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Finite-temperature properties of the Frenkel-Kontorova model: Relation to tribological
systems and fluid rheology
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The Frenkel-Kontorova model is a simple yet generic framework for the description of tribological phenomena
and processes, including dry solid friction and the motion of adsorbed layers. As revealed in this work, it
also reproduces qualitatively various features of complex liquids, such as, power-law subdiffusion between the
ballistic and the diffusive regimes as well as a crossover from a non-Arrhenius to an Arrhenius dependence of
the diffusion coefficient near the temperature, where the specific heat assumes its maximum. By systematically
analyzing these thermal and kinetic properties, we also identify and clarify several misconceptions prevalent in
the literature. Most notably, we show that the shear thinning with a shear-thinning exponent close to zero can
be the natural consequence from enforced basin hopping: the energy drops caused by shear-induced instabilities
dictate the friction-velocity dependence at medium shear rates rather than the way how shear forces reduce the
free energy barriers for directed motion. Our findings thus demonstrate that even if the rheology is described by
semiempirical theories such as the Eyring model, any agreement with experimental data, whether past, present,

or future, may be purely coincidental.

DOI: 10.1103/112g-k2gq

I. INTRODUCTION

The Frenkel-Kontorova (FK) model, which consists of a
linearly elastic chain that is placed into an external, peri-
odic potential and driven by an external force, was originally
introduced in 1938 by Frenkel and Kontorova to study dis-
location dynamics in crystals [1]. Since then, it has found
many applications ranging from charge-density waves to solid
friction [2—-6]. Although the FK model may require substantial
generalizations to be quantitative in certain situations, e.g.,
elasticity would have to be nonlocal to correctly account
for half-space elasticity for the description of dislocations
[7,8] it allows trends to be rationalized quite generally even
in its original form because it features a competition be-
tween (elastic) restoring and (periodic) external forces. As
such, it perfectly addresses the microscopic mechanisms that
Coulomb [9] had already envisioned to cause friction: the
coherence that molecules adopt at solid interfaces due to their
proximity, which must be overcome to initiate sliding as well
as the vibrations caused when asperities of opposing surfaces
move past each other.

In a tribological context [10], the FK model has been
primarily studied in a surprisingly narrow parameter range,
i.e., at high speeds near the velocity of sound [5,6], or
near the transition from Stokes-type to Coulomb-type friction
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[4,11,12], which relates, for real systems, to situations where
stiff solids with passivated surfaces slide past each other [13].
While successful attempts were made to adjust the parameters
of primarily two-dimensional FK models to experiments of
model systems like adsorbed, colloidal [14], or atomic mono-
layers [15], relatively, little appears to be known when thermal
effects matter at small sliding velocities and when the stiffness
of the springs connecting two adjacent beads is of similar
size as the maximum curvature of the substrate potential.
From a different point of view, the FK model has not yet
been explored in the context of fluid rheology, most notably
to investigate whether generic explanations can be identified
that account for the non-Arrhenius dependence of viscosity
[16] or the reasons that shear thinning sometimes obeys the
Eyring model [17,18] but more generally the phenomenolog-
ical Carreau-Yasuda equation [19,20]. The aim of this article
is to fill this gap.

While relating the FK model to fluid rheology may ap-
pear far fetched at first sight, laminar flow is dissipative also
due to the competition between the restoring forces within a
lamella and those between them, as explored, for example, in a
study of an athermal FK model sandwiched between moving
incommensurate walls [21]. Moreover, the local structure in
liquids can be stable over many vibrational periods, even in
low-viscosity liquids like water at ambient conditions [22].
Its mass transport is intimately linked to the formation and
propagation of coordination defects breaking the tetrahedral
network formed by water molecules [23]. It could be argued
that the discommensurations in the FK model, which are local
deviations from having one atom per external potential min-
imum, are caricatures of such defects. Although improving
our understanding of the thermal properties of the FK model,
which is traditionally studied at zero temperature [24,25], is
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interesting in its own right, the presented study is motivated
by our desire to rationalize typical liquid rheology in simple
terms through a microscopic model. Commonly pursued ap-
proaches fail in this regard because they are either opaque and
formalism laden, such as mode coupling theory [26], and/or
clearly insufficient in that their predictions fail to describe the
shear thinning of many liquids.

Moreover, pseudomicroscopic approaches, i.e., theories
that rely on microscopic parameters without explaining how
to deduce them from microscopic interactions, such as Eyring
theory (when applied to the viscosity of liquids or to the
FK model) risk to fail distinguishing different situations. For
example, they cannot predict how things change when the
external force is distributed equally among the beads or when
it is applied only to one front bead. Yet, the effective damping
or viscosity, e.g., the ratio of shear force and velocity, can
depend crucially on such details.

The static ground-state properties of the generic, classical
FK model is usually discussed in terms of its two most impor-
tant dimensionless numbers [3,24,25]: the misfit between the
substrate period and the intrinsic length of the spring connect-
ing two adjacent beads, and the ratio of spring stiffness to the
maximum substrate potential curvature. However, quite a few
additional parameters affect qualitatively how sliding velocity
depends on additional (dimensionless) parameters defining
the model. This includes, but is not limited to, aspects already
alluded to in the discussion so far, e.g., local vs nonlocal
elasticity, temperature, the way in which the external force is
imposed, and inertial versus damped dynamics, but also the
way in which the damping is applied, i.e., relative to the sub-
strate or in a momentum-conserving fashion between adjacent
beads, and periodic boundary conditions versus open-chain
dynamics, etc. Thus, there are a plethora of limiting cases
that can be studied in principle. An important question then is
as follows: Which parameter choices reflect specific systems
most realistically? Studying, as occasionally happens, reso-
nance phenomena at sliding velocities close to the speed of
sound within the chain will scarcely address experimentally
relevant observations in a practical tribological context. Thus,
in this work, we attempt to scrutinize how different model
choices can affect the friction of a Frenkel-Kontorova chain
and interpret the results under the premise that the model
was constructed to mimic the rheology of a bulk liquid or
potentially of a boundary lubricant at high pressure.

We also wish to understand better how the FK model re-
lates to its mean-field limit, the Prandtl model [27,28]. The
latter assumes elastic coupling of atoms to their ideal lattice
sites, resulting in interactions that are too long ranged for
semi-infinite solids, while the FK model represents the op-
posite limit with interactions that are too short ranged. On
one hand, the Prandtl model closely obeys power-law shear
thinning as described by the Carreau-Yasuda equation [29],
capturing both temperature and rate dependencies of the vis-
cosity of simple alkanes, which suggests the existence of
some elementary instability underlies (underpins) shear thin-
ning in these systems [30]. On the other hand, evidence for
Eyring-type behavior continues to emerge [31,32]. However,
the Prandtl model alone is not satisfactory, as it neglects
collective dynamics and predicts that only the static friction,
not the steady-state kinetic friction, depends on the degree

of incommensurability [10]. In real materials, plasticity and
flow arise not merely from individual atomic motions, but
from cooperative rearrangements. This collective behavior,
central to phenomena such as dislocation motion and defect
nucleation, is inherently absent in a single-degree-of-freedom
model like Prandtl’s. To bridge this gap, we turn to the FK
model, which incorporates many-body interactions and spa-
tial correlations, enabling the study of collective effects in a
minimal framework.

