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ABSTRACT: In coupled-cluster (CC) theory, unphysical complex energies
may arise in the presence of strong magnetic fields, near conical intersections, or
in systems exhibiting complex Abelian point group symmetries. This issue
originates from the non-Hermitian nature of the CC energy expression. A
promising solution is provided by unitary coupled-cluster (UCC) theory, which
retains the advantages of an exponential parametrization while ensuring real-
valued energy eigenvalues. In this work, we present an implementation of finite-
field second-order (ffFUCC2) and third-order (f-UCC3) UCC theory. We
assess the performance of these truncation levels in comparison to conventional
finite-field CC methods, using the methylidyne ion, water, and boric acid.

1. INTRODUCTION

The study of chemical systems in extreme conditions is an
active field of interest in quantum chemistry."” One such
condition is the presence of strong magnetic fields. In this
work, we focus on the so-called mixing regime, where the field-
induced interactions are comparable to the Coulomb forces. In
this regime, the magnetic field cannot be treated merely as a
perturbation, and thus a nonperturbative approach is required.
The development of finite-field approaches is therefore
essential to describe such environments accurately.’”®
Magnetic fields in the mixing regime can be found on
magnetic white dwarf stars, where field strengths up to 100,000
T have been observed.””'* White dwarf stars are the end point
of stellar evolution forming after the hydrogen reserves have
been exhausted.” In their atmospheres, a variety of elements
has been detected, including hydrogen, helium, carbon, silicon,
and various metals that typically originate from planetary
debris.'”"® As white dwarfs no longer generate energy via
nuclear fusion, they cool over time, allowing the formation of
molecules such as H,, CH, and C, in their atmospheres.'”™>'
As approximately 97% of all stars evolve into white dwarfs at
the end of their lifetimes, these stellar remnants are highly
common. Notably, around 25% of white dwarfs exhibit strong
magnetic fields.””** The investigation of magnetic white-dwarf
atmospheres is crucial for understanding the evolution of these
stellar remnants. Since magnetic fields of comparable strength
cannot be generated under laboratory conditions on Earth,
theoretical predictions of atomic and molecular behavior in
strong magnetic fields are essential for the interpretation and
assignment of their observed spectra.
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Systems in strong magnetic fields have been investigated
since the 1980s,”*™>" with a focus on a range of field strengths
beyond the perturbative regime — particularly where magnetic
interactions are comparable to, but do not yet dominate, other
forces. These studies were primarily theoretical, culminating in
a significant advancement with the spectral assignment of
helium in a strongly magnetic white dwarf.”” These theoretical
finite-field studies were mostly conducted at the full
configuration interaction (FCI) level of theory. However, the
description of atoms and molecules in a strong magnetic field
through FCI theory is feasible only for systems with few
electrons.’*™** The prohibitive computational cost of FCI for
larger systems necessitates the adoption of approximate
electronic-structure methods. Early studies were often confined
to systems that exhibit cylindrical symmetry. In general, the
presence of a magnetic field introduces complex-valued wave
function parameters, requiring specialized implementations.
For molecular systems, an additional challenge arises from the
gauge-origin dependence of the Hamiltonian. While wave
function methods yield gauge-origin independent results in the
basis-set limit, the commonly adopted finite-basis set
representation does not. A widely adopted solution to this
problem is the use of gauge-including atomic orbitals
(GIAOs).>*7%° By now, nonlinear systems as well as
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nonparallel orientations with respect to an external magnetic
field have been investigated using various quantum-chemical
methods, including Hartree—Fock (HF) theory,”””® FCL,*
coupled-cluster (CC) theory™ and (current) density func-
tional theory.""**

High accuracy is essential for the interpretation of white
dwarf spectra. Therefore, when FCI becomes computationally
infeasible, finite-field extensions of standard CC theory® ™"
offer a practical alternative, balancing accuracy with lower
computational cost. The coupled-cluster (CC) wave function
is parametrized using an exponential ansatz. In practice,
truncation of the excitation space is necessary, leading to
commonly used methods such as CC with Singles and Doubles
(CCSD),** CC with Singles, Doubles, and Triples
(CCSDT)," perturbative approximations like CC2 and
CC3,"™" and noniterative approaches such as the gold-
standard CCSD(T) method.”® For excited-state calculations,
Equation-of-Motion CC (EOM-CC) theory is often em-
ployed.®" The aforementioned CC methods have also been
extended to the finite-field regime.””**>* While CC methods
are highly effective, they also have inherent limitations. Their
standard formulation is non-Hermitian, and energies are
obtained nonvariationally through a projection procedure. As
a result, complex energies can arise, for example, near conical
intersections,”” and in the presence of finite magnetic fields.”**
Notably, ref 54 shows that complex energies are the norm
rather than the exception under magnetic fields, and only for
atoms, linear molecules, and specific symmetries will the
energies remain real. Unlike electronic resonances, where non-
Hermitian quantum mechanics provides a physical interpreta-
tion of the imaginary part of the energy as the lifetime of
metastable states,” " here, the imaginary component lacks
physical meaning and reflects a limitation of the theory. One
potential solution to this issue is adopting an alternative wave
function parametrization that preserves Hermiticity. The
unitary transformation of the Hamiltonian results in a
Hermitian energy expression, ensuring real eigenvalues. Since
any unitary operator can be written in exponential form, the
connection to CC theory is, in principle, straightforward. This
idea was first introduced by Kutzelnigg,‘9 with further
developments by Bartlett and co-workers.”” More recently,
the unitary CC approach has been explored in the context of
quantum computing,®’ ~** including a recent theoretical
extension to magnetic fields.®> However, this direction has so
far not been pursued within conventional quantum-chemical
frameworks in the finite-field regime. In this context, the
unitary operator is applied by expanding the exponential form.
However, this introduces complications: the Baker—Camp-
bell-Hausdorff (BCH) expansion of the transformed Hamil-
tonian results in a nonterminating infinite series. This contrasts
with standard CC theory, where the similarity-transformed
Hamiltonian expansion naturally self-truncates, yielding an
exact expression within the chosen excitation manifold. Since
no such self-truncation occurs for unitary CC parametrizations,
an external criterion must be introduced to define an
appropriate truncation. To address the infinite series in the
Baker—Campbell-Hausdorft expansion, different truncation
strategies have been proposed. One such apéproach is the
UCC(n) formalism by Bartlett and co-workers,”’ which relies
on a perturbative truncation of the nested commutators.
Another makes use of the Zassenhaus expansion;“ however,
truncating this series generally compromises either variation-
ality or size-extensivity. Recent developments®”® have been

. . 69,70
based on the truncation after a given rank of commutators

and seem to improve results for systems which do not have a
smoothly converging Moller—Plesset series at low orders.
Furthermore, a scheme based on the perturbative truncation of
the Bernoulli expansion, coined UCCn, has been explored by
Liu et al”' Further truncation schemes have also been
described in the literature.””*® Recently, the UCCn scheme
has been shown to converge more rapidly toward the UCCSD
limit and to yield more reliable results than the original
UCC(n) approach, particularly for molecular systems away
from equilibrium geometries. > Purthermore, a connection
between UCCn and the algebraic diagrammatic construction
(ADC) scheme has been established,”” and growing interest in
this approximation for computing energies and properties has
emerged in recent years.”*~"” In the present work, we extend
the UCCn approach to the finite-field regime. We investigate
finite-field UCC2 and UCC3 for the description of atoms and
molecules in strong magnetic fields, with a particular focus on
assessing their performance relative to standard finite-field
coupled-cluster theory.

This manuscript is organized as follows. In Section 2, a brief
overview of unitary coupled cluster (UCC) theory is provided,
with a focus on the specific truncation scheme employed.
Section 4 outlines the implementation details, and Section §
describes the validation strategies used. In Section 6, we
present ground- and excited-state energies as functions of the
orientation and strength of an external magnetic field. The
methylidynium ion, a relevant candidate for molecules in the
atmospheres of strongly magnetized white dwarfs, serves as an
astrophysically motivated example. Water provides a point of
reference for comparison with studies on complex energies in
finite magnetic fields,** while boric acid, with its complex
Abelian point group, highlights the emergence of complex
excitation energies within the EOM-CC framework.” Finally,
in Section 7, we summarize our conclusions and outline
potential directions for future work.

