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Open quantum systems are ubiquitous in nature and central to quantum technologies. A common description
of their dynamics is given by the celebrated Lindblad master equation, which can be generalized to the non-
Markovian scenario. In this work, we introduce the non-Markovian ensemble propagation (NMEP) method,
which extends the Monte Carlo wave-function (MCWF) method to the non-Markovian case in a simple and
general manner. We demonstrate its accuracy and effectiveness in a selection of examples, and compare the
results with either analytic expressions or direct numerical integration of the master equation.

DOI: 10.1103/zh52-bcdk

I. INTRODUCTION

The foundational dynamical equation of quantum physics
is the well-known Schrodinger equation. It describes the evo-
Iution of state vectors, which, according to the axioms of
quantum mechanics, give a complete description of the state
of a closed quantum system. However, realistic systems in-
teract with the environment and are accessible, at least to the
experimenter or observer. Thus, it is necessary to regard them
as open quantum systems. The general idea of the theory of
open quantum systems is to determine the dynamics of the
system of interest by describing the environment, which we
also call the reservoir or bath depending on the context, using
its statistical properties. There is a wealth on methods for
implementing this concept, of which master equations, i.e.,
equations of motion for the density matrix p, are arguably the
most popular.

The master equations, which are usually derived starting
from a closed system description of the system of interest
and the environment, differ in mathematical structure and
complexity, and a concrete choice depends on the system and
application at hand, as well as the necessary approximations
to obtain them. A few examples of such master equations are
the Nakajima-Zwanzig equation [1,2], the local-in-time non-
Markovian master equation [3,4], hierarchical equations of
motion [5], and more approximate methods such as the Lind-
blad equation [6-8] (see Refs. [9] or [10] for a comprehensive
overview, with the latter focusing on non-Markovian open
quantum systems). Some of these master equations lead to
equivalent results even though their physical interpretation, as
well as their derivation may differ. Additionally, some of these
master equations also have equivalent formulations in terms
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of stochastic unravelings as well as stochastic Schrodinger
equations [11,12].

In this paper, we focus on the class of Lindblad-type master
equations and various unravelings of this type of equation.
The most general Lindblad-type master equation is the canon-
ical local-in-time non-Markovian master equation (i = 1)

p(t) = —ilHs(t), p(1)] + Di[p(®)], (D

where
- 1
Dip)=Y w(t)(Az(t)pA',"(t) - Sl OAw), p}) o)
=1

is called the dissipator. The operator Hg(t) plays the role of
the system Hamiltonian [13], while the operators A;(¢) are
called jump or Lindblad operators with y;(t) € R the jump
rates. Equation (1) is of central interest when studying open
systems because of its simple structure and interpretation.
When the timescale of the dynamics of the system is large
compared to the timescale of the dynamics of the environ-
ment, we may assume that temporal correlations in the bath
are §-like, making the system behave as a Markovian quan-
tum system. In this case, the master equation reduces to the
well-known and celebrated Lindblad master equation, which
differentiates itself from Eq. (1) by the additional condition
that all the jump rates must satisfy y;(¢) > 0 at all times, as
assumed in the original derivations [6,7]. However, for many
practical applications, it is not possible to assume that the bath
is Markovian. A prominent example where a non-Markovian
description is necessary, is the case of superconducting qubits
subject to 1/f or other pink noises [14,15]. Fortunately, for
sufficiently small timescales or coupling rates, it is always
possible to capture non-Markovian dynamics with a Lindblad-
type equation and obtain the local-in-time non-Markovian
master equation in Eq. (1), as long as the jump rates y;(¢) are
allowed to take negative values [16]. The significance of the
sign in regard to the Markovianity can be understood in terms
of information flow: when all jump rates have a positive sign,
information only flows from the system to the environment.
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When the sign of the jump rate is negative, the system can
recover information through a backflow of information from
the environment into the system [17]. We remark that although
Eq. (1) represents the most general setting, not all of its solu-
tions are physical, i.e., it does not always preserve the defining
properties of the density matrix, namely, its positivity. Condi-
tions for the physicality of its solution have been investigated
by Hall [18].

For all specific types of master equations, it is of central
interest to find sufficiently fast algorithms to solve them.
Time-local equations, such as the one in Eq. (1), can be
tackled with standard solvers for systems of linear ordinary
differential equations. This usually involves the evaluation
of the right-hand side of the corresponding equation, which
becomes numerically expensive as the dimension N of the
Hilbert space increases. The main contributors to the com-
putational complexity are the matrix-matrix multiplications
required to compute the right-hand side of Eq. (1), which by
default is of order O(N?) [19]. When dealing with sufficiently
large Hilbert spaces, the simulation of these equations can be
sped up using Monte Carlo methods at the cost of potentially
reducing precision [20,21]. The Monte Carlo wave-function
(MCWEF) approach [20] is one such method, relying on the
simulation of an ensemble of stochastic state vector evolu-
tions from which the averages of the relevant observables
can be constructed. This method is designed to solve the
Lindblad-type equation [Eq. (1) with y;(¢) > 0], reducing
the computational complexity to O(N?). Alas, it does not
generalize to the most general case of Eq. (1), where y;(t)
can be negative. Over the years, multiple methods have been
developed to solve Eq. (1) using Monte Carlo methods similar
to the MCWF method, such as the doubled Hilbert-space [3],
tripled Hilbert-space [16], and the non-Markovian quantum
jump (NMQJ) [21,22] methods. As their name implies, the
doubled and tripled Hilbert-space methods extend the size
of the Hilbert space, while the NMQJ method modifies the
jump probabilities present in the MCWF method to allow for
the numerical solution of Eq. (1). Interestingly, concurrently
with providing an iterative method to solve Lindblad-like
equations, these methods also provide a formulation of the
deterministic equation in the form of a stochastic Schrodinger
equation [as in Eq. (6)], forming a bridge between both repre-
sentations.

In this paper, we present the non-Markovian ensemble
propagation (NMEP) method, which generalizes the MCWF
method in a more natural way compared to the previously
mentioned methods. The paper is structured as follows. First,
we give a brief overview of the MCWF method, upon which
the NMEP method improves, in Sec. II. Afterwards, in Sec. I1I
we present and discuss the details of the NMEP method. In
Sec. IV we apply the NMEP method to a few examples to
demonstrate its applicability and compare it to the MCWF
and NMQJ method. Finally, we give our concluding remarks
in Sec. V. The Appendixes provide additional details of the
derivations.

II. MONTE CARLO WAVE-FUNCTION METHOD

Before we introduce our new method, we first give a brief
introduction to the MCWF method. This sets up the required

background knowledge, as well as the context for our method.
Moreover, it allows us to focus on the limits of previously
developed methods and provide the theoretical framework to
extend the MCWF method.

We start this section with a purely computational mo-
tivation to the unraveling of master equations using the
Liouville—von Neumann as an example. We then follow up
with a brief overview of the MCWF method whose aim is to
solve Eq. (1) in the Markovian case when all rates y;(¢) are
nonnegative for all times 7.

