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ABSTRACT
Three-body interactions have long been conjectured to play a crucial role in the stability of matter. However, rigorous studies have been
scarce due to the computational challenge of evaluating small energy differences in high-dimensional lattice sums. This work provides a
rigorous analysis of Bain-type cuboidal lattice transformations, which connect the face-centered cubic (fcc), mean-centered cubic (mcc),
body-centered cubic (bcc), and axially centered cubic (acc) lattices. Our study incorporates a general (n, m) Lennard-Jones (LJ) two-body
potential and a long-range repulsive Axilrod–Teller–Muto (ATM) three-body potential. The two-body lattice sums and their meromor-
phic continuations are evaluated to full precision using super-exponentially convergent series expansions. Furthermore, we introduce a
novel approach to computing three-body lattice sums by converting the multi-dimensional sum into an integral involving products of
Epstein zeta functions. This enables us to evaluate three-body lattice sums and their meromorphic continuations to machine precision
within minutes on a standard laptop. Using our computational framework, we analyze the stability of cuboidal lattice phases relative to
the close-packed fcc structure along a Bain transformation path for varying ATM coupling strengths. We analytically demonstrate that
the ATM cohesive energy exhibits an extremum at the bcc phase and show numerically that it corresponds to a minimum for repul-
sive three-body forces along the Bain path. Our results indicate that strong repulsive three-body interactions can destabilize the fcc phase
and render bcc energetically favorable for soft LJ potentials. However, even in this scenario, the bcc phase remains susceptible to fur-
ther cuboidal distortions. These results suggest that the stability of the bcc phase is, besides vibrational, temperature, and pressure effects,
strongly influenced by higher than two-body forces. Because of the wrong short-range behavior of the triple–dipole ATM model, the LJ
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potential is limited to exponents n > 9 for the repulsive wall, otherwise one observes distortion into a set of linear chains collapsing to the
origin.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0276677

I. INTRODUCTION
Crystalline solid-to-solid phase transitions are induced by tem-

perature or pressure change and often involve symmetry breaking
away from the original space group of the starting phase along the
minimum energy transition path toward the final crystal phase.1
The special class of martensitic phase transformations is described
by diffusionless transitions induced by lattice strain and a collective
movement of the atoms in the lattice.2–6 Such martensitic transi-
tions are found not only in many important materials such as steel
or oxide ceramics7 but also for some elements in the Periodic Table
such as lithium.8,9 The body-centered cubic (bcc) to face-centered
cubic (fcc) phase transition belongs to the class of martensitic trans-
formations.10 Both the bcc lattice (c/a = 1) and the face-centered
cubic (fcc) lattice (c/a =

√
2) have the body-centered tetragonal

(bct) lattice (crystallographic group #139 or I4/mmm) in common
defined by the lattice constants (a1 = a2 = a and a3 = c and right
angles α1 = α2 = α3 = 90○), as shown in Fig. 1.

Concerning the interactions between the atoms or molecules in
a lattice, the associated infinite lattice sums describing such interac-
tions have a long history in solid-state physics and discrete mathe-
matics.11 They connect lattices to observables such as the equation
of state for a bulk system with inverse power potentials V(r) = r−k

acting between lattice points.12–15 Most notable cases for such inter-
action potentials are the Lennard-Jones (LJ) potential16 (see Ref. 17
for a historical account), which in its most general case is given by

ELJ(r) = ε
nm

n −m
[

1
n
(

re

r
)

n
−

1
m
(

re

r
)

m
], (1)

and the Coulomb potential, leading to the famous Madelung con-
stant being derived as early as 1918 by Madelung.18 In Eq. (1),
re is the equilibrium distance for a diatomic molecule, ε the

FIG. 1. Body-centered tetragonal lattice shown in blue with lattice constants a and
c. For a = c, we have the bcc lattice. The usual fcc unit cell with additional green
atoms is also shown with lattice constants a′ = a

√
2 = c.

corresponding dissociation energy, and we have the condition
n > m > d with d the dimension of the lattice. The application of
the Lennard-Jones and other empirical potentials has been invalu-
able to gain deeper insight into bulk phases and their phase
transitions.17,19–25

In the following, we consider d-dimensional Bravais lattices
Λ = B⊺Zd

= {B⊺ i⃗ ∣ i⃗ ∈ Zd
}, with d = 1, 2, 3, where the generator

matrix B⊺ = (b⃗1, . . . , b⃗d) contains the lattice basis vectors.26 When
evaluating energies or forces in such long-range interacting lattices,
we encounter lattice sums of the form

L = ∑
x⃗ ∈Λ

f (x⃗) = ∑
i⃗ ∈Zd

f (B⊺ i⃗), (2)

where f is a scalar or vector-valued function that decreases suffi-
ciently fast such that the sum is absolutely convergent. An important
special case is given by an inverse power-law potential f (x⃗) = ∣x⃗∣−ν,
where the resulting lattice sum is a special case of the Epstein zeta
function, a generalization of the Riemann zeta function to multidi-
mensional lattice sums27 with many applications in physics.16,28–30

These lattice sums are often slowly convergent and their efficient
and precise computation poses significant challenges. Moreover,
meaning can be given to conditionally convergent or even divergent
series through techniques such as meromorphic continuation.31 The
theory of converting lattice sums, including their meromorphic con-
tinuations, into fast converging series has become a research field on
its own.11

The dominant long-range three-body interaction contribution
comes from the triple–dipole interaction and is described approx-
imately by the Axilrod–Teller–Muto (ATM) potential.32,33 For a
trimer of atoms at positions r⃗1, r⃗2, r⃗3, the ATM potential reads34

E(3)ATM = λ
r2

12r2
13r2

23 + 3(r⃗12 ⋅ r⃗13)(r⃗21 ⋅ r⃗23)(r⃗31 ⋅ r⃗32)

(r12r13r23)
5 . (3)

Here, λ > 0 represents the ATM coupling constant, while r⃗ij = r⃗i − r⃗ j
denotes the relative position vector between distinct atoms i and j
with norm rij = ∣r⃗ij ∣. The coupling strength λ depends on the polar-
izabilities of the interacting atoms, where three-body interactions
can become highly relevant, among others, for the heavier and more
polarizable noble gases. Notably, for solid argon at 0 K, three-body
forces have been shown to contribute ∼8.9% of the total cohesive
energy.35 We should mention, however, that the expansion of the
total interaction energy in terms of many-body interaction contri-
butions in a cluster or bulk system can become problematic when
atoms start to interact strongly.36

The precise simulation of solid–solid phase transitions can be
highly challenging due to the movement of many atoms within
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the simulation cell.7,37 Martensitic transformations are less com-
plex in nature but are nevertheless difficult to predict theoretically
and to measure experimentally.6,38,39 For a general (n, m) LJ two-
body potential, we recently showed by exact lattice summations that
the bcc phase is at an extremum along the cuboidal distortion path
and becomes either energetically unstable or metastable. In addi-
tion, one requires rather soft Lennard-Jones potentials to stabilize
the bcc phase against rhombohedral distortion.19,20,40 This bcc insta-
bility persists into the high-pressure regime for a LJ solid.41 This
result can most likely be generalized to all physically relevant two-
body interactions. Thus, the existence of the bcc phase, known for a
number of elements in the periodic table, likely results from vibra-
tional and temperature effects and/or from dominant higher than
two-body forces. We note that Landau theory predicts that the bcc
phase becomes dominant near the melting line for metals42 and for
other solids.43,44

In this work, we analyze a smooth connection between the
cuboidal body-centered tetragonal (bct) lattices through a marten-
sitic Bain transformation including both general two-body LJ inter-
actions and a three-body ATM potential.45–47 We first write the
lattice Λ along the transition path as a function of a single para-
meter A48,49 and collect the basic properties of the resulting lattice.
We then present efficient methods to evaluate both the arising
two-body and three-body lattice sums to full precision. For the
two-body potential, we re-express the algebraically decaying sum in
terms of a series of super-exponentially decaying sums, which can
be efficiently evaluated. We then present a novel efficient method
for computing general three-body lattice sums, based on integrals
involving zeta functions on multidimensional lattices. Using these
advanced numerical techniques, we offer a rigorous study of the sta-
bility of the bcc phase relative to the fcc phase as a function of the
ATM coupling constant λ. Here, we neglect possible rhombohedral
distortions19,20,50 along the Bain path, which has not been investi-
gated in detail yet beside the work by Ono and Ito,40 as it requires a
different treatment of our lattice sums.

This work is structured as follows: in Sec. II A, we provide
basic definitions for general Bravais lattices; subsequently, we discuss
cuboidal lattices in Sec. II B; we then introduce the Bain transfor-
mation in Sec. II C and discuss the resulting lattice sums for the
cohesive energy, including both two- and three-body contributions
in Sec. II D; we present our novel method for precisely evaluating
three-body lattice sums in Sec. II E; after discussing the optimiza-
tion of the nearest neighbor distance in Sec. II F, we apply our
methods first to a one-dimensional chain in Sec. III A, and subse-
quently to two-dimensional square (SL) and hexagonal lattices (HL)
in Sec. III B; we study three-dimensional lattices along the Bain path
in Sec. III C and discuss qualitatively new physical behavior caused
by the inclusion of the three-body ATM potential; and finally, we
draw our conclusions and provide an outlook in Sec. IV.

II. THEORY
A. General lattice properties

We begin our treatment by defining lattices and important
associated quantities. We call a point set Λ ⊆ Rd a (Bravais) lattice,
if Λ = B⊺Zd

= {i⃗⊺B = B⊺ i⃗ ∣ i⃗ ∈ Zd
} for some nonsingular matrix

B ∈ Rd×d. The matrix B = (b⃗ 1, . . . , b⃗ d)
⊺, called the generator matrix,

contains the set of linearly independent lattice basis vectors b⃗⊺i as
its rows. Lattices exhibit discrete translational invariance, meaning
that Λ + x⃗ = Λ for any x⃗ ∈ Λ. The Gram matrix G is defined in terms
of the generator matrix as G = BB⊺ and appears in the computation
of lattice vector norms. We further define the elementary lattice cell
B⊺(− 1

2 , 1
2)

d. The lattice volume is defined by VΛ = ∣det B∣ =
√

det G.
An important lattice quantity is the minimum or nearest-neighbor
distance RΛ with

RΛ = min{∣x⃗ − y⃗∣ ∣ x⃗, y⃗ ∈ Λ, x⃗ ≠ y⃗} = min
x⃗ ∈Λ/{0}

∣x⃗∣ (4)

due to translational invariance of the lattice, where ∣x⃗∣ denotes the
Euclidean distance. In terms of the Gram matrix this is equivalent to

RΛ = min
i⃗ ∈Zd
/{0}

√

i⃗⊺Gi⃗. (5)

The packing density ΔΛ describes the ratio between the volume
of particles with radius ρ and the volume of the elementary lattice
cell,

ΔΛ =
πd/2

Γ(d/2 + 1)
ρd

VΛ
, (6)

with the gamma function Γ. For dense hard sphere packings, we have
ρ = RΛ/2. Finally, the kissing number for dense hard sphere packings
is defined as the number of nearest neighbors of an arbitrary lattice
point,

kiss(Λ) = #{v⃗ ∈ Λ ∣ ∣v⃗∣ = RΛ}. (7)

B. Properties of cuboidal lattices
In case of the three-dimensional cuboidal lattices, we start from

the work of Conway and Sloane (Ref. 51, Sec. 3) and consider the
lattice generated by the vectors (±u,±v, 0)⊺ and(0,±v,±v)⊺, where
u and v are non-zero real numbers. We now use the lattice basis vec-
tors b⃗⊺1 = (u, v, 0), b⃗⊺2 = (u, 0, v), b⃗⊺3 = (0, v, v), where u and v are
non-zero real numbers. Let A = u2

/v2. The generator matrix B⊺ and
the Gram matrix G are

B⊺ = (b⃗1 b⃗2 b⃗3) = v
⎛
⎜
⎜
⎝

√
A
√

A 0
1 0 1
0 1 1

⎞
⎟
⎟
⎠

,

G = B B⊺ = v2
⎛
⎜
⎜
⎝

A + 1 A 1
A A + 1 1
1 1 2

⎞
⎟
⎟
⎠

.

(8)

The determinant of the generator matrix reads det B = −2v3√A and
thus VΛ = 2∣v3

∣
√

A.
Different lattice phases are obtained depending on the choice

of the argument A. These are, in decreasing numerical order, as
follows.

(i) A = 1: the face-centered cubic (fcc) lattice,
(ii) A = 1/

√
2: the mean centered-cuboidal (mcc) lattice,

(iii) A = 1/2: the body-centered cubic (bcc) lattice, and
(iv) A = 1/3: the axial centered-cuboidal (acc) lattice.
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The resulting Gram matrices for the fcc and bcc lattices are
identical to the ones shown in our previous work on lattice sums,26

whereas the mcc and acc lattices occur in Refs. 51 and 52. A more
detailed description of these cubic lattices and their transformations
can be found in Refs. 48 and 49. The mcc lattice is the densest isodual
lattice in three-dimensional space, but in addition to being of theo-
retical interest, has not been observed in nature so far. However, this
lattice is expected to play a role in the dynamics of the cuboidal fcc
to bcc transition, as we investigate in detail in this work.

Inserting either the generator matrix or the Gram matrix in
Eq. (5) yields the nearest neighbor distance as a function of A,

RΛ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2v
√

A, 0 < A < 1/3,

v
√

A + 1, 1/3 ≤ A ≤ 1,

v
√

2, A > 1.

(9)

From Eq. (6) then follows the packing density ΔΛ for dense sphere
packings,

ΔΛ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(2π/3)A, 0 < A < 1/3,

(π/12)
√

(A + 1)3
/A, 1/3 ≤ A ≤ 1,

(π/6)
√

2/A, A > 1,

(10)

which is displayed in Fig. 2. On the interval 1/3 ≤ A ≤ 1, which
includes the acc, bcc, mcc, and fcc phases, the packing density has
a maximum of π

√
2/6 ≈ 0.74 at A = 1 corresponding to fcc and a

minimum of π
√

3/8 ≈ 0.68 at A = 1/2 corresponding to bcc. The acc
lattice has a rather large packing density of Δacc =

2π
9 ≈ 0.698, but is

the least dense packing with kissing number 10.53,54 However, it is
most likely strictly jammed according to the definition by Torquato
and Stillinger.55 It consists of linear chains of touching spheres sur-
rounded by four neighboring linear chain arranged within a bct cell.
It is the starting point of separated linear chain formation within
region I (A ≤ 1

3).

FIG. 2. Graph of the packing density ΔΛ vs A. The regions I, II, and III, divided by
the solid black lines, correspond to the different kissing numbers. Explicit formulas
are given in Table I. The location of the fcc, mcc, bcc, and acc lattices are indicated
by the black solid and dashed lines.

Finally, Eq. (7) yields the kissing number for dense sphere
packings,

kiss(Λ) = #{v⃗ ∈ Λ ∣ ∣v⃗∣ = RΛ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, A < 1/3,

10, A = 1/3 (acc),

8, 1/3 < A < 1,

12 A = 1 (fcc),

4, A > 1.

(11)

The limiting case A→∞ corresponds to infinitely separated two-
dimensional square lattice layers with kissing number 4, while in the
other extreme case, the limit A→ 0, we obtain infinitely dense 1D
chains with kissing number 2 repeated on a two-dimensional grid,
e.g., see Ref. 56.

Figure 2 shows a graph of the packing density as a function of
the parameter A. Further information is recorded in Table I.

The cuboidal lattices belong to the body-centered tetragonal
lattices (bct) usually defined by the two lattice constants a and c, as
shown in Fig. 1. We can easily transform our two parameter space
(u, v) used by Conway in terms of (RΛ, A) used here and (a, c) used
for bct lattices in the interval 1/3 ≤ A ≤ 1 by

(u, v) =
⎛

⎝
RΛ

√
A

A + 1
,

RΛ
√

A + 1
⎞

⎠

and

(RΛ, A) = (
a
2

√

2 + γ2,
1
2

γ2
) (12)

for the range 1/3 ≤ A ≤ 1 (region II) and γ = c/a. For example, if
we use for the bct lattice shown in Fig. 1 the lattice constants a and
γ =
√

2, we get A = 1 (fcc) and RΛ = a, which is the distance from the
origin of the lattice to the nearest face-centered point, while for γ = 1,
we get A = 1

2 (bcc) and RΛ = a
√

3
2 , which is the distance from the

origin to the nearest body-centered (bc) point, i.e., RΛ = Rbc. From
Eq. (12), we see that for A < 1

2 , we have γ < 1, which implies c < a.
For A ≥ 1 (region III), we have RΛ = a, the distance between nearest
neighbors in the base layer. For A < 1

3 , we enter region I for which we

get γ <
√

2
3 and, therefore, c < Rbc. Using the two lattice parameters

(RΛ, A) has the advantage that RΛ ∈ a[
√

3
2 , 1] in region II varies only

slowly, and the Bain transformation introduced in Subsection II C is
mostly described by one single dimensionless lattice parameter A.

TABLE I. Kissing number kiss(Λ) and packing density ΔΛ for the lattice defined in
Eq. (8). The values in the table depend only on A and are independent of v.

Region A kiss(Λ) ΔΛ

I (0, 1
3) 2 2πA

3
acc 1

3 10 2π
9

II ( 1
3 , 1) 8 π

12

√
(A+1)3

A

fcc 1 12 π
√

2
6

III (1,∞) 4 π
6

√
2
A
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C. The Bain transformation
The Bain transformation is a diffusionless smooth transforma-

tion from bcc to fcc and vice versa. If we start conveniently from the
fcc generator matrix, we find a smooth transformation in terms of a
diagonal matrix,

B̃⊺(A) = c(A)TBain(A)B̃⊺fcc = c(A)
1
√

2

⎛
⎜
⎜
⎝

√
A
√

A 0
1 0 1
0 1 1

⎞
⎟
⎟
⎠

, (13)

with B̃(A) = B(A)/R(A) and B̃fcc = B̃(1). The diagonal Bain matrix
reads

TBain(A) =
⎛
⎜
⎜
⎝

√
A 0 0

0 1 0
0 0 1

⎞
⎟
⎟
⎠

, (14)

and the prefactor c(A) is given by

c(A) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1/
√

2A, 0 < A < 1/3,
√

2/(A + 1), 1/3 ≤ A ≤ 1,

1, A > 1.

(15)

In the particularly relevant range 1/3 ≤ A ≤ 1, the rescaled generator
matrix takes the form

B̃⊺(A) =
1

√
A + 1

⎛
⎜
⎜
⎝

√
A
√

A 0
1 0 1
0 1 1

⎞
⎟
⎟
⎠

. (16)

In later sections, we will extend the above-mentioned definition of
B̃⊺(A) in Eq. (16) to the whole range 0 < A ≤ 1, where the nearest-
neighbor distance for A ≥ 1/3 is given by the lattice constant a
(see Fig. 1) and to the distance between the origin and the body-
centered atom for 0 < A < 1

3 . As always, the Bain transformation
matrix depends on the particular choice of lattice basis vectors.

D. Cohesive energies from a Lennard-Jones potential
coupled to a three-body Axilrod–Teller–Muto term

Using translational invariance of the lattice, the static cohesive
energy for a lattice can be expressed in terms of a many-body per-
turbative expansion of the interaction energy from a chosen atom at
the origin,

Ecoh =
∞

∑
k=2

E(k)coh =
1
2∑i∈N

E(2)(r⃗0i) +
1
3∑i,j∈N

j>i

E(3)(r⃗0i, r⃗0j , r⃗ij) + h.o.t,

(17)
with r⃗ij = r⃗i − r⃗ j , rij = ∣r⃗ij ∣, N = {1, 2, 3, ⋅ ⋅ ⋅ } being the set of natural
numbers, and i = 0 denotes the index of the atom at the chosen ori-
gin in the solid. The perturbative expansion is formally exact for
finite clusters, but is often slowly convergent, or perhaps even diver-
gent as suggested by Heine et al.,57 especially for metallic systems.36

In this work, we focus our studies on the two- and three-body inter-
actions, neglecting vibrational and temperature effects, as well as
higher order terms (h.o.t.), such as four-body interactions. In the
following, we adopt dimensionless units, writing length scales in
units of the equilibrium distance re of the LJ potential, and energies
in units of the LJ dissociation energy ε.

The dimensionless two-body potential in (17) then takes the
form,

E(2)LJ (r⃗) =
nm

n −m
(

1
n
∣r⃗ ∣−n

−
1
m
∣r⃗ ∣−m

), (18)

with n > m > 3. The resulting cohesive energy can be written in
terms of the Epstein zeta function, a generalization of the Rie-
mann zeta function to higher-dimensional lattices. For a lattice Λ,
an interaction exponent ν > d, and a wavevector k⃗, it reads27

ZΛ,ν(k⃗) = ∑
x⃗ ∈Λ

′ e−2πix⃗ ⋅k⃗

∣x⃗∣ν
, (19)

where the lattice sum can be meromorphically continued to ν ∈ C.
For the LJ lattice sum, the Epstein zeta function is evaluated at k⃗ = 0
only, where we omit the argument ZΛ,ν = ZΛ,ν(0) to simplify the
notation. General wavevectors will, however, become crucial in the
evaluation of three-body lattice sums. The two-body term in the
cohesive energy for a LJ potential can then be rewritten as

E(2)coh =
nm

2(n −m) ∑x⃗ ∈Λ̃

′
(
∣x⃗∣−n

nRn −
∣x⃗∣−m

mRm )

=
nm

2(n −m)
(

ZΛ̃,n

nRn −
ZΛ̃,m

mRm ), (20)

where we use the normalized lattice Λ̃ = Λ/R. This normalization
is useful, as the distance R (e.g., the nearest neighbor distance) will
become a tuning parameter depending along the Bain path on the
exponents n and m and on the parameter A as specified in the next
sections. It also shows more clearly the link to the LJ potential (18)
for a diatomic.

