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Inferring tree structure with hidden traps from first-passage times
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Tracking the movement of tracer particles has long been a strategy for uncovering complex structures. Here,
we study discrete-time random walks on finite Cayley trees to infer key parameters such as tree depth and
geometric bias toward the root or leaves. By analyzing first-passage properties, we show that the first two first-
passage-time factorial moments (FPTFMs) uniquely determine the tree structure. However, if the random walker
experiences waiting phases—due to sticky branch walls or presence of traps—then this identification becomes
nontrivial. We demonstrate that the generating function of the first-passage-time (FPT) distribution decomposes
into contributions from the waiting-time distribution and the random walk without waiting, leading to a nonlinear
system of equations relating the factorial moments of the waiting-time distribution and the FPTFMs of random
walks with and without waiting. For geometrically distributed waiting times, additional moment measurements
do not suffice, but unique determination of the structure is achieved by varying initial conditions or fitting the
Fourier transform of the FPT distribution to measured data. The latter method remains effective also for power-
law waiting-time distributions, where higher-order FPTFMs are undefined. These results provide a framework for
reconstructing treelike networks from FPT data, with applications in biological transport and spatial networks.

DOI: 10.1103/hh42-b48p

I. INTRODUCTION

Tracking the movement of tracer particles has long been
a practical method for probing the unknown structure and
topology of labyrinthine environments, ranging from disor-
dered media to biological transport networks [1–14]. For
instance, diffusion propagators have been used to estimate
structural characteristics of porous media, including porosity,
confinement, permeability, absorption strength, and surface-
to-volume ratio [2–5]. Other examples include identifying
magnetic bubble arrangements through the anomalous behav-
ior of the mean-square displacement of paramagnetic colloids
in flashing magnetic potentials [6], or determining the ge-
ometry of absorbing boundaries—such as those in acoustic
cavities—from the eigenvalue spectrum of the confined diffu-
sion equation [7].

Analyzing diffusive dynamics, e.g., by measuring the
diffusion constant or mean-square displacement, typically re-
quires direct tracking of the tracer, which can pose technical
challenges or necessitate invasive methods in biological or
medical contexts. Moreover, such measures often fail to cap-
ture fine structural details. As an alternative, other transport
quantities have been employed to indirectly assess the struc-
tural characteristics of interest. For instance, the absorption
efficiency of diffusing oxygen can reflect the topology of

*Contact author: shaebani@lusi.uni-sb.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the bronchial tree in the human lung [8], or the mean free
path of light relates to obstacle size and density in turbid
media [9], enabling the use of diffusive light propagation to
probe the temporal structural evolution of foams and opaque
environments [10,11]. Among other measurable quantities,
first-passage-time (FPT) properties offer promising tools for
indirect structural analysis. For example, the first return time
of random walks has been used to estimate geometrical prop-
erties of complex networks, including the number of triangles,
loops, and subgraphs [12]. Similarly, the mean time for reac-
tants to reach a reaction center or to encounter each other can
predict the timescale of autocatalytic reactions on inhomoge-
neous substrates [13].