A. Unraveling the Liouville-von Neumann equation

As a starting point of the MCWF method, let us consider
the Liouville-von Neumann equation

9 p(1) = —i[Hs(7), p(r)], 3)

which can be seen as Eq. (1) without dissipator. Using stan-
dard numerical methods, solving this ordinary differential
equation involves the evaluation of the right-hand-side of
Eq. (3). This requires us to perform the matrix-matrix product
of Hg(¢) and p(¢) in each iteration step, which is the main
contributor to the computational complexity of the method.
As previously mentioned, given that the dimension of the
matrices is N, using standard algorithms for matrix-matrix
products require on the order of O(N?) operations, with more
modern algorithms requiring O(N?371532) operations [23].
For pure states p(t) = [y (2)) (¥ (¢)], there exists a faster
algorithm to solve Eq. (3) since, in this case, the Liouville-von
Neumann equation is equivalent to the Schrédinger equation

| (1)) = —iHsO|Y (1)). “4)

The right-hand side of Eq. (4) involves only a matrix-vector
product. This has a computational complexity of O(N?),
which is asymptotically better than the matrix-matrix product.
Thus, especially for large N—, it is more efficient to evolve a
pure state using the Schrédinger equation rather than the Liou-
villevon Neumann equation. This result can even be extended
to certain mixed states. In fact, if the initial density matrix
p(tp) at time fy can be decomposed into a sufficiently small
number M of pure states [1,,), i.e.,

M
p(t0) =D Pul¥n) (Yinl, (5)

m=1

with M < N and 0 < p,, < 1 such that > p, =1, the
computational complexity of solving the Liouville-von Neu-
mann equation by evolving each of the pure states is O(MN?).
This computational advantage not only extends to the efficient
solution of the density matrix, but also allows us to efficiently
obtain expectation values (O) of an observable O. An addi-
tional advantage to the reduction in computational complexity
is that the memory complexity of a solver can be reduced be-
cause it only needs to keep track of a single state vector |y (¢))
rather than the density operator p(¢) (which requires up to N
state vectors) at each time step . We only need to keep track
of a single state vector |,,(¢)) out of the set {|V,,(#)) }m=1...m
at a time because each of these can be treated independently.
This rewriting of the Liouville—von Neumann equation as a
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set of Schrodinger equations with different initial conditions
is called an unraveling of the equation.

B. Unraveling the Lindblad equation

In the previous subsection we showed that there is
an equivalence between the Schrodinger equation and the
Liouville-von Neumann equation.

In contrast to the Schrodinger equation, the unraveling of
the Lindblad equation is now stochastic in nature, meaning
that the evolution of the state vector is probabilistic. This
unraveled equation, which is equivalent to the Lindblad equa-
tion, is [9]

1L
dly (1)) = |:_iHeff(t) 3 Z mnAz(nwa»nﬂ 1Y (1))dt

=1
L
AN (@) >
A O ANG), (6
+,§;(||A1(t)|l/f(z)>|| [ (t)) |dNi(t) (6)

where H.i is the effective non-Hermitian Hamiltonian
defined as

oL
Hegr(t) = Hs(1) — % ; Yi(OA() A () (7
and dN,(t) are Poisson increments with expectation value
(AN (D) = vl Al (1)) |1 *dt ®)
that satisfy
dN;(1)dNi(t) = S1kd Ny (7). ®)

Let us start by discussing the individual steps of the MCWF
method, as presented by Mglmer et al. [20]. Consider our
system to be in the state [y(¢)) at time ¢. The state may
then be evolved into one of two types of states, a so-called
deterministic state

[1 — il ()] (1))

8t)) =
Vol +80) = S s Ol

=: Uest (1Y (1)),
(10)
or one of the jump states
Ay @)
A Oy )]

with [ =1,..., L. In Egs. (10) and (11), we introduce, for
compactness, the nonlinear operators Ues [24] and A; . Each
of these evolution targets corresponds to the respective factor
of the differentials in Eq. (6). The state |y; (¢ + §t)) is chosen
with probability

Fi(t) = 8ty (OIAI (O ), 12)

while the probability of evolving into the deterministic state is
accordingly

¥t +61)) = = Ke([¥ (), (1D

Py(t) =1-=Y_P(). (13)
1

This can be understood as implementing the Poisson incre-
ments dN;(t).

By iterating this random process, we can evolve an ini-
tial state |Y¥(¢p)) to any time ¢ > ty, and by repeating this

process N times we can generate numerous trajectories
(or paths) {|v,(t))}s=1,.. .~ for the same initial state |y (#)).
Here, a path (or trajectory) is a sequence of states | (¢)) which
can be attributed to the same initial state | (f)). Using a
sufficient number of trajectories, it is then possible to com-
pute an approximation to the expectation value of any desired
observable O at time ¢ through

N

1
(0W) ~ + D (Wa)|01Ya(0)). (14)

a=1

Similarly, we can compute an approximation o (¢) to the den-
sity matrix using

1 N
ot)= N Z [Va()) {(Ya(®)]. 15)
a=1

In case we have an initial mixed state p(fy) with decompo-
sition as in Eq. (5), we can instead sample the |yy) with
probability py in the first step, and then perform the stochastic
process we have just described. Given that N — oo, one can
show [9,20,25] that at any time ¢ this process reproduces, to
first order, the density matrix p(¢), meaning that

Jim lim o (t) = p(1). (16)
The number of paths over which to average depends on the
desired accuracy for the expectation values and determines
whether the Monte Carlo approach is faster than using the
standard numerical approach. This ultimately depends on the
observable we are interested in, and estimates of the number
of samples needed to achieve a certain accuracy can be ob-
tained using standard probabilistic inequalities [20,25]. In any
case, a large jump probability (dN;(t)) requires an appropri-
ately large number of samples N to get an accurate result over
the various trajectories. This limits the numerical advantage of
this MCWEF to the case in which (dN()) is relatively small
and thus the number of samples N stays significantly smaller
than the Hilbert-space dimension. One way to understand why
this is true is that if the jump probability (dN;(t)) is too
large, every state will follow along a different trajectory. This
necessitates a large number of samples N to get accurate esti-
mates for the relative occurrence of the different trajectories.
This does not hinder the applicability of the method itself
when using a small number of trajectories, it only limits the
accuracy of any expectation value of observables derived from
these trajectories.

So far, the positivity of each y;(¢#) must be ensured. If one
of the jump rates y;(¢) is negative, Eq. (12) would then lead
to a negative jump probability and the MCWF is no longer
applicable.

II1. Non-Markovian ensemble propagation

We now present our new NMEP method, which aims to
solve Eq. (1) in the most general case, thereby generating an
unraveling of the equation. Our method extends the MCWF
method to the non-Markovian regime in which y;(#) can take
negative values. Following the ideas found in Refs. [9,22],
we first reformulate the MCWF method in terms of quan-
tum mechanical ensembles. Given this formalism, we briefly
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motivate and present our method. We follow this with a proof
and discussion of our method in which we compare it to
the NMQJ method of Ref. [22], which also aims to find an
unraveling to Eq. (1).

A. Ensemble interpretation

To extend the MCWF method discussed in Sec. II, the
first step in our method is to reformulate the MCWF method
in terms of ensembles. This rephrasing does not influence
the general principle of the MCWF method, but suggests a
different practical implementation.

Given a number of samples N and some initial state |y (#y))
of the system, the MCWF method describes the evolution of
N copies of the initial state, resulting in, at most, N different
states |y,(¢)) at time f. A simple implementation iterates
over each trajectory, generating them all individually. This is
inefficient, as for each sample starting from [y (¢y)), the same
matrix-vector products have to be computed many times to
reach the states |, (7)), specifically in the first few steps when
most trajectories are still on the most probable path.