II. BACKGROUND, MODEL, AND METHODS

A. Historical note

Physics 101 textbooks but also books and reviews in tri-
bology often claim that Coulomb found kinetic friction to be
independent of sliding velocity. This is only partly true since
he made such a statement mainly for contact between metals.
For contacts formed by wood and metals, he found “le frotte-
ment croit trés-sensiblement a mesure que ’on augmente les
vitesses; en sorte que le frottement croit a peu pres suivant une
progression arithmétique, lorsque les vitesses croissent suivant
une progression géométrique” [9]. The translation to English
would be roughly friction increases very noticeably as speed
increases; in a way that friction increases approximately in an
arithmetic progression when speed increases in a geometric
progression. In other words, if friction increases by a constant
amount with each AF increment in the force F, = Fy + nAF,
then velocity scales by a constant factor in each increment
so that v, = c"vp. Solving for n in both cases, equating the
results, and dropping the index » yields

F=Fh+=""m>, (1
Inc Vo
Since the inverse hyperbolic sine quickly converges to the
natural logarithm at large arguments, Coulomb’s observation
is in line with Eyring theory, albeit his explanation of the
phenomenon not necessarily so. He argued “Plus la vitesse
sera grande, plus il faudra plier de fois la fibre... a mesure
que la vitesse augmentera, parce qu’en passant d’'une sommité
a Dautre, les fibres n’ont pas le temps de se redresser en
entier.” This translates roughly to The greater the speed, the
more strongly the [wood] fiber[s] must be bent... at large
speeds, the fibers do not have enough time to fully straighten
when passing from one peak to the next. The processes that
Coulomb alluded to here are entirely mechanical not thermal.
In today’s jargon, they could be related to the (potentially
nonlinear) viscoelastic response of the fibers. The mechanis-
tic picture provided by Coulomb can be easily generalized
to other situations, e.g., by replacing the wood fibers with
elastic strings in the FK model or, taking it one step further,
with discommensurations or even dislocations. This opens the
question to what degree shear thinning is a mechanical effect,
as envisioned by Coulomb, or thermodynamic as argued by
Eyring.

B. Model
1. Default model

The default Frenkel-Kontorova model studied in this work
consists of a one-dimensional, linearly harmonic bead-spring
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chain with nearest-neighbor interactions, which is placed into
a single-sinusoidal potential of the form V (x) = V; cos(gx).
Here, V} is of unit energy and ¢ = 27 /b is the wave number
of the potential and b the period. Damping forces linear in
velocity act on individual beads, leading to the equation of
motion for a bead within the chain

ity + ity = k(%1 = 2100 + qVo sin(gx,) + T ().

2
Here, m is the mass of a bead, t is a relaxation time, and & is
the sping stiffness connecting two adjacent beads, while n =
0, ..., P — 1 enumerates the beads. Although not part of the
original formulation, a thermal random force [T, (¢)] must be

added, as in Eq. (2), to account for finite temperature. I, (¢)
has a mean value of zero and second moments of

(Tn(OTu(t") = 2kpTms,nd(t — 1))/, 3)

where kgT is the thermal energy.

The two terminating beads are treated depending on the
boundary condition. In addition to the usual periodic bound-
ary conditions, we also consider open chains, which could
reflect, for instance, individual base-oil molecules sliding past
an adjacent fluid layer. End beads of an open chain are only
coupled to one neighbor. In the case of periodic boundary
conditions (PBC), the first and last bead subject a force of

Fop-1 = Fk(xo —xp_1 + L —a) “4)

onto each other, where a = L/P would be the preferred spac-
ing beads in a free chain, just like in an open chain.

The FK model was introduced as a crude model for the
motion of dislocations, |b/a — 1| < 1, or of grain boundaries
with significantly less strict restrictions on the b/a ratio. More
recently, it was used to model frictional interfaces between
atomically smooth, uncontaminated surfaces [4—6,33]. In each
of these applications, a quantitative approach would need to
properly reflect nonlocal elasticity, which, however, has barely
been pursued so far [34]. Nonlocal elasticity does not mat-
ter in systems lacking a half-space in the direction normal
to the interface, such as multiwalled carbon nanotubes or
adsorbed layers, though the latter require a second in-plane
dimension to be introduced. While the FK model has scarcely
been discussed in the context of polymer dynamics, one could
argue that it also represents some of the aspects qualitatively,
albeit potentially in a more coarse-grained spirit, e.g., for
the motion of a polymer past a surface or along its tube of
constraints in the repetition model. Depending on context,
different parametrizations of the FK model might be appro-
priate for analyzing this problem. The wealth of possibilities
is extremely large, simply because the model has quite a few
dimensionless constants, despite its simplicity.

Three parameters can be set to unity in the FK model
variant introduced in Eq. (2), namely, bead inertia m, the
corrugation barrier Vp, and the equilibrium spacing between
beads in the chain a, to define our unit system. In the follow-
ing, we will indicate variables that are expressed in this unit
system with a tilde, e.g., b = b/a. The other critical nondi-
mensional parameter of the FK model is the dimensionless
number k = ka®/V,. However, the spring stiffness is some-
times more meaningfully undimensionalized through k* =

k/V) ., where V! = g*V; is the maximum curvature of the

substrate potential. Throughout this work k*/k &~ 0.02882 ~

It is well explored how the precise values of b and k affect
the ability of the chain to interlock with substrate. The effect
of the remaining dimensionless parameters and model choices
has been explored substantially less well. In most studies,
thermal fluctuations are ignored, however, the reduced tem-
perature 7 = k3T /V, may well be finite and depending on its
precise value, qualitatively different properties of the chain
can ensue. The damping m/t can make the chain be strongly
overdamped or underdamped or (near) critically damped. The
damping itself is not necessarily relative to the substrate but
could also be envisioned to happen within the springs. Simi-
larly important, the number of beads in the chain can take a
small (order unity), medium or large value. Last, but not least,
periodic boundary conditions can be on or off. This allows a
plethora of FK model classes to be constructed whose prop-
erties can differ from each other qualitatively, e.g., Arrhenius
vs non-Arrhenius viscosity, Eyring vs non-Eyring rheology,
presence or absence of shear localization at high velocities,
i.e., shear-thinning exponents above or below unity, and the
existence or absence of resonance friction at intermediate
sliding velocities, to list the most important properties of FK
chains discussed in this work.

