab, was auf eine
zunehmende Memorierung des Rauschens hinweist. Wir zei-
gen, dass ein friithzeitiger Stopp der Feinabstimmung, gesteuert
durch ein verrauschtes Validierungsset, effektiv verhindern kann,
dass das Modell Rauschen memoriert. Diese einfache Strategie
erzielt eine vergleichbare Leistung wie wesentlich komplexere
Methoden zur Rauschbewiltigung.

2. Im Gegensatz dazu stellt merkmalabhidngiges Rauschen eine
grofiere Herausforderung dar. Bei Token- und Sequenzklassifi-
zierungsaufgaben neigen PLMs dazu, schnell dieses Rauschen
zu overfitten, und ein verrauschter Validierungsdatensatz ist
tiir die Modellselektion unzuverlédssig. Wir demonstrieren die
Notwendigkeit, eine kleine Menge sauberer Validierungsdaten
zu nutzen, um das Modell neu auszurichten. Dazu schlagen
wir zwei Methoden vor, die saubere Daten integrieren, um die
Leistung trotz merkmalabhingigen Rauschens zu steigern.
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3. Mit dem Aufkommen grofier Sprachmodelle (Large Language

Models, LLMs) werden NLP-Aufgaben zunehmend in generati-
ve Aufgaben vereinheitlicht. Wir erweitern unsere Untersuchung
in diesem Kontext, indem wir uns auf maschinelle Ubersetzung
als reprasentative Aufgabe konzentrieren. Unsere Ergebnisse
zeigen, dass LLMs iiber inhirente Ubersetzungsfihigkeiten ver-
fiigen, die mithilfe eines {iberwachten Fine-Tunings auf Basis
einer geringen Datenmenge aktiviert werden kénnen. Trotz des
geringen Umfangs spielt die Qualitédt dieser Daten jedoch eine
entscheidende Rolle: LLMs reagieren dufierst empfindlich auf
Rauschen wihrend des Fine-Tunings. Beispielsweise fiihrt das
Fine-Tuning mit 32 hochqualitativen parallelen Beispielen zu
einer besseren Generalisierung als die Verwendung von 1024
parallelen Beispielen mittlerer Qualitat.

. Wiahrend frithere Studien verrauschte Daten meist als Neben-

produkt der Kostensenkung durch automatische Verfahren wie
schwache Supervision betrachten, zeigen wir, dass sich solche
Daten durchaus effektiv mit Gold-Annotationen kombinieren las-
sen. Durch die Ergdnzung der Gold-Annotationen um solche ge-
ringerer Qualitdt kann in LLMs ein Préferenzlernen angestofien
werden, das sie in die Lage versetzt, zwischen verschiedenen An-
notationstypen zu unterscheiden. Wir zeigen, dass dieser Ansatz
die Leistung von LLMs insbesondere bei Ubersetzungsaufgaben
deutlich verbessert.
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INTRODUCTION

Deep Neural Networks (DNNs) have delivered remarkable results
across numerous fields, from computer vision to Natural Language
Processing (NLP). A key driver of these successes is the availability
of large-scale datasets. However, as datasets have grown in size and
complexity, ensuring high-quality annotations has become increasingly
difficult. In practice, even carefully curated data often contain labeling
errors or inconsistencies, leading to what is commonly referred to as
noisy data. Despite these imperfections, learning from noisy data is not
merely an occasional inconvenience; it has become a central challenge
as we push to develop more robust and scalable Al systems.

Noisy labels arise for several reasons. First, DNNs are widely rec-
ognized as being data-hungry, yet obtaining high-quality manual an-
notations is expensive, time-consuming, and labor-intensive, making
large-scale curation unsustainable (Frénay and Kaban, 2014; Gilardi,
Alizadeh, and Kubli, 2023; Hedderich et al., 2021; Song et al., 2022).
In response, a variety of automatic annotation methods have been
proposed to alleviate this bottleneck. These methods often rely on
(semi-)automatic annotation sources, thereby reducing the amount
of human effort required (Gilardi, Alizadeh, and Kubli, 2023; Ratner
et al., 2017; Ren et al., 2020; Taori et al., 2023). However, automatically
generated annotations are usually less reliable than those provided by
human experts, leading to an inevitable introduction of noise into the
training data.

Second, achieving error-free annotation is far more challenging than
it might appear, even for moderate-sized datasets that receive careful
scrutiny. For instance, the widely used CoNLL-03 dataset (Tjong Kim
Sang and De Meulder, 2003) for Named-Entity Recognition (NER) was
shown in multiple studies to contain approximately 5% annotation
errors in both its training and test sets (Reiss et al., 2020; Riicker and
Akbik, 2023; Wang et al., 2019d), despite careful and professional
curation. A similar issue arises in Machine Translation (MT); Xu et al.
(2024b) and Zhu et al. (2024) point to a significant number of imperfect
reference translations in the WMT22 (Kocmi et al., 2022) test sets, even
though these datasets are often regarded as among the highest-quality
benchmarks in the field.

Lastly, dealing with imperfect annotations is a necessary stepping
stone on the path to superintelligence (Burns et al., 2023; Ji et al., 2024,
Wu et al., 2024d). For many complex tasks, even human experts fall
short of providing optimal solutions—consider the game of Go, where
determining the best move is notoriously difficult (Silver et al., 2016).
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Superintelligent models must therefore learn to refine and improve
upon these suboptimal inputs, inching closer to truly optimal solutions
over time.

In summary, noisy data are ubiquitous in real-world applications
and often impossible to avoid. Yet, training neural networks directly on
such data can seriously degrade their generalization performance (e.g.,
Han et al.,, 2018b; Reed et al., 2015; Zhang et al., 2017). This critical
issue frames the Learning with Noisy Labels (LNL) problem: how to
develop models that maintain robust generalization despite training on noisy
data, accomplished by employing noise-resistant architectures and training
techniques.

In this thesis, we systematically investigate how noisy training data
adversely affects model generalization, with a particular emphasis
on NLP applications. Building on these insights, we present effective
methods designed to mitigate the harmful impact of noise, enabling
DNNs to achieve strong performance even when trained on highly
noisy datasets. Furthermore, we explore intriguing scenarios in which
noisy data paradoxically enhances learning, shedding new light on
the relationship between label quality and model learning.

By addressing these issues, this thesis aims to both deepen our
understanding of the fundamental challenges posed by noisy annota-
tions and offer practical strategies for overcoming them. Ultimately,
effective learning from noisy data is essential to advancing robust Al
capabilities, paving the way for future breakthroughs across diverse
domains.

1.1 MAIN CONTRIBUTIONS

We summarize the primary contributions of this thesis as follows:

¢ Understanding Noisy Labels: Label noise can be either feature-
dependent or feature-independent. We identify distinct learning
patterns in Pre-trained language models (PLMs) based on the
type of noise. In Chapter 3, we demonstrate that PLMs, such as
RoBERTa (Liu et al., 2019), exhibit strong robustness to feature-
independent noise. Specifically, these models achieve high gen-
eralization performance early in training, before overfitting the
noise in the data. We show that a simple early-stopping strat-
egy effectively captures well-generalized models before noise
overfitting occurs. These models perform comparably to those
obtained with more sophisticated noise-handling approaches.
Importantly, this early-stopping can rely on a noisy validation
set, eliminating the need for a cleanly annotated one. In contrast,
feature-dependent noise poses a greater challenge. In Chapters 4
and 5, we demonstrate that PLMs can quickly fit incorrect la-
bels generated through weak supervision, often doing so faster
than they fit clean labels. While early-stopping remains effective
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in this context, it requires at least a small, cleanly annotated
validation set.

Addressing Feature-Dependent Noise: In Chapter 4, we intro-
duce a meta-learning-based approach that effectively addresses
realistic feature-dependent noise induced by weak supervision,
achieving state-of-the-art performance on multiple test sets from
the WRENCH (Zhang et al., 2021c) benchmark at the time of
our method’s proposal. Chapter 5 provides a comprehensive
analysis of fine-tuning PLMs on data with feature-dependent
noise, proposes more realistic problem settings for weak su-
pervision, and fairly evaluates existing noise-handling methods
under these new conditions. Based on our findings, we propose a
method that, despite its simplicity, is highly competitive in perfor-
mance compared to other noise-handling approaches. Notably,
our method does not introduce any additional hyperparame-
ters beyond those required for standard fine-tuning, simplifying
deployment and saving considerable time in model selection.

Extending Noise Analysis to Generation Tasks: While most
research in LNL focuses on classification tasks, we extend the
analysis to generation tasks, specifically machine translation.
We also transition our foundation models to Large Language
Models (LLMs) to incorporate advancements in NLP with LLMs. In
Chapter 6, we show that although LLMs primarily perform task
alignment rather than acquiring new translation skills during
Supervised fine-tuning (SFT), even a small amount of noise can
significantly mislead the learning process, resulting in lower
performance. This highlights the importance of data quality
in SFT. Additionally, we discover that LLMs are more robust to
such noise when it occurs in low-resource languages that are
underrepresented in their pre-training.

Leveraging Noise for Improved Translation: Scaling up par-
allel data to fine-tune LLMs for machine translation tasks has
been shown to yield diminishing returns in translation perfor-
mance (Xu et al., 2023, 2024b), possibly due to noise in the ref-
erence translations. To address this issue, in Chapter 7 we train
LLMs to distinguish quality differences among various transla-
tions of the same source sentences, rather than solely fitting them
to potentially noisy reference translations. Specifically, we gener-
ate multiple translations by sampling LLMs, which may contain
different types of mistakes and thus be noisy. We then manually
annotate the quality of these translations and incorporate this
knowledge into LLMs through preference learning. Our approach
consistently improves translation performance across different
language directions, overcoming the performance plateau asso-
ciated with fine-tuning. Notably, while additional annotations
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are required for preference learning, only a small amount of
data needs to be annotated to outperform standard fine-tuning
that uses orders of magnitude more parallel data. Therefore,
our method efficiently leverages noisy data without imposing a
significant annotation burden.

1.2 OUTLINE

The remainder of this thesis is organized as follows: in Chapter 2,
we present the necessary background on the problem of LNL. This
includes a formal definition of LNL and a comprehensive overview of
various noise-handling methods, systematically organized. Addition-
ally, we introduce PLMs and LLMs, discussing their model architectures
and training methods. Chapter 3 focuses on feature-independent noise,
examining how model performance develops during training in the
presence of such noise. In Chapter 4, we detail our proposed meta-
learning-based approach for handling noise. Chapter 5 provides a
thorough analysis of noise introduced by weak supervision and pro-
poses a simple yet highly effective method tailored to realistic settings.
Subsequent chapters, specifically Chapter 6 and Chapter 7, explore
generation tasks involving LLMs. We analyze noise in machine trans-
lation tasks and introduce a preference learning-based method that
leverages lower-quality data to enhance machine translation perfor-
mance with LLMs. Supplementary material is provided in Appendices
A through E.

1.3 PUBLICATIONS
This thesis integrates findings from the following publications:

[1] Dawei Zhu, Michael A Hedderich, Fangzhou Zhai, David Ifeoluwa
Adelani, Dietrich Klakow (2022). Is BERT Robust to Label Noise? A Study
on Learning with Noisy Labels in Text Classification. In Proceedings of
the Third Workshop on Insights from Negative Results in NLP @ ACL
2022

https://aclanthology.org/2022.insights-1.8/

[2] Dawei Zhu, Xiaoyu Shen, Michael Hedderich, Dietrich Klakow
(2023). Meta Self-Refinement for Robust Learning with Weak Supervision.
In Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2023)
https://aclanthology.org/2023.eacl-main.74/

[3] Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas Stephan,
Dietrich Klakow (2023). Weaker Than You Think: A Critical Look at
Weakly Supervised Learning. In Proceedings of the 61st Annual Meeting


https://aclanthology.org/2022.insights-1.8/
https://aclanthology.org/2023.eacl-main.74/

1.3 PUBLICATIONS

of the Association for Computational Linguistics (ACL 2023, Oral
Presentation, Theme Paper Award)
https://aclanthology.org/2023.acl-1long.796/

[4] Dawei Zhu, Sony Trenous, Xiaoyu Shen, Dietrich Klakow, Bill
Byrne, Eva Hasler (2024). A Preference-driven Paradigm for Enhanced
Translation with Large Language Models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL 2024, Oral Presentation)
https://aclanthology.org/2024.naacl-long.186/

[5] Dawei Zhu, Pinzhen Chen, Miaoran Zhang, Barry Haddow, Xiaoyu
Shen, Dietrich Klakow (2024). Fine-Tuning Large Language Models to
Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice?
(EMNLP 2024)

https://aclanthology.org/2024.emnlp-main.24/
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BACKGROUND

This chapter provides a comprehensive overview of key concepts
and methodologies that underpin this thesis. It starts with the basic
definitions and distinctions between feature-independent and feature-
dependent noise generation processes. It then discusses how weak
supervision offers faster, lower-cost data annotation through external,
often noisy labeling sources, linking these ideas with the broader chal-
lenge of noise in training data. To address noisy annotations, the chap-
ter reviews a spectrum of noise-handling approaches—ranging from
sample selection and reweighting to label correction, teacher-student
frameworks, and specialized loss functions. Additionally, it outlines
the architecture and training paradigms of Pre-trained language mod-
els (PLMs), which are the models used for learning throughout the
thesis.

2.1 LEARNING WITH NOISY LABELS

In academic research, data annotations are often assumed to be ac-
curate. However, in real-world applications, this assumption often
does not hold. Obtaining high-quality annotations for real-world tasks
typically requires human experts, which is expensive, time-consuming,
and difficult to scale. As a result, approaches like crowd-sourcing (Bi
et al., 2014; Yan et al., 2010) or weak supervision (see Section 2.2 for
details) are frequently used to gather labels more quickly and cheaply.
Yet, compared with expert-verified annotations, these methods may
introduce a substantial amount of noise.

Modern deep neural networks possess immense capabilities but are
susceptible to adopting unwanted inductive biases from lower-quality
data, which can lead to poor generalization (Sukhbaatar et al., 2015;
Zhang et al., 2017). As demonstrated in (Zhang et al., 2017), deep
neural networks can fit arbitrary data distributions with sufficient
training, achieving a training loss close to zero. This is particularly
problematic when dealing with noisy labels, as the models tend to
overfit by memorizing the noise—a phenomenon we term “noise
memorization”. Therefore, it is crucial to prevent noise memorization
in learning with noisy labels.

Formally, let X represent the feature space and ) represent the label
space. In standard machine learning tasks, a training set of size N,
denoted as Diin = { (x4, yi)}fi 1, is sampled from the data generation
distribution Dx y of (X,Y) € X x ). We refer to the examples in Diyain
as clean examples, and their labels as clean labels.



BACKGROUND

In the context of Learning with Noisy Labels (LNL), however, the
training data is drawn from a noisy distribution le,Y of (X xY) €
X x Y, represented as Dicain = {(x;, yz)}i , and Dirain is what the
learning algorithm sees. For each training example x;, its noisy label 1j;
may or may not match the ground truth label y;. The noise level of the
training set is quantified by Y, 1(y; = #;). However, in real-world
scenarios, where ground truth annotations are often unavailable, the
noise level remains unknown.

Additionally, a validation set, Dya; = { (X, Ysm, ]Qm)}ﬁf:l, is typically
provided for model selection, while a test set, Diest = { (X1, 1, yAl)}lel,
is used for evaluation purposes. The goal of learning with noisy labels
is to train models that perform well on Dist (based on the clean labels
in Diest), while being trained on Dirain.

It is generally assumed that clean labels are available in Dy, in
Chapter 5, we challenge this assumption’s practicality and introduce a
more realistic problem setting.

It is worth noting that for generative tasks, such as machine trans-
lation, Y; can represent a sequence of labels or tokens. In such cases,
defining the noise level is not straightforward.

2.1.1  Feature-independent noise

Feature-independent noise is studied in various works across com-
puter vision and Natural Language Processing (NLP) (Han et al., 2018b;
Jindal et al., 2019; Li, Socher, and Hoi, 2020; Merdjanovska, Aynetdinov,
and Akbik, 2024; Natarajan et al., 2013; Zhang et al., 2017, i.a.). This
line of work is built on the assumption that the noise generation pro-
cess operates independently of the features, i.e., P(Y|Y, X) = P(Y|Y).
Such an assumption holds in scenarios where class labels share similar
semantics, causing annotators to assign these labels in a relatively
arbitrary way that does not correlate with the features. A key ad-
vantage of this framework is its simplicity: researchers can generate
noisy datasets with precisely controlled noise levels by systematically
flipping ground truth labels in clean datasets. This capability enables
rigorous evaluation of model performance across varying noise ratios.

Two noise types are commonly studied: symmetric noise (Jindal,
Nokleby, and Chen, 2017; Rooyen, Menon, and Williamson, 2015) and
asymmetric noise (Jindal, Nokleby, and Chen, 2017; Natarajan et al.,
2013; Patrini et al., 2016; Reed et al., 2015). class-conditional Note
that symmetric noise is also often referred to as uniform noise and
asymmetric noise is often called class-conditional noise.

A widely accepted assumption with feature independent noise is
thatP(Y = Y | Y) > maxy 7,ﬂ,P(\.A/ | Y) (Chen et al., 2020). However,
exceptions to this assumption can occur. For instance, when clean
training examples are available, they can be used to estimate P(Y = Y |
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Y) and use the information to correct the noisy labels, See (Hedderich,
Zhu, and Klakow, 2021) for example.

2.1.2 Feature-dependent noise

The feature-independence assumption simplifies the noise generation
process, making it easier to construct noisy datasets with predefined
noise levels and to establish theoretical guarantees for proposed meth-
ods. However, this assumption may be oversimplified and fail to
accurately represent realistic noise generation processes (Jiang et al.,
2020; Merdjanovska, Aynetdinov, and Akbik, 2024; Xiao et al., 2015;
Zhang et al., 2021d; Zhu, Liu, and Liu, 2021).

For instance, Hedderich et al. (2020) constructed news text classifica-
tion datasets using an automated annotation process, where news texts
were labeled through keyword matching. Specifically, they created
a list of country names, capitals, major cities, and global organiza-
tions. Any news text containing terms from this list was automatically
assigned the class “World news”. This method clearly introduces
feature-dependent noise.

Handling feature-dependent noise is more challenging than deal-
ing with feature-independent noise, as evidenced by numerous stud-
ies (Hedderich, Zhu, and Klakow, 2021; Merdjanovska, Aynetdinov,
and Akbik, 2024; Zhu et al.,, 2022). Given its prevalence in practical
scenarios, this thesis focuses on feature-dependent noise, detailed in
Chapters 3 through 7.

2.2 WEAK SUPERVISION

Weak supervision is proposed to reduce the human annotation effort.
It involves the (semi-) automatic annotation of unlabeled data using
external, noisy supervision sources, commonly referred to as weak
labeling sources or simply weak sources. These sources can include rule-
based heuristics, predictions from other (typically smaller) models,
or external knowledge bases. Ratner et al. (2017) formalized weak
labeling sources as labeling functions, which map unlabeled inputs to
labels. A closely related concept is distant supervision, which utilizes
external resources, such as knowledge bases, to annotate data automat-
ically. For example, documents can be annotated with entities linked
to specific categories from external knowledge. Although weak super-
vision and distant supervision are sometimes used interchangeably,
several works (Lison et al., 2020; Mintz et al., 2009; Ratner et al., 2017)
distinguish distant supervision as a subset of weak supervision that
explicitly relies on structured external resources.

An illustrative application of weak supervision can be found in the
work of Lison et al. (2020), where a set of labeling functions was de-
veloped for NER annotation. These functions included: a) Small NER
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models trained on out-of-domain NER tasks. b) Gazetteers containing
lists of country names, person names, and other entities. ¢) Heuristic
functions leveraging features such as casing, part-of-speech tags, de-
pendency relations, and regular expressions. d) Document-level label
consistency checks to ensure that named entities appearing multiple
times within a document are consistently categorized. Another notable
example of weak supervision is in text classification. For instance, Ren
et al. (2020) developed eight regular expressions to automatically label
the IMDB dataset (Maas et al., 2011) for sentiment analysis. Similarly,
they used four regular expressions to annotate the AGNews dataset
for a 4-class text classification task. In computer vision, large amounts
of noisily annotated data can be obtained by retrieving images from
search engines (Chen, Shrivastava, and Gupta, 2013; Fan et al., 2010;
Schroff, Criminisi, and Zisserman, 2011).

When annotating data using multiple weak sources, each data point
may have zero weak labels (no weak sources can be applied), one weak
label (only a single weak source is activated), or multiple weak labels
(several weak sources are activated). When multiple weak labels are
available, an aggregated weak label can be obtained through majority
voting (Yu et al., 2021; Zhu et al., 2023a) or by employing an external
label aggregation network (Guan et al., 2018; Ratner et al., 2017; Yan
et al., 2016).

Compared to the manual annotations through human experts, an-
notated labels provided by weak supervision contain more mistakes
(i.e., noise in the data), and the they are referred to as weak labels.
This bridges weak supervision with learning with noisy labels. Weakly
supervised learning aims to train models that generalize well despite
being trained with lower-quality weak labels.

For text classification tasks, two weak supervision benchmarks are
commonly used: WRENCH (Zhang et al., 2021c) and WALNUT (Zheng
et al., 2022a). More recently, (Merdjanovska, Aynetdinov, and Akbik,
2024) introduced NoiseBench, which focuses on NER tasks and in-
corporates six types of realistic noise, including weak supervision
noise.

2.2.1  Beyond rule-based weak supervision

In widely recognized benchmarks such as WRENCH (Zhang et al.,
2021c) and WALNUT (Zheng et al., 2022a), annotations are predomi-
nantly generated using predefined rules, such as regular expressions.
While this approach is straightforward, it significantly limits the ap-
plicability of weak supervision in generative NLP tasks. With recent
advancements in Large Language Models (LLMs), there is a growing
trend of leveraging LLMs as powerful tools for data synthesis across
various NLP applications, including RAG (Asai et al., 2023; Tang and
Yang, 2024; Zhang et al., 2024b), LLM-based agents (Liu et al., 2024b;
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Qin et al.,, 2023), and general alignment (Dong et al., 2024; Honovich
et al., 2022; Taori et al., 2023; Wang et al., 2023). Notably, the quality
of annotations generated by LLMs may surpass those produced by
humans. For instance, Gilardi, Alizadeh, and Kubli (2023) demon-
strates that ChatGPT delivers more accurate labels across various
classification tasks. Similarly, Xu et al. (2024b) and Zhu et al. (2024)
reveal that a significant portion of reference translations in the widely
recognized WMT22 test sets (Kocmi et al., 2022) contain errors, with
translations generated by recent LLMs often surpassing these human-
produced references in accuracy. Note that, while Chapter 7 explores
LLM-generated translations, the primary focus of this thesis does not
lie in learning from LLM-generated synthetic data. Nonetheless, this
area holds significant potential for future research.

2.3 NOISE-HANDLING METHODS

Neural networks are susceptible to annotation errors; fitting the noisy
training data Diygin can lead to poor generalization (Rolnick et al.,
2017; Sukhbaatar et al., 2015; Tanaka et al., 2018; Zhang et al., 2017).
To mitigate this issue, various noise-handling methods have been
proposed with the objective of training models that generalize well
despite being trained on noisy data.

In the following, we introduce a wide spectrum of noise-handling
approaches. These methods tackle noise from different perspectives,
often leveraging certain empirical observations to identify and address
incorrectly labeled examples. First, neural networks tend to fit clean
examples more quickly than wrongly labeled ones and exhibit lower
losses on clean data (Han et al., 2018b; Yu et al., 2021; Zhu et al,,
2022, i.a.). Second, predictions for wrongly labeled examples tend to
fluctuate (Chen et al., 2021; Nguyen et al., 2019; Song, Kim, and Lee,
2019, i.a.).

To provide a clearer structure, we categorize noise-handling meth-
ods into distinct groups. However, these categories are not mutually
exclusive, as more recent approaches often combine multiple strate-
gies to enhance performance. For example, while small-loss examples
can be retained for learning, larger-loss examples may be relabeled
instead of being directly discarded (Li, Socher, and Hoi, 2020; Mandal,
Bharadwaj, and Biswas, 2020; Zhou, Wang, and Bilmes, 2021, i.a.).

2.3.1  Sample selection

This area of research aims to mitigate the impact of noisy labels by
filtering out incorrectly labeled examples from the training set. These
methods commonly leverage the empirical observation that neural
networks tend to have smaller losses for correctly labeled examples

11
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(i.e., ¥i = y;), whereas examples with incorrect labels typically incur
higher losses.

Malach and Shalev-Shwartz (2017) introduce an approach where
two models are trained simultaneously, updating their parameters
only for examples where the two networks disagree on the predicted
labels. As training progresses, the area of disagreement between the
models shrinks, resulting in fewer updates during later stages and
effectively reducing noise memorization, which is more likely to occur
in the later stages of training.

Co-teaching (Han et al., 2018b) uses a similar dual-model framework.
In each training batch, each model selects a subset of examples with
the smallest losses and exchanges these examples with the other model
for training (a technique often referred to as the “small-loss trick”).
However, a limitation of Co-teaching is that the two networks may
converge to a consensus, causing Co-teaching to degrade into self-
training, similar to MentorNet (Jiang et al., 2018). To address this issue,
and drawing inspiration from Malach and Shalev-Shwartz (2017), Yu et
al. (2019) propose retaining only the examples where the two networks
disagree. From this disagreement set, the models exchange examples
with smaller losses. Building on Co-teaching, Mandal, Bharadwaj,
and Biswas (2020) suggest relabeling high-loss examples using model
predictions rather than discarding them. This approach enhances
data utilization and improves performance. JoCoR (Wei et al., 2020)
extends Co-teaching by jointly considering the loss of each example
across both networks, mitigating error accumulation caused by biased
sample selection within a single network. Co-learning (Tan et al.,
2021) employs a shared encoder for both networks, ensuring mutual
constraint and maximizing agreement in the latent space, which has
been shown to be robust under high noise conditions.

DivideMix (Li, Socher, and Hoi, 2020) also adopts a two-network
framework similar to Co-teaching but incorporates semi-supervised
learning techniques such as MixMatch (Berthelot et al., 2019). It further
refines the process by relabeling examples that are likely mislabeled.
Unicon (Karim et al., 2022) addresses an issue in Co-teaching where
class imbalance can arise in the selected clean set for each batch. To
resolve this, Unicon enforces class balance by selecting an equal num-
ber of clean samples per class. Additionally, it integrates contrastive
learning to generate noise-resilient feature representations, improving
both the precision of clean sample selection and the overall model
robustness. Similarly, Sup-CL (Li et al., 2022) leverages contrastive
learning for noise-robust sample selection. Similarly, Sup-CL (Li et al.,
2022) leverages contrastive learning for robust sample selection. Un-
like these mini-batch-based methods, Jo-SRC (Yao et al., 2021) selects
clean samples globally, using information from the entire dataset to
improve accuracy.
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Rather than relying on losses computed from noisy labels, Xia et al.
(2015) propose using the reconstruction loss of a trained autoencoder.
This method leverages the observation that mislabeled examples tend
to exhibit significantly higher reconstruction errors. Northcutt, Wu,
and Chuang (2017) suggest pruning training examples where the
model’s confidence falls below a predefined threshold.

Building on the insight that predictions for noisy samples often
fluctuate during training, Nguyen et al. (2019) monitor model predic-
tions over time and filter out samples where the noisy labels conflict
with the model’s predictions. In a related approach, SELF (Nguyen
et al., 2020) maintains a self-ensemble of predictions for all exam-
ples throughout the training process, removing instances where the
annotated labels disagree with the ensemble predictions.

2.3.2  Sample Reweighting

Although sample selection can effectively reduce the influence of
noise, it may discard valuable training examples, particularly when
noise levels are high. This limitation can be mitigated through label
weighting, which serves as a softer alternative to sample selection. For
instance, CleanNet (Lee et al., 2018) assigns weights to noisy examples
x, based on the cosine similarity between the image embedding
of the noisy example (query) and a reference embedding of class 7.
These embeddings are computed using a pre-trained image encoder.
Similarly, Huang, Zhang, and Zhang (2020) utilize model confidence
to determine weights for noisy examples.

L2R (Ren et al., 2018) and MW-Net (Shu et al., 2019) use meta-
learning to find weights for the training data that improve perfor-
mance on clean validation sets. Building on this, Ghosh and Lan (2021)
demonstrate that the dependence on clean examples in MW-Net can
be eliminated by replacing the cross-entropy meta-loss in MW-Net
with a robust mean absolute error loss. Additionally, Wang et al.
(2020) use meta-learning to determine example weights, but with a
key difference: the training labels are provided by a teacher network
rather than noisy training set labels, resulting in a hybrid approach
that combines sample reweighting with label correction.

2.3.3 Label Correction

A shared limitation of label filtering and weighting techniques is that
model updates rely on noisy labels in the training data, which are
potentially incorrect. To address this issue, a line of research focuses
on correcting labels before updating model parameters.

One of the earliest approaches, introduced by Reed et al. (2015),
updates noisy labels using soft labels—a linear combination of the
model’s predictions and the provided noisy labels. However, the co-
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efficients in this linear combination must be predefined and remain
fixed throughout training. To improve on this, Ma et al. (2018) propose
dynamic coefficients determined through local intrinsic dimensional-
ity (Houle, 2017), which are updated at each training epoch.

Yi and Wu (2019) integrate label correction into the training pro-
cess in an end-to-end manner. They perform simultaneous model
parameter updates and label corrections at each iteration using back-
propagation, gradually refining the noisy labels. Similarly, Song, Kim,
and Lee (2019) observe that a model’s predictions on a training ex-
ample are likely accurate if it consistently predicts the same label for
that example during training. Based on this observation, they replace
a training example’s label with the model’s prediction if (a) the model
exhibits high loss with the noisy label and (b) the predictions on that
example remain consistent.

Further refinements include methods like that of Chen et al. (2021),
which track model predictions during training and then retrain the
model using averaged historical predictions. Zheng et al. (2020) pro-
pose replacing the noisy label with the model’s own prediction when
the model exhibits low confidence in the noisy label but high confi-
dence in an alternative label. Meta-learning techniques by Zheng,
Awadallah, and Dumais (2021) and Zhu et al. (2023a) also show
promise for correcting noisy labels, demonstrating greater effective-
ness than sample reweighting approaches such as those presented by
Shu et al. (2019).

Another approach involves training a dedicated label-cleaning net-
work. For instance, Li et al. (2017) and Veit et al. (2017) use a small
set of clean data, containing both clean and noisy labels, to train this
network. The network then corrects noisy labels in the larger training
set, improving label quality. Typically, the corrected labels are not used
directly but combined with the original noisy labels. This approach
accounts for potential errors by the cleaning network. However, noisy
labels are often still used throughout training, which may limit the
overall model performance.

2.3.4 Self-training and teacher-student training

Self-training is a widely used technique in semi-supervised learn-
ing (Dehghani et al., 2017; Lee et al., 2013; Yarowsky, 1995). This
approach has also been extended to address challenges in learning
with noisy labels. In this context, self-training is often used for label
filtering, label correction, or both.

Tanaka et al. (2018) propose a method that alternates between up-
dating model parameters and refining labels, thereby iteratively im-
proving the label quality in the training set. SELF (Nguyen et al., 2020)
introduces a strategy to progressively filter out mislabeled examples
from noisy datasets.
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ASTRA (Karamanolakis et al., 2021) uses a teacher network to
aggregate weak labels and generate high-quality pseudo-labels for
the student network. Other methods (Dehghani et al., 2018; Liang
et al., 2020; Yu et al., 2021) train a teacher network on noisy labels
and leverage confidence filtering to reduce error propagation when
teaching the student network.

In Chapter 4, we introduce a meta-learning-based label correction
method. This method replaces noisy labels with predictions from
a teacher network, optimized to maximize the student network’s
validation performance.

2.3.5 Loss modification and regularization.

Natarajan et al. (2013) propose an a-weighted o-1 loss function for
binary classification in the presence of feature-independent noise,
where « is determined by the noise level. They demonstrate that
the a-weighted Bayes optimal classifier under a noisy distribution
coincides with the Bayes optimal classifier under the o-1 loss for a
clean distribution. Label smoothing, as discussed by Lukasik et al.
(2020) and Zhang et al. (2021b), acts as a loss correction method by
assuming uniform noise. However, label smoothing imposes a fixed
smoothed distribution, potentially biasing the model. To address this
limitation, Lienen and Hiillermeier (2021) introduce label relaxation, a
more flexible approach that allows the model to choose from a broader
set of distributions instead of relying on a fixed smoothed distribution,
thereby enhancing robustness to data noise and improving calibration.