To efficiently track these repeated matrix-vector products,
we record how many times a certain path has been taken and
the state of that path. Essentially, we are keeping track of an
ensemble of states and counts that we denote, at each time
step, as

{(Wa(2)), Na(®))}aere), a7

where N,(¢) is the state count (or weight) and I'(¢) is a set
of labels associated with the states in the ensemble, which in
general depend on time. We also require the weights N, to
satisfy a normalization condition

N = Z N(1), (18)

acl'(t)

with N the total number of trajectories which remains constant
in time. In this picture, the occurrence of a quantum jump
means that the ensemble counts N, will change, while the evo-
lution of the ensemble members |/,(?)) is obtained according
to the rules described in Sec. II B. We want to remark that this
ensemble interpretation does not help us reduce the number of
repeated matrix-vector products when (dN,(¢)) is so large that
each state has a count of 1, the formalism will however help
us with the description of the NMEP method.

In the case where all trajectories are the same and no
quantum jump occurs in any of them up to time ¢, this
rewriting is straightforward: at time ¢, our system is in the
pure state {(|Y(¢)), N)}. Considering the case of a single
jump operator A, during the evolution of the system to the
next time step ¢ 4 8¢, a certain number Ny of ensemble ele-
ments perform a quantum jump and Ny = N — Ny perform no
quantum jump. Denoting the deterministic state and the jump
state by |¢) and |¢’), respectively, the resulting ensemble is
thus {(|¢), Ng). (I¢"), Ng)}. A corresponding graph of the
process is shown in Fig. 1, where we use U to denote the
effective evolution described in Eq. (10) and A.¢ the effective
evolution described in Eq. (11).

Since we will use the ensemble method of representing a
density matrix p(¢) at time ¢ through an ensemble repeatedly
from now on, we explicitly underline the equivalence between

t B t4 6t
|¢) = Uest(|1))) (16 No)

(), N) —
¢') = Aen([)

P = ~(1)5t]| A |$)]? \
(|¢)/> ’ N¢/)

FIG. 1. A flowchart representing the time evolution of an ensem-
ble with a single ensemble element and a single jump operator using
the MCWF method. Each arrow represents a possible evolution path
for a state in the ensemble. Above each arrow we depict how the state
evolves while the probability of evolving accordingly is given below
the arrow. The ensemble at time ¢ is described by all the ensemble
elements below ¢ and accordingly so for the ensemble at time 7 4 §t.

the ensemble and the density matrix. Given an ensemble as in
Eq. (17), its associated density matrix is as

1
pit) =+ D Na®Wa) (Yalt)]. 19)

ael'(t)

We stress that this decomposition is not unique as there are an
infinite number of ways to represent the same density matrix
using different ensembles. As such, there is an equivalence
class of ensembles which represent the same density matrix

p(1).

B. NMEP method

Before we introduce the NMEP method, we briefly touch
on two approaches which can be used to derive this method.
A more detailed derivation using these approaches is given in
Appendix A. Both approaches lead to the NMEP method, but
they differ in their physical interpretation and require different
mathematical insights to derive the NMEP method.

The first approach (see Appendix A 1) to derive the NMEP
method is based on the observation that we can remove the
negative sign in the jump probability P = y5t(¢’|¢’) when
y < 0 by reversing the sign of the time step §¢. A step in time
with step size —4¢ at time ¢ + &t can then be performed using
the MCWF formalism. This ultimately leads to an implicit
equation for the evolution of the ensemble which can be
solved for explicitly. In this derivation, many mathematically
equivalent variations of the NMEP method arise naturally.
Mathematically, these variations are akin to the implicit for-
mulation of the Euler method.

The second approach (see Appendix A 2) directly reinter-
prets the jump process occurring in the MCWF method as the
creation of a pair of ensemble members with opposite sign.
This pair of ensemble members can be interpreted as the in-
teraction between the system of interest and the environment.

1. Algorithm

We now go over the details of the NMEP method, whose
aim is to solve Eq. (1). In the language of Egs. (17) and (19),
the NMEP method describes the evolution of p(¢) — p(t +
8t) as a mapping

{(Ua@)), Na@ )} aerey=> {([¥p(t + 82)), Np(t + 6t))}peri+or)-
(20)
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After the ensemble at ¢ 4 §¢ has been computed, it serves
as the starting point for the next iteration of the NMEP
method. In the following, the time argument is set to be
arbitrary but fixed and is left out for the ensemble ele-
ments. This allows us to use the following shorthand notation:
[Ve) = [t +81)), Ny = Np(t +81), |Ya) = [Va(t)), Na =
Na(0).

The NMEP method computes the new N, and |y;) using
the following steps.

(1) Compute the deterministic trajectory |1p}§j)) and the

jump paths |wb(l“)), from each |¢,) with a € I'(¢) as follows:
(1 — iHegt (1)81)|¥a)

Yl = . : 1)
V) (1 = iHest (1)) | Wra) |
a Ai()|Ya)
YWy = 2T (22)
| b ) A/ ()] Pa)
Here, the non-Hermitian Hamiltonian He(¢) is defined as in

Eq. (7).

(2) Let B(x, p) be a binomial distributed random variable
with mean x and success probability p. We define the proba-
bility Pl(”) that a jump with jump operator A;(¢) occurs on the
state |v,) as

P =5t (O] A1) 1% (23)

The occupation numbers Né’”) for the previously computed

states lefla)) for [ > 0 are randomly sampled as

ngfl) ~ sgn (N,y())B(INa|, ), @4

and the occupation of |¢£Z)) is computed as

N& =N, =Y N, (25)
l

Equation (25) connects the occupation number of the de-
terministic evolution with the jump paths and ensures that the
trace of the density matrix is preserved. We emphasize that
the ensemble members can now have a negative ensemble
count. The sign of ensemble members does not influence their
propagation, meaning that they propagate using the same rules
and may perform quantum jumps in the same way as ensemble
members with a positive ensemble count. The realization of
this process is contained within Eq. (24).

(3) Finally, we can simplify the elements in the ensemble
representation of p(r + &t) if possible. This means that we
remove states whose occupation number is 0 and combine oc-
cupation numbers whose states are equal (up to a phase factor
[26]). In this way, we can identify new labels b associated with
the states in the ensemble at time ¢ + 8¢ and gather them in a
set ['(t 4 &t). This completes the mapping in Eq. (20).

2. Proof

We now prove that the algorithm described in Sec. III B 1
provides a solution of Eq. (1). The techniques used in this
proof follow closely along the proof of the MCWF [20]
and NMQIJ [22] methods. We leave details of the steps to
Appendix B.

The core idea of the proof is to show that on average a
single step of the method satisfies the equation of motion
Eq. (1). Thus, our aim is to compute the average density
matrix from the ensemble obtained by performing a single
step of the NMEP method given some arbitrary initial state.

The average density matrix o (t 4 §t) is given by all the
ensemble elements that are computed from the density matrix
at time ¢ in Eq. (19). Thus, we can compute o (f + 8¢) as a
mixture of the states that are generated by the NMEP method
from the states |1,). The contributing states to o (¢ + §t) are
the states |lﬁ;?)) in Eq. (21), which represent “free” evolu-

tion of |¥,) and states |1ﬁl§la)) with £ > 0, which represent
an exchange with the bath through the jump operator A;.
Consequently, the average evolution of p(¢), o(t + t), can
be written as

Na[ | @) L N pla
ot+on= Y ﬁ[|%§o))(%§o)| + Y P“sgn (y(1))

ael'(t) =1
< (| - |w;:>><w;:>|>}. 6

The sign function sgn(.) reverses the order of the ensemble
member exchange with the bath (see Fig. 8) and accom-
modates the different sign when evolving states that have a
negative ensemble count.