2. THEORY

2.1. Hamiltonian in a Magnetic Field. In a uniform finite
magnetic field, the molecular Hamiltonian is given as

N
N o 1_ . A 1 22 2
A=H+ BLo+BsS+ gzi: (B¥2 — (B-ry)?)
(1)

where H, is the nonrelativistic Hamiltonian in the field-free
case. The sum runs over the number of electrons. In order to
ensure that observables remain gauge-origin independent also
for approximate wave functions, the so-called gauge including
atomic orbitals (GIAOs) can be used.**™*® Furthermore, the
presence of the angular momentum \hat{L} leads in general to
a complex wave function. As already mentioned in the
introduction, approximate non-Hermitian parametrizations of
the wave function, like CC, often lead to complex energies.
Therefore, a Hermitian formalism is needed in the setting of
strong magnetic fields in order to ensure real eigenvalues.

2.2. Unitary Coupled-Cluster Theory. In unitary CC
(UCC) theory, the ansatz for the ground state wave function is
given by a unitary exponential operator acting on the reference
state, usually the HF state 10)

Wyee) = ¢l0)
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where 4 = 6 — 6 and

6=06,+6,+ 65+ ..

~ 1 abe... L
6, = (;1—')2 z ”]:7 {aszT]ch...}.
! ijk ..

The indices i, j, k, ... and g, b, ¢, ... refer to occupied and
virtual orbitals, respectively. For a normalized wave function,
the energy expectation value is given by

E = (¥edHWcc)
= (0le™?He10) = (0IHI0),

where H is the molecular Hamiltonian of eq 1 and

~

H = e °He’ is the unitarily transformed Hamiltonian. This
Hermitian form ensures the energies to be real.

In analogy to standard CC theory, UCC theory is size
extensive and the amplitude equations are obtained by
projection onto excited determinants {®,}

(q)ﬂle_(’I:Ie'ﬂO) =0

However, unlike standard CC theory, the expansion of the
transformed Hamiltonian is not self-truncating. The truncation
criterion must therefore be chosen with care. Here, we follow
the so-called Bernoulli expansion, as described in ref 71. In the
Bernoulli expansion, the Fock operator occurs in only one
single commutator, making the equations more compact than
the BCH expansion. Note that if not truncated, the two
expansions are equivalent.

2.3. EOM-UCC for Excited States. The description of
excited states is obtained adapting the formalism of EOM-CC
to the UCC framework. The most intuitive parametrization
consists in applying an excitation operator R on the UCC
ground-state wave function, yielding the excited-state wave

function I,) = Re’l0), with R defined as

5 ag At2 atapta
R= Zri{aTz} + Z rgb{ale]} + ..

i<j,a<b

Alternatively, the excitation operator R can be applied to the
reference state, before the unitary transformation, yielding
I¥,) = ¢RI0). Unlike for CC theory, for UCC these two
formulations are not equivalent, as the exponential operator
and the excitation operator R do not commute, i.e.
[e°, R] £ 0. In principle, both parametrizations could be
used as a starting point. We note, however, that the so-called
killer condition

Oy =0 Vk

needs to be fulfilled.”>”? In the above equation,

ékT = ¥o)(Yl is a de-excitation operator to the ground-
state and k labels the excited states. Therefore, the killer
condition [P (W IWss) = 0 Vk is satisfied if the excited states
are orthogonal or biorthogonal to the ground state.

For UCC, the state (W, is given by the adjoint of the state
[¥,). For the first formulation of the EOM ansatz for UCC, i.e.,
I¥,) = Re’l0) and (¥] = (0le"°R, the killer condition is not
satisfied, as

(B ) = (0le"Re%10)

The overlap (¥(/Ws) does not vanish in the general case, as
[ﬁ, e’1 # 0. As suggested in ref 73, the killer condition is
fulfilled by the ansatz ¢"RI0). This is equivalent to defining a

similarity-transformed operator R = ¢’Re™” that acts on the
UCC wave function

) = Re’l0)
= ¢’Re™%°10) = ¢°RI0).
with this ansatz, the killer condition reads
(BI¥.c) = (0le"e"RI0) = (OIRIO) = 0
The Schrédinger equation for excited states therefore is

AW) = E %)  HeRIO) = E £ RIO)

and, by left-multiplying with ¢”’, we obtain the Cl-like
eigenvalue-problem

HRIO) = ERI0)

The excited states are found via diagonalization of the
transformed Hamiltonian matrix.

UCC is characterized by its Hermitian formalism and, unlike
for CC theory, the left eigenstates are simply parametrized by

the adjoint operator IA(T, as
(¥l = (0IRe™?

the orthonormality condition for different UCC excited states
reads

(%I%) = (0IR/R/0) = &

2.4. The UCCn Methodes. In this work, the excitation space
includes single and double excitations 6 = &, + 6,, defining a
UCC-analogue to the CCSD method, UCCSD. It has been
shown that UCCSD recovers a similar amount of correlation
energy as standard CCSD.* The transformed Hamiltonian
matrix has the following block structure

where S and D refer to single and double excitations,
respectively. As discussed in Section 2.2, the expansion of
the similarity-transformed Hamiltonian matrix does not
truncate. Within UCCpn, the truncation scheme is designed
on the basis of perturbation theory: the o,-amplitudes are of
first order, while the oj-amplitudes are of second order in
perturbation theory. Truncation is then performed at a given
order n in perturbation theory for the amplitude equations.
Hence, in the UCCn methods, n = 2, 3, ... is the order at which
the truncation is performed. In this work, we adopt the finite-
field versions of the second- and third-order approximated
methods, UCC2 and UCC3.”!

In the following, we present the UCC2 equations and refer
the reader to ref 71 for the corresponding UCC3 expressions.
Note that in eq 64 of ref 71, the terms f,; +fabof’f,-j6}‘-‘ and in eq

65 the terms (abllij) + P(ab)f, o} — P(ij)fquih need to be
added (within a noncanonical representation). For UCC2, the

blocks of the Hamiltonian matrix are approximated as HSY,
HY, HY, HY, where the exponents mark the order in

https://doi.org/10.1021/acs.jctc.5c01521
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perturbation theory. The terms occurring in these blocks are g° = F+V,
given by ) )
e ) . . H = [F,6+6]+ SV 8+ 6] + D[V, 6+ 5]
Hy "= fij + (Z<ikllab>ajk + h.c. ) + f,0; +fajq ) )
~UCC2__ 1, ac a bk 72 _ L ~ ~ l ~ ~
H, "= f, — Z(zjllbc)qj +hoc|=f0 —f0 H = o [[Vaps 6,1, 6,1 + 4[[V, 6,1x, 6,1
1
_ 1 = 5k, 6
AYSC= (iallbj) + (E<“c|ljk)o;zc* +hc ) T W Gl 6] 3)

A5 = (cillaby — f_a;;b*,

Ci ¢

UCC2_ gy bk
Hy., = (jkllia) + f, o™,

jk,ia
—~UCC2_ —~UCC2 _ —UCC2 _
e,k = 0 Hjq ™ =0, Hy " =0,

_ 1 1
ucca_ ) cb o\ ba db
H; == E(ajllcb)q-j - E(k]”lb>6jk +£, +fjbq-}-

ai
b a
+fab6i —J;i%

ai

Hyi@= (abllj) + %(klllij)a,f,h + %(abllcd)q;d
+ P(ij)P(ab)(aklIic)djl;: + P(ab)facqu

— P(ij)f, a,;b.

P(ij), P(ab) are the antisymmetric permutation operators for
the indices ij and ab, respectively. f,,, where p, g, ... refer to
generic indices, are elements of the Fock matrix. (pqllrs) are
the antisymmetrized two-electron integrals in Dirac notation,
(pqllrs) = (pqlrs) — (pqlsr).