Ghosh, Manwani, and Sastry (2015) and Han, Tsang, and Chen
(2016) demonstrate that ramp loss improves robustness against label
noise compared to logistic and hinge losses. However, ramp loss
is designed for binary classification and is rarely applied in deep
learning-based noise-handling methods. In contrast, Ghosh, Kumar,
and Sastry (2017) highlight that the mean absolute error loss (MAE)
is more robust than the commonly used cross-entropy loss (CCE)
for training neural networks on noisy data. Nevertheless, Zhang and
Sabuncu (2018) note that MAE can lead to training difficulties and
propose generalized CCE, which combines the strengths of both MAE
and CCE. Furthermore, Wang et al. (2019c) observe that models trained
with CCE often fail to distinguish between “hard” examples and
“incorrectly labeled” examples. To address this issue, they propose
Symmetric Cross Entropy (SCE) loss, derived from symmetric KL-
divergence, and demonstrate its noise robustness both theoretically
and empirically. In another approach, Lyu and Tsang (2020) propose
curriculum loss, which serves as a tighter upper bound of noise-robust
0-1 loss and demonstrates enhanced resilience to higher noise levels.
Additionally, NEEDLE (Jiang et al., 2021) introduces a noise-aware loss
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function that dynamically adapts based on the estimated confidence
of noisy labels.

Xia et al. (2021) divide model parameters into critical and non-
critical groups, observing that non-critical parameters tend to overfit
noise. Consequently, they apply weight decay only to non-critical
parameters while updating critical ones using gradient descent. Sim-
ilarly, Han et al. (2020) categorize training examples within a batch
into "good" (likely clean) and "bad" (likely noisy) groups. They per-
form gradient descent on the good group as usual but apply gradient
ascent to the bad group. To promote consistency, Iscen et al. (2022)
introduce a regularization term that encourages consistent predictions
for neighboring data points in the feature space.

Menon et al. (2020) propose composite loss-based gradient clipping,
which enhances the robustness of model updates against label noise.
Hu, Li, and Yu (2020) demonstrate that regularizing the distance be-
tween network parameters and their initialization can also improve
noise robustness. Additional studies (Song et al., 2019; Sun et al., 2019;
Zhu et al.,, 2022) find that early-stopping effectively prevents models
from memorizing noise, especially when fine-tuning pre-trained lan-
guage models. Notably, Chen et al. (2020) argue that early-stopping
does not require a clean validation set. However, Zhu et al. (2023b)
empirically show that this is not effective for feature-dependent noise.

2.3.6 Noise matrix

The Noise Matrix is a specific type of loss correction method commonly
used in addressing feature-independent label noise. Under the feature-
independence assumption, where noise transition probabilities are
represented by a matrix T. Each element Tj; in this matrix estimates the
probability P(Y = j | Y = i), where i,j € {1,...,C}, and C denotes
the total number of classes. Once T is estimated, the classification loss
| is adjusted to T~!/, provided that T is non-singular.

Several approaches have been proposed for estimating the noise
matrix. For instance, Goldberger and Ben-Reuven (2017), Patrini et
al. (2017), and Wang et al. (2019b) suggest using models pre-trained
on noisy training data. Similarly, Chen and Gupta (2015) suggest
for training a network solely on relatively high-quality examples
to estimate the noise matrix for lower-quality samples. Similiarly,
Hedderich, Zhu, and Klakow (2021) and Liu and Tao (2016), leverage
clean training examples, assuming such examples are available.

Other methods estimate the noise matrix using only noisy training
data. For example, Bekker and Goldberger (2016), Jindal, Nokleby,
and Chen (2017), Luo et al. (2017), and Paul et al. (2019) employ tech-
niques like the EM algorithm or regularization directly applied to the
matrix. Han et al. (2018a) incorporate structural priors to constrain
the noise matrix, noting that certain mislabelings are less likely (e.g.,
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annotators are less prone to mislabel an image of a “dog” as a “truck”
compared to a similar class). Additionally, Lange, Hedderich, and
Klakow (2019) relax the feature-independence assumption by estimat-
ing distinct noise matrices for input groups sharing similar features,
thereby accommodating feature-dependent noise.

In cases where each example has multiple noisy labels from differ-
ent annotators, Rodrigues and Pereira (2018) and Tanno et al. (2019)
propose modeling separate noise matrices for each annotator.

It is important to note that the noise matrix is designed to map
the model’s predictions to noisy labels; however, it does not explicitly
encourage the base model to predict clean labels. To address this,
Jindal, Nokleby, and Pressel (2019) suggest training the base model to
corrected labels. These corrected labels are obtained through a linear
combination of the model’s predictions and the provided noisy labels,
in a way similar to the approach in Reed et al. (2015).

2.4 MODEL ARCHITECTURES

In this thesis, unless otherwise stated, we utilize deep neural networks
based on the Transformer architecture (Vaswani et al., 2017) for NLP
tasks. Below, we introduce the Transformer architecture and discuss
common Transformer-based model families: encoder-only, encoder-
decoder, and decoder-only models. Finally, we provide an overview
of large language models.

2.4.1  Transformers

Transformers (Vaswani et al., 2017) have become the foundation for
many state-of-the-art models in NLP, computer vision, and speech
processing. Unlike recurrent or convolutional architectures, Trans-
formers rely solely on attention mechanisms to capture contextual
relationships between tokens.

A Transformer consists of two main components: an encoder and a
decoder, each composed of a stack of layers (or blocks). In the original
design of Transformer (Vaswani et al., 2017), both the encoder and
decoder have six layers. During forward computation, the input to
the first layer is the sum of the input token embeddings and their
positional embeddings (discussed in more detail below). The input
to each subsequent layer is the output from the preceding layer. Each
layer includes the following submodules:

* Multi-head self-attention: Captures dependencies by focusing
on different input parts simultaneously.

¢ Position-wise feed-forward networks: Applies separate non-
linear transformations to each token.
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* Residual connections and layer normalization: Helps stabilize
and accelerate training.

SELF-ATTENTION MECHANISM The core operation in Transformers
is self-attention. At each layer, self-attention computes a weighted
combination of all input vectors for each position in the sequence,
thereby capturing contextual dependencies. Formally, given a sequence
of d-dimensional input vectors X € R"*?, we map them to queries
(Q), keys (K), and values (V) using three learned matrices: W, Wk,
and Wy, respectively:

Q=XWgo, K=XWg, V=XWy

where W, Wi € R%*% and Wy € R%*%_ Here, di and d, denote the
dimensions of the queries/keys and values, respectively.

Self-attention first computes attention weights by taking the dot
product of queries and keys, scaling by v/di, and applying a softmax
to obtain a probability distribution. The output is a linear combination
of the value vectors, weighted by the attention weights:

Attention(Q, K, V) = softmax (QKT> \Y%
o Vg

Instead of a single attention function, Transformers employ multi-
head attention, allowing the model to attend to information from differ-
ent representation subspaces. Specifically, given h heads, we initialize
h sets of QKV matrices WiQ, W%, and WZV fori = 1,---,h, where
WZQ,WZI< € R and Wi, € R?*%. Each head computes its own
attention:

head; = Attention(XW,, XWi, XWi,)
The outputs of all i heads are then concatenated and projected back
to the original input dimension d:
MultiHead (Q, K, V) = Concat(heads, ..., head;,) Wp
where Wy € RM"oxd Tn the original Transformer design, it is set that
dy =d, =d/h=64,d =512, and h = 8.
Let Xout € R? denote the output of the self-attention mechanism. It

is further processed with a residual connection and layer normaliza-
tion (Ba, Kiros, and Hinton, 2016):

Xout = LayerNorm (Xout + X)

POSITION-WISE FEED-FORWARD NETWORK  After the self-attention
mechanism, each output position is processed by a position-wise feed-
forward network (FEN). This feed-forward operation is performed
independently for each position:

FFN(x) = max (0, W1 Xout + b1) Wy + by

where W; € R¥*% and W, € R%*?, The dimension dy is set to 2048
in the original Transformer design.
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POSITIONAL ENCODING The self-attention mechanism itself is in-
variant to the order of inputs. However, natural languages rely heavily
on word and sentence order for meaning. To incorporate positional
information into Transformers, sinusoidal positional encodings are
introduced, defined as:

PE(pos, 2i) = sin( pos ), PE(pos,2i+1) = cos (A>

100002/ 100002/
where pos is the position index and i is the dimension index. These
positional encodings are added to the input token embeddings before
being passed to the first encoder layer. Alternatively, many modern
Transformer architectures use learnable positional embeddings, which
are additional trainable parameters incorporated into the model.

ENCODER VS. DECODER  While both the encoder and decoder share
similar building blocks (i.e., multi-head self-attention, feed-forward
networks, and residual connections), they differ in how these blocks
are employed. The encoder processes the entire input sequence to
produce contextualized representations of all tokens. In contrast, the
decoder operates in an auto-regressive fashion, leveraging two types
of attention: a masked self-attention mechanism to prevent attending
to future tokens. This design enables the decoder to generate target
sequences token by token, using both previously generated tokens
and the encoder-provided context.

It is important to note that while the introduction to Transformers
is based on the original architecture proposed by Vaswani et al. (2017),
many recent models retain the core ideas and architectural design but
incorporate numerous adaptations for improved performance. For ex-
ample, many contemporary models use learned positional encodings,
such as RoPE (Su et al., 2024).

In fact, using either the encoder or decoder module alone can
effectively address a wide range of NLP tasks. For instance, pre-trained
encoder models perform well in classification tasks, whereas pre-
trained decoder models are designed for generative tasks (For more
details on pre-training, refer to Section 2.5). Although there has been
ongoing debate about whether certain architectures are better suited
for specific tasks, no definitive conclusion has been reached as of the
time of writing. Nevertheless, pre-trained decoder-only models have
become dominant in the NLP community. These models, which now
contain billions of parameters and are trained on massive text corpora,
demonstrate exceptional performance across NLP applications.

2.4.2  Encoder-only models

One of the most well-known encoder-only models is BERT (Devlin
et al., 2019), which shows strong performance on various benchmarks
in GLUE (Wang et al., 2019a) after pre-training and downstream fine-
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tuning. Since then, many encoder-only PLMs have been proposed,
such as RoBERTa (Liu et al., 2019), ELECTRA (Clark et al., 2020), and
DeBERTa (He et al., 2021), which refine BERT’s architecture and/or
training objectives to achieve better performance. Additionally, vari-
ations of BERT-like encoder-only models have been developed for
faster training and/or inference. For example, DistilBERT (Sanh et al.,
2019) and TinyBERT (Jiao et al., 2020) are significantly smaller models
distilled from BERT while maintaining high performance. Another
example is ALBERT (Lan et al., 2020), a lite version of BERT that re-
duces the model size by up to 90% through parameter sharing, while
maintaining comparable performance.

2.4.3 Encoder-decoder models

Encoder-decoder architectures leverage the bi-directional attention
in the encoder to compute powerful language representations of
the input, and produce text using the decoder. A prime example
of encoder-decoder models is T5 (Raffel et al., 2020), which reframes
every NLP task as a text-to-text problem, allowing it to excel across
multiple benchmarks. Similarly, BART (Lewis et al., 2020) and PE-
GASUS (Zhang et al., 2020) demonstrate strong performance in text
generation tasks by leveraging noise-based pre-training objectives that
encourage the model to reconstruct corrupted input sequences.

2.4.4 Decoder-only models

One prominent family of decoder-only PLMs is the GPT series (Brown
et al., 2020; Radford et al., 2018, 2019). These models adopt an autore-
gressive approach: given a sequence of tokens, they predict the next
token based on the previous ones. By training on massive corpora in
this left-to-right manner, GPT-like models excel in a variety of genera-
tive tasks, including language modeling, text completion, and question
answering. Furthermore, they can be adapted for non-generative tasks
by framing them as conditional generation problems (e.g., generating
a label token for classification).

In addition to the GPT family, a growing number of large decoder-
only models exhibit strong capabilities in text generation and be-
yond. In Chapter 6 and 7, we used decoder-only models including
LLaMA (Touvron et al., 2023a), Llama 2 (Touvron et al., 2023b), Mis-
tral (Jiang et al., 2023b), and BLOOM (Muennighoff et al., 2023) for
translation tasks.

2.4.5 Large language models

Due to the nature of the Transformer design, one can easily expand
the model’s width by introducing more attention heads or increase
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its depth by stacking additional attention blocks. The original Trans-
former models (Vaswani et al., 2017) had about 65 million parameters
(about 213 million for the larger variant), whereas GPT-3 (Brown et al.,
2020), with its 175 billion parameters, showcases remarkable zero-
shot performance on various NLP tasks. Models with such massive
parameter counts, pre-trained on huge data, are often referred to as
LLMs (though there is no clear definition of when a model can be
considered “large”). Kaplan et al. (2020) present that by increasing the
model size, training data, and compute resources, the perplexity can
be consistently minimized—a phenomenon known as the scaling law.
Wei et al. (2022b) observe that certain capabilities require models of
a specific size, referred to as emergent abilities. Refer to (Zhao et al.,
2024) for a comprehensive survey of LLMs.

2.5 TRAINING LANGUAGE MODELS

Since 2018, most NLP systems have adopted a two-stage training pro-
cess. The first stage, known as pre-training, involves training a neural
language model—often comprising millions to billions of parame-
ters—on large unlabeled corpora. During this phase, the model learns
rich token representations that capture linguistic patterns and seman-
tic relationships.

In the second stage, these learned representations are used in super-
vised training tailored to specific downstream tasks. This approach en-
ables the model to generalize effectively across various applications by
leveraging the foundational knowledge acquired during pre-training.

Models developed after the pre-training phase are typically referred
to as PLMs. All language models discussed from Section 2.4.2 to Section
2.4.4 fall under this category. A subset of these, known as LLMs, are
distinguished by their substantial size and the extensive computational
resources—such as large corpora and significant GPU hours—required
for their training.

While PLMs can directly address NLP tasks through methods like
next-word prediction in an in-context setting (Brown et al., 2020),
achieving optimal performance generally necessitates the second stage
of supervised training. This subsequent phase has been referred to
by various terms over time. Initially termed fine-tuning (Devlin et al.,
2019), it involves adjusting the pre-trained model using considerably
less training data, smaller learning rates, and often only a few training
epochs to adapt the model’s weights for downstream tasks. Typically,
a PLM is fine-tuned on one or a few NLP tasks within the same category
(e.g., sentiment analysis).

With the emergence of LLMs, the fine-tuning process has expanded
to encompass a wide spectrum of NLP datasets, and this second stage
has increasingly been called supervised fine-tuning (Ouyang et al.,
2022). In this context, PLMs are fine-tuned on diverse NLP tasks using
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supervised methods. Additionally, the development of chatbots, such
as (OpenAl, 2023a), has led to framing these NLP tasks in a human
instruction format, resulting in the term instruction tuning.

Following supervised fine-tuning or instruction tuning, an addi-
tional training phase may be applied to better align LLMs with human
preferences. This alignment is achieved using algorithms like PPO
(Ouyang et al., 2022) and DPO (Rafailov et al., 2023). Recently, both
instruction tuning and preference alignment phases have been collec-
tively referred to as post-training.



HANDLING FEATURE-INDEPENDENT NOISE

In this chapter, we analyze the impact of feature-independent noise on
model generalization in natural language understanding (NLU) tasks.
We systematically introduce different types and levels of noise into
clean training datasets to evaluate how model performance fluctuates
across conditions. Our results show that Pre-trained language mod-
els (PLMs) exhibit notable robustness to independent noise. Early in
the fine-tuning process, generalization improves rapidly, even under
severe noise. This improvement will quickly reach a peak and begin
to degrade due to noise memorization. This suggests that stopping
fine-tuning before memorization begins can yield a well-generalizing
model. We also demonstrate that early-stopping, even when using
a noisy validation set, can effectively determine this optimal point
to stop fine-tuning. Interestingly, contemporary noise-handling tech-
niques primarily slow the rate of decay but contribute little to enhanc-
ing peak performance.
The content presented in this chapter is based on:

Dawei Zhu, Michael A Hedderich, Fangzhou Zhai, David Ife-
oluwa Adelani, Dietrich Klakow (2022). Is BERT Robust to Label
Noise? A Study on Learning with Noisy Labels in Text Classification.
In Proceedings of the Third Workshop on Insights from Nega-
tive Results in NLP @ ACL 2022

URL: https://aclanthology.org/2022.insights-1.8/

3.1 INTRODUCTION

For many languages, domains and tasks, large datasets with high-
quality labels are not available. To tackle this issue, cheaper data
acquisition methods have been suggested, such as crowd-sourcing
or automatic annotation methods like weak and distant supervision.
Unfortunately, compared to gold-standard data, these approaches
come with more labeling mistakes, which are known as noisy labels.
Noise-handling has become an established approach to mitigate the
negative impact of learning with noisy labels. A variety of methods
have been proposed that model the noise, or clean and filter the noisy
instances (Algan and Ulusoy, 2021; Hedderich et al., 2021). Jindal
et al. (2019) show, e.g., a 30% boost in performance after applying
noise-handling techniques on a CNN-based text classifier.

In a recent work, Tanzer, Ruder, and Rei (2021) showed that BERT
(Devlin et al., 2019) has an inherent robustness against noisy labels.
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The generalization performance on the clean distribution drops only
slowly with the increase of the mislabeled samples. Also, they show
that early-stopping is crucial for learning with noisy labels as BERT
will eventually memorize all wrong labels when trained long enough.
However, their experiments only focus on a single type of noise and a
limited range of noise levels. It remains unclear if BERT still performs
robustly under a wider range of noise types and with higher fractions
of mislabeled samples. Moreover, they perform early-stopping on a
clean validation set, which may not be available under low resource
settings. Last but not least, they do not compare to any noise-handling
methods.

In this chapter, we investigate the behaviors of BERT on tasks with
different noise types and noise levels. We also study the effect of noise-
handling methods under these settings. Our main results include (1)
BERT is robust against injected noise, but could be vulnerable to noise
from weak supervision. In fact, the latter, even at a low level, can be
more challenging than high injected noise. (2) Existing noise-handling
methods do not improve the peak performance of BERT under any
noise settings we investigated; as shown with further analysis, noise-
handling methods rarely render the correct labels more distinguishable
from the incorrect ones.*

3.2 LEARNING WITH NOISY LABELS

PROBLEM SETTINGS. We consider a k-class classification problem.
Let D denote the true data generation distribution over X' x ) where
X is the feature space and V = {1,..,k} is the label space. In a
typical classification task, we are provided with a training dataset S =
{(xi,yi)!_} sampled from D. In learning with noisy labels, however,
we have no access to D. Instead, a noisy training set 5 = {(xi,90)11}
sampled from a label-corrupted data distribution D. The goal is to
learn a classifier that generalizes well on the clean distribution by only
exploiting S.

INJECTED LABEL NOISE. To rigorously evaluate noise-handling
methods at different noise levels, researchers in this area often con-
struct noisy datasets from clean ones by injecting noise. This can, e.g.,
reflect annotation scenarios such as crowdsourcing, where some an-
notators answer randomly or prefer an early entry in a list of options.
Modeling such noise is achieved by flipping the labels of the clean
instances according to a pre-defined noise level € € [0,1) and a noise
type. There are two commonly used noise types: the single-flip noise
(Reed et al., 2015):

1 Our implementation is available on: https://github.com/uds-1sv/BERT- LNL.
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These noise generation processes are feature-independent, i.e., p(-|y =
i,x) = p(-ly = i). Therefore, they can be described by a noise transi-
tion matrix T with T;; := p(§ = jly = i). It is usually assumed that
the noise is diagonally-dominant when generating the noisy labels, i.e.
Vi, T > max#iT,-]-.

3.3 EARLY-STOPPING ON NOISY VALIDATION SET

When trainied on noisy data without noise-handling, BERT reaches
a high generalization performance before it starts fitting the noise.
Then it memorizes the noise and the performance on clean distri-
bution drops dramatically (the blue curve in Figure 3.1). Hence, for
models without noise-handling, it is crucial to stop training when the
generalization performance reaches its maximum.

Tanzer, Ruder, and Rei (2021) use a clean validation set to find this
point. However, a clean validation set is often unavailable in realistic
low-resource scenarios as it requires manual annotation. Therefore, we
use a noisy validation set for early-stopping in all of our experiments
and we attain models that generalize well on the clean distribution.

In our example in Figure 3.1, we see that while most noise-handling
methods prevent BERT from fitting the noise in the long run, their
peak performance is not significantly higher than a vanilla model
without noise-handling.

3.4 EXPERIMENTS

DATASET CONSTRUCTION. We experiment with four text classifica-
tion datasets: two benchmarks, AG-News (Zhang, Zhao, and LeCun,
2015a) and IMDB (Maas et al., 2011), injected with different levels of
single-flip or uniform noise; for the weakly supervised noise, we make
use of two news topics datasets in two low-resource languages: Hausa
and Yoruba (Hedderich et al., 2020). Hausa and Yoruba are the second
and the third most spoken indigenous language in Africa, with 40 and
35 million native speakers, respectively (Eberhard, Simons, and (eds.),
2019). The noisy labels were gazetteered. For example, to identify
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Figure 3.1: A typical training curve when learning with noise. Learning
without noise-handling (blue) will reach a peak accuracy before
memorizing the noise. Early-stopping on a noisy validation set
(vertical grey line) is often sufficient to find such a peak. Injected
uniform noise of 40% on AG-News dataset.

texts for the class “Africa”, a labeling rule based on a list of African
countries and their capitals is used. Note that while we can vary the
noise levels of injected noise, the amount of weak supervision noise
in Hausa and Yoruba is fixed*. We summarize some basic statistics of
the datasets in Table 3.1.

IMPLEMENTATION. We use of-the-shelf BERT models for our tasks.
Specifically, we apply the BERT-base model for AG-News and IMDB,
and the mBERT-base for Yoruibd and Hausa. The fine-tuning approach
follows (Devlin et al., 2019). In all settings, we apply early-stopping
on a noisy validation set to mimic the realistic low-resource settings,
while the test set remains clean. For more implementation details and
a discussion on clean and noisy validation sets, see Appendix A.2 and
As.

3.4.1 Baselines

We compare learning without noise-handling with four popular noise-
handling methods.3

WITHOUT NOISE-HANDLING Train BERT on the noisy training set
as it was clean. A noisy validation set is used for early-stopping.

2 refer to Appendix A.1 for detailed noise distribution.
3 For a fair comparison, early-stopping on a noisy validation set is applied to all four
noise-handling methods.
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Dataset Classes Average Train Validation Test Train

Lengths Samples Samples Samples Noise Level

IMDB 2 292 21246 3754 25000 various
AG-News 4 44 108000 12000 7600 various
Yoruba 7 13 1340 189 379 33.28%
Hausa 5 10 2045 290 582 50.37%

Table 3.1: Statistics of the text classification datasets. The train noise level is
the false discovery rate (i.e., 1-precision) of the noisy labels in the
training set. The original AG-News has 120k training instances and
no validation instances. We therefore held-out 10% of the training
samples for validation.

NO VALIDATION For the sake of comparison, we train the model
without noise-handling and until the training loss converges.

NOISE MATRIX A noise transition matrix is appended after BERT’s
prediction to transform the clean label distribution to the noisy one. A
variety of methods exists for estimating the noise matrix, i.e. Bekker
and Goldberger (2016), Hendrycks et al. (2018), Patrini et al. (2017),
Sukhbaatar et al. (2015), and Yao et al. (2020). To exclude the effects of
estimation errors in the evaluation, we use the ground truth transition
matrix as it is the best possible estimation. This matrix is fixed after
initialization.

NOISE MATRIX WITH REGULARIZATION The previous state-of-
the-art for text classification with noisy labels (Jindal et al., 2019).
Similar to Noise Matrix, it appends a noise matrix after BERT’s output.
During training, the matrix is learned with an /2 regularization and is
not necessarily normalized to be a probability matrix. In the original
implementation they use CNN-based models as backbone, we switch
it to BERT for fair comparison.

CO-TEACHING Han et al. (2018b) Train two networks to pick cleaner
training subsets for each other. The Co-teaching framework requires
an estimation of the noise level. Similarly to NMat, we use the ground
truth noise level to exclude the performance drop caused by estimation
error.

LABEL SMOOTHING Label smoothing (Szegedy et al., 2016) is a
commonly used method to improve model’s generalization and cali-
bration. It mixes the one-hot label with a uniform vector, preventing
the model from getting overconfident on the samples. Lukasik et al.
(2020) further shows that it improves noise robustness.
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Figure 3.2: Test accuracy in different noise settings. a) & b) injected noise with
different noise levels c) weak supervision noise, at noise levels
of 33.28% and 50.37% in Yoriibd and Hausa, respectively. Noise-
handling methods do not always improve peak performances.
Further plots in Appendix A.3.

3.4.2 Experimental Results

We evaluate our baselines on both injected noise (on AG-News and
IMDB) and weak supervision noise (on Hausa and Yortubd). The test
accuracy is presented Figure 3.2. On injected noise, our results match
and extend the findings by Tdnzer, Ruder, and Rei (2021) that BERT is
noise robust. For example, the test accuracy drops only about 10% after
injecting 70% wrong labels (Figure 3.2a). However, we find that BERT
is vulnerable under weak supervision noise. The performance can drop
up to 35% in a dataset like Hausa with 50% weak supervision noise
compared to training with clean labels (Figure 3.2c). This indicates
that the experience on injected noise may not be transferable to weak
supervision noise.

We also observe that noise-handling methods are not always helpful.
For injected noise, the benefits from noise-handling become obvious
only under high noise levels. But even then, there is no clear winner,
meaning that it is hard to decide beforehand which noise method to
apply - with the risk that they may even perform worse than BERT
without noise-handling. The same applies to weak supervision noise.
The maximal performance gap between the best model and BERT
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Figure 3.3: ROC curves on wrong label detection (binary classification) using
the losses. The losses are recorded at the training step when
early-stopping is triggered. Noise-handling methods do not make

the losses of correct and incorrect labels more distinguishable.

Further plots in Appendix A 4.

without noise-handling is less than 4% and 1.5% under injected noise
and weak supervision noise, respectively.

3.4.3 Analysis of Loss Distributions

To shed some light on why BERT is robust against injected noise
but not weak supervision noise, we track the losses on correctly and
wrongly labeled samples during training. Figure 3.4 depicts typical
distributions of losses associated with correctly and incorrectly labeled
samples, respectively, when early-stopping is triggered. We see that
they have minimal overlap, thus different behaviors throughout the
training, potentially allowing the model to distinguish correctly and
incorrectly labeled samples from each other. We could further quantify
the difference by their separability. Figure 3.3 presents the receiver

operating characteristic (ROC) curves of a thresholds-based classifier.

We observe that (1) under injected noise, an area under curve (AUC)
of more than 9o can be easily achieved without noise-handling (Figure
3.3a), supporting our observation that injected noise has rather a low
impact on BERT. (2) Under weak-supervision noise, the AUC score
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Figure 3.4: Loss histogram at the training iteration when the early-stopping
is triggered. AG-News dataset with 70% uniform noise.

is significantly lower, which means the correct and incorrect labels
are less distinguishable. Therefore, BERT fits both labels at similar
rates. One reason could be that the noise in weak supervision is often
feature-dependent, it might become easier for BERT to fit them, which
in turn deteriorates the generalization. (3) We do not observe a raise
in AUC scores when applying noise-handling methods, indicating
that noise-handling methods rarely enhance BERT’s ability to further
avoid the negative impact of wrong labels. This is consistent with the
observation in Section 3.4.2 that noise-handling methods have little
impact on BERT’s generalization performance.

3.5 CONCLUSION

On several text classification datasets and for different noise types,
we showed that BERT is noise resistant under injected noise, but not
necessarily under weak supervision noise. In both cases, the improve-
ment obtained by applying noise-handling methods are limited. Our
analysis on the separability of losses corresponding to correct and
incorrect labeled samples provides evidence to this argument. Our
analysis offers both motivation and insights to further improve label
noise-handling methods and make them useful on more realistic types
of noise.



A META-LEARNING BASED NOISE-HANDLING
METHOD

In the previous chapter, we discussed feature-independent noise,
which assumes independence in the noise generation process. This
assumption enables researchers to easily construct noisy datasets with
different noise levels and perform analyses under controlled settings.
However, in many realistic machine learning scenarios, this assump-
tion may oversimplify the noise generation process. For example, weak
supervision is an approach that uses various sources to automatically
annotate data, saving the time and cost of manual annotation. Since it
annotates data based on input features, the resulting noise is feature-
dependent. This type of noise is generally more challenging to handle
because neural networks can easily detect and reproduce annotation
patterns during inference, leading to poor generalization. In this chap-
ter, we present Meta Self-Refinement (MSR), a meta-learning-based
noise handling framework that effectively combats feature-dependent
noise in various datasets constructed through weak supervision.
The content presented in this chapter is based on:

Dawei Zhu, Xiaoyu Shen, Michael Hedderich, Dietrich Klakow
(2023). Meta Self-Refinement for Robust Learning with Weak Su-
pervision. In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics
(EACL 2023)

URL: https://aclanthology.org/2023.eacl-main.74/

4.1 INTRODUCTION

Fine-tuning Pre-trained language models (PLMs) has led to great suc-
cess across Natural Language Processing (NLP) tasks. Nonetheless, it
still requires a substantial amount of manual labels to achieve satisfy-
ing performance on many tasks. In reality, obtaining large amounts of
high-quality labels is costly and labor-intensive (Davis et al., 2013). For
certain domains, it is even infeasible due to legal issues and lack of
data or domain experts. Weak supervision is a widely-used approach
for reudcing such cost by leveraging labels from weak sources, e,g.,
heuristic rules, knowledge bases or lower-quality inexpensive crowd-
sourcing (Lison et al., 2020; Ratner et al., 2017; Zhou et al., 2020). It
has raised increasing attention in recent years, and efforts have been
made to quantify the progress on weakly supervised learning, like the
WRENCH benchmark (Zhang et al., 2021¢).

31


https://aclanthology.org/2023.eacl-main.74/

32

A META-LEARNING BASED NOISE-HANDLING METHOD

Although weak labels are inexpensive to obtain, they are often noisy
and inherit biases from weak sources. Training neural networks with
weak labels is challenging because of their immense capacity, which
leads them to heavily overfit to the noise distribution, resulting in
inferior generalization performance (Zhang et al., 2017). Various ap-
proaches have been proposed to tackle this challenge. Earlier research
focused primarily on simulated noise (Bekker and Goldberger, 2016;
Hendrycks et al., 2018), required prior knowledge (Awasthi et al.,
2020; Ren et al., 2020) or relied on context-free aggregation rules with-
out leveraging modern pre-trained language models (Fu et al., 2020;
Ratner et al., 2017).

Recently, Yu et al. (2021) proposed a contrastive regularized self-
training framework that achieved state-of-the-art (SOTA) performance
in several NLP tasks from the WRENCH benchmark. It trains a teacher
network on weak labels, then iteratively applies the teacher to pro-
duce pseudo-labels for training a new student model. To prevent error
propagation, it filters the pseudo-labels with the model confidence
scores and adds contrastive feature regularization to enforce more
distinguishable representations. However, we find that this approach
is effective on easy tasks but fragile on challenging ones, where the initial
teacher model already have memorized a substantial amount of bi-
ases with high confidence. Consequently, confidence-based filtering is
misleading and all future students will be reinforced with these initial
wrong biases from the teacher.

To address this weakness, one strategy is learning to reweight the
pseudo-labels with meta learning (Ren et al., 2018; Shu et al., 2019;
Wang et al., 2020). By this means, sample weights are dynamically
adjusted to minimize the validation loss instead of prefixed with
potentially misleading confidence scores. Nevertheless, if the initial
teacher is weak and mostly produces incorrect pseudo-labels, sim-
ply reweighting the labels does not suffice to extract enough useful
training signals.

In this chapter, we propose Meta Self-Refinement (MSR) to go one
step further. The teacher is jointly trained with a meta objective such
that the student, after one gradient step, can achieve better perfor-
mance on the validation set. In each training step, a copy of the current
student performs one step of gradient descent based on the teacher
predictions. The teacher will then update itself towards the gradient
direction that minimizes the validation loss of the student. Finally, the
actual student is trained by the updated teacher. In MSR, teacher’s
predictions are iteratively refined, instead of only “reweighted”, based
on the meta objective. This will enable more efficient data utilization
since the teacher still has the opportunity to refine itself to provide
the proper training signal, even if its initial output label is wrong. To
further stabilize the training, we enhance our framework with confi-
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dence filtering when teaching the student and apply a linearly scaled
learning rate scheduler to the teacher.