In the majority of cases, we use m =1 and t =1, in
particular when running simulations at finite temperature or
when using a constant lateral force. However, when studying
athermal sliding at small velocities, we usually use a smaller
relaxation time of T = 0.2 to suppress oscillations in the dy-
namics, which occur after an instability in an underdamped
system was triggered. These oscillations are visual clutter
reducing the readability of the figures.

Further deviations from default settings will be detailed
either in Sec. II B 2 or on place in the results section. At the
same time, it is necessary to restrict the variation of param-
eters. This is why we consider a fixed number of atoms per
chain and a fixed a/b ratio, specifically P = 16 and a/b = %.
This number of P = 16 is large compared to one, but small
enough so that the elastic object could crudely represent either
hexadecane or a nanocrystal. At the same time, a/b could be
interpreted as an extended small-angle grain boundary with
an angle of about 360°/(27 x 16) < 5°. While attempting
to establish rough relations between parametrizations and
real systems, the original motivation of this work is to learn
generic reasons for why Arrhenius and Eyring models appear
to be valid in some situations but not in others.

The equations of motion were solved using an in-house
written Python code, which is available on Github [35]. For
the majority of simulations, i.e., when default damping ap-
plied, the Grgnbech-Jensen thermostat [36] is used, while a
colored and a momentum-conserving thermostat, described
elsewhere [37], is used for damping schemes, which are de-
scribed next.

2. Alternative damping schemes

In addition to the default model defined in Eq. (2), we also
consider two alternative approaches for dissipating energy,
which deviate from the standard implementation of instanta-
neous damping relative to the substrate.
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In the first approach, damping and thermalization are im-
plemented via Maxwell elements. This corresponds formally
to a non-Markovian damping kernel, where both friction and
random forces act with a finite delay rather than instanta-
neously. For further details on this class of thermostats, we
refer to a recent study [37].

In the second approach, energy is dissipated through
damping of the relative motion between adjacent beads in
the chain. The associated random force compensates this
damping, preserving thermal equilibrium. The resulting dy-
namics is similar to dissipative particle dynamics [38—40]
but implemented through a recently proposed momentum-
conserving Langevin thermostat [37], which transitions seam-
lessly from Langevin to Brownian dynamics, while allowing
the time step to increase when damping increases at fixed
mass.

Physically, the Maxwell-element model captures a vis-
coelastic response of the substrate, possibly originating from
unresolved internal degrees of freedom. In contrast, the bead-
bead damping model implies that energy dissipation occurs
within the chain itself, representing a coarse-grained de-
scription of a soft, dissipative medium sliding over a rigid
substrate.

III. RESULTS
A. Thermal FK model in the extreme small-coupling limit

In this work, we refer to small coupling when the elastic
coupling between adjacent beads is small, that is, when the
spring stiffness k is small compared to the maximum curvature
of the potential k = ¢*Vp. In the extreme limit k* = k/k —
0", the motion of particles is primarily dictated by the sub-
strate potential. However, the thermodynamics of any positive
k still differs qualitatively from k = 0, as the configurational
specific heat will assume the value of c.(T — o00) = (1 —
1/N)kg/2 at large T while that of uncoupled beads would
vanish with increasing temperature. In the latter case, ¢, can
be calculated analytically from the (configurational) partition
function z.(8):

2r/q

2(B) o dx e Ptoeosta) (5)
0

0.6 I()(ﬁVo). (6)

Here B = 1/kpT is the inverse thermal energy, while 7,(x)
is the modified Bessel function of the first kind of order .
We have integrated over one period, as the integral over more
periods only leads to an irrelevant prefactor, however large it
may be. Taking the negative derivative of In z.(8) with respect
to B gives the (configurational) internal energy per atom

L (BVo)
I(BVo)

The derivative of u.(8) with respect to T then yields the
specific heat

uc(f) =-% )

Vi lo@)o(x) + L(x)]/2 — I} (x)

«) =1 22(x)

®)

This result has certainly be obtained prior to this work, al-
though suitable references could not be found.

1.2F o k=0 ]
k=1 PBC
1.0F x *  « k=1 open -
0.8_ o x 1
> "
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107! 100 10!
ksT/Vq

FIG. 1. Configurational specific heat c. as a function of reduced
temperature kg7 /V, for free atoms (blue circles) and weak springs,
k = V,/a?, which can be open (green crosses) or subjected to peri-
odic boundary conditions (PBC, orange plus symbols). The solid line
is drawn using Eq. (8).

Figure 1 reveals consistency between the analytical and
numerical results. Figure 1 also contains data for weak
(elastic) coupling, i.e., k =V /az, which translates to a di-
mensionless coupling constant of k* = 2.882 x 1072, As the
zero-coupling limit, the weak-coupling system obeys the rule
of Dulong-Petit at small temperature and the specific heat
assumes its maximum again near 7 = 0.4. However, the
peak extends to both larger and smaller temperatures than
before. This is because chains with small k are multistable
with many inequivalent energy minima. In contrast, all energy
minima are equivalent for uncoupled beads in the chain. Since
different energy minima can be separated by large energy bar-
riers, proper sampling at small temperature turns out difficult.
This explains the relatively large scatter in the specific heat
at small temperature, which persisted even when using more
than 5 x 107 time steps and averaging over 32 independent
samples.

The rheological response of free and weakly bonded atoms
were determined with simulations in which a constant tem-
perature T and constant external force F were applied and
the mean sliding distance d measured. This was done by
setting up N = 32 chains in parallel and by running the sim-
ulations long enough so that a target standard deviation in the
measured sliding distance of 2.5% was met, once the chains
had slid a mean distance exceeding 2b. The net damping,
which we call effective viscosity nes, is then computed as
Nefe = F/{(v), where (v) is the ratio of d and the simulation
time 7, spent to reach the target accuracy. In the following
simulation, the external force was reduced by a factor equal
or close to v/0.1. The procedure is repeated until the number
of time steps needed to reach convergence exceeds a given
threshold value, which was typically of the order of a few
hundred million time steps. Numerical results are presented
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FIG. 2. Effective viscosity of free atoms in a corrugated poten-
tial. Lines reflect fits to the Eyring equation.
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in Fig. 2 along with fits to the Eyring model

Vo . v

Neft = no—asmh(—), ©))
v Vo

where 7 is the equilibrium viscosity and vy a velocity

near which deviations from equilibrium viscosities become

substantial.

As is the case for some liquids under certain conditions,
in particular at high pressure and small temperature, Eyring
provides a quite satisfactory description over a few decades in
velocity, which would usually be a few decades in shear rate.
The case of noninteracting atoms moving through fixed poten-
tials provides an ideal reference for Eyring since it embodies
his model: the force acting on the atom and the barrier remain
constant in time.