Our study focuses on treelike structures, which repre-
sent a broad range of real-world systems—from synthetic
polymer configurations and dendrimer macromolecules to
the bronchial architecture of lungs, vascular networks, neu-
ronal dendrites, as well as certain communication and power
distribution networks, and river basins [8,14–26]. Treelike
architectures are also highly relevant in network and graph
theory, epidemic modeling, and computational search algo-
rithms [27–31]. Regular finite Cayley trees and infinite Bethe
lattices have been thoroughly studied by mapping them onto
effective one-dimensional (1D) lattices [32–40], enabling the
calculation of stochastic quantities of interest, such as the
probability of return to the origin and the mean first-passage-
time (MFPT) to reach a target node. The latter has been
shown to depend on both the size of the tree and the bias
in hopping toward the target. Consequently, measuring the
MFPT alone is typically insufficient to uniquely determine the
structure of even simple Cayley trees. While it has been pro-
posed that using random walkers with varying waiting-time
statistics may aid in structural inference [34], such waiting is
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FIG. 1. Schematic illustration of the problem and modeling
framework. (a) A Cayley tree of unknown structure (represented
by the gray shading), characterized by its depth L, upward hopping
probability p (in conjunction with the coordination number z), and
the distribution w(t ) of waiting times induced by stickiness or hidden
traps along the branch walls. Random walkers are released from a
specific level of the tree—here, the leaf nodes (dark purple)—and
eventually reach the root (yellow). The distribution of their first-
passage times (inset graph) is used to infer the structural parameters
L, p, and w(t ). (b) A single subtree of a Cayley tree of depth
L = 4 and coordination number z = 4. The leaf nodes (i = L = 4)
are displayed in dark purple, the root node (i = 0) in yellow. Tran-
sition probabilities are indicated on the left. On the right, a sample
trajectory of a walker moving from a leaf to the root is depicted with
footsteps and pentagons; the size of each pentagon reflects the ran-
dom waiting time at that node, while the color of the pentagons and
footsteps transitions from purple to yellow to indicate the progression
of time. A cycle-free sample path is chosen to clearly illustrate the
waiting behavior.

often an inherent property of the system—originating from
stickiness or hidden traps along the tree branches—rather
than a characteristic of the random walker itself. Here, we
are particularly interested in predicting the structure of more
intricate, nonuniform (depth-dependent) trees—such as those
that thin or thicken toward the root—and under the influence
of inherent stochastic waiting events along the branches. We
adopt discrete-time random walks on finite Cayley trees as an
analytically tractable framework for studying such branched
structures. While continuous-time random walks are a widely
used alternative, we focus on a discrete-time approach, which
naturally captures stepwise processes, such as sequential
movement in biological systems or signal propagation in net-
works.

We employ a FPT-based analysis as a powerful tool for
inferring structural parameters of the system—such as the
bias in movement toward the root or the frequency of tem-
porary sticking and trapping along the path—as illustrated in
Fig. 1(a). We demonstrate that knowing two first-passage-time
factorial moments (FPTFMs) for tracer particles to reach the
root of a Cayley tree is sufficient to uniquely determine the
structure of the tree in the absence of traps. We then extend
our approach to incorporate waiting times resulting from the
presence of traps. In this case, the generating function of the
FPT distribution of the random walk can be written as the
composition of the generating function of the FPT distribu-
tion of a walk without delay and the generating function of
the waiting-time distribution. This decomposition can yield a
nonlinear system of equations that relates factorial moments

of the waiting-time distribution and the FPTFMs of walks
with and without trapping effects. We show that accurate
inference of the tree structure in such cases requires more
refined analysis—such as probing with varied initial condi-
tions or fitting the Fourier transform of the FPT distribution
to observed data. Notably, our method remains effective even
in the presence of power-law distributed waiting times, where
higher-order FPTFMs may diverge.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the mathematical formulation of the
problem and derive the generating function relations for FPTs
without and with waiting times, respectively. Sections III
and IV consider the FPTFM-based inference of structural
parameters in absence and presence of waiting. Section V
presents the inference framework using the Fourier transform
of the FPT distribution and examines the impact of different
waiting-time distributions. Finally, Sec. VI summarizes the
main findings and concludes the paper.

II. METHOD

In this section, we establish the mathematical framework
underlying our analysis. A central tool throughout is the use
of generating functions, widely employed in the study of
combinatorial sequences [41–43] and the probability distri-
butions of discrete random variables [44]. Given a sequence
(a(n))n�0, its ordinary generating function is defined by the
power series â(z) = ∑∞

n=0 a(n) zn. Throughout this work, we
use a hat to denote the generating function of the corre-

sponding quantity. We use the symbol
ogf←→ to indicate the

correspondence between relations in the sequence domain and
their ordinary generating function counterparts. A particu-
larly useful property of ordinary generating functions is the
convolution property [42], which states that for k sequences
(a1(n))n�0, . . . , (ak (n))n�0, the convolution satisfies

b(n) =
∑

n1+...+nk=n

a1(n1) · · · ak (nk )
ogf←→ b̂(z) =

k∏
i=1

âi(z), (1)

where the sum runs over all k-tuples (n1, . . . , nk ) ∈ Nk such
that n1 + · · · + nk = n.