In summary, the main contributions are as follows: 1) We propose
a meta-learning based self-refinement framework, MSR, that allows
robust learning with label noise induced by weak supervision. 2)
We analyze and quantify how label noise impacts model predictions
and representation learning. We find existing methods become less
effective in challenging cases when the label noise can be easily fitted.
In contrast, MSR is more stable and learns better representation. 3)
Extensive experiments demonstrate that MSR consistently reduces the
negative impact of the label noise, matching or outperforming SOTAs
on six sequence classification and two sequence labeling tasks.

4.2 RELATED WORK

LEARNING WITH NOISY LABELS. Learning in the presence of label
noise is a long-standing problem (Angluin and Laird, 1988). Zhang
et al. (2017) show that deep neural networks can memorize arbi-
trary noise during training, resulting in poor generalization. Noise-
handling techniques - by modeling (Goldberger and Ben-Reuven, 2017;
Hendrycks et al., 2018; Patrini et al., 2017) or filtering (Han et al.,
2018b; Li, Socher, and Hoi, 2020) the noisy instances - are proposed to
conquer the label noise. While being effective, they typically assume
that the noise is feature-independent which may oversimplify the
noise generation process in realistic settings (Gu et al., 2021; Zhu et al.,
2022). Recently, realistic and feature-dependent noise induced by weak
supervision has received significant attention. To handle this type of
noise, Awasthi et al. (2020) propose an implication loss that jointly
denoises the noisy labels and weak sources. Ren et al. (2020) denoise
the weak label by considering the reliability of different weak sources
and aggregating them into one cleaned label. Zhang et al. (2021c)
release a benchmark, WRENCH], including various weakly supervised
datasets in both text and image domains.

SELF-TRAINING. Self-training (Lee et al., 2013; Yarowsky, 1995)
is a simple yet effective framework that is commonly used in semi-
supervised learning (SSL). It typically trains a teacher model to provide
pseudo-labels for the student model. Different methods have been
proposed for better generalization (Mukherjee and Hassan Awadallah,
2020; Xie et al., 2020b; Zoph et al., 2020). Recently, self-training has
been adopted to tackle weak supervision. Karamanolakis et al. (2021)
train a teacher network that aggregates weak labels to form high-
quality pseudo-labels for the student. Liang et al. (2020) and Yu et al.
(2021) initialize the teacher model by training a classifier directly on the
weak labels, they apply early-stopping to prevent this initial teacher

1 Code is available on: https://github.com/uds-1lsv/msr
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X = "This film was enjoyable but for the wrong reasons the GT Label
co-ordination of the action sequences are laughable... and
Robert Ginty makes for a film worth seeing." POS
N J
Weak Sources HIT? AL
Labels
Contains(X, laughable) YES NEG
Contains(X, enjoyable) YES POS
if polarity(X) > 0.8 then pos YES POS
RE_Match(X, *highly*recommend *)->pos | NO | Abstain

Figure 4.1: Sentiment analysis dataset annotated with rule-based weak
sources. A weak source is triggered if a specific textual pattern is
matched, after which a pre-defined label is then assigned. Oth-
erwise, it abstains. Depending on how many weak sources are
triggered, a text may obtain zero, one, or multiple weak labels.

from memorizing the label noise. The student is then trained on the
highly confident pseudo-labels provided by the teacher. While the
core assumption of self-training - that highly confident pseudo-labels
are reliable - is generally valid in SSL, it may not be true for feature-
dependent noise induced by weak supervision, especially when the
noise is easy to learn. In this case, self-training inevitably suffers more
from error propagation and fails to train robust models.

META-LEARNING. Recently, different works leveraged meta-learning
techniques to develop noise-robust learning frameworks. The idea is to

optimize an outer learner (e.g., sample weights) that guides the inner

learner (the classifier) to generalize well. Often, a clean validation

dataset is used as a proxy for estimating the generalization perfor-
mance. Ren et al. (2018) attempt to down weight training samples

that increase the validation loss. Shu et al. (2019) employ a neural

network to infer such sample weights and show a significant boost

on performance under feature-independent noise. Wang et al. (2020)

reweight the training samples by their pseudo-labels instead of the

original noisy labels. In this chapter, we aim to leverage meta-learning

in a more flexible manner by refining the pseudo-labels instead of

reweighting them. Approach-wise, the most related works are (Pham

et al., 2021; Zhou, Xu, and McAuley, 2022) used for semi-supervised

learning and model distillation, which also refine the teacher’s pa-
rameters based on the student feedback. However, they work with

samples from clean distributions, while we anticipate the noise memo-
rization effect and enhance our framework with teacher warm-up and

confidence filtering to suppress the error propagation.



4.3 PROBLEM FORMULATION

4.3 PROBLEM FORMULATION

Let X and ) be the feature and label space, respectively. In standard
supervised learning, one is given a clean dataset D = {(x;, v;)}Y,,
where N is the number of samples. The clean labels y; are supposed
to be annotated by human experts.

In weak supervision, a dataset is labeled by weak sources rather than
humans. Weak sources can have diverse forms like lexical rules, knowl-
edge bases, pre-trained models, lower-quality inexpensive crowdsourc-
ing, etc. Figure 4.1 shows an example of text labeled via weak su-
pervision. Compared to manual annotations, weak labels contain
more mistakes. We denote the dataset labeled by weak sources by
Dy = {(x;,9;)}, where 7; is the weak label.? Since weak sources
might not cover all data, we may have a set of unlabeled data D,
in addition to D,,. We use D, = D, U D, to denote the full set of
data. Moreover, as we do not make any assumption on the quality
of the weak labels, their distribution can deviate arbitrarily from the
distribution of clean labels. Learning with only weak labels can lead to
unbounded model errors (Gu et al., 2021; Menon, Rooyen, and Natara-
jan, 2016). Hence, following standard practice in weak supervision, we
assume the access to a small clean validation set D, = {(x?,y?)}M,
where M < N. D, is used for early-stopping, hyper-parameter tuning
or meta-learning so that the learned model will not fully overfit the
noisy weak labels (Ren et al., 2018; Shu et al., 2019; Zhang et al., 2021c).

4.4 META SELF-REFINEMENT

We propose a novel meta-learning based framework, named Meta
Self-Refinement (MSR), to tackle the label noise induced by weak
supervision. In contrast to conventional self-training methods, where
the teacher model is fixed after being trained on weakly labeled data,
MSR enables the teacher to refine itself based on student performance
on the clean validation set, yielding higher-quality labels and more
accurate confidence estimates. In this section, we first provide an
overview of its training objective (section 4.4.1), then go into the
training details (section 4.4.2). Figure 4.2 illustrates the full training
process.

2 Multiple weak sources may be triggered simultaneously by a sample. In this case,
we can use different aggregation methods like majority voting to determine the final
weak label.
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Figure 4.2: Illustration of our proposed Meta-Self Refinement method (MSR). (a) We start by fine-tuning a PLM on weak labels with
early-stopping, which yields an initial teacher f;. (b) At each training step t, f; gets training signals by performing a “teaching
experiment” on §;: a copy of the student network g;. §; is updated by fitting f; with the loss function £,. f; is then updated
to minimize the validation loss £, of §11. (c): gt is updated by fitting f;1 with confidence filtering under the loss £,.



4.4 META SELF-REFINEMENT

4.4.1  Training Objective

MSR contains a teacher network f and a student network g, both are
functions that map X — ). f is initialized by fine-tuning a PLM on
the weakly labeled data D,:

fi= arg;ninlE(xi,yi)eDw L(Gi, f(x:)) (4.1)

where £ denotes the loss function. We use the cross entropy loss
throughout the chapter:

L(p,q) = —Ey ) logq(y) (4-2)

p and q are distributions over the label space V. The initial student
network, g1, is the PLM without fine-tuning on any data.

In conventional self-training, f; is used to provide pseudo-labels to
train the student. By selecting higher-quality pseudo-labels via confi-
dence filtering (Yu et al., 2021) or uncertainty estimation (Mukherjee
and Hassan Awadallah, 2020), the student can often outperform its
teacher. However, as the teacher is trained solely on the weak labels, it
can easily inherit unexpected biases and provide misleading signals
to the student. In MSR, instead of using a fixed teacher to provide
pseudo-labels, we use student performance on the clean validation set
as a feedback signal to dynamically refine the teacher. Specifically, the
objective for the teacher f, formulated as in Equation 4.3, is that the
student network, after fitting the teacher’s output labels on D,, can perform
best on the validation set D,:

fr= arg;ninIE(xf’,y?)eDv L(yf, g5(x))
, (4-3)
8¢ = argmin Eyep, L(f (%), 8(xi))
8

where ¢’ is the student network after fitting output labels from f on
D,. Intuitively, MSR aims to find the best teacher to help the student
achieve the lowest validation loss. After finding the optimal teacher
f* in Equation 4.3, the student can then be obtained by learning from
the output labels of f*:

g = argminEyep, L(f"(x:), 8(xi)) (4-4)
8

4.4.2  Training Details

Finding the exact f* in Equation 4.3 involves solving two nested loops
of optimization, and each loop can be computationally expensive
given the large size of D,. We resort to an online approximation to
merge Equation 4.3 and 4.4 into an iterative training pipeline. At
each training step t, the teacher f; is first updated based on the meta-
objective of “learning to teach”, the student g; is then trained by the
updated teacher.
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Algorithm 1: MSR Algorithm

Input: Initial teacher network f; trained according to Eq. 4.1. Student
network g1, number of training steps T, teacher’s learning rate
scheduler R(t), confidence threshold T, D,, D,.

Result: fr, g7

1 fort<1...T do

2 {x;} + SampleMiniBatch( D,)

3 {x7,y7} < SampleMiniBatch( D)

// Teacher Update

4 | & < Copy(gt)

5| 8r1 < & — As By Vg, L(fi(x1), 81 (x7))

6 | frr < fr = RO B oy Vi L7, §i41(x7))
// Student Update

7 w(frg1(x;)) < 1(1— % > 1)
8 | Qi1 ¢ & — As By, Vg w(fiin (i) L(fre (xi), & (x7))

9 end

TEACHER UPDATE. To update the teacher in an efficient way, we
approximate the inner loop in Equation 4.3 with a single-step gradient
descent of the student network. Namely, the objective of the teacher
is changed so that the current student, after one single gradient descent
step of fitting the teacher, can perform best on the validation set. To do
so, the teacher will first conduct a “teaching experiment” on a copy
of the current student, denoted as ;. §; is updated for one gradient
descent step to fit the teacher’s pseudo labels3:

gt+1 = gt — As IEx,-wDa vgtﬁ(ff(xi)/gf(xi))

where A; is the learning rate of the student network. Afterwards, we
update the teacher network to minimize the validation loss of §;1:

frir = fr = ME(o o) op, VALY, §1(x7))

where A; is the learning rate of the teacher network. It requires calcu-
lating second derivatives over f;. We always use soft labels from the
teacher for L£(f;(x;), §t(x;)), so the whole process is fully differentiable.
Note that §; is only used in the “teaching experiment” to help update
the teacher. It will be discarded after the teacher is updated.

STUDENT UPDATE. After obtaining f;, the real student network is
updated with the same objective as in Equation 4.4, except that we use
the updated teacher f;; instead of f*. As the teacher has performed
the “teaching experiment”, it will provide more useful signals to guide
the student.#

3 We use SGD for illustration purposes. The AdamW (Loshchilov and Hutter, 2019)
optimizer is used in our experiments.

4 In theory, if the teacher network is strong enough to generalize among different
batches, we can directly update the real student in the “teaching experiment”, in the



4.5 EXPERIMENTAL SETTINGS

TEACHER LEARNING RATE SCHEDULER. We find the teacher is
rather sensitive to its learning rate in practice. If the learning rate is
large from the start, the teacher may over-adjust itself due to the large
performance gap between the teacher and the student. If the learning
rate is small, the teacher will adjust itself too slowly so that more noisy
pseudo-labels are passed to the student network. Therefore, we apply
a linear learning rate scheduler R(t) = % to the teacher network
where t denotes the current iteration and A; is the targeted learning
rate for the teacher. By this means, the teacher’s learning rate will
gradually increase as it gets better at teaching.

CONFIDENCE-BASED LABEL FILTERING. Despite having the op-
portunity to refine itself, the teacher inevitably produces some wrong
pseudo labels during training, especially at early iterations of self-
refinement. To further reduce error propagation, we only select labels
with high confidence to guide the student model. The student is
updated as follows:

St11 = 8t — As Byup, Vg, L(frr1(xi), 81(x;))

H(fr1(xi))
x 1(1 — 10;# > 1)

where 1 is the indicator function, H(f;+1(x;)) is the entropy of the dis-
tribution f;1(x;), k is the number of classes in ) and T is a pre-defined
confidence threshold. log(k) is the upper bound of the entropy for k-
classification tasks. By this means, only low-entropy (high-confidence)
predictions from the teacher are learned. Note that the filtering strat-
egy is only applied to the actual student update step, not during the
teaching experiment. Otherwise, the teacher will ignore low-confident
samples as they do not contribute to teacher update.

Putting all together, Algorithm 1 summarizes the self-refinement
process.

4.5 EXPERIMENTAL SETTINGS

DATASETS. WRENCH (Zhang et al., 2021c) is a well-established
benchmark for weak supervision and offers weak labels for various
datasets. We compare different baselines on six NLP datasets from
WRENCH including both sequence classification and Named-Entity
Recognition (NER) tasks. For sequence classification, we include AG-
News (Zhang, Zhao, and LeCun, 2015b), IMDB (Maas et al., 2011),
Yelp (Zhang, Zhao, and LeCun, 2015b), and TREC (Li and Roth, 2002).
For NER tasks, CoNLL-o03 (Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Pradhan et al., 2013) are used. In addition, we further
include two sequence classification datasets in low-resource languages,

hope that the teacher from the last step can also work in the current batch. However,
in practice, we find this mismatch leads to poor performance.
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Yorubéa and Hausa (Hedderich et al., 2020), to involve evaluation cases
in diverse languages. Table 4.1 summarizes the basic statistics of the
datasets. Majority voting over weak sources is used to determine a
single label for each sample.

Dataset Task # Class # Train # Val # Test
AGNews Topic 4 96,000 12,000 12,000
IMDB Sentiment 2 20,000 2,500 2,500
Yelp Sentiment 2 30,400 3,800 3,800
TREC Question 6 4,965 500 500
Yoruba Topic 7 1,340 189 379
Hausa Topic 5 2,045 290 582
CoNLLo3 NER 4 14,041 3,250 3,453
OntoNotess.o NER 18 115,812 5,000 22,897

Table 4.1: Dataset statistics. Refer to Appendix B.1 for more details on
datasets.

IMPLEMENTATION. RoBERTa-base (Liu et al., 2019) is used as the
PLM for English datasets and multilingual BERT-base (Devlin et al.,
2019) for non-English ones. We utilize the higher> library to perform
second-order optimization. Refer to Appendix B.2 for detailed hyper-
parameter configurations.

Method AGNews IMDB Yelp TREC Yoruba Hausa  CoNLL-03 OntoNotes
(Aco) (Acc) (Acc) (Acc) (Acc) (Acc) (F1) (F1)
Fully-Supervised Result
FT-CL 92.61 93.20 96.91 96.67 77.24 81.57 92.27 85.74
Label Models
Majority 63.84 71.04 7021 60.80 58.05 47.93 60.38 58.92
Snorkel (Ratner et al., 2017) 62.67 71.60 68.92 59.60 62.80 47.94 62.88 58.46
DNN Baselines
FT-WL 85.731043 83431091 87711146 66.80:144 64121083 46131043 69.20:033  67.26:062
FT-WLST" (Lee et al., 2013) 88.61:071 89504065 95321070 76.00:221 67284112 49224139 69.871036 64131145
L2R (Ren et al., 2018)° 87284100 8276115 9334001 8340501 7045.060 55.671088 7915113  70.66:074
Meta-Weight-Net® (Shu et al., 2019) 85961080 86.724050 86971074 69391127 70.001212 48.631096 69.541143  69.11:920
Denoise (Ren et al., 2020) 83.451068 76224092 71564056 61.80:130 66.10415 49314093 72.964051 67.64+1.06
UST! (Mukherjee and Hassan Awadallah, 2020)  87.781050 86741118 91231000 77.20:220 68124071 47.671001 69481160  66.98:099
COSINE' (Yu et al., 2021) 89.34:076 90521105 95481013 82.60:109 68.87:0s2 49.66:13 70.60i087  64.59:108
Our Framework
Teacher-Init (f;) 86.37:000 85.001000 89.92:000 69.00:000 65441000 46741000 69.73:000 68251000
MSR' © 89921064 89161091 95001035 94.80.029 72561075 5911075 8841063  74-59:0s4

Table 4.2: Accuracy and F1 score (in %) on eight NLP tasks. The mean and
standard deviation over five trials are reported. Teacher-Init is
the best model checkpoint selected from the five trials of FT-WL
(according to the validation performance). For a fair comparison,
all self-training-based models use the same Teacher-Init checkpoint.
MSR matches or outperforms SOTAs on all tasks. T self-training
based method. © meta-learning based method.

5 https:/ /github.com/facebookresearch/higher



4.6 RESULTS

BASELINES. We compare our method with prior work on learning
with noisy labels. 1) Majority applies majority vote on the weak labels.
Ties are broken by randomly selecting a weak label. 2) Snorkel (Ratner
et al., 2017) trains a labeling model that aggregates weak labels from
different weak sources. 3) FI-WL fine-tunes PLMs on the weak labels.
4) FT-WLST further applies classic self-training (Lee et al., 2013) on
the model obtained by FT-WL. 5) L2R (Ren et al., 2018) uses a meta-
learning framework to reweight weakly labeled samples. 6) Meta-
Weight-Net (Shu et al., 2019) also applies meta-learning based sample
reweighting. However, the weights are computed through an external
reweighting network. 7) Denoise (Ren et al., 2020) iteratively corrects
wrong annotations in the training set, and the classifier learns with
the corrected labels. 8) UST (Mukherjee and Hassan Awadallah, 2020)
is a self-training based method that assigns higher weights to samples
that the teacher is certain about. The uncertainties are measured
via MC-dropout on the predictions (Gal and Ghahramani, 2016). 9)
COSINE (Yu et al., 2021) trains its student network with pseudo-labels
which the teacher is highly confident about. In addition, contrastive
regularization is introduced to further alleviate error propagation.
For our proposed framework, we report the performances of both
Teacher-Init (f;): the initial teacher trained directly on weak labels,
and MSR: the final student model (g7). f1 is obtained by running
FT-WL five times and selecting the best one among them according to
the validation performance. For a fair comparison, the same f1 is used as
the initial teacher for all self-training based models. Finally, we also include
the results of fine-tuning PLMs on the clean versions of each dataset,
denoted by FT-CL, to represent the upper bound performance.

4.6 RESULTS

COMPARISON WITH BASELINES. Table 4.2 shows a comparison
among different methods. MSR matches or outperforms SOTAs on
all eight datasets. FI-WL outperforms majority voting over the weak
labels in all cases except Hausa, which leads to a minor drop. This
confirms that PLMs encode useful knowledge in their parameters,
enabling them to generalize better than weak rules they are trained
on. This phenomenon is particularly noticeable on AGNews, IMDB,
and Yelp: direct fine-tuning on the noisy labels (FT-WL) can already
achieve decent performance (accuracy above 83%). We consider them
easy tasks since label noise has only a minor impact on performance of PLMs
and decent generalization can be attained even without specific noise-handling.
Applying self-training to such simple tasks lead to further performance
improvement. COSINE, a SOTA self-training based model, can even
perform comparably to the fully supervised model on these three
datasets. On the other five datasets, however, FI-WL performs poorly
and conventional self-training methods provide little performance
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Figure 4.3: Prediction error decomposition of various weak supervision base-
lines, evaluated on the test sets. A model is considered robust
against label noise if it manages to predict the correct labels de-
spite the wrong weak labels (the robustness is represented by the
blue bars). Otherwise, it conforms to the weak label (Type-A er-
ror) or predict another incorrect label (Type-B error), which has a
negative effect on generalization. The Type-C error rate quantifies
the proportion of incorrect model predictions when weak labels
are correct. MSR consistently reduces the Type-A error rate and
attains a high level of noise robustness.

boost (even a disservice on OntoNotes). This implies that self-training
relies on a well-performed initial teacher to work effectively. On challenging
datasets where the initial teacher is weak, it struggles to achieve
further performance gain. Meta-learning based methods such as L2R
performs better than COSINE on these challenging datasets. MSR can
further boost the performance on all the challenging datasets by up to 11.4%
in accuracy or 9.26% in F1 score while maintaining comparable results on
simpler datasets.

ERROR DECOMPOSITION. Lety/, 7,y denote the model prediction,
the noisy weak label, and the clean label, respectively. To investigate
how the label noise influences the model predictions, we decompose
model prediction errors into three types: (1) Type-A error: y' = ;7 # y
(2) Type-B error: i # § # y and (3) Type-C error: y' # y;y = 7. Type-
A/B errors correspond to situations in which a model complies with
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Figure 4.4: Accuracy vs. confidence thresholds.

an incorrect weak label 7, or predicts another incorrect class label. If,

on the other hand, the weak label  is correct, a Type-C error arises
if the model predicts a label different than §j. A higher Type-A error
rate indicates that a model memorizes more label noise from the weak
sources, while a model that underfits fails to learn useful knowledge
from the weak sources can have a higher Type-C error rate.

Figure 4.3 visualizes the three types of errors on three challenging
datasets: TREC, Hausa and CoNLL-03. The blue bars represent model

robustness, i.e., how often the model predicts correctly when § # y.

It clearly shows that direct fine-tuning on weak labels (FT-WL) has
a much higher Type-A error rate compared with the model trained
on clean data (FI-CL), suggesting that the model quickly memorizes
the label noise. On the other hand, the disparity in type C error rate
is much smaller, indicating that all models do not underfit and the
knowledge from the weak sources is properly transferred. The Type-B

error shows similar trends and does not differ much across models.
Opverall, Type-A error has the strongest impact on model performance.
All the noisy-handling models mainly help with reducing Type-A errors.

We also observe that while COSINE reduces Type-A errors on TREC,
it barely works on the other two datasets. Only MSR manages to
consistently reduce Type-A errors by over 20% on all three datasets.

ACCURACY VS CONFIDENCE. As confidence-based filtering is a key
component in both COSINE and MSR, we show the accuracy of model
predictions with different confidence thresholds in Figure 4.4. As can
be seen, even using a high confidence threshold for COSINE, the accuracy is
still low, which is why it struggles to improve on challenging datasets.
MSR, on the contrary, consistently attains higher accuracy with higher
confidence thresholds, and thereby confidence-based filtering on top
of MSR help lead to better performance.

IMPACT OF LABEL NOISE ON FEATURE SPACE. We also analyze
how the label noise influences representation learning. Figure 4.5
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Projected feature space of different models on TREC using t-
SNE (Maaten and Hinton, 2008). The circles represent training
samples that are predicted as class 1. a)-c): development of MSR
during training. Circles are colored by the predicted class (i.e.,
class 1, in purple). The validation samples are represented by
crosses and colored according to the ground truth labels. The
MSR student gradually improves its feature space to embed the
training and validation samples from the same class in the same
area. d)-f): training samples are colored according to their ground
truth labels; model confidence is reflected by the size of the
circles. Teacher-Init and COSINE misclassify samples with high
confidence. MSR attains a cleaner cluster.
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Figure 4.6: Accuracy vs. number of validation samples.

illustrates the projected feature space of different models on TREC.
For a clear visualization, we present only training samples predicted
as class 1 by the models in the form of circles. In figs. 4.5a to 4.5¢, we
further visualize the feature space of validation samples (represented
by crosses). As can be seen, initially the feature space of class 1 overlaps
with that of other classes from the validation set. As the training
proceeds, when the teacher keeps refining itself, the MSR student
gradually reduces such overlap and learns a well-split representation
space. In figs. 4.5d to 4.5f, we compare the feature space between
different models. The training samples are colored according to their
ground truth classes to highlight the misclassification ratio (the more
colorful the clusters, the higher the misclassification ratio). We observe
that Teacher-Init makes many wrong predictions with high degree of
confidence. In this case, utilizing the confidence score for denoising
is fragile. This may explain why COSINE, despite offering a more
compact cluster, still has a considerable amount of misclassification.
Finally, MSR has a considerably cleaner cluster and is less affected by
error propagation than COSINE.

EFFECTS OF VALIDATION DATA SIZE. The model performance
reported in Table 4.2 is based on the original data splits from the
WRENCH benchmark. The size of the validation sets is mostly less
than 15% of the training sets. Typically, they are used to perform early-
stopping and model selection. For meta-learning based methods, they
additionally rely on the validation sets for meta-update and might be
more sensitive to validation size. Hence, we study how the validation
size affects different models. In particular, we randomly sample a
subset from the original validation set D, and repeat the same training
process. Figure 4.6 presents the results. We find that the validation size
indeed has a greater impact on meta-learning approaches. However,
MSR still retains its high generalization performance even with as few as
100 validation samples, suggesting that MSR is very data efficient in
performing the self-refinement.
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Configuration Seq. Classification NER

(Acc) (F1)

Teacher-Init 73.75 68.99

Student 83.43 81.50
Teacher 82.38 (| 1.05%) 80.26 (| 1.24%)

w /o Teacher Scheduler 81.80 (4 1.63%) 80.15 (4 1.35%)
w /o Confidence Filtering 82.32 ({ 1.11%) 81.09 (| 0.41%)
w/o Both 81.63 (J 1.80%) 79.95 ({ 1.55%)

Table 4.3: Summary of ablation experiments aggregated across multiple
datasets. See Appendix B.4 for results in each dataset.

ABLATION STUDY. Table 4.3 summarizes the impact of different
components of our method. In general, our student model performs
slightly better than the teacher. This is as expected because a) the
teacher’s goal is to guide the student to generalize better, the training
loss does not explicitly encourage the teacher to improve its accuracy,
and b) the confidence filtering helps the student avoid fitting some
wrong pseudo-labels from the teacher. This is also confirmed by the
decreased performance when the filter is removed. In addition, apply-
ing a learning rate scheduler is better than using a fixed learning rate
throughout training.

4.7 CONCLUSION

We present MSR, a meta-learning based self-refinement framework
that enables robust learning with weak labels. Unlike conventional
self-training which relies on a fixed teacher, MSR dynamically refines
the teacher based on the student’s performance on the validation set.
To further suppress error propagation, we introduce a learning rate
scheduler to the teacher and add confidence filtering to the student.
We demonstrate that our framework performs on par with or better
than current SOTAs on both sequence classification and labeling tasks.

4.8 LIMITATIONS

In this chapter, Our primary focus is to propose a strong weak super-
vision method that works reliably under various weak supervision
settings. We employ meta-learning techniques to address the issue
of unreliable confidence scores under challenging settings (Figure
4.4). Despite the effectiveness, the main limitation of our method,
just like other meta-learning based frameworks, is the computational
overhead. The teacher update step (Algorithm 1, Line 4-6) requires
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computing both the first and second-order derivatives, which incurs
additional computation time and higher memory consumption. Con-
sequently, our method requires longer training.® Implementation-wise
and computation-wise, MSR is as complex as other existing meta-
learning based methods, like L2R (Ren et al., 2018) and MW-Net (Shu
et al., 2019), but performs substantially better than them in all weak
supervision scenarios we evaluated. It is worth noting that MSR has
no overhead at inference time. In weak supervision, the data annotation
cost is considered the most significant bottleneck. A stronger model
is often obtained by trading some more computation with the cost
and effort of obtaining more human-generated, manual annotations.
Hence, the one-off investment of training MSR can be worthwhile for
real-world weak supervision applications.

6 Detailed training time on each dataset can be found in Appendix B.5 The most costly
training of MSR takes roughly 3 hours.
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In few-shot learning scenarios for NLP tasks, recent studies have
demonstrated that using a validation set with significantly more exam-
ples than the few training shots undermines the feasibility of few-shot
learning and violates its core assumptions (Perez, Kiela, and Cho, 2021;
Schmidt, Vuli¢, and Glavas, 2022, 2023). A similar issue arises in weak
supervision: if the validation set contains enough cleanly annotated
examples, these could theoretically be repurposed for training rather
than being restricted to model selection. However, research in this area
continues to rely on large numbers of high-quality validation examples
solely for model selection. This reliance raises important questions
about the practicality of weak supervision approaches, leading us to
consider two key issues. First, in the absence of clean validation exam-
ples, can existing weakly supervised learning methods still perform
effectively? Second, given that the training set contains a larger num-
ber of lower-quality examples while the validation set has fewer but
higher-quality examples, would it be more effective to train directly
on the clean validation data instead? In this chapter, we establish more
realistic problem settings for weak supervision applications and em-
pirically address these questions through comprehensive experiments.
The content presented in this chapter is based on:

Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas Stephan,
Dietrich Klakow (2023). Weaker Than You Think: A Critical Look
at Weakly Supervised Learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (ACL
2023)

URL: https://aclanthology.org/2023.acl-1long.796/

5.1 INTRODUCTION

Weakly supervised learning (WSL) is one of the most popular ap-
proaches for alleviating the annotation bottleneck in machine learning.
Instead of collecting expensive clean annotations, it leverages weak
labels from various weak labeling sources such as heuristic rules,
knowledge bases or lower-quality crowdsourcing (Ratner et al., 2017).
These weak labels are inexpensive to obtain, but are often noisy and
inherit biases from their sources. Deep learning models trained on
such noisy data without regularization can easily overfit to the noisy
labels (Tanzer, Ruder, and Rei, 2022; Zhang et al., 2017). Many ad-
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Figure 5.1: Performance improvement over weak labels on the test sets.
Each point represents the average performance improvement of
one approach over five runs. On various NLP datasets, weakly
supervised methods (dots) outperform weak labels (blue line)
on the test sets. However, simply fine-tuning on the available clean
validation data (light green crosses) outperforms all sophisticated weakly
supervised methods in almost all cases. See Appendix C.4.2 for exper-
imental details.

vanced WSL techniques have recently been proposed to combat the
noise in weak labels, and significant progress has been reported. On
certain datasets, they even manage to match the performance of fully-
supervised models (Liang et al., 2020; Ren et al., 2020; Yu et al., 2021).

In this chapter, we take a close look at the claimed advances of these
WSL approaches and find that the benefits of using them are significantly
overestimated. Although they appear to require only weak labels during
training, a substantial number of clean validation samples are used
for various purposes such as early-stopping (Liang et al., 2020; Yu
et al., 2021) and meta-learning (Ren et al., 2018; Shu et al., 2019; Zheng,
Awadallah, and Dumais, 2021). We cast doubt on this practice: in
real-world applications, these clean validation samples could have
instead been used for training. To address our concern, we explore
fine-tuning models directly on the validation splits of eight datasets
provided by the WRENCH benchmark (Zhang et al., 2021c) and com-
pare it to recent WSL algorithms. The results are shown in Figure
5.1. Interestingly, although all WSL models generalize better than the
weak labels, simply fine-tuning on the validation splits outperforms
all WSL methods in almost all cases, sometimes even by a large
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margin. This suggests that existing WSL approaches are not evaluated
in a realistic setting and the claimed advances of these approaches
may be overoptimistic. In order to determine the true benefits of WSL
approaches in a realistic setting, we conduct extensive experiments to
investigate the role of clean validation data in WSL. Our findings can
be summarized as follows:

e Without access to any clean validation samples, all WSL ap-
proaches considered in this chapter fail to work, performing
similarly to or worse than the weak labels (§5.4).

¢ Although increasing the amount of clean validation samples
improves WSL performance (§5.5), these validation samples can
be more efficiently leveraged by directly training on them, which
can outperform WSL approaches when there are more than 10
samples per class for most datasets (§5.6).

* Even when enabling WSL models to continue training on clean
validation samples, they can barely beat an embarrassingly sim-
ple baseline which directly fine-tunes on weak labels followed
by fine-tuning on clean samples. This stays true with as few as 5
samples per class (§5.7).

* The knowledge encoded in pre-trained language models biases
them to seek linguistic correlations rather than shallow rules
from the weak labels; further fine-tuning the pre-trained lan-
guage models with contradicting examples helps reduce biases
from weak labels (§5.8).

Altogether, we show that existing WSL approaches significantly
overestimate their benefits in a realistic setting. We suggest future work
to (1) fully leverage the available clean samples instead of only using
them for validation and (2) consider the simple baselines discussed in
this chapter when comparing WSL approaches to better understand
WSL's true benefits.