Similarly to the CC2 method, UCC2 scales as ~N° with
system size. Furthermore, the %" amplitudes for the double
excitations are completely determined by the amplitudes rf.
Therefore, the EOM-UCC2 matrix elements can be written as
a nonlinear set of equations that only depend on the single-
excitation amplitudes. It can therefore be expected that the
EOM-UCC2 framework is not suitable for the description of
states dominated by a double-excitation character.

For UCC3, the blocks of the Hamiltonian matrix are
approximated as HY, HY, HX, HS.

Note that UCC3 is an approximation to UCCSD and does
not, contrary to CC3, contain triple excitations. UCC3 scales
as CCSD, ie., as ~N° with system size, but with a larger
prefactor.”’

The energy expression is given as

a 1 .. ab
Eyccajuces = (Fia"i + g(l]”ab>Uij ) + h.c.

and holds for both UCC2 as well as UCC3. The corresponding
diagrams for UCC2 and UCC3 are given in the Supporting
Information.

3. DIAGRAMMATIC RULES

In this section, we discuss the rules to derive the diagrams for
UCC2 and UCC3. Note that we discuss only the differences
with respect to standard CC theory. A complete explanation of
the diagrammatic rules in CC may be found for example in ref
81. The terms required for the UCC3 method (see also ref 71)
are given as

The “ND” (nondiagonal) part of operators or contractions
of operators is given by pure excitations or de-excitations up to
the level of the chosen excitation space, while the “R” (rest)
parts are the remaining components of the operator, i.e.
operators not consisting of pure excitations or de-excitations
only. For example, the terms contributing to the Vi operator

are (ab||ij){&T£Tff} and (ij||ab>{lﬁf ba). All other terms in V,

as for example (ak||ij>{&T12Tf?}, belong to the rest part V. The
CC diagrammatic rules can be used to determine the
prefactors; however, to apply them consistently, one must
account for the differing coefficients in front of the
commutators in the two expansions. Therefore, on top of the
known rules, the following four additional steps are needed.

1. In case the diagram in question involves V, determine
whether it belongs to the nondiagonal or the rest part.

2. Determine whether the contractions [V, &] belong to
the nondiagonal or the rest part. This classification is
essential for identifying which terms in eqs 2 and 3 the
diagram contributes to.

3. Consider the prefactors of the terms identified with rule
2. Calculate the ratio between the prefactors of the
corresponding terms in the Bernoulli and the BCH
expansions, respectively. This ratio needs to be multi-
plied to the prefactor determined via the standard
diagrammatic rules.

4. For terms belonging to eq 3, consider whether the
Hamiltonian is connected to only one or both &
operators. If it is connected to only one of them, a

further factor of % is required, as only half of the terms in
the commutator contribute to the diagram.

A couple of examples is given in the appendix. The
diagrammatic representation of the UCC equations can be
found in the Supporting Information.

4. IMPLEMENTATION

The equations for UCC2 and UCC3 ground and excited states
have been implemented in the Qcumsre** program package.
QcumsBRE relies on an interface providing finite-field SCF
integrals based on GIAOs and molecular orbital (MO)
coefficients. The implementation uses complex algebra, as
the finite-field setting implies a potentially complex wave
function. Point-group symmetry is implemented to speed up
calculations. For the diagonalizations needed for the solution
of the amplitude equations and the excited-state equations, the
finite-field modified versions of the Davidson scheme are used,
as described in ref 78.

Matrix multiplications are performed through calls to
efficient Basic Linear Algebra Subprograms (BLAS) like
ZGEMM.*

https://doi.org/10.1021/acs.jctc.5c01521
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Figure 1. Ground state and low-lying excited singlet states of CH" in a magnetic field B between 0 and 1 B, and orientations of @ = 0° (Figure 1a),
a = 30° (Figure 1b), a = 60° (Figure 1c), @ = 90° (Figure 1d), with respect to the bond axis. Calculations have been performed at the ff-CCSDT
(reference), ffFCCSD, f-UCC3, and ff-UCC2 levels of theory. The symmetry labels are composed of two terms, the first one referring to the C,
point group for the field-free case and the second one to the point group within the magnetic field, respectively.

Intermediate contractions have been defined to keep the
cost scaling as N° and N° for UCC2 and UCC3, respectively.
The amplitude equations are solved iteratively. Similar to
standard CC theory, the initial guess for the o, amplitudes are
assumed to be zero, while the ¢, amplitudes are initialized with
their leading contribution, i.e. the MP2 amplitudes

ab _ _ (abll )
Pl ei+ei—ea—e,,'

5. VALIDATION

The implementation for the field-free case has been verified by
comparing results with calculations provided by the authors of
ref 71, both for the ground state and the excited states. Our
implementation has then been adapted to the finite-field case.
The symmetry implementation has been validated by
comparison to calculations run in C; symmetry. The
implementation of the ff-Hamiltonian itself was already present
in the Qcumsre package. Furthermore, the Hermiticity of the
equations was tested.

6. RESULTS

In this section we investigate the performance of UCC in the
finite-field context by studying singlet states of the following
systems:

12638

e the methylidynium ion exemplifies an astrophysically
relevant system for strongly magnetized white-dwarf
atmospheres. The corresponding finite-field calculations
are analyzed to investigate the accuracy of EOM-UCC2
and EOM-UCCS3 for the calculation of states with single
and double-excitation character.

e in subsection 6.3, the water molecule serves as a
reference for benchmarking complex energies in finite
magnetic fields. It is used to investigate the physical
interpretation of the imaginary part of the CCSD energy.

e boric acid, discussed in subsection 6.4, due to its
nontrivial Abelian point group, illustrates the manifes-
tation of complex excitation energies within the EOM-
CC framework.

6.1. Computational Details. All calculations employed
the finite-field SCF implementation in CF OUR,**® interfaced
with the newly developed UCC code in Qcumsre. Within this
interface, the GIAO integrals generated by the Mainz INTegral
(MINT)® module of Crour and the f-SCF MO coefficients
are passed to QcumBRE. The calculations were performed using
uncontracted (unc) basis sets to ensure the necessary flexibility
to account for the anisotropy introduced by the magnetic field.
In QcumsRrg, the multiplicity of the EOM states is calculated

https://doi.org/10.1021/acs.jctc.5c01521
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using the R, amplitudes as described in ref 78 states. Note that
the common strategy of distinguishing the triplet vs singlet
states via the symmetry/antisymmetry of the EOM-singles
block is no longer applicable in the complex case.

6.2. Methylidyne lon. In this section, we investigate the
performance of the ff-UCC methods using the methylidyne
cation in a strong magnetic field as an example and using ff-CC
results from a previous study’ as a reference. In ref 7, the
electronic energies of the methylidyne ion in an increasingly
strong magnetic field between 0 and 1 B, were investigated in
steps of 0.05 B,. Various orientations with respect to the bond
axis, i.e., 0°, 30° 60° and 90° have been considered. The
calculations were performed with the unc-cc-pVDZ basis
set.”’ ™" For the molecular geometry, the ground state was
optimized at the CCSD/unc-cc-pVDZ level in absence of the
magnetic field.

The 'S* state was taken as a reference for the EOM-CC
calculations. This state is characterized by the single closed-
shell configuration 16°26°3¢>. Starting from this reference
state, the three lowest-lying singlet excited states are
considered. In absence of an external magnetic field, these
states are given by the two degenerate 1'II states (with the
configuration 16*26°36'17') and the degenerate 1'A state
(with the configuration 16*26°17%). The latter possesses a
predominant double-excitation character with respect to the
ground state.

Since CCSD poorly describes states with strong double-
excitation character, we include CCSDT results alongside
CCSD to better assess the performance of the ff-UCC
methods. Comparable accuracy between CCSD and UCC3
is anticipated, given that both methods operate within the
same excitation manifold. Figure 1 illustrates the energy
evolution of the respective states as a function of magnetic field
strength, while Table 1 summarizes the mean energy deviations
relative to the CCSDT reference values.

The presence of a magnetic field generally induces symmetry
reduction, with the resulting point group dependent on the
field’s orientation relative to the bond axis. States belonging to
different irreducible representations (IRREPs) are allowed to
cross (see for example the blue and red lines in Figure 1d),
while avoided crossings occur for states of same symmetry (see
for example the blue and the yellow line in Figure 1b—d). For
all orientations, the computational ground state 'E exhibits a
quadratic dependence on the magnetic field strength. For all
nonparallel orientations, mixing with higher-lying states is
observed.