The second key tool used in this paper is the factorial
moment, a well-established quantity for studying nonneg-
ative integer-valued random variables and their distribu-
tions [41,44]. Factorial moments have also seen applications
in data analysis, particularly in high-energy physics [45]. Let
t k = ∏k−1

n=0(t − n) denote the kth falling factorial, with the
convention t0 = 1. Then, for a random variable t with the
probability distribution f (t ) the expectation value of the kth
falling factorial defines the kth factorial moment 〈t k〉 of t .
A property which makes factorial moments more convenient
that ordinary moments is that they are directly generated by
derivatives of the generating function f̂ (z) of the probability
distribution:

〈t k〉 = dk f̂

dzk

∣∣∣∣∣
z=1

. (2)

Since monomials can be expressed in terms of falling fac-
torials, factorial and ordinary moments, 〈t n〉 and 〈t n〉, are
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related to each other via 〈t n〉= ∑n
k=0(−1)n−k[n

k]〈t k〉 and

〈t n〉= ∑n
k=0{n

k}〈t k〉, where [n
k] and {m

k } denote the (unsigned)
Stirling numbers of first and second kind [43].

A. Recurrence relation for FPTFMs

Having introduced factorial moments, we now derive a
recurrence relation for the FPTFMs. Notably, this derivation
does not rely on any assumptions about the random walk
taking place on a tree structure; it holds for arbitrary discrete
random walks on possibly infinite state spaces. Furthermore,
extending the approach to continuous spaces is straightfor-
ward and likely requires only minimal adaptation.

A well-established approach for obtaining the first-
passage-time distribution f (t ) is through the survival prob-
ability S(t ), which denotes the probability that the walker
has not reached the target by time t . The relation between
these two quantities, as well as between their generating func-

tions, is given by f (t + 1) = S(t ) − S(t + 1)
ogf←→ f̂ (z) =

(z − 1)Ŝ(z) + 1 [35]. Applying Eq. (2) to this relation allows
one to express the FPTFMs in terms of the survival probabil-
ity:

1

k
〈t k〉 = dk−1

dzk−1
Ŝ

∣∣∣∣
z=1

. (3)

This framework can be directly applied to Markovian ran-
dom walks in discrete time, as considered in the following. Let
P(t ) denote the vector (or sequence) of occupation probabili-
ties for all states at time t . The time evolution of P is governed
by the Chapman-Kolmogorov equation P(t + 1) = M P(t ),
where M is the transition matrix. If M respects the absorbing
nature of the target sites, then the survival probability vector
S(t ), whose entries correspond to the survival probability from
each starting site, evolves according to the backward equation

S(t + 1) = M†S(t )
ogf←→ − 1 = (zM† − 1)Ŝ(z), where M† is

the transpose of M. Applying Eq. (3) to this relation yields the
following recurrence for the FPTFMs:

−kM†〈tk−1〉 = (M† − 1)〈tk〉 for k > 0, (4)

where 〈tk−1〉 is the vector of FPTFMs indexed over the starting
sites. This relation serves as the discrete-time analog of a
well-known identity for ordinary moments in continuous-time
processes [46].

B. Decoupling the FPT distribution for walks with waiting

Next, we derive the relation between the ordinary gen-
erating function of the FPT distribution for a discrete-time
random walk with site-independent waiting and that of a
walk without waiting, along with the generating function
of the waiting-time distribution. This decoupling approach
parallels well-known results obtained in continuous time
and space using Laplace transforms [47], and in discrete
space using cumulant generating functions [48], but is
here expressed directly in terms of ordinary generating
functions.