Different computationally efficient methods for evaluating the
Epstein zeta function exist. In Appendix E, we evaluate the arising
sums for particular lattices Λ̃(A) = B̃⊺(A)Z3 using Bessel func-
tion expansions in Eq. (E38) or Eq. (E39), with the more common
notation,

L(A, n/2) = ZΛ̃(A),n. (21)

As an alternative, for general d-dimensional lattice sums includ-
ing oscillatory factors and lattice shifts, the recently created high-
performance library EpsteinLib (github.com/epsteinlib) can be
used.58 Both approaches allow computing the two-body term to
machine precision.

In a similar way, we express the three-body Axilrod–
Teller–Muto (ATM) potential in Eq. (3) in dimensionless units. As
the ATM potential only depends on relative distance vectors, we
can set x⃗ = r⃗0i, y⃗ = r⃗0j , and z⃗ = r⃗ij = y⃗ − x⃗, yielding the potential as
a function of two vectors only,

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-5

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp
http://github.com/epsteinlib


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

E(3)ATM(x⃗, y⃗) = λ (
1

∣x⃗∣3∣y⃗∣3∣z⃗∣3
− 3
(x⃗ ⋅ y⃗)(y⃗ ⋅ z⃗)(z⃗ ⋅ x⃗)
∣x⃗∣5∣y⃗∣5∣z⃗∣5

)∣

z⃗=y⃗−x⃗
, (22)

where the minus sign on the right-hand side arises due to r⃗ ji = −r⃗ij .
The cohesive energy contribution due to the three-body interactions
is given by the lattice sum,

E(3)coh =
1
6 ∑x⃗ ,y⃗ ∈Λ

′E(3)ATM(x⃗, y⃗), (23)

where the prefactor 1/6 avoids double counting and where the
primed sum excludes the undefined cases x⃗ = 0, y⃗ = 0, and x⃗ = y⃗. We
now normalize the lattice, setting Λ̃ = Λ/R and subsequently split the
three-body lattice sum into a radially isotropic and an anisotropic
part,

E(3)coh = λ f (3)cohR−9
= λ( f (3)r + f (3)a )R

−9, (24)

with the normalized lattice sums,

f (3)coh = f (3)r + f (3)a ,

f (3)r =
1
6 ∑x⃗ ,y⃗ ∈Λ̃

′ 1
∣x⃗∣3∣y⃗∣3∣z⃗∣3

,

f (3)a = −
1
2 ∑x⃗ ,y⃗ ∈Λ̃

′ (x⃗ ⋅ y⃗)(y⃗ ⋅ z⃗)(z⃗ ⋅ x⃗)
∣x⃗∣5∣y⃗∣5∣z⃗∣5

,

(25)

where we adopt the convention z⃗ = y⃗ − x⃗ from now on. For simplic-
ity, we leave away the tilde in the following, assuming that the lattices
have been appropriately normalized. The above-mentioned form for
the three-body lattice form makes it immediately clear that the ATM
potential becomes attractive in one dimension, as then fa = −3 fr and
hence E(3)coh = −2λ frR−9

< 0.

E. Efficient computation of the ATM cohesive energy
The efficient computation of three-body lattice sums has been

an important open problem, which we solve in this work. In the past,
elaborate direct summation methods have been used,35,59–63 where,
however, a single evaluation in three dimensions can demand up
to four weeks of single core central processing unit (CPU) time.
In this section, we briefly show how general three-body interac-
tions, including the ATM potential, can be computed from singular
integrals that involve products of Epstein zeta functions. A deeper
discussion, including a rigorous proof as well as numerical bench-
marks, is provided in Ref. 30. For a lattice Λ = B⊺Zd with B ∈ Rd×d

nonsingular, we consider general lattice sums of the form

ζ(3)Λ (ν⃗) = ∑
x⃗ ,y⃗ ∈Λ

′
∣x⃗∣−ν1 ∣y⃗∣−ν2 ∣y⃗ − x⃗∣−ν3 , (26)

with ν⃗ = (ν1, ν2, ν3)
T , and its meromorphic continuations to νi ∈

C (see Appendix H for details), which we call three-body zeta
functions. One can show that the above-mentioned double sum con-
verges absolutely and independently of the summation order if and
only if the conditions νi + νj > d for i ≠ j, and ν1 + ν2 + ν3 > 2d hold.

We note in passing that this lattice sum can be extended to the more
general n-body zeta function, which will be addressed in our future
work.

We first show that the normalized ATM cohesive energy in
Eq. (25) can be written as a finite recombination of the above-
mentioned zeta functions. The radially symmetric term f (3)r is
already in the desired form with

f (3)r =
1
6

ζ(3)Λ (3, 3, 3). (27)

For the anisotropic part f (3)a , we note that the vector products can
be rewritten as

2x⃗ ⋅ y⃗ = ∣x⃗∣2 + ∣y⃗∣2 − ∣z⃗∣2,

2y⃗ ⋅ z⃗ = ∣y⃗∣2 + ∣z⃗∣2 − ∣x⃗∣2,

2z⃗ ⋅ x⃗ = −(∣z⃗∣2 + ∣x⃗∣2 − ∣y⃗∣2).

(28)

As the above-mentioned lattice sums remain unchanged under
permutation of x⃗, y⃗, and z⃗, we find

f (3)a = −
1
2 ∑x⃗ ,y⃗ ∈Λ

′ (x⃗ ⋅ y⃗)(y⃗ ⋅ z⃗)(z⃗ ⋅ x⃗)
∣x⃗∣5∣y⃗∣5∣z⃗∣5

= −
1

16 ∑x⃗ ,y⃗ ∈Λ

′
(3

∣x⃗∣
∣y⃗∣5∣z⃗∣5

− 6
1

∣x⃗∣∣y⃗∣3∣z⃗∣5
+ 2

1
∣x⃗∣3∣y⃗∣3∣z⃗∣3

).

Rewriting the above-mentioned right-hand side in terms of three-
body zeta functions yields

f (3)a = −
1

16
(3ζ(3)Λ (−1, 5, 5) − 6ζ(3)Λ (1, 3, 5) + 2ζ(3)Λ (3, 3, 3)). (29)

Recombining f (3)r and f (3)a finally yields the ATM cohesive energy
in terms of three-body zeta functions,

f (3)coh =
1

24
ζ(3)Λ (3, 3, 3) −

3
16

ζ(3)Λ (−1, 5, 5) +
3
8

ζ(3)Λ (1, 3, 5). (30)

The three-body zeta function can now be recast as an integral
over products of Epstein zeta functions. Recall that for a wavevector
k⃗ ∈ Rd, the Epstein zeta function reads

ZΛ,ν(k⃗) = ∑
x⃗ ∈Λ

′ e−2πik⃗ ⋅x⃗

∣x⃗∣ν
, ν > d,

which can be meromorphically continued to ν ∈ C. For an extensive
discussion of the analytical properties of the Epstein zeta function,
see Ref. 58. Using the properties of the Epstein zeta function, one
can now show that for any νi > 0, i = 1, . . . , 3,

ζ(3)Λ (ν⃗) = VΛ∫
E∗

ZΛ,ν1(k⃗)ZΛ,ν2(k⃗)ZΛ,ν3(k⃗) dk⃗, (31)

where VΛ denotes the volume of the elementary lattice cell and
E∗ = B−1

(−1/2, 1/2)d defines the unit cell of the reciprocal lattice
Λ∗ = B−1Zd centered around the Γ-point. The proof of this formula
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is based on exchanging summation and integration for sufficiently
large νi and then applying the relation,

VΛ∫
E∗

e−2πik⃗ ⋅x⃗ dk⃗ = δx⃗,0⃗,

with δ being the Kronecker delta. A mathematically rigorous proof
as well as details on the numerical computation of the integral will
be provided elsewhere.

Special care needs to be taken in evaluating the resulting inte-
gral, as the Epstein zeta function exhibits a singularity at k⃗ = 0. We
can separate the Epstein zeta function into an analytic function and
a singularity as follows:

ZΛ,ν(k⃗) = Zreg
Λ,ν(k⃗) +

1
VΛ

ŝν(k⃗), (32)

where the regularized Epstein zeta function Zreg
Λ,ν(k⃗) is analytic in

the reciprocal unit cell. The function ŝν(k⃗) can be understood as the
Fourier transform of ∣z⃗∣−ν (in the distributional sense). It is defined
as

ŝν(k⃗) =
πν−d/2

Γ(ν/2)
Γ((d − ν)/2)∣k⃗∣ν−d, ν ∉ (d + 2N).

In case that ν = d + 2n, n ∈ N, the Fourier transform is only uniquely
defined up to a polynomial of degree 2n. We adopt the choice,

ŝd+2n(k⃗) =
πn+d/2

Γ(n + d/2)
(−1)n+1

n!
(πk⃗ 2
)

n log (πk⃗ 2
).

Hence, the Epstein zeta function equals the sum of an analytic
function and a power-law or logarithmic singularity. Therefore,
the integral can be efficiently computed using either a special-
ized Gauss–Legendre quadrature or a Duffy transformation.64 Our
results are benchmarked against a direct summation approach, pre-
sented in Appendix C, where we reach full precision in one and two
dimensions, where the direct sum can still be evaluated to machine
precision.

F. Minimizing the cohesive energy
In order to analyze the impact of a long-range three-body ATM

potential on the stability of lattices with two-body LJ interactions, we
need to determine the optimal nearest neighbor distance R > 0 that
minimizes the cohesive energy,

Ecoh = cn,m(
ZΛ,n

nRn −
ZΛ,m

mRm ) + λ f (3)cohR−9, (33)

with n > m and

cn,m =
nm

2(n −m)

for a given lattice Λ with distance R. The resulting global minimiza-
tion problem can be easily solved numerically using standard tools.
It is, however, instructive to discuss particular special cases some of
which allow for an analytic solution. Here, we distinguish the cases

where the repulsive part of the LJ potential dominates the three-body
potential for small nearest neighbor distances or not.

1. n > 9: after setting ∂Ecoh/∂R = 0, this case reduces to solving
the following root finding problem:

cn,m(ZΛ,n − ZΛ,mRn−m
) + 9λ f (3)cohRn−9

= 0. (34)

For the special case n = 9 + k and m = 9 − k, the energy
minimum can be determined analytically as

Rmin(n, m, λ) =
⎛
⎜
⎜
⎝

9λ f (3)coh
2cn,mZΛ,m

+

¿
Á
Á
ÁÀ
⎛

⎝

9λ f (3)coh
2cn,mZΛ,m

⎞

⎠

2

+
ZΛ,n

ZΛ,m

⎞
⎟
⎟
⎠

1/(n−9)

.

(35)

The often used (12,6) LJ potential with k = 3 belongs to
this class.

2. n = 9: in this special case, we find from Eq. (34) that

Rmin(n, m, λ) =
⎛

⎝

ZΛ,n

ZΛ,m
+

9λ f (3)coh
cn,mZΛ,m

⎞

⎠

1/(9−m)

. (36)

In case of attractive three-body interactions ( f (3)coh < 0), the
minimum only exists for sufficiently small ATM coupling
strength λ with

λ ≤
cn,mZΛ,n

9∣ f (3)coh ∣
. (37)

3. n < 9: this case requires special care. The ATM potential dom-
inates the LJ term for small R. For attractive three-body inter-
actions, this means that the global minimum of the energy is
obtained for R→ 0, leading to a collapse of the lattice into the
origin. Local energy minima can, however, exist for R > 0. For
the special case n = 9 − k, m = 9 − 2k, we find extrema at

R =
⎛
⎜
⎝

ZΛ,n

2ZΛ,m
±

¿
Á
ÁÀ
(

ZΛ,n

2ZΛ,m
)

2
+

9λ f (3)coh
cn,mZΛ,m

⎞
⎟
⎠

1/(9−n)

. (38)

For attractive three-body interactions, a local minimum exists
under the condition,

λ ≤ cn,m
Z2

Λ,n

36ZΛ,m∣ f
(3)
coh ∣

. (39)

In the following, we introduce instructive toy models in one
and two dimensions where R is chosen to be the nearest neighbor
distance. We then analyze the influence of three-body interactions
on the stability of cuboidal phases along a Bain path in three dimen-
sions, where we choose R as the distance from the atom at the origin
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to the body-centered atom, which is the nearest neighbor distance in
region I ( 1

3 ≤ A ≤ 1, see Fig. 2).

III. RESULTS AND DISCUSSION
A. LJ + ATM potential for an equidistant infinite linear
chain

We begin our investigation with the effect of a three-body ATM
potential coupled to a two-body LJ-potential in one dimension for
an equidistant linear chain. The cohesive energy for the chain with
nearest neighbor distance R and normalized lattice Λ = Z becomes

Ecoh(R, n, m) = E(2)coh(R, n, m) + E(3)coh(R, n, m)

= cn,m(
2ζ(n)
nRn −

2ζ(m)
mRm ) + λ f (3)cohR−9, (40)

where we have used that the Epstein zeta function in 1D reduces to
twice the Riemann zeta function, ZZ,n = 2ζ(n). In this 1D case, the
simple pole is situated at n = 1 and ZZ,n → 2 for n→∞ as each atom
has two nearest neighbors. The three-body ATM potential in 1D is
purely attractive, which follows directly from Eq. (25),

f (3)coh = f (3)r + f (3)a =
1
6 ∑x,y∈Z

′ 1
∣x∣3∣y∣3∣z∣3

−
1
2 ∑x,y∈Z

′ (xy)(yz)(zx)
∣x∣5∣y∣5∣z∣5

= −
1
3

f (3)r < 0. (41)

The attractive behavior of the ATM potential for three atoms in a
line has been discussed already by Axilrod and Teller32 and will have
important consequences in the following.

In one dimension, the three-body cohesive energy can still
be evaluated to machine precision using exact summation. We
obtain f (3)coh = −0.272 301 849 507 688 6, which is in excellent agree-
ment with the result from the Epstein zeta function treatment
( f (3)coh = −0.272 301 849 507 688 65), as outlined in Sec. II E. This
serves as a benchmark for higher dimensional lattices, where exact
summation becomes exceedingly numerically expensive.

We now discuss the optimal nearest-neighbor distance
Rmin(n, m, λ) as obtained in the previous Sec. II F for different
repulsive LJ exponents n.

1. n > 9: in this regime, the repulsive part of the LJ poten-
tial dominates the attractive ATM term. The solution
to the root finding problem in Eq. (34) can be obtained
numerically, with analytical solutions available for spe-
cial cases, such as the (12,6)-LJ potential in Eq. (35).
We obtain Rmin(12, 6, 0.0) = 0.997 179 263 885 806, Rmin
(12, 6, 1.0) = 0.964 148 870 884 975, Rmin(12, 6, 3.0) = 0.902
526 982 458 744, and Rmin(12, 6, 5.0) = 0.847 847 116 323 818.

As expected, the nearest-neighbor distance decreases
with increasing coupling strength λ due to the increasing ATM
attraction.

2. n = 9: here, the repulsive part of the LJ potential and the attrac-
tive ATM potential share the same scaling and their prefactors

determine the dominant term. The value of R that minimizes
the energy is given by Eq. (36) as long as λ obeys the bound,

λ ≤
mζ(9)

∣(m − 9) f (3)coh ∣
. (42)

If this critical value of λ is exceeded, then the energy diverges
to −∞ for R→ 0 and the chain collapses into the origin.

For example, for the (9,6)-LJ potential, we get
λ ≤ 7.359 541 586 938 727. At larger coupling strengths,
the minimum vanishes and the interaction becomes purely
attractive and collapse occurs, i.e., R→ 0. This has conse-
quences for 2D or 3D lattices as under this model, the crystal
may distort into a set of linear chains, as we shall see later on.

3. n < 9: here, the attractive ATM potential dominates at small
distances R and the global minimum is obtained for R→ 0.
Local minima can, however, exist for R > 0, as described in
Sec. II, with analytic solutions available for n = 9 − k and
m = 9 − 2k. A minimum then exists for sufficiently small λ
as described by Eq. (39). For example, for m = 4 (k = 5

2) and
n = 13

2 , we obtain λ < 1.003 897 458 750 910, which is a rather
small value. We find that by lowering the exponent for the
repulsive force in the LJ potential, the existence of a minimum
for the cohesive energy is achieved at lower critical values of
the coupling strength λ.

Figure 3 summarizes our results for cases 1 and 3 for two differ-
ent LJ potentials. When the two-body potential is of (12,6)-LJ type,
the repulsive LJ term dominates at short distances over the ATM
term in the cohesive energy. On the other hand, for a softer two-body
potential with exponent n < 9, as for the (6,4)-LJ potential, the ATM
potential completely dominates over the repulsive part of the LJ term
for λ > 0.9 making the total cohesive energy behave like −R−9 with a
singularity at R = 0. When λ ≤ 0.689, there is a competition between
the attractive and repulsive parts of the cohesive energy, leading to a
maximum in the short-range region that makes the cohesive energy
slightly positive, followed by a divergence toward −∞ due to the
dominance of the attractive three-body term. It is well-known that
the simple ATM term is valid only in the long-range65 and one has to
correct the unphysical behavior of the three-body term in the short
range in order to avoid the collapse of all atoms toward the origin.
On the other hand, one should make sure that the repulsive wall in
the two-body potential is described realistically.

B. LJ + ATM potential for a square and hexagonal
lattice

After analyzing the one-dimensional chain, we extend our
focus to two-dimensional lattices. Among the five possible Bravais
lattices, we restrict ourselves to the case of a square (SL) and hexag-
onal lattice (HL) with a nearest-neighbor distance R, as shown in
Fig. 4, and to the rectangular lattices as a mode to distort the square
lattice into a set of linear chains. The hexagonal lattice is the densest
packing of circles in a two-dimensional plane.

The two- and three-body terms of the cohesive energy for a
square lattice Λ = Z2 are given by Eq. (33). Note that the Epstein
zeta function for the square lattice appearing in the LJ term can be
rewritten in terms of elementary functions,66
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FIG. 3. Cohesive energy of a linear chain with atoms interacting through (a) (12,6)-LJ coupled to an ATM potential and (b) (6,4)-LJ coupled to an ATM potential. Separate
two- and three-body contributions are also indicated by the dashed and dotted lines, respectively.

ZZ2 ,n = 4ζ(
n
2
)β(

n
2
), (43)

where β denotes the Dirichlet beta function.
The three-body term of the cohesive energy is given by Eq. (25).

After an evaluation of the lattice sums through direct summation
restricting the sums over integers to Nmax = 1600, the ATM term in
the cohesive energy of the square lattice can be written as

E(3)coh = λ f (3)cohR−9, (44)

with f (3)coh = f (3)r + f (3)a = 0.770 093 650 517 104 54 where f (3)r

= 2.275 482 285 892 362 5 and f (3)a = −1.505 388 635 375 258 4; see
Eq. (25). This compares well to the more accurate result from
the Epstein zeta treatment as outlined in Sec. II E, i.e., we get
f (3)coh = 0.770 093 650 516 716 2 with f (3)r = 2.275 482 285 893 09 and
f (3)a = −1.505 388 635 376 373 7. The three-body contribution from
an ATM potential to the cohesive energy is now repulsive for any R
in the square lattice in contrast to the 1D case.

One can now perform a similar analysis compared to the
1D case. We only mention two examples here. For the (12,6)-
LJ potential, the optimal nearest-neighbor distance is given
by Eq. (35), where the ATM potential is now positive. This

FIG. 4. Square and hexagonal lattices of atoms interacting through LJ + ATM
potentials with nearest-neighbor distance R.

results in Rmin(12, 6, 0.0) = 0.977 489 041 852 768, Rmin(12, 6, 1.0)
= 1.021 577 293 064 089, Rmin(12, 6, 3.0) = 1.112 586 607 942 759,
and Rmin(12, 6, 5.0) = 1.202 957 096 531 386. We see that the
distance is increasing rapidly with increasing coupling strength λ.

The other case we consider here is when the potential becomes
completely repulsive over the whole range of R values. This can hap-
pen if the attractive R−m term is always dominated by the repulsive
ATM term, which can only occur for m ≥ 9. Consider the case m = 9,
which leads to the minimum distance,

Rmin(n, 9, λ) =
⎛

⎝

ZΛ,n

ZΛ,9 − 9λ f (3)coh/cn,9

⎞

⎠

1/(n−9)

(45)

and to the condition that

λ <
cn,9ZΛ,9

9 f (3)coh

. (46)

For example, for n = 12, we get λ < 10.885 087 443 434 88. With
increasing exponent n, the critical λ value decreases as one would
expect.