The validity of Eyring theory for the reference case is well
established and textbook material [41]. In brief, at very low
temperature, atoms are located near the potential energy min-
imum most of the time. The barrier in forward and backward
directions reads as AEyL = 2Vy F Fb/2 so that a net flow
velocity (roughly) proportional to e=2Y0/ksT sinh(Fb/2kgT)
follows, where the proportionality coefficient v((7T") is sup-
posed to depend only weakly, e.g., algebraically but not
exponentially, on temperature

v(F, T) = vy(T)e /%7 sinh(Fb/2kpT). (10)

The main troublemaker in Eq. (10) or more generally
speaking in transition-state theory [42,43] is the function
vy(T). In the high-temperature limit, it must approach v, ~
b/(2kgT y) in our case so that 7, corresponds to the explic-
itly imposed damping. At low temperature, vy(7) assumes
a slightly greater value, which depends on the details of the
model, e.g., the precise shape of the potential, to what degree
the motion is underdamped or overdamped but also the col-
lectivity of the barrier-crossing process. Various established
approaches exist to correct the leading-order approximation
contained in Eq. (10) [41,43] in different asymptotic limits,
such as overdamped motion in a single sinusoidal potential
[44].

1055'"'l""|""|""|""|""|E
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10 1 2 3 4 5 6

VolksT

FIG. 3. Equilibrium viscosity as a function of temperature for
free atoms (blue circles). The slope of the solid line reflects the
activation energy of AE = 2 Vj,. The arrow indicates the temperature,
at which the specific heat assumes its maximum. Data for weakly
coupled chains is included, specifically for ka3/Vp = 1, one time
with open (green crosses) and one time for closed (orange plus
symbols).

At medium to high velocity, the Eyring model is no longer
highly accurate, at least when the damping is large. This is
mostly because of inertia, which allows atoms to use a fraction
of their kinetic energy released during the last barrier crossing
to overcome the next barrier. This reduces the effective vis-
cosity. At very high velocity, the explicit damping counteracts
this effect, which, however, can be accounted for by adding
Mo to the Eyring viscosity.

We next investigate the equilibrium viscosity as a function
of inverse temperature in Fig. 3. The data show clear Arrhe-
nius behavior at low temperature and minor deviations from it
near or above temperatures at which the specific heat assumes
its maximum. The departure of Arrhenius behavior at large
temperatures is contained in analytical solutions [44] and
might be argued to occur because atoms no longer typically
find themselves near the potential minima when temperature
is high, which can reduce AE atlarge T'.

Introducing a weak coupling of k = 0.1V /a* (dimension-
less coupling of k* ~ 2.882 x 10~3) somewhat increases the
equilibrium viscosity 7o but leaves the apparent activation
energy AE,,, = —0d1Inny/9B almost unaltered. Thus, weak
coupling has only minor effects on both equilibrium and ef-
fective viscosity, the latter being not shown, although it alters
the specific heat substantially.

B. Periodic FK chain at medium elastic coupling

The motion of neighboring beads gets increasingly cor-
related with increasing elastic coupling. While the chain
behaves like a stiff rod for very large k, substantial multista-
bility prevails at medium k, which means that there can be
more than one mechanically stable microscopic configuration
for a given center-of-mass position. Such multistability is at
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FIG. 4. Athermal dynamics of a k = 10 chain subjected to peri-
odic boundary conditions. Potential energy V, (top) and lateral force
Fio (center) as a function of the moved distance x at a small sliding
velocity of v = 1 x 1073, The bottom panel shows the displacements
of atoms on the abscissa and the atom number on the ordinate at three
different displacements. The dashed lines mark the mean lateral force
(center panel) and the center-of-mass displacement with the same
color as the displacements.

the root for plasticity and Coulomb friction, as discussed in an
early work by Prandtl [27,28]. Here, we refer to medium cou-
pling when the coupling is still small enough for substantial
multistability to exist but large enough for the width of a kink
or discommensuration to be of order unity. For medium cou-
pling, we primarily consider a value of k = 10V;/a?, which
leads to a kink (half-) width of

¢ = avk* (11

in the continuum approximation of the FK model, which is
also known as the sine-Gordon model. This expression evalu-
ates numerically to ¢ = 0.53 a, which is reasonably close to
the value of ¢ = 0.63 a that was deduced through fits to data
like that shown in the bottom panel of Fig. 4.

Figure 4 shows the dynamics of an athermal chain sub-
jected to periodic boundary condition that occurs when it is
moved at a small, constant center-of-mass velocity relative to
the corrugated potential. The bottom panel shows the actual
phase shifts on the abscissa and the bead or atom numbers
on the ordinate. The kink, which is enforced via periodic
boundary conditions, moves through the chain. Each time,
an atom in the chain passes through an energy maximum,

it quickly advances to the next available energy minimum,
once its old position turns from marginally stable to unstable.
The total potential energy at depinning is roughly Vp‘fftp A
4.2003 V; from where it falls into the next available minimum

at VXt~ 3.4394 V;. This makes the energy drop be AE; =

pot
Vpc:f[p — Vo ~ 0.7608 Vy. This quantum equals the energy that
is dissipated each time the kink advances by one substrate
period. The absolute energy minimum is only marginally
lower for the given chain, namely, Vp‘(‘jli“ = 3.4223 V,, which
leads to an upper bound for the Peierls-Nabarro barrier of
AERY = Vpietp — Vp‘gti“ ~ (0.7786 Vy. This latter value is in
good agreement with the analytical expression for the barrier

height in the strong-coupling approximation
AE = 16kb*e ™ VE, (12)

which evaluates numerically to AE = 0.9101 V;. Our value
is an upper bound for the barrier since the center-of-mass
position is not necessarily a good reaction coordinate. Paths
with energy barriers can (and do) exist that are lower than
those encountered when stepping the center-of-mass forward
adiabatically without thermal fluctuations. Thus, the current
coupling lowers the energy barrier for kink motion to less than
about 40% of what it would be without coupling, which is 2Vj.

At low temperatures, the true Peierls-Nabarro barrier AEpy
will determine the kink mobility, which in turn determines
that of the chain and thereby the equilibrium viscosity. As a
result, 1 is expected, to leading order, to obey an Arrhenius
dependence with ny o< exp(—pBAEpN). In contrast, the friction
at medium to high velocity is dictated by AEy. This is because
chains undergo enforced basin hopping at high velocities.
Their dynamics then resemble the athermal dynamics at small
velocities, unless the temperature is high. Since P instabilities
occur when the chain’s center of mass is advanced by the
substrate’s lattice constant an athermal kinetic friction force
of fyx = AE4/b per atom ensues, which evaluates numerically
to fr = 0.7133 V,/a, which is essentially the same result, as
when dividing the total kinetic friction force of F; ~ 11.414
by 16, the number of atoms in the chain. Thus, when the chain
moves too quickly for the instabilities to be triggered prema-
turely through thermal fluctuations, an effective viscosity of
Neft &~ AEq4/(vb) is expected.