Let f (t ) denote the FPT distribution for a random walk
with independent and identically distributed (i.i.d.) waiting
times drawn from the distribution w(t ) at each site. Let f(t ) be

the FPT distribution of the same walk without waiting times
(i.e., w(t ) = δt,1). Then, f (t ) is given by

f (t ) =
∞∑

k=0

f(k)
∑

τ1+···+τk=t

w(τ1) · · · w(τk ), (5)

and applying the convolution property of ordinary generating
functions, Eq. (1), the generating function of f (t ) becomes

f̂ (z) =
∞∑

k=0

f(k)ŵ(z)k = f̂(ŵ(z)), (6)

i.e., the composition of the ordinary generating functions of
the FPT distribution without waiting and the waiting-time
distribution.

Applying Eq. (3) to Eq. (6) and using the normalization
condition ŵ(1) = 1 for probability distributions, one can ex-
press the FPTFMs with waiting 〈t k〉 in terms of the FPTFMs
without waiting 〈tk〉 and the factorial moments of the waiting-
time distribution 〈τ k

w〉:
〈t1〉 = 〈t1〉〈τ 1

w

〉
,

〈t2〉 = 〈t2〉〈τ 1
w

〉
2 + 〈t1〉〈τ 2

w

〉
,

〈t3〉 = 〈t3〉〈τ 1
w

〉
3 + 3〈t2〉〈τ 1

w

〉〈
τ 2
w

〉 + 〈t1〉〈τ 3
w

〉
,

...

〈tm〉 =
∑
b∈Bm

Mm
b 〈t‖b‖1〉

m∏
k=1

(〈
τ

k
w

〉
k!

)bk

. (7)

The last line represents the general form obtained using
Faà di Bruno’s formula; see the Appendix for details. Here
Bm = {b ∈ Nm;

∑m
k=1 kbk = m}, Mm

b = m!∏m
k=1 bk ! a generalized

multinomial coefficient [49], and ‖b‖1 = ∑m
k=1 bk . We note

that ‖b‖1 � m, with equality ‖b‖1 = m if and only if b =
(m, 0, . . . , 0). Due to its complexity, the general expression
is primarily useful for theoretical purposes, while the finite
number of moments typically required in applications can be
computed manually or with the aid of a computer algebra
system. In the following, we use the unified notation 〈τ k

w〉
for the factorial moments of the waiting-time distribution,
〈t k〉 for the FPTFMs with waiting, and 〈tk〉 for the FPTFMs
without waiting. Moreover, the index i is used for the FPTFMs
with/without waiting, 〈t k

i 〉 and 〈tki 〉, if starting from level i.

C. Cayley trees and random walks thereon

To conclude this section, we introduce Cayley trees and ap-
ply the general results of the preceding subsections to random
walks on such structures. We then outline the waiting-time
distributions considered in this work and comment on the
connection between the generating function and the Fourier
transform of the FPT distribution.

The random walk takes place on a finite Cayley tree of
depth L, which is a regular cycle-free graph constructed as
follows: The root node is assigned to level or shell i = 0.
It connects to z child nodes, forming level i = 1. For levels
0 < i < L, each node at level i is connected to z− 1 nodes
forming the level i + 1. The parameter z denotes the coordi-
nation number of the tree [50]; see Fig. 1(b).
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The random walk proceeds as follows: At each node on lev-
els 0 < i < L, the walker moves to the parent node at level i − 1
with probability p, and to each of the z− 1 child nodes at level
i + 1 with probability 1−p

z−1 . At the leaves (i = L), the walker al-
ways moves to the parent level (i = L − 1) with probability 1.
The dynamics at the root (i = 0) are irrelevant for computing
FPTs to it, and we treat it as an absorbing state to facilitate
the use of the adjoint (backward) equation formalism. For
unbiased diffusion on a Cayley tree, the rootward transition
probability p is simply related to the branching parameter z
by p= 1

z
. In the presence of a bias or an energy difference

�E between consecutive levels, this relation is modified to
p= 1

1 + (z− 1) exp(−�E/kB T ) , with kB denoting Boltzmann con-
stant [23]. Possible sources of such bias include shortest-path
preferences or morphological tapering, as observed in den-
dritic trees of neurons [14]. For this reason, we treat p as
a tunable parameter, which allows the formalism to remain
general and applicable to both unbiased and biased scenarios.