The cohesive energy for the square lattice as a function of R
for two different (n, m)-LJ potentials coupled to the ATM poten-
tial is shown in Fig. 5. We depict the two-body term E(2)coh(R, n, m),
the three-body contribution E(2)coh(R, λ), and the full cohesive energy.
An example of the long-range region becoming dominated by the
repulsive ATM term is for the hard (30,12)-LJ potential, as shown
in Fig. 5. For λ = 1, there is a region in which the square crystal is
bounded around the equilibrium distance; however, for λ > 3.1834,
the cohesive energy becomes positive at any distance, meaning that
we have a purely repulsive potential energy.

There is one small caveat here to consider as the square lattice
might distort to a set of weakly interacting linear chains, which may
collapse to the origin for n ≤ 9 as discussed in Sec. II. In order to
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FIG. 5. Cohesive energy of the square lattice with atoms interacting through (a) (12,6)-LJ potential coupled to an ATM potential and (b) (30,12)-LJ coupled to an ATM
potential. Separate two- and three-body contributions are represented by the dashed and dotted lines, respectively.

show this, we consider the following generator matrix B⊺ and Gram
matrix G:

B⊺ = (
1 0
0 γ
), G = (

1 0
0 γ2), (47)

which allow the square lattice to distort into a rectangular lattice
where γ is the distortion parameter. Here, analytical solutions for
the corresponding LJ lattice sums exist only for special cases of γ
values.26,67,68 We, therefore, use either the Van der Hoff Benson
expansion69 (see Appendix D) or EpsteinLib for the two-body term,
and direct summation for the three-body term, where the latter
approximation is sufficiently accurate to demonstrate the effect of
such an unphysical distortion.

As it turns out, there exists a critical value of γc ≈ 1.388 that
makes the three-body term of the cohesive energy neither repul-
sive nor attractive, i.e., E(3)coh(R, γ, λ) = 0, λ > 0. This critical value
remains basically constant along different λ values with a (shallow)
saddle point appearing at (γc, λc) = (1.388, 1.526). γc can be seen as
the limit between the three-body attractive interaction in the linear
chain and the three-body repulsion characteristic of the square lat-
tice as shown before. The (γ, λ)-cohesive energy hypersurface for the
difference in cohesive energy with respect to the square lattice with
(γ, λ) = (1, 0), i.e.,

ΔEcoh(R, γ, λ) = Ecoh(R, γ, λ) − Ecoh(R, 1, 0) (48)

is shown in Fig. 6. The square lattice without three-body interactions
is located at a local minimum of the hypersurface at (γ, λ) = (1, 0),
whereas the global minimum in the selected range is found at the
upper right corner of the plot.

The point (γ, λ) = (2, 5) corresponds to a rectangular lattice
with one of the sides of its unit cell being twice as large as the other.
The reason for the high stability of this structure with respect to the
square lattice is due to the fact that it is located at the region where
the three-body potential becomes attractive, similar to the case of the
linear chain. In fact, the square lattice structure is highly destabilized
by the repulsive three-body forces, as shown in the lower right cor-
ner of Fig. 6, whereas the rectangular lattice in the upper left corner
is destabilized due to two-body forces.

In a similar way, the generator matrix and the Gram matrix for
the hexagonal lattice Λhex = B⊺Z2, depicted in Fig. 4, are given by

B⊺hex =

⎛
⎜
⎜
⎝

1
1
2

0
√

3
2

⎞
⎟
⎟
⎠

, Ghex =

⎛
⎜
⎜
⎝

1
1
2

1
2

1

⎞
⎟
⎟
⎠

. (49)

The lattice sum of the hexagonal lattice also has an analytical
formula given by Zucker and Robertson,66

ZΛhex ,n = 6ζ(
n
2
)[3−n/2

(ζ(
n
2

,
1
3
) − ζ(

n
2

,
2
3
))], (50)

where ζ(n, x) is the Hurwitz zeta function; see Appendix A. The full
cohesive energy is then given by Eq. (33).

FIG. 6. (γ, λ)-hypersurface for the difference in the cohesive energy of a rectangu-
lar lattice at optimized R with respect to the ideal square lattice at (γ, λ) = (1, 0).
The horizontal black line indicates the critical value of γ in which the ATM poten-
tial is neither repulsive nor attractive, and the black point sits at the saddle point,
located at (γc , λc) = (1.388, 1.526).
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For the three-body term in Eq. (25), we evaluate the 2D lattice
sums through direct summation with Nmax = 1600 to get

E(3)coh(R, λ) = λ f (3)cohR−9, (51)

with f (3)coh = 1.918 333 364 848 918 7 ( f (3)r = 4.263 827 935 989 311,
f (3)a = −2.345 494 571 140 392 3) From Epstein zeta treatment, we
get f (3)coh = 1.918 333 364 847 879 5 ( f (3)r = 4.263 827 935 991 082 and
f (3)a = −2.345 494 571 143 202 5). As in the square lattice, the three-
body term also results in a repulsive contribution to the total cohe-
sive energy, as shown in Fig. 7. Furthermore, the lattice becomes
unstable after a critical value of λ is reached, where the total cohe-
sive energy is positive for any value of R. For example, this limit is
obtained for the (30,12)-LJ potential coupled with the ATM when
λ > 1.8854. These results show that the hexagonal lattice is more
strongly destabilized by adding three-body interactions compared to
the square lattice because f (3)coh,hex > f (3)coh,sq. This is due to the hexag-
onal lattice being a close-packed structure in 2D with the highest
packing density and kissing number.

Again, we can do the same analysis as for the square lattice
case, but mention only here the minimum distances for the (12,6)-LJ
potential for which we get Rmin(12, 6, 0.0) = 0.990 193 636 287 356,
Rmin(12, 6, 1.0) = 1.069 230 726 249 40, Rmin(12, 6, 3.0)
= 1.229 929 645 109 45, and Rmin(12, 6, 5.0) = 1.378 017 434 680 56.
Similar to the square lattice, a distortion into a set of linear chains
can occur if n ≤ 9 for large ATM coupling strengths λ.

C. LJ + ATM potential for the cuboidal lattices
We are interested in the Bain minimum energy path

Ecoh(Rmin, A) along the A-dependent cuboidal lattices at an opti-
mized distance R = Rmin. The corresponding cohesive energy is
obtained from Eq. (33) as

Ecoh(n, m, A, λ, Rbc) =
nm

2(n −m)
(

ZΛ(A),n

nRn
bc
−

ZΛ(A),m

mRm
bc
)

+ λ f (3)coh(A)R
−9
bc (52)

for the lattice Λ(A) along the Bain transformation path,

Λ(A) = B⊺(A)Z3,

B⊺(A) =
1

√
A + 1

⎛
⎜
⎜
⎝

√
A
√

A 0
1 0 1
0 1 1

⎞
⎟
⎟
⎠

, 0 < A ≤ 1.

It is important to notice that the above-mentioned lattice only
exhibits unit nearest neighbor distance for 1/3 ≤ A ≤ 1. We here
define our measure of distance Rbc for all values of A as the distance
from the atom in the origin to the body centered atom, otherwise
one has to change the lattice sum in region I. In region I in Fig. 2,
the resulting nearest neighbor distance can easily be obtained from
Rbc. This choice is made to assure a smooth behavior of the result-
ing minimized distance Rmin across the whole range of A values and
facilitates the exploration of region I, where we investigate the dis-
tortion of the cubic lattice to a set of weakly interacting linear chains
along the c axis. For ease of notation, we set R = Rbc in the following.

The two-body contribution to the cohesive energy depends on
the Epstein zeta function ZΛ(A),n = L( n

2 , A), which is either obtained
from the Bessel expansion in Appendix E or using EpsteinLib. In
the following, we analyze the Bain phase transition for a range of
(n, m)-LJ potentials, i.e., (6,4)-LJ, (8,6)-LJ, (12,6)-LJ, and (30,12)-LJ.
Note that the Epstein zeta function ZΛ(A),n becomes minimal for the
bcc structure (A = 1

2), as discussed in detail in Appendix F.
The three-body lattice sum f (3)coh(A) is depicted in Fig. 8 as a

function of the parameter A. For region II, the highest repulsive
three-body energy occurs for the densely packed fcc lattice, while
the energy minimum is reached for the bcc lattice within the studied
parameter range, similar to the lattice sums for the Lennard-Jones
(LJ) potential. This suggests that the fcc lattice may become unsta-
ble relative to the bcc lattice if the coupling parameter λ becomes
sufficiently large. Moreover, at very small A-values in region I, we
see that the three-body term has a maximum and starts to go steeply
down in energy becoming eventually attractive as discussed for the
one- and two-dimensional cases.

In order to assess the stability of the bcc with respect to the fcc
phase we need to minimize the cohesive energy (52) with respect to

FIG. 7. Cohesive energy of the hexagonal lattice with atoms interacting through (a) (12,6)-LJ potential coupled to an ATM potential and (b) (30,12)-LJ coupled to an ATM
potential. Separate two- and three-body contributions are represented by the dashed and dotted lines, respectively.
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FIG. 8. Normalized ATM cohesive energy f (3)
coh (A) = f (3)

r (A) + f (3)
a (A) is

displayed along the Bain path as a function of the lattice parameter A.

the distance R. The resulting optimization problem is discussed in
detail in Sec. II F and can be easily solved numerically with standard
tools. However, as already explained in the previous sections, for
the (12,6)-LJ potential coupled to an ATM potential, we can derive
analytical solutions for the minimum of Eq. (52), which we like to
analyze in more detail.

The optimal distance Rmin to the body-centered atom is obtain
from Eq. (35) as

Rmin(12, 6, λ, A) =
⎛
⎜
⎜
⎝

¿
Á
Á
ÁÀ(

3λ f (3)(A)
4ZΛ(A),6

)

2

+
ZΛ(A),12

ZΛ(A),6
+

3λ f (3)(A)
4ZΛ(A),6

⎞
⎟
⎟
⎠

1
3

.

(53)
For λ = 0 we obtain the well-known result,70

Rmin(12, 6, λ = 0, A) = (
ZΛ(A),12

ZΛ(A),6
)

1
6

, (54)

FIG. 9. Minimum distances Rmin(A, λ) for the bcc (A = 1
2
) and fcc (A = 1)

structures for different (n, m)-LJ potentials as a function of the ATM coupling
parameter λ.

and for λ→∞, we see that Rmin(A)→∞ for a repulsive three-body
term. A few examples illustrate the behavior of the minimum
distance Rmin(λ) with increasing coupling strength: for A = 1.0
(fcc), we have Rmin(0.0) = 0.971 233 690 959 646 2, Rmin(1.0)
= 1.329 165 159 071 515 7, Rmin(3.0) = 1.828 126 388 924 327 8,
and Rmin(5.0) = 2.157 121 455 072 630 3, and for A = 0.5
(bcc), we have Rmin(0.0) = 0.951 864 818 662 438 7, Rmin(1.0)
= 1.291 572 720 698 403 8, Rmin(3.0) = 1.771 753 121 161 078 2, and
Rmin(5.0) = 2.089 909 059 339 347 7.

Because of f (3)coh(fcc) > f (3)coh (bcc), the minimum distance is more
rapidly increasing for fcc than for bcc with increasing coupling
strength λ. This is shown for different (n, m)-LJ potentials in Fig. 9.
The minimum properties are also shown in Table II. We note that
for the (30,6)-LJ potential, we have Rmin = 0.9828 (bcc) and 0.9923
(fcc) at λ = 0, which is close to the unit distance for hard spheres.
This is expected for a hard-wall potential that approaches the sticky

TABLE II. Minimum distances and cohesive energies at λ = 0 derived analytically from the lattice sums (also see Ref. 49). For the bcc structure, we have the general condition

that ∂E(2)coh (A =
1
2 )/∂A = 0. For the (8,6), (12,6) and (30,6) LJ potentials, the bcc structure is a maximum along the Bain path.

(6,4) (8,6) (12,6) (30,6)

Rmin(A = 1
2) 0.735 710 751 1 0.919 276 481 5 0.951 864 818 7 0.982 799 216 6

Rmin(A = 1) 0.755 273 183 8 0.941 120 010 7 0.971 233 691 0 0.992 278 147 8
E(2)coh(A =

1
2) −38.636 118 884 −10.152 177 739 −8.237 291 910 −6.799 035 350

E(2)coh(A = 1) −38.934 203 192 −10.401 252 415 −8.610 200 157 −7.571 032 638
∂2E(2)coh(A =

1
2)/∂R2 3426.261 656 02 1153.288 992 00 1309.171 064 53 2534.079 272 84

∂2E(2)coh(A = 1)/∂R2 3276.154 677 91 1127.370 985 43 1314.402 151 04 2768.157 295 74
∂2E(2)coh(A =

1
2)/∂A2 1.310 611 952 6 −4.007 284 008 6 −8.658 654 168 4 −19.701 773 034

∂2E(2)coh(A = 1)/∂A2 7.233 240 347 0 4.870 388 425 1 6.870 495 897 0 17.713 990 956
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hard-sphere limit.71 Furthermore, soft potentials (low n and m val-
ues) lead to larger contractions in Rmin when moving along the
cuboidal distortion path from fcc to bcc.

To estimate the range of typical coupling strengths λ, we
consider the formula derived from the Drude model describing
the triple–dipole interactions between three identical atoms at
equilibrium distance re,72,73

λ =
9

16
I
ε

α3

r9
e

, (55)

where I is the first ionization potential of the atom and α the
static dipole polarizability. For example, taking known experimen-
tal or theoretical values,74–76 we get for argon λAr = 0.025, for xenon
λXe = 0.034, for the heaviest noble gas atom λOg = 0.101, and for
lithium (due to its large polarizability and small equilibrium dis-
tance) λLi = 6.0. However, for bulk lithium, the many-body expan-
sion is not converging smoothly, as this is generally the case for
metallic solids.36,49 This implies that the ATM term is applica-
ble only for small coupling parameters λ, as larger values suggest
that higher-order terms in the expansion (17) become important as

well. Based on these λ values, we chose the following grid in our
computations: A ∈ [ 1

10 , 1] with step size ΔA = 1
60 and λ ∈ [0, 6.0]

with step size Δλ = 0.05.
As the differences between the bcc and fcc minimum distances

are relatively small compared to Rmin at constant λ, we consider
the difference in the minimum distances between the cuboidal and
the fcc structures, i.e., ΔRmin(A, λ) = Rmin(A, λ) − Rmin(A = 1, λ).
Figure 10 shows ΔRmin(A, λ) values for the four different LJ poten-
tials. They all show a qualitatively similar behavior in the region
1
3 ≤ A ≤ 1. The smallest distance is always found at the bcc structure
(A = 1

2). However, we see some significant changes to lower ΔRmin

values with minima occurring in the region A < 1
3 for larger cou-

pling strengths λ and larger repulsive walls (exponents n = 12 and
30), which is due to linear chain formation, as will be discussed in
the following.

Figure 11 shows the cohesive energies for a few selected λ val-
ues for the (12,6)-LJ potential. The energy curves are shifted toward
higher energies with increasing λ value as we expect and become
very flat at high energies. At the optimized distance Rmin(A, λ), it
consistently holds that ΔEcoh(A, λ) < 0, which is below the atomiza-
tion limit as expected. With increasing λ, Rmin becomes larger to the

FIG. 10. Difference ΔRmin(A, λ) = Rmin(A, λ) − Rmin(A = 1, λ) for the (6,4) (a), (8,6) (b), (12,6) (c), and (30,6) (d) LJ potentials for different coupling parameters λ. The
four distinct lattices acc (A = 1

3
) on the left, bcc (A = 1) and mcc (A = 1√

2
) at the dashed lines, and fcc (A = 1) on the right are indicated.
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FIG. 11. Cohesive energies Ecoh(A, λ)
(a) at the corresponding Rmin(A, λ)
values dependent on the parameters A
and λ for the (12,6)-LJ potential. The
four distinct lattices acc A = 1

3
on the

left, bcc (A = 1) and mcc (A = 1√
2
)

indicated by the dashed lines, and fcc
(A = 1) on the right are indicated. The
difference ΔEcoh(A, λ) = Ecoh(A, λ)
− Ecoh(A = 1, λ) is shown in panel (b).

point that at long range the dispersive R−m term (m = 4, 6) in the LJ
potential dominates over the repulsive ATM force.

Details of the Bain transformation path become more transpar-
ent when we plot the difference in cohesive energies with respect
to the fcc structure, as shown in Fig. 12. It was pointed out
before that for a certain range of (n, m) values with m < 5.256 73,
n > m and λ = 0, the bcc phase becomes metastable, otherwise it will

further distort toward lower A values, i.e., the acc structure.49 How-
ever, the bcc structure strictly remains an extremum.49 The instabil-
ity of the bcc phase for certain LJ exponents was already discussed
in 1940 by Born and Misra,19,20 and later by Wallace and Patrick.50

Similar results are obtained for the generalized Morse potential,77

indicating that many-body forces have substantial influence on the
bcc phase. However, a distortion from the ideal bcc phase was also

FIG. 12. Cohesive energy differences, ΔEcoh(A, λ) = Ecoh(A, λ) − Ecoh(A = 1, λ), at the corresponding Rmin(A, λ) values dependent on the parameters A and λ for the
(6,4) (a), (8,6) (b), (12,6) (c), and (30,6) (d) LJ potentials. The four distinct lattices acc (A = 1

3
) on the left, bcc (A = 1), and mcc (A = 1√

2
) represented by the dashed

lines, and fcc (A = 1) on the right are indicated.
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TABLE III. Minimum distances and LJ and ATM contributions to the cohesive energy at critical λc where Ecoh(A =
1
2 , λc)

= Ecoh(A = 1, λc).

(6,4) (8,6) (12,6) (30,6)

λc 0.419 345 768 6 0.773 357 516 6 0.634 796 849 2 0.388 634 632 2
Rmin(A = 1

2) 0.985 236 472 2 1.195 870 812 9 1.172 140 515 9 1.079 398 179 5
Rmin(A = 1) 1.013 704 260 1 1.229 545 314 3 1.203 874 540 2 1.103 339 795 9
E(2)coh(A =

1
2) −22.642 222 548 6 −4.665 534 948 0 −4.047 315 296 8 −4.740 282 456 5

λcE(3)R (A =
1
2) 11.685 218 205 6 3.768 346 241 1 3.704 644 569 0 4.762 502 905 8

λcE(3)A (A =
1
2) −4.599 226 677 3 −1.483 196 826 7 −1.458 124 258 5 −1.874 490 491 3

Ecoh(A = 1
2) −15.556 231 020 2 −2.380 385 533 6 −1.800 794 986 3 −1.852 270 042 0

E(2)coh(A = 1) −22.673 046 246 3 −4.690 291 651 7 −4.093 343 646 1 −4.928 882 706 0
λcE(3)R (A = 1) 11.681 664 218 6 3.791 520 053 9 3.763 029 219 9 5.050 005 505 2
λcE(3)A (A = 1) −4.564 849 145 1 −1.481 613 985 2 −1.470 480 60 2 −1.973 392 907 2
Ecoh(A = 1) −15.556 231 020 2 −2.380 385 533 6 −1.800 794 986 3 −1.852 270 042 0
∂Ecoh(A = 1

2)/∂A [10−5
] −3.128 265 −1.008 829 −0.991 775 −1.275 000

∂2Ecoh(A = 1
2)/∂A2 1.319 068 −0.194 625 −0.423 196 −0.811 519

found by Craievich et al. for several elemental metals.78 Adding
the ATM potential, we see that at a critical coupling strength λc
[λc = 0.635 for the (12,6)-LJ potential, for example], the bcc phase
starts to lie energetically below the fcc phase. The critical λc values
obtained from a polynomial fit are listed in Table III for the four
(n, m)-LJ potentials considered.

Figure 13 shows curves of the critical coupling parameters λc
for fixed m and variable n for (n, m)-LJ potentials including the
ATM potential. The λc values given in Table III are indicated as
well. For very small values of both exponents (n, m), we see that
λc is zero. At the other end, in the kissing hard-sphere (KHS) limit
(n, m→∞, n > m) for a LJ potential, the cohesive energy is given by
E(2)coh = Nkiss/2, where Nkiss is the kissing number. Adding the three

FIG. 13. Critical coupling strength λc for different (n, m)-LJ combinations n > m.
The values for the specific LJ potentials are given in Table III indicated by the black
triangles.

body term we get the condition for the critical coupling strength
considering that R = 1,

− 6 + λcE(3)coh(A = 1) = −4 + λcE(3)coh(A =
1
2
), (56)

which gives λc = 0.454 307 399 567 58. This explains the asymptotic
behavior of the curves shown in Fig. 13 for large m-values. How-
ever, this coupling parameter results in a purely repulsive force for
the KHS limit for all cuboidal structures. The main message of this
analysis here is that soft two-body interactions and strong repulsive
many-body forces favor the bcc over the fcc phase. A prime exam-
ple for this is lithium where the two phases are almost energetically
degenerate.9 This is also seen in Fig. 14, where for a soft (8,4)-LJ
potential, bcc becomes energetically favorable compared to fcc for
λ > λc = 0.687 403 812 123 84, with bcc forming a local minimum of
the cohesive energy along the Bain path.

The first derivatives are ∂Ecoh(A = 1
2 , λ)/∂A = 0 at any λ value

and a proof that ∂ f (3)coh(A)/∂A = 0 at A = 1
2 is given in Appendix H.