5.2 RELATED WORK

WEAK SUPERVISION. Weak supervision is proposed to ease the
annotation bottleneck in training machine learning models. It uses
weak sources to automatically annotate the data, making it possible to
obtain a large amount of annotated data at a low cost. A comprehen-
sive survey is done in Zhang et al. (2022). Ratner et al. (2017) propose
to label data programmatically using heuristics such as keywords,
regular expressions or knowledge bases. One drawback of weak su-
pervision is that its annotations are noisy, i.e., some annotations are
incorrect. Training models on such noisy data may result in poor gen-
eralization (Ténzer, Ruder, and Rei, 2022; Zhang et al., 2017; Zhang
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et al., 2022). One option to counter the impact of wrongly labeled sam-
ples is to re-weight the impact of examples in loss computation (Ren
et al., 2018; Shu et al,, 2019; Zheng, Awadallah, and Dumais, 2021).
Another line of research leverages the knowledge encoded in pre-
trained language models (Jiang et al., 2021; Ren et al., 2020; Stephan,
Kougia, and Roth, 2022). Methods such as BOND (Liang et al., 2020),
ASTRA (Karamanolakis et al., 2021) and COSINE (Yu et al., 2021)
apply teacher-student frameworks to train noise-robust models. Zhu
et al. (2023a) show that teacher-student frameworks may still be fragile
in challenging situations and propose incorporating meta-learning
techniques in such cases. Multiple benchmarks are available to evalu-
ate weak supervision systems, e.g., WRENCH (Zhang et al., 2021¢),
Skweak (Lison, Barnes, and Hubin, 2021), and WALNUT (Zheng et al.,
2022a). In this chapter, we take representative datasets from WRENCH
and reevaluate existing WSL approaches in more realistic settings.

REALISTIC EVALUATION. Certain pitfalls have been identified when
evaluating machine learning models developed for low-resource sit-
uations. Earlier work in semi-supervised learning (SSL) in computer
vision, for example, often trains with a few hundred training examples
while retaining thousands of validation samples for model selection
(Miyato et al., 2018; Tarvainen and Valpola, 2017). Oliver et al. (2018)
criticize this setting and provide specific guidance for realistic SSL eval-
uation. Recent work in SSL has been adapted to discard the validation
set and use a fixed set of hyperparameters across datasets (Li, Xiong,
and Hoi, 2021; Xie et al., 2020a; Zhang et al., 2021a). In NLDP, it has
been shown that certain (prompt-based) few-shot learning approaches
are sensitive to prompt selection which requires separate validation
samples (Perez, Kiela, and Cho, 2021). This defeats the purported goal
of few-shot learning, which is to achieve high performance even when
collecting additional data is prohibitive. Recent few-shot learning al-
gorithms and benchmarks have adapted to a more realistic setting in
which fine-grained model selection is either skipped (Alex et al., 2021;
Bragg et al., 2021; Gao, Fisch, and Chen, 2021; Lu et al., 2022; Schick
and Schiitze, 2022) or the number of validation samples are strictly
controlled (Bragg et al., 2021; Zheng et al., 2022b). To our knowledge,
no similar work exists exploring the aforementioned problems in the
context of weak supervision. This motivates our work.

5.3 OVERALL SETUP

PROBLEM FORMULATION. Formally, let X and ) be the feature
and label space, respectively. In standard supervised learning, we
have access to a training set D = {(x;,y;)}}\, sampled from a clean
data distribution D, of random variables (X,Y) € X x ). In weak
supervision, we are instead given a weakly labeled dataset D, =
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{(xi,9:)} X, sampled from a noisy distribution D,,, where 7J; represents
labels obtained from weak labeling sources such as heuristic rules or
crowd-sourcing.' ; is noisy, i.e., it may be different from the ground-
truth label y;. The goal of WSL algorithms is to obtain a model that
generalizes well on Dyest ~ D, despite being trained on Dy, ~ D,,. In recent
WSL work, a set of clean samples, D, ~ D, is also often included for
model selection.?

DATASETS. We experiment with 8 datasets covering different NLP
tasks in English. Concretely, we include four text classification datasets:
(1) AGNews (Zhang, Zhao, and LeCun, 2015b), (2) IMDb (Maas et al.,
2011), (3) Yelp (Zhang, Zhao, and LeCun, 2015b), (4) TREC (Li and
Roth, 2002), two relation classification datasets: (5) SemEval (Hen-
drickx et al., 2010) and (6) ChemProt (Krallinger et al., 2017), and
two Named-Entity Recognition (NER) datasets: (7) CoNLL-03 (Tjong
Kim Sang and De Meulder, 2003) and (8) OntoNotes (Pradhan et al.,
2013). The weak annotations are obtained from WRENCH (Zhang
et al., 2021c¢). Table 5.1 summarizes the basic statistics of the datasets.

Dataset Task # Class # Train # Val # Test
AGNews Topic 4 96K 12K 12K
IMDb Sentiment 2 20K 25K 25K
Yelp Sentiment 2 30K 3.8K  3.8K
TREC Question 6 4,965 500 500
SemEval Relation 9 1,749 178 600
ChemProt Relation 10 13K 1.6K  1.6K
CoNLL-03 NER 4 14K 3.2K 34K
OntoNotes 5.0 NER 18 115K 5K 23K

Table 5.1: Dataset statistics. Additional details on datasets are provided in
Appendix C.1.

WSL BASELINES. We analyze popular WSL approaches including:
(1) FTw represents the standard fine-tuning approach? (Devlin et al.,
2019; Howard and Ruder, 2018). Ren et al. (2020), Zhang et al. (2021¢)

Majority voting can be used to resolve conflicting weak labels from different labeling
sources.

We refer to model selection as the process of finding the best set of hyperparameters
via a validation set, including the optimal early-stopping time. Prior work has shown
that early-stopping is crucial for learning with noisy labels (Arpit et al., 2017; Ténzer,
Ruder, and Rei, 2022; Yu et al., 2021; Zhu et al., 2022).

We use the subscript “W” to emphasize that this fine-tuning is done on the weakly
annotated data and to distinguish it from the fine-tuning experiments in Section 5.6
which are done on clean data.
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and Zheng et al. (2022a) show that a PLM fine-tuned on a weakly la-
beled dataset often generalizes better than the weak labels synthesized
by weak labeling sources. (2) L2R (Ren et al., 2018) uses meta-learning
to determine the optimal weights for each (noisy) training sample so
that the model performs best on the (clean) validation set. Although
this method was originally proposed to tackle artificial label noise, we
find it performs on par with or better than recent weak supervision
algorithms on a range of datasets. (3) MLC (Zheng, Awadallah, and
Dumais, 2021) uses meta-learning as well, but instead of weighting
the noisy labels, it uses the meta-model to correct them. The classifier
is then trained on the corrected labels. (4) BOND (Liang et al., 2020)
is a noise-aware self-training framework designed for learning with
weak annotations. (5) COSINE (Yu et al., 2021) underpins self-training
with contrastive regularization to improve noise robustness further
and achieves state-of-the-art performance on the WRENCH (Zhang
et al., 2021¢) benchmark.

To provide a fair comparison, we use RoBERTa-base (Liu et al., 2019)
as the common backbone PLM for all WSL approaches (re)implemented
in this chapter.

5.4 IS CLEAN DATA NECESSARY FOR WSL?

Recent best-performing WSL approaches rely on a clean validation
set for model selection. Figure 5.1 reveals that they fail to outper-
form a simple model that is directly fine-tuned on the validation set.
Therefore, a natural question to ask is: “Will WSL still work without
accessing the clean validation set?”. If the answer is yes, then we can
truly reduce the burden of data annotation and the benefits of these
WSL approaches would be undisputed. This section aims to answer
this question.

SETUP. We compare three different validation choices for model
selection using either (1) a clean validation set from D, as in prior
work, (2) weak labels from D, obtained by annotating the validation
set via weak labeling sources (the same procedure used to construct
training annotations), or (3) no validation data at all. In the last set-
ting, we randomly select 5 sets of hyperparameters from our search
space (see Appendix C.3). We run the WSL approaches introduced in
Section 5.3 on all eight datasets with different validation choices and
measure their test performance. Each experiment is repeated 5 times
with different seeds.

While one may expect a certain drop in performance when switch-
ing from D, to D,, the absolute performance of a model does not
determine the usefulness of a WSL method. We are more interested
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Figure 5.2: Relative performance gain over weak labels when varying vali-
dation conditions. The dots show the average performance gain
across 5 runs for each of the 8 datasets. The curves show the
average gain across datasets. WSL baselines achieve noticeable
performance gains only if a clean validation set is used. Perform-
ing model selection on a weakly labeled validation set does not
help generalization. Note that L2R and MLC are not applicable
without validation data.

in whether a trained model generalizes better than the weak labels.
In realistic applications, it is only worth deploying trained models if
they demonstrate clear advantages over the weak labels. Therefore,
we report the relative performance gain of WSL approaches over
the weak labels. Formally, let Py, P, denote the performance (accu-
racy, Fi-score, etc.) achieved by the weak labels and a certain WSL
method a, respectively. The the relative performance gain is defined
as Gy = (Px — Pwr)/Pwr. We consider a WSL approach to be effective
and practically useful only if G, > 0.

RESULTS. Figure 5.2 shows the relative performance gain for all
considered WSL approaches. When model selection is performed on
a clean validation set (green curve), all weak supervision baselines
generalize better than the weak labels. Sophisticated methods like
COSINE and L2R push the performance even further. This observation
is consistent with previous findings (Zhang et al., 2021¢; Zheng et al.,
2022a). However, when using a weakly labeled validation set (yellow
curve), all WSL baselines become ineffective and barely outperform the

Weak labeling sources are typically applied to the training data to synthesize a weakly
annotated training set. However, it is also possible to synthesize the weak labels for
the test set following the same procedure and measure their performance. In other
words, weak labeling sources can be regarded as the most basic classification model,
and the synthesized weak labels are its predictions.
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Figure 5.3: The impact of the number of clean validation samples on per-
formance. We plot average performance and standard deviation
over 5 runs varying the size of the clean validation data. When-
ever a small proportion of validation data is provided, most WSL
techniques generalize better than the weak label baseline (grey
dashed line). Performance improves with additional validation
samples, but this tendency usually levels out with a moderate
number of validation samples.

weak labels. More interestingly, models selected through the weakly
labeled validation sets do not outperform models configured with
random hyperparameters (purple curve). These results demonstrate
that model selection on clean validation samples plays a vital role in
the effectiveness of WSL methods. Without clean validation samples,
existing WSL approaches do not work.

5.5 HOW MUCH CLEAN DATA DOES WSL NEED?

Now that we know clean samples are necessary for WSL approaches
to work, a follow-up question would be: “How many clean samples
do we need?” Intuitively, we expect an improvement in performance
as we increase the amount of clean data, but it is unclear how quickly
this improvement starts to level off, i.e., we may find that a few dozen
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clean samples are enough for WSL approaches to perform model
selection. The following section seeks to answer this question.

seTur. We apply individual WSL approaches (see Section 5.3) and
vary the size of clean data sub-sampled from the original valida-
tion split. For text and relation classification tasks, we draw an in-
creasing number of clean samples N € {5,10,15,20,30,40,50} per
class when applicable.> In the case of NER, as a sentence may con-
tain multiple labels from different classes, selecting exactly N sam-
ples per class at random is impractical. Hence, for NER we sample
N € {50,100, 200, 300,400,500} sentences for validation. For each N,
we run the same experiment 5 times. Note that the clean data is used
solely for model selection in this set of experiments.

RESULTS. As shown in Figure 5.3, in most cases, a handful of vali-
dation samples already make WSL work better than the weak labels.
We observe an increasing trend in performance with more validation
samples, but typically this trend weakens with a moderate size of
samples (~30 samples per class or ~200 sentences) and adding more
samples provides little benefit. There are a few exceptions. For exam-
ple, on IMDb all methods except L2R consistently perform better with
more validation data. On CoNLL-03, on the other hand, most methods
seem to be less sensitive to the number of samples. Overall, the results
suggest that a small amount of clean validation samples may be
sufficient for current WSL methods to achieve good performance.
Using thousands of validation samples, like in the established bench-
marks (Zhang et al., 2021¢c; Zheng et al., 2022a), is neither realistic nor
necessary.

5.6 IS WSL USEFUL WITH LESS CLEAN DATA?

The previous sections have shown that current WSL approaches (1)
do not improve over direct fine-tuning on the existing validation
splits (Figure 5.1) and (2) require only a small amount of validation
samples to be effective (Figure 5.3). This section investigates whether
the conclusion from Figure 5.1 would change with less clean data, i.e.,
can WSL approaches outperform direct fine-tuning when less clean
data is available?

seTupr.  We follow the same procedure as in Section 5.5 to subsample
the cleanly annotated validation sets and fine-tune models directly on
the sampled data. In addition to the standard fine-tuning approach
(Devlin et al., 2019), we also experiment with three parameter-efficient

The validation set of SemEval is too small to support N > 20. Also, if a dataset is
unbalanced, we randomly select N x C samples, where C denotes the number of
classes. This is a realistic sampling procedure when performing data annotation.
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Figure 5.4: Using clean data for validation vs. training. We show the av-
erage performance (Acc. and Fi-score in %) difference between
(parameter-efficient) fine-tuning approaches and COSINE when
varying amounts of clean samples. COSINE uses the clean sam-
ples for validation, whereas fine-tuning approaches directly train
on them (indicated in the legend with the subscript ‘C’). For most
sequence classification tasks, fine-tuning approaches work better
once 10 clean samples are available for training. For NER, several
hundreds of clean sentences may be required to attain better
results via fine-tuning. Refer to Appendix C.4 for a comparison
with other WSL approaches.

fine-tuning (PEFT) approaches as — in the few-shot setting — they have
been shown to achieve comparable or even better performance than
fine-tuning all parameters (Liu et al., 2022; Logan IV et al., 2022; Peters,
Ruder, and Smith, 2019). In particular, we include adapters (Houlsby
et al., 2019), LoRA (Hu et al., 2022), and BitFit (Zaken, Goldberg, and
Ravfogel, 2022).

We use one fixed set of hyperparameter configurations and train
models for 6000 steps on each dataset.® We report performance at the

6 The hyperparameters are randomly picked from the ranges mentioned in the original
papers of corresponding methods and fixed across all experiments. We did not cherry-
pick them based on the test performances. In most cases the training loss converges
within 300 steps. We intentionally extend training to show that we do not rely on
extra data for early-stopping. We find that overfitting to the clean data does not hurt
generalization. A similar observation is made in Mosbach, Andriushchenko, and
Klakow (2021). Detailed configurations are presented in Appendix C.4.
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last step and compare it with WSL approaches which use the same
amount of clean data for validation.

RESULTS. Figure 5.4 shows the performance difference between the
fine-tuning baselines and COSINE, one of the best-performing WSL
approaches, when varying the number of clean samples. It can be
seen that in extremely low-resource cases (less than 5 clean samples
per class), COSINE outperforms fine-tuning. However, fine-tuning
approaches quickly take over when more clean samples are available.
LoRA performs better than COSINE on three out of four text clas-
sification tasks with just 10 samples per class. AGNews is the only
exception, where COSINE outperforms LoRA by about 1% when 20
samples per class are available, but adapters outperform COSINE in
this case. Relation extraction has the same trend where 10—20 sam-
ples per class are often enough for fine-tuning approaches to catch
up. For NER tasks, all fine-tuning approaches outperform COSINE
with as few as 50 sentences on CoNLL-03. OntoNotes seems to be
more challenging for fine-tuning and 400 sentences are required to
overtake COSINE. Still, 400 sentences only account for 0.3% of the
weakly labeled samples used for training COSINE. This indicates that
models can benefit much more from training on a small set of clean
data rather than on vast amounts of weakly labeled data. Note that
the fine-tuning approaches we experiment with work out-of-the-box
across NLP tasks. If one specific task is targeted, few-shot learning
methods with manually designed prompts might perform even bet-
ter.” Hence, the performance shown here should be understood as a
lower bound of what one can achieve by fine-tuning. Nevertheless, we
can see that even considering the lower bound of fine-tuning-based
methods, the advantage of using WSL approaches vanishes when
we have as few as 10 clean samples per class. For many real-world
applications, this annotation workload may be acceptable, limiting the
applicability of WSL approaches.

5.7 CAN WSL BENEFIT FROM FINE-TUNING?

The WSL approaches have only used clean samples for validation so
far, which is shown to be inefficient compared to training directly on
them. We question whether enabling WSL methods to further fine-
tune on these clean samples would improve their performance. In this
section, we study a straightforward training approach that makes use
of both clean and weak labels.?

7 For example, Zhao et al. (2021) achieve an accuracy of 85.9% on AGNews using just
4 labeled samples in total. For comparison, COSINE needs 20 labeled samples for
validation to reach 84.21%.

8 In Appendix C.5 we also explored other baselines that combine clean and weak data,
but they perform considerably worse than the approach we consider in this section.
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(a) N = 5 clean samples per class for classification tasks. N = 50 clean samples for
NER tasks.
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(b) N = 50 clean samples per class for classification tasks except for SemEval due
to its limited validation size. N = 500 clean samples for NER tasks

Figure 5.5: Performance before and after continuous fine-tuning (CFT) on
the clean data. The average performance and standard deviation
over 5 runs are reported. Though CFT improves the performance
of WSL approaches in general, the simplest baseline FTw gains
the most from it. After applying CFT, FTyy performs on par with
or better than more sophisticated WSL approaches, suggesting
these sophisticated approaches might have overestimated their
actual value. Further plots are included in Appendix C.6.

SseTUP. Given both the weakly labeled training data and a small
amount of clean data, we consider a simple two-phase training base-
line. In the first phase, we apply WSL approaches on the weakly
labeled training set, using the clean data for validation. In the second
phase, we take the model trained on the weakly labeled data as a
starting point and continue to train it on the clean data. We call this
approach continuous fine-tuning (CFT). In our experiment, we apply
CFT to the two best-performing WSL approaches, COSINE and L2R,
along with the most basic WSL baseline, FTy. We sample clean data in
the same way as in Section 5.5. The training steps of the second phase
are fixed at 6000. Each experiment is repeated 5 times with different
seeds.

RESULTS. Figure 5.5 shows the model performance before and
after applying CFT. It can be seen that CFT does indeed benefit WSL
approaches in most cases even with very little clean data (Figure 5.5a).
For L2R, however, the improvement is less obvious, and there is even a
decrease on Yelp and OntoNotes. This could be because L2R uses the
validation loss to reweight training samples, meaning that the value of
the validation samples beyond that may only be minimal. When more
clean samples are provided, CFT exhibits a greater performance gain
(Figure 5.5b). It is also noticeable that CFT reduces the performance
gap among all three WSL methods substantially. Even the simplest



5.8 WHAT MAKES FTy+CFT EFFECTIVE?

approach, FTyw, is comparable to or beats L2R and COSINE in all tasks
after applying CFT. Considering that COSINE and L2R consume
far more computing resources, our findings suggest that the net
benefit of using sophisticated WSL approaches may be significantly
overestimated and impractical for real-world use cases.

Finally, we find the advantage of performing WSL diminishes with
the increase of clean samples even after considering the boost from
CFT. When 50 clean samples per class (500 sentences for NER) are
available, applying WSL+CFT only results in a performance boost of
less than 1% on 6 out of 8 datasets, compared with the baseline which
only fine-tunes on clean samples. Note that weak labels are no free
lunch. Managing weak annotation resources necessitates experts who
not only have linguistic expertise for annotation but also the ability
to transform that knowledge into programs to automate annotations.
This additional requirement naturally reduces the pool of eligible
candidates and raises the cost. In this situation, annotating a certain
amount of clean samples may be significantly faster and cheaper. Thus,
we believe WSL has a long way to go before being truly helpful in
realistic low-resource scenarios.

5.8 WHAT MAKES FTy+CFT EFFECTIVE?

As seen in the previous section, combining FTw with CFT yields a
strong baseline that more sophisticated WSL approaches can hardly
surpass. This section examines factors that contribute to the effective-
ness of this method. Specifically, we aim to answer two questions:
(1) “How does FTy resist biases despite being trained only on weak
labels?” and (2) “How does CFT further reduce bias introduced by
weak labels?”.

SseTuP. To answer question (1), we modify the backbone PLM to
see if its encoded knowledge plays an important role. In addition
to RoBERTa-base, we explore two other PLMs that are pre-trained
on less data: RoBERTa-small-1M and RoBERTa-base-10M, which are
pre-trained on 1M and 10M words, respectively.? We report model per-
formance on both clean labels and weak labels to see which labels the
model tends to fit. To answer question (2), we vary the agreement ratio
in the clean samples to see how these clean labels help combat biases
from weak labels. The agreement ratio is defined as the percentage
of samples whose clean labels match the corresponding weak labels.
Intuitively, if the clean label for a specific training example matches its
weak label, then this example may not contribute additional informa-

The original RoBERTa-base model is pre-trained on 100B words. The two less pre-
trained models are obtained from (Warstadt et al., 2020). RoOBERTa-base-10M retains
the same architecture as RoBERTa-base, while RoBERTa-small-1M contains fewer
parameters.
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Figure 5.6: Performance curves of different PLMs during training. PLMs
are trained on weak labels and evaluated on both clean and
weakly labeled test sets. Pre-training on larger corpora improves
performance on the clean distribution. Further plots are in Ap-
pendix C.7.

tion to help combat bias. A higher agreement ratio should therefore
indicate fewer informative samples.

RESULTS. Figure 5.6 shows the performances for different PLMs.
Pre-training on more data clearly helps to overcome biases from weak
labels. When the pre-training corpus is small, the model tends to fit
the noisy weak labels more quickly than the clean labels and struggles
to outperform weak labels throughout the entire training process
(tigs. 5.6a and 5.6b, left). With a large pre-training corpus, however, the
model can make better predictions on clean labels than weak labels in
the early stages of training, even when it is only trained on weak labels
(tigs. 5.6a and 5.6b, right). If we apply proper early-stopping before
the model is eventually dragged toward weak labels, we can attain a
model that generalizes significantly better than the weak labels. This
indicates that pre-training provides the model with an inductive bias to seek
more general linguistic correlations instead of superficial correlations from
the weak labels, which aligns with previous findings in Warstadt et al.
(2020). This turns out to be the key to why simple FTy works here.
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Figure 5.7: Model performance varying the number of clean samples N
and agreement ratio «. Large « generally causes a substantial
drop in performance. *: Certain combinations of « and N are not
feasible because the validation set lacks samples with clean and
weak labels that coincide or differ. Further plots are in Appendix
Cuy.

Figure 5.7 shows how the agreement ratio « in clean samples affects
the performance. Performance declines substantially for « > 70%,
showing that it is necessary to have contradictory samples in order to
reap the full advantage of CFT. This is reasonable, given that having
examples with clean labels that coincide with their weak labels may
reinforce the unintended bias learned from the weakly labeled training
set. The optimal agreement ratio lies around 50%. However, having
« = 0 also yields decent performance for most datasets except TREC,
suggesting contradictory samples play a more important role here and
at least a minimum set of contradictory samples are required for CFT
to be beneficial.

5.9 CONCLUSIONS AND RECOMMENDATIONS

Our extensive experiments provide strong evidence that recent WSL
approaches heavily overestimate their performance and practicality.
We demonstrated that they hinge on clean samples for model selection
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to reach the claimed performance, yet models that are simply trained
on these clean samples are already better. When both clean and weak
labels are available, a simple baseline (FTw+CFT) performs on par
with or better than more sophisticated methods while requiring much
less computation and effort for model selection.

Inspired by prior work (Oliver et al., 2018; Perez, Kiela, and Cho,
2021), our recommendations for future WSL approaches are the fol-
lowing:

¢ Report the model selection criteria for proposed methods and,
especially, how much they rely on the presence of clean data.

* Report how many cleanly annotated samples are required for
a few-shot learning approach to reach the performance of a
proposed WSL approach. If thousands of weakly annotated
samples are comparable to a handful of clean samples — as we
have seen in Section 5.6 — then WSL may not be the best choice
for the given low-resource setting.

* If a proposed WSL method requires extra clean data, such as
for validation, then the simple FTw+CFT baseline should be in-
cluded in evaluation to claim the real benefits gained by applying
the method.

We hope our findings and recommendations will spur more robust
future work in WSL such that new methods are truly beneficial in
realistic low-resource scenarios.

LIMITATIONS

We facilitate fair comparisons and realistic evaluations of recent WSL
approaches. However, our study is not exhaustive and has the follow-
ing limitations.

First, it may be possible to perform model selection by utilizing
prior knowledge about the dataset. For example, if the noise ratio (the
proportion of incorrect labels in the training set) is known in advance,
it can be used to determine (a subset of) hyperparameters (Han et al.,
2018b; Li, Socher, and Hoi, 2020). In this case, certain WSL approaches
may still work without access to extra clean data.

Second, in this chapter we concentrate on tasks in English where
strong PLMs are available. As we have shown in Section 5.6, training
them on a small amount of data is sufficient for generalization. For
low-resource languages where no PLMs are available, training may not
be that effective, and WSL methods may achieve higher performance.

Third, we experiment with datasets from the established WRENCH
benchmark, where the weak labels are frequently assigned by simple
rules like as regular expressions (see Appendix C.2 for examples).
However, in a broader context, weak supervision can have different
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forms. For example, Smith et al. (2022) generates weak labels through
large language models. Zhou et al. (2022) use hyper-link information
as weak labels for passage retrieval. We have not extended our research
to more diverse types of weak labels.

Despite the above limitations, however, we identify the pitfalls in the
existing evaluation of current WSL methods and demonstrate simple
yet strong baselines through comprehensive experiments on a wide
range of tasks.
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FEATURE-DEPENDENT NOISE IN MACHINE
TRANSLATION

In the previous chapters, we examined noisy labels in classification
tasks, primarily using BERT (Devlin et al., 2019) and RoBERTa (Liu
et al.,, 2019) as our learning models. However, noise can also occur in
generation tasks — and in fact, it often does so more frequently. This is
due to the higher annotation burden associated with generation tasks,
making the cost and effort of obtaining large amounts of high-quality
annotations prohibitive. Consequently, automatic data synthesis tech-
niques are frequently used, which can result in lower-quality data (e.g.,
(Taori et al., 2023)). Additionally, even for human annotators, provid-
ing optimal solutions can be challenging for certain tasks. For example,
annotators may struggle to “use the fewest words to summarize the
text while covering all aspects of the original document.”

With recent advancements in Large Language Models (LLMs), it has
become common practice to unify various NLP tasks into generation
formats. However, it remains unclear to what extent LLMs are resilient
to noisy annotations in the training data from these generation tasks.

In this chapter, we study noisy annotations in generation tasks
and use LLMs for learning. Specifically, our aim is to gain a deeper
understanding of the learning behavior during Supervised fine-tuning
(SFT). To maintain a focused scope for our research, we concentrate on
Machine Translation (MT) as the task at hand.

Typically, SFT involves only a negligible amount of training data
compared to the extensive pre-training phase of LLMs. This raises
important questions: How is knowledge infused into an LLM during
the SFT phase? If most knowledge is acquired during pre-training and
SFT primarily serves to align model outputs with downstream tasks
like MT, will the LLM remain robust to noise (errors) in the SFT data?
This chapter seeks to answer these questions within the context of MT.

The content presented in this chapter is based on:

Dawei Zhu, Pinzhen Chen, Miaoran Zhang, Barry Haddow,
Xiaoyu Shen, Dietrich Klakow (2024). Fine-Tuning Large Lan-
guage Models to Translate: Will a Touch of Noisy Data in Misaligned
Languages Suffice?. The 2024 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2024)

URL: https://aclanthology.org/2024.emnlp-main.24/
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6.1 INTRODUCTION

LLMs have reached new heights in various NLP tasks (Brown et al,,
2020; Jiang et al., 2023a; Radford et al., 2019; Touvron et al., 2023b).
Supervised fine-tuning (SFT, Ouyang et al., 2022, alternatively, instruc-
tion tuning or simply fine-tuning in some literature) further prepares
these models for better generalization and reliability in downstream
tasks by training on task input-output data combined with instruc-
tions in natural languages (Mishra et al., 2022; Sanh et al., 2022; Wei
et al., 2022a). In this research direction, various works have studied
the “scaling up” of SFT data size, number of languages, etc (Chung
et al., 2024; Muennighoff et al., 2023). On the other hand, recent papers
also embraced the philosophy of “less is more” by achieving strong
results with a small set of high-quality training instances, claiming a
“superficial alignment hypothesis” (Zhou et al., 2023b) with similar
findings by others.

This chapter investigates the role of SFT data in aligning LLMs to MT, a
cross-lingual generation task with high demands in practical domains.
Prior research has found fine-tuning to improve translation perfor-
mance (Zhang et al., 2023b) and more recent works also integrated
continued pre-training with more data to provide further improve-
ment (Alves et al., 2024; Xu et al., 2024a). For encoder-decoder models,
Wau et al. (2024a) used little data to enable an English-centric model to
translate between any two languages. Nonetheless, the feasibility of
“less is more” in LLM translation fine-tuning is rather under-explored.
In translation prompting, researchers have suggested that a model’s
translation capability can be attributed to the bilingual signals ex-
posed during pre-training (Briakou, Cherry, and Foster, 2023) and task
recognition in LLM layers (Sia, Mueller, and Duh, 2024), hinting that
the translation capability has been picked up during pre-training. A
natural question follows: Can we put reduced effort into data?

From a data efficiency perspective, we squeeze the translation SFT
data to a mere size of 32 or the translation direction to 1 for mul-
tilingual translation, for which we believe LLMs already possess a
strong pre-trained foundation in multilingual understanding and gen-
eration. Beyond quantity and language diversity, we perform SFT on
synthesized data via machine translation, which is a common data
augmentation practice for under-served languages. To summarize,
our analysis is grounded in the task of MT, with “scaling down” in
mind. In multiple dimensions—data size (§6.3.2), translation direction
(§6.3.3 and §6.3.4), and data synthesis (§6.3.5)—our findings verify,
complement, and refine the existing superficial alignment hypothesis
for fine-tuning LLMs for translation tasks:

1. 32 data instances successfully enable an LLM to translate in 11
directions. More data still helps but the return diminishes.
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2. Data in a single translation direction can effectively align an LLM
to translate to and from multiple directions. Yet, it is crucial to
pick the right direction—we recommend not placing English on
the target side.

3. When fine-tuning on lower-quality synthetic data, LLMs are af-
fected if the data is placed on the target side, but they show
greater resilience against such flaws in low-resource languages,
which are less represented during pre-training.

6.2 PRELIMINARIES
6.2.1 Supervised fine-tuning

In this chapter, we perform SFT to prepare pre-trained LLMs for MT.
Let S denote a source input and T = [t1, t, ..., tITl] denote a target-side
reference. We start with placing the input into a prompt template by
applying Z(-) to S. For each training instance, the instruction template
is randomly selected from a pre-defined pool. We fine-tune an LLM
parameterized by 6 by optimizing the log-likelihood:

Lsrr(Z(S),T;0)

~log P(T|Z(5);6)
|T|

—log [ T P(telt<, Z(S); 6)
k=1

|T|
— ) log P(t|tt, Z(S);6)
=1

6.2.2  Superficial alignment hypothesis

Zhou et al. (2023b) claim that a model’s knowledge and capabilities
are acquired almost entirely during pre-training, and the effect of
alignment tuning might be “superficial”, in that it teaches the model
the format for interacting with users. This idea is further supported
by recent works (Ghosh et al., 2024; Lin et al., 2024). However, to
what extent this applies to multilingual translation in LLMs is little
known. To bridge this gap, we conduct a series of controlled experi-
ments on fine-tuning LLMs for translation, complementing previous
research across three dimensions. First, we study the parallel data
efficiency in the era of LLMs, aiming to determine the minimum data
needed for effective model alignment to the translation task. Next,
we explore the scope of alignment by probing whether aligning one
translation direction influences other directions. Finally, we investigate
how synthesized fine-tuning data quality impacts the LLMs” behaviour
in generating translations.

69



70

FEATURE-DEPENDENT NOISE IN MACHINE TRANSLATION

6.3 EXPERIMENTS AND RESULTS
6.3.1  Experimental setup

TRAINING. By default, we take the test sets from WMT17 to WMT20
as our parallel training data (Barrault et al., 2019, 2020; Bojar et al.,
2018, 2017); we also use the development sets in WMT21 (Akhbardeh
et al., 2021) for training if a language pair of interest is not available in
earlier years. The specific training data configurations will be detailed
in the subsequent sections. The test sets from WMT21 are used for
validation. Detailed data statistics can be found in appendix D.6.1.
The LLM we use for SFT is the base version of Llama-2 7B (Touvron
et al., 2023b). When performing SFT, we use a learning rate of 5e-6, an
effective batch size of 64, and a linear learning rate scheduling with a
warmup ratio of 0.1. We select the model checkpoint based on COMET
scores on the validation sets.” To form the model input for SFT, we
feed the source sentence into the Alpaca prompt template (Taori et al.,
2023), supplementing it with a translation instruction that is randomly
selected from a pool of 31 diverse instructions. Refer to Table D.2 in
the appendix for a complete list of templates.