Since our primary interest lies in the first-passage time to
the root, and the transition probabilities are identical for all
nodes at a given level, the dynamics can be effectively reduced
to a one-dimensional process over levels rather than individual

nodes [32–40]. This reduction renders the transition matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 p
0 0 p

1 − p 0 . . .
. . .

. . . p
1 − p 0 1

1 − p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)

tridiagonal, significantly simplifying the computation of the
FPTFMs 〈tik〉 from any level i to the root in O(L k) time using
Eq. (4). For target sites other than the root, reduction to one
dimension is not possible anymore and the transition matrix
for the full tree must be considered.

Furthermore, the generating function of the FPT proba-
bility distribution f̂L(z; L) = ∑∞

t=0 fL(t ; L)zt to the root for a
random walker starting at level L (the leaves, denoted by the
index) of a tree of depth L (denoted by the second argument)
has been derived previously [14,34]. Adapting their result to
our setting without waiting times, and using the abbreviation
A(z) =

√
1 − 4(1 − p)pz2, the expression reads

f̂L(z; L) = 2L+1 pLzLA(z)

(1 + A(z))L(2p − (1 − A(z))) − (1 − A(z))L(2p − (1 + A(z)))
. (9)

Since A(z) is an even function and the denominator of f̂L(z; L)
is odd in A, f̂(z; L) has the same parity as L. Consequently, the
FPT probability distribution fL(t ; L) vanishes for all t that are
not of the same parity as L. This behavior is expected because
the tree with the transition rules defined in Eq. (8) forms a
bipartite network and the walker alternates between the two
parts in every step. Hence, it requires an even number of steps
to reach the root once it has entered the part containing the
root.

Note that for L > 1, the decomposition of the time to reach
the root starting from the leaves into the time to reach the
level below the root starting from the leaves and the time
to reach the root starting from the level below, i.e., TL→0 =
TL→1 + T1→0, holds and that TL→1 and T1→0 are distributed ac-
cording to fL−1(t ; L − 1) and f1(t ; L). Using Eqs. (1) and (9),
the generating function of the FPT distribution to reach the
root starting from the level below can be obtained as

f̂1(z; L) = f̂L(z; L)

f̂L−1(z; L − 1)
. (10)

Using Eqs. (2), (9), and (10), one can in principle derive
explicit expressions for the corresponding factorial moments.
However, due to the complexity of the resulting formulas, we
do not pursue this route further here.

We consider two waiting-time distributions in this paper,
both supported on the set of positive integers t � 1. The first
one is the geometric distribution

w(t ) = q(1 − q)t−1 ogf←→ ŵ(z) = qz

1 − (1 − q)z
, (11)

which arises in the context of random walks with spontaneous
stepping with probability q. The second one is the zeta distri-
bution, defined by

w(t ) = t−s

Lis (1)
ogf←→ ŵ(z) = Lis (z)

Lis (1)
, (12)

where s > 1 and Lis(z) = ∑
t�1 t−szt denotes the Polyloga-

rithm function. This distribution is considered in Sec. V. For
the zeta distribution, only the (factorial) moments up to order
s − 1 are finite. In the numerical calculations presented in
Sec. V, the polylogarithm function must be evaluated for real
parameters s and complex arguments z; suitable numerical
libraries are available for this purpose [51].