To corroborate our claims, the dynamics of ak = 15 V;/ a2
chain is considered in addition to that of the former model (see
Fig. 5), where the basin hopping process of that chain type is
depicted in detail and contrasted to that of the default model
(with k = 10). This time, AEq = 0.153 V; is merely half of
AEpNy = 0.297 V. Thus, the lateral force per atom deduced
from AEy is fx = 0.1432 V,/a. This ratio is again very close
to that deduced from the direct measurement shown in Fig. 5,
i.e., 2.2941/16 = 0.1434. To achieve this level of agreement,
sliding velocities of 107> were employed.

Figure 5 also shows a lower-bound estimate for the Peierls-
Nabarro barrier. This estimate is based on the system’s energy
when the center of mass reaches the transition point, a position
where multiple microscopic configurations are possible. In the
specific case, two energetically equivalent configurations are
mirror images of each other. The mirror image can be reached
(on the dotted line) if the sliding direction were reversed
(after the chain had undergone one more instability in the
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FIG. 5. Evolution of the total potential energy Vo (top) and
total lateral force Fj,, (bottom) as a function of a moving center-
of-mass position x for a k = 15 Vy/a? and a k = 10 V,/a? chain at
kgT = 0. For the k = 15 chain, the energy drop AEy and bounds for
the Peierls-Nabarro barrier AEpy are shown. The upper and lower
bounds of AEpy for k = 10 are 0.778 V; and 0.267 V,, respectively;
for k = 15 they are 0.297 V; and 0.218 V.

original sliding direction). These two configurations share the
same center-of-mass position but cannot be transformed into
one another without an energy cost. That energy difference
constitutes the missing contribution to the full Peierls-Nabarro
barrier.

1. Thermal dynamics of the default model

We note that the finite elastic coupling between the beads
does not alter the dependence of specific heat on temperature
qualitatively compared to the uncoupled case. However, the
location of the peak maximum 7* moved to a temperature
about 2.5 times higher than for very weak coupling (Fig. 6), al-
though the energy barrier to be passed was reduced by a factor
of 2. In the medium-coupling limit, the peak in specific heat
arises from the thermal activation of structural excitations, i.e.,
near and above 7* more than one discommensuration is likely
to occur. Thus, there is a non-negligible occurrence of one or
several additional pairs of kinks and antikinks in addition to
the kink enforced by the periodic boundaries. Representative
chain configurations at different temperatures are depicted in
Fig. 7. A super-Arrhenius mobility of the chain due to an
increased number of defects is the natural consequence of
these results.

The number of kinks at a safe distance below T* is usually
unity in our periodically repeated chain. At this temperature,
the Peierls-Nabarro barrier is also greater than the thermal
energy, which turns the undriven dynamics into a process
where the diffusion of a kink is thermally activated. This
implies that kink motion occurs via rare thermally activated
hops over energy barriers rather than continuous sliding. As a

a function of reduced temperature kz7 /V; for free atoms Frenkel-
Kontorova chains with medium strong springs, k = 10, which can
be open (green crosses) or subjected to periodic boundary conditions
(PBC, orange plus symbols). Larger symbols are deduced from finite
difference of U(T'), smaller symbols from energy fluctuations.

consequence, the transition from ballistic motion to diffusion
must pass through an intermittent regime. In this regime, the
kink motion alternates between being trapped in local energy
minima and sudden jumps, resulting in nontrivial temporal
correlations and anomalous transport properties. For the peri-
odically repeated k = 10 chain, this happens via subdiffusive

motion, where the diffused squared distance Ax? satisfies
({x(t) — x(0))) oc 1 (13)

with 0 < a < 1. Such subdiffusive behavior is characteristic
of complex liquids [45]. The simplest atomistic model system
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FIG. 7. Representative configurations of the £ = 10 chain with
periodic boundary conditions at different reduced temperatures 7.
The substrate potential is shown in gray for reference only. Vertical
grid lines pass through its minima.
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FIG. 8. RMS displacement dynamics for a k = 10 chain at T =
0.5 under periodic and open boundary conditions. The gray line
represents the initial superdiffusive regime with power law of 2, the
black dashed line indicates subdiffusive behavior, and the solid black
line corresponds to the diffusive regime with power law of 1.

having revealed subdiffusive dynamics so far is arguably a
(supercooled) binary Lennard-Jones mixture [46].

While the driven dynamics of the open k = 10 chain is
discussed in a separate section, it is appropriate to discuss the
thermal dynamics here. Its subdiffusive exponent has dropped
to less than 0.1 compared to o =~ 0.57 for the periodic chain,
and its ultimate diffusion is substantially reduced, as shown
in Fig. 8. This can be attributed to edge effects in the open
chain, which allow it to sink more deeply into energy min-
ima, resulting in more pronounced subdiffusion than in the
periodic chain. The absence of edges in the periodic chain en-
ables collective center-of-mass motion, which helps overcome
barriers more effectively, whereas the open chain’s broken
translational symmetry leads to stronger local pinning and
suppressed coordinated motion.

2. Driven dynamics of the default model

Figure 9 shows results for the effective viscosity of the
k=10 Vy/a®>, N = 16, and a/b = 2 chain. The rheological
response resembles, as is the case for uncoupled atoms, that
of many non-Newtonian liquids: the equilibrium viscosity 7
increases with decreasing temperature and the effective vis-
cosity can be described well with the Carreau-Yasuda (CY)
equation
_ o

(1 + (y /)] =m/e”
which in addition to the equilibrium viscosity 1y and a charac-
teristic shear rate y, depends on the shear-thinning exponent
n and the Yasuda exponent a. Not only does the CY, but also
the Eyring equation, again, fit the n.#(v) dependencies shown
in Fig. 9 very well, particularly for thermal energies less than
Vo. This is in contrast to the Prandtl model, the mean-field
variant of the Frenkel-Kontorova model, where CY clearly
outperforms Eyring [30].

A few observations in Fig. 9 are worth discussing. First, the
ratio AEy/(bv), shown in gray line, forms indeed a good up-
per bound or even estimate for the true effective viscosity, the

n (14)
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FIG. 9. Effective viscosity of a k = 10 chain with PBC in a cor-
rugated potential. Circles represent data obtained from simulations
at constant force and reduced temperature 7. For T = 0.12, chains
were driven at a constant center-of-mass velocity. Lines reflect fits
to the Carreau-Yasuda equation, except for the gray line, showing
AE,/bv per atom.

more so the higher the temperature. Second, at high velocity
and low temperature, there is a gap in the values of possible
velocities, when the chains are driven under a constant force,
as can be seeninthe 7 < 1 data between 2 x 10~! and 1. This
gap can be attributed to a shear-thinning exponent that would
hypothetically fall below the value of n = 0 in the range of
forbidden velocities, which implies unstable motion. In fact,
when forcing the center of motion to lie in this unstable range,
friction decreases with increasing velocity in that range. This
is the sign for the coexistence of two running solutions in
the Frenkel-Kontorova model [3], which are well known.
They take a peculiar form in the quantum Frenkel-Kontorova
model, where a tunneling solution can coexist with a running
solution [47]. Third, outside the regime of dynamical bistabil-
ity, the effective viscosity does not depend much on whether
a constant velocity or a constant force is imposed.