Vicuna-v1.5-7b Mistral-7B-Instruct-v0.1 Llama-2-7b-chat Llama-2-7b ICL-MT Llama-2-7b SFT-MT
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Figure 6.1: Performance comparison between instruction-tuned baselines and
Llama-2 fine-tuned with different training data sizes. Average
COMET (left) and BLEU (right) scores across 11 translation di-
rections are presented. For training data sizes of 1 and 3, ICL is
applied, marked with an asterisk “*”; otherwise, we perform SFT.
With only 32 training examples for SFT, Llama-2 outperforms
general-purpose, instruction-tuned baselines. Base.: instruction-
tuned baseline models. See individual performance for the 11
translation directions in Appendix D.1.

EVALUATION. We primarily evaluate the models on the WMT22
test sets (Kocmi et al., 2022) covering 11 translation directions: en<cs,
en<+de, en<+jp, en<>ru, en<+zh, and en—hr.? Languages in these 11
directions are explicitly included in Llama-2’s pre-training corpus.

In our preliminary experiments, we found that validation perplexity has a relatively
weak correlation with COMET scores measured on the validation set, similar to earlier
findings (Ouyang et al., 2022).

Language codes: cs=Czech, de=German, hr=Croatian, jp=Japanese, ru=Russian,
zh=Chinese. “++” means that both translation directions are covered. Note that
only en—hr is available in WMT22 but not hr—en.
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In Section 6.3.4, we extend our evaluation to translation directions
involving medium and low resource languages: Icelandic and Hausa
(i.e., en<~+is, en<rha), which comes from WMT21’s test set. At inference
time, a fixed translation instruction is applied (Table D.2 row 1). We use
beam search with a beam size of 4 for generation, as our preliminary
results indicate that it offers better translation quality than sampling-
based generation, an observation consistent with recent works (Jiao
et al., 2023a; Zeng et al., 2024). The maximum generation length is set
to 256 tokens. We used a reference-based COMET22 checkpoint? (Rei
et al., 2020) and BLEU (Papineni et al., 2002) as the evaluation metrics.
See appendix D.6.3 for detailed software configurations.

6.3.2 How much SFT data enables LLMs to translate?

Recent works in machine translation suggest that pre-trained LLMs re-
quire significantly less parallel data for fine-tuning (via SFT), compared
to training conventional translation models from scratch. However, the
SFT process in these works still operates with an order of 10° parallel
samples (Jiao et al., 2023a; Xu et al., 2024a; Zeng et al., 2024; Zhang
et al., 2023b, i.a.), without a clear justification for selecting this specific
data size and source. This raises a pivotal question, inspired by the
recently proposed “superficial alignment hypothesis” (Zhou et al.,
2023b): Is SFT mainly a method for superficially aligning LLMs for
translation tasks? If so, what is the actual minimal amount of data
required to achieve effective “alignment”?

SeTUP. We fine-tune Llama-2 7B using different numbers of train-
ing samples and evaluate the multilingual translation performance
of the resulting models. We collect training data covering 10 trans-
lation directions: en<+{cs, de, jp, ru, zh}. The training data sourced
from WMT17-20 contains a total of 74,623 parallel examples. Note
that the training samples across translation directions are not evenly
distributed. To create training sets of varying sizes, we subsample
the original data into subsets that are powers of 2, starting from 16
(2*) and ending with 4096 (2!2); larger subsets always contain smaller
ones. To ensure balanced language representation in our subsets, we
distribute samples as evenly as possible among the language pairs.+
We refer to the fine-tuned model as SFT-MT. Considering LLMs
can also perform translation through prompting, we compare SFT-
MT with 1- and 3-shot in-context learning (ICL), denoted as ICL-MT.
For ICL, we randomly select demonstrations from the training set in
the test direction for each test sentence. We do not consider Llama-

3 Specifically, COMET is reported on a scale of o to 100 as opposed to its raw o to 1
range.

4 For example, the data size distribution for our 32-example training set is
[4,4,3,3,3,3,3,3,3,3].
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2’s zero-shot performance because, although it sometimes produces
acceptable translations in the beginning, it often continues generating,
which makes it difficult to accurately estimate its performance. Lastly,
since LLMs fine-tuned on diverse tasks also serve as strong translation
systems (Zhu et al., 2024), we compare our models with open-source
general-purpose instruction-tuned LLMs, which we denote as IT-LLM.
These include Vicuna-v1.5-7b (Chiang et al., 2023), Mistral-7b-Instruct
(Jiang et al., 2023a), and Llama-2-7b-chat (Touvron et al., 2023b).>
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Figure 6.2: Normalized COMET score (as a % of performance from fine-
tuning on an equivalent sized dataset of all 10 directions) resulted
from varying combinations of train and test translation directions.
In most cases, Llama-2 fine-tuned on a single translation direction
can effectively translate across other directions, achieving perfor-
mance comparable to models trained on all directions, with a few
exceptions when trained on X—en but tested on en—X. Perfor-
mance measured in BLEU score is provided in Appendix D.2.

RESULTS. Figure 6.1 illustrates the effect of varying training sizes
on translation performance. In both 1- and 3-shot cases, ICL-MT un-
derperforms IT-LLM baselines like Llama-2-7b-chat despite sharing
the same foundation model, indicating that a few in-context demon-
strations may not effectively align Llama-2 for translation.

However, performance significantly improves when Llama-2 is fine-
tuned with just 16 samples. With further increases in the training size
to 32 samples, Llama-2 performs on par with or surpasses all three
IT-LLM baselines in both COMET and BLEU metrics. This suggests
that a handful of high-quality parallel data can effectively specialize
the model into a performant translation system. Increasing parallel
data further boosts performance, though with diminishing returns: the
COMET score rises by an average of 2 points when expanding from
32 to 1024 samples, but only by o.5 points when increasing further
from 1024 to 75K samples (full training set). Given that it is unlikely
that these 32 training samples “teach” Llama-2 new translation skills,

5 Imsys/vicuna-yb-v1.5, Mistral-7B-Instruct-vo.1, and meta-llama/Llama-2-7b-chat-hf.
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this shows strong evidence that superficial alignment applies to MT.
We observe a similar trend in Mistral-7B and Llama-2-13B. Refer to
Appendix D.1 for their performance across varying data sizes. In
summary, effective translation alignment begins with minimal train-
ing data, revealing less is good alignment and more is better with
diminishing gains.

6.3.3 Do we need to include all directions?

In the preceding section, we follow the traditional practice in multi-
lingual MT by including multiple translation directions during train-
ing. However, the observation that only a few dozen examples make
Llama-2 translate well leads us to reconsider the necessity of including
samples from all directions of interest. Specifically, will training on
just a single translation direction be sufficient to help LLMs perform
multilingual translation?

seTUur. We explore six training configurations, each focusing on a
single translation direction: de—en, zh—en, en—de, en—zh, fr—de,
and de—fr. These configurations include cases where English appears
on the source side, the target side, as well as settings with English
excluded, to investigate if specific languages have a different impact
on the overall performance. The training size is set to 1024 for SFT.
Evaluations are conducted across the same 11 test directions as used in
the previous section. Additionally, we explore similar settings in ICL,
where we present demonstrations with translation directions that do
not match those used in evaluations, to determine if the mechanisms
of both SFT and ICL exhibit similarities. Lastly, we conduct a joint
evaluation, progressively expanding both the training size and the
range of covered translation directions to understand the combined
effect of these factors.

SFT RESULTS. Figure 6.2 demonstrates the normalized performance
of Llama-2 when fine-tuned in various single directions. Remark-
ably, training with just one direction enables Llama-2 to translate
between multiple languages. For instance, after fine-tuning on de—en
or zh—en, the model can translate from all considered languages
to English, scoring at least 98.6% of the original COMET scores for
training on all directions. Similarly, the model fine-tuned on en—de,
en—zh, fr—de or de—fr also demonstrates only a slight performance
decline when translating from English.

Notable declines are observed in two scenarios: (1) trained to trans-
late to English and evaluated on translating to non-English; and (2)
trained to translate to non-English and evaluated on translating to
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Evaluation on de—en

1-shot 3-shot

demo
lang COMET BLEU COMET BLEU

de—en 73.47 19.7 75.04 22.4

en—de  55.96 73 4439 3.5
de—fr 66.35 12.1 64.61 17.6
fr—de 58.06 7.8 57.13 10.5
zh—en 56.66 10.7 54.82 7.1
en—zh  51.30 7.8 56.87 1.8

Evaluation on en—de

1-shot 3-shot

demo
lang COMET BLEU COMET BLEU

en—de 67.37 10.5 69.80 14.3

de—en 57.83 8.7 45.54 5.0
en—zh  59.76 9.5 59.53 8.4
zh—en  47.31 4.5 49.24 5.0

fr—de 59.36 8.6 66.01 12.9
de—fr 60.70 11.0 61.76 11.3

Table 6.1: ICL-MT performance with aligned vs. misaligned demonstrations,
evaluated on de—en and en—de. 1-shot/3-shot: using 1 or 3
demonstrations randomly sampled from the training set. Mis-
aligned demonstrations consistently cause a substantial perfor-
mance drop.

English.® Of these two scenarios, scenario 1 exhibits a much larger
performance drop. The fact that both scenarios involve a mismatch
between using English and non-English suggests that Llama-2, as
an English-centric LLM, may process English differently compared to other
languages. When fine-tuned for English generation, the model may mis-
interpret the task as only generating in English. Generalization among
non-English languages is much easier than generalization between
English and non-English languages, as evidenced by the negligible
performance drop when fine-tuning and testing on two vastly differ-
ent language pairs such as de—fr and en—zh. Overall, the findings
suggest that SFT in one translation direction effectively enables the
many directions, though avoiding misinterpretation is crucial.

Analysis of model outputs reveals that they often merely echo the source sentence,
ignoring the translation instruction.
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Figure 6.3: Average performance (in COMET) across 11 test directions for
models trained with varying data sizes and directions. Both fac-
tors positively impact performance. +=: training directions added
on top of previous directions; two directions are added at each
time. For example, “+=ru” covers 10 directions: en <> {de, zh,
cs, jp, ru}. Performance on individual test directions is provided
in Appendix D.3.

ICL RESULTS. We also provide results of performing ICL with
misaligned translation directions between demonstration and test
in Table 6.1. It can be seen that misaligned demonstrations significantly
degrade translation performance, with 3-shot be often worse than 1-
shot. We observe that the model may output Chinese characters, emojis,
time, etc., but no clear error patterns are observed. This contrasts
sharply with findings from SFT: while SFT can recognize the format
of translation, ICL requires language-aligned demonstrations.

JOINT EVALUATION. Figure 6.3 presents a joint evaluation of size
and translation direction. For small training sizes, covering diverse
translation directions in training proves to be beneficial. However, the
benefits of such diversity level off as the training size increases. With
a training size of 1024, models trained exclusively on two directions,
en<«+de, perform on par with those trained on all directions.
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Figure 6.4: Model performance (in COMET) across 15 translation directions
under different training configurations. Training models on un-
seen languages (en<+is, en<+ha) results in slight improvements
in translating these languages compared to models trained on
en<rde. The differences in performance when translating between
seen languages are minimal across all training configurations. Per-
formance measured in BLEU score is provided in Appendix D.4.

6.3.4 Can alignment be achieved for unseen languages?

Previous sections focus on translation directions involving languages
explicitly included in Llama-2’s pre-training corpus. We now extend
our investigation to languages that do not have an identified presence
of over 0.005% in the pre-training data (c.f. Touvron et al., 2023b,
p22), referred to as unseen languages. Here we seek answers to two
questions: (1) Can we effectively make Llama-2 translate both from
and to unseen languages by fine-tuning it with a small amount of
data? (2) How well can this fine-tuned model translate from and to
languages seen in Llama?

SETUP. We consider three training configurations: en<+is, en<+ha,
and en<rde, with Icelandic (is) and Hausa (ha) being unseen lan-
guages. en<+de serves as a control to assess Llama-2’s initial transla-
tion capabilities into unseen languages without specific fine-tuning.
The training size is fixed at 1024 (512 samples for each direction). The
test directions include the 11 directions as before, plus en<+is and
en<+ha coming from the WMT21 test.

RESULTS. The results are presented in Figure 6.4. It can be seen that
fine-tuning on Icelandic and Hausa enhances a model’s translation
quality on these languages compared to the control setup, yet the gains
are modest. We observe that Llama-2 manages to produce tokens in
these languages, however, the translations often largely deviate from
the original meanings. This suggests that it is difficult to teach models
new translation directions via SFT with limited data. Interestingly,
we find fine-tuning on Icelandic or Hausa does not hinder Llama-
2’s ability to translate from and to all seen languages, maintaining
performance levels comparable to the control scenario with en<+de.
Based on these results, we propose a complement to the superficial
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Figure 6.5: Model performance in COMET score varying training sizes, di-
rections, and noise types. Top (Bottom): score averaged across all
en—X (X—ren) test directions. Training sizes considered are 32
and 1024. Generally, introducing noise on the target side tends
to degrade model performance more, with the extent of impact
also depending on the particular language involved. Performance
measured in BLEU score is provided in Appendix D.s5.

alignment hypothesis in MT: LLMs may learn the essence of the trans-
lation task without requiring input-output mappings in languages
it “understands” well.

6.3.5 Can we use synthesized data?

We have observed that LLMs quickly recognize the translation task
with minimal high-quality, manually curated data, but what if the
quality of the training data is subpar? This situation may occur, for
example when parallel data is web-crawled or machine-generated.
Can LLMs still adapt to the translation task or will they overfit to the
imperfections in lower-quality data, leading to degraded translation
performance?

seTUP. We replace either the source or target sentences in the orig-
inal training set with lower-quality synthesized ones. We try two
types of data synthesis: one by translating entire sentences on the
other side and another by concatenating word-to-word translations.
Pleasingly, these correspond to back-translation (Sennrich, Haddow,
and Birch, 2016) using translation engines or bilingual word dictio-
naries which are practical at different levels of resource availability.
Specifically, we use the OPUS-MT suite (Tiedemann and Thottingal,
2020) to translate from English to a target non-English language.”

E.g. for de—en, the process is run in en—de with the created data reversed, hence
the translated content is on the source side. Checkpoints are available on Hugging
Face: Helsinki-NLP/opus-mt-en-${trg}.
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Source

Ref./Data config.

Model output

Das finde ich ehrlich gesagt

sehr argerlich.

reference
literal
en—de
en—de

That really bothers me, I must say.
The find I honest said very annoying.
I find that really annoying.

I find that honestly very annoying.

en—de word noise The find I honestly said very annoying.

VAo B R R IR F reference So that such a thing won’t happen
again.
literal in order to avoid again happen such
thing.
en—de Let’s not let it happen again.
en—de In order not to happen again.

en—de word noise Avoid again happen this way.

Table 6.2: Examples of testing Llama-2 trained on en—de with 1024 clean
and noisy target sentences. The test directions are de—en (Top)
and zh—en (Bottom). The reference translation is provided by
the WMT?22 test set. Word-to-word references were created by the
authors in consultation with native speakers. Word-level noise
makes Llama-2 degenerate into a literal translator.

For word-level translation, we translate each space-delimited source
word by feeding it into the MT model one at a time. Naturally, the
synthesized versions introduce translation errors, adding “noise” to
the training process. We investigate the impact of such noise in four
translation directions: en—de’, de’—en, en—ha’, and ha’—en, where
the prime (') notation denotes the side that is created using translation
(noised). We consider two training sizes: 32 and 1024. In this section,
our evaluation focuses on the 11 translation directions described in sec-
tion 6.3.1. Note that although Hausa is included in the current training
setup, translation directions involving Hausa are excluded from our
evaluation—because performance is sub-par for unseen languages as
demonstrated in section 6.3.4.

RESULTS. According to Figure 6.5, it can be seen that both types of
data synthesis generally cause a drop in performance. However, The
degree of degradation significantly varies depending on whether the
noise appears on the source or target side of the translation as well as
the language. Specifically, when noise is introduced to the target side,
models fine-tuned on en—de’ and en—ha’ translations exhibit a sharp
decline in performance. The impact of word noise is more severe than
that of sentence noise. In the case of en—de’, word-level synthesis
causes the model to largely degenerate, leading to literal translations
across many test cases across translation directions. An example of this
behaviour is presented in Table 6.2. In contrast, the performance drop
caused by word noise is less pronounced with en—ha’, particularly
when evaluated on en—X.

Conversely, when noise is introduced on the source side, the nega-
tive impact is much smaller, and the disparity in performance degrada-
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tion between the two types of noise diminishes. Even more strikingly,
when evaluated on en—X, having noise at the source side often out-
performs the clean settings. Notably, in section 6.3.3, we show that
fine-tuning models purely on X—en risks task misinterpretation, lead-
ing to low performance on en—X. However, adding noise appears to
mitigate this issue, resulting in improvements in both COMET and
BLEU scores, especially for the ha’" —en case.

Summarizing the observations, Llama-2 is much more robust against
the noise introduced in Hausa, likely because it has limited familiarity
with the language, making it more difficult to detect and imitate im-
perfections present in the training data. As a result, Llama-2 tends to
just recognize the essence of the translation task instead of overfitting
to the biases present in low-quality data. In contrast, with German,
Llama-2’s understanding leads to a misinterpretation of the train-
ing objectives, such as fitting the word-level noise with a directive
for literal translations. Overall, LLMs may quickly fit translation im-
perfections in the training data, especially for seen languages; the
resulting performance drop may be observable with just 32 training
samples.

6.4 RELATED WORK
6.4.1  What does LLM SFT bring us?

Foundational language models become more robust and follow in-
structions better after being fine-tuned on task-oriented supervised
data formulated as natural language text (Mishra et al., 2022; Sanh
et al., 2022; Wei et al., 2022a). We observe diverging trends in research
on instruction tuning nowadays: (1) Many works attempt to scale up
instruction data in terms of the number of tasks, languages, data size,
and thus implicitly increasing training updates (Chung et al., 2024; Li
et al., 2023; Muennighoff et al., 2023; Ustiin et al., 2024; Wu et al., 2024¢;
Zhang et al., 2024a). (2) Another stream of papers, argue that instruc-
tion tuning mainly alters a base model’s response style but not content
or knowledge—data quality and diversity outweigh quantity (Chen
et al., 2024a; Lin et al., 2024; Mitchell et al., 2024; Zhou et al., 2023b).
This chapter is a continued exploration of the latter, focusing on the
machine translation task. We verify the effect of size variations and
include two new factors—language directions and quality—aiming to
provide practical and cost-effective guidance on this matter.
Specifically, language transfer has been demonstrated in smaller
pre-trained models before LLMs (Artetxe, Ruder, and Yogatama, 2020;
Wu and Dredze, 2019). For (sufficiently) multilingual models, training
on certain languages might still benefit other languages at the test
time (Choenni, Garrette, and Shutova, 2023). In LLM instruction tuning,
recent papers revealed cross-lingual transfer and improved robustness
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in unseen languages via multilingual instruction tuning with a small
data sample (Chen et al., 2024¢c; Kew, Schottmann, and Sennrich,
2023; Shaham et al., 2024). Furthermore, it has been claimed that
even monolingual instruction tuning is sufficient to elicit multilingual
responses in the correct languages with a key ingredient being the
right learning rate (Chirkova and Nikoulina, 2024a,b). In relation to
our experiments, language transfer to unseen languages might account
for improved performance in language directions that are not directly
fine-tuned.

6.4.2 How can we use LLMs for translation?

In the field of machine translation, earlier works provided analysis
of general-purpose prompting (Agrawal et al., 2023; Vilar et al., 2023;
Zhang, Haddow, and Birch, 2023) followed by a blossom of strategies
focusing on specific aspects of the translation process (Chen et al.,
2024b; Ghazvininejad, Gonen, and Zettlemoyer, 2023a; He et al., 2024,
Moslem et al., 2023; Raunak et al., 2023; Sarti et al., 2023). Nonetheless,
as shown in our experimental results, few-shot prompting is not on
par with using instruction-tuned models, illustrating the importance
of further understanding the role of instruction tuning in translation
tasks.

In terms of fine-tuning LLMs for translation, previous works have
explored a wide range of sub-tasks: disambiguation, low-resource,
document-level, and adaptive translation, etc (Alves et al., 2023a; Iyer,
Chen, and Birch, 2023; Li et al., 2024; Mao and Yu, 2024; Wu et al.,
2024b; Zhang et al., 2023a). These works focus on improving trans-
lation performance and specific applications. Stap et al. (2024) show
that while fine-tuning improves translation quality, it can degrade
certain key LLMs” advantages, such as the contextualization ability
on document-level input. Some recent research aims to enhance the
translation capabilities of LLMs by incorporating human preference
data (Jiao et al., 2023a; Zeng et al., 2024; Zhu et al., 2024) or by extend-
ing the pre-training phase before fine-tuning (Alves et al., 2024; Xu
et al., 2024a,b), yet these approaches require significantly more data or
computing resources. The aim of this chapter is not to pursue the state
of the art but to investigate the opportunities of extending instruction-
tuned LLMs’ translation capabilities in desirable compute-efficient
scenarios. It is still worth noting that our investigation is orthogonal
to previous works which employ relatively large monolingual and
parallel data for continued pre-training.

65 CONCLUSION AND FUTURE WORK

In this chapter, we conduct an in-depth analysis of fine-tuning LLMs
for translation. We demonstrate that LLMs is capable of translating
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in multiple directions after being fine-tuned with minimal low-quality
training data in a single direction. While this suggests pre-trained LLMs
inherently possess multilingual translation capabilities which only
need to be unlocked by aligning with the correct task format, we
discover pitfalls and lessons in aligning LLMs; while LLMs make efforts
to adjust to the translation task, they are good at imitating other
patterns such as the noise in the parallel data. Future work could
explore robust training methods that align LLMs with translation while
minimizing the risk of overfitting to low-quality data.

LIMITATIONS

This chapter offers a range of insights into fine-tuning LLMs for trans-
lation. However, our study is not exhaustive and is subject to the
following limitations.

MODEL SIZE AND DIVERSITY. Throughout our systematic study,
we fine-tuned Llama-2 7B, Llama-2 12B, and Mistral 7B. These are
strong and feasible options when the work is carried out. It is im-
portant to verify the generalizability of our findings to models with
different capabilities or of different sizes.

NON-ENGLISH CENTRIC MT. Our evaluation is English-centric,
which is the condition of most LLM pre-training. Findings will be more
comprehensive if future work can extend it to translation directions
not involving English.

STATE-OF-THE-ART PERFORMANCE. Our research primarily ex-
plores how SFT enables LLM to translate to uncover data-efficient
strategies in SFT and identify associated pitfalls. Recent studies have
demonstrated that translation capabilities can be further enhanced
through techniques such as continual pre-training (Alves et al., 2024;
Xu et al., 2024a) and preference learning (Xu et al., 2024b; Zhu et al.,
2024). However, these methods require significantly more training
resources, which may pose challenges when applied to large models.

FINE-TUNING METHODS. Throughout this chapter, we perform SFT
with full-parameter updates. It is worthwhile to explore parameter-
efficient methods which bring in heavier regularization to understand
whether they exhibit patterns similar to those observed in our work.
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LEVERAGE IMPERFECT DATA IN MACHINE
TRANSLATION

With data collections expanding, ensuring their quality becomes pro-
gressively more difficult. Consider Machine Translation (MT) as an
example, where much of the translation data is noisy, even when
provided by human translators. This noise may result from translators
misinterpreting parts of the source text or prioritizing more literal
translations. In this chapter, we show that even widely recognized MT
test sets contain some errors, an observation also made in (Xu et al.,
2024b).

Recent Large Language Models (LLMs) possess strong translation
skills, so training them further on imperfect data caps their perfor-
mance potential. Chapter 6 demonstrates that LLMs are prone to over-
fitting the noise in translation data, which leads to a performance
drop. Consequently, it is difficult to significantly enhance LLMs perfor-
mance solely by fine-tuning on larger datasets without a significant
improvement in data quality.

Instead of consistently training LLMs with potentially noisy reference
translations, we propose teaching them to distinguish between differ-
ent levels of translation quality. This approach provides LLMs with a
holistic understanding of translation quality across various sentences,
enhancing their robustness against errors in reference translations.

Dawei Zhu, Sony Trenous, Xiaoyu Shen, Dietrich Klakow, Bill
Byrne, Eva Hasler (2024). A Preference-driven Paradigm for En-
hanced Translation with Large Language Models. In Proceedings
of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL 2024) URL:
https://aclanthology.org/2024.naacl-1long.186/

7.1 INTRODUCTION

The emergence of LLMs has significantly transformed the landscape
of Natural Language Processing (NLP), showcasing outstanding ca-
pabilities in a spectrum of NLP tasks (Brown et al., 2020; Chowdhery
et al., 2023; Scao et al., 2022; Touvron et al., 2023a). This transformation
extends to MT (Hendy et al., 2023; Jiao et al., 2023b; OpenAl, 2023b).
Through Supervised fine-tuning (SFT) using a small amount of parallel
data, LLMs demonstrate the capability to compete with established
commercial translation services such as Google Translate, particularly
in high-resource languages (Jiao et al., 2023a; Zhang et al., 2023b).
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Nevertheless, SFT trains the model to imitate reference translations
token by token, making it vulnerable to the noise present within the
data (Ott et al., 2018; Touvron et al., 2023b; Zhou et al., 2023a). The
noise can stem not only from the lack of attention by annotators, but
also from the inherent challenge of achieving perfect translations due
to the intricate interplay of language, culture, and vocabulary. As
an adept translator requires not only linguistic proficiency but also
a deep understanding of cultural contexts and nuances in both the
source and target, it is nearly unattainable to gather extensive paral-
lel translations of top-notch quality (Herold et al., 2022; Khayrallah
and Koehn, 2018; Maillard et al., 2023). As a result, the performance
enhancement achieved through SFT often quickly reaches a plateau.
Further increasing the volume of parallel translations typically yields
minimal additional benefits, and may instead impair the translation
capabilities of LLMs (Xu et al., 2023).

To alleviate aforementioned limitation of SFT, endeavors have been
made to provide LLMs with holistic assessment of contrasting examples
rather than token-level imitations. Chen et al. (2023) and Jiao et al.
(2023a) add a flawed translation to the reference translation in the
model input, encouraging the target LLM to recognize their quality
difference. Zeng et al. (2023) also use a pair of translations, but they
additionally optimize the LLM to favor better translations through
ranking loss. Nevertheless, these works have shared limitations. First,
the flawed translations are either generated by adding artificial noise
to the reference translations or by other (smaller) MT systems. These
imperfections in translations can be obvious and easy for LLM to
distinguish, weakening the learning signal. Second, they only provide
the relative ranking of the two translations, without quantifying the
extent of their quality differences.

In this chapter, we present a framework based on the Plackett-
Luce model to explicitly align the generation probability of the target
LLM with human preferences (Plackett, 1975). Instead of using artifi-
cial noise, we collect contrasting translations generated by our target
LLM, directing our optimization efforts toward “hard negative exam-
ples” (Robinson et al., 2021). Human preferences are denoted with
precise scores rather than general ranking orders to teach LLMs about
the nuances in different translations. LLMs are then trained to enhance
their capabilities incrementally from the learnt nuances without de-
pending solely on the existence of “gold references”, so as to effectively
break the plateau associated with SFT.

We build a dataset, which we refer to as MAPLE, to facilitate pref-
erence learning. It equips each source sentence with five translations
in diverse quality, scored by professional translators. By performing
preference learning on MAPLE, our final MT model outperforms other
MT models based on the same foundation LLM by up to 3.96 COMET
score. We further show that while the intention of creating MAPLE
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is to enhance our target LLM, it can be reused to improve other LLMs,
helping them break the performance plateau with up to 1.4M parallel
data. Finally, we analyze the key factors that make preference learning
effective.

Our contributions are as follows. (1) We leverage preference learn-
ing to teach LLMs a holistic notion of translation quality. Extensive
experiments show that our model consistently outperforms strong
baselines on two test sets across four translation directions. (2) We
revisit the underlying modelling assumptions leading to the Bradley-
Terry and Plackett-Luce ranking models and discuss how preference
distances can be incorporated directly into the ranking models. (3)
We meticulously construct an MT-oriented preference dataset, MAPLE,
employing professional human translators to obtain quality scores for
multiple translations corresponding to the same source sentence. We
release our dataset to facilitate future MT research. (4) Our in-depth
analysis reveals that high-contrast pairs and accurate quality scores
are crucial in enhancing the effectiveness of our approach, providing
guidance for maximizing the benefits of preference learning.

7.2 RELATED WORK

LLM-BASED MT. One simple and effective approach to use LLMs
for translation tasks is through prompting. Research in this field
involves examining the impact of model sizes, the number of examples
(“shots”) used, and template choices (Bawden and Yvon, 2023; Mu
et al., 2023; Zhang, Haddow, and Birch, 2023; Zhang et al., 2024c).
Moreover, (Ghazvininejad, Gonen, and Zettlemoyer, 2023b; He et al.,
2023) highlight that better translations can be achieved by adding
supplementary information to prompts, or engaging LLMs in related
tasks prior to translation. Alternatively, another research direction
seeks to fully tailor LLMs for MT tasks. Alves et al. (2023b), Chen et al.
(2023), Jiao et al. (2023a), Zeng et al. (2023), and Zhang et al. (2023b)
further train LLMs on parallel data via (parameter-efficient) fine-tuning.
Xu et al. (2023) show that increasing the size of parallel data may not
further improve LLM. The diminished returns from increasing data
volume are likely due to data noise. Recent analyses suggest that
quality trumps quantity when it comes to data effectiveness (Zhou et
al., 2023a; Zhu et al., 2023b). Leveraging these insights, we goes beyond
merely fitting the reference translations. Instead, we aim to enhance the
LLM'’s ability to discern translations of varying quality, encouraging
the generation of more precise translations while suppressing flawed
outputs.

HUMAN PREFERENCE ALIGNMENT. Ouyang et al. (2022) align
LLMs with human intentions and values by training a reward model
for preference ranking and optimizing the LLMs through the PPO
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algorithm (Schulman et al., 2017). However, the online reinforcement
learning nature of PPO leads to considerable computational costs and
is known for its sensitivity to hyperparameters (Huang et al., 2022;
Islam et al., 2017). To ease the alignment, Dong et al. (2023) and Hu
et al. (2023) suggest offline RL algorithms where samples are pre-
generated. Further research goes a step beyond by directly employing
the target LLMs as reward models. Yuan et al. (2023) use a ranking
loss to steer LLMs towards generating helpful responses and avoiding
harmful ones. In a similar vein, Hejna et al. (2023), Rafailov et al.
(2023), and Song et al. (2023) use the Plackett-Luce model (Plackett,
1975) to capture human preferences in alignment. In this chapter, we
adopt the Plackett-Luce model to MT, teaching the model to discern
nuances in different translations and to prefer accurate translations.

7.3 METHODOLOGY

We aim to enhance LLM in MT tasks via a two-stage optimization
process. We first fine-tune the target LLM with a small set of high-
quality parallel data to elicit its translation ability (Section 7.3.1). This
mirrors the supervised fine-tuning approach used in prior work, where
LLMs were tailored to follow instructions (Taori et al., 2023; Zheng
et al., 2023). We then use preference learning to guide the LLM to
prioritize the generation of accurate translations over flawed ones
(Section 7.3.2).

7.3.1 Supervised fine-tuning

We begin with optimizing our target LLM on parallel data to specialize
it for translation. Let x and y denote the source and target sentence,
respectively. Following Jiao et al. (2023a) we first construct a prompt
by applying an instruction template 7 to x. The instruction template is
randomly sampled from an instruction pool for each training sample.
The target LLM, denoted by 77y is optimized through the log-likelihood
loss:

Lsrr(mg) = —log 1tg(x, )
= — Zlog Pr, (yelya,.. t-1,Z(x)) (7.1)
t

where 71y(x,y) denotes the likelihood of 7ty generating output y given
input x. Note that in a standard implementation, a decoder-only LLM
will also predict tokens within Z(x), we zero-out the loss on these
tokens as our main goal is to teach translation, not to model the input
distribution (Touvron et al., 2023b).*

As per Ouyang et al. (2022), we use the term “SFT” which is interchangeably referred
to as “instruction-tuning” or simply “fine-tuning” in current literature to convey the
same concept.
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7.3.2  Preference learning

The goal of the preference learning stage is to explicitly optimize the
target LLM to favor accurate translations over erroneous ones. For-
mally, consider a set of translations y!,- - ,y" corresponding to a
source sentence x. We assume that these translations are ordered by
preference: y' -, y/ for i < j. That is, translation ' is preferred over
y/ as a translation of the source sentence x. We further assume that
there is some underlying reward model r* that reflects the quality of
the translations, which we cannot access but which we can approx-
imate. Under the Plackett-Luce ranking model (Plackett, 1975), the
distribution of preferences can be formulated as follows:

L—1 * :
0 1:L — exp(” (x’yl))
P = L et (o)

(7-2)

where y!'l is a shorthand for the complete preference ranking y' >,
,-++,=x yk. In practice, given a training set D with translations
equipped with a preference ranking, a reward model ry can be trained
via maximum likelihood estimation (Cheng, Dembczynski, and Hiiller-
meier, 2010):

L-1 .
Lp(re) = —Eypricp ) {Ve(x/yl)—
i=1

L .
log ) exp(ro(x,'))] (7-3)
j=i

Following recent work (Hejna et al., 2023; Rafailov et al., 2023; Song
et al., 2023), we parameterize the reward model using the target LLM
1tp and rewrite the above objective as:

L-1

7o (%, y')
Loi(m) = —Ey uip ¥ log — V) (7.9
Yy €D g g Z]'L:i 7T9<X, y])

where rg == log(7y). Through optimizing Equation 7.4, we explicitly
align the LLM generation probability with the translation quality.