This implies that the bcc structure remains an extremum if the ATM
term is added. The rather small second derivatives compared to
the corresponding values at λ = 0 show the flatness of the cohesive
energy curves Ecoh(A = 1

2 , λc) clearly seen in Fig. 12. However, the
bcc structure at λc still remains a minimum for the (6,4)-LJ potential
and a maximum for the other three potentials considered. At even
higher values, λ≫ λc, the lattice distorts to much lower A values.
While for the (6,4)-LJ potential, we can still locate a very shallow
minimum at λ values up to the maximum value considered, for the
other potentials we change to a monotonically decreasing function
to smaller A-values, that is, the three-body force destabilizes both fcc
and bcc.

Kwaadgras et al. discussed in detail the formation of lin-
ear chains for finite systems within the induced dipole interaction
model79 and commented on the importance of the ATM poten-
tial. Figure 15 depicts the behavior at small A-values if the coupling
strength λ becomes large. We see a formation of linear chains along
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FIG. 14. (a) Cohesive energy differences, ΔEcoh(A, λ) = Ecoh(A, λ) − Ecoh(A = 1, λ), at the corresponding Rmin(A, λ) values for λ = 1 as a function of A for the (8,4)-LJ
potential. (b) The normalized cohesive energy differences ΔEnorm

coh (A, λ) = ΔEcoh(A, λ)/∣ΔEcoh(A = 1/2, λ)∣ for different values of 0 ≤ λ ≤ 1. Numerically, we observe that
bcc becomes energetically favorable compared to fcc for λ > λc = 0.687 403 812 123 84.

FIG. 15. (a) Conventional cell of the acc
structure at A = 1/3 showing the linear
chain formation parallel to the c axis
and (b) weakly interacting linear chains
obtained from a cuboidal structure with
A = 0.005.

the c axis. The kissing number is reduced to 2, as listed in Table I.
This is easily explained through Eq. (12): For A→ 0, we have γ→ 0
and R→ a√

2
→∞, which implies that for increasing coupling

strength λ keeping c finite, we see the formation of largely separated
linear chains where the ATM force becomes attractive, as explained
in Sec. III A. Hence, we see exactly the same (unphysical) situation
as for the 2D lattice where we allowed for distortion in one direction.

We add some final comments here. First, very large λ values
are not realistic as shown above. Second, and more importantly, the
ATM potential is only valid in the long range. In the very short
range, the three-body force becomes even attractive for the rare gas
elements.80–82 Third, the many-body expansion of the total energy of
a lattice described by quantum theory does not converge fast at short
distances. This is especially the case for metallic systems as already
mentioned.36 Fourth, if we maintain the use of such a model sys-
tem, we need to make sure that the exponent of the repulsive force
in the LJ potential exceeds the one in the ATM potential; otherwise,
we observe a collapse of the linear chain for n < 9, as outlined in
Sec. III A.

IV. CONCLUSION
In this work, we have explored the influence of three-body

interactions on the stability of cuboidal lattices. To this end, we
have studied the cohesive energy along a Bain phase transformation
path connecting the fcc lattice structure to the mcc, bcc, and finally,
the acc lattice, where we have included both a two-body (n, m)-LJ
potential and a three-body ATM potential of increasing coupling
strength. The two-body lattice sums were computed to full preci-
sion using either rapidly converging Bessel function expansions11,26

or, alternatively, efficient evaluations based on the Epstein zeta func-
tion.58 The challenging computation of the high-dimensional, slowly
converging three-body lattice sums has been successfully achieved
using a new representation based on singular integrals involving
products of Epstein zeta functions. This approach enables, for the
first time, the precise evaluation of three-body lattice sums within
minutes on a standard laptop and can (most likely) be extended to
more general many-body terms and multiple zeta functions, which
is part of our future work.83

Using our advanced numerical framework, we have been able
to precisely evaluate the small energy differences between the
cuboidal structures along the Bain path. Our results demonstrate
that the three-body potential can destabilize the fcc structure for
large ATM coupling strengths. We analytically show and numer-
ically confirm that the ATM potential exhibits a minimum along
the Bain path at the bcc structure, resulting in the bcc structure
becoming a metastable minimum for soft LJ potentials. For hard-
wall LJ potentials, the structure distorts toward, and even beyond,
the acc phase. Linear chain formation is observed at high ATM cou-
pling strength, which is due to the short-range behavior of the ATM
force.

Our results indicate that, in addition to the softness of the two-
body potential, the stability of the bcc lattice may heavily rely on
higher than two-body effects. While this study serves as an initial
exploration of the martensitic bcc-to-fcc phase transition mecha-
nism, more realistic systems, such as metals, need to be investigated
in future work and possible symmetry breaking effects (such as
rhombohedral distortions) need to be included.6 This requires a
more precise computation of many-body potentials based on den-
sity functional theory, as well as the incorporation of temperature
and pressure effects.
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APPENDIX A: FORMULAS FOR SPECIAL FUNCTIONS

In this appendix, we give a detailed description of the math-
ematical tools to derive the lattice sums and properties for the
cuboidal lattices studied here. We start with defining the required
standard functions and theta series used in the theory of lattice
sums here. We then introduce the quadratic forms, integral trans-
forms, and expansions in terms of Bessel functions. This is followed

by a discussion of some important lattice sum properties and their
analytic continuation.

A few special functions have been used in this work. For clarity
and ease of use, they are stated here along with references.

The gamma function may be defined for s > 0 by

Γ(s) = ∫
[0,∞)

ts−1 e−t dt. (A1)

By the change of variable t = wx, this can be rewritten in the form
[see Ref. 84, (1.1.18)]

1
ws =

1
Γ(s)∫[0,∞)

xs−1 e−wx dx. (A2)

The following integral may be evaluated in terms of the modified
Bessel function:

∫
[0,∞)

xs−1e−ax−b/xdx = 2(
b
a
)

s/2

Ks(2
√

ab). (A3)

By the change of variable x = u−1, it can be shown that

Ks(z) = K−s(z). (A4)

When s = 1/2, the modified Bessel function reduces to an elementary
function,

K1/2(z) =
√ π

2z
e−z. (A5)

The asymptotic formula holds

Ks(z) ∼
√ π

2z
e−z as z →∞, ( ∣ arg z∣ < 3π/2). (A6)

For all of these properties, see Ref. 84, pp. 223, 237 or Ref. 85,
pp. 233–248.

The transformation formula for theta functions is Ref. 84, p. 119
[Ref. 86, (2.2.5)],

∑
n∈Z

e−πn2t+2πina
=

1
√

t
∑
n∈Z

e−π(n+a)2
/t , assuming Re(t) > 0. (A7)

We will need the special cases a = 0 and a = 1/2, which are

∑
n∈Z

e−πn2t
=

1
√

t
∑
n∈Z

e−πn2
/t (A8)

and

∑
n ∈Z
(−1)ne−πn2t

=
1
√

t
∑
n ∈Z

e−π(n+ 1
2 )

2
/t , (A9)

respectively. The sum of two squares formula is Ref. 87, (3.111),
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⎛

⎝
∑
j∈Z

qj 2⎞

⎠

2

= ∑
j,k ∈Z

q j 2
+k2

= ∑
N ∈N0

r2(N)qN , (A10)

where

r2(N) = #{j 2
+ k2
= N} =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if N = 0,

4∑
d∣N

χ−4(d) if N ≥ 1,
(A11)

with the sum being over the positive divisors d of N. For example,

r2(18) = 4(χ−4(1) + χ−4(2) + χ−4(3) + χ−4(6) + χ−4(9) + χ−4(18))
= 4(1 + 0 − 1 + 0 + 1 + 0) = 4.

By Ref. 87, (3.15) and (3.111), we also have

⎛

⎝
∑
j ∈Z

q(j+ 1
2 )

2⎞

⎠

2

= ∑
N ∈N0

r2(4N + 1)q(4N+1)/2. (A12)

The Riemann zeta function ζ(s) and Dirichlet L function are
defined by

ζ(s) =∑
j ∈N

1
j s , (A13)

L−4(s) =∑
j ∈N

χ−4( j)
j s = 1 −

1
3s +

1
5s −

1
7s + ⋅ ⋅ ⋅ . (A14)

For even integers, the Riemann zeta function can be expressed
as ζ(2n) = π2nBn/An, where An and Bn are positive inte-
gers, e.g., we have ζ(2) = π2

/6, ζ(4) = π4
/90, ζ(6) = π6

/945,
ζ(8) = π8

/9450, ζ(10) = π10
/93 555, ζ(12) = 691π12

/638 512 875,
ζ(14) = 2π14

/18 243 225, and ζ(16) = 3617π16
/325 641 566 250. The

coefficients An and Bn are listed in the On-Line Encyclopedia of
Integer Sequences A002432 and A046988, respectively.88

For an integer n, the Dirichlet character χ
−4(n) is defined by

χ−4(n) = sin (πn/2) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4),

0 otherwise.

(A15)

The Riemann zeta function has a pole of order 1 at s = 1 and, in fact,

lim
s→1
(s − 1)ζ(s) = 1. (A16)

This is a consequence of Ref. 84, (1.3.2); also see Ref. 85, p. 58.

We require the following functional equations:

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s) (A17)

and

π−sΓ(s)ζ(s)L−4(s) = π−(1−s)Γ(1 − s)ζ(1 − s)L−4(1 − s) (A18)

and the special values,

ζ(2) =
π2

6
, ζ(0) = −

1
2

,

ζ(−1) = −
1

12
, ζ(−2) = ζ(−4) = ζ(−6) = ⋅ ⋅ ⋅ = 0,

(A19)

L−4(1) =
π
4

, L−4(0) =
1
2

,

L−4(−1) = L−4(−3) = L−4(−5) = ⋅ ⋅ ⋅ = 0.
(A20)

See Ref. 89, Chap. 12 or Ref. 67 Other equalities used are

∑
j ∈N0

1
(j + 1

2)
s = (2

s
− 1)ζ(s), (A21)

∑
j ∈N

(−1)j

j s = −(1 − 21−s
)ζ(s), (A22)

∑
j,k∈Z

′ 1
( j 2
+ k2
)

s = 4ζ(s)L−4(s), (A23)

∑
j,k∈Z

′ (−1)j+k

( j 2
+ k2
)

s = −4(1 − 21−s
)ζ(s)L−4(s). (A24)

The identities (A21) and (A22) follow from the definition of ζ(s) by
series rearrangements. For (A23) and (A24), see (1.4.14) and (1.7.5)
respectively, of Ref. 11.

Given a positive definite quadratic form g(i, j, k), the corre-
sponding theta series is defined for ∣q∣ < 1 by

θg(q) = ∑
i,j,k ∈Z

qg(i,j,k). (A25)

For the quadratic form in (E3), the theta series is

θ(A; q) = ∑
i,j,k ∈Z

q(A(i+j)2
+( j+k)2

+(i+k)2
)/(A+1) where 1/3 ≤ A ≤ 1.

(A26)

The first few terms in the theta series for fcc, mcc, bcc, and acc as far
as q9 are given, respectively, by
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θ(1; q) = 1 + 12q + 6q2
+ 24q3

+ 12q4
+ 24q5

+ 8q6
+ 48q7

+ 6q8
+ 36q9

+ ⋅ ⋅ ⋅ ,

θ(
1
√

2
; q) = 1 + 8q + 4q4−2

√
2
+ 2q4

√
2−4
+ 4q8−4

√
2
+ 8q2

√
2
+ 16q−4

√
2+9
+ 8q4

+ 8q8
√

2−7
+ 4q16−8

√
2
+ 8q−8

√
2+17

+ 8q20−10
√

2
+ 8q−4

√
2+12
+ 2q16

√
2−16
+ 16q4

√
2+1
+ 16q−6

√
2+16
+ 8q14

√
2−12
+ 16q−12

√
2+25
+ 8q−8+12

√
2
+ 8q9

+ ⋅ ⋅ ⋅ ,

θ(
1
2

; q) = 1 + 8q + 6q4/3
+ 12q8/3

+ 8q4
+ 24q11/3

+ 6q16/3
+ 24q19/3

+ 24q20/3
+ 24q8

+ 32q9
+ ⋅ ⋅ ⋅ ,

θ(
1
3

; q) = 1 + 10q + 4q3/2
+ 8q5/2

+ 12q3
+ 26q4

+ 8q11/2
+ 20q6

+ 32q7
+ 8q15/2

+ 16q17/2
+ 10q9

+ ⋅ ⋅ ⋅ .

Since the quadratic form g(A; i, j, k) has been normalized to
make the minimum distance 1, the kissing number occurs in each
theta series as the coefficient of q. That is, we have kiss(fcc) = 12,
kiss(mcc) = 8, kiss(bcc) = 8, and kiss(acc) = 10.

Finally, we mention the d-dimensional Epstein zeta
function27,90 in its most general form for a matrix A, vectors c⃗
and v⃗, and exponent ρ ∈ C,

Zd(A, ρ) = ∑
k⃗ ∈Zd

′ e2πic⃗ ⋅Ak⃗

∣Ak⃗ − v⃗∣ρ
. (A27)

The connection to the generator matrix B in lattices is by setting
A = B⊺, and the Gram matrix becomes G = BB⊺ = A⊺A. The vector
v⃗ is often called the shift vector in lattice theory.

APPENDIX B: CONNECTION TO ALTERNATIVE GRAM
MATRICES IN THE LITERATURE

In this appendix, we discuss a few important properties of the
generator and Gram matrices used in this work.91 Two generator
matrices B1 and B2 are equivalent if B2 = cUB1O ; c is a non-zero
real number; O a real orthogonal matrix (OO⊺ = 1) with det O = ±1
describing rotation, reflection, or roto-reflection of the lattice; and U
is a matrix containing integers with det U = 1 describing, for exam-
ple, permutations of the lattice basis vectors. Given two equivalent
generator matrices, B1 and B2, the corresponding (equivalent) Gram
matrices G1 = B1B⊺1 and G2 = B2B⊺2 are related by

G2 = B2B⊺2 = cUB1O (cUB1O )
⊺
= c2UB1OO

⊺B⊺1 U⊺ = c2UG1U⊺.
(B1)

We now reconcile the Gram matrix G in (8) with two matrices given
by Conway and Sloane.51 Let

U1 =

⎛
⎜
⎜
⎝

1 0 0
−1 0 1
0 −1 0

⎞
⎟
⎟
⎠

and U2 =

⎛
⎜
⎜
⎝

1 1 −1
1 0 0
0 1 0

⎞
⎟
⎟
⎠

(B2)

and consider the equivalent matrices G1 and G2 defined by

G1 = U1 G U⊺1 =
⎛
⎜
⎜
⎝

u2
+ v2

−u2
−u2

−u2 u2
+ v2 u2

− v2

−u2 u2
− v2 u2

+ v2

⎞
⎟
⎟
⎠

(B3)

and

G2 = U2 G U⊺2 =
⎛
⎜
⎜
⎝

4u2 2u2 2u2

2u2 u2
+ v2 u2

2u2 u2 u2
+ v2

⎞
⎟
⎟
⎠

. (B4)

When u = 1/
√

2 and v = 1/ 4
√

2, the matrix G1 in (B3) is the Gram
matrix for the mcc lattice given by Conway and Sloane [Ref. 51,
(10)]. Moreover, when u =

√
1/3 and v =

√
2/3, the matrix G1 leads

to another known quadratic form for the bcc lattice, e.g., see Ref.
26, (8b). When u = 1 and v =

√
3, the matrix G2 in (B4) is the

Gram matrix for the acc lattice given in Ref. 51, p. 378. Since
det U2

1 = det U2
2 = 1, it follows that

det G1 = det G2 = det G = (det B)2
= 4u2v4

= 4v6A. (B5)

The corresponding quadratic forms g1 and g2 are defined by

g1(i, j, k) = (i, j, k)G1(i, j, k)⊺

= (u2
+ v2
)i2
+ (u2

+ v2
)j 2
+ (u2

+ v2
)k2

− 2u2ij − 2u2ik + 2(u2
− v2
)jk

and

g2(i, j, k) = (i, j, k)G2(i, j, k)⊺

= 4u2i2
+ (u2

+ v2
)j 2
+ (u2

+ v2
)k2

+ 4u2ij + 4u2ik + 2u2 jk.

They are related to the quadratic form g in Eq. (5) by

g1(i, j, k) = g((i, j, k)U1) = g(i − j,−k, j) (B6)

and

g2(i, j, k) = g((i, j, k)U2) = g(i + j, i + k,−i). (B7)

These quadratic forms are an essential ingredient for the lattice sums
L(G) in (2) used to obtain the cohesive energy of a lattice for the
case of inverse power potentials V(r) = r−n. This is outlined in the
following sections.
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APPENDIX C: DIRECT SUMMATION APPROACH
TO THREE-BODY LATTICE SUMS

Unfortunately, the three-body sum is slowly convergent and
cannot be analytically expressed in terms of lattice sums containing a
single quadratic form as for the Epstein zeta function.27 It has, there-
fore, been treated in the past by using direct summation methods.
Along the Bain path, we can express the ATM potential in terms of
lattice sums dependent on the parameter A similar to the two-body
potential, such that

E(3)coh(R, A, λ) = λ{ER(R, A) + EA(R, A)}, (C1)

with ER = fr/R9 and EA = fa/R9.
In our previous work,35,59–63 where more complicated forms of

three-body forces were used, we produced the Cartesian coordinates
of the vectors R⃗0i for a specific lattice first and stored them for fur-
ther use in (17). For this, one could use the fcc lattice basis vectors
(1, 1, 0)⊺, (1, 0, 0)⊺, and (0, 1, 1)⊺, as a starting point and for the dif-
ferent cuboidal lattices scale the Cartesian coordinates (xn, yn, zn),
such that we have R√

A+1
(xn
√

A, yn, zn).35,82,92 However, for the sim-
ple ATM potential, this offers no advantage in terms of computer
time and memory requirements. Moreover, as we shall see the sim-
ple form has some advantage for the determination of the minimum
distance for a λ dependent energy (C1) at a specific A value. We,
therefore, decided to use (C1) directly by utilizing the permutation
symmetry i1 ↔ j1 for the vectors i⃗ and j⃗.

The convergence for the two individual three-body terms as
well as the sum of both in Eq. (C1) is shown in Fig. 16 for the

FIG. 16. Convergence of the ATM terms ER(Nmax, Rmin, A), EA(Nmax, Rmin, A),
and E(3)

coh (Nmax, Rmin, A) [Eq. (C1)] for the bcc lattice A = 1
2

using a (12,6)-LJ
potential. Rmin is set to 0.951 864 818 662 439, the minimum distance for the
bcc lattice of a (12,6)-LJ potential. The values show the difference in energies
ΔE = E(Nmax →∞) − E(Nmax) to the extrapolated value Nmax →∞. The
limit for Nmax →∞ was obtained from a linear extrapolation over N−1

max of
the last two values at Nmax = 90 and 100. This gives ΔER(Nmax = 100)
= −9.283 159 × 10−4, ΔEA(Nmax = 100) = 9.461 724 × 10−4, and
ΔER(Nmax = 100) + EA(Nmax = 100) = 1.785 654 × 10−5.

bcc lattice (A = 1
2), setting λ = 1 and Rmin to the minimum nearest-

neighbor distance of a (12,6)-LJ potential. The rather slow conver-
gence of both terms E(3)R (Rmin, A) and E(3)A (Rmin, A)with increasing
Nmax is obvious. Nevertheless, the sum of these terms exhibits sig-
nificantly faster convergence, and Nmax = 100 proves in principle to
be sufficiently accurate for our analysis. However, due to the com-
putational time scaling of O (N6

max), calculating the ATM term for
a specific A value already demands four weeks of CPU time on a
single processor. We, therefore, use a far more efficient evaluation
of the three-body term through the Epstein zeta function, as intro-
duced originally by Crandall and put into a computer efficient form
by Buchheit et al.58 This allows evaluating general three-body lattice
sums to machine precision within minutes on a standard laptop.

For our detailed analysis, we tabulate the following prop-
erties along the Bain path: Ecoh(A, Rmin), ∂Ecoh(A)/∂R∣Rmin ,
∂2Ecoh(A)/∂R2

∣Rmin , ∂Ecoh(A)/∂A∣Rmin , and ∂2Ecoh(A)/∂A2
∣Rmin .

The latter two derivatives are obtained analytically for the two-body
force (see Ref. 49 for details) and numerically for the three-body
force. For the general LJ potential, we used the (n, m) combina-
tions (6,4), (8,6), (12,6), and (30,6). The latter represents a hard-wall
potential accompanied by an attractive long-range dispersive r−6

term.