At medium coupling, the temperature dependence of 1 is
strongly altered compared to the limit of uncoupled atoms,
as can be seen in Fig. 10. The apparent activation energy
AEy,p, = —0dInn/0p with B = 1/kgT first increases with de-
creasing temperature at very high temperatures, in a similar
way as the free atoms. However, AE,,, drops to a substantially
smaller value in the vicinity of 7* and becomes quite constant
at even lower temperatures. At the lowest investigated thermal
energy kgl ~ V;/20, it assumes a value of AE,,, ~ 0.5V,
which is in-between the lower and upper bounds given by the
potential of mean force and the barrier for athermal sliding,
respectively. The behavior is somewhat reminiscent of some
glass forming melts, which can also undergo a transition from
non-Arrhenius to Arrhenius behavior near a temperature, at
which the specific heat assumes a local maximum [48].

It remains to be understood why the effective viscosity
at high sliding velocities and high temperatures can be de-
duced so accurately from the slow-velocity dynamics at low
temperature. To this end, we contrast the mean instantaneous
energy as a function of slid distance for both cases in Fig. 11.
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a slope of one are drawn to guide the eye.

One can see that the process in the fast thermal chain (shown
in dashed orange) is merely a delayed, smeared-out variant
of the slow, athermal chain dynamics (shown in solid blue).
The instabilities occur later and at a higher energy, as they
have less time or, rather, less distance to develop than in the
slow, athermal case. However, the energy drop also occurs to
a higher level than before so that the difference, which is the
dissipated energy, remains roughly identical. Figure 11 also
reveals that the barrier deduced from the (internal) energy for
the slowly moving system is similar to that deduced from
Fig. 5. Both barriers are only lower bounds for AEpy since
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FIG. 11. Athermal and thermal energy barrier for medium cou-
pling (k =10) for two center-of-mass sliding velocities using
periodic boundary conditions. For clear visualization, the curves for
T =0 are shifted in the y direction by 3.42, while that for 0.05
by 3.79.
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FIG. 12. Effective viscosity of a k = 10 chain with periodic
boundary condition and force applied to alternate atoms for three
temperatures. The Eyring fit is shown in dashed while the Carreau-
Yasuda fit is shown by solid lines.

a typical structure left of the barrier cannot be continuously
deformed into one to the right of the barrier.

3. Nonuniform force distribution and constraints

Throughout most of this work, the external driving force
is distributed uniformly among the beads in the chain. This
can be said to correspond to a body force. In reality, external
forces do not directly apply to atoms or molecules in a sheared
liquid, but indirectly via intermittent layers. Thus, the external
force applied to an atom or molecule wanting to move past
a barrier provided by an adjacent lamella is not constant
with time, but is repeatedly ramped up from a small (poten-
tially even negative) to a large value, such that the effect of
the external force is nonuniform in space and time. To ex-
plore the effect of heterogeneity, we also studied a chain, in
which the external force was applied only to odd-numbered
beads. This, however, does not break the validity of the Eyring
model for the FK chain, at least not at lower temperature, as
can be seen in Fig. 12. It also leaves the equilibrium values
unchanged: the (reduced) equilibrium viscosity of ?]Cq(T =
0.1) ~ 400 found in Fig. 12 corresponds to that shown in
Fig. 10, where AE /kgT = 0.45/0.1 — 4.5.

However, the equilibrium viscosity as well as the func-
tional form of the rate dependence clearly change when the
velocity of every other bead is constrained to vy, as shown
in Fig. 13. This constraint, which might pertain to selec-
tively actuated materials [49-51], creates a microscopically
sheared system akin to a multiparticle Prandtl model, for
which Carreau-Yasuda outperforms Eyring equation [30].

4. Alternative damping

From our analysis conducted so far, shear thinning has
been rationalized from the perspective of basin hopping. In
this view, the rate at which excess kinetic energy, produced
by instabilities, is dissipated via the damping term is assumed
to play a subordinate role. This assumption may be justified
under certain conditions, particularly at intermediate sliding
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FIG. 13. Effective viscosity of a k = 10 chain with periodic
boundary condition and constant velocity applied to alternate atoms
for three temperatures. The Eyring fit is shown in dashed while the
Carreau-Yasuda fit is shown by solid lines.

velocities, which are large enough so that thermal activation
takes too long to matter but small enough that the degrees
of freedom have enough time to dissipate the kinetic energy,
which was released during the last instability, before the next
one occurs. Figure 14, which shows the effective viscosity of
the k = 10 chain under different dynamical schemes, confirms
this expectation. In the following, we attempt to rationalize
how various damping schemes and thus thermostats influence
the shear-thinning behavior.
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FIG. 14. Effect of dynamical properties and thermostats on
rheological behavior for k=10 chain at T =0.5. The (local)
time constant for both underdamped Langevin (solid circle) and
momentum-conserving Langevin (solid triangle) is unity. The latter
becomes unstable for higher velocities and viscosity drops at much
higher rate shown by dashed green line. Damping coefficient for
overdamped Langevin (Brownian) is 1.0. Viscoelastic Langevin has
a Maxwell element of stiffness 0.5k and damping coefficient 0.2m/t
in parallel to the dashpot of damping coefficient 0.8m/7. The slanted
black line has a slope of —1, the lower limit for stable solution.

For Brownian dynamics, the same damping y = m/t was
chosen as for Langevin dynamics. However, the Brownian
particle does not have a mass. A smaller mass implies a larger
attempt frequency for barrier crossing, so that the Brownian
chain exhibits faster diffusion, which makes it have a smaller
equilibrium viscosity than the Langevin chain. At large, but
not extremely large, sliding velocities, the massless Brownian
atoms more easily sink into energy minima, as their (nonex-
istent) kinetic energy cannot assist in overcoming the next
barrier. As a result, they become more deeply trapped in en-
ergy minima than their Langevin counterparts. Consequently,
the Brownian chain exhibits higher friction than the Langevin
chain at high velocity and follows the theoretical estimate
n ~ AE /v + n. more closely over a wider range of veloc-
ities. At extremely large velocities, the Brownian particle can
no longer relax into any energy minimum so that Brownian
and Lagrangian FK chains are damped with 7, which for
the Brownian and regular Langevin FK chains defines 7. in
Fig. 14.

When atoms in the FK chain only experience relative
damping but none with respect to the substrate, 7, vanishes.
This is because the relative motion between adjacent atoms in
the chain is rather minor at very large sliding velocity, which
leads to small and ultimately vanishing dissipation. In fact, the
shear-thinning exponent can drop below zero so that stable
motion under a constant force above a critical value is no
longer possible. This is why the pertinent n(y ) data, reflected
by the full green triangles in Fig. 14, terminate at a critical
velocity v.. Data above v, which are shown using open sym-
bols, was collected using a constant center-of-mass velocity
constraint rather than constant force. For completeness, we
note that the reference 7. was chosen such that n(y)/ne0
overlapped with the default Langevin chain, even though the
measured damping in absolute terms was smaller than that of
the Brownian chain.