For the analysis in Sec. V, the discrete-time Fourier trans-
form (DTFT) of the FPT distribution f̃ (ω) is required. This
quantity is readily obtained from the generating function
f̂ (z) of the FPT distribution via f̃ (ω) = ∑

t�0 f (t )e−iωt =
f̂ (e−iω ). Moreover, sampling the DTFT at regularly spaced
points k = 0, . . . , N − 1 around the unit circle and applying
the inverse discrete-time Fourier transform provides a method
to numerically invert the generating function and recover the
FPT distribution [52,53]. Figure 2 shows representative FPT
distributions and their corresponding DTFTs for various pa-
rameter sets.

Each contour in Figs. 2(e)–2(h) encloses the origin and
loops exactly L times, reflecting the depth of the tree. This
can be understood by a continuity argument. For a tree of
depth L with walkers starting from the leaves, the earliest
possible arrival time is t = L and the generating function of the
FPT distribution f̂L(z; L) has its lowest nonzero contribution
at order zL. Hence, for small radii ρ 	 1 the image of the
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FIG. 2. First-passage-time distributions and their Fourier transforms for random walks on regular trees without waiting. (a)–(d) Examples
of the FPT distribution fL (t ; L) from the leaves to the root of a regular Cayley tree, for a random walker without waiting times. fL (t ; L) is
nonzero for t � L and only for even or odd t depending on L. (e)–(h) Fourier transforms f̃L (ω; L) of the corresponding FPT distributions [from
panels (a)–(d)], shown in the complex plane. Each contour encloses the origin and loops exactly L times. For even values of L, the contour is
traced twice. The parameters L and p used for each column are indicated at the top.

circle |z| = ρ under f̂L(z; L) is approximately parameterized
by s 
→ e−iLs, which winds L times around the origin as s
varies from 0 to 2π . By continuity, increasing ρ up to 1 leaves
this winding number unchanged, which explains why the
contours—corresponding to images of the unit circle under
f̂L(z; L)—in Figs. 2(e)–2(h) loop exactly L times.

III. RANDOM WALK WITHOUT WAITING

With the theoretical groundwork established, we now turn
to the task of inferring structural properties of Cayley trees
from FPT statistics. We begin with the case of a random
walk without waiting times. In this setting, the phase space
of the Cayley tree is fully determined by two parameters:
the tree depth L, and the bias probability p, which may
implicitly encode the coordination number z. Consequently,
the FPT distribution and its moments depend only on L and p.
This implies that, in principle, two independent observables
derived from FPT statistics should suffice to uniquely identify
these parameters.

In Fig. 3(a), the phase diagram of the first factorial mo-
ment 〈t1L〉 is shown, and in Fig. 3(c), the normalized second

factorial moment 〈t2
L〉

〈t1
L〉2

is plotted for random walkers start-

ing from the leaves. Across most of the phase space, the

contour lines of constant 〈t1L〉 and 〈t2
L〉

〈t1
L〉2

intersect at a unique

point, which identifies the corresponding parameters p and
L; cf. Fig. 3(e). The only exception occurs in the regime

of low p and high L where 〈t2
L〉

〈t1
L〉2

saturates. This ambiguity

can be resolved by additionally considering the first FPTFM
〈t11〉. Including another initial condition introduces additional
overhead in measuring the factorial moments, as it requires

conducting an extra experiment for each added initial condi-
tion. The relation 〈t1L,L〉 = 〈t11,L〉 + 〈t1L−1,L−1〉 [which follows
from Eq. (10)] links the first FPTFM from the level below
the root to those from the leaves in trees of depths L − 1 and
L as denoted by the second index. Moreover, if particles are
allowed to leave the root, then 〈t11〉 corresponds to the mean
return time to the root minus the mean time it takes to leave
it. Together, these relations offer a way to avoid conducting
a second experiment, provided it is possible to determine
whether a particle has already reached the root or the level
below. This could be achieved, for instance, by marking or
using distinguishable particles.