APPENDIX D: EVALUATION OF THE TWO-BODY
LATTICE SUM FOR A RECTANGULAR 2D LATTICE

For the lattice sum with Gram matrix (47),

∑
i∈Z

′
[i2
+ (γj)2

]
−s
= 2ζ(2s){1 + γ−2s

+ 2(1 + γ2
)
−s
}

+ 4 ∑
i,j∈N,i≠j

′
[i2
+ (γj)2

]
−s

, (D1)

we use Van der Hoff and Benson’s original expression derived from
a Mellin transformation and the use of theta functions,69

∑
i∈Z

′
[x2
+ (i + a)2

]
−s
=

√
πΓ(s − 1

2)

Γ(s)∣x∣2s−1 +
4πs

Γ(s)∑n ∈N
(

n
∣x∣
)

s− 1
2

× cos (2πna)Ks− 1
2
(2πn∣x∣), (D2)

with a ∈ (0, 1). For the special case of a = 0 and x = γj (γ > 0), we get
a fast converging series in terms of Bessel functions,

∑
i,j∈Z

′
[i2
+ (γj)2

]
−s
= 2ζ(2s) +∑

j∈Z

′

√
πΓ(s − 1

2)

Γ(s)∣γj∣2s−1

+
4πs

Γ(s)∑j∈Z
′
∑
n ∈N
(

n
∣γj∣
)

s− 1
2

Ks− 1
2
(2πnγ∣ j∣), (D3)

which simplifies to

∑
i,j∈Z

′
[i2
+ (γj)2

]
−s
= 2ζ(2s) +

2
√

πΓ(s − 1
2)ζ(2s − 1)

Γ(s)γ2s−1

+
8πs

Γ(s) ∑n,j ∈N
(

n
γj
)

s− 1
2

Ks− 1
2
(2πγnj). (D4)
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The additional Riemman zeta function comes from the case when
( j = 0, i ≠ 0). As the Bessel function Kn(x) decays exponentially
with the argument x, for γ < 1, it is computationally advantageous
to rewrite the sum into

∑
i,j∈Z

′
[i2
+ (γj)2

]
−s
= γ−2s

∑
i,j∈Z

′
[γ−2i2

+ j 2
]
−s

= γ−2s
∑
i,j∈Z

′
[i2
+ ( j/γ)2

]
−s

, (D5)

and we get in a similar fashion,

γ−2s
∑
i,j∈Z

′
[i2
+ ( j/γ)2

]
−s
= 2γ−2sζ(2s) +

2
√

πΓ(s − 1
2)ζ(2s − 1)

Γ(s)γ

+
8πs

Γ(s)γs+ 1
2
∑

n,j ∈N
(

n
j
)

s− 1
2

× Ks− 1
2
(2πγ−1nj). (D6)

This formula is identical to the one given by Bateman and
Grosswald.93 For computational efficiency, we rewrite Eq. (D4),

∑
i,j∈Z

′
[i2
+ (γj)2

]
−s
= ζ(2s) +

2
√

πΓ(s − 1
2)ζ(2s − 1)

Γ(s)γ2s−1

+
8πs

Γ(s)γs− 1
2
∑
n ∈N

Ks− 1
2
(2πγn2

)

+
8πs

Γ(s)γs− 1
2
∑

n<j ∈N

⎧⎪⎪
⎨
⎪⎪⎩

(
n
j
)

s− 1
2

+ (
j
n
)

s− 1
2
⎫⎪⎪
⎬
⎪⎪⎭

× Ks− 1
2
(2πγnj) (D7)

and we can do the same for Eq. (D6).

APPENDIX E: EVALUATION OF THE LATTICE SUM
L (A ; s)

Consider the quadratic form

g(i, j, k) = (i, j, k)G(i, j, k)⊺, (E1)

with the Gram matrix in Eq. (8). To eliminate v, we divide the above-
mentioned equation by the squared nearest-neighbor distance R2,
yielding

g(A; i, j, k) =
g(i, j, k)

R2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4A
(A(i + j)2

+ ( j + k)2
+ (i + k)2

) if 0 < A < 1/3,

1
A + 1

(A(i + j)2
+ ( j + k)2

+ (i + k)2
) if 1/3 ≤ A ≤ 1,

1
2
(A(i + j)2

+ ( j + k)2
+ (i + k)2

) if A > 1.

(E2)

The cases that we are mainly interested in are fcc, mcc, bcc, and
acc, all of which satisfy 1/3 ≤ A ≤ 1, but we will go slightly beyond
this limit to mainly discuss distortions toward the acc structure. In
the important range 1/3 ≤ A ≤ 1, we have

g(A; i, j, k) =
1

A + 1
(A(i + j)2

+ ( j + k)2
+ (i + k)2

), (E3)

corresponding to the rescaled Gram matrix,

G(A) =
1

A + 1

⎛
⎜
⎜
⎝

A + 1 A 1
A A + 1 1
1 1 2

⎞
⎟
⎟
⎠

, (E4)

which is used throughout this work.
The lattice sum for inverse power potentials in terms of the

quadratic form g(A; i, j, k) defined in (E3) is then given by11,26

L(A; s) = ∑
i,j,k∈Z

′
(

1
g(A; i, j, k)

)

s

= ∑
i,j,k∈Z

′
(

A + 1
A(i + j)2

+ ( j + k)2
+ (i + k)2 )

s

, (E5)

where 1/3 ≤ A ≤ 1. Here and throughout this work, a prime
on the summation symbol will denote that the sum ranges over
all integer values except for the term when all of the summation
indices are simultaneously zero, i.e., the sums in (E5) are over all
integer values of i, j, and k except for the term (i, j, k) = (0, 0, 0),
which is omitted. This lattice sum smoothly connects four different
lattices along a cuboidal transition path (the Bain transformation),
i.e., when A = 1, 1/

√
2, 1/2, or 1/3 we obtain the expressions for

the lattice sums of fcc, mcc, bcc, and acc respectively (face-centered
cubic, mean centered-cuboidal, body-centered cubic, and axial
centered cuboidal). In these cases, we also write Lfcc

3 (s) = L(1; s),
Lmcc

3 (s) = L(1/
√

2; s), Lbcc
3 (s) = L(1/2; s), andLacc

3 (s) = L(1/3; s).
Our objective is to find formulas for L(A; s) that are both

simple and computationally efficient. The formulas we obtain can
be used to show that L(A; s) can be analytically continued to
complex values of s, with a simple pole at s = 3/2 and no other
singularities.

One method of evaluating the sum L(A; s) is to use the Terras
decomposition.94 This was done in our previous work for the fcc
and bcc lattices26 and can in principle also be applied for general
L(A; s) with symmetric Gram matrices related to the Epstein zeta
function.27 Here, we use an easier method that works for the entire
parameter range 1/3 ≤ A ≤ 1 along the Bain transformation path and
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hence gives the lattice sum for all four lattices fcc, mcc, bcc, and acc.
The advantage is that we obtain two formulas, which not only can
be used as checks but also provide distinct information about their
analytic continuation.

We begin by writing the lattice sum in the form

L(A; s) = ∑
i,j,k∈Z

′
(

A + 1
A(i + j)2

+ ( j + k)2
+ (i + k)2 )

s

= ∑
I,J,K∈Z

I+J+K even

′
(

A + 1
AI2
+ J2
+ K2 )

s

=
(A + 1)s

2 ∑
i,j,k∈Z

′ 1 + (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s

=
(A + 1)s

2
(T1(A; s) + T2(A; s)), (E6)

with the two sums,

T1(A; s) ∶= ∑
i,j,k∈Z

′ 1
(Ai2
+ j 2
+ k2
)

s (E7)

and

T2(A; s) ∶= ∑
i,j,k∈Z

′ (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s , (E8)

which we evaluate separately. For A = 1, T1 is identical to the lattice
sum of a simple cubic lattice and T2 to the Madelung constant.

The lattice sum is T1(A; s). We shall consider two ways for
handling the sum in (E7). The first is to separate the terms according
to whether i = 0 or i ≠ 0, which gives rise to

T1(A; s) = f (s) + 2F(s), (E9)

where

f (s) = ∑
j,k∈Z

′ 1
( j 2
+ k2
)

s and F(s) =∑
i ∈N
∑

j,k ∈Z

1
(Ai2
+ j 2
+ k2
)

s ,

(E10)
and N is the set of positive integers. For simplicity, we omit the para-
meter A from the notation and just write f(s) and F(s) in place of
f(A; s) and F(A; s), respectively. This is the starting point of the
approach taken by Selberg and Chowla (Ref. 95, Sec. 7). Using theta
series and Mellin transforms, Zucker showed that the double sum
can be expressed in terms of standard functions,66

f (s) = ∑
j,k∈Z

′ 1
( j 2
+ k2
)

s = 4ζ(s)L−4(s), (E11)

where ζ(s) is the Riemann zeta function defined in (A13) and L−4(s)
is the Dirichlet beta series from (A14) described in Appendix A. It
remains to analyze F(s). Using the integral formula for the gamma
function (A2), we get

π−sΓ(s)F(s) = ∫
[0,∞)

xs−1
∑
i ∈N

e−πAxi2

∑
j,k ∈Z

e−πx( j 2
+k2
) dx

= ∫
[0,∞)

xs−1
∑
i ∈N

e−πAxi2⎛

⎝
∑
j ∈Z

e−πxj 2⎞

⎠

2

dx. (E12)

Now apply the modular transformation for theta functions (A10) to
obtain

π−sΓ(s)F(s) = ∫
[0,∞)

xs−1
∑
i ∈N

e−πAxi2⎛

⎝

1
√

x∑j ∈Z
e−πj 2

/x⎞

⎠

2

dx

= ∫
[0,∞)

xs−2
∑
i ∈N

e−πAxi2

∑
N ∈N0

r2(N)e−πN/x dx, (E13)

where r2(N) is the number of representations of N as a sum of two
squares; e.g., see (A11) and N0 = N ∪ {0}. Separating out the N = 0
term and evaluating the resulting integrals, we find that

π−sΓ(s)F(s) =∑
i ∈N
∫
[0,∞)

xs−2e−πAxi2

dx

+ ∑
i,N ∈N

r2(N)∫
[0,∞)

xs−2e−πAxi2
−πN/x dx

=
Γ(s − 1)ζ(2s − 2)

As−1πs−1 + 2 ∑
i,N ∈N

r2(N)

× (
N

Ai2 )
(s−1)/2

Ks−1(2πi
√

AN),

where we have used the formula (A3) for the K-Bessel function. On
using all of the above back in (E9), we obtain

∑
i,j,k∈Z

′ 1
(Ai2
+ j 2
+ k2
)

s = 4ζ(s)L−4(s) +
2π
(s − 1)

ζ(2s − 2)
As−1

+
4πs

Γ(s)
A(1−s)/2

∑
i,N ∈N

r2(N)

× (
N
i2 )
(s−1)/2

Ks−1(2πi
√

AN). (E14)

This is essentially Selberg and Chowla’s formula,95 although they
write it in terms of a sum over the divisors of N to minimize the
number of Bessel function evaluations. We will leave it as it is for
simplicity.

Second formula for the sum is T1(A; s). Another way is to sep-
arate the terms according to whether ( j, k) = (0, 0) or ( j, k) ≠ (0, 0)
and write

T1(A; s) = 2g(s) +G(s), (E15)

where

g(s) =∑
i ∈N

1
(Ai2
)

s and G(s) = ∑
j,k∈Z

′
∑
i ∈Z

1
(Ai2
+ j 2
+ k2
)

s . (E16)

For simplicity, we omit the parameter A from the notation and
just write g(s) and G(s) in place of g(A; s) and G(A; s), respec-
tively. Now, apply the integral formula for the gamma function (A2)
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and then the modular transformation for the theta function (A7) to
obtain

π−sΓ(s)G(s) = ∫
[0,∞)

xs−1
∑

j,k∈Z

′e−π( j 2
+k2
)x
∑
i ∈Z

e−πi2Ax dx

=
1
√

A∫[0,∞)
xs−3/2

∑
j,k∈Z

′e−π( j 2
+k2
)x
∑
i ∈Z

e−πi2
/Ax dx.

(E17)

Separate the i = 0 term, to get

π−sΓ(s)G(s) =
1
√

A∫[0,∞)
xs−3/2

∑
j,k∈Z

′e−π( j 2
+k2
)x dx

+
2
√

A∫[0,∞)
xs−3/2

∑
j,k∈Z

′e−π( j 2
+k2
)x

×∑
i ∈N

e−πi2
/Ax dx. (E18)

The first integral can be evaluated in terms of the gamma function
by (A2), while the second integral can be expressed in terms of the
modified Bessel function by (A3). The result is

π−sΓ(s)G(s) =
Γ(s − 1

2)
√

A πs− 1
2
∑

j,k∈Z

′ 1
( j 2
+ k2
)

s− 1
2

+
4

A
s
2+

1
4
∑

j,k∈Z

′
∑
i ∈N

⎛
⎜
⎝

i
√

j 2
+ k2

⎞
⎟
⎠

s− 1
2

× Ks− 1
2

⎛

⎝
2πi

√

j 2
+ k2

A
⎞

⎠

=
4
√

A
π−(s− 1

2 ) Γ(s −
1
2
) ζ(s −

1
2
) L−4(s −

1
2
)

+
4

A
s
2+

1
4
∑

N,i ∈N
r2(N)(

i
√

N
)

s− 1
2

× Ks− 1
2

⎛

⎝
2πi

√
N
A
⎞

⎠
. (E19)

On using all of the above back in (E15), we obtain

∑
i,j,k∈Z

′ 1
(Ai2
+ j 2
+ k2
)

s = 2A−sζ(2s) + 4
√ π

A
Γ(s − 1

2)

Γ(s)

× ζ(s −
1
2
) L−4(s −

1
2
)

+
4

A
s
2+

1
4

πs

Γ(s) ∑N,i ∈N
r2(N)

× (
i
√

N
)

s− 1
2

Ks− 1
2

⎛

⎝
2πi

√
N
A
⎞

⎠
. (E20)

The terms in (E14) involve Ks−1 Bessel functions, whereas Ks− 1
2

Bessel functions occur in (E20). That is because each application of

the theta function transformation formula lowers the subscript in
the resulting Bessel function by 1/2 due to the creation of an x−1/2

factor in the integral. The theta function transformation formula is
used twice (i.e., the formula is squared) in the derivation of (E14)
and only once in the derivation of (E20). Each of (E14) and (E20)
turns out to have its own advantages when it comes to convergence
for specific A and s values.

The alternating lattice sum is T2(A; s). Analysis in the pre-
vious sections can be modified to handle the alternating series
(E8) which has the term (−1)i+ j+k in the numerator, as follows.
Separating the terms according to whether i = 0 or i ≠ 0 gives

T2(A; s) = h(s) + 2H(s), (E21)

where

h(s) = ∑
j,k∈Z

′ (−1)j+k

( j 2
+ k2
)

s and H(s) =∑
i ∈N
∑

j,k ∈Z

(−1)i+j+k

(Ai2
+ j 2
+ k2
)

s .

(E22)
Using (A14), we obtain h(s) = −4(1 − 21−s

)ζ(s)L−4(s). Next, using
the integral formula for the gamma function (A2), we obtain

π−sΓ(s)H(s) = ∫
[0,∞)

xs−1
∑
i ∈N
(−1)ie−πAxi2

× ∑
j,k ∈Z
(−1)j+ke−πx( j 2

+k2
) dx, (E23)

= ∫
[0,∞)

xs−1
∑
i ∈N
(−1)ie−πAxi2

×
⎛

⎝
∑
j ∈Z
(−1)je−πxj 2⎞

⎠

2

dx. (E24)

Applying the modular transformation for theta functions leads to

π−sΓ(s)H(s) = ∫
[0,∞)

xs−1
∑
i ∈N
(−1)i

× e−πAxi2⎛

⎝

1
√

x∑j ∈Z
e−π(j+ 1

2 )
2
/x⎞

⎠

2

dx. (E25)

By formula (A12), this can be expressed as

π−sΓ(s)H(s) = ∫
[0,∞)

xs−2
∑
i ∈N
(−1)ie−πAxi2

× ∑
N ∈N0

r2(4N + 1)e−π(4N+1)/2x dx

=∑
i ∈N
∑

N ∈N0

(−1)ir2(4N + 1)

× ∫
[0,∞)

xs−2e−πAxi2
−π(4N+1)/2x dx. (E26)

The integral can be expressed in terms of Bessel functions
using (A3),
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π−sΓ(s)H(s) = 2∑
i ∈N
∑

N ∈N0

(−1)ir2(4N + 1)(
2N + 1

2

Ai2 )

(s−1)/2

× Ks−1
⎛

⎝
2πi
√

A(2N +
1
2
)
⎞

⎠
. (E27)

Incorporating all of the above back in (E21) results in

∑
i,j,k∈Z

′ (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s = −4(1 − 21−s
)ζ(s)L−4(s)

+
4πs

Γ(s)
A(1−s)/2

∑
i ∈N
∑

N ∈N0

(−1)i

× r2(4N + 1)(
2N + 1

2

i2 )

(s−1)/2

× Ks−1
⎛

⎝
2πi
√

A(2N +
1
2
)
⎞

⎠
. (E28)

Second formula for T2(A; s): this time, we separate the terms
according to whether ( j, k) = (0, 0) or ( j, k) ≠ (0, 0) and write

T2(A; s) = 2∑
i ∈N

(−1)i

(Ai2
)

s + J(s), (E29)

where

J(s) = ∑
j,k∈Z

′
∑
i ∈Z

(−1)i+j+k

(Ai2
+ j 2
+ k2
)

s . (E30)

Using (A22) gives

2∑
i ∈N

(−1)i

(Ai2
)

s = −2A−s
(1 − 21−2s

)ζ(2s). (E31)

It remains to analyze the sum for J(s). Using the integral formula for
the gamma function (A2) leads to

π−sΓ(s)J(s) = ∫
[0,∞)

xs−1
∑

j,k∈Z

′
(−1)j+je−π( j 2

+k2
)x

×∑
i ∈Z
(−1)ie−πi2Ax dx. (E32)

Applying the modular transformation (A9) gives

π−sΓ(s)J(s) =
1
√

A∫[0,∞)
xs−3/2

∑
j,k∈Z

′
(−1)j+ke−π( j 2

+k2
)x

×∑
i ∈Z

e−π(i+ 1
2 )

2
/Ax dx. (E33)

Setting N = j2
+ k2 and using

∑
i ∈Z

e−π(i+ 1
2 )

2
/Ax
= 2

∞

∑
i∈N0

e−π(i+ 1
2 )

2
/Ax
= 2∑

i ∈N
e−π(i− 1

2 )
2
/Ax (E34)

gives

π−sΓ(s)J(s) =
2
√

A
∑

N,i ∈N
(−1)N r2(N)

× ∫
[0,∞)

xs−3/2 e−πNx−π(i− 1
2 )

2
/Ax dx. (E35)

The integral can be evaluated in terms of the modified Bessel
function, (A3),

π−sΓ(s)J(s) =
4

A
s
2+

1
4
∑

N,i ∈N
(−1)N r2(N)(

i − 1
2√

N
)

s− 1
2

× Ks− 1
2

⎛

⎝
2π(i −

1
2
)

√
N
A
⎞

⎠
. (E36)

It follows that

∑
i,j,k∈Z

′ (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s = −2A−s
(1 − 21−2s

)ζ(2s)

+
4

A
s
2+

1
4

πs

Γ(s) ∑N,i ∈N
(−1)N r2(N)

× (
i − 1

2√
N
)

s− 1
2

Ks− 1
2

⎛

⎝
2π(i −

1
2
)

√
N
A
⎞

⎠
.

(E37)

Two formulas for L(A; s): on substituting the results of (E14)
and (E28) back into (E6), we obtain a formula for L(A; s) in terms
of Ks−1 Bessel functions,

L(A; s) = 4(
A + 1

2
)

s
ζ(s)L−4(s) +

πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2)

+
2πs√A

Γ(s)
(
√

A +
1
√

A
)

s

∑
N,i ∈N

r2(N)

× (
N
i2 )
(s−1)/2

Ks−1(2πi
√

AN)

+
2πs√A

Γ(s)
(
√

A +
1
√

A
)

s

∑
i ∈N
∑

N ∈N0

(−1)ir2(4N + 1)

× (
2N + 1

2

i2 )

(s−1)/2

Ks−1
⎛

⎝
2πi
√

A(2N +
1
2
)
⎞

⎠
. (E38)

On the other hand, if the results of (E20) and (E37) are used in (E6),
the resulting formula for L(A; s) involves Ks−1/2 Bessel functions,

L(A; s) = 2(
A + 1

4A
)

s
ζ(2s) + 2

√ π
A
(A + 1)s Γ(s − 1

2)

Γ(s)

× ζ(s −
1
2
) L−4(s −

1
2
)

+
2

A1/4 (
√

A +
1
√

A
)

s πs

Γ(s) ∑N,i ∈N
N(1−2s)/4 r2(N)

×

⎧⎪⎪
⎨
⎪⎪⎩

is− 1
2 Ks− 1

2

⎛

⎝
2πi

√
N
A
⎞

⎠
+ (−1)N

(i −
1
2
)

s− 1
2

× Ks− 1
2

⎛

⎝
2π(i −

1
2
)

√
N
A
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (E39)

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-24

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The formulas (E38) and (E39) can be used as checks against one
another. Moreover, the formulas offer different information about
special values of the lattice sum, as will be seen in Appendix G.

APPENDIX F: A MINIMUM PROPERTY OF THE LATTICE
SUM L (A ; s)

It was noted that on the interval 1/3 ≤ A ≤ 1, the packing den-
sity function ΔΛ has a minimum value when A = 1/2. Provided that
s > 3/2, the corresponding lattice sum L(A; s) also attains a min-
imum at the same value A = 1/2. The proof for this condition is
provided in Ref. 56.