The final dynamical model explored for the periodic k =
10 chain is the viscoelastic model, where damping is relative
to the substrate but occurs, in part, with a delay. While the
overall behavior is not substantially affected by the specific
choices made, the range where n.g scales roughly inversely
with (v) is extended compared to the case with instantaneous
damping.

C. Open FK chain at medium elastic coupling

So far, we have focused on periodically repeated chains,
which enforces the existence of at least one discommensura-
tion. Releasing that constraint allows the open chain to adopt
a more favorable ground state, whereby it can sink into a
substantially deeper energy minimum than the periodic chain.
This in turn increases the barrier to advance the chain by a
substrate period. When translating the open chain, inequiva-
lent instabilities occur. Starting from a kink-free ground state,
where all atoms line up in the same minimum of the substrate
potential minima, e.g., x/b ~ 1.5 in Fig. 15, the chain remains
kink free up to the instability point at x/b ~ 1.7. At that
point, a discommensuration pops in, which constitutes the
most dramatic energy drop AE,; =~ 8.4 Vj. After pop in, the
discommensuration is located between the chain’s trailing end
and its center of masses. Now, the motion of the open chain
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FIG. 15. Similar to Fig. 4 but this time for a £ = 10 chain with
open ends. The full lines are fits to Carreau-Yasuda in the top panel
and to Eyring in the bottom panel. The thin dotted line in the top
panel shows the dynamics of a periodically repeated chain. The
bottom panel illustrates the dynamics of discommensuration with
the chain movement. The positions of individual atoms are shown
on the abscissa while their mean is shown on the ordinate.

resembles that of a chain with periodic boundary condition,
i.e., each time the chain advances by b/P, the discommensu-
ration advances by one lattice constant. These instabilities are
rather minor individually but sum up to an accumulated en-
ergy drop of AE4 & 10.44 V,, over 12 events. Finally, there is
a pop out of the discommensuration with an associated AEy =
2.4 Vp, after which the sequence repeats. These dynamics,
which the open chain undergoes under a small, constrained
center-of-mass motion reveals once more that the athermal
Peierls-Nabarro barrier can be a poor indicator of the true
barrier since the discommensuration can thermally nucleate
at the end of the chain given enough time.

Assuming that, at intermediate velocities and low temper-
atures, dissipation is governed more by the energy landscape
than by the system’s dynamical properties sets the expecta-
tion that the friction in this regime is approximately %iven
by the total sum over elementary energy drops AEé" per
period divided by the period b. In fact, the effective viscosity
computed using this hypothesis gives a reasonably accurate
hull function, as demonstrated in Fig. 16, where the hull (solid
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FIG. 16. Effective viscosity of a k = 10 open chain in a corru-
gated potential. Circles represent data obtained from simulations at
constant force and reduced temperature 7. Lines reflect fits to the
Carreau-Yasuda (top) and Eyring (bottom) equations, except for the
gray line (hull function), showing 3", E\"/bv per atom.

gray line) covers an increasingly large domain with decreasing
temperature. At those points where the hull is a good approxi-
mation to the true data, one may thus argue that the dynamical
properties, such as mass or damping, are of relatively minor
importance, at least within a certain parameter window. In
other words, a good fit of some rheological model, in which
prefactors are defined by damping or the square root of the
mass, would not indicate the validity of the underlying theory,
but rather result from more fortuitous reasons.

Although Eyring theory provides a seemingly accurate fit
to the data, it slightly but noticeably underestimates the vis-
cosity at velocities where shear thinning becomes apparent
when the temperature is low. This appears to be a general
phenomenon, whose observation, however, requires high data
precision and proper fitting, i.e., fitting the logarithm of vis-
cosity rather than viscosity itself.

D. FK chains with strong elastic coupling

When the elastic coupling increases, discommensurations
extend over larger domains, as is depicted in Fig. 17 for
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FIG. 17. Athermal dynamics of a k = 100 chain subjected to
periodic boundary conditions. Potential energy Vi (top) and lat-
eral force F, (center) as a function of the sliding distance x at a
small sliding velocity of v =1 x 107>, The bottom panel shows
the displacements of atoms on the abscissa and the atom number
on the ordinate at three different displacements. The center-of-mass
displacement is marked by dotted lines having the same color as the
displacements.

k = 100, which is the value used throughout this section. The
advancement of a discommensuration now entails a rather
minor transition barrier of AE = 9.000 x 1073 Vp, which is
in very good agreement with the continuum theory, Eq. (12),
yielding 9.627 x 107> V;. The enhanced rigidity counteracts
the sudden release of energy when a discommensuration ad-
vances by one lattice constant, which suggests that the chain
can glide past the substrate without instabilities and thereby
allow the chain to be driven (quasi)adiabatically at very low
temperature.

The stiff, periodic chain turns out to be the only model
with a marginal anomaly in the specific heat at a thermal
energy of order Vj. As shown in Fig. 18, its peak even
hardly exceeds kp/2, which is the (classical) specific heat
just above T =0, when all modes, not only the internal
modes, are harmonic. At small (but not vanishingly small)
temperature, the specific heat assumes a value in the imme-
diate vicinity of ¢./kg = (1 — 1/P)/2, which implies that the
chain cannot be trapped for a long time near a harmonic
minimum. Thus, the center of mass can be expected to be
diffusive.
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FIG. 18. Configurational specific heat c. per degree of freedom
as a function of reduced temperature k37T /V} for free atom Frenkel-
Kontorova chains with strong springs k = 100, which can be open
(green crosses) or subjected to periodic boundary conditions (PBC,
orange plus symbols).

As a consequence of the small barrier, sliding of the
periodic chain is Stokes type up to intermediate velocities
of ¥ =0.1, at least for thermal energies above the tiny
value of 10™* Vj. Above this extremely cold temperature
range, the equilibrium viscosity assumes a rather temperature-
insensitive value of nes =~ 21 for T < T*, while n & e
when T > T* with a correction that quickly vanishes with
increasing T (see Fig. 19). The behavior pertains to situations
that could be associated with structural lubricity in ultrahigh
vacuum, i.e., the contact between two incommensurate solids
whose intrabulk interactions are less strong than those within
the bulk or, alternatively, with the use of solid lubricants.