After rearranging the projectors and inserting the defini-
tion of each state, for the deterministic states we get (see
Appendix B for more details)

v N’ = (1 = P¥sgn (1))

(1 = iHer (1)30)|yra) (Wl (1 + iHJy: (£)81)
(1 = iHest (1)80)|a) |1

27)
= |Wa)(Val — i8t[Hs(t), [¥a) (Wal]
L
o3 Dt a1 el
=1
+0(8t%) 8t — 0, (28)
and similarly, for the jump state we get
@\ @] _ p@ Al(Oa) (WalA] (1)
R = Pifsen =g @)
= (OA ) (ValA] (). (30)

Putting all of this together and inserting the definition for p(¢)
we finally get

ot +38t) = p@t) — idt[Hs (), p(t)] + 81Dy [p(1)]

+ 0(8t) 5t — 0,
(€29)
which is equivalent to
pt) = —idt[Hs (1), p()] + Di[p(1)] + O1) 6t — 0
(32)

if we let N — oo.
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3. Discussion

As it might be evident from the formulation of the new
jump process, the NMEP method implicitly defines how to
extend Eq. (6) to the non-Markovian case. In short, when the
jump rates become negative the NMEP method inverts the
second term in Eq. (6) to

L

AW @)
— ————— |dN,(1). 33
;('W” ||Az(l)|1//(f))||> o9

This corresponds to a process which increases the occurrence
of |y (¢)) and decreases the occurrence of % in our
ensemble. In previous methods [3,16,20,21], the goal was to
track the evolution of pure trajectories [y;(¢)) in time. Since
the total number of ensemble counts N stays constant in the
Markovian case, it was possible to do exactly this and interpret
the evolution of the ensemble as an evolution of many pure
trajectories |v;(¢)). The states |y;(¢)) could be identified over
time by their label j and each state can evolve independently.
In the non-Markovian case, the increase in effective ensemble
states does not allow for this interpretation in our method,
since a single ensemble member (|v/;(f)), 1) at time o may
split into two or more ensemble members at time ¢y + 4¢.

In the case where all y;(¢) > 0, this method is equivalent
to the MCWF method, but expressed in the formalism of
quantum mechanical ensembles, meaning that we evolve the
entirety of {(|¥,), Nu)}aer at once. The main difference with
the MCWF method is the occurrence of a possible nega-
tive sign in Eq. (24), or N,. When y,(¢t) < 0, this algorithm
effectively coincides with the NMQJ method, whenever it
is possible to construct the reverse jumps required by the
NMQIJ method. More specifically this happens when the state
constructed by a negative rate process in the NMEP method
happens to be already present in the ensemble at a later time.
This can happen in situations where Eq. (1) represents a phys-
ical equation, however, our method is even applicable to the
most general mathematical context of Eq. (1), i.e., the initial
condition is some arbitrary Hermitian matrix and Eq. (1) is
nonphysical (i.e., the choice of the operators and their time
dependence is arbitrary). This improvement over the NMQJ
method stems from the fact that the NMEP method does
not necessitate appropriate ensemble states to exist within
the ensemble to construct the reverse jump operator. A more
in-depth review and comparison with the NMQJ method is
provided in Appendix C. We note that in this work we restrict
our comparison to the NMQJ method since this comparison is
fairly straightforward. In fact, the lack of general applicability
of the kernel smoothing technique presented in Luoma et al.
[27] to the NMQJ method is what prompted our initial de-
velopment of the NMEP method. Other recent developments
(e.g., [28]) introduced more complex methods, which aimed
to solve the same master equation. While these might be a
topic of interest in the future we will refrain from a compari-
son to them in this work.

If one is interested in determining whether Eq. (1) is a
physical equation, which may not be the case when some
approximations are used in its derivation, one may want to add
a step to the NMEP method which checks for negative eigen-
values. We note that this can be formulated as a minimization

problem for the Rayleigh quotient W over all [y). The
minimization problem can be solved every (few) iteration(s)
using an inverse iteration method, making use of the previous
smallest eigenvector as the initial guess for the new problem.
A possible matrix-free method for this step is the locally opti-
mal block preconditioned conjugate gradient algorithm [29].

In regard to the computational costs introduced by the
NMEP method, we remark that it does add cost in comparison
to the MCWF method. This additional cost presents itself
whenever the reverse jump process adds new states to the
ensemble, leading to a higher effective number of ensemble
states. In principle, the total number of ensemble states may
exceed the initial ensemble count N. To make this clear, the
case N = 1 may lead to 2 or more ensemble members once
some jump rate becomes negative. This additional complexity
is only present when y;(¢) < 0 and plays a less prominent role
as N increases.

As a final remark, we emphasize that the NMEP method
is a first order method, just like the Euler method, meaning
that the local error in each time step can be bounded using
a term which is proportional to §t2. The MCWF method has
been expanded to higher orders in Steinbach et al. [30]. Here,
the general idea is to increase the accuracy of the determin-
istic path by using a higher-order classical method for the
deterministic path and to provide a more sophisticated approx-
imation to the jump states by considering multijump processes
as well as the evolution of the state after a jump occurred.
We do not see any conceptual issues with applying the same
expansion to higher orders to our method. In principle, it is
possible to give an error estimate for the global error of an
integration using the NMEP method, however, we leave this
up to potential future work.

IV. EXAMPLES

In this section, we apply the NMEP method to the spin-
star model, first discussed in Ref. [4], and a model for
superconducting transmon qubits presented in Ref. [31]. In
Appendix C 3, we also apply the NMEP method to the Jaynes-
Cummings model [3,9,32] and compare it to the NMQJ
method [22], showing its applicability in a wider mathemat-
ical context, when the density matrix no longer represents a
physical state. In the spin-star model we show that the NMEP
method is applicable to a simple physical equation in which
the NMQJ method is not directly applicable. In the model for
the superconducting transmon we demonstrate the ability to
simulate a system in which one of the decay rates is negative
for all times. Before applying the NMEP method to the mod-
els, we briefly introduce them along with their corresponding
master equation. Since the models we use as examples have
a small Hilbert-space dimension, it is not possible to lever-
age the speed-up promised by our NMEP method when the
Hilbert-space dimension becomes large. The purpose of these
examples is to act as a proof of concept rather than an in-depth
performance showcase of the NMEP method.

A. Spin-star model

The Ising spin-star system consists of a central spin cou-
pled to a bath of (noninteracting) spins via ZZ interactions.
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Each spin in the bath can have its own independent resonance
frequency as well as an independent interaction strength to
the central spin. The reduced system dynamic for the central
spin leads to a pure dephasing model, in which only the Pauli
o, operator is present as a jump operator. Using appropriate
system parameters, the jump rate for this operator has two
regions, one with a positive sign and one with a negative sign,
making it a good example to apply the NMEP method.