Theorem F.1. Let L(A; s) be the lattice defined by (E5), that is,

L(A; s) = ∑
i,j,k∈Z

′
(

1
g(A; i, j, k)

)

s

= ∑
i,j,k∈Z

′
(

A + 1
A(i + j)2

+ ( j + k)2
+ (i + k)2 )

s

, (F1)

where s > 3/2 and 1/3 ≤ A ≤ 1. Then,

∂

∂A
L(A; s)∣

A=1/2
= 0 and

∂2

∂A2 L(A; s)∣
A=1/2

> 0. (F2)

As a consequence, for any fixed value s > 3/2, the lattice sum
L(A; s) attains a minimum when A = 1/2. Graphs of L(A; s) to illus-
trate this minimum property are shown in Fig. 17. In the limiting
case s→∞, we have

L(A;∞) = lim
s→∞

L(A; s) = kiss(Λ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

10 if A = 1/3,

8 if 1/3 < A < 1,

12 if A = 1.

(F3)

FIG. 17. Graph of L(A; s) vs A for various values of s For s→∞, we have at
both ends of the interval L(A = 1

3
;∞) = 10 and L(A = 1; ∞) = 12.

We find an interesting relation between the lattice sum and its
first derivative,

∂

∂A
L(A; s)∣

A=1
=

s
6

L(A; s)∣
A=1

(F4)

which can be proved as follows: on calculating the derivative using
(F1), we obtain

∂

∂A
L(A; s) =

2s
(A + 1)2 ∑

i,j,k∈Z

′
(k2
+ ik + jk − ij)

× (
A + 1

A(i + j)2
+ ( j + k)2

+ (i + k)2 )

s+1

and on setting A = 1, it follows that

∂

∂A
L(A; s)∣

A=1
=

s
2 ∑i,j,k∈Z

′ k2
+ ik + jk − ij

(i2
+ j 2
+ k2
+ ij + jk + ki)s+1 .

Now, replace the summation indices (i, j, k) with the cyclic per-
mutations ( j, k, i) and (k, i, j) and add the three equations to
obtain

3
∂

∂A
L(A; s)∣

A=1
=

s
2 ∑i,j,k∈Z

′ i2
+ j 2
+ k2
+ ij + jk + ki

(i2
+ j 2
+ k2
+ ij + jk + ki)s+1

=
s
2 ∑i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
+ ij + jk + ki)s

=
s
2

L(A; s)∣
A=1

.

This proves (F4).

APPENDIX G: ANALYTIC CONTINUATIONS
OF THE LATTICE SUMS L (A ; s)

We will now show that the lattice sums L(A; s) can be contin-
ued analytically to the whole s-plane and that the resulting functions
have a single simple pole at s = 3/2 and no other singularities. We
do this in steps. First, we show that the lattice sums each have a sim-
ple pole at s = 3/2 and determine the residue. Then, we show that
the analytic continuations obtained are valid for the whole s-plane
and there are no other singularities. Finally, values of the analytic
continuations at the points s = 1/2 and s = 1, 0,−1,−2, . . . are com-
puted. In particular, the evaluation of T2(A; s) at s = 1/2 in the case
A = 1 gives the Madelung constant, e.g., see Ref. 31, (Ref. 11, pp. xiii,
39–51).18

We start by showing that L(A; s) has a simple pole at s = 3/2
and determine the residue. In formula (E38), all of the terms are
analytic at s = 3/2, except for the term involving ζ(2s − 2). It follows
that
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lim
s→3/2
(s − 3/2)L(A; s) = lim

s→3/2
(s − 3/2)

πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2)

= 2πA(1 +
1
A
)

3/2
lim

s→3/2
(s − 3/2)ζ(2s − 2)

=
2π
√

A
(A + 1)3/2

×
1
2

lim
u→1
(u − 1)ζ(u)

=
π
√

A
(A + 1)3/2, (G1)

where (A16) was used in the last step of the calculation. It follows
further that L(A; s) has a simple pole at s = 3/2 and the residue is
given by

Res(L(A; s), 3/2) =
π
√

A
(A + 1)3/2. (G2)

This corresponds to 12 times the packing density, i.e.,

Res(L(A; s), 3/2) = 12ΔΛ. (G3)

For example, taking A = 1 gives

Res(LFCC
3 (s), 3/2) = 2

√
2 π, (G4)

while taking A = 1/2 gives

Res(LBCC
3 (s), 3/2) = 3

√
3 π/2. (G5)

Laurent’s theorem implies that there is an expansion of the form

L(A; s) =
c−1

s − 3/2
+ c0 +

∞

∑
n=1

cn(s − 3/2)n, (G6)

where

c−1 = Res(L(A; s), 3/2) =
π
√

A
(A + 1)3/2, (G7)

and the coefficients c0, c1, and c2, . . . depend on A but not on s. To
calculate c0, start with the fact that

lim
s→3/2
(

πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2) −

c−1

s − 3/2
)

=
π
√

A
(A + 1)3/2

(2γ − 2 + log(1 +
1
A
)), (G8)

where γ = 0.577 215 664 901 532 86 060 . . . is the Euler–Mascheroni
constant. Then, use (E38) and (A5) to deduce

c0 = lim
s→3/2
(L(A; s) −

c−1

s − 3/2
) =
√

2(A + 1)3/2ζ(
3
2
)L−4(

3
2
)

+
π
√

A
(A + 1)3/2

(2γ − 2 + log(1 +
1
A
))

+
2π
√

A
(A + 1)3/2

∑
k,N ∈N

1
k

r2(N) exp (−2πk
√

AN)

+
2π
√

A
(A + 1)3/2

∑
k,N ∈N

(−1)k

k
r2(4N + 1)

× exp
⎛

⎝
−2πk

√

A(2N +
1
2
)
⎞

⎠
. (G9)

Interchanging the order of summation and evaluating the sum over
k gives

c0 =
√

2(A + 1)3/2ζ(
3
2
)L−4(

3
2
)

+
π
√

A
(A + 1)3/2

(2γ − 2 + log(1 +
1
A
))

−
2π
√

A
(A + 1)3/2

∑
N ∈N

r2(N) log (1 − e−2π
√

AN
)

−
2π
√

A
(A + 1)3/2

∑
N ∈N0

r2(4N + 1) log(1 + e−π
√

2A(4N+1)
).

(G10)

Numerical evaluation in the case A = 1 gives

c0∣A=1 = 6.984 05 25 503 22 247 93 406 . . . . (G11)

We now evaluate the analyticity of the lattice sums at other
values of s. By (A6), the double series of Bessel functions in (E38)
converges absolutely and uniformly on compact subsets of the s-
plane and, therefore, represents an entire function of s. It follows
that L(A; s) has an analytic continuation to a meromorphic function
which is analytic except possibly at the singularities of the terms,

4(
A + 1

2
)

s
ζ(s)L−4(s) (G12)

and

πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2). (G13)

The function in (G12) is analytic except at s = 1 due to the pole of
ζ(s). The function L−4(s) and the exponential function are both
entire. The function in (G13) is analytic except at s = 1 and s = 3/2.

The singularity at s = 3/2 was already studied before.26,70 Using
(A16) and the values of ζ(0) and L−4(1) in (A19) and (A20), we find
that

4(
A + 1

2
)

s
ζ(s)L−4(s) =

(A + 1)π
2(s − 1)

+O(1) as s→ 1 (G14)

and
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πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2) = −

(A + 1)π
2(s − 1)

+O(1) as s→ 1. (G15)

It follows that the sum of the functions in (G12) and (G13) has a
removable singularity at s = 1 and thus L(A; s) is also analytic at
s = 1. The analyticity at s = 1 can also be seen directly from the alter-
native formula for L(A; s) in (E39). We thus showed that L(A; s) has
an analytic continuation to a meromorphic function of s, which has a
simple pole at s = 3/2 and no other singularities. Because L(A; s) has
only one singularity, namely, s = 3/2, the Laurent expansion (G6) is
valid in the annulus 0 < ∣s − 3/2∣ <∞, i.e., for all s ≠ 3/2.

By the theory of complex variables, the analytic continuation,
if one exists, is unique; e.g., see Ref. 96. Therefore, analytic continu-
ation formulas can be used to assign values to divergent series. For
example, the Madelung constant is defined by

M = ∑
i,j,k∈Z

′ (−1)i+j+k

(i2
+ j 2
+ k2
)

s ∣
s=1/2

. (G16)

This is interpreted as being the value of the analytic continuation of
the series at s = 1/2 because the sum diverges if s = 1/2. From now
on, we shall use the expression “the value of a series at a point s”
to mean “the value of the analytic continuation of the series at the
point s.”

For the A-dependent case, on putting s = 1/2 in (E28), we
obtain an analytic expression for the value of

M(A) = ∑
i,j,k∈Z

′ (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s ∣
s=1/2

, (G17)

which specializes to the Madelung constant in the case A = 1.97 We
have

M(A) = − 4(1 − 21−s
)ζ(s)L−4(s)∣s=1/2

+
4πs

Γ(s)
A(1−s)/2

∑
i ∈N
∑

N ∈N0

(−1)ir2(4N + 1)

× (
2N + 1

2

i2 )

(s−1)/2

Ks−1
⎛

⎝
2πi
√

A(2N +
1
2
)
⎞

⎠

RRRRRRRRRRRRs=1/2

.

(G18)

Now, we use (A4) and (A5) to express the Bessel functions in terms
of exponential functions. The result simplifies to

M(A) = 4(
√

2 − 1)ζ(
1
2
)L−4(

1
2
)

+ 2∑
i ∈N
∑

N ∈N0

(−1)i r2(4N + 1)
√

2N + 1
2

e−2πi
√

A(2N+1/2). (G19)

On interchanging the order of summation and summing the
geometric series, we obtain

M(A) = 4(
√

2 − 1)ζ(
1
2
)L−4(

1
2
)

− 2
√

2 ∑
N ∈N0

r2(4N + 1)
√

4N + 1
(

1

eπ
√

2A(4N+1)
+ 1
). (G20)

When A = 1, this gives the Madelung constant defined by (G16).
Numerical evaluation gives

M =M(1) = −1.747 56 45 946 33 182 19 063 . . . , (G21)

which is in agreement with Ref. 11, p. xiii (apart from the minus
sign which we have corrected here) and matches the value of d(1) in
Ref. 11, pp. 39–51.

In a similar way, starting from (E14) and using (A5) and (A19),
we obtain

∑
i,j,k∈Z

′ 1
(Ai2
+ j 2
+ k2
)

s ∣
s=1/2

= 4ζ(
1
2
)L−4(

1
2
) +

π
√

A
3
+ 2 ∑

i,N ∈N

r2(N)
√

N
e−2πi

√
AN

= 4ζ(
1
2
)L−4(

1
2
) +

π
√

A
3
+ 2∑

N ∈N

r2(N)
√

N
(

1

e2π
√

AN
− 1
).

(G22)

Numerical evaluation in the case A = 1 gives

∑
i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1/2

= −2.837 29 74 794 80 619 47 666 . . . .

(G23)
Now, from (E6) we have for the fcc lattice,

L(A = 1;
1
2
) =

1
√

2
∑

i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1/2

+
1
√

2
∑

i,j,k∈Z

′ (−1)i+j+k

(i2
+ j 2
+ k2
)

s ∣
s=1/2

. (G24)

Hence, using the values from (G21) and (G23), we obtain

L(A = 1;
1
2
) = −3.241 98 70 634 10 888 39 428 . . . . (G25)

We now turn to the value of the lattice sum at s = 1. It was
noted above that (E38), which involves Ks−1 Bessel functions, con-
tains terms with singularities at s = 1 and, therefore, is not suitable
for calculations at that value of s. Instead, we can use (E39), which
involves Ks−1/2 Bessel functions. As in Appendix F, two steps are
involved. First, the K1/2 Bessel functions can be expressed in terms
of the exponential function by (A5). Then, the double sum can be
reduced to a single sum by geometric series. We omit the details
and just record the final results and corresponding numerical values.
From (E20), we have

∑
i,j,k∈Z

′ 1
(Ai2
+ j 2
+ k2
)

s ∣
s=1
=

π2

3A
+

4π
√

A
ζ(

1
2
)L−4(

1
2
)

+
2π
√

A
∑

N ∈N

r2(N)
√

N
(

1

e2π
√

N/A
− 1
),

(G26)

while (E37) gives
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∑
i,j,k∈Z

′ (−1)i+j+k

(Ai2
+ j 2
+ k2
)

s ∣
s=1
=
−π2

6A
+

2π
√

A
∑

N ∈N
(−1)N r2(N)

√
N

× (
1

eπ
√

N/A
− e−π

√
N/A
). (G27)

Then, (E6) can be used to write down the value of L(A; s). For
example, when A = 1, the above-mentioned formulas give

∑
i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1
= −8.913 63 29 175 85 151 27 268 . . .

(G28)
and

∑
i,j,k∈Z

′ (−1)i+j+k

(i2
+ j 2
+ k2
)

s ∣
s=1
= −2.519 35 61 520 89 445 31 334 . . . .

(G29)
Then, taking s = 1 in (E6) gives for the fcc lattice,

L(A = 1, 1) =∑
i,j,k

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1
+∑

i,j,k

′ (−1)i+j+k

(i2
+ j 2
+ k2
)

s ∣
s=1

,

(G30)

= −11.432 98 90 696 74 596 58 602 . . . . (G31)

We note a connection between two of the values in the above-
mentioned analysis. By setting A = 1 in each of (G22) and (G26),
we obtain the remarkable result,

∑
i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1
= π ∑

i,j,k∈Z

′ 1
(i2
+ j 2
+ k2
)

s ∣
s=1/2

. (G32)

This is consistent with Ref. 11, p. 46 (1.3.44) and is the special case
s = 1 of the functional equation,

π−sΓ(s)T1(1; s) = π−(
3
2−s)Γ(

3
2
− s)T1(1;

3
2
− s). (G33)

This functional equation can be deduced from the two formulas for
T1(A; s) in (E14) and (E20), as follows: replace s with 3

2 − s in (E14)
and then multiply by πs− 3

2 Γ( 3
2 − s) and set A = 1 to get

πs− 3
2 Γ(

3
2
− s)T1(1;

3
2
− s)

= 4πs− 3
2 Γ(

3
2
− s)ζ(

3
2
− s)L−4(

3
2
− s)

+ 2πs− 1
2 Γ(

1
2
− s)ζ(1 − 2s) + 4 ∑

i,N ∈N
r2(N)

× (
N
i2 )
( 1

2−s)/2
K 1

2−s(2πi
√

N), (G34)

where we have used the functional equation for the gamma function
in the form Γ(3/2 − s) = (1/2 − s)Γ(1/2 − s) to obtain the second
term on the right-hand side. Now, apply the functional Eqs. (A4),
(A17), and (A18) to deduce

π−(
3
2−s)Γ(

3
2
− s)T1(1;

3
2
− s)

= 4π
1
2−s Γ(s −

1
2
)ζ(s −

1
2
)L−4(s −

1
2
) + 2π−s Γ(s)ζ(2s)

+ 4 ∑
i,N ∈N

r2(N)(
i
√

N
)

s− 1
2

Ks− 1
2
(2πi
√

N). (G35)

The functional equation (G33) follows from this by using (E20). In
addition to providing another proof of the functional equation, the
calculation above also demonstrates the interconnection between
the formulas (E14) and (E20). Further functional equations of this
type are considered in Ref. 11, p. 46.

We now evaluate the values at s = 0,−1,−2,−3, . . . for the
lattice sum. Recall from (E38) that

L(A; s) = 4(
A + 1

2
)

s
ζ(s)L−4(s) +

πA
s − 1
(1 +

1
A
)

s
ζ(2s − 2)

+
2πs√A

Γ(s)
(
√

A +
1
√

A
)

s

∑
i,N ∈N

r2(N)(
N
i2 )
(s−1)/2

× Ks−1(2πi
√

AN) +
2πs√A

Γ(s)
(
√

A +
1
√

A
)

s

×∑
i ∈N
∑

N ∈N0

(−1)ir2(4N + 1)(
2N + 1

2

i2 )

(s−1)/2

× Ks−1
⎛

⎝
2πi
√

A(2N +
1
2
)
⎞

⎠
. (G36)

On using the values ζ(0) = − 1
2 , ζ(−2) = 0, and L−4(0) = 1

2 and
the limiting value lims→01/Γ(s) = 0, we readily obtain the result
L(A; 0) = −1. Moreover, since

ζ(−2) = ζ(−4) = ζ(−6) = ⋅ ⋅ ⋅ = 0, (G37)

L−4(−1) = L−4(−3) = ζ(−5) = ⋅ ⋅ ⋅ = 0, (G38)

and lims→N
1

Γ(s)
= 0 if N = 0,−1,−2, . . . , (G39)

it follows that

L(A;−1) = L(A;−2) = L(A;−3) = ⋅ ⋅ ⋅ = 0. (G40)

The graph of L(A = 1, s) obtained from the formulas (E38)
and (E39) on the intervals −10 < s < 10 and −7 < s < 0 is shown in
Fig. 18, which illustrates the properties discussed in this section.

We briefly consider the behavior of the lattices in the limiting
cases A→ 0+ and A→ +∞. For example, from Eq. (13), we can eas-
ily see that one of the basis vectors become zero in the limit A→ 0+,
leaving a sub-lattice of lower dimension. We, therefore, discuss each
case A→ 0+ and A→ +∞ both in terms of theta functions and then
in terms of the lattice basis vectors.

First, consider the limit A→ 0+. In the interval 0 < A < 1/3, the
theta function is

θ(A; q) = ∑
i,j,k ∈Z

qg(A;i,j,k)
= ∑

i,j,k ∈Z
q(A(i+j)2

+( j+k)2
+(i+k)2

)/4A. (G41)

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-28

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 18. Graph of y = L(A = 1; s) for −10 < s < 10 for the
fcc structure. The inlet shows y = L(A = 1; s) for −7 < s
< 0.

As A→ 0+, we have q( j+k)2
/4A
→ 0 and q(i+k)2

/4A
→ 0 unless j = −k

and i = −k, respectively. Hence,

lim
A→0+

θ(A; q) = lim
A→0+
∑
k ∈Z

⎛

⎝
∑
i=−k
∑
j=−k

q(A(i+j)2
+( j+k)2

+(i+k)2
)/4A⎞

⎠

= lim
A→0+
∑
k ∈Z

qA(−k−k)2
/4A
=

∞

∑
k=−∞

qk2

. (G42)

This corresponds to the one-dimensional lattice with minimal dis-
tance 1. The kissing number is 2, which is in agreement with the
other lattices in the range 0 < A < 1/3, as indicated in Table I. In
terms of the lattice basis vectors for the bct lattice, we have

b⃗1 = (
1
2

,
1

2
√

A
, 0)

⊺

,

b⃗2 = (
1
2

, 0,
1

2
√

A
)

⊺

,

b⃗3 = (0,
1

2
√

A
,

1
2
√

A
)

⊺

.

(G43)

The only linear combinations v⃗ = ib⃗1 + jb⃗2 + kb⃗3 (for i, j, k ∈ Z) that
remain finite in the limit A→ 0+ occur when i = −k and j = −k, in
which case we obtain v⃗ = −kb⃗1 − kb⃗2 + kb⃗3 = −k(1, 0, 0)⊺. That is,
the limiting lattice is just the one-dimensional lattice consisting of
integer multiples of (1, 0, 0)⊺.

Now, consider the limit A→ +∞. For A > 1, the theta function
is

θ(A; q) = ∑
i,j,k ∈Z

qg(A;i,j,k)
= ∑

i,j,k ∈Z
q(A(i+j)2

+( j+k)2
+(i+k)2

)/2. (G44)

Since qA(i+j)2
/2
→ 0 as A→ +∞ unless i = −j, it follows that

lim
A→+∞

θ(A; q) = ∑
j,k ∈Z

⎛

⎝
∑
i=−j

q(A(i+j)2
+( j+k)2

+(i+k)2
)/2⎞

⎠

= ∑
j,k ∈Z

q(( j+k)2
+(−j+k)2

)/2
= ∑

j,k ∈Z
qj 2
+k2

. (G45)

This is the theta series for the two-dimensional square close packing
lattice with minimal distance 1. The kissing number is 4, in agree-
ment with other values in the range A > 1 given by Table I. In terms
of the lattice basis vectors, we have

b⃗1 =
1
√

2
(
√

A, 1, 0)⊺, b⃗2 =
1
√

2
(
√

A, 0, 1)⊺, b⃗3 =
1
√

2
(0, 1, 1)⊺.

(G46)
The only linear combinations v⃗ = ib⃗1 + jb⃗2 + kb⃗3 (for i, j, k ∈ Z) that
remain finite in the limit A→ +∞ occur when i = −j, in which case
we obtain

v⃗ = −jb⃗1 + jb⃗2 + kb⃗3 =
1
√

2
[j(0,−1, 1)⊺ + k(0, 1, 1)⊺]. (G47)

This is isomorphic to the two-dimensional square close packing lat-
tice with minimal distance 1, rotated from the coordinate axes by
45○.

APPENDIX H: THREE-BODY LATTICE SUMS

The three-body lattice sums for the ATM potential for differ-
ent A-values according to Eq. (25) are listed in Table IV. The data
were obtained from the treatment of the Epstein zeta function, as
described in Sec. II E.
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TABLE IV. Values for ATM three-body lattice sums.