Figures 3(b) and 3(d) show phase diagrams of the first
FPTFM 〈t11〉 (starting from the level below the root) and the

ratio 〈t1
1〉

〈t1
L〉 . When plotting the contour lines of 〈t11〉 and 〈t1

1〉
〈t1

L〉 in

a single coordinate system, as in Fig. 3(f), they intersect at

unique points—even in the regime where 〈t2
L〉

〈t1
L〉2

saturates. Since

〈t11〉 and 〈t1L〉 exhibit similar dependence on the parameters,
they can be used interchangeably in the preceding inference
framework. This demonstrates that, depending on the tree
depth L and the bias probability p, either the first two FPTFMs
from the same starting point or the first FPTFMs from two
different initial conditions suffice to uniquely determine p
and L. We note that Fig. 9 in the Appendix also presents
the same analysis as Fig. 3, but restricted to the regime
p� 0.5, allowing the use of contour levels with narrower
spacing.

A transition in the behavior of the factorial moments occurs
at the bias value p= 0.5 for deep trees. For example, the first
factorial moment starting from the deepest level (correspond-
ing to the mean escape time from regular trees of depth L
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FIG. 3. First-passage-time factorial moments as functions of tree
depth L and upward hopping bias p. (a), (b) Logarithm of the first
factorial moment for walkers starting from the leaf nodes [log10〈t1L〉,
panel (a)] or starting one level below the root [log10〈t11〉, panel (b)].
Lines are contours of constant log10〈t1L〉 or log10〈t11〉, respectively.

(c) Normalized second factorial moment
〈t2

L 〉
〈t1

L 〉2
for walkers starting

from the leaves. This quantity saturates at large L and small p,
limiting its utility for parameter inference in that regime. (d) Ratio
〈tL

1 〉
〈t1

L 〉 , comparing first factorial moments for walkers starting just below

the root versus from the leaves. This ratio becomes independent
of L for small p and sufficiently deep trees, making it a robust
alternative for inferring tree parameters when the normalized second
moment is saturated. (e), (f) Contour plots showing combinations of
moment-based observables. In panel (e), contours of log10〈t1L〉 and
〈t2

L 〉
〈t1

L 〉2
intersect at a unique point corresponding to the true values of

L and p. Similarly, panel (f) shows that intersections of log10〈t11〉
and

〈tL
1 〉

〈t1
L 〉 contours provide an alternative route to identify the tree

parameters.

studied in Ref. [40]) can be written as

〈
t
1
L

〉 = L

2p − 1
+ 1 − p

(2p − 1)2

[(
1 − p

p

)L

− 1

]
. (13)

For deep trees, this expression exhibits two distinct regimes
depending on the bias parameter p: linear scaling with L when

p> 1
2 , and exponential growth with L when p< 1

2 :

〈
t
1
L

〉 L�1�
⎧⎨
⎩

L
2p−1 , p > 1

2 ,

1−p
(2p−1)2

( 1−p
p

)L
, p < 1

2 .
(14)

Thus, p= 0.5 marks the crossover point between qualitatively
different scaling behaviors. Owing to the recurrence rela-
tion (4), it is natural to expect that higher factorial moments
display a similar crossover at the same bias value.

IV. RANDOM WALK WITH WAITING

We now turn to the case in which the random walker
experiences waiting times. These delays could be caused by
traps along the links between nodes, but even in the absence
of such traps, geometric waiting can serve as a simple way
to model diffusive travel time between nodes. While we treat
the process as discrete hopping, we emphasize that—with an
appropriate waiting-time distribution w(t )—all results remain
valid if the walker moves continuously along the links and the
process of the last visited node is considered.

A priori, the kth FPTFM of a walk with waiting 〈t k〉, as
given by Eq. (7), depends on 2k quantities: the first k FPTFMs
of the walk without waiting 〈tk〉, and the first k moments of the
waiting-time distribution 〈τ k

w〉. If the waiting-time moments
are known (as also assumed in Ref. [34]), they can be sub-
stituted into Eq. (7), resulting in a triangular linear system
of equations. Solving this system for the first two FPTFMs
without waiting, 〈t1〉 and 〈t2〉, is straightforward, thereby re-
ducing the problem to the previously treated case without
waiting.