The system Hamiltonian for this system is given by

N N
H = %woaZ Qlg+1s® ”Xl: %Qno,f +ac*® ;gna,f,
(34
where 1, 1s denote the identity on the bath and the central
spin, respectively, wo /2 is the frequency of the central spin,
while €2,/2m the frequency of the nth spin in the bath. Ad-
ditionally, @ > O represents a parameter, with dimensions of
frequency that controls the coupling strength of the bath spins
to the central spins and g, € [—1, 1] are dimensionless param-
eters associated with each spin in the bath. For simplicity, we
look at a version of this model, in which the coupling param-
eters g, = g = 1 and the resonance frequencies of the bath
Q, = Q are equal Vn. The analytical solution of the reduced
system density matrix pg = Trgp to this problem is derived
by Krovi et al. [4], and, in a frame rotating at frequency wy,
reads

1( ps,11(to)

_ ! Ps.12{t0)f (1)
P =5\ pgai(to) (1) ) (35)

ps,22(to)

where

N
f@) = (cos (2at) — itanh (—?) sin (2at)> . (36)

This solution assumes a factorizing initial condition
p = ps ® pp in which the state of the bath is a thermal state
at inverse temperature §. Using the solution as a basis, we
can easily compute the associated master equation by taking
its derivative, as detailed in Appendix D. The resulting master
equation reads

aps(t) = i{d(t)a*, ps)} + yOlo pst)o® — ps(®)], (37)
with the time-dependent Lamb shift
aN sinh (—B2)

8(t) = , 38
@) cos (4at) + cosh (—BR2) (38)
and the time-dependent jump rate
aN sin (4at)
y(@)= (39)

cos (4at) 4+ cosh (—82)°

We can now apply the NMEP method to Eq. (37) and com-
pare the results directly to the analytic solution of the system
given by Eq. (35). We set @ = 1 as the unit of frequency and
take the simulation parameters as ty = 0, fmax = 7 /2 + 0.5,
N =4[33], B2 =2,6t = 10~%(fmax — fo), and an initial en-
semble given by {\%IO) + %H), 10°)}. A plot of the Lamb
shift 6(¢), the jump rate y (¢), as well as a comparison of the
resulting analytical and numerical solutions can be seen in

Fig. 2.
As can be seen in Fig. 2(a), the periodic jump rate as-
sumes negative sign in the region [7, 7]. This leads to a

(a) 2 - | - 1

(b)

FIG. 2. Comparison between the analytical and the numerical
results obtained with the NMEP method for the spin-star model.
(a) Time dependency of the Lamb shift §(¢) and jump rate y (¢) of
the spin-star model with the system parameters N = 4 and 2 = 2.
(b) Analytical result f(¢) and simulation result f (t) of the spin-star
model. The simulation parameters are given in the main text. The

unit of time is given in terms of the coupling strength as o ~!.

revival of the coherence, which is visible as an increase of
the amplitude of | f(7)| in that region. As is clear from Fig. 2,
the NMEP method is capable of reproducing the behavior of
the solution qualitatively as well as with a sufficient degree
of accuracy. The NMEP method works in presence of both
a time-dependent Hamiltonian with Lamb shift 6(¢)o® and
negative and time-dependent jump rates y (). It is of interest
to mention that, to obtain the results in Fig. 2, we applied a
binning step to reduce the number of ensemble members. In
particular, we gathered ensemble members whose state differs
by less than 107® in norm. This results in our simulation
of the system ending with 50 ensemble members, severely
limiting the number ensemble members that had to be com-
puted. In the worst case, leaving out the binning step can lead
to a new effective ensemble member being created in every
step of the algorithm, leading to an unbounded number of
effective ensemble members if the ensemble members are not
properly summarized as described in step (3) of our method.
Here, since this is a two-dimensional system, the theoretical
optimum would consist of two ensemble members, making
this algorithm perform worse than a deterministic simulation
approach.

B. Transmon qubit subject to 1/ f* noise

As our second example, we apply the NMEP method to a
model of a transmon qubit coupled to a bath of oscillators
as it is described by Guldcsi and Burkard [31]. Here, the
environment models a Caldeira-Leggett impedance with an
1/f* spectral density, representing the noise introduced by
components connected to a transmon qubit. This example is
of special interest to us because, as we will see, its associ-
ated master equation consists of two jump operators whose
associated rates have a fixed opposite sign. More specifically,
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FIG. 3. Time evolution for a transmon qubit under 1/f* noise.
The chosen parameters are detailed in the main text. (a) Lamb-shift
and jump rates as a function of time (see Appendix E for detailed
formulas). (b) Absolute value of the coherences in the computational
basis as a function of time obtained using the fourth-order Runge-
Kutta algorithm (| p12(¢)|) and the NMEP method (|p12(2)]).

while one of the jump operators has a positive sign for all
times ¢ > 0, the other has a negative sign for all times ¢ > 0
[see Fig. 3(a)]. An application of previous methods (MCWF,
NMQ)J) in this setting is not straightforward.

After redefining some terms in Eq. (25) of Ref. [31], the
master equation for this model can be expressed as

2
p(t) =il(T + cars())oz, pO]+2¢ Y 7ilt)
=1

1.
X (Az(t)p(t)A,T(t)—E{A}(t)Az(t),p(t)}) (40)

The coefficient ¢ brings this equation into natural units of the
system and corresponds to the interaction strength between
the system and environment. The Lamb shift associated with
the interaction @ g(¢) is time-dependent and in combination
with the time-dependent, negative rates y;(t), this proves dif-
ficult to solve with previous methods. Both y,(¢) and @ps(?)
are depicted in Fig. 3(a). We refer to Appendix E for a detailed
expression of both terms. The jump operators A, (¢) in Eq. (40)
are the same as in Ref. [31] and are obtained through

(o)-vo(z) o
where U (¢) is a unitary matrix that diagonalizes the original
coefficient matrix dy; in the reference [31]. Again, we refer to
Appendix E for the details. In contrast to the spin-star example
discussed in Sec. IV A, we now have time-dependent jump
operators, as well as purely negative rates. Conceptually, the
NMEP method deals with this example the same way as with
the previous example.

In the following we set the system parameters as o« = 0.9
and ¢ = 107*. As the simulation parameters for the NMEP
method we chose 8 = 5 x 107> and an initial ensemble of
{\%lO) + %H), 10°)}. Since no exact solution of the system

exists, we simulate the evolution of the same system with
the classic Runge-Kutta fourth-order algorithm with the same
simulation parameters. We use the Runge-Kutta simulation
instead of the analytical solution to verify the results of
our simulation. The results of the coherence computed with
the NMEP method (|p12(¢)|) and the Runge-Kutta method
(|p12(¢)]) are shown in Fig. 3(b). We see that the NMEP
method is in qualitative agreement with the Runge-Kutta in-
tegration. The quantitative discrepancy is within the expected
range, given the different order of the methods and our fairly
low number of initial ensemble count of 10°, as well as a
step size of 5 x 107>. We want to emphasize that solving this
particular system using the NMEP method is not useful since
the total number of ensemble members ends up at over 2000
different ensemble members towards the end of the simula-
tion. Ideally only two ensemble members would be necessary
to solve a system with a Hilbert-space dimension of two .

V. CONCLUSION

With the NMEP method we presented a natural extension
of the MCWF to the non-Markovian regime. This method
builds on the ideas provided by the NMQJ method and in-
troduces a new kind of ensemble, where negative populations
are possible. So far, we have not delved deeply into the
consequences of a physical interpretation of this method and
as such this remains to be studied and discussed in the fu-
ture. Similarly to the NMQJ method, the key insight to take
away is that for non-Markovian dynamics a pure look at
individual trajectories is impossible (see also the discussion
in Ref. [34]). Instead, to unravel the non-Markovian master
equation correctly, we are forced to look at an ensemble,
since new trajectories may branch of from a single existing
trajectory.
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APPENDIX A: NMEP, APPROACHES
1. Semi-implicit approach

In this section derive the NMEP method by constructing
a jump process for the negative rates in Eq. (1) which is
consistent with the MCWF method. The method we will be
using to this end uses the ensemble description as discussed
in Sec. [IT A.