For all orientations, UCC3 correctly reproduces the
qualitative shape of the CCSDT curves. Also, in particular
the 'S reference state is very well described. Unlike for ff-
CCSD which overestimates the fFCCSDT energies for all
states, orientations, and field strengths studied here, the
behavior of UCC3 is more complicated.

The most significant deviations from the fI-=CCSDT
reference results are observed for the 1'A state of the field-
free case. These deviations stem from the inadequate
description of the 1'A state — relative to the 'I* reference
— when the cluster operator is limited to single and double
excitations. A similar behavior for the corresponding ff-CCSD
results has been reported in ref 7. For UCC3, however, the
energies are underestimated.

Consistent with the observation for f=CC2 in ref 52, UCC2
is unable to describe doubly excited states, as explained in
Section 2.4). This can be explained by noting that the EOM-
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Table 1. Mean Energy Differences (mEy) of the Ground and
Three Lowest Excited Singlet States per Symmetry for
CCSD and UCC3 Relative to CCSDT Reference Values for
CH' in a Magnetic Field”

a=0 AEccsp/mE, AEyccs/mE, AEycc,/mE,

1'T/1's 1.71 3.13 —2.42
1'T/1'TI, 2.95 0.47 17.55
1'T1/1'1,, 2.95 0.47 17.55
'A/1'A, 35.59 —53.23

a=r/6
1'z4/1'A 1.98 2.77 —0.38
1'I1/2'A 2.30 -1.05 2091
1'T1/3'A 23.78 —-19.28 100.37
1'A/4'A 22.75 —16.63

a=rnr/3
1'z/1'A 1.82 2.81 —1.00
1'T1/2'A 2.36 —0.60 21.26
1'11/3'A 8.29 -7.85 43.98
1'A/4'A 19.96 —11.94

a=r/2
'z /1'A 1.79 2.83 -1.21
1'T1/1'A" 2.11 2.70 15.80
1'11/2'A 2.93 -1.93 36.82
1'A/3'A7 20.99 -2323

“The orientation of the magnetic field is varied at different angles with
respect to the bond axis and labeled by a. The mean value is
computed via AEyeod = Epmethod — Eccspr over the range of varying
magnetic field strengths between 0 and 1 By and taking the arithmetic
average. The symmetry labels are composed of two terms, the first one
referring to the C,, point group for the field-free case and the second
one to the point group within the magnetic field, respectively.

UCC2 matrix elements can be expressed through a nonlinear
set of equations depending only on the single-excitation
amplitudes. Therefore, it contains no information about true
contributions from double excitations, as noted also for the ff-
CC2 method in ref 52. Hence, for the parallel orientation (a =
0), the 1'A/1'A_, state cannot be targeted with the UCC2
method. For the nonparallel orientations of 30° and 60°, the
1'A/4'A state mixes with the 'TI/3'A state. Similarly to the
observations in ref 7, the double-excitation character is partially
passed from the 1'A/4'A state to the 'TI/3'A state around the
field strengths at which the avoided crossings occur. Hence, the
errors in the predicted energies are larger for field strengths at
which the respective state is dominated by a substantial double
excitation character.

From the data collected in Table 1, the average difference of
the computed ground-state energies with respect to the
CCSDT reference values is about 3 mEFE; and 2 mE, for
UCC3 and CCSD, respectively. States that are described by a
single excitation with respect to the reference state show small
deviations from the CCSDT reference results. The UCC3
description of the first excited state has a similarly high
accuracy for all orientations. In particular, for the states
originating from the 'II state, in the parallel case UCC3 has a
higher accuracy than CCSD, with an average energy difference
of about 0.5 mE, (about 13.6 meV) for UCC3 and almost 3
mE,; (about 81.6 meV) for CCSD. Average deviations have
larger values for states with a partial double-excitation
character by 1 order of magnitude. For the nonparallel
orientations, we observe that the UCC3 results have slightly
smaller deviations from CCSDT than the corresponding
CCSD results. However, both are of the same order of

https://doi.org/10.1021/acs.jctc.5c01521
J. Chem. Theory Comput. 2025, 21, 12634—12651


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

magnitude. On the other hand, UCC2 overestimates the
electronic energies of the states originating from 1'TI, with
large differences between 18 and 100 mE; observed for all
orientations. We note that the deviations from CCSDT are,
depending on state and orientation, either positive or negative
for UCC3 while they are only positive in the case of CCSD.

Both CCSD and UCC3 consistently face challenges in
accurately describing states dominated by double excitations,
while they reproduce CCSDT results well for singly excited
states. This limitation stems from the inherent approximations
of the methods and was therefore anticipated. UCC2 provides
a qualitatively correct approximation for states dominated by a
single-excitation character, while it leads to qualitatively wrong
results in cases with a significant double-excitation character.

From a qualitative perspective it can be noted that CCSDT
and CCSD represent two distinct approximations within the
excitation space derived from the same underlying expansion.
Hence, the observed purely positive deviations for the CCSD
energies are maybe not too surprising (though they can also
not be guaranteed). Since UCC3 is based on a different
expansion, i.e., the Bernoulli expansion, the deviations from
CCSDT exhibit a more heterogeneous behavior. For instance,
avoided crossings appear at somewhat different positions in the
potential energy surfaces, resulting in more frequent sign
changes in the energy deviations.

6.3. Water Molecule. In this section, we focus on the
water molecule in a magnetic field. The lowest singlet state of
the system has been studied at the ff~-CCSD level in ref 54
within a strong magnetic field of B = 0.5 B, and the occurrence
of complex energy eigenvalues in CC calculations was
investigated. In general, except for special symmetries, the ff-
CC energy can become complex valued, similar as for
nonperturbative treatments of relativistic effects that include
spin—orbit coupling. The orientation of the field was varied on
the surface of the positive octant of the unit sphere (see Figure
2) and is described by the two polar angles @, . It was shown

Figure 2. Water molecule in a magnetic field of B = 0.5 B, whose
orientation is allowed to vary corresponding to the polar coordinates
a and f.

that the imaginary part of the ground-state energy only
vanishes for those orientations of the magnetic field which are
aligned to one of the symmetry axes of the point group of the
molecule in the field-free case. Here, apart from the ground
state, we also investigate the first three excited singlet states of
the water molecule. In the field-free case, these states are of By,
A, and A; symmetry. The aim is to compare the quality of the

fE-CCSD results for both ground and excited states and the
corresponding ff-UCC3 results. A clear advantage of ffFUCC3
as compared to fl-FCCSD is that by construction all energies are
real for all @ and f.

The calculations have been performed with the uncontracted
cc-pVTZ*" " basis set, using the geometry from ref 54.

In Figure 3, the differences AE = Eycc; — REccsp
between the ff-UCC3 and the ffFCCSD results are shown as
a color map. Small differences are shown in blue, while larger
differences evolve toward red. The corresponding energy
surfaces, calculated at the ff~=CCSD and ffFUCC3 levels of
theory, can be found in the Supporting Information.

Figure 4 presents the energy surfaces of all states
concurrently to facilitate analysis of their interactions. Here
we show the fFUCC3 surfaces, while the corresponding (and
very similar) ffFCCSD surfaces can be found in the Supporting
Information.

From a qualitative point of view, the shape of the energy
surfaces describing the states, obtained at the ffFCCSD and ff-
UCC3 levels of theory, respectively, is the same for all
investigated states (Figure 4). We note that for state P, (see
Figure 3d), the two energy surfaces intersect around 8 = 60°,
while for the other states no intersection is found.

In Figure 4 the potential energy surfaces of the ground- and
first three excited singlet states, ¥y, ¥, ¥,, and ¥; are shown
for ffE-UCCS3. Since the states have the same symmetry (C,) for
a generic orientation of the magnetic field, avoided crossings
can be observed. The excited states ¥, and ¥; (Figure 4c)
exhibit an avoided crossing, visible at around = 80°, where
the two surfaces are very close to each other for both methods.
For the third state, the crest at about # = 40° hints at the
mixing with higher-lying states not investigated here.