A caveat when optimizing Equation 7.4 is that the ranking infor-
mation omits any measure of absolute translation quality, which may
lead to inadvertent suppression of the likelihood of good translations.
Consider a case where we have a pair of translations, y! and y?, which
are both acceptable translations but have different word orders that
causes minor difference in preference. Optimizing Equation 7.4 may
cause the model to raise the probability of y! and to suppress the
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probability 2, which may damage the model.? To address this issue,
we follow Song et al. (2023) to consider the preference distance in Lpy:

LpLp(7e) =
di
,y> Lep Z log(dy)
YR A CAT)
where
d{: =r*(x,y") —r*(x,y/),for j > i
d} = max(d)) (7:5)

]>1

We obtain the ground truth preference value r*(x,y) through human
annotation, which will be detailed in Section 7.4. Finally, we combine
a SFT loss calculated on the best translation yl with Lp;p, making the
complete loss function:

L = Lprp + BLsFT (7.6)

where the hyperparameter B balances the strengths of preference
learning and SFT. We use PL as an abbreviation of our preference
learning method (i.e., optimizing Equation 7.6) in the subsequent text.

We now provide some justification for directly incorporating prefer-
ence distances into the Plackett-Luce model by studying the original
derivation of the binary case (L = 2) (Bradley, 1953; Hamilton, Tawn,
and Firth, 2023; Mosteller, 1951; Thurstone, 1927). Denote the pref-
erences for y' and y/ by random variables X; and X; such that the
probability that y' is preferred to y/ is 71;; = P(X; > X;). Assuming
that X; and X; follow Gumbel distributions? with locations s; and
s;j and a common scale parameter v, the difference between the two
random variables d;; = X; — X; follows a logistic distribution with
location s; — s; and scale :

1 2 dij — (Si — S]')
d,] ~ — sech (T)

Iy (7.7)

Cheng and Hiillermeier (2008) show that, while the preference can be learned asymp-
totically solely through ranking information, incorporating additional, more detailed,
preference information (e.g., distance) makes the learning process more data-efficient.
Table 7.6 presents an ablation study.

Assuming preferences arise from a large number of i.i.d. contributions, a normal
distribution results in the limit if these are averaged while the Gumbel distribution
results from taking their maximum (Hamilton, Tawn, and Firth, 2023).
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By defining 7r; = ¢%, it follows that

Thjj = P(dij > 0)
o0 dij — (s; — sj)
= — gech?(ZL_ "t T1NAd.
) I sech”( 2 )dd;;
1
Ty
= 7l ! 1 (7'8)
)+ 71]7’

Usually the scale parameter 1 is set to 1 which yields the Bradley-Terry

model (Bradley and Terry, 1952) (and Equation 13 of Bradley (1953)).
To introduce distance information for the binary preference case,

we first note that d} = d? for L = 2 (from Equation 7.5). We then take
_ 1 _ i ‘ol vields:

T= & and 7; = 7g(x, '), which yields:

dz
o' (x,y")

4 2 (7.9)
7o' (x,y') + 715" (x, ¥2)

T2 =

This shows that, for the binary case, preference distances based on the
ground truth preferences can be incorporated exactly into the Bradley-
Terry distribution by assuming that the X; and X, have Gumbel
distributions with location parameters s; = log me(x,y’) and scale
parameter vy = W

We derive and discuss the more general case of Equation 7.5 (L > 2)
in Appendix E.1.

CONNECTIONS WITH DPO  The preference learning framework in-
vestigated here shares a common origin with DPO (Rafailov et al.,
2023) in the Bradley-Terry and Plackett-Luce models over rankings
(Equation 7.2, and Equation 18 of Rafailov et al. (2023)). Here, the
target LLM 71y serves directly as the reward function (rp = log(7g)),
whereas the DPO reward function also includes a reference distri-
bution 77,.f that arises from the KL-divergence constraint term in its
RL objective function. By contrast, regularization in this chapter is
through an external SFT term (Equation 7.6) distinct from the reward
function. We note also that the use of distance functions based on
ground truth reference values brings additional information into our
ranking model beyond preference order alone.

7.4 HUMAN PREFERENCE DATA COLLECTION

We build MAPLE (MAchine translation dataset for Preference LEarning),
a dataset derived from WMT20/21 test sets. It contains multiple
translations per source sentence, each assigned a real-valued human
preference score. MAPLE covers four translation directions: German-
to-English (de—en), Chinese-to-English (zh—en), English-to-German
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(en—de), and English-to-Chinese (en—zh). For each direction, 1.1K
source sentences are sampled from the test sets of WMT20/21. Each
source sentence is associated with five translations, including one
reference translation from WMT20/21, and four translations gener-
ated by VicunaMT, our target LLM that we aim to improve through
preference learning (see training details of VicunaMT in Section 7.5.1).
Among the four translations, one is generated using beam search
with a beam size of four, and three translations are obtained through
nucleus sampling (Holtzman et al., 2020) with p = 0.9. We also build a
development set containing 200 source sentences per direction sourced
from News Crawl 2022. Altogether, MAPLE contains 5.2K source sen-
tences and 26K translations with preference scores. See Appendix E.2.1
for more detail on the translation collecting process.

!

(eﬁ : \oea(ga«\\)\e

6

H (21

w

Human Score

Figure 7.1: Human score distribution of translations by rank (left) and source
(right).

ANNOTATION GUIDANCE. We send both the source sentence and
the corresponding five translations to a panel of translators for evalua-
tion. Each example (source sentence and its translations) is assigned to
two different professional translators. They observe the source and the
five translations at the same time, and assign scores between 1 (worst)
and 6 (best) in increments of 0.2 using a slider. See Appendix E.2.2 for
the full scoring rubric.

DATASET STATISTICS. The score distribution is shown in Fig. 7.1.
The left side shows the score distribution by rank, and we can see
MAPLE contains translations that exhibit a wide range of qualities.
The right side shows the score distribution by translation type, and as
expected the reference is ranked highest, followed by the beam search
and the nucleus samples. Nonetheless, there is considerable overlap in
the score distributions, and we find that in 21% of the cases, the beam
search predictions are scored higher than the reference translation.
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Source Zu einem grofien Tuning-Treffen ist es
am Samstagabend (25. Juli 2020) in Niirn-
berger Siidstadt gekommen.

(A large tuning meeting took place on Satur-
day evening (July 25, 2020) in Nuremberg’s

Siidstadt district.)
Reference A large tuning meetup took place in
translation a city south of Niirnberg this Saturday
evening.
Best On Saturday evening (25th July 2020)
translation a large tuning meeting took place in

Nuremberg’s south district.

Table 7.1: An example where the reference translation is less accurate than
the best model prediction. More examples are in Appendix E.2.4.

Table 7.1 shows an example where the reference translation contains
an error.

7.5 EXPERIMENTS

In this section, we present our MT model trained using the proposed
two-stage framework and compare it with strong LLM-based MT sys-
tems.

DATASETS. We train and evaluate the model on data on four trans-
lation directions: en<+de and en<+zh. In the SFT stage, we use high-
quality test sets from WMT1y/18/19 for training, containing 30K
parallel sentences in total across the four directions. The WMT21 test
set is used for validation. In the preference learning stage, we train on
MAPLE, and validation is done on the remaining data from WMT20/21
test sets which was not selected for inclusion in MAPLE. We evaluate
trained models on the test sets of WMT22 (Kocmi et al., 2022) and
FLORES-200 (Costa-jussa et al., 2022). Refer to Appendix E.3.1 for
detailed data statistics.

TRAINING. In both SFT and PL stages, we use a learning rate of
5e-6, an effective batch size of 96, and a linear learning rate schedule
with a warmup ratio of o.1. For each training instance, one MT instruc-
tion is randomly selected from an instruction pool containing 31 MT
instructions. See Appendix E.3.2 for the complete list of instructions.

EVALUATION. At inference time, a fixed MT translation instruction
is used. The maximum generation length is set to 512. We use a beam
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size of 4 for decoding and report BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2022) scores.

7.5.1 SFT makes good translation models

The SFT stage seeks to train a well-performing foundation MT model us-
ing parallel data. When applying SFT, we can either select a pre-trained
LLM, or its instruction-tuned version. Prior research uses both types of
LLMs interchangeably, leaving it unclear which is preferable in practice.
To address this gap, we explore three popular families of open-access
LLMs, performing SFT on both their raw (i.e., only pre-trained) and
instructed-tuned versions. Specifically, we consider LLaMA-1 (Tou-
vron et al., 2023a), Mistral (Jiang et al., 2023b) and BLOOM (Scao et al.,
2022); and their instruction-tuned versions, which are Vicuna (Zheng
et al., 2023), Mistral-Instruct, and BLOOMZ (Muennighoff et al., 2023).
The 7B parameter variants of these models are used here.

RESULTS. Table 7.2 presents the results before and after SFT. It can
be seen that LLMs without instruction-tuning, e.g., BLOOM, perform
poorly; we observe that they tend to overgenerate and repeat tokens
in the source sentences.# In contrast, instruction-tuned models work
out-of-the-box and exhibit decent performance. It can be also observed
that SFT dramatically boosts the performance of raw LLMs, and slightly
benefits instruction-tuned LLMs. For BLOOM and Mistral, the perfor-
mance gap between raw and instruction-tuned models is mostly lost
after SFT. An interesting case is Vicuna, where there is a considerable
improvement on en<zh over its base model LLaMA-1. This implies
that instruction-tuned LLMs may serve as a better base model for SFT.
In addition, different LLMs excel in diverse translation directions and
their instruction-tuned versions do not deviate from this pattern. For
example, both BLOOM and BLOOMZ perform quite well on en—zh,
but have a deficiency in en—de. For LLaMA-based models, the oppo-
site holds. This could be due to the fact that German and Chinese are
not included (at least, not intentionally) in BLOOM’s and LLaMA’s
pre-training corpora, respectively.

The Vicuna+SFT model has the best overall performance and so
we select it as our target LLM to be improved through preference
learning. We call this model VicunaMT. The generated translations in
the MAPLE dataset are produced by this model.

Overgeneration is also noticed in (Bawden and Yvon, 2023), while it can be partially
alleviated by prompt engineering and text post-processing (Srivastava et al., 2023),
enhancing LLMs’ zero-shot performance is not our primary focus.
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de—en en—de en—zh zh—en Avg.

WMT22
BLOOM 49.86 41.95 51.59 55.21  49.65
+SFT  77.21 69.17 84.60 78.76  77.44
BLOOMZ 74.58 62.52 83.10 78.29  74.62
+SFT 7724  69.32  84.95 7877 7757
Mistral 54.18 49.08 49.10 55.47  51.96
+SFT  83.15 81.10 81.48 78.05  80.95
Mistral-Ins.  82.45 80.39 76.57 77.73  79.28
+SFT  82.68 81.23 82.49 77.73  81.03
LLaMA-1 63.29 55.29 45.80 55.17  54.89
+SFT  83.30 82.54 77.58 75.78  79.80

Vicuna 82.55 82.02 81.42 74.81  80.20

+SFT  83.55 82.79 81.27 77.39  81.25
FLORES-200

BLOOM 55.03 42.36 53.82 60.25 52.86

+SFT  83.69 67.43 86.06 85.45  80.66

Mistral 42.36 32.74 33.35 42.10  37.64

+SFT  88.63 84.49 80.97 85.17  84.81
Mistral-Ins.  88.04 82.55 73.20 83.70 81.87
+SFT  88.21 83.73 82.41 84.77  84.78
LLaMA-1 58.89 52.71 42.77 49.92  51.07
+SFT  88.50 84.82 76.73 83.09  83.29
Vicuna 87.82 84.17 81.52 81.53 83.76
+SFT  88.66 86.27 80.62 84.44  85.00

Table 7.2: Model performance (in COMET score) before and after performing
SFT on parallel data. Rows in blue indicate instruction-tuned LLMs.
Best results are in bold. Instruction-tuned LLMs yield high COMET
scores even without SFT. Raw LLMs benefit the most from SFT.
Vicuna performs the best on average on both test sets. We exclude
BLOOMZ on FLORES-200 as it is a part of BLOOMZ's training data.
Performance measured by BLEU score is reported in Appendix E.4.

7.5.2  Refining through preference learning

BASELINES. We continue training our VicunaMT model on MAPLE
through preference learning and compare it with the following com-
petitive systems from recent work: (1) ParroT (Jiao et al., 2023a) adds
a “Hint” field to the model input, prompting the model to generate
both correct and incorrect translations. At inference time, the “correct”
version of the translations is used for evaluation. (2) TIM (Zeng et al.,
2023) incorporates standard SFT with a ranking loss computed on a
pair of correct and incorrect translations. (3) SWIE (Chen et al., 2023)
proposes to attach an instruction adapter to enhance LLMs’ long-term
attention for better translation. (4) ALMA (Xu et al., 2023) first contin-
ues pre-training the LLM on monolingual data, followed by performing
SFT on parallel data. Furthermore, as the preference learning stage

93



94

LEVERAGE IMPERFECT DATA IN MACHINE TRANSLATION

WMT22 FLORES-200

System
de—en en—de en—zh zh—en Avg. de—en en—de en—zh zh—en Avg.

Commercial LLMs & LLaMA-2-7B based MT systems
ChatGPT (3 5-turbo-o613) ~ 85-38 86.92 87.00 8242 8543 89.58 88.68 88.56 86.91  88.02

GPT-4(gpt-4-0613) 85.57 87.36 87.29 82.88 8578  89.66 88.89 88.91 87.25  88.68
ALMA-7B(11amA-2) 83.98 8559 8505 7973 8359 -7 - - - -
BLOOMZ-mt-7B based LLMs
ParroTsLoomz-my 7800 7360 8350 7900 7853 -7 - - -
TIM (BLOOMZ-mt) 7765 7416 8489 7950 7905 - - - -
SWEE@Loomzm) 7880 7517 8453 7915 7941 T T T
LLaMA-1-7B based LLMs
ParroT i rama-1) 82.40 81.60 80.30 75.90 80.05 88.40 84.60 81.20 83.40  84.40
TIM(tLamA-1) 82.80 82.32 80.03 75.46  80.15  88.08 85.00 80.93 83.18 84.30
SWIE 1 Lama-1) 82.97 81.89 80.14 76.14 80.29  88.39 85.21 81.14 83.50 84.56
VicunaMT (Lama-1) 83.55 82.79 81.27 7739 81.25 88.66 86.27 80.62 84.44  85.00
+ REF 83.88 83.37 82.86 78.19 82.07 88.48 86.11 83.35 84.54 85.62
+ BEST 83.61 83.08 83.20 78.35 82.06 88.67 85.87 84.02 84.55 85.78
+ PL 84.23 84.43 84.26 79.07 83.00 88.83 86.73 84.88 84.76  86.30

Table 7.3: Model performance in COMET scores. Best results of LLaMA-1
based models are in bold. Applying prefrence learning (+PL) on
top of our VicunaMT model consistently leads to improvements
in all cases, achieving the highest average performance among all
BLOOM and LLaMA-1 based MT models. Performance in BLEU
scores is reported in Appendix E.5. ®: LLaMA-2 based models
were not evaluated due to license constraints. WMT22 results are
extracted from the original paper. *: BLOOMZ-family models use
FLORES-200 for training.

introduces additional data, a performance gain could be trivial by
exposing the model with more samples. To establish a fair comparison,
we design two additional baselines: (5) REF trains VicunaMT with the
reference translations in MAPLE. (6) BEST trains VicunaMT with the
translations that are scored highest by our annotators. See Table 7.1
for an example comparison of the reference and best translations. All
aforementioned baselines are performed on 7B LLMs (based either
on BLOOM-7B or LLaMA-7B). Finally, we also compare our model
against commercial LLMs, including ChatGPT and GPT-4.

RESULTS. We report the MT performance of various baselines in
Table 7.3. It can be seen that our VicunaMT model performs well
compared to recent MT systems. PL further increases the performance
advantage. Our final model, VicunaMT+PL, achieves the highest av-
erage performance (83 on WMT22 and 86.3 on FLORES-200), con-
sistently outperforming all LLaMA-1 based models across all direc-
tions, with the largest improvement being a 3.96 increase in COMET
score. (en—zh on WMT22). Notably, LLaMA-based models are origi-
nally much weaker in directions involving Chinese. Through prefer-
ence learning, VicunaMT reaches a translation performance close to
BLOOM-based LLMs. This becomes practically significant when the
goal is to deploy a single LLM to handle multiple translation directions.
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Also, the PL model scores higher than VicunaMT models fine-tuned
on the reference and best translations, indicating that the performance
gain does not just come from having more data. Compared to the
ALMA model, which is based on LLaMA-2 (Touvron et al., 2023b), a
widely recognized superior open access LLM, our model demonstrates
only a slight deficit of 0.5 COMET scores. Note that our strategy is
orthogonal to ALMA’s approach, which leverages monolingual data.
Combining both strategies should lead to even better performance.

We supplement our assessment with a human evaluation, contrast-
ing VicunaMT+PL with SFT-only Vicuna variations including Vicu-
naMT and VicunaMT+REEF, as illustrated in Table 7.4. The human
evaluation confirms the trend observed with automatic metrics, where
PL substantially outperforms SFT-only variations.

de—en en—de en—zh zh—en

VicunaMT+PL vs.
VicunaMT +3.7% +44% +5.6% +5.7%
VicunaMT+REF +3.7% +25% +5.0% +3.5%

Table 7.4: Relative improvements of VicunaMT+PL over SFT-only models
(VicunaMT and VicunaMT+REF), assessed through human evalua-
tion on the WMT?22 test set, employing the same scoring criteria as
those specified in MAPLE. A two-sided t-test was conducted, with
95% confidence intervals noted as +1.7%. Positive values indicate
the improvement achieved by VicunaMT+PL compared to the other
models.

7.6 ANALYSIS

REUSE OF PREFERENCE DATA. MAPLE contains the translations
generated by VicunaMT, which is also the target LLM we aim to
improve. There would be additional value if this data could be reused
to improve other LLMs. To investigate this, we train both Mistral-
Instruct and BLOOMZ on MAPLE using PL. As shown in Table 7.5, PL
improves both models, suggesting that the MAPLE is not limited for
use with VicunaMT and can be reused for improving other LLMs.

LIMITED GAINS WITH ADDITIONAL PARALLEL DATA. Section 7.5.2
shows that the MAPLE dataset, which contains 4.4K preference exam-
ples, can be more valuable than an equivalent amount of parallel data
with either the reference or the best translations. A natural follow-up
question is whether adding more parallel data can close the gap. To
answer this question, we collect more data by concatenating WMT20,
WMT21 test data with News Commentary v16, making 1.4M parallel
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WMT22
de—en en—de en—zh zh—en Avg.

BLOOMZ' 7724 6932 8495 7877 7757

+REF 7741 6847 8476  79.50  77.53
+BEST 77.48 68.64 85.15 79.59  77.72
+PL 77.83 69.84 85.36 80.67 78.42
Mistral-Ins.t  82.68 81.23 82.49 77.73  81.03
+REF 83.06 82.63 83.39 78.07  81.79
+BEST 82.98 81.84 83.34 78.33  81.62
+PL 83.35 82.94 84.71 79.25  82.56

Table 7.5: Model performance in COMET scores. Best results are in bold.
MAPLE can be reused to improve BLOOMZ and Mistral-Instruct.
See results on FLORES-200 and in BLEU scores in Appendix E.6.":
SFT stage has already been applied to these models.

sentences in total.> We fine-tune VicunaMT and Mistral-InstructMT
(i.e., Mistral-Instruct after SFT stage) on different proportions of this
data and plot the performance curve in Figure 7.2. In both cases, sim-
ilar to observations in (Xu et al., 2023), adding more parallel data
does not always improve these models and they never attain the
performance level reached by using PL with MAPLE.

VicunaMT Mistral-InstructMT

83.01- — -3¢
82.51 W

'_

w

=

O 82.0

(@]
8151 | SFT

% PL

81.0 I I

0103 10* 10° 10® 0103 10* 105 106

Figure 7.2: Performance comparison between PL using 4.4K examples from
MAPLE and SFT, employing up to 1.4M parallel data. Evaluation
is done on WMT22, and COMET scores are averaged across four
translation directions. Performing SFT on more parallel data does
not always lead to performance gain. PL consistently outperforms
SFT in all cases.

DIVERSE TRANSLATIONS HELP MORE. By default, we perform
PL using all five translations provided by MAPLE. We now study
the relation between the final model performance and the number
of preference translations used. We select K = {2,3,4} translations
and rerun the PL algorithm on VicunaMT and Mistral-InstructMT. We

5 We select News Commentary for its high-quality, domain-matching parallel data to
WMT test data. WMT20/21 are included as MAPLE is built on a subset from them.
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explore two selection modes for selecting K translations. Given five
translations sorted by human preference scores in descending order,
the forward mode selects the first K translations (i.e., the best K), while
the reverse mode select the first and last K — 1 translations. We compare
both modes varying K and present the results in Figure 7.3. There is a
clear disparity in performance with these two selection modes. The
reverse mode consistently outperforms the forward mode given the
same number of translations, with a larger advantage in low-resource
cases, such as when K = 2. This is intuitive since the reverse mode
always includes the highest- and lowest-scored translations and thus,
PL may have a better chance to see “hard negatives” which have low
human preference score but high generation probability. The general
trend shows that including more preference samples is better, and
using all available samples yields the best performance.

VicunaMT Mistral-InstructMT
83.001 b
82.751
_ 82.501
s
O 82.251
O
82.00
—o— forward
81.751 —8— reverse

1 2 3 4 5 1 2 3 4 5

Figure 7.3: Model performance varying number of translations (K) per source
sentence. Evaluation conducted on WMT22 and COMET scores
averaged across four translation directions are reported. Reverse
mode selects more diverse translations and achieves better perfor-
mance, especially when fewer translations are provided.

VicunaMT Mistral-InstrctMT

SFT stage 81.25 81.03
PL stage 83.00 82.56
w/o Lsrr 83.00 82.54
w/o distance 82.22 81.92
w/o Lgpr/dist. 74.65 60.70
Lspr only 82.07 81.79

Table 7.6: Ablation study. PL is less sensitive to Lspr than the distance infor-
mation. Disabling both factors leads to substantial model degrada-
tion.

DISTANCE INFORMATION IS CRUCIAL. Our framework consid-
ers the distance information in preference scores (Equation 7.5). We
now investigate if this information can be replaced by simply using
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the ranking information. That is, we set d/ = 1 for all translations
and rerun the PL algorithm. Table 7.6 shows that when the distance
information is available, excluding the SFT loss does not harm the
performance much. In fact, we achieve the best performance when
setting f = 0 for VicunaMT. However, when the distance information
is withheld, we see a clear degradation in performance. We find that
a larger  value is required when relying only on the ranking infor-
mation, but this makes the PL algorithm closer to SFT. As a result,
when only the ranking information is provided, VicunaMT performs
similarly to the Lsrr only baseline. Finally, disabling both Lsrr and
distance cause a large performance drop.

Pearson p Kendall's T

0.40 1 VicunaMT
VicunaMT+PL
0.354
0.301
0.254
0.201
0.154
0.10— " — T — T — T — e —
5 4 3 2 5 4 3 2

Figure 7.4: Sentence-level correlation between model generation probability
and human preference scores varying number of translations (K).
PL helps the model align better with human judgement.

BETTER MODEL CALIBRATION. In our preference learning frame-
work, the model learns both translation and the ability to differentiate
between different translation quality. We analyze if PL has successfully
transferred human preference to the model. Using the held-out set of
MAPLE, we examine the sentence-level correlation between the scores
assigned by the human annotators and model generation probabil-
ity. Specifically, we compute the average Pearson and Kendall’s tau
correlation varying the number of preference samples (reverse mode).
The results are presented in Figure 7.4. Compared to the SFT baseline,
VicunaMT, PL substantially improves the correlation, suggesting that
our final model aligns better with human preference.

7.7 CONCLUSION

We present a preference learning framework to break the performance
plateau faced when performing SFT. It enhances the translation ca-
pabilities of LLMs by motivating them to differentiate the nuances in
different translations. To support this framework, we have carefully
curated a preference dataset, named MAPLE, featuring translations
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of varying quality, each scored by professional translators. Extensive
experiments, including human evaluations, confirm the effectiveness
of this framework. In addition, we demonstrate that MAPLE can be
reused to enhance other LLMs, further bolstering its practical usabil-
ity. Future research could consider extending our framework into
an iterative process for continuous improvement of LLMs’ translation
capabilities.
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CONCLUSIONS AND FUTURE PROSPECTS

Over the past decade, DNN-based Al systems have undergone rapid
advancements, with numerous model architectures and training algo-
rithms being proposed. These innovations have continuously emerged
and evolved, challenging and reshaping our understanding of Natu-
ral Language Processing (NLP). In this dynamic field, Learning with
Noisy Labels (LNL) remains an indispensable topic and is growing in
importance. It has been consistently observed that the quality of data
plays a pivotal role in determining the performance of LLMs. However,
the immense volume of data required to train these models makes
manual verification intractable. Consequently, incorporating some
flawed data into the training process becomes unavoidable. There-
fore, enhancing our comprehension of these data imperfections and
their consequences is crucial for successfully training high-performing
models, particularly at large scales.

8.1 SUMMARY OF THE CONTRIBUTIONS

This thesis presents a series of research studies on LNL, progressing
from classification tasks to generation tasks and transitioning from
PLMs to LLMs. We address different machine learning scenarios that
involve noisy training sets. Through our research, we uncover insight-
ful findings on how flawed annotations affect model performance.
Building on these insights, we developed effective approaches for
handling noise. Specifically, this thesis concludes with the following
contributions:

¢ In Chapter 3, we demonstrate that PLMs exhibit remarkable ro-
bustness against feature-independent noise, even at high noise
ratios. Although noise memorization eventually occurs, PLMs
initially fit the clean data distribution more quickly, likely due
to their better alignment with pre-trained knowledge. Build-
ing on this observation, we propose using early-stopping as a
noise-handling strategy. Despite its simplicity, early-stopping ef-
fectively enables the model to generalize well, often matching or
surpassing more complex noise-handling methods that require
additional hyperparameter tuning and computational resources.
Furthermore, these complex methods need to be retuned when
factors such as data distribution, noise type, or noise levels
change, whereas our approach remains unaffected by such varia-
tions. We found that existing noise-handling methods primarily
slow down the noise memorization process without significantly
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improving peak generalization performance during training. In
contrast, early-stopping is sufficient to halt training precisely at
the model’s highest performance point, capturing the optimal
state without requiring additional adjustments.

We show that feature-dependent noise requires different han-
dling approaches compared to feature-independent noise and
is often more challenging to address. In Chapter 4, we pro-
pose a meta-learning-based self-training approach. This method
teaches a student model using filtered pseudo-labels provided
by a teacher network. Evaluated on multiple classification tasks
from the WRENCH (Zhang et al., 2021c) benchmark, our ap-
proach achieves state-of-the-art performance, demonstrating its
effectiveness in managing feature-dependent noise.

We observe that many existing noise-handling approaches as-
sume access to clean validation data. In Chapter 5, we investigate
whether this assumption can be relaxed or discarded. We find
that all the approaches we examined failed because: a) hyper-
parameter settings obtained from a noisy validation set do not
work, and b) early-stopping is ineffective on a noisy validation
set under feature-dependent noise, which is often required by
these methods. Consequently, we conclude that a certain amount
of high-quality validation data is necessary to effectively handle
feature-dependent noise. To address this, we propose a simple
approach. First, we train on the noisy training data using the
clean validation set for early-stopping. Then, we fine-tune the
model on the clean validation set. We show that this approach
is effective across different settings and highly competitive with
other common noise-handling methods. Notably, the second
learning phase with fine-tuning on the clean validation set does
not require a second round of early-stopping. We observed that
PLMs tend not to overfit on the clean data even when trained
for a long time, a similar observation made by Mosbach, An-
driushchenko, and Klakow (2021).

We also investigate the impact of noise in generation tasks, with a
focus on machine translation. In Chapter 6, we demonstrate that
performing Supervised fine-tuning (SFT) with 32 high-quality
parallel data points enables pre-trained LLMs to function as effec-
tive translation systems for language pairs well-represented in
their training data. Increasing the dataset size to 70K yields only
marginal improvements, suggesting that LLMs inherently pos-
sess translation capabilities and that SFT primarily serves to align
these models with the specific task format. However, data qual-
ity plays a critical role: incorporating lower-quality parallel data
during SFT significantly reduces performance, likely because it
causes LLMs to misinterpret the task (e.g., producing inconsistent
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or “waggly” translations). Consequently, avoiding low-quality
data in SFT is crucial for ensuring better generalization in LLMs.
At the same time, maintaining exclusively flawless translation ex-
amples in SFT datasets becomes increasingly challenging at scale,
as even professional translators occasionally make errors. To ad-
dress this issue, in Chapter 7, we introduce a preference learning
approach that trains LLMs to differentiate between translations
of varying quality. This method not only improves generation
performance but also outperforms approaches relying solely on
SFT, implicitly mitigating the effects of noise in the SFT data.

8.2 FUTURE DIRECTIONS

It has been repeatedly emphasized that LLMs require high-quality
data for both pre-training and post-training stages (Chen et al., 2024a;
Guo et al., 2025; Liu et al., 2024a; Touvron et al., 2023b; Zhou et
al., 2023b, i.a.). However, given the massive data size requirements,
manually inspecting all data points is infeasible. Currently, automatic
data filtering is often used to remove low-quality and unsafe content.
These filtering methods are often rule-based (e.g., n-gram coverage
ratio (Rae et al., 2021)), suggesting that exploring the use of small
DNNs to enhance filtering results could be beneficial. For example,
MarcoLLM (Ming et al., 2024) utilizes similarity scores from LASER
embeddings for parallel data to filter out sentence pairs with low
scores. This approach is more accurate than traditional methods, such
as comparing the lengths of source and target sentences. A promising
direction is to explore different filtering models or methods tailored to
specific text domains or to implement hierarchical filtering approaches.

While incorporating DNNs may slow down filtering, it is not nec-
essary to clean all training data at once. Instead, one can iteratively
build a higher-quality data pool by filtering out lower-quality samples.
This “annealing data” (Grattafiori et al., 2024) is used in the final
pre-training stage and significantly boosts performance. Notably, this
annealing strategy resembles the first-noisy-then-clean approach from
Chapter 5.

Another promising direction is synthesizing high-quality data. Many
recent datasets and benchmarks use synthesized data (Asai et al.,
2023; Guo et al.,, 2025; Tang and Yang, 2024; Taori et al., 2023). For
instance, Guo et al. (2025) demonstrate that strong models, such as
DeepSeek-R1 Zero, can be trained without any human annotations for
reasoning paths in the post-training phase, since these paths can be au-
tomatically generated when guided by reliable, reward-hacking—proof
reward functions. In this context, ensuring the use of robust reward
functions to prevent noise in the reinforcement learning process or de-
veloping noise-tolerant reinforcement learning approaches represents
a promising avenue for future research.
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HANDLING FEATURE-INDEPENDENT NOISE

A.1 NOISE MATRIX ON YORUBA AND HAUSA

The training and validation sets of Yoruba and Hausa have two sets
of labels: the human-annotated (clean) labels and labels obtained
from weak supervision. This makes it possible to compute the ground
truth noise matrix in the training set. The noise matrices in Yortuba
and Hausa are shown in Figure A.1. The Noise Matrix method eval-
uated in Section 3.4 uses these two matrices for initialization. The
labeling rules in the weak supervision are described in (Hedderich
et al., 2020). The Yoruba dataset has a rather low noise level, and
the diagonally-dominant noise assumption holds in the training set.
Oppositely, the Hausa training set is quite noisy. For the label “nigeria”
the wrong labels is overwhelming, violating the diagonally-dominant
noise assumption. Label “politics” is often misrecognized as “nigeria”.
Moreover, many labels are misrecognized as the label “world”, mak-
ing an unbalanced classification dataset. These factors make it very
challenging to conquer the noise in this dataset.