We consider the graph given in Fig. 1, which describes
the MCWF method. Given some initial pure state |1) and its
ensemble count Ny at time ¢, the MCWF method computes
two states |¢) and |¢’) at time t + §¢. The corresponding
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t
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) = U (1)) t-ot
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FIG. 4. Flowchart representing a step of the MCWF method
when applying a reverse time step —4&t from 7 + 8t to ¢ while
y(t + 8t) < 0. This is essentially a mirror image of Fig. 1.

ensemble counts of these new states are computed from the
previous ensemble counts probabilistically. The probability to
go from |) to |¢’) is given as P = y§t{¢’|¢’). Our goal is to
generate a corresponding graph that describes the evolution of
some initial state {Ny, [)} if y < 0.

To this end we first make the following observation: if y <
0 and ¢ < 0, the probability P does not change its sign. This
suggests that we may perform a reverse step from ¢ + 8¢ to
t with step size —4¢ to keep the jump probability P positive.
This leads to an implicit formulation of the problem for which
we sketch the resulting process in Fig. 4.

There are a few mathematical caveats in Fig. 4 that one
needs to pay attention to when comparing it to Fig. 1. Overall,
these will not change the validity of the method we derive
in the following, but requires some strict care when dealing
with the mathematical details. First, the effective evolution
operator for the deterministic process U and the jump op-
erator Ag are not exactly the same ones as the ones in Fig. 1.
This is due to the fact that these operators need to be eval-
vated at time ¢ + 8¢ and not . We neglect the errors made
by this approximation as they are only second order in 6¢.
As such it does not matter exactly whether we evaluate Ugg
and A at ¢ or ¢ + §t. Furthermore, in the reverse step, y
needs to be evaluated at ¢ + 8¢, however, if we may assume
that y is sufficiently continuous and can be Taylor expanded
to first order this error may be neglected as well. As such
we will leave out the time arguments to keep the notation
concise.

With this we have implicitly represented our strictly non-
Markovian Monte Carlo process which moves forward in time
as a Markovian process which moves backwards in time. We
are now faced with two problems.

(1) We need to determine Ny from Ny,

(2) Our system starts in the state {Ny, |[v/)}, therefore,
Ny =0.

The first problem corresponds to the inversion of a bi-
nomial process with probability 1 — P, i.e., determining the
number of necessary trials in a binomial process, given that
we have had a certain number of successes. This is a solved
problem and the resulting probability distribution is the nega-
tive binomial distribution.

The second problem is a little trickier as we do not know
which other states may contribute to |’). We now make use
of the fact that up to first order in §¢ the only other significant
contribution to |¢') is through the deterministic evolution of
some state |¢’) that evolves to |¥') in the same manner that

t t+ 6t

) =V (I9
() Ny) < ) = Ugr (10))

5 (16}, No)
) = Aerr(9)
/ - >w6t\|A||§>>||
=U
(14),0) ¥ = (16, Nor)

FIG. 5. Including the boundary conditions into Fig. 4 and taking
into account the time evolution of |¢'), Fig. 4 leads to an implicit
flowchart for the application of the MCWF method to negative rates.

|¢) evolves to |1). We sketch the corresponding new graph in
Fig. 5.

A priori this may look fairly innocent, however, we
have hereby introduced the possibility for negative ensemble
counts. To understand how this happens, let us solve the sys-
tem of equations for the expected evolution of the ensemble
counts

(Ny) = (1 = P)(Nyp), (AL)

0 = P{Ng) + (Ny). (A2)

Keeping only first-order terms in &¢ (thus first order in P), this
may be rearranged to

(Ng) = (1 + P)(Ny), (A3)
(Ng') = —P(Ny), (A4)
or
(Ng') = —P(Ny), (AS5)
(Ng) = (Ny) = (Ng). (A6)

We now draw the final graph for the transition of the state
|¥) to |¢) and |¢'), reversing the current process, in Fig. 6.
The average ensemble counts (Ny) and (Ny) have to follow
Egs. (AS) and (A6), however, the ensemble counts given in
Fig. 6 are given by a random process. Here we highlight the
fact that Ny is negative only when y(¢) < 0.

— V() tot

> (16), No)
\¢ ) = Uzt 0 Aerr 0 Uer())
P = [y[st]|A|6)]? \
(I¢") s Nor)

FIG. 6. After inverting all arrows in Fig. 5 and removing the
state with zero ensemble count from the ensemble at time ¢, this
figure now shows an explicit representation of a process that imple-
ments the evolution of a system with negative rates. An important
note is that P no longer represents the probability for ) to evolve
towards |¢’). Instead it represents the probability of |¢/) to induce an
ensemble member with negative count to be create in the state |¢’).
Accordingly, Ny = Ny, — Ny'.

(l) Nw
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FIG. 7. Doing some first-order approximations, we can simplify
Fig. 6 to result in a flowchart that is almost identical to Fig. 1.

With this we essentially derived a method that defines
how to create a new ensemble for time ¢ 4 8¢ given some
initial ensemble {Ny, [{)} at time . We will now simplify
a few things to bring the graph in Fig. 6 into a more familiar
form. All the following simplifications are only possible in
this way because we want to derive a first-order method (in
accordance to the MCWF method), ignoring all higher-order
terms. First, because the process from |y) to |¢’) happens only
with probability ~87, we may approximate Uy o Aefr © Uefr =
At + O(8t) and ignore the linear terms. Similarly, we may
replace 8¢||A|p)||* by 8t||A|y)||*. Next, instead of computing
Ny using a negative binomial process, we may just use a
binomial process, or any process whose mean is P since we
ignore second-order contributions.

With these considerations we may rewrite the graph in
Fig. 6 as in Fig. 7

With these simplifications the graph in Fig. 7 corresponds
exactly to the one in Fig. 1. The only difference is the compu-
tation of the ensemble counts implied by Eq. (AS), meaning
that a negative jump rate induces a negative population. Equa-
tion (A6) stems from the fact that we still need to enforce
conservation of the total number of ensemble members, mean-
ing that

N¢ + qu = Nw. (A7)

To make our algorithm complete, we need to be able to
handle initial ensemble members whose ensemble count is
negative since Ny may be negative. This is because we still
need to evolve the states with a negative ensemble count. To
this end it suffices to invert Eqs. (AS) and (A6) to get

(=Ny) = —P(—=Ny), (A8)
(=Ng) = (=Ny) — (=Ny), (A9)
when y < 0 or
(=Ng') = P(=Ny), (A10)
(=Np) = (=Ny) — (=Ny), (A1)

when y > 0.