As mentioned above, the surfaces obtained with the ff-
CCSD and ff-UCC3 methods qualitatively agree for all states.
A more quantitative analysis is possible through the color-map
plots in Figure 3b—d. Overall, it is found that

e for the ground state, the energy difference
AE = Eyccy — REqcgp has only positive values: the
ff-UCCS3 energy is here always larger than the real part of
the ff-CCSD energy.

o for ¥, and ¥,, the difference AE = Eyccy — REqcsp
has negative values for all polar angles, showing that for
these two states the f-FCCSD surface lies above the ft-
UCCS3 surface.

o for the state V5, the potential energy surfaces intersect in
the vicinity of the crest. Hence, the energy difference
goes from positive values on one side of the crest to
negative values on the other side.

As discussed in the previous section, we note that the two
approaches, CCSD and UCC3, stem from approximations to
distinct mathematical expansions, the BCH and the Bernoulli
expansions, respectively. As a result, the relative energy
differences between their predictions cannot be anticipated
in advance. In the presence of a magnetic field, the two
methods may locate avoided crossings at slightly different
positions, which can lead to apparent intersections when the
corresponding potential energy surfaces are plotted together.
For the maximum and minimum energy differences AE™ and
AE™" respectively, we find

e For ¥, the maximum energy difference is AE™ = 2.02
mE,, at about @ = 48° and f = 51°, while the minimum
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AE(¥3) = Eyccs(¥3) — Eccsp(¥3) ¢
(d) max AE(¥3) = 5.535 mE,  (48°,60°),
min AB(U3) = —14.721 mE, (129, 48°).

REccgp, for the ground (Figure 3a) and first three excited states (Figure 3b—d) of the water

molecule in a magnetic field of B = 0.5 By as a function of its orientation, as pictured in Figure 2.

energy difference of AE™ = 1.53 mE, is found at about
a = 81°and f = 0°.

e For ¥, the minimum energy difference value is AE™" =
—12.13 mEy, at a = 45° and f# = 0°. We note that in this
region of the PES no avoided crossing or more
complicated electronic structure is observed. The
maximum energy difference is at @ = 90° and § = 12°,
where AE™ = —1.43 mE,,.

e For ¥, and ¥, large energy differences are found
around the avoided crossing between these two states:
we note in Figure 3c—d that blue regions (ie., large
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values of AE) are located around f# =~ 70°, where the

avoided crossing is observed.

e For ¥, the minimum energy difference is AE™ =
—13.79 mE, at @ = 90° and f = 0°, while the maximum
energy difference is AE™ = —1.80 mE; at @ = 90° and f
=72°.

e For W, the sign of the energy difference changes
throughout the surface: the largest positive value of
AE™ = 5.54 mE, is obtained at a = 48° and f# = 60°,
while the largest negative value (the largest absolute

https://doi.org/10.1021/acs.jctc.5c01521
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Figure 4. Energy surfaces of the ground and first three excited states of the water molecule in a magnetic field of B = 0.5 By as a function of its
orientation, as shown in Figure 2, calculated at the ffFUCC3 level of theory (Figure 4a). In Figure 4b the excited states ¥, and ¥, are shown, and in
Figure 4c ¥, and ¥, are displayed.
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min(SEccsp(Vs)) = —266.87uEy, (24°,24°).  min(SEccsp(Vs)) = —171.70uE, (72°,42°).

Figure 5. Imaginary part of the energy surfaces of the ground (Figure Sa) and first three excited states (Figure Sb—d) of the water molecule in a
magnetic field of B = 0.5 By as a function of its orientation, as shown in Figure 2, calculated at the ff~-CCSD level of theory. The maximum and
minimum values of the imaginary part of the ff-FCCSD energy is given below each figure, where the positions of minima and maxima are indicated as

coordinates (a, ).
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difference) of AE™" =

12° and S = 48°.
Overall, we note that the excitation energy differences
between the two methods are between a few mE;, and 15 mE,.
For a clearer characterization of the states, we additionally
performed CCSDT calculations for the orientations showing
the largest imaginary components in Figure 5. The
corresponding results are collected in Table 2. As expected,

—14.72 mE, is observed at @ =

Table 2. Total Energies of the Water Molecule Computed at
the ff-CCSD and fi-CCSDT Levels of Theory, with the Unc-
cc-pVTZ Basis Set”

a, p state REccsp SEcesp REccspr SEcespr
66°, 24° Y, —76.06 2.50 —=76.07 —0.37
21°, 18° Y, —75.90 69.64 —7591 11.38
69°, 24° ¥, —75.93 —45.82 —75.95 =5.77
72°, 24° ¥, —75.87 40.63 —75.88 8.30
24°, 24° Y, —75.85 —267.27 —75.86 —54.87
18°, 24° ¥, —75.66 182.08 —75.91 8.72
72°, 42° Y, —75.65 —170.58 —-75.66 —38.85

“The orientations were chosen for which the largest imaginary parts
in the CCSD case have been found. The real part of the energy is
given in Hartree, the imaginary part in uH.

the imaginary parts of the CCSDT calculations are smaller
than those obtained at the CCSD level of theory. We note that
even at the CCSDT level the imaginary part for the excited
states is about 2 orders of magnitude larger than for the ground
state, showing the importance of a Hermitian approach
especially for the excited-state calculations. Furthermore, also
from the CCSDT calculations no double-excitation character
was detected at these points in correspondence to the CCSD
results.

The imaginary part of the CCSD energy is plotted in Figure
Sa (see also ref 54 for the ground state). The maximum
absolute value of the imaginary contribution to the energy is of
about 2.5 uE,, found at a = 66° and f = 24°.

The magnitude of the imaginary part of the ground-state
correlation energy may be said to be negligible, but this is no
longer true for the excitation energies: for the state ¥, Figure
Sb shows that the imaginary part reaches positive values up to
69.87 uEy (at @ = 21° and f§ = 18°) and negative values up to
—48.31 uE, (at @ = 69° and f§ = 24°). For excited states P,
and ¥, the occurrence of complex eigenvalues becomes even
more significant. In Figure Sc, a negative imaginary part of
—266 uE, is observed at @ = 24° and f = 24°, while for the
third excited state a maximum value of the imaginary part of
182 uEy, is found at a = 18° and f = 24°. The imaginary parts
therefore reach a magnitude in the mE, regime, i.e. two orders
of magnitude larger than previously observed for the ground
state. Considering the behavior of the real part of the energy
(Figure 4) and the difference plot (Figure 3), no correlation
between the difference in the energy values obtained with the
two methods and the magnitude of the imaginary part given by
ff-CCSD is found.

The investigation shows that no physical interpretation
could be derived for the minima or maxima of the imaginary
parts of the CC energies. The obtained results all show a good
agreement between UCC3 energies and the real part of CCSD
results, validating the hypothesis that for this system the
imaginary parts can indeed be neglected. These do not
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necessarily appear to be related to the avoided crossings that
occur between the excited states.

6.4. Boric Acid. Systems with a complex Abelian point
group symmetry have excited states that belong to pairs of
complex conjugate IRREPs. These states are pairwise
degenerate and are characterized by a complex wave function
even in the absence of a magnetic field. Nevertheless, in a
Hermitian framework these states can be calculated using real
algebra by forming real linear combinations of the complex
wave functions. These linear combinations no longer transform
as the irreducible representations of the point group. However,
this real representation is no longer possible within the EOM-
CC framework, where the non-Hermitian expression of the
energy leads to the states belonging to the complex irreducible
representations which have pairwise complex conjugate energy
values and therefore are not truly degenerate. Because the
corresponding eigenvectors occurring in the Davidson
procedure are then complex, a real EOM-CC code therefore
cannot compute these states. While it is possible to access
these states using a complex EOM-CC code,”® the use of
complex algebra is more memory intensive and computation-
ally expensive. Consequently, employing a real-valued program
is advantageous in the field-free scenario. Accordingly,
formalisms such as UCC theory, in which energies are
calculated via expectation values of Hermitian operators, are
favored. We note that the standard CC framework effectively
describes the closed-shell ground state, which corresponds to a
real IRREP, while challenges arise primarily for the excited
states.