A f (3)r (A) f (3)a (A) f (3)coh = f (3)r (A) + f (3)r (A)

0.100 000 000 000 000 00 94.323 511 425 615 860 −69.582 608 619 579 300 24.740 902 806 036 560
0.111 111 111 111 111 11 78.996 234 807 153 090 −51.772 409 380 650 180 27.223 825 426 502 913
0.122 222 222 222 222 22 68.141 987 707 984 340 −40.523 230 176 857 204 27.618 757 531 127 130
0.133 333 333 333 333 33 60.127 931 145 011 650 −33.031 920 833 977 730 27.096 010 311 033 922
0.144 444 444 444 444 44 54.014 423 818 716 900 −27.821 816 896 120 083 26.192 606 922 596 810
0.155 555 555 555 555 55 49.227 632 547 044 850 −24.065 452 623 566 330 25.162 179 923 478 533
0.166 666 666 666 666 66 45.399 641 069 773 320 −21.274 409 710 807 973 24.125 231 358 965 350
0.177 777 777 777 777 77 42.284 826 583 051 180 −19.147 330 114 086 900 23.137 496 468 964 287
0.188 888 888 888 888 88 39.713 541 043 931 286 −17.491 030 258 502 235 22.222 510 785 429 050
0.200 000 000 000 000 00 37.565 176 004 82 040 −16.177 483 733 401 676 21.387 692 271 180 384
0.211 111 111 111 111 11 35.751 832 524 862 300 −15.119 334 299 395 149 20.632 498 225 467 145
0.222 222 222 222 222 22 34.208 057 391 103 196 −14.255 421 758 422 894 19.952 635 632 680 300
0.233 333 333 333 333 33 32.884 186 353 006 996 −13.541 936 344 866 237 19.342 250 008 140 766
0.244 444 444 444 444 44 31.741 906 110 675 053 −12.946 849 917 296 078 18.795 056 193 378 983
0.255 555 555 555 555 55 30.751 222 581 342 716 −12.446 315 486 424 176 18.304 907 094 918 548
0.266 666 666 666 666 66 29.888 344 501 346 580 −12.022 282 828 652 422 17.866 061 672 694 160
0.277 777 777 777 777 77 29.134 177 122 870 604 −11.660 884 764 889 580 17.473 292 357 981 023
0.288 888 888 888 888 88 28.473 231 311 321 676 −11.351 323 228 504 182 17.121 908 082 817 498
0.300 000 000 000 000 00 27.892 820 967 578 835 −11.085 086 344 259 825 16.807 734 623 319 007
0.311 111 111 111 111 11 27.382 464 087 618 917 −10.855 388 996 987 124 16.527 075 090 631 797
0.322 222 222 222 222 22 26.933 429 942 612 158 −10.656 766 985 644 794 16.276 662 956 967 370
0.333 333 333 333 333 33 26.538 392 635 746 654 −10.484 778 456 088 293 16.053 614 179 658 368
0.344 444 444 444 444 44 26.191 163 135 730 186 −10.335 781 403 352 645 15.855 381 732 377 538
0.355 555 555 555 555 55 25.886 479 914 810 245 −10.206 765 870 266 250 15.679 714 044 544 000
0.366 666 666 666 666 66 25.619 843 846 530 660 −10.095 225 986 419 386 15.524 617 860 111 277
0.377 777 777 777 777 77 25.387 386 879 598 203 −9.999 061 377 931 273 0 15.388 325 501 666 927
0.388 888 888 888 888 88 25.185 766 737 800 538 −9.916 500 474 040 106 0 15.269 266 263 760 429
0.400 000 000 000 000 00 25.012 081 855 389 425 −9.846 040 310 479 587 0 15.166 041 544 909 831
0.411 111 111 111 111 11 24.863 802 178 265 250 −9.786 398 883 876 206 0 15.077 403 294 389 043
0.422 222 222 222 222 22 24.738 712 502 866 125 −9.736 477 143 320 062 0 15.002 235 359 546 063
0.433 333 333 333 333 33 24.634 865 795 888 576 −9.695 328 445 993 656 0 14.939 537 349 894 920
0.444 444 444 444 444 44 24.550 544 514 439 906 −9.662 133 840 829 120 0 14.888 410 673 610 792
0.455 555 555 555 555 55 24.484 228 380 961 902 −9.636 181 937 706 048 0 14.848 046 443 255 853
0.466 666 666 666 666 66 24.434 567 397 857 776 −9.616 852 410 735 849 0 14.817 714 987 121 931
0.477 777 777 777 777 77 24.400 359 140 141 877 −9.603 602 401 199 240 0 14.796 756 738 942 634
0.488 888 888 888 888 88 24.380 529 560 080 320 −9.595 955 249 133 514 0 14.784 574 310 946 809
0.500 000 000 000 000 00 24.374 116 689 926 883 −9.593 491 106 415 080 0 14.780 625 583 511 807
0.511 111 111 111 111 11 24.380 256 747 943 890 −9.595 839 078 803 330 0 14.784 417 669 140 566
0.522 222 222 222 222 22 24.398 172 246 700 100 −9.602 670 617 391 109 0 14.795 501 629 308 987
0.533 333 333 333 333 33 24.427 161 776 971 960 −9.613 693 936 256 187 0 14.813 467 840 715 774
0.544 444 444 444 444 44 24.466 591 199 811 035 −9.628 649 277 177 047 0 14.837 941 922 633 988
0.555 555 555 555 555 55 24.515 886 026 805 056 −9.647 304 876 902 943 0 14.868 581 149 902 113
0.566 666 666 666 666 66 24.574 524 806 789 046 −9.669 453 519 681 912 0 14.905 071 287 107 134
0.577 777 777 777 777 77 24.642 033 368 202 980 −9.694 909 579 441 795 0 14.947 123 788 761 190
0.588 888 888 888 888 88 24.717 979 791 452 187 −9.723 506 473 302 120 0 14.994 473 318 150 071
0.600 000 000 000 000 00 24.801 970 006 178 507 −9.755 094 462 032 037 0 15.046 875 544 146 474
0.611 111 111 111 111 11 24.893 643 925 210 420 −9.789 538 744 131 757 0 15.104 105 181 078 666
0.622 222 222 222 222 22 24.992 672 040 848 475 −9.826 717 799 403 035 0 15.165 954 241 445 434
0.633 333 333 333 333 33 25.098 752 420 626 415 −9.866 521 945 181 134 0 15.232 230 475 445 277
0.644 444 444 444 444 44 25.211 608 049 226 257 −9.908 852 074 419 482 0 15.302 755 974 806 772
0.655 555 555 555 555 55 25.330 984 471 164 940 −9.953 618 549 838 264 0 15.377 365 921 326 671
0.666 666 666 666 666 66 25.456 647 695 517 326 −10.000 740 232 325 285 15.455 907 463 192 048
0.677 777 777 777 777 77 25.588 382 329 509 372 −10.050 143 625 200 935 15.538 238 704 308 440
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TABLE IV. (Continued.)

A f (3)r (A) f (3)a (A) f (3)coh = f (3)r (A) + f (3)r (A)

0.688 888 888 888 888 88 25.725 989 912 504 650 −10.101 762 118 796 010 15.624 227 793 708 641
0.700 000 000 000 000 00 25.869 287 425 869 180 −10.155 535 322 025 365 15.713 752 103 843 817
0.711 111 111 111 111 11 26.018 105 957 551 953 −10.211 408 469 676 325 15.806 697 487 875 624
0.722 222 222 222 222 22 26.172 289 503 063 816 −10.269 331 895 722 843 15.902 957 607 340 980
0.733 333 333 333 333 33 26.331 693 886 967 138 −10.329 260 564 360 926 16.002 433 322 606 210
0.744 444 444 444 444 44 26.496 185 791 055 442 −10.391 153 651 638 422 16.105 032 139 417 020
0.755 555 555 555 555 55 26.665 641 877 180 228 −10.454 974 171 488 043 16.210 667 705 692 188
0.766 666 666 666 666 66 26.839 947 994 200 763 −10.520 688 640 873 030 16.319 259 353 327 737
0.777 777 777 777 777 77 27.018 998 459 845 170 −10.588 266 779 406 624 16.430 731 680 438 555
0.788 888 888 888 888 88 27.202 695 409 400 450 −10.657 681 239 450 945 16.545 014 169 949 510
0.800 000 000 000 000 00 27.390 948 204 127 140 −10.728 907 363 179 943 16.662 040 840 947 200
0.811 111 111 111 111 11 27.583 672 893 138 015 −10.801 922 963 620 449 16.781 749 929 517 560
0.822 222 222 222 222 22 27.780 791 723 221 473 −10.876 708 126 908 810 16.904 083 596 312 660
0.833 333 333 333 333 33 27.982 232 691 721 270 −10.953 245 033 538 540 17.028 987 658 182 730
0.844 444 444 444 444 44 28.187 929 138 152 157 −11.031 517 796 468 115 17.156 411 341 684 050
0.855 555 555 555 555 55 28.397 819 370 709 860 −11.111 512 314 338 800 17.286 307 056 371 058
0.866 666 666 666 666 66 28.611 846 324 266 285 −11.193 216 138 171 746 17.418 630 186 094 546
0.877 777 777 777 777 77 28.829 957 246 812 050 −11.276 618 350 194 180 17.553 338 896 617 873
0.888 888 888 888 888 88 29.052 103 411 639 130 −11.361 709 453 496 548 17.690 393 958 142 580
0.900 000 000 000 000 00 29.278 239 852 844 173 −11.448 481 271 471 891 17.829 758 581 372 290
0.911 111 111 111 111 11 29.508 325 121 990 370 −11.536 926 856 036 661 17.971 398 265 953 710
0.922 222 222 222 222 22 29.742 321 063 989 510 −11.627 040 403 757 988 18.115 280 660 231 520
0.933 333 333 333 333 33 29.980 192 610 464 800 −11.718 817 179 160 165 18.261 375 431 304 643
0.944 444 444 444 444 44 30.221 907 589 035 680 −11.812 253 444 459 664 18.409 654 144 576 024
0.955 555 555 555 555 55 30.467 436 547 115 813 −11.907 346 395 178 287 18.560 090 151 937 530
0.966 666 666 666 666 66 30.716 752 588 962 620 −12.004 094 101 029 036 18.712 658 487 933 580
0.977 777 777 777 777 77 30.969 831 224 834 856 −12.102 495 451 618 665 18.867 335 773 216 197
0.988 888 888 888 888 88 31.226 650 231 227 172 −12.202 550 106 530 040 19.024 100 124 697 128
1.000 000 000 000 000 00 31.487 189 521 251 523 −12.304 258 449 363 747 19.182 931 071 887 780

The total lattice sum shows a minimum at the bcc structure
(A = 1

2), as shown in Fig. 8. In order to prove this, we show that
for any νi ∈ C,

∂

∂A
ζ(3)Λ(A)(ν⃗)∣

A=1/2
= 0 (H1)

holds. As the ATM potential is a finite sum of three-body zeta func-
tions, its derivative, therefore, also vanishes. Let x⃗(A) = B⊺(A)n⃗
with n⃗ ∈ Zd. Then,

∂

∂A
1

∣B⊺(A)n⃗∣ν
∣

A=1/2
= −ν

x⃗(1/2)TDx⃗(1/2)
∣x⃗(1/2)∣ν+1 ,

with the diagonal traceless matrix,

D = B⊺′(1/2)(B⊺(1/2))−1
=

⎛
⎜
⎜
⎝

−2/3 0 0
0 1/3 0
0 0 1/3

⎞
⎟
⎟
⎠

.

which is convenient for our proof as we shall see. Thus,

∂

∂A
ζ(3)Λ(A)(ν⃗)∣

A=1/2

= − ∑
x⃗ ,y⃗ ∈Λ(1/2)

′
(ν1

x⃗ TDx⃗
∣x⃗∣ν1+1

1
∣y⃗∣ν2

1
∣z⃗∣ν3
+ ν2

1
∣x⃗∣ν1

y⃗ TDy⃗
∣y⃗∣ν2+1

1
∣z⃗∣ν3

+ ν3
1
∣x⃗∣ν1

1
∣y⃗∣ν2

z⃗ TDz⃗
∣z⃗∣ν3+1 ), (H2)

with the convention z⃗ = y⃗ − x⃗. As Λ(1/2) is the bcc lattice, we can
choose a rotated lattice Λ0, such that Λ0 = c(Zd

∪ (Zd
+ 1/2)), and

the resulting lattice sums do of course not depend on this particular
choice.

The bcc lattice Λ0 in this representation now exhibits the
property that for z⃗ ∈ Λ0 also its cyclic permutation,

σz⃗ = (z2, . . . , zd, z1)
T

is an element of Λ0. Thus, we have σnΛ0 = Λ0 for any n ∈ N.
We now show that sum over the first term in Eq. (H2) van-

ishes and thus, in complete analogy, the two remaining sums as well.
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Averaging over cyclic permutations and using that permutations of
the elements of z⃗ do not change the norm, we find

−ν1 ∑
x⃗,y⃗ ∈Λ0

x⃗ TDx⃗
∣x⃗∣ν1+1

1
∣y⃗∣ν2

1
∣z⃗∣ν3
= −ν1

1
3 ∑

x⃗ ,y⃗ ∈Λ0

′
2

∑
n=0
((σnx⃗)TD(σnx⃗))

×
1
∣x⃗∣ν1+1

1
∣y⃗∣ν2

1
∣z⃗∣ν3

.

However, as D is diagonal, we have

2

∑
n=0
((σnx⃗)TD(σnx⃗)) = ∣x⃗∣2 Tr (D) = 0,

as D is traceless. With the same argument for the remaining two
sums, we have thus shown that all three terms in Eq. (H2) vanish.
Thus, also

∂

∂A
ζ(3)Λ(A)(ν⃗)∣

A=1/2
= 0.

Finally, recall that the three-body cohesive energy is a recombination
of three-body zeta functions,

E(3)coh/λ =
1

24
ζ(3)Λ(A)(3, 3, 3) −

3
16

ζ(3)Λ(A)(−1, 5, 5) +
3
8

ζ(3)Λ(A)(1, 3, 5),

and therefore,

∂

∂A
E(3)coh ∣

A=1/2
= 0.

The defining integral for ζ(3)Λ can be meromorphically contin-
ued to νi ∈ C by means of the Hadamard integral. This, however,
requires the computation of derivatives of the Epstein zeta function,
which can be avoided for the special case of the ATM potential. Here,
only the ν⃗ = (−1, 3, 5)T term leads to a hypersingular Hadamard
integral, which can be reduced to a standard integral as follows. We
readily find that

∫
E∗

ZΛ,ν(k⃗) dk⃗ = 0, ν > d,

and thus also the meromorphic continuation to ν ∈ C equals zero.
Hence, we have

ζ(3)Λ (−1, 1, 3) =
1

VΛ
∫

E∗
ZΛ,−1(k⃗)

× (ZΛ,1(k⃗)ZΛ,3(k⃗) − ZΛ,1(0⃗)ZΛ,3(0⃗)) dk⃗,

where the right-hand side is defined as a regular integral as the
term in brackets scales as k⃗ 2 around k⃗ = 0⃗ due to reflection sym-
metry as k⃗→ −k⃗. In conclusion, the ATM potential for any lattice
and any dimension can be written in terms of three generalized zeta
functions that can, in turn, be efficiently computed to machine pre-
cision from singular integrals that involve products of Epstein zeta
functions.

FIG. 19. Three-body zeta function for Λ = Z computed via the Epstein integral
representation for ν⃗ = (ν − 2, ν, ν + 2)T , including its meromorphic continuation
(a). The dashed gray lines indicate the simple poles at ν ∈ 3/2 −N, correspond-
ing to the condition νi + νj ∈ d + 2N for i ≠ j, and ν = 2/3, corresponding to
ν1 + ν2 + ν3 = 2d. Panel (b) offers a magnified view of the region close to the
origin.

FIG. 20. Two dimensional three-body zeta function (a) for the square lattice
Λ = SL = Z2 (blue) and the hexagonal lattice Λ = HL (orange) shown in Fig. 4
for R = 1 via the Epstein integral representation for ν⃗ = (ν − 2, ν, ν + 2)T , includ-
ing its meromorphic continuation. For ν ≤ 1, the three-body zeta function for the
square lattice and the three-body zeta function for the hexagonal lattice are visually
indistinguishable. The dashed gray lines indicate the simple poles at ν ∈ 1 − 2N,
corresponding to the condition νi + νj ∈ d + 2N for i ≠ j, and ν = 4/3, corre-
sponding to ν1 + ν2 + ν3 = 2d. Panel (b) offers a magnified view of the region
close to the origin.

We display the behavior of the one-dimensional three-body
zeta function Z(3)Z and two-dimensional three-body zeta functions
Z(3)SL for SL = Z2 and Z(3)HL for

HL = [
1 1/2
0
√

3/2
]Z2

as a function of ν⃗, including its meromorphic continuation, in
Figs. 19 and 20. We observe simple poles at ν1 + ν2 + ν3 = 2d and
νi + νj = d − 2n, n ∈ N, where i ≠ j.

APPENDIX I: CONVERGENCE OF THE LATTICE SUM
OF THE THREE-BODY ZETA FUNCTION

In this section, we show that the defining lattice sum for the
three-body zeta function,

ζ(3)Λ (ν⃗) = ∑
x⃗ ,y⃗ ∈Λ

′
∣x⃗∣−ν1 ∣y⃗∣−ν2 ∣y⃗ − x⃗∣−ν3

converges if all of the following conditions hold:
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νi + νj > d, i ≠ j, and ν1 + ν2 + ν3 > 2d

for i ∈ {1, 2, 3}. Note that all summands are non-negative, so con-
vergence of the sum does not depend on the order of summation.
We first investigate the sum over y⃗, which converges if and only if

ν2 + ν3 > d. (I1)

We then cast the sum over y⃗ in terms of Epstein zeta functions,

∑
y⃗ ∈Λ

′
∣y⃗∣−ν2 ∣y⃗ − x⃗∣−ν3 = ∑

y⃗ ,z⃗ ∈Λ

′
∣y⃗∣−ν2 ∣z⃗∣−ν3 δy⃗−x⃗,z⃗

= VΛ∫
E∗

ZΛ,ν2(k⃗)ZΛ,ν3(k⃗)e
2πiy⃗ ⋅k⃗ dk⃗

using that

VΛ∫
E∗

e−2πiz⃗ ⋅k⃗
= δz⃗,0

for a lattice vector z⃗ ∈ Λ, as well as the lattice symmetry Λ = −Λ.
We will now use knowledge of the singularity of the Epstein zeta
function at k⃗ = 0 as well as standard results from Fourier analysis to
derive the asymptotic decay of the above-mentioned sum in x⃗.

Let χ(k⃗) be a smooth cutoff function with

χ(k⃗) = {
1, ∣k⃗∣ < r/2,
0, ∣k⃗∣ > r

and r > 0 chosen small enough that the support lies within an open
subset of the reciprocal unit cell. Adding and subtracting the cutoff
in the integrand, we find

VΛ∫
E∗

ZΛ,ν2(k⃗)ZΛ,ν3(k⃗)e
2πiy⃗ ⋅k⃗ dk⃗ = f (x⃗) + VΛ∫

Rd
χ(k⃗)ZΛ,ν2

× (k⃗)ZΛ,ν3(k⃗)e
2πiy⃗ ⋅k⃗ dk⃗,

with f decaying superalgebraically as the Fourier integral of a
smooth function and where we could extend the integral on the right
to Rd due to the compact support of the cutoff. The term on the
right-hand side is then a standard inverse Fourier transform.

Now, separate the Epstein zeta function into an analytic
function and the singularity ŝν, see Eq. (32), yielding

VΛF
−1
(χ(k⃗)(Zreg

Λ,ν2
(k⃗) + cν2 ∣k⃗∣

ν2−d
)(Zreg

Λ,ν3
(k⃗) + cν3 ∣k⃗∣

ν3−d
)),

with constants cν ∈ R and ν2, ν3 ∉ d + 2N. If ν2 or ν3 ∈ d + 2N, then
powers of log (k⃗) need to be included that do not alter convergence
behavior and the proof proceeds in complete analogy. We then find
that the above-mentioned Fourier integral can be rewritten as

F
−1
(h0)(x⃗) +F

−1
(h1∣ ⋅ ∣

ν2−d
)(x⃗) +F

−1
(h2∣ ⋅ ∣

ν3−d
)(x⃗)

+F
−1
(h3∣ ⋅ ∣

(ν2+ν3−d)−d
)(x⃗)

with h0, . . . , h3 smooth compactly supported functions, whose
Fourier transforms decay superalgebraically. Thus, we only need to
analyze the asymptotic decay in x⃗ of

F
−1
(h ∣ ⋅ ∣ν−d

),

for h, a smooth compactly supported function. This is, however, a
standard result,

∣F
−1
(h ∣ ⋅ ∣ν−d

)∣ ≤ C∣x⃗∣−ν, ∣x⃗∣ > R

for some C, R > 0. Inserting these bounds into the sum over x⃗, we
obtain the addition constraints,

ν1 + ν2 > d, ν1 + ν3 > d, ν1 + ν2 + ν3 − d > d. (I2)

The conditions in Eqs. (I1) and (I2) then yield the convergence
criteria for the three-body zeta lattice sum.