We can now derive the general rule to compute the number
of elements Ny that perform a quantum jump from [/) to
|¢p) = Aege(|1))) with arbitrary rate y (¢) as

_ MNr®
[Ny y @]

where the fraction may be replaced by the sign function. The
random process B(x, p) can be any random process mean x

B(INy |, 8t [y O] 1AI¥)17), (A12)

P

P(Hs)

Bath

FIG. 8. Interpretation of the jump processes depending on the
sign of y (¢). The solid lines represent the jump process for y (t) > 0,
which can be seen as the excitation in the state |y/) leaving the en-
semble and the bath returning the corresponding jump state |¢). The
corresponding jump process for y(t) < O can be seen as reversing
this process and is represented using dashed lines. The black line
corresponds to the no jump evolution of |) to |¢).

and variance p, however, we will assume B to be binomial
for practical purposes. It follows that for ensembles whose
ensemble counts —N,, is negative, the evolution can be rep-
resented as in Fig. 7 by assuming Ny, Ny, Ny € Z.

We thus derived, through an implicit ansatz, how to deal
with the negative probability that occurs in the standard
MCWF method. The jump probability in the MCWF has
to be adjusted from P = ydt{¢p|p) to P = |y|5t{¢|¢p) and
the jump process for negative rates y(t) may lead to the
creation of a pair of ensemble members with probability
P: one increases the contribution of |¢) and one removes
from |¢’). The states participating in this method remain
the same as in the MCWF method. Computationally, nega-
tive jump rates may increase the workload because if |¢’)
does not already exist in the ensemble, which is the generic
case, it is added to total number of states that need to be
handled.

To generalize from a single jump channel to multiple jump
channels requires us to define a jump target and a probability
for each jump operator in the same way as for the MCWF and
NMQJ method.

2. Direct approach

We now present an alternative way to derive the same
method. The core idea of this ansatz is to analyze the in-
teraction of the MCWF method and directly postulate an
interpretation corresponding to the inverse process associated
with the negative rates. We again consider a system with a
single jump operator A and the resulting evolution of some
pure state |¢) at time ¢ to either state |¢) = Ueg(|1f)) or
|¢) = Aege(J3r)) at time ¢ 4 §t. This time, we consider only
a single ensemble member to be in the state |/).

Each state that participates in the evolution of |{) is rep-
resented in Fig. 8 as a point in the projective Hilbert space
P(Hs). The distance between |) and |¢) in the figure has
been intentionally chosen to be small to underline the fact that
for small §¢ the effective deterministic evolution Ueg will be
close to the identity, while the jump operator may project the
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state to any arbitrary state in the Hilbert space. The transition
from |¥) to |@) can be seen as the free evolution of |y) given
the effective Hamiltonian Hg. It is shown in Fig. 8 as the
black transition. The blue transition in Fig. 8 represents the
jump process connecting | ) and the corresponding states |¢')
after a quantum jump has occurred.

We represent the bath to which our system is coupled
with as a box. We now reinterpret the jump process (blue
line) as the excitation in the state |{) being absorbed by the
bath (red line) and the bath returning this excitation to the
ensemble after it has been projected onto the jump state (green
line). In a sense the bath is interacting with the ensemble
by exchanging a pair of ensemble member excitation and
antiexcitation, with the green line representing an excitation
and the red line an antiexcitation that is added to the ensemble
of our system. This corresponds directly to the mathematical
formulation of the jump process in Eq. (6), where the second
line denotes that an element |¢) is removed and replaced by
Aee(J¥)). In other words, the quantum jump is effectively
the same as the bath taking away the ensemble member
we are currently considering and returning the jump state.
This picture is interesting as it allows us to more directly
interpret changing jump operators as a change of the bath
properties.

We now try to understand what happens when the jump
rates become negative. Intuitively a change in the rate of
a process corresponds to a reversal of the process. This
means that the blue line in Fig. 8 needs to be reversed to
represent a process with a negative rate, this is depicted
with the dotted blue line. Using the same logic as be-
fore, it is now easy to interpret this reverse process as the
bath increasing the ensemble count of |¢) and decreasing
the ensemble count of |¢), corresponding to the opposite
excitation-antiexcitation exchange with the ensemble. Ac-
cordingly, the new change in ensemble members for the
negative rate process is pictured using the dotted green and
red line. Going back to Eq. (6), we can see how the reversal
of the process, requires an overall negative sign in front of the
Poisson increments. This leads directly to the process we just
described.

This interpretation is quite convenient as it allows us to
eliminate the sign in the jump probability of the MCWF
method by moving it to the change in the ensemble members.
Using this interpretation, we get the same method as in the
previous derivation. The process happens with the same rate,
however, the negative rate jump process has to be reinterpreted
as a gain and loss of ensemble members with opposite sign
to the positive rate jump process. This explains the fact that
two jump processes, which share the same jump rate and
jump operator, but with opposite sign in the jump rate, cancel
each other out perfectly, resulting in a purely deterministic
trajectory.

While less generally applicable, the advantage of this in-
terpretation is that it is physically more intuitive than the
previous one, which required a time reversed process and
the solution of an implicit system. Unfortunately, because we
are dealing with a time-local equation, it is highly nonphys-
ical for pure states. In principle, the average evolution will
not lead to nonphysical ensembles in their entirety, however,
single trajectories can no longer be associated to a classical

probability of occurrence in an ensemble, since they may split
into multiple trajectories.

APPENDIX B: PROOF, DETAILS

In this appendix, we show explicitly the missing step
in the proof given in Sec. IIIB2, that is the step from
Egs. (27) to (28).

We start by computing the numerator in Eq. (27)

[1 = i8t Hetr ()] 1) (Yl [1 — i8t Herr (1))

= [Va) (Yal — i8t[Hs (), |Ya)(Vall
S L
= S Y nOW OA. 1) () + 06,
=1

8t — 0. (B1)

After this we compute the remainder of the fraction through
Taylor expansion as

L
1 .
, =146 ) i) (YalA; (OAI(D)Ya)
01 — it Hege ()11 97a) I ; :
+ 0@8t?), 8t — 0, (B2)
and multiplying with the remaining term results in
1— Y, P“sgn (it
(=X Bosen(n@) _ + 0@, 8t — 0. (B3)

01 — it Her (1Y) 1

Multiplying everything together and rearranging gives the de-
sired result from Eq. (28).

APPENDIX C: NON-MARKOVIAN QUANTUM JUMPS

In this appendix we review the non-Markovian quantum
jumps (NMQJ) method [21], whose aim is the same as the
NMEP method, and highlight the limitations of the method
when compared to the NMEP method.

1. NMQJ method

We have seen that, in terms of ensemble members, the
MCWF method extends the current ensemble with new states
and redistributes the ensemble counts in a stochastic manner.
The central ideas of the NMQJ method are (1) to realize
that a negative rate of some process should be equivalent to
the inverse process with a positive rate and (2) to find an
appropriate inverse process and transition probability to the
one described by the MCWF method.

A simpler inverse process to the MCWF method cor-
responds to finding some reverse jumps which imple-
ment the transition (using our previous notation) from
{(19). Ny). (18"}, Ng)} to {([¥), Ny)). As we can already
see, this process requires the knowledge of multiple different
ensemble members in the current time step and the relation-
ship between these is related to the jump channel.

The NMQJ method now proposes the following algorithm
for the quantum jumps over negative channels.
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FIG. 9. Flowchart representing the NMQJ method. Given the 02
. | Poo(t)
ensemble state at time 7 on the left, the state |,) can perform reverse 0.15 — ()
jumps to |¥,) with probability P,_., as given in Eq. (C2). The o1 | —gillalytical
nonjump evolution is the same as in the MCWF method. In contrast oos |
to Fig. 7, the probability of a reverse jump to happen depends on the
makeup of the ensemble at time ¢. |
-0.05 |
0.1 - .