From a computational point of view, we note that the use of
complex algebra gives a higher prefactor to the cost of the
calculation, as complex numbers need twice as much memory,
and multiplications need three to four times more floating-
point operations. On the other hand, UCC3 shares the same
scaling with CCSD (N°), but also has a higher prefactor. There
are no differences for the most expensive contributions, i.e.,
both UCC3 and CCSD have one term which scales as
N%.N%. However, while for CCSD one term of N3 N>
arises, there are three such terms occurring in uces.”!
Accordingly, assuming the same level of optimization, a real
UCC3 implementation should be less expensive than complex
CCSD. Another argument for a UCC3 rather than a complex
CCSD code is that many established quantum-chemistry codes
do not usually have the ability to handle complex algebra. For
such codes, UCC3 is a good solution for the calculation of
excited states.

In this study, boric acid is taken as an example. The
molecule belongs to the complex Abelian point group Cy;, (see
Figure 6). The point group C;, possesses two real IRREPs, A’
and A”, and two pairs of complex-conjugate ones, E},E; and

1,E; . First, the field-free case is investigated; then the case of a

H—O0

H

Figure 6. Boric acid B(OH);, exhibiting Cy, symmetry.
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Table 3. Excitation Energies (E,) of the Lowest Singlet States 14’, 1A”, 1E’ and 1E”, at the CCSD, CC3, UCC3, and CISD
Levels of Theory, Computed with the Unc-aug-cc-pVDZ Basis Set”

methods excitation energies/Ej,
A’ A" E’ E”
CCSD 0.356378 0.332552 0.364306 + 0.000047i 0.301831 + 0.000051i
CC3 0.354183 0.331149 0.362247 + 0.000004i 0.298958 + 0.000011i
UCC3 0.366560 0.338875 0.373787 0.308129
CISD 0.255217 0.232414 0.263483 0.201056

“For CCSD and CC3, the energies are pairs of complex-conjugate values.

CC3

gles (E,)

tal ener

= —251.51

Tof

0.4 0.6

B/By

Im. part of total energy (mE,)

0.4
B/By

0.6 0.8

Figure 7. Total energy of the ground state of boric acid B(OH)j, in an external magnetic field, directed perpendicularly to the molecular plane. The
field strength varies in the interval between 0 B,—0.8 By. The left panel shows the comparison between the real parts of the energies computed at
the CC3, CISD, CCSD, and UCC3 levels of theory. The right panel shows the nonvanishing imaginary parts of the CC energies.

perpendicular magnetic field is analyzed. We note that the
latter orientation conserves the point-group symmetry of the
system even though a magnetic field is applied. The magnetic
field strength is varied up to 0.8 By, in steps of 0.5 By. The
geometry used for all calculations was optimized at the field-
free. CCSD/unc-aug-cc-pVDZ*' ™" level of theory: Ryg
2.6018 ag, Roy = 1.8181 4, and #BOH = 68.23°. The UCC3
energies of the ground state and the first excited state of each
IRREP have been obtained with the QCUMBRE program
package, using the unc-aug-cc-pVDZ basis set. The CC3,%
CCSD, and CISD results are taken from ref 78.

In Table 3 the excitation energies of the lowest excited states
of the IRREPs A’, A”, E’ and E”, obtained at the CCSD, CC3,
CISD, and UCCS3 levels of theory are listed. As expected, the
energies of the A’ and A” states are real for all methods, while
for the complex IRREPs E’ and E”, the CC methods find pairs
of complex-conjugate values. The UCC3 results, on the other
hand, correctly predict real degenerate energies. The
discrepancies between the CCSD and CC3 results are of the
order of 0.001 E,, while the differences between the CC3 and
UCCS3 values are of the order of 0.01 E. The better agreement
between CCSD and CC3 can be attributed to the fact that they
are different truncations of the same wave function ansatz. In
Table 3, the CISD results for the EOM-CC energies show
large discrepancies with respect to the CC3 results of the order
of 0.1 E;. Among the two methods presented here that yield
real energies, UCC3 is preferred to CISD because of its
superior accuracy. In the following discussion, to account for
the large discrepancies in correlation energies observed for
CISD compared to the other methods, the CISD results have
been shifted to coincide with the CCSD energies at B = 0.

Figure 7 shows the total energy of the ground state as a
function of the magnetic field strength. In an increasing
magnetic field, the energy increases, due to the action of the
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diamagnetic term in the Hamiltonian. The spin-Zeeman term
does not influence the energy, as the ground state is a closed-
shell singlet state. The left panel displays the results for the real
part in the energy, with practically indistinguishable curves for
the CCSD, shifted CISD, and UCC3 methods, while the
inclusion of triple excitations shifts the CC3 energy to slightly
lower values, on average about 0.03 E; below CCSD and
UCC3. However, for both the CC3 and CCSD methods, a
nonvanishing imaginary part arises in a magnetic field (right
panel of Figure 7). For the range below 0.3 B, the imaginary
part of the ground state energy SEqq is of the order of ~107°
E,. Around 0.7 B, however, both CCSD and CC3 are affected
by an increasing imaginary part of the total energy, up to a
maximum of ~0.34 mE; and ~0.09 mE;, respectively. When
going from CCSD to CC3, the magnitude of the imaginary
part decreases, as could be expected from the fact that in the
limit of considering the full excitation operator in the CC
parametrization, the FCI limit is reached and no imaginary
components occur. The presence of complex energies does not
seem to provide particular insight into the accuracy of the real
part which does not change significantly.

Similar to the ground-state energy, Figure 8 shows the
excitation energies of the first excited singlet states of each
IRREP as a function of the magnetic field strength. For each
figure, the left panel compares the real part of the excitation
energies, computed with the four methods. In Figure 8a, the

states 'A’ and 'A”, in Figure 8b, the states 'E; and 'Ej} and in
Figure 8c, the states 'E;" and 'E} are shown. It is observed that
the imaginary part of the CCSD energies is larger than the
corresponding imaginary part of the CC3 energies. The
extrema are observed at similar field strengths, but the role of

. L sl
minima and maxima is reversed. The states E|,” E;, are the

energetically lowest excited states as they are characterized by
the HOMO—LUMO transition. As explained before, the states

https://doi.org/10.1021/acs.jctc.5c01521
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Figure 8. Excitation energies of low-lying singlet states of each IRREP for B(OH)5, in an external magnetic field, directed perpendicularly to the
molecular plane (Figure 8a for states 'A’,'A”; Figure 8b for states 1El/,1 E,; Figure 8c for states 1El",1 E;). The field strength varies in the interval 0

By,—0.8 By. In the left column, the comparison between the real parts of the energies computed at the CC3, CCSD, CISD, and UCCS3 levels of
theory is shown. In the right column, the nonvanishing imaginary parts of the CC energies are shown.

belonging to the complex IRREPs, E’ and E”, start off as a magnetic-fleld strengths is observed. The three methods are in
degenerate pair and are split by the magnetic field. For all good agreement with each other for field strengths up to 0.5 By
states a decrease in the excitation energy when going to higher for each of the inspected states, while qualitative differences are
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Table 4. Excitation Energies of Boric Acid in an External Magnetic Field of 0.65 Bj,, Computed at the CCSD/aug-cc-pVTZ and
CCSD/aug-cc-pVQZ Levels of Theory”

state ERECCSD,TZ SECCSD,TZ

A 1.13 x 10-1 9.99 X 10—4
'E/ 1.69 x 10—1 5.28 X 10—4
'E; 1.44 X 10-1 -2.17 X 10—4
A7 2.12 X 10—-1 —127 X 10-3
'E/ 1.91 x 10-1 479 X 10—4
'E] 7.53 X 10-2 2.84 X 10—4

“The energies are given in Hartree.