K& & Q &S o
@ && 2 & Ny & N
PO gL &° z".\,\\&e' @ O S &
< © S SN . . . . ,
L L L L L
health{ 45 0 0 0 0 6 0 healthq 168 83 2 34 147
politics{ 1 D 4 0 60 5
nigeria 2 158 3 46
world4 O 2 42 0 1 29 11
sport{ © 1 ' o w G politics{ 0 94 111 25 54
africa{ O 3 7 0 50 27 8
africa 2 42 7 158 106
nigeria4{ 8 33 85 9 1 56
enter- | 4 8 11 3 0 45 world 1 2 68 15 58
tainment
T T T T
(a) Yoruba (b) Hausa

Figure A.1: Noise matrix constructed from the Yoruiba (Hausa) training set.

A.2 COMPARING EARLY-STOPPING ON CLEAN AND NOISY VALI-
DATION SETS

We compare the difference in model performance when using a noisy

validation set rather than the clean one. Table A.1 presents the results
on datasets with injected noise. For a noise level below 60% uniform
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Dataset Noise Type Percentage Performance Difference (%)
40% 0.10£0.09
uniform 60% 0.56+0.50
AG-News 70% 1.96+0.97
20% 0.061+0.07
single-flip 40% 0.291+0.19
45% 2.001t0.60
20% 0.14%t0.19
IMDB single-flip 40% 1.7142.05
45% 1.76£2.79

Table A.1: Average performance difference (in %) and standard deviation (5
trials) between the test accuracy based on early-stopping with the
clean validation and with the noisy validation set.

Yoruba Hausa

FT TP+FT FT TP+FT

Performance Difference (%) 1.93£1.71 1.00+£0.70 1.084+0.79 1.92£1.64

Table A.2: Average difference (in %) and standard deviation (10 trials) be-
tween the test accuracy based on early-stopping on the clean
validation and on the noisy validation set.

noise or 40% single flip-noise, we see the difference is often less than
0.5%, indicating that a noisy validation set can already serve as a good
estimator for the generalization error. In an even higher noise level, the
difference can be up to 2.14%. As for the datasets obtained from weak
supervision, the difference is higher in general. Table A.2 summarizes
the difference on the Yoruiba and Hausa.

A.3 BERT PERFORMANCE ON DIFFERENT DATASETS AND NOISE
SETTINGS

We evaluate the baselines under different noise settings and different
datasets. The full result is shown in Table A.3 and Table A.4. A visual-
ization of the result on AG-News with single-flip noise can be found in
Figure A.2 (other plots can be found in the main paper). BERT clearly
shows its robustness against injected noise. Although noise-handling
methods do help under a high noise level, the effect is limited (less
than 4%). Compared to injected noise, the noise from weak super-
vision is much more challenging for BERT, especially on the Hasua
dataset. For both noise types, there is no single noise-handling method



A.3 BERT

PERFORMANCE ON DIFFERENT DATASETS AND NOISE SETTINGS

AG-News IMDB
uniform single-flip single-flip
clean 40% 60% 70% 20% 40% 45% clean 20% 40% 45%
NV 04074013 84.48+0.78 61.61£3.18 43784507 90.46£037 76064033 6474094 9403+013 86344077 65.05+090 58.97+1.26
CT - 92.18+0.21  89.90+0.38 84.74+2.56 93.33F0.12 9o.62+0.53 87.99+1.64 - 92.321+0.27 89.36+0.67 83.771+3.88
NMat 92.25+0.14 89.91+0.48 83.9+1.87 93.91+0.15 93.13+0.31 92.93 +0.51 - 92.07+0.21  87.13+0.44 78.82+1.37
NMwR  93.64+0.06 92.0240.20 89.91+0.33 84.77+2.24 93.03F0.17 90.23+0.65 88.93+0.68 93.68+0.14 92.12+0.35 85.941+0.86 80.17+2.57
LS 94.43+0.19  92.45+0.21  89.79+0.38 86.6440.78 93.56+0.23 92.404+0.33 90.94+0.86 94.06 £0.09 92.1340.43 87.22+1.39 80.614+248

WN 94.4010.13

92.40+£025 89.53+0.75 85491076 93.80+0.08 02.33%10.35 88.94+£092 93.98+0.15 92.13%021 8588+278 80.12+4.09

Table A.3:

Average test accuracy (%) and standard deviation (5 trials) on
AG-News and IMDB with uniform and single-flip noise. NV: with-
out noise-handling and no validation set, i.e. train the model
without noise-handling and until the training loss converges. CT:
Co-teaching. NMat: Noise Matrix. NMwR: Noise Matrix with
Regularization. LS: Label Smoothing. CT and NMat are equiva-
lent to WN in the clean setting. Note that as IMDB is a binary-
classification task, single-flip noise is equivalent to the uniform
noise in this case.

Yoruba Hausa
clean noisy clean noisy
NV 74.11+0.26  63.88+£1.59 83.02+0.45 46.98+1.01
CT - 61.37£1.58 - 31.65+2.71
NMat - 65.96+0.81 - 46.58+0.88
NWwR 73.78+0.32 61.32+0.71 83.21£0.40 35.36%3.60
LS 74.22+0.37 65.44£1.67 83.441+0.35 46.44+0.78
WN 74.45+0.32  64.72+1.45 83.551+0.47 46.97 +0.81
Table A.4: Average test accuracy (%) and standard deviation (10 trials) on

Yoruba and Hausa with noise from weak supervision. NV: with-
out noise-handling and no validation set, i.e. train the model
without noise-handling and until the training loss converges. CT:
Co-teaching. NMat: Noise Matrix. NMwR: Noise Matrix with Reg-
ularization. LS: Label Smoothing.
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AG-News, single-flip noise

Without Noise-handling
Co-teaching

Noise Matrix

Noise Matrix with Regularization
Label Smoothing

No Validation

9

= - ®
=1 =] S S

Test Accuracy

40 T T
clean 0.2 0.4 0.45

Noise Levels

Figure A.2: Test accuracy (%) on AG-News dataset with single-flip noise.

that outperforms the simple baseline method without noise-handling
in all settings.

A.4 MORE ROC CURVES

We present additional ROC curves under different settings with in-
jected noise in Figure A.3. It is obvious that the AUC decreases when
the noise levels increase. However, the absolute AUC score remains at
a high level even under extremely high noise levels of injected noise.

A.5 IMPLEMENTATION DETAILS

DATASETS We experiment with the following four datasets: AG-
News, IMDB, Yoruba and Hausa.

1. AG-News: originates from AG, which is a large collection of
news articles. Zhang, Zhao, and LeCun (2015a) constructed the
AG-News dataset from the AG collection and it is used as a
benchmark dataset for text classification.

2. IMDB: consists of movie reviews with binary labels. It is a com-
monly used benchmark dataset used for text classification.

3. Yoruba: The dataset was created from BBC Yortuiba news titles
along with the noisy dataset (Hedderich et al., 2020).

4. Hausa: Similar to Yortib4, the Hausa dataset and the correspond-
ing noisy dataset were created by Hedderich et al. (2020) from
VOA Hausa news titles and distant supervision using keywords.



A5 IMPLEMENTATION DETAILS

Average Runtime (Hours)

AG-News IMDB Yoruba Hausa

CT 5 4.5% 0.1* o.1*
NMat 2.5 8 0.1* o.1*
NMwR 3 8 0.1* o.1*
LS 2.5 8 o.1* o.1*
WN 2.5 8 o.1* 0.1*

Table A.5: Average runtime (in hours) of each method. The Numbers with
“*” indicates that the experiment was run on a Nvidia Tesla V1o00.
Other experiments were run on a Nvidia GeForce GTX TITAN X.

MODELs We use the official BERT-base model (Devlin et al., 2019)
for text classification on AG-News and IMDB. It consists of an embed-
ding layer, a 12-layer encoder, and a pooling layer. It contains 110M
parameters in total. We use the multilingual version of BERT-base for
text classification on Yortibd and Hausa. It has the same architecture
as the original BERT-base model. It also has 110M training parameters.

FINE-TUNING ON TEXT CLASSIFICATION TASK For the vanilla
models (Wihtout Noise-handing and No Validation models in Chap-
ter 3), we pass the final layer of the [CLS] token representation (IR”®)
to a feed forward layer for prediction. Noise Matrix and Noise Matrix
with Regularization append a noise matrix N € R*¥ after the model’s
prediction. For Noise Matrix we initialize the matrix with the ground
truth information. Following (Jindal et al., 2019), when applying Noise
Matrix with Regularization, we initialize the noise matrix using an
identity matrix. The hyper-parameters for Noise Matrix with Regu-
larization, Co-teaching and Label Smoothing are chosen so that the
model performs the best on the noisy validation set.

In all settings, a batch size of 32 is used, and the learning rate is set to
2e-5. We train all models until the training loss converges. However,
we report the score where the model performs the best on the valida-
tion set during training except for the No Validation baseline where
we report the last-epoch performance.

HARDWARE AND AVERAGE RUNTIME  We use Nvidia Tesla V1oo
and Nvidia GeForce GTX TITAN X to accelerate training. The average
runtime for each method and dataset is summarized in Table A.5.
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Figure A.3: The losses are recorded

at the training step when early-stopping

is triggered. Noise-handling methods do not make the losses of
correct and incorrect labels more distinguishable.



A META-LEARNING BASED NOISE-HANDLING
METHOD

B.1 DATASET DETAILS

We experiment with eight Natural Language Processing (NLP) datasets,
including six English datasets and two datasets in low-resource lan-
guages. All datasets come with their ground truth annotations and as
well as the weak labels.

B.1.1 Datasets Selection Criteria

The WRENCH (Zhang et al., 2021c) benchmark contains 23 NLP
datasets. We choose representative datasets (like previous research in
weak supervision) that a) overlap with previous works to enable direct
comparisons. b) are diverse in terms of weak label quality, languages
and tasks to approve the applicability of different baselines.

B.1.2 English Datasets

We experiment with four popular sequence classification datasets:
AGNews, IMDB, Yelp and TREC.

1. AGNews (Zhang, Zhao, and LeCun, 2015b): originates from
AG, which is a large collection of news articles. The news are
categorized in four classes: “World”, “Sports”, “Business” and
“Sci/Tech”.

2. IMDB (Maas et al., 2011): consists of movie reviews with binary
labels. It is a commonly used benchmark dataset for sentiment
analysis.

3. Yelp (Zhang, Zhao, and LeCun, 2015b): obtained from the Yelp
Dataset Challenge in 2015. Similar to IMDB, it is a sentiment
analysis dataset.

4. TREC (Li and Roth, 2002): categorizes the questions in TREC-6
datasets into 6 categories: “Abbreviation”, “Entity”, “Descrip-
tion”, “Human”, “Location”, “Numeric-value”.

and with the two sequence labeling datasets: CoONLL-03 and OntoNotes
5.0.

1. CoNLL-03 (Tjong Kim Sang and De Meulder, 2003) NER dataset
with four named-entity categories.
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2. OntoNotes 5.0 (Pradhan et al., 2013): NER dataset with 18 named-
entity categories.

All weak labels are obtained from the WRENCH benchmark® (Zhang
et al., 2021¢).

B.1.3 Datasets in Low-Resource Languages

Most datasets in the current WRENCH benchmarks are in English.
Although weak supervision is desired in low-resource languages,
it is understudied as finding annotators for them is more difficult.
Hence, we include two low-resource languages, Yortiba and Hausa, to
cover this scenario. Often, learning with weak labels in low-resource
languages is more challenging. First, the training set is often much
smaller than English datasets. For example, Hausa has only about 2k
training samples while AGNews have 96k. Second, the weak labels
in low-resource languages can have lower quality as experts for weak
source development are harder to find. A set of simple rules is often
used for labeling (which is the case in Yorub4d and Hausa). Hence,
weak supervision with low-resource languages is a combination of
two challenges: training with small datasets which have low-quality
labels.

Yoruba and Hausa are text classification datasets obtained from
(Hedderich et al., 2020).2

1. Yoruiba: consists of news headlines from BBC Yoruba which
are categorized in seven classes: “Nigeria”, “Africa”, “World”,
“Entertainment”, “Health”, “Sport”, “Politics”.

2. Hausa: consists of news headlines from VOA Hausa which have
the same seven classes as Yoruiba. However, only five classes are
considered in the text classification task. “Entertainment” and
“Sport” have been removed due to the lack of samples of these
classes.

Hedderich et al. (2020) provided both the clean labels and weak
labels on the two datasets. A gazetteer is created for each class for weak
supervision. For example, a gazetteer containing names of agencies,
organizations, states and cities in Nigeria is used to label the class
“Nigeria”.

B.1.4 More Dataset Statistics
We provide more details on the datasets we used in our experiments in

Table B.1. In general, not all data can be covered by weak sources. No
weak source is triggered for some training samples and they remain

1 https://github.com/JieyuZ2/wrench
2 https://github.com/uds-1lsv/transfer-distant-transformer-african
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Dataset Task #Class | Dyl D,  Coverage Conflict |D,| | Dy
AGNews Topic 4 66,314 96,000 69.08% 14.17% 12,000 12,000
IMDB Sentiment 2 17,515 20,000 87.58% 11.96% 2,500 2,500
Yelp Sentiment 2 25,165 30,400 82.78% 18.29% 3,800 3,800
TREC Question 6 4,723 4,965 95.13% 22.76% 500 500
Yoruba Topic 7 1,340 1,340 100.00% 1.87% 189 379
Hausa Topic 5 2,045 2,045 100.00% 1.90% 290 582
CoNLLo3 NER 4 14,041 14,041  100.00% 4.05% 3,250 3,453
OntoNotess.0 NER 18 115,812 115812  100.00% 1.86% 5000 22,897

Table B.1: Dataset statistics. |Dy|: number of training samples with weak
labels. | D,|: total number of training samples (weakly labeled +

unlabeled). Coverage: fraction of samples that are weakly labeled,

|Duw|
" |Dal
sources with contradicted weak labels. |D,|: number of validation

samples. | D|: number of test samples.

ie. . Conflict: samples that are labeled by at least two weak

Hyperparameter Search Range
Teacher Learning Rate 3e-6, 5e-6, 2e-5, 3e-5
Teacher Warm-Up Steps 500, 100, 2000, 3000

Confidence Filter Threshold 0.4, 0.5, 0.6, 0.7, 0.8, 0.95

Table B.2: Hyperparameter search.

unlabeled. The coverage of the datasets ranges from 69.08% to 100%.
Note that for NER tasks, the coverage is always 100% since if no weak
source is triggered for a token, we assign label “O” (i.e., non-entity) to
it. On the other hand, some samples can be covered by two or more
weak sources with contradicted weak labels. In this case, we have a
conflict. The conflict ratio ranges from 1.86% to 22.76% in the datasets
we tested.

AGNews IMDB Yelp TREC  Yoruba Hausa CoNLL-03 OntoNotes 5.0

BERT Backbone RoBERTa RoBERTa RoBERTa RoBERTa mBERT mBERT RoBERTa RoBERTa
Batch Size 32 16 16 32 32 32 32 32
Maximum Sequence Length 128 256 256 64 64 128 64 64
Student Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Teacher Learning Rate 2e-5 2e-5 2e-5 2e-5 5e-6 2e-5 2e-5 2e-5
Teacher Warm-Up Steps 500 500 3000 500 1000 3000 2000 2000
Confidence Filter Threshold 0.7 0.7 0.5 0.5 0.7 0.4 0.8 0.5

Table B.3: Selected hyperparameters. mBERT: multilingual BERT.

B.2 IMPLEMENTATION DETAILS

MODELS. All baselines in Chapter 4, except the majority vote and
the Snokerl model (Ratner et al., 2017) which work with label space
only, use the official RoBERTa model? (Liu et al., 2019) from Hugging-

3 https://huggingface.co/roberta-base
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face as the classification backbone for all English datasets, and the
multilingual BERT# for datasets in African languages. We use the base
version of the two models which contain roughly 120M and 110M
parameters, respectively.

Dataset Test Validation

AGNews  89.92 89.90
IMDB 89.16 89.21
Yelp 95.00  94.79
TREC 94.80 94.42
Yoruba 72.56 75.13
Hausa 59.11 62.34
CoNLL-03 88.41 87.86
OntoNotes 74.59 75.20

Table B.4: The average test and validation accuracy/F1 score (in %) of MSR
over five trials.

MSR Configuration AGNews IMDB Yelp TREC Yoruba Hausa CoNLL-03 OntoNotes

(Acc) (Acc)  (Acc) (Acd) (Acd)  (Aco) (F1) (F1)
Student 89.92 89.16 95.00 94.80 72.56 59.11 88.41 74.59
Teacher 89.02 88.08 94.37 93.80 68.87 60.14 87.30 73.22
w/o Teacher Scheduler 89.68 87.68 93.78 93.60  7yo.71 55.32 87.82 72.48
w/o Confidence Filtering 89.87 89.04 94.76 93.60 71.50 55.15 88.07 74.11
w/o Both 89.55 87.68 93.33 93.40 70.50 55.32 87.82 72.08

Table B.5: Ablation studies. The numbers represent the test accuracy and F1
Score.

AGNews IMDB Yelp TREC Yorubda Hausa CoNLL-03 OntoNotes 5.0

Running time (hours) 2.5 1.6 0.5 1.2 0.5 0.7 1.1 3.0

Table B.6: Average runtime (in hours) for training a MSR model. One single
Nvidia Tesla V1ioo GPU is used in each experiment to accelerate
the computation.

FINE-TUNING ON CLASSIFICATION TASK. We fine-tune all layers
using AdamW (Loshchilov and Hutter, 2019) as the optimizer. For
sequence classification tasks, we pass the final layer of the [CLS]
token representation (R7%®) to a feed-forward layer for prediction.
For sequence labeling tasks, the final layers of all tokens (R”%8*L,
where L is the sentence length) are passed to a shared feed-forward
layer to predict the class of each token in the sentence. We report the
score where the model performs the best on the validation set during
training.

4 https://huggingface.co/bert-base-multilingual-cased
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HYPER-PARAMETERS OF MSR. We apply grid search on the warm-
up steps for the teacher and the confidence threshold for the student
network. Table B.2 shows our hyperparameter search configuration.
We choose the final configurations of the hyperparameters according
to the model’s performance on the validation set. Table B.3 shows the
best configurations of parameters we used to produce the results in
Table 4.2.

EVALUATION METRICS. For model evaluation, we report accuracy
for sequence classification tasks and F1 Score for sequence labeling
tasks. In our implementation, we call the function classification_report()

from the scikit-learn library> to compute the accuracy, and use the
Segeval class from Huggingface® to compute the F1 Score.

B.3 VALIDATION PERFORMANCE

The average test performance of MSR is reported in Table 4.2. We
further report the corresponding validation performance in Table B.4.

B.4 ABLATION STUDIES

We report the detailed ablation results for each dataset in Table B.5.

B.5 HARDWARE AND AVERAGE RUNTIME.

We use Nvidia Tesla V100 to accelerate training. The average runtime
for each method and dataset is summarized in Table B.6.

5 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

classification_report.html
6 https://github.com/huggingface/datasets/blob/master/metrics/seqeval/

segeval.py
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C.1 DATASETS

Avg. over labeling functions (LFs)
Dataset Task #Classes  #LFs  %Ovr. Coverage  %Coverage  %Overlap  %Conflict  %Prec. =~ MV #Train  #Dev  #Test

AGNews News Class. 4 9 69.08 1034 505 243 8166 8123 96000 12,000 12,000
IMDb Movie Sentiment Class. 2 5 87.58 23.60 11.60 450 6088 7386 20000 2500 2,500
Yelp Business Sentiment Class. 2 8 8278 18.34 13.58 494 7305 7331 30400 3800 3800
TREC Question Class. 6 68 95.13 255 182 084 7592 6258 4,965 500 500
SemEval Web Text Relation Class. 9 164 100.00 077 032 014 9769 7733 1749 200 692
ChemProt Chemical Relation Class. 10 26 85.62 593 440 395 4665 5512 12861 1607 1,607
CoNLL-03 English News NER 4 16 100 100 430 144 7219 6038 14041 3250 3453

OntoNotes 5.0 Multi-Domain NER 18 17 100 100 155 0.54 5484 5892 115812 5000 22807

Table C.1: Detailed data statistics. Note that ‘Class.” is an abbreviation for clas-
sification. Coverage is the amount of samples a labeling function
(LF) matches. For NER datasets, labeling functions return an entity
or "O" thus coverage is always 100%. Overlap asks how many
samples have at least 2 matching labeling functions. MV (majority
vote) performance is given as Fi-score for the NER datasets and as
accuracy on the test set otherwise.

In the following, we give a more comprehensive description of the
datasets used. A subset of the commonly used WRENCH (Zhang et al.,
2021c) benchmark is used, covering various aspects such as task type,
coverage and dataset size. There is a total of four classification, two
relation extraction and two sequence labeling datasets. See Table C.1
for a detailed set of data statistics.

AGNEWS (Zhang, Zhao, and LeCun, 2015b) is a topic classification
dataset. The task is to classify news articles into four topics, namely
world, sports, business and Sci-Fi/technology. Each labeling function is
composed of multiple keywords to search for. The number of keywords
differs from a few up to dozens.

IMDB  (Maas et al., 2011) is a dataset of movie reviews sampled from
the IMDb website. The task is binary sentiment analysis. The labeling
functions are composed of keyword searches and regular expressions.

YELP (Zhang, Zhao, and LeCun, 2015b) is another sentiment analy-
sis dataset, containing crowd-sourced business reviews. The labeling
functions are created using keywords and a lexicon-based sentiment
analysis library.

TREC (Li and Roth, 2002) is a question classification dataset, i.e., it
asks what type of response is expected. The labels are abbreviation,

119
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Label Labeling Function

POS  beautiful, handsome, talented
NEG than this, than the film, than the movie
POS  *(highly | do|would | definitely | certainly | strongly | i | we).*(recommend | nominate).*

POS  *(high|timeless | priceless |HAS | great | real | instructive).*(value | quality | meaning | significance).*

Table C.2: Examples of two keyword based and two regular expression based
rules for the IMDDb dataset.

Label Labeling Function

ABBREVIATION (| M) (what | what)["\w]* (\w+ ){o,1}(does | does)["\w]* ([M\s]+ )*(stand for)[M\w]*( 1$)

DESCRIPTION ( I")(explain | describe | how Ihow)[M\w]* (\w+ ){o,1}(can | can)["\w]*( |$)

ENTITY ( ") (which | what | what)[M\w]* ([ \s]+ )*(organization | trust | company | company)["M\w]*( |$)
HUMAN ( 1" (who | who)[M\w]*( 1$)

LOCATION (1 ")(which | what | where | where)[M\w]* ([*\s]+ )*(situated | located | located)[M\w]*( | $)
NUMERIC ( ") (by how Ihow Ihow)["M\w]* (\w+ ){o,1}(much | many | many)["\w]*( |$)

Table C.3: Rules for the TREC dataset. For each label a representative labeling
function is given.

description and abstract concepts, entities, human beings, locations
or numeric values. The labeling functions are created using regular
expressions and make a lot of use of question words such as "what",
"where" or "who".

SsEMEVAL (Hendrickx et al., 2010) is a relation classification dataset,
using nine relation types. Examples for relation labels are cause-effect,
entity-origin or message-topic. Labeling functions are created using
entities within a regular expression.

cHEMPROT (Krallinger et al., 2017) is another relation classification
dataset, focusing on chemical research literature. It contains ten differ-
ent types of relations, for example chemical-protein relations such as
“biological properties upregulator”. The labeling functions are created
using rules.

coNLL-03 (Tjong Kim Sang and De Meulder, 2003) is a NER dataset,
with labels for the entities "person", "location", "organization", and
"miscellaneous”. Labeling functions are built using previously trained
keywords, regular expressions and NER models.

ONTONOTES 5.0 (Pradhan et al., 2013) is an another NER dataset,
using more fine-grained entities as CoNLL-03. Here, a subset of the
CoNLL weak labeling sources is combined with keyword and regular
expression based weak labeling sources.
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Label Labeling Function

Cause-Effect(e1,e2) SUBJ-O caused OBJ-O
Component-Whole(e1,e2) SUBJ-O is a part of the OBJ-O
Content-Container(e1,e2)  SUBJ-O was contained in a large OBJ-O
Entity-Destination(e1,e2)  SUBJ-O into OBJ-O

Entity-Origin(e1,e2) SUBJ-O emerged from the OBJ-O
Instrument-Agency(e2,e1) SUBJ-O took the OBJ-O
Member-Collection(e2,e1) SUBJ-O of different OBJ-O
Message-Topic(e1,e2) SUBJ-O states that the OBJ-O
Product-Producer(e1,e2) SUBJ-O created by the OBJ-TITLE

Table C.4: One labeling function for each label of the SemEval dataset. Here
e1 and e2 are entities which are already available in the dataset.

Label Labeling Function
PERSON RegEx searching list one of 7559 first names, followed by an upper-cased word
LOCATION List of 15205 places

ORGANIZATION WTO, Starbucks, mcdonald, google, Baidu, IBM, Sony, Nikon
MISCELLANEOUS  List of countries, languages, events and facilities

Table C.5: For each label, one labeling function of the CoNLL-o03 dataset is
displayed.
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C.2 LABELING FUNCTIONS

Weak labeling sources are often abstracted as labeling functions and
vary in aspects such as coverage, precision, or overlap (Karamanolakis
et al.,, 2021; Ratner et al., 2017). To showcase how the weak labeling
process works, a selection of examples of labeling functions is pre-
sented. More specifically, we provide examples of rules for the two
classification datasets IMDb (Table C.2) and TREC (Table C.3), the
relation classification dataset SemEval (Table C.4) and the NER dataset
CoNLL-03 (Table C.5).

C.3 OVERALL IMPLEMENTATION DETAILS

This section summarizes the overall implementation details of WSL ap-
proaches used in Chapter 5. Refer to Appendix C.4 for hyperparameter
configurations of PEFT approaches. We use the PyTorch framework to
implement all approaches discussed in Chapter 5. Hugging Face (Wolf
et al., 2020) is used for downloading and training the RoBERTa-base
model. AdapterHub (Pfeiffer et al., 2020) is used for implementing
parameter-efficient fine-tuning.

HYPERPARAMETERS We implemented five WSL methods: FT (De-
vlin et al., 2019), L2R (Ren et al., 2018), MLC (Zheng, Awadallah, and
Dumais, 2021), BOND (Liang et al., 2020), and COSINE (Yu et al.,
2021). We report the search ranges of the hyperparameters in Table
C.6.

We do not search for batch size as we find it has minor effects
on the final performance. Instead, a batch size of 32 is used across
experiments. Also, RoBERTa-base (Liu et al., 2019) is used as the
backbone PLM and AdamW (Loshchilov and Hutter, 2019) is the
optimizer used across all methods.

COMPUTING INFRASTRUCTURE AND TRAINING cosT We use
Nvidia V100-32 GPUs for training deep learning models. All WSL
approaches studied in Chapter 5 can fit into one single GPU. We report
the training time of the WSL methods in Table C.7.

C.4 TRAINING WITH CLEAN SAMPLES
C.4.1  Methods and implementation details

In Section 5.6, we apply four (parameter-efficient) fine-tuning ap-
proaches to train models on clean validation sets. Since we do not
have extra data for model selection, we choose a fixed set of hyper-
parameters for all datasets. In the following we briefly introduce the

1 https://pytorch.org/
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Hyperparameter Search Range
FT

Learning rate 2e-5, 3e-5, 5e-5

Warm-up steps 50, 100, 200

L2R (Ren et al., 2018)
Learning rate 2e-5, 3e-5, 5e-5

Meta-learning rate 1e-4, 2e-5, 1e-5

MLC (Zheng, Awadallah, and Dumais, 2021)

Learning rate 2e-5, 3e-5, 5e-5
Meta-learning rate 1e-4, 2e-5, 1e-5
hdim 512, 768
BOND (Liang et al., 2020)

Learning rate 2e-5, 3e-5, 5e-5

T 5000

T 5000

T3 50, 100, 300, 500

Confidence threshold 0.1, 0.3, 0.5, 0.7, 0.8, 0.9

COSINE (Yu et al., 2021)

Learning rate 2e-5, 3e-5, 5e-5
T 5000

T 5000

T3 50, 100, 300, 500
Distance measure cosine
Regularization factor 0.05, 0.1, 0.2

Confidence threshold 0.1, 0.3, 0.5, 0.7, 0.8, 0.9

Table C.6: The search range of the hyperparameters of the five WSL ap-
proaches considered in Chapter 5. For BOND and COSINE, we
set T1 and T; to constant values, because we stop training once
early-stopping is triggered.
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AGNews IMDb Yelp TREC SemEval ChemProt CoNLL-o3 OntoNotes 5.0

FT 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.5
L2R 2.0 1.2 1.5 0.3 0.3 0.4 0.9 1.2
MLC 1.2 0.8 1.2 0.3 0.2 0.5 1.2 1.0
BOND 0.5 0.2 0.5 0.1 0.1 0.2 0.4 1.1
COSINE 0.6 0.2 0.6 0.2 0.2 0.3 0.5 1.5

Table C.7: Running time in hours of each WSL method when trained on a
weakly labeled training set. Since we also track the validation and
test performance during training, the training time reported here
actually overestimates the training time required for each method.

fine-tuning approaches, together with their hyperparameter configu-
rations.

¢ Vanilla fine-tuning (Devlin et al., 2019; Liu et al., 2019) is the
standard fine-tuning approaches for pre-trained language mod-
els. It works by adding a randomly initialized classifier on top
of the pre-trained model and training it together with all other
model parameters. We use a fixed learning rate of 2¢~° in all
experiments.

¢ Adapter-based fine-tuning (Houlsby et al., 2019) adds additional
feed-forward layers called adapters to each layer of the pre-
trained language model. During fine-tuning, we only update the
weights of these adapter layers and keep all other parameters
frozen at their pre-trained values. We use a fixed learning rate of
2¢7 in all experiments. The reduction factor is set to 16.

* BitFit (Zaken, Goldberg, and Ravfogel, 2022) updates only the
bias parameters of every layer and keeps all other weights frozen.
Despite its simplicity it has been demonstrated to achieve similar
results to adapter-based fine-tuning. We use a fixed learning rate
of 1e7* in all experiments.

* LoRA (Hu et al., 2022) is a recently proposed adapter-based fine-
tuning method which uses a low-rank bottleneck architecture in
each of the newly added feed-forward networks. The motivation
here is to perform a low rank update to the model during fine-
tuning. We use a fixed learning rate of 2¢~> in all experiments.
The « value used in LoRa is fixed to 16.

In all experiments, the batch size used in all fine-tuning approaches is

32. The optimizer is AdamW (Loshchilov and Hutter, 2019).

c.4.2 Training on the full validation sets

In addition to training sets, the WRENCH (Zhang et al., 2021c) bench-
mark provides a validation set for each of its tasks. The validation
sets are cleanly annotated and typically range in size from 5% to
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25% of the weakly annotated training sets. Although such validation
size is reasonable for fully supervised learning, we suspect that it is
exorbitant in the sense that it provides a significantly better training
signal for models than the weakly annotated training set. Thus we
compare the performance of recent WSL approaches that access both
the training and validation sets with a model that is directly fine-tuned
on the validation set. The following WSL methods are included in this
experiment: L2R (Ren et al., 2018), MetaWN (Shu et al., 2019), BOND
(Liang et al., 2020), Denoise (Ren et al., 2020), MLC (Zheng, Awadal-
lah, and Dumais, 2021), and COSINE (Yu et al., 2021). Following prior
work, we select the best set of hyperparameters via the validation set
when applying the WSL methods. Also, early-stopping based on the
validation performance is applied. In contrast, the direct fine-tuning
baseline uses a fixed set of hyperparameters across all datasets, and no
early-stopping is applied (same configuration as in Appendix C.4.1).
We train this baseline for 6000 steps. In all cases, the training losses
converged much earlier than 6000 steps, but we deliberately kept
training for longer to show that the good performance achieved by
this baseline is not due to any fine-grained configurations. As shown
in Figure 5.1, this simple baseline outperforms all the WSL methods
in all but one case.

C.4.3 Extended comparison of training on clean data and validation for
WSL approaches

In Section 5.6, standard fine-tuning (FT) and multiple parameter-
efficient fine-tuning (PEFT) are compared with the competitive WSL
method COSINE. In this section, we provide additional plots which
show the same comparison with the other WSL methods examined,
namely L2R, MLC, and BOND. We report average performance (Acc.
and F1 in %) difference between (parameter-efficient) fine-tuning
methods and the specific WSL method for varying number of clean
samples. The overall tendency is consistent with the results in Section
5.6: WSL methods perform well on a small amount of clean labeled
data but PEFT outperforms WSL methods with an increasing amount
of clean labeled data.