1. Given some ensemble {(|v4), Nu)}ser() at time 7, for
each negative channel A,(¢), a reverse jump can be performed
from |v,) to | ), with a, a’ € T'(¢), if

AlONYa)
Vo) = —————. (CD
A (Ol
2. The probability for this quantum jump to happen in the
step from 7 to t + &t is given by

Ny
Poso = F|Vl(t)|8t”|¢’a)”' (C2)

A graph corresponding to the reverse quantum jump pro-
cess is shown in Fig. 9. Note that even though the state |,) is
present in the second ensemble at time ¢ + ¢, it is not directly
linked to the one in the first ensemble at time z. This means
that, in principle, these states of the ensembles are to be taken
independent of each other. As we will see, we may replace
|) in the ensemble at ¢ + &t by Uese[y) without introducing
much more error than already present in the method. This
means |/,) effectively jumps to whichever state |/)) evolves
to deterministically.

2. Limitations

Let us now discuss some limitations and problems to the
NMQJ method. We start this section with the most glaring
issue of the NMQJ method, which is the fact that the only way
a jump can happen is if the corresponding state exists within
the ensemble. In fact, if it does not exist, it can be interpreted
as having zero ensemble count, making the probability for
such a jump undefined because it tends to infinity. The authors
of the NMQJ method determine that when their algorithm
approaches this region it has to terminate.

From a purely algorithmic perspective, this is the only
problem, however, there are a few more issues with this
method which stem from an implementation point of view.

First, the previous problem is reinforced by the fact that

near misses where |i,) ~ % but not quite equal,
which can already happen because of numerical inaccuracies,
can make the application of the method difficult. This can be
resolved by an additional binning step, making the Hilbert-
space coarse grained, which, however, comes with additional

complexity.

t (1/T)

FIG. 10. Comparison between the NMQJ and NMEP method
using the same example as the one used in Fig. 9 of Piilo et al. [22].
Att =~ 1, the NMQJ method (solid line) stops being applicable once
the master equation produces an unphysical result (this can happen
even when the result is still physical). The NMEP method (dashed
line) produces a result for all times, solving the master equation in
the mathematically most general sense (analytical solution given in
black).

Furthermore, the method is now no longer easily paralleliz-
able since the method requires each member of the ensemble
to know about the others. This is, in fact, the main downside
compared to the MCWF method, where each trajectory can be
computed independently of the others.

We highlight the fact that because of these issues the
NMQJ method is especially unsuited to solve the general
non-Markovian master equation [Eq. (1)] unless it presents
very specific symmetries which allow us for an easy treatment
of the ensemble

3. Comparison to NMEP method

We now compare the NMQJ method to the NMEP method
and demonstrate the usefulness of the latter in the general
mathematical context of Eq. (1). In Piilo ez al. [22] the NMQJ
is applied to a generalization of the Jaynes-Cummings model
[3,9,22,32]. To demonstrate the generality the NMEP method
we apply it to the three level ladder system presented by
Piilo et al. [22] and compare our results to the ones obtained
using the NMQJ method. To apply the NMEP method, we
use the same settings as in Sec. IV-C-4 of Piilo et al. [22]
and reproduce their results shown in Fig. 9 of that paper, the
results are shown in Fig. 10.

In this example, the master equation derived by general-
izing the Jaynes-Cummings model is an approximation of
the exact master equation. The consequence of this is that
the solution of this master equation does not produce a valid
density operator for all initial conditions and evolution times,
meaning that the master equation does not produce physical
solutions for the density operator. More specifically, one of the
eigenvalues of the density operator becomes negative given
the right initial condition. In the application of the NMQJ

042212-12



NON-MARKOVIAN ENSEMBLE PROPAGATION

PHYSICAL REVIEW A 112, 042212 (2025)

method to this example, this causes the method to stop as
soon as the ensemble is unable to represent the state of the
system, when it would need ensemble members with a nega-
tive ensemble count to account for the negative eigenvalue of
the density operator. Fortunately, because of the structure of
the problem, it is easy to identify this negativity of the density
matrix with the loss of physicality of the master equation, but
this is not true in general. In the case of the NMEP method,
the point at which the system loses physicality does not
impact the application of the method, as it produces a solution
for all times. The ensemble generated by the NMQJ and the
NMEP method behave in the same way, except for the differ-
ence produced by the factor N, /N, in the jump rate. The point
at which the solution loses physicality can still be determined
in the same way as in the NMQJ method. However, a different
method using an estimator for the lowest eigenvalue may be
more practical in general.

APPENDIX D: SPIN-STAR, DERIVATION

To derive the master equation governing the Ising spin-star
system we take the derivative of pg(¢) defined in Eq. (35) w.r.t.
t and try to relate the result to pg(?),

ps11(0)

B 1 ps12(0)f (1)
dips(t) = B <p521<o>f*<z) )

Ps22(0)

_ 1 0 0s12(0)3, f(2)
=3 (pszl(ma,f*(t) 0 ) ®1

Using the definition of f(¢) in Eq. (36)
ZaN[— sin (2at) — itanh (—%) cos (2at)]

3, =
f@) [cos (2ar) — itanh (—%) sin (2a1)] f@®
=1—4L ()
= 2(=2Re{¢ (1)} — 2ilm{g ()}) f(2). D)

One may verify that defining &(¢) :=1Im{¢(t)} and
y(t) :=Re{¢(t)} gives Egs. (38) and (39) in the main
text, respectively. Replacing the result for 9, f(¢) in Eq. (D1),
we find Eq. (37) in the main text, which is the desired master
equation.

APPENDIX E: TRANSMON, DETAILS

Here we give a more detailed expression for the coeffi-
cients 7(¢) and @ s(¢) as well as the unitary matrix U (¢). The
starting point is Eq. (21) in Piilo et al. [31]

p@t) = —ilH (1), p(1)]

1
+07 ) dkz(r)<akp(r)of — 5loo, p(z)}>, (E1)

k=%

which is brought into the following form:

0
8—?@) = i[(w + cors(s))o;, p(s)]

_ P |
+ Z 2Cdkz(S)<0k,0(S)0,' - E{O'ITo'kv ,O(S)}),

ki=+
(E2)
using the following substitutions
AleIZ

ci=—", (E3)

wgt

wgt
= —. E4
s= (E4)

The modified coefficient matrix [dy; (¢ )k, then becomes

[y ($)]it

_ 7+(s) — PO — s (s)
T\ EEES 4 g(s) 7-(s) ’
(ES)
where
7+(5)
MNoa—-1Dr. /ma To
-2——— [sm (7) Fros(275) £ cOS (7) fsin(Zns)],
(E6)
and

ans(s) = 2@ D g (ﬂ) fan2rs). ()
o 2

The functions f.os and fi, depend on the nonanalytically
solvable integrals

(2ms)* .
fros(2s) 1= / cos (ux)du, (E8)
0

(2ms)* .
Ssin(2ms) = / sin (u«)du, (E9)
0

and are computed numerically once at the beginning of the
simulation. We can now obtain U (¢) through diagonalization
of the coefficient matrix [dy; ()]

[du ()i = U@ODSHU (2).

This is in each time step during the simulation. The diago-
nal matrix D(s) contains the jump rates ¥,

D(s) = <’61 ;2)

We note that the jump rates can be computed directly by
solving the characteristic polynomial.
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