§RECCSD,QZ sECCSD,QZ

113 X 10-1 9.57 X 10—4
1.67 x 10—1 5.03 X 10—4
1.44 x 10—1 —2.87 X 10—4
2.10 X 10—1 125 x 10-3
1.91 x 10-1 4.67 X 10—4
7.55 X 10-2 2.68 X 10—4

Table S. Excitation Energies of Boric Acid in an External Magnetic Field of 0.65 B, Directed Perpendicularly to the Molecular
Plane, Using an Uncontracted aug-cc-pVDZ Basis Set, Computed at the Frozen-core CCSD, CC3, and CCSDT Levels of

Theory”
state REccsp,pz SEccsp,pz REccsnz
A 0.115 1.050 0.109
'E] 0.173 0.575 0.186
'E} 0.145 —0.097 0.133
A" 0217 -1.360 0.208
'E/ 0.196 0.519 0.181
'Ey 0.078 0.279 0.075

sECC?},DZ mECCSDT,DZ SECCSDT,DZ
0.383 0.108 0.448
—0.081 0.182 -0.198
0.256 0.131 0.207
—0.334 0.206 —0.480
0.145 0.175 0.150
0.177 0.074 0.156

“The real part of the energy is given in Ey, the imaginary part of the energy in given in mE;

observed when going to higher field strengths. These
differences are likely due to different avoided crossings with
higher-lying states of the same symmetry.

In Figure 8a, the energies of the states 'A’ and 'A” are
displayed as a function of the magnetic-field strength. For field
strengths larger than 0.2 By, the 'A’ state has a lower energy
than the 'A” state. Major differences are observed in the range
between 0.55 B, and 0.75 B,. From the inspection of the
amplitudes of the 1A” state obtained with the CC3 method, a
double-excitation character appears to be present. The double-
excitation character is also found by the UCC3 method, while
it is absent in the CCSD results. The energy lowering at about
0.7 By, found by CC3, is described differently by UCC3, CISD,
and CCSD. The discrepancy with respect to CC3 might stem
from the fact that the other methods, due to the limitation of
the excitation space to singles and doubles, do not describe the
double-excitation character well. For the 'A’ state, the energy
lowering is observed for both CISD and UCC3. However, in
this region the UCC3 description of the state acquires a partial
double-excitation character, which is absent in the CC3 results.
Therefore, the shape of the 'A’ curve differs from that obtained
with the other methods which describe the 'A’ state via a
single excitation. The right panel of Figure 8a shows the
corresponding imaginary parts of the CC3 and CCSD results.
For the states belonging to the real IRREPs, 1A’ and 'A”, the
excitation energies in the field-free case are real. The plotted
imaginary values in the right panel of Figure 8a therefore
depart from 0 E, at B = 0 By. For CCSD, the maximum of
ISE,,| of 1.8 mE,, is reached by the 'A” state, while the same
state for CC3 has a maximum of ISE,, | of 0.4 mE;. The largest
values of ISE.| for the CC3 results are found in

correspondence to the largest double-excitation character.

The CCSD curves show maxima at similar field strengths
where CC3 shows minima and vice versa.

For the IRREP E’ (Figure 8b), the same features as in Figure
8a can be observed for magnetic field strengths larger than 0.55
By. The 'E; state acquires a double-excitation character,
causing major differences in the results for the four different
methods between 0.55 B; and 0.70 B,. Again, the CC3 and
UCC3 results exhibit a double-excitation character, while

CCSD possesses single-excitation character. For the 'E; state,
the CC3 and UCC3 results possess a double-excitation
character between 0.60 By and 0.75 B,. From the right panel,
it is observed that the two states have complex-conjugate
energy values in the field-free case, starting symmetrically
around the x-axis, as expected. In the finite field, the energies
do no longer occur as pairs of complex-conjugate values and
evolve independently. The imaginary part is no longer
negligible at higher magnetic-field strengths, especially in the
range 0.4 B;—0.8 By, In particular, the maximum of ISE,, | for

the IEI/ state is 0.53 mE;, for CCSD and 0.16 mE;, for CC3,

while for the lEé state it is 1.37 mE;, for CCSD and 0.38 mE;,
for CC3. Similarly to the case shown in Figure 8b, it can be
noticed that the maxima of IJE, | for the CC3 energies
correspond to the presence of a double-excitation character of
the states, as seen from the contributions to the R amplitudes.
In addition, we observe that the overall development of the
imaginary component is quite different between CCSD and
CC3. For CC3 the extrema are smaller than for CCSD. Often,
the extrema of CCSD and CC3 have a different sign,
respectively.

Figure 8c shows the energies of the two lowest-lying states
belonging to the IRREP E”. Here, no major differences in the
development of the energies as a function of the field strength
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are observed. Avoided crossings occur at 0.2 B, for the 'EJ

state and 0.4 B, for the 'E; state. Both states have a small
double-excitation character (however not predominant over

the single-excitation character), observed in the CC3 and
UCC3 results which is absent for CCSD. The maximum of

ISE,, | for the 'E/ state is 0.71 mE, for CCSD and 0.16 mE,

for CC3, while for the 'E; state the maximum of ISE,, | is 0.91
mE; for CCSD and 0.27 mEy, for CC3. The extrema of SE,,.
for CC3 once more correspond to field strengths at which the
largest double-excitation character is observed. The extrema of
SE,,. for the CCSD energies are found at similar field
strengths, with discrepancies of at most 0.1 By,

Table 4 shows the excitation energies of boric acid in an
external magnetic field of 0.65 B, calculated at the CCSD/aug-
cc-pVTZ and CCSD/aug-cc-pVQZ levels of theory. This
magnitude of the magnetic field was chosen because around
this value all excited states are characterized by a nonvanishing
imaginary part. From the listed values, it appears that
increasing the basis set from aug-cc-pVTZ to aug-cc-pVQZ
does not reduce the magnitude of the imaginary part, thus
showing that it is not an artifact of the finite basis set. In Table
S, for a field strength of 0.65 B, using the aug-cc-pVDZ basis,
calculations for full triples (CCSDT) have been performed as
well. The calculations were performed using the frozen-core
approximation. The table shows that the order of magnitude of
the imaginary part of the energy remains the same even when
including the full triple excitations, in CCSDT. Therefore, the
complex values cannot easily be treated by increasing the
excitation space. We can suppose that only much larger
excitation spaces (approaching FCI) would lead to a
considerable decrease in magnitude of the imaginary part.
The inspection of the excitation amplitudes shows that both
CC3 and CCSDT detect a partial double-excitation character
for the states 'E/,' E},' A", E/,' EJ, while CCSD describes
these states only through single excitations, which explains the
larger imaginary components in the CC3 and CCSDT results.
In Table 6, the discrepancies between the real parts of CCSD
and UCC3 results with respect to full triples (CCSDT) are
shown. These differences, calculated as
R(AE, ethod) = RE ethod — REccspr do not show a unique
trend. For some states (IA/,1 El/,1 Eé,l E"), fR(AECCSD) is
slightly smaller than R(AE;c;), while for the other states (

Table 6. Differences in Excitation Energies of CCSD and
UCC3 with Respect to the CCSDT Reference, of Boric Acid
in an External Magnetic Field of 0.65 B, Using an
Uncontracted aug-cc-pVDZ Basis Set”

state R(AEccspnz) (En) R(AEycesnz) (En)
A/ 6.78 x 1073 —247 X 1072
'E/ —-9.14 x 1073 —2.41 X 1072
'E; 144 x 1072 -3.53 X 107
A7 1.13 X 1072 1.50 x 1073
'E/ 2.07 X 1072 3.05 X 1072
'E] 423 x 1072 243 X 1073
“The differences are calculated as

2R(AECCSD,DZ) = 2RECCSD,DZ - 2RECCSDT,DZ and
2R(AEuccs,Dz) = mEUCCS,DZ - 2RECCSDT,DZ

"W E)) R(AEyce,) is smaller than R(AEccgn). The
discrepancies are in most cases of the same order of magnitude.
Therefore, the accuracy of the two methods is comparable, as it
was shown in Section 6.2. In summary, UCC3 constitutes an
accurate method to calculate degenerate excited states of a
system belonging to a complex Abelian point group, without
having to resort to the use of a complex code. Here, the
importance of having a Hermitian formalism becomes
apparent, as EOM-CC cannot find these states in a real-valued
framework.