REFERENCES
1H. E. Stanley, Phase Transitions and Critical Phenomena (Clarendon Press,
Oxford, 1971), Vol. 7.
2F. Falk, “Landau theory and martensitic phase transitions,” J. Phys. Colloq. 43,
C4-3 (1982).
3Y. A. Izyumov, V. M. Laptve, and V. N. Syromyatnikov, “Phenomenological the-
ory of martensitic and reconstructive phase transitions,” Phase Transitions 49,
1–55 (1994).
4K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge University
Press, Cambridge, UK, 1999).
5G. J. Ackland, A. P. Jones, and R. Noble-Eddy, “Molecular dynamics simula-
tions of the martensitic phase transition process,” Mater. Sci. Eng.: A 481–482,
11–17 (2008), part of Special Issue: Proceedings of the 7th European Symposium
on Martensitic Transformations, ESOMAT 2006.
6G. Grimvall, B. Magyari-Köpe, V. Ozolin, š, and K. A. Persson, “Lattice
instabilities in metallic elements,” Rev. Mod. Phys. 84, 945–986 (2012).
7G. Torrents, X. Illa, E. Vives, and A. Planes, “Geometrical model for marten-
sitic phase transitions: Understanding criticality and weak universality during
microstructure growth,” Phys. Rev. E 95, 013001 (2017).
8D. A. Young, Phase Diagrams of the Elements (University of California Press,
1991).
9G. J. Ackland, M. Dunuwille, M. Martinez-Canales, I. Loa, R. Zhang, S. Sino-
geikin, W. Cai, and S. Deemyad, “Quantum and isotope effects in lithium metal,”
Science 356, 1254–1259 (2017).
10K. J. Caspersen and E. A. Carter, “Finding transition states for crystalline
solid–solid phase transformations,” Proc. Natl. Acad. Sci. U. S. A. 102, 6738–6743
(2005).
11J. M. Borwein, M. Glasser, R. McPhedran, J. Wan, and I. Zucker, Lattice Sums
Then and Now (Cambridge University Press, 2013), Vol. 150.
12E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys.
344, 257–306 (1912).
13R. Fürth, “On the equation of state for solids,” Proc. R. Soc. London, Ser. A 183,
87–110 (1944).
14F. H. Stillinger, “Lattice sums and their phase diagram implications for the
classical Lennard-Jones model,” J. Chem. Phys. 115, 5208–5212 (2001).
15P. Schwerdtfeger, A. Burrows, and O. R. Smits, “The Lennard-Jones potential
revisited: Analytical expressions for vibrational effects in cubic and hexagonal
close-packed lattices,” J. Phys. Chem. A 125, 3037–3057 (2021).
16J. E. Jones and A. E. Ingham, “On the calculation of certain crystal potential
constants, and on the cubic crystal of least potential energy,” Proc. R. Soc. London,
Ser. A 107, 636–653 (1925).
17P. Schwerdtfeger and D. J. Wales, “100 years of the Lennard-Jones potential,”
J. Chem. Theory Comput. 20, 3379–3405 (2024).
18E. Madelung, “Das elektrische Feld in Systemen von regelmäßig angeordneten
Punktladungen,” Phys. Z. 19, 32 (1918).
19M. Born, “On the stability of crystal lattices. I,” Math. Proc. Cambridge Philos.
Soc. 36, 160–172 (1940).

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-33

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp
https://doi.org/10.1051/jphyscol:1982401
https://doi.org/10.1080/01411599408201169
https://doi.org/10.1016/j.msea.2006.12.237
https://doi.org/10.1103/revmodphys.84.945
https://doi.org/10.1103/physreve.95.013001
https://doi.org/10.1126/science.aal4886
https://doi.org/10.1073/pnas.0408127102
https://doi.org/10.1002/andp.19123441202
https://doi.org/10.1098/rspa.1944.0023
https://doi.org/10.1063/1.1394922
https://doi.org/10.1021/acs.jpca.1c00012
https://doi.org/10.1098/rspa.1925.0047
https://doi.org/10.1098/rspa.1925.0047
https://doi.org/10.1021/acs.jctc.4c00135
https://doi.org/10.1017/s0305004100017138
https://doi.org/10.1017/s0305004100017138


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

20R. D. Misra, “On the stability of crystal lattices. II,” Math. Proc. Cambridge
Philos. Soc. 36, 173–182 (1940).
21J.-P. Hansen and L. Verlet, “Phase transitions of the Lennard-Jones system,”
Phys. Rev. 184, 151–161 (1969).
22M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science
Publications (Clarendon Press, New York, NY, 1989).
23H. Watanabe, N. Ito, and C.-K. Hu, “Phase diagram and universality of the
Lennard-Jones gas-liquid system,” J. Chem. Phys. 136, 204102 (2012).
24E. H. Abramson, “Melting curves of argon and methane,” High Pressure Res.
31, 549–554 (2011).
25A. Hajibabaei and K. S. Kim, “First-order and continuous melting transitions
in two-dimensional Lennard-Jones systems and repulsive disks,” Phys. Rev. E 99,
022145 (2019).
26A. Burrows, S. Cooper, E. Pahl, and P. Schwerdtfeger, “Analytical methods for
fast converging lattice sums for cubic and hexagonal close-packed structures,”
J. Math. Phys. 61, 123503 (2020).
27P. Epstein, “Zur Theorie allgemeiner Zetafunktionen,” Math. Ann. 56, 615–644
(1903).
28E. Elizalde, “Analysis of an inhomogeneous generalized Epstein–Hurwitz zeta
function with physical applications,” J. Math. Phys. 35, 6100–6122 (1994).
29E. Elizalde, “Zeta functions: Formulas and applications,” J. Comput. Appl. Math.
118, 125–142 (2000).
30A. A. Buchheit and J. K. Busse, “Epstein zeta method for many-body lattice
sums,” arXiv:2504.11989 [math.NA] (2025).
31D. Borwein, J. M. Borwein, and C. Pinner, “Convergence of Madelung-like
lattice sums,” Trans. Am. Math. Soc. 350, 3131–3167 (1998).
32B. M. Axilrod and E. Teller, “Interaction of the van der Waals type between three
atoms,” J. Chem. Phys. 11, 299–300 (1943).
33Y. Muto, “Force between nonpolar molecules,” Proc. Phys.-Math. Soc. Jpn. 17,
629–631 (1943).
34P. Attard, “Simulation results for a fluid with the Axilrod-Teller triple dipole
potential,” Phys. Rev. A 45, 5649 (1992).
35P. Schwerdtfeger, R. Tonner, G. E. Moyano, and E. Pahl, “Towards J/mol
accuracy for the cohesive energy of solid argon,” Angew. Chem., Int. Ed. 55,
12200–12205 (2016).
36A. Hermann, R. P. Krawczyk, M. Lein, P. Schwerdtfeger, I. P. Hamilton, and J.
J. P. Stewart, “Convergence of the many-body expansion of interaction potentials:
From van der Waals to covalent and metallic systems,” Phys. Rev. A 76, 013202
(2007).
37B. Li, G. Qian, A. R. Oganov, S. E. Boulfelfel, and R. Faller, “Mechanism of the
fcc-to-hcp phase transformation in solid Ar,” J. Chem. Phys. 146, 214502 (2017).
38K. J. Caspersen, A. Lew, M. Ortiz, and E. A. Carter, “Importance of shear in the
bcc-to-hcp transformation in iron,” Phys. Rev. Lett. 93, 115501 (2004).
39D. F. Johnson and E. A. Carter, “Nonadiabaticity in the iron bcc to hcp phase
transformation,” J. Chem. Phys. 128, 104703 (2008).
40S. Ono and T. Ito, “Theory of dynamical stability for two- and three-
dimensional Lennard-Jones crystals,” Phys. Rev. B 103, 075406 (2021).
41P. Schwerdtfeger and A. Burrows, “Cuboidal bcc to fcc transformation
of Lennard-Jones phases under high pressure derived from exact lattice
summations,” J. Phys. Chem. C 126, 8874–8882 (2022).
42S. Alexander and J. McTague, “Should all crystals be bcc? Landau theory of
solidification and crystal nucleation,” Phys. Rev. Lett. 41, 702–705 (1978).
43B. Groh and B. Mulder, “Why all crystals need not be bcc: Symmetry breaking
at the liquid-solid transition revisited,” Phys. Rev. E 59, 5613–5620 (1999).
44A. Travesset, “Phase diagram of power law and Lennard-Jones systems: Crystal
phases,” J. Chem. Phys. 141, 164501 (2014).
45E. Bain, “A new orientation relationship between fcc and bcc,” Trans. Metall.
Soc. AIME 70, 25 (1924).
46C. Zener, “Theory of strain interaction of solute atoms,” Phys. Rev. 74, 639–647
(1948).
47J. Rifkin, “Equivalence of Bain and Zener transformations,” Philos. Mag. A 49,
L31–L34 (1984).
48P. Jerabek, A. Burrows, and P. Schwerdtfeger, “Solving a problem with a sin-
gle parameter: A smooth bcc to fcc phase transition for metallic lithium,” Chem.
Commun. 58, 13369–13372 (2022).

49A. Burrows, S. Cooper, and P. Schwerdtfeger, “Instability of the body-centered
cubic lattice within the sticky hard sphere and Lennard-Jones model obtained
from exact lattice summations,” Phys. Rev. E 104, 035306 (2021).
50D. C. Wallace and J. L. Patrick, “Stability of crystal lattices,” Phys. Rev. 137,
A152–A160 (1965).
51J. H. Conway and N. J. A. Sloane, “On lattices equivalent to their duals,”
J. Number Theory 48, 373–382 (1994).
52J. H. Conway and N. J. Sloane, “The optimal isodual lattice quantizer in three
dimensions,” Adv. Math. Commun. 1, 257–260 (2007).
53A. L. Patterson, “Crystal lattice models based on the close packing of spheres,”
Rev. Sci. Instrum. 12, 206–211 (1941).
54K. L. Fields, “The fragile lattice packings of spheres in three-dimensional space,”
Acta Crystallogr., Sect. A: Found. Adv. 36, 194–197 (1980).
55S. Torquato and F. H. Stillinger, “Toward the jamming threshold of sphere
packings: Tunneled crystals,” J. Appl. Phys. 102, 093511 (2007).
56S. Cooper and P. Schwerdtfeger, “A minimum property for cuboidal lattice
sums,” SIGMA 21, 019 (2025).
57V. Heine, I. J. Robertson, and M. C. Payne, “Many-atom interactions in solids,”
Philos. Trans.: Phys. Sci. Eng. 334, 393–405 (1991).
58A. A. Buchheit, J. Busse, and R. Gutendorf, “Computation and properties of
the Epstein zeta function with high-performance implementation in EpsteinLib,”
arXiv:2412.16317 (2024).
59O. R. Smits, P. Jerabek, E. Pahl, and P. Schwerdtfeger, “A hundred-year-old
experiment re-evaluated: Accurate ab initio Monte Carlo simulations of the
melting of radon,” Angew. Chem., Int. Ed. 57, 9961–9964 (2018).
60P. Jerabek, O. R. Smits, J.-M. Mewes, K. A. Peterson, and P. Schwerdtfeger,
“Solid oganesson via a many-body interaction expansion based on relativis-
tic coupled-cluster theory and from plane-wave relativistic density functional
theory,” J. Phys. Chem. A 123, 4201–4211 (2019).
61O. R. Smits, P. Jerabek, E. Pahl, and P. Schwerdtfeger, “First-principles melting
of krypton and xenon based on many-body relativistic coupled-cluster interaction
potentials,” Phys. Rev. B 101, 104103 (2020).
62O. R. Smits, J.-M. Mewes, P. Jerabek, and P. Schwerdtfeger, “Oganesson: A
noble gas element that is neither noble nor a gas,” Angew. Chem., Int. Ed. 59,
23636–23640 (2020).
63E. Florez, O. R. Smits, J.-M. Mewes, P. Jerabek, and P. Schwerdtfeger, “From
the gas phase to the solid state: The chemical bonding in the superheavy element
flerovium,” J. Chem. Phys. 157, 064304 (2022).
64M. G. Duffy, “Quadrature over a pyramid or cube of integrands with a
singularity at a vertex,” SIAM J. Numer. Anal. 19, 1260–1262 (1982).
65Y. Xie, Z. L. Glick, and C. D. Sherrill, “Assessment of three-body disper-
sion models against coupled-cluster benchmarks for crystalline benzene, carbon
dioxide, and triazine,” J. Chem. Phys. 158, 094110 (2023).
66I. J. Zucker, “Exact results for some lattice sums in 2, 4, 6 and 8 dimensions,”
J. Phys. A: Math. Nucl. Gen. 7, 1568–1575 (1974).
67I. J. Zucker and M. M. Robertson, “Exact values of some two-dimensional lattice
sums,” J. Phys. A: Math. Gen. 8, 874–881 (1975).
68I. J. Zucker, “The exact evaluation of some new lattice sums,” Symmetry 9, 314
(2017).
69B. M. E. van der Hoff and G. C. Benson, “A method for the evaluation of some
lattice sums occurring in calculations of physical properties of crystals,” Can. J.
Phys. 31, 1087–1094 (1953).
70P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and G. E. Moyano,
“Extension of the Lennard-Jones potential: Theoretical investigations into rare-
gas clusters and crystal lattices of He, Ne, Ar, and Kr using many-body interaction
expansions,” Phys. Rev. B 73, 064112 (2006).
71R. J. Baxter, “Percus–Yevick equation for hard spheres with surface adhesion,”
J. Chem. Phys. 49, 2770–2774 (1968).
72W. L. Bade, “Drude-model calculation of dispersion forces. I. General theory,”
J. Chem. Phys. 27, 1280–1284 (1957).
73E. E. Polymeropoulos, P. Bopp, J. Brickmann, L. Jansen, and R. Block,
“Molecular-dynamics simulations in systems of rare gases using Axilrod-
Teller and exchange three-atom interactions,” Phys. Rev. A 31, 3565–3569
(1985).

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-34

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp
https://doi.org/10.1017/s030500410001714x
https://doi.org/10.1017/s030500410001714x
https://doi.org/10.1103/physrev.184.151
https://doi.org/10.1063/1.4720089
https://doi.org/10.1080/08957959.2011.629617
https://doi.org/10.1103/physreve.99.022145
https://doi.org/10.1063/5.0021159
https://doi.org/10.1007/bf01444309
https://doi.org/10.1063/1.530731
https://doi.org/10.1016/s0377-0427(00)00284-3
http://arxiv.org/abs/2504.11989
https://doi.org/10.1090/s0002-9947-98-01983-7
https://doi.org/10.1063/1.1723844
https://doi.org/10.1103/physreva.45.5649
https://doi.org/10.1002/anie.201605875
https://doi.org/10.1103/physreva.76.013202
https://doi.org/10.1063/1.4983167
https://doi.org/10.1103/physrevlett.93.115501
https://doi.org/10.1063/1.2883592
https://doi.org/10.1103/physrevb.103.075406
https://doi.org/10.1021/acs.jpcc.2c01255
https://doi.org/10.1103/physrevlett.41.702
https://doi.org/10.1103/physreve.59.5613
https://doi.org/10.1063/1.4898371
https://doi.org/10.1103/physrev.74.639
https://doi.org/10.1080/01418618408233300
https://doi.org/10.1039/d2cc04928g
https://doi.org/10.1039/d2cc04928g
https://doi.org/10.1103/physreve.104.035306
https://doi.org/10.1103/physrev.137.a152
https://doi.org/10.1006/jnth.1994.1073
https://doi.org/10.3934/amc.2007.1.257
https://doi.org/10.1063/1.1769865
https://doi.org/10.1107/s0567739480000411
https://doi.org/10.1063/1.2802184
https://doi.org/10.3842/SIGMA.2025.019
http://arxiv.org/abs/2412.16317
https://doi.org/10.1002/anie.201803353
https://doi.org/10.1021/acs.jpca.9b01947
https://doi.org/10.1103/physrevb.101.104103
https://doi.org/10.1002/anie.202011976
https://doi.org/10.1063/5.0097642
https://doi.org/10.1137/0719090
https://doi.org/10.1063/5.0143712
https://doi.org/10.1088/0305-4470/7/13/011
https://doi.org/10.1088/0305-4470/8/6/006
https://doi.org/10.3390/sym9120314
https://doi.org/10.1139/p53-093
https://doi.org/10.1139/p53-093
https://doi.org/10.1103/physrevb.73.064112
https://doi.org/10.1063/1.1670482
https://doi.org/10.1063/1.1743991
https://doi.org/10.1103/physreva.31.3565


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

74C. E. Moore, Atomic Energy Levels as Derived from the Analyses of Optical
Spectra, 467 (U.S. Department of Commerce, National Bureau of Standards,
1949).
75K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure
Constants of Diatomic Molecules (Van Nostrand, 1979).
76P. Schwerdtfeger and J. K. Nagle, “2018 Table of static dipole polarizabilities of
the neutral elements in the periodic table,” Mol. Phys. 117, 1200–1225 (2019).
77F. Milstein, “Applicability of exponentially attractive and repulsive interac-
tomic potential functions in the description of cubic crystals,” J. Appl. Phys. 44,
3825–3832 (1973).
78P. J. Craievich, J. M. Sanchez, R. E. Watson, and M. Weinert, “Structural
instabilities of excited phases,” Phys. Rev. B 55, 787–797 (1997).
79B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. v. Roij, “Can nonadditive
dispersion forces explain chain formation of nanoparticles?,” J. Chem. Phys. 138,
104308 (2013).
80E. Ermakova, J. Solca, G. Steinebrunner, and H. Huber, “Ab initio calculation of
a three-body potential to be applied in simulations of fluid neon,” Chem. Eur. J. 4,
377–382 (1998).
81Y. A. Freiman and S. M. Tretyak, “Many-body interactions and high-pressure
equations of state in rare-gas solids,” Low Temp. Phys. 33, 545–552 (2007).
82P. Schwerdtfeger and A. Hermann, “Equation of state for solid neon from
quantum theory,” Phys. Rev. B 80, 064106 (2009).
83J. Zhao, Multiple Zeta Functions, Multiple Polylogarithms and Their Special
Values (World Scientific, Singapore, 2016).
84G. E. Andrews, R. Askey, and R. Roy, Special Functions (Cambridge University
Press, Cambridge, 1999), Vol. 71.

85N. M. Temme, Special Functions: An Introduction to the Classical Functions of
Mathematical Physics (John Wiley & Sons, 1996).
86J. M. Borwein and P. B. Borwein, “A cubic counterpart of Jacobi’s identity and
the AGM,” Trans. Am. Math. Soc. 323, 691–701 (1991).
87S. Cooper, Ramanujan’s Theta Functions (Springer, Berlin, 2017).
88N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences(Academic
Press, 1995); online version available at https://oeis.org/.
89T. M. Apostol, Introduction to Analytic Number Theory (Springer Science &
Business Media, Berlin, 1998).
90R. E. Crandall, “Fast evaluation of Epstein zeta functions,” https://www.reed.
edu/physics/faculty/crandall/papers/epstein.pdf (1998).
91J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups
(Springer, New York, 2013), Vol. 290.
92P. Schwerdtfeger, B. Assadollahzadeh, and A. Hermann, “Convergence of the
Møller–Plesset perturbation series for the fcc lattices of neon and argon,” Phys.
Rev. B 82, 205111 (2010).
93P. Bateman and E. Grosswald, “On Epstein’s zeta function,” Acta Arithmetica 9,
365–373 (1964).
94A. A. Terras, “Bessel series expansions of the Epstein zeta function and the
functional equation,” Trans. Am. Math. Soc. 183, 477–486 (1973).
95A. Selberg and S. Chowla, “On Epstein’s zeta-function,” J. Reine Angew. Math.
227, 87–110 (1967).
96N. Levinson and R. M. Redheffer, Complex Variables (Holden Day,
1970).
97A. Burrows, S. Cooper, and P. Schwerdtfeger, “The Madelung constant in N
dimensions,” Proc. R. Soc. A 478, 20220334 (2022).

J. Chem. Phys. 163, 094104 (2025); doi: 10.1063/5.0276677 163, 094104-35

© Author(s) 2025

 22 January 2026 07:33:12

https://pubs.aip.org/aip/jcp
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1063/1.1662857
https://doi.org/10.1103/physrevb.55.787
https://doi.org/10.1063/1.4792137
https://doi.org/10.1002/(sici)1521-3765(19980310)4:3&tnqx3c;377::aid-chem377&tnqx3e;3.0.co;2-8
https://doi.org/10.1063/1.2746249
https://doi.org/10.1103/physrevb.80.064106
https://doi.org/10.2307/2001551
https://oeis.org/
https://www.reed.edu/physics/faculty/crandall/papers/epstein.pdf
https://www.reed.edu/physics/faculty/crandall/papers/epstein.pdf
https://doi.org/10.1103/physrevb.82.205111
https://doi.org/10.1103/physrevb.82.205111
https://doi.org/10.4064/aa-9-4-365-373
https://doi.org/10.2307/1996480
https://doi.org/10.1098/rspa.2022.0334