The excess viscosity can be easily rationalized within a
simple perturbation approach, which is only sketched briefly
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FIG. 19. Effective viscosity of a k = 100 periodic chain in a cor-
rugated potential. Circles represent data obtained from simulations at
constant force and reduced temperature T
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here, as more detailed treatments for this limit are well known
in the literature. To lowest order, the external force acting
on a bead can be cast as a time-dependent function under
the assumption that each bead moves with its center-of-mass
velocity. At low to intermediate velocities and T < T, the
motion of the beads is only weakly perturbed by the substrate
potential. This perturbation introduces small fluctuations in
the bead velocities, which generate a small but noticeable
excess dissipation compared to perfectly smooth sliding. In
this quasistatic regime, each bead has sufficient time to follow
the substrate potential, so that doubling the sliding velocity
quadruples the dissipated power and, consequently, doubles
the friction. The dissipation is enhanced once the excitation
frequency approaches a resonance frequency in the chain. For
very high velocities, the excitation exceeds the resonance fre-
quency and momentum as well as energy transfer into internal
modes is inefficient, as in a simple harmonic oscillator. In this
regime, the power dissipated by the chain scales as ~1/(v)?
since beads are inertial, resulting in an effective viscosity that
decays as e ~ 1/(v)*.

When T > T*, thermal fluctuations effectively smear out
the substrate potential. As a consequence, the substrate
no longer substantially modifies the motion of the beads
substantially so that their mean motion is impeded pre-
dominantly by the explicitly imposed damping at very high
temperature.

As the final model, we consider a stiff open chain. Its
(apparent) barrier is much larger than for the periodic chain,
even noticeably larger than for uncoupled atoms, i.e., AE 2>
7.79 Vi, which is demonstrated in Fig. 20. This is because
for the considered ratio of b/a = %, which is near unity, a
significant fraction of the chain can be close to the substrate’s
potential energy minimum. However, if the spring constant
were even larger than k = 100 or the b/a ratio more from
unity, the barriers would decrease and be dominated by end
effects. In fact, in the limit of Kk — oo and b = 1.5, the barrier
would disappear even for an open chain if it consisted of an
even number of bead and be 2AV for an odd number of beads.

Since the internal degrees of freedom of the open chain are
rather stiff, discontinuities in the potential energy barely show
under athermal, quasiadiabatic sliding. Thus, substantial in-
stabilities do not occur. The only instabilities that are apparent
to the naked eye happen for x/b < 1.7 when the high-energy
atoms reach the leading edge of the moving chain. This is
why the potential energy almost reflects the symmetry of the
underlying lattice, i.e., it is clearly periodic in b (rather than
periodic in b/P as for a chain subjected to periodic boundary
conditions) and almost reflects the symmetry of the underly-
ing potential. At the same time, the potential under adiabatic
center-of-mass advancement of a stiff but not infinitely stiff
chain is far from being single sinusoidal in contrast to that
of a single point particle moving in a single-sinusoidal field.
A related notion has been explored in the work of Tysoe
and coauthors [32], who investigated how deviations from
sinusoidal substrate potentials, such as piecewise parabolic
forms, affect atomic-scale friction and the onset of instabilities
in Prandtl-Tomlinson—type sliding models.

Although the instantaneous potential of the center of mass
does not show a steep drop in Fig. 20, the center of mass
would pop forward once the rigid chain is pushed to the point
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FIG. 20. Athermal dynamics of a kX = 100 chain subjected to
open boundary conditions. Potential energy V), (top) and total lateral
force Fi, (middle) as a function of the moved average distance x at
a small sliding velocity of v = 1 x 107>. The bottom panel shows
the displacement of individual atoms on the abscissa and the average
displacement on the ordinate.

where V,,, starts to decrease. Extracting dissipated energy
from the energy drops is sensitive to the internal instabilities.
As a consequence, the rigid chain does not only have a high
static friction force of close to F = 75, but also substantial
kinetic friction. In fact, its behavior is so similar to that of a
free particle that we abstain from showing n(v) or no(T').

IV. DISCUSSION AND CONCLUSIONS

This paper is concerned with the analysis of the thermal
Frenkel-Kontorova (FK) model, with a particular, though not
exclusive, focus on small sliding velocities, where thermal
activation helps overcome energy barriers that hinder mass
transport and intermediate velocities, where dynamics are
mostly dictated by the energy landscape but not by inertia,
as at extremely large velocity. One motivation for our study
was to explore to what extent the FK model exhibits features
typical of the fluid rheology of (complex) liquids or lubri-
cants. We believe this endeavor was largely successful, as the
following characteristics were reproduced: a crossover from
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non-Arrhenius to Arrhenius dependence of the equilibrium
viscosity near a temperature where the specific heat reaches
a maximum; the presence of a power-law subdiffusive regime
between the ballistic and diffusive regimes; and shear thin-
ning, which could be described reasonably well by the Eyring
equation for most studied parameters.

Although these salient features cannot be asserted with
certainty to arise from the same mechanisms as in liquids,
the connection appears plausible. After all, mass transport
in dense liquids also requires energy barriers to be over-
come, and there is little reason to assume that the underlying
physics should differ fundamentally when transport occurs
via kinks in a Frenkel-Kontorova chain or through coor-
dination defects in a disordered fluid. This may place us
in a position to qualitatively rationalize key rheological
features of liquids within the FK framework, which re-
mains mathematically more tractable than even the simplest
atomistic models, such as binary Lennard-Jones fluids. Nat-
urally, the overall picture that emerges from this analysis
is not fundamentally new. However, it may offer a more
condensed and transparent formulation than previous ap-
proaches by capturing essential phenomenology with minimal
complexity.

The studied FK chains exhibit a peak in specific heat
near the temperature below which the (mean) number of
defects enabling mass transport no longer changes substan-
tially with decreasing temperature. Once the number of
mass-transport-inducing defects has plateaued, viscosity and
diffusion display an Arrhenius-type dependence as temper-
ature decreases. Moreover, while thermal activation clearly
plays a primary role at the onset of shear thinning, the

rate-dependent (effective) viscosity at high shear rates is pri-
marily governed by the (local) energy drops that occur in the
wake of shear-induced instabilities. Yet, the subsequent de-
pendence of viscosity on shear rate or sliding velocity remains
similar to that predicted by Eyring theory, which considers
thermal activation alone. Therefore, even when Eyring theory
provides a good fit, it may do so for reasons unrelated to its
foundational assumptions.

Regarding diffusion, we identify a transition from indepen-
dent particle to collective dynamics as a function of chain
stiffness. While increasing stiffness initially suppresses dif-
fusion, a nonmonotonic behavior emerges beyond a critical
coupling, with diffusion approaching the uncoupled-particle
limit. In the tribological context, the system dynamics is gov-
erned by fractional instabilities until the medium coupling.
However, as the chain becomes rigid, the discommensuration
extends over large domain and the friction drops.

In conclusion, the results of this study strengthen the
Frenkel-Kontorova model as a minimal yet powerful frame-
work for rheology: in addition to hallmark features such as
the devil’s staircase and nonlinear transport, it also captures
thermally activated viscosity, shear thinning, and diffusive
anomalies within an analytically tractable and physically
transparent setting.
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