The problems arising from the non-Hermiticity of the CC
theory are also evident in the finite-field case: the large
imaginary parts observed in the excitation energies at higher
field strengths show a complicated behavior as a function of
the magnetic field strength. From this study, it seems that the
largest values of the imaginary parts are found in
correspondence to a partial double-excitation character in the
description of the excited states. Concluding, the UCC3
approach seems advantageous at least in cases where complex
Abelian point groups or imaginary components to the energy
occur.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we have described and investigated a finite-field
version of the UCCn approach. This development was
motivated by the limitations known for CC theory, arising
from the non-Hermiticity of the theory. These limitations are
well-documented in the literature: complex energy eigenvalues
are found for systems in a magnetic field®* and for excited
states in the proximity of conical intersections.”””?

The adopted UCC ansatz maintains the advantages of an
exponential parametrization of the wave function, and the
Hermiticity of the energy expression guarantees real energies.
It was shown in Section 6 that UCC theory is an alternative to
CC theory for the calculation of molecular energies and
properties.

Following the formalism first proposed by Liu et al,,”" the
method has been adapted to the finite magnetic-field case,
implying the use of complex algebra. Through this adaptation,
both ground- and excited states could be targeted, maintaining
a structure of the equations similar to CC theory. This work
focuses on two approximations of UCC theory, determined by
a perturbative truncation of the amplitude equations at second
(UCC2) and third order (UCC3). Both methods have been
implemented in the QcumBRE program package.”” The
methylidyne cation CH" was taken as an example to investigate
the comparability of different CC and UCC truncations, where
different orientations of the magnetic field were considered to
analyze the different descriptions of avoided crossings between
different states. In fact, this system was chosen because of its
low-lying doubly excited state, which for some orientations
possesses avoided crossings with singly excited ones. The
comparable accuracy of the CCSD and UCCS3 results has been
outlined, while UCC2 proved unsuitable to treat states with
significant double-excitation character.

The analysis of complex eigenvalues was performed for
water and boric acid. For the water molecule in a magnetic
field of different orientations, the qualitative description of the
ground- and excited-state energies was found to agree between
ff-CCSD and ff-UCC3. For ff-CCSD, the imaginary contribu-
tions to the energies were found to be significant, especially in
the excited states. Also, occurrence of complex energies did not
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turn out to be a viable diagnostic criterion for the quality of the
real part of the ff-CCSD results.

Boric acid is a case for which a real-valued quantum-
chemical code cannot find the excited states of the IRREPs E’
and E” using a standard CC code. In the field-free case, a
corresponding UCC calculation involves only real algebra. This
is a clear advantage over standard CC theory, where the non-
Hermiticity of the energy expression necessitates the use of
complex algebra for the excited states of B(OH)5, even without
an external field. B(OH); has also been analyzed within a
strong magnetic field. Here, UCC represents a solution to the
problem of non-negligible imaginary parts in the excited-state
energies. Similar to the analysis of water, it was found that the
imaginary part conveys no clear diagnostic criterion. A large
imaginary component did not signify a corresponding
discrepancy between the ff-UCC3 and ff-CCSD results. The
largest imaginary components could be found in correspond-
ence to a partial double-excitation character in the description
of the excited states.

Compared to CCSD, the UCC3 method provides the
advantage of yielding strictly real energies in the finite-field
setting, while retaining the same formal N¢ scaling. Although
CCSD is computationally less demanding, it can yield
imaginary components in the total energy in the finite-field
setting. While for ground states the imaginary component is
often small, it can be significantly larger for excited states.
Nevertheless, the real components of the energies are usually
reliable in the cases studied here. The UCC3 formulation
eliminates this issue, providing a more physically meaningful
description within the finite-field framework.

The discussed truncation scheme is not unique and different
UCC formalisms may be explored. Most UCC methods are
based on a perturbative truncation of the expansion. However,
recent studies have investigated truncation schemes based on
expansions up to a certain rank of commutators.®” 77>
These methods seem to be advantageous for molecules for
which the Moller—Plesset series does not show smooth
convergence at low orders. For example, the qUCCSD
approach, in which the amplitude equations and Hgg are
truncated up to double commutators between V and 6, is
discussed to improve the accuracy of UCC3 for molecules with
strong orbital relaxation and electron correlation.®”® Explora-
tion of such methods in the ff context would hence presumably
lead to more accurate results for more molecules exhibiting
strong electron-correlation effects.

This study focuses on the Hamiltonian in a magnetic field
which leads to complex energy values in the CC framework.
However, in ref 54 also other conditions determining a
complex part in the Hamiltonian have been analyzed
extensively. Among these, the vicinity to conical intersections
is documented in the literature to cause the CCSD results to
become complex. In addition to other possible solutions to this
problem,”**>*® the Hermitian formulation of the UCC energy
clearly provides a natural way to eliminate unphysical results in
this context.

The increasing interest in unitary formulations is also
motivated by the direct application of these methods in the
field of quantum computing.®'~®* Therefore, the different
truncation schemes in quantum chemistry could be compared
to the strategies used in the encoding of states in quantum

computing, especially in the presence of an external magnetic
field.**
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The perspectives presented here highlight just one part of
the broader research landscape opened up by the application of
UCC methods in quantum chemistry. Systematic and in-depth
investigations into the behavior, scalability, and accuracy of
UCC across a wide spectrum of molecular systems and
correlation regimes are essential to rigorously assess its
computational utility and to delineate its range of applicability.

B APPENDIX 1

In Figure 9, four examples of UCC diagrams are provided, in
order to explain the diagrammatic rules listed in Section 3.

LA L

Figure 9. Unitary coupled-cluster theory for the treatment of
molecules in strong magnetic fields

e I: In this term, the involved V/ operator is part of the so-
called rest part Vi, as it is not a pure excitation nor a
pure de-excitation operator. This term arises from the

single commutator and belongs to both %[\A/R, 6] and
%[f/, 6]. These two contributions add and the term has

hence a prefactor of %+ % =1 in front of the

commutator. The same global prefactor is found for
the single commutator in the BCH expansion, ie,

1-[V, 6]. The same rules as for the diagrammatic
formalism of CC apply. The term is evaluated as

P(ij)P(ab)(ak||ic)oy.

II: The potential operator here is part of VND, as it only
involves de-excitations within the given truncation level.
Furthermore, the contraction with the & operator results

in a term belonging to A% , 61g. According to Rule 2, this
term is therefore part of the double commutators
1oy A7 Aar oA

E[[VND! 6], 6] and i[[V, 61]p, 6]. The global prefactor
to this double commutator for this diagram is

L 41 =1 This prefactor differs from the prefactor
243

of the BCH expansion, i.e., %[[‘7, 6], 6]. From the CC
diagrammatic rules, a factor% arises from the connection
of the potential operator with two equivalent operators.
This factor needs to be scaled according to rule 3 in

Section 3 obtaining (%%)2’ = % We hence find

P(ij)P(ab)(Kll|cd)og o).

III: The potential operator is part of VND as it only
involves excitations. Same as for example II, the term
acquires a global prefactor of %, given by the sum
—lVap 8], 3,1 + 51IV, 6,)x, 3], From the CC
rules, a prefactor i is obtained, due to two pairs of
equivalent lines in the diagrams. Scaling this factor
20 =1

6

Furthermore, the last rule of Section 3 applies here as
well, as the potential operator is connected only to one

according to rule 3 in Section 3 yields (ié)
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of the amplitudes, giving an additional factor of % In
total, one hence obtains %(cd”ij)a,fld*aﬁb for this term.

e IV: This diagram involves a pure excitation part of V. It

. 1 d a1 A .
contributes to E[[VND , 6], 6] but due to the connection

to o also to i[[V, 61g, 6]. Both have one pair of
equivalent lines and the scaling of the prefactor leads to
é. Furthermore, the potential operator is connected to

only one of the amplitudes (6') thus requiring an

additional factor % The diagram therefore is evaluated as

—P(ab) (ad]lij)og o
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