C.5 ADDITIONAL BASELINES THAT COMBINE WEAK AND CLEAN
DATA DURING TRAINING

Besides CFT we also explored two simple baselines that combine both
the cleanly and weakly annotated data in training;:

1. WChix: it mixes the clean data into the weakly labeled training
set. We then fine-tune a PLM on this combined dataset.
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2. WCpatch: in each batch, we mix the weakly and cleanly labeled
data at a ratio of 50:50. This makes sure that the model can access
clean samples in each batch.

We compared these two baselines with CFT, the results are shown
in Figure C.3. It can be seen that when the same amount of data is
accessed, CFT outperforms the two baselines in most cases, sometimes
by a large margin.

C.6. ADDITIONAL PLOTS ON CFT WITH DIFFERENT NUMBERS OF
CLEAN SAMPLES

We show further plots of experiments in Section 5.7 with different
numbers of clean samples in Figure C.4. More specifically, it shows the
results for selecting N € {10,20,30,40} clean samples per class from
the clean validation set for classification and N € {100,200, 300,400}
for NER tasks. These results corroborate the analysis presented in
Section 5.7.

C.7 CFT WITH DIFFERENT PLMS AND AGREEMENT RATIOS

We provide additional plots of the experiments mentioned in Section
5.8 on more datasets. Figure C.5 shows the performance of CFT using
different PLMs during training and Figure C.6 shows the performance
when the number of clean samples and the agreement ratio is varied.
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Figure C.1: Performance comparison of parameter-efficient fine-tuning meth-
ods (FT, LoRA, BitFit, and Adapter) with weakly supervised
learning approaches (L2R, MLC, BOND, and COSINE). Evalu-
ated on AGNews, Yelp, IMDb, TREC, SemEval, and ChemProt
using varying amounts of clean data. The subscript "C" (e.g., FT¢)
indicates that the fine-tuning methods are applied to clean data.
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Figure C.2: Performance comparison of parameter-efficient fine-tuning meth-
ods (FI, LoRA, BitFit, and Adapter) with weakly supervised
learning approaches (L2R, MLC, BOND, and COSINE). Evalu-
ated on CoNLL-03 and OntoNotes 5.0 using varying amounts
of clean data. The subscript "C" (e.g., FT¢) indicates that the
fine-tuning methods are applied to clean data.
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Figure C.3: Performance vs. number of clean samples. In most cases, CFT
outperforms the other two baselines, WCp,i, and WChix, by a
considerable margin.
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Figure C.4: Performance difference before and after applying CFT to WSL
methods. For text classification and relation extraction tasks, we
subsample N € {5,10,20,30,40,50} examples from the valida-
tion set. For NER, we subsample N € {50,100,200, 300,400, 500}.
On SemEval, the original validation set is small, and sampling
more than 20 samples per class is not possible. The figure shows
that the performance gap between the simple baseline FTy and
COSINE/L2R becomes much smaller after CFT, suggesting that
we may not require sophisticated WSL methods to achieve good
generalization.
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Figure C.5: Performance curves of different PLMs during training. PLMs

are trained on weak labels and evaluated on both clean and
weakly labeled test sets. Pre-training on larger corpora improves
performance on the clean distribution.
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Figure C.6: Model performance varying the number of clean samples N
and agreement ratio a. Large values of & generally cause a sub-
stantial performance drop. *: Certain combinations of « and N
are not feasible because the validation set lacks samples with
clean and weak labels that coincide or differ.






FEATURE-DEPENDENT NOISE IN MACHINE
TRANSLATION

D.1 MODEL PERFORMANCE WITH VARYING TRAINING SAMPLE
SIZES

In Figure D.1 and Figure D.2, we present the performance for instruction-
tuned baselines and our models on different evaluation directions. For
most directions, using only 32 training samples can achieve competi-
tive performance and beat all three instruction-tuned baselines. There
are several exceptional cases, including en—zh and en—ja, in which
the COMET score of SFT with a limited number of samples (32 or 64)
is worse than 1-shot in-context learning.

While we primarily report the results with Llama-2 7B in our ex-
periments, we hypothesize that state-of-the-art LLMs are largely homo-
geneous in terms of language distribution and inherent translation
capability making our findings applicable to other LLMs. To support
this hypothesis, we conduct fine-tuning experiments with Mistral 7B
and Llama-2 13B using varying data sizes: 32, 1024, and 70K. As
shown in Figure D.3, the general trend is quite similar to the Llama-2
7B case: fine-tuning with 32 examples results in competitive perfor-
mance, matching or surpassing general-purpose instruction-tuned
models. Furthermore, increasing the number of training examples
leads to diminishing returns.

D.2 MODEL PERFORMANCE WITH VARYING TRAINING DIREC-
TIONS

Figure D.4 shows normalized BLEU scores for different combinations
of train and test translation directions. Similar to the COMET scores
in Figure 6.2, we observe that when training the model on a single
direction, its translation ability across other non-targeted directions
is also elicited to a certain degree. It is worth noting that when the
training direction is X—en, the performance on directions en—X is
significantly worse than training on all directions.

D.3 COMBINED EFFECT OF TRAINING SIZE AND DIRECTION

Figure D.7 illustrates the model performance across varying training
sizes and translation directions, evaluated on en—cs, de, zh. Similarly,
Figure D.8 presents the results on en—cs, de, zh, and en—hr. Consis-
tently across all plots, we observe a positive impact on performance

133



134

FEATURE-DEPENDENT NOISE IN MACHINE TRANSLATION

with an increasing number of training directions, particularly with
smaller training sizes.

D.4 MODEL PERFORMANCE WITH UNSEEN LANGUAGES

In Figure D.5, we find similar patterns as the COMET score, where fine-
tuning on unseen languages can elicit the model’s ability to translate
from and to all seen languages. However, the translation performance
on unseen languages themselves remains subpar, suggesting that SFT
primarily reveals the knowledge LLMs have possessed during pre-
training.

D.5 MODEL PERFORMANCE WITH NOISY DATA

Figure D.6 shows the BLEU score of different translation directions
with two noise types. We can find that models are more sensitive
to word-level noise than sentence-level noise. Also, the performance
degradation is more noticeable when injecting noise into the source
translation side. In comparison to the results of size 1024, using 32
training examples still achieves comparable or even better performance
in the noisy condition.

D.66 TECHNICAL DETAILS
D.6.1 Datasets

Our parallel data is derived from the development and test sets of
WMT17 through WMT22. Detailed dataset statistics are available in ta-
ble D.1. For most experiments, we use the test sets from WMT17 to
WMT2o for training. The test set from WMT22 is used specifically for
testing. An exception is noted in Section section 6.3.4, where models
are trained using the en<+ha and en<+is language pairs from WMT21's
development set. Subsequently, these models are evaluated using the
corresponding test sets from WMT21.

D.6.2  Translation instructions

The collection of translation instruction templates used in Chapter 6
can be found in table D.2.
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D.6.3 Evaluation packages

To obtain COMET scores, we use Unbabel/wmt22-comet-da* and for
BLEU scores, we use sacreBLEU? (Post, 2018). The signature from
the sacreBLEU package is nrefs:1, case:mixed, eff:no, tok:13a,
smooth:exp, version:2.0.0 for all language pairs, except for tok-

enization for en—zh and en— jp, where we use tok: zh and tok: jp-mecab,

respectively.

N Training Validation” Test
Direction

WMT17 WMT18 WMTi9g WMT20 WMT21idev WMT21 WMT22

en-cs 3005 2983 1997 1418 o 1002 2037
en-de 3004 2998 1997 1418 0 1002 2037
en-hr 0 0 o o 0 o 1671
en-ja 0 0 o 1000 0 o 2037
en-ru 3001 3000 1997 2002 0 1002 2037
en-zh 2001 3981 1997 1418 o 1002 2037
cs-en 3005 2983 o 664 o 1000 1448
de-en 3004 2998 2000 785 o 1000 1984
ja-en 0 0 o 993 0 1005 2008
ru-en 3001 3000 2000 991 0 1000 2016
zh-en 2001 3981 2000 2000 o 1948 1875
en-ha 0 0 o o 2000 1000 0

ha-en 0 0 o o 2000 997 0

en-is 0 0 o o 2004 1000 0

is-en 0 0 o o 2004 1000 0

de-fr 0 ) 1701 1619 0 ® 1984
fr-de o o 1701 1619 0 @ 2006

Table D.1: Data statistics. “Generally, WMT21 test is used for validation
purposes; exceptions are en<+ha and en<+is, which are used for
testing. ® Although WMT21 includes data for de<fr, these lan-
guage pairs are excluded from experiments.

D.6.4 Hardware specifications and runtime

Our experiments are conducted on a computing node with either 8
NVIDIA A100-40GB GPUs or 8 H100-80GB GPUs. DeepSpeed3 with
zero-stage 1 and mixed precision bfloat16 is used for performing SFT.
Given the limited dataset size, typically fewer than 1024 samples, each
SFT experiment can be completed within a mere 15 minutes using
four H1oo GPUs. However, given the necessity to evaluate the models
across more than ten translation directions, the evaluation process

1 https://github.com/Unbabel/COMET
2 https://github.com/mjpost/sacrebleu
3 https://github.com/microsoft/DeepSpeed
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may require up to four hours when performed on a single A100-40GB
GPU.
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Figure D.1: COMET scores between instruction-tuned baselines and our mod-
els at different training data sizes, evaluated on individual trans-
lation directions. ICL is used for training sizes at or below 3, indi-
cated with "*"; otherwise, we perform SFT. With only 32 examples
for SFT, Llama-2 outperforms general-purpose, instruction-tuned
baselines. Base.: instruction-tuned baseline models.
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Figure D.2: BLEU scores between instruction-tuned baselines and our models
at different training data sizes, evaluated on individual transla-
tion directions. ICL is used for training sizes at or below 3, indi-
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and fine-tuned models with different training data sizes. “In-
struct” refers to the instruction-tuned baselines, specifically
Mistral-7B-Instruct-vo.1 and Llama-2-13b-chat. "32/1024/74623"
represents models fine-tuned on 32, 1024, and 74623 examples,
using pre-trained only models: Mistral-7B-vo.1 and Llama-2-13b.
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Figure D.4: Model performance (%) in BLEU score resulted from varying

combinations of train and test translation directions. The scores
are normalized according to Llama-2 fine-tuned on all 10 training
directions.
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Figure D.5: Model performance evaluated across 15 translation directions.

While models trained on unseen languages (en<+is, en<+ha) ex-
hibit moderate improvements in translating these languages, they
demonstrate accurate translations from and to seen languages.
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Figure D.6: Model performance in BLEU score varying training sizes, direc-

tions, and noise types. Top (Bottom): score averaged across all
en—X (X—en) test directions. Training sizes considered are 32
and 1024.
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Test Direction: en—-cs

Test Direction: en—»de

Test Direction: en—zh

Figure D.7: Model performance (in COMET) on individual directions for
models trained with varying data sizes and directions. Both
factors positively impact performance. +=: training directions
added on top of previous directions; two directions (from and to
English) at a time. For example, “+=ru” covers 10 directions: en

+ {de, zh, cs, jp, ru}.
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Figure D.8: Model performance (in COMET) on individual directions for
models trained with varying data sizes and directions. Both
factors positively impact performance. +=: training directions
added on top of previous directions; two directions (from and to
English) at a time. For example, “+=ru” covers 10 directions: en
< {de, zh, cs, jp, ru}.
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Instruction pool

Please provide the [TGT] translation for the following text

Convert the subsequent sentences from [SRC] into [TGT] :

Render the listed sentences in [TGT] from their original [SRC] form:

Transform the upcoming sentences from [SRC] language to [TGT] language:

Translate the given text from [SRC] to [TGT] :

Turn the following sentences from their [SRC] version to the [TGT] version:

Adapt the upcoming text from [SRC] to [TGT] :

Transpose the next sentences from the [SRC] format to the [TGT] format.

Reinterpret the ensuing text from [SRC] to [[TGT] language.

Modify the forthcoming sentences, converting them from [SRC] to  [TGT] .

What is the meaning of these sentences when translated to |[TGT] ?

In the context of [[TGT] , what do the upcoming text signify? The text is:

How would you express the meaning of the following sentences in |[TGT] ?

What is the significance of the mentioned sentences in |[[TGT] ?

In [ [TGT] , what do the following text convey?

When translated to |[TGT] , what message do these sentences carry?

What is the intended meaning of the ensuing sentences in [TGT] ?

How should the following sentences be comprehended in  [TGT] ?

In terms of [TGT] , what do the next sentences imply?

Kindly furnish the [ [TGT] translation of the subsequent sentences.

Could you supply the [[TGT] translation for the upcoming sentences?

Please offer the [ [TGT] rendition for the following statements.

I'd appreciate it if you could present the [ [TGT] translation for the following
text:

Can you deliver the [TGT] translation for the mentioned sentences?

Please share the [TGT] version of the given sentences.

It would be helpful if you could provide the [TGT] translation of the ensuing
sentences.

Kindly submit the [TGT] interpretation for the next sentences.

Please make available the [[TGT] translation for the listed sentences.

Can you reveal the [TGT] translation of the forthcoming sentences?

Translate from [SRC] to ' [TGT] :

Table D.2: A collection of 31 translation prompts. Each instruction is ran-
domly selected to form a training sample. At inference time, the
first instruction is always selected. The placeholders [SRC] and

[TGT] represent the source and target languages, respectively,

and will be replaced with the appropriate languages depending
on the specific example at hand.






LEVERAGE IMPERFECT DATA IN MACHINE
TRANSLATION

E.1 INCORPORATING MULTIPLE PREFERENCES WITH DISTANCE
INFORMATION

In Section 7.3.2, we demonstrated how the distance information of two
preferences can be integrated into preference modeling, as illustrated
in Equation 7.9. A similar analysis can be done for the Plackett-Luce
ranking model to incorporate distance metrics across multiple prefer-
ences. Specifically, we model the probability of a particular ordering
Xj,- -+, Xy, as follows:

P(X; > Xp--- > Xy)
L-1

= nPi(Xi > X],V] > Z)
i=1

For each distribution P;, let X; = s; +¢; for j > i, with ¢; ~ standard
Gumbel and independent so that (following Train (2003), Section 3)
L e’
Pi(Xi > X],VJ > l) = W

This ranking can be interpreted as a sequence of L — 1 independent
choices: choose the first item, then choose the second among the
remaining alternatives, etc. (Maystre and Grossglauser, 2015). It is
usually assumed that each independent choice is made by the same
judge whose underlying preferences do not change. If we assume
sj = log mg(x, /) for this judge then Equation 7.4 results.

Suppose instead that, rather than a single judge, a succession of
L — 1 different judges each make one of the sequence of independent
choices. The distributions P; should change to reflect the changing
preferences of the judges. In particular, if we introduce the preference
distances ¢’ for the i judge, then we obtain Equation 7.5 if for each
P; the location parameters are set to s; = d!log my(x,y/) for j > i. We
find that this modified version of the Placket-Luce model can work
well in practice although we note that these modifications may violate
Luce’s Choice Axiom (Hamilton, Tawn, and Firth, 2023; Luce, 1959).

Consider the case of L = 3. The Choice Axiom requires the odds
of choosing X, over X3 are independent of the presence of X; as an
option, i.e. that the odds should not depend on whether this is a choice
for the first or the second position

P1<X2 > X‘,j = 1,3) o Pz(Xz > X3)
P(X3>X;,j=1,2) P(X3> Xp)
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With the location parameters from above, the Choice Axiom requires

2\d? 2\d3

mo(x )R o)
mo(x )8 ma(xy)

4

or that 7rp(x, y2)@i—9) = 7y(x,y?)@ %), This holds for the default
setting, d} = 1, leading to Equation 7.4, but appears not to hold in
general.

We find that the ground truth preference values can be introduced
as preference distances in the binary comparison case, but that doing
so in the more general case, while useful, may not satisfy the Axiom
of Choice.

E.2 MORE DETAILS ON MAPLE
E.2.1 Data Construction

The source sentences in the training data of MAPLE are sampled from
the test sets of WMT20 and WMT21. As mentioned in Section 7.4, four
of the five translations are produced by VicunaMT. Considering that
VicunaMT is already a strong MT system, often providing accurate
translations free of mistakes, randomly selecting source sentences
from WMT data could predominantly yield translations that are trivial
for VicunaMT to translate, resulting in the collection of many uninfor-
mative samples with high human preference scores. To mitigate this,
we prioritize source sentences that present difficulties for VicunaMT.
Specifically, we use reference translations as a proxy to assess the qual-
ity of the model translations through COMET scores. We give priority
to samples where the beam search output falls within a COMET score
range of [75,85] and where there is a significant standard deviation in
COMET scores among the four translations. Following these criteria,
we select 1.1K samples for each translation direction. For the devel-
opment set in MAPLE, we use monolingual data from News Crawl
2022. The sampling and selection process are the same as that of the
training set, except that we do not have reference translations, instead,
we use a strong commercial MT system to generate pseudo “reference”
translations.

E.2.2  Scoring Rubric

The annotators are asked to judge the translation on a scale of 1 to
6, following the guidelines outlined in the following scoring rubric.
They can assign scores in increments of 0.2, allowing for more detailed
assessments, such as 1.2, 1.4, and so on.
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Score it a 1 when the translation has nothing to do with the
source; or when the translation has many unknown words; or
when the translation looks like word salad.

Score it a 2 when you can understand why some of the words
in the translation are there, but when the meaning of the source
sentence is lost.

Score it a 3 when you understand why all or almost all the words
in the translation are there and when some of the meaning of
the source sentence are adequately transferred into the target
language, but when the main meaning of the source sentence is
lost.

Score it a 4 when the meaning of the source sentence is generally
preserved, but when the translation is mechanical and possibly
has vocabulary, grammatical, or date / numbering errors.

Score it a 5 when the meaning of the source sentence is fully
preserved and the translation has no grammatical errors, but
when the translation does not sound like the translation a native
target language speaker would produce given the style and
register of the source sentence.

Score it a 6 when the translation is perfect in every sense of the
word — something a professional translator/interpreter would
come up with when she understands well the context in which
the source sentence was produced.

811-en_USru_RU-10391 (nstructions) =3

The program, touted as a way to reduce the cast of a four-year degree, resembles an initiative announced last fall between Westmoreland County

Bad source
Community College and indiana University of Pennsylvania, one of the 14 universities in the State System of Higher Education.

Target

Target 2:

+ Flag "Profanity”

Profanity
Mporpaiia, ZVATIOMS, HATIOMMHALT WHAUAGTHBY, OBLSBNEHNYIO NPOINGH

omm 3 14
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\ oM 13 14

Evaluator - Job running from 2021-10-08 tl 2021-10-12. == Progress: 251/300 (83.66%)

box ONLY IF

+ Flag “Bad Source" when the source s not understandable, word salad, or is not in the expected source language.

+ Youcanuse.

to another and toinput number values. You can use TAB + SHIFT 10 go to the previous score,

Inthis job, you can assign more granularit to your scores. You can, for example, score 32, 3.4, 4.8 efc.
The definitions of the scores are:
Score1: The translation has nothing to do with the sourca or the translation has many unknown words of the translation looks fike word salad.

Score2:

Score 3: You understand why al or almost al the words n the translation are there and some of the

the words in there, ing of the

language, but the the Tost

Scorea:

1 but grammatical, or date / numbering errors.

Scores:

tully d andthe translation has no but the sound a native peaker the style and register of the source

every sense of ‘would come up with when well the context in which was produced.

Figure E.1: User interface of translation assessment.

E.2.3 Annotation Ul

The UI shows the different translations in a blind and randomized
order. All translations are scored simultaneously. A screenshot of the
Ul is shown in Figure E.1.
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Source Other MPs criticised Twitter for allowing the
tweets to remain visible.

Reference trans- A3 f 4ndi® Twitter & A8 & B M 0E .
lation

(Other MPs have also criticized Twitter for failing to
promptly delete tweets in time.)

Best of five AR iR TS AFZIBENATIL.

translation
(Other MPs have criticized Twitter for allowing these
tweets to remain visible.)

Source When he refused, the officials tipped his cart

over, destroying all the eggs, the boy alleged.

Reference trans- H #Z 3, MIEL X B100/ G, PR EF i hie
lation Pty s A dn, AR BT OR B E A .
(The boy said that after he refused to hand over 100
rupees, the officials overturned his car and smashed

all the eggs.)
Best of five ZHfbiEZn, B RAGMGEFIRE BT A
translation &, FHAR.

(When he refused, officials pushed his car over and
broke all the eggs, the boy said.)

Table E.1: Two additional examples showing the reference translations can
be less accurate than the best model prediction.

E.2.4 More Examples
Table E.1 shows two additional examples in which the model’s trans-

lation scores higher than the reference translation. This once again
highlights the presence of noise in parallel datasets.

E.3 MORE IMPLEMENTATION DETAILS
E.3.1 Dataset statistics
The data statistics are presented in Table E.2. We use different valida-

tion sets in different training stages because MAPLE contains a subset
of the parallel data in WMT20/21.

E.3.2 Prompt format

For each source sentence, we attach a MT instruction asking the LLM to
generate the translation. The MT instructions come from a instruction



E3 MORE IMPLEMENTATION DETAILS

Training stage  Data source Number of samples
de—en en—de en—zh zh—en

WMT1y 3004 3004 2001 2001

SFT stage
Training g WMT18 2998 2998 3981 3981
WMT1g9 2000 1997 1997 2000
PL stage MAPLE 1100 1100 1100 1100
Validation SFT stage WMT21 1000 1002 1002 1948
PL stage WMT20 & 21* 500 500 500 500
Test . WMT22 1984 2037 2037 1875
FLORES-200 1012 1012 1012 1012
Preference testing - MAPLE-dev 217 195 208 180

Table E.2: Datasets used for training, validation and testing. *: a subset
WMT20 and WMT21 is used.

pool based on the list of MT instructions released by (Jiao et al., 2023a)*.
We list all 31 instructions in our instruction pool in Table E.3. During
training (in both SFT and PL stages), an instruction is randomly sam-
pled from the instruction pool. During evaluation, the first instruction
from Table E.3 is always used. In addition to instructions, instruction-
tuned models like Vicuna requires specific prompt formats. Table E.4
presents a depiction of the conversion process from raw data points to
the final model input.

E.3.3 Hyper-parameter search

Hyper-parameter search is done for g € [0.0,0.05,0.1], and best values
are selected according to the validation loss.

E.3.4 Ewvaluation packages

We use the Unbabel/wmt22-comet-da model* to compute the COMET
scores and sacreBLEU3 for computing BLEU scores. The signature of
the sacreBLEU package is nrefs:1, case:mixed, eff:no, tok:13a,
smooth:exp, version:2.0.0 for all translation directions but en— zh,
in which we use tok: zh.

E.3.5 Hardware specifications and runtime

All experiments are either run on a host with eight NVIDIA A1o0-
40GB GPUs or with eight H100-80GB GPUs. Mixed precision with

1 https://github.com/wxjiao/ParroT
2 https://github.com/Unbabel/COMET
3 https://github.com/mjpost/sacrebleu
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Instruction pool

Translate the following text from [SRC] to [TGT] :

Please provide the [TGT] translation for the following text

Convert the subsequent sentences from [SRC] into [TGT] :

Render the listed sentences in | [TGT] from their original [SRC] form:

Transform the upcoming sentences from [SRC] language to [TGT]
language:
Translate the given text from [SRC] to [TGT] :

Turn the following sentences from their [SRC] version to the [TGT]
version:

Adapt the upcoming text from [SRC] to [TGT] :

Transpose the next sentences from the [SRC] format to the [TGT]
format.

Reinterpret the ensuing text from [SRC] to [TGT] language.

Modify the forthcoming sentences, converting them from [SRC] to
[TGT] .

What is the meaning of these sentences when translated to [TGT] ?

In the context of [TGT] , what do the upcoming text signify? The text
is:

How would you express the meaning of the following sentences in [TGT] ?

What is the significance of the mentioned sentences in [TGT] ?
In [TGT] , what do the following text convey?

When translated to [TGT] , what message do these sentences carry?

What is the intended meaning of the ensuing sentences in |[TGT] ?

How should the following sentences be comprehended in [TGT] ?

In terms of [[TGT] , what do the next sentences imply?

Kindly furnish the [[TGT] translation of the subsequent sentences.

Could you supply the [TGT] translation for the upcoming sentences?

Please offer the [[TGT] rendition for the following statements.

I'd appreciate it if you could present the [TGT] translation for the
following text:

Can you deliver the [TGT] translation for the mentioned sentences?

Please share the [TGT] version of the given sentences.

It would be helpful if you could provide the [TGT] translation of the
ensuing sentences.

Kindly submit the [TGT] interpretation for the next sentences.

Please make available the [TGT] translation for the listed sentences.

Can you reveal the [TGT] translation of the forthcoming sentences?
Translate from [SRC] to [TGT] :

Table E.3: An instruction pool containing 31 MT prompts. An instruction
is randomly sampled from this pool to form a training sample.

At inference time, the first instruction is always used. [SRC]

and [TGT] will be replaced by the source and target language,
respectively.
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Model Instruction template

Vicuna USER: [MT Instruction] \nASSISTANT:\n

Mistral-Instruct [INST] [MT Instruction] \n[\INST]

BLOOMZ USER: [MT Instruction] \nASSISTANT:\n
Example

USER: Translate the following text from English to German: Hello, world.
\NASSISTANT:\n Hallo, Welt.

Table E.4: (a) Instruction template used for Vicuna, Mistral-Instruct, and
BLOOMZ. Raw template is marked in red . BLOOMZ shares
the same template as Vicuna at the SFT and PL stage. When
performing BLOOMZ on zero-shot tasks, we directly use the first
instruction from Table E.3 without any instruction template. (b)
An example that converts the raw input (marked in green ) to the
final input.

bfloat16 is used in both SFT and PL. Deepspeed* zero-stage 3 is used
when running PL with five preference samples. Each experiment runs
no longer than 15 minutes on H1oo GPUs.

E.4 SFT RESULTS IN BLEU SCORE

We present model performance after SFT stage measured by BLEU
score in Table E.5. While the general trend remains consistent in
comparison to the performance evaluated by COMET, there are some
exceptions. For example, although VicunaMT still achieves the top
average score on FLORES-200, it is outperformed by MistralMT (i.e.,
Mistral + SFT) on WMT22.

E.5 MODEL COMPARISON IN BLEU SCORE

We present model performance measured by BLEU score in Table E.6.
In this case, there is no clear winner. Interestingly, VicunaMT+PL
attains lower BLEU scores than VicunaMT on en—de and zh—en
when evaluated on WMT22. However, both COMET score and our
human evaluation in Table 7.4 show the opposite, highlighting that
BLEU scores may less correlated to human judgement, as also noticed
in (Freitag et al., 2022).

4 https://github.com/microsoft/DeepSpeed
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de—en en—de en—zh zh—en Avg.

WMT22
BLOOM 1.51 0.53 1.74 5.43 2.30
+SFT  23.73 16.15 35.15 21.64 24.17
BLOOMZ 21.59 6.79 28.72 18.54 18.91
+SFT  23.89 16.79 35.41 21.01  24.28
Mistral 4.32 2.65 4.93 7.01 4.73
+SFT  29.39 24.60 31.51 22,09 26.90
Mistral-Ins.  28.04 21.27 21.85 17.77  22.23
+SFT  28.26 24.61 31.90 20.60 26.35
LLaMA-1 6.30 4.00 0.88 3.01 3.55
+SFT 28.28 19.09 25.31 20.27  23.24
Vicuna 26.16 22.11 26.26 13.91  22.11

+SFT  29.26 25.70 29.98 20.61  26.39

FLORES-200
BLOOM 3.88 1.48 7.00 3.75 4.03
+SFT 3185 16.26 34.66 23.78  26.64
Mistral 3.58 1.37 0.16 1.06 1.54

+SFT 4048 29.18 20.43 24.67  30.94
Mistral-Ins.  36.81 25.64 19.81 19.25  25.38
+SFT  39.16 27.79 29.77 23.10  29.96
LLaMA-1 4.08 2.80 1.73 1.60 2.55
+SFT  40.70 20.95 20.21 20.66 27.88
Vicuna 35.07 26.86 26.09 17.53 26.39
+SFT  41.90 30.63 28.52 23.34 31.10

Table E.5: Model performance (in BLEU score) before and after performing
SFT on parallel data. Rows in blue indicate instruction-tuned LLMs.
Best results are in bold. Instruction-tuned LLMs perform well even
without SFT. Raw LLMs benefits the most from SFT. We exclude
BLOOMZ on FLORES-200 as it is a part of BLOOMZ'’s training
data.

E.6 DATA REUSE IN BLEU SCORE AND RESULTS ON FLORES-200

We reuse MAPLE to enhance BLOOMZMT and MistrallnstructMT (i.e.,
BLOOMZ and Mistrallnstruct after the SFT stage) and report model
performance on WMT22 in BLEU score in Table E.7. In addition, we

evaluate MistrallnstructMT on FLORES and present the results in
Table E.8.



E.6 DATA REUSE IN BLEU SCORE AND RESULTS ON FLORES-200

WMT22 FLORES-200

System
de—en en—de en—zh zh—en Avg. de—en en—de en—zh zh—en Avg.

Commercial & LLaMA-2-7B based MT systems
ChatGPT(3 sturbo-0613) 3313 3356 4459 2563 31.62 43.06 4007 4569 2557 36.55

GPT-4(gpt-y-0613) 3372 3484 4275 2633 3441 4379 4181 461 27.39 3977
ALMA-7B(LLaMa-2) 2949 3031 3648 2352 2995 - -2 - - -
BLOOMZ-mt-7B based LLMs
ParroT(LooMZ-mt) 24.90 2050  34.50 2270 25.65 - - o - -
TIMBLOOMZ-mt) 2431 2063 3720 2342 26.39 - - - - -
SWIE@Loomzmy 2595 2183 3688 2333 2700  -© T T
LLaMA-1-7B based LLMs
ParroT (i Lama-1) 27.30 26.10 30.30 2020 25.98  39.40 30.70 29.10 21.30 3238
TIM(LLaMA-1) 27.91 25.02 30.07 19.33 25.58 39.15 29.31 28.43 2230  29.80
SWIE 1 Lama-1) 30.48 27.10 31.08 21.19  27.47  40.20 31.41 29.07 21.59  30.57
VicunaMT 1 1.amA-1) 29.26 25.70 29.98 20.61 26.39 41.90 30.63 28.52 23.34 3110
+ REF 31.12 24.72 30.07 2038 26.58 39.03 29.36 28.87 22.84 30.03
+ BEST 20.44 24.93 30.91 2039 26.16  41.29 29.34 30.07 2348  31.05
+PL 30.63 24.63 31.52 2044 2681 40.07 29.33 30.50 21.99  30.47

Table E.6: Model performance in BLEU scores. Best results with LLaMA-1
based models are in bold. ®: LLaMA-2 based models were not
evaluated due to license constraints. WMT22 results are extracted
from the original paper. *: BLOOMZ-family models use FLORES-
200 for training.

WMT22
de—en en—de en—zh zh—en Avg.

BLOOMZ! 23.89 16.79 35.41 21.01  24.28

+REF 24.51 15.26 33.43 21.80  23.75
+BEST 23.80 16.33 34.99 21.49 24.15
+PL 24.84 16.81 36.48 23.15 25.32
Mistral-Ins.”  28.26 24.61 31.90 20.60 26.35
+REF 30.94 25.62 31.66 21.52  27.44
+BEST 29.76 24.30 31.12 20.83 26.50
+PL 29.32 24.78 33.00 2176  27.47

Table E.7: Model performance on WMT22 in BLEU scores. Best results are in
bold. *: SFT stage has already been applied to these models.
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FLORES-200
de—en en—de en—zh zh—en Avg.

COMET
Mistral-Ins."  88.21 83.73 82.41 84.77  84.78
+REF 88.10 85.04 83.59 84.74  85.37
+BEST 88.41 84.55 83.46 84.94 85.34
+PL 88.56 84.98 83.86 85.34  85.67
BLEU
Mistral-Ins."  39.16 27.79 29.77 23.10  29.96
+REF 38.10 28.39 31.24 23.09  30.21
+BEST 39.35 28.33 30.46 22.98 30.28
+PL 39.80 27.97 31.00 23.44 30.55

Table E.8: Model performance on FLORES-200 in COMET and BLEU scores.
Best results are in bold. ': SFT stage has already been applied to
these models.
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