If the moments of the waiting-time distribution are un-
known, the number of unknowns must be reduced by further
assumptions. First, since the FPT distribution of the walk
without waiting depends only on the two parameters p and L,
only two of its factorial moments 〈tk〉 are independent. This
limits the number of unknowns in Eq. (7) to min(2, k) + k. To
reduce the number of unknowns further—ideally to match the
number of equations—one must assume or know a specific
parametric form of the waiting-time distribution w(t ). If w(t )
depends on � parameters, then only � of its factorial moments
〈τ k

w〉 are independent. Therefore, a necessary condition for
solvability is that 2 + �� k. These, however, are necessary
but not sufficient conditions. As it is demonstrated by the
example of a spontaneously moving walker in the follow-
ing subsection, measuring first-passage moments beyond the
second may still be insufficient to uniquely determine all
parameters. This ambiguity can be resolved by additionally
measuring the first moment of the FPT for a different initial
condition.

Alternatively, following the approach of Ref. [34], instead
of measuring higher-order FPTFMs, one can match the num-
ber of unknowns by measuring lower-order factorial moments
under several distinct waiting scenarios. Let n be the number
of different parameter sets considered for the waiting-time dis-
tribution. Then the inequality min(2, k) + n min(�, k) � nk
must be satisfied. It is easy to see that this inequality can only
hold when k > �, i.e., more moments must be measured than
there are independent moments of the waiting-time distribu-
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FIG. 4. Isosurfaces of constant first-passage quantities in the (L, p, q) phase space. Each surface corresponds to a fixed value of a given
FPT observable, with color indicating the specific isovalue. (a) Logarithm of the first factorial moment, log10(〈t1

L 〉). As predicted by Eq. (7), all

isosurfaces are parallel, reflecting the linear dependence on the first factorial moment of the waiting time 〈τ 1
w〉 = 1

q . (b) Ratio
〈t1

1 〉
〈t1

L 〉 , comparing

first factorial moments for walkers starting near the root versus from the leaves. (c) Normalized second factorial moment,
〈t2

L 〉
〈t1

L 〉2
. (d) Normalized

third factorial moment,
〈t3

L 〉
〈t1

L 〉3
. Panels (c) and (d) show that the surfaces quickly lose their dependence on the waiting probability q at low values

of q, making them less informative in that regime. Additionally, the similarity in behavior suggests that factorial moments beyond the second
contribute little new information for structural inference.

tion. Since one can assume that the waiting-time distribution
depends on at least one parameter, this implies that k � 2 and
the inequality reduces to n(k − �) � 2. A detailed exploration
of this idea lies beyond the scope of this paper.

Example: Geometric waiting—Higher moments do not reveal
additional information

In this subsection, the determination of structural parame-
ters of the tree from the factorial moments is exemplified using
one of the simplest cases: a walker that moves spontaneously.
That is, at each discrete-time step, the walker takes a step
with probability q or remains at the current node with prob-
ability 1 − q. The resulting waiting times are geometrically
distributed as defined in Eq. (11), and their factorial moments
are given by 〈τ n

w〉= n! (1−q)n−1

qn = n! (1 − q)n−1〈τ 1
w〉n. This sys-

tem closely resembles the one studied in Refs. [14,34], where
the total probability of leaving the deepest level was also
treated as a tunable parameter.

Figure 4 shows isosurfaces of the factorial moments in
the three-dimensional phase space spanned by the structural
parameters p and L and the moving probability q. The isosur-
faces of the logarithm of the first FPTFM starting from the
deepest level 〈t1

L〉, shown in Fig. 4(a), are all parallel, as pre-
dicted by Eq. (7). Furthermore, for a fixed value of 〈t1

L〉 (e.g.,
obtained from a measurement), the function log10(q(p, L)) is
proportional to the first FPTFM without waiting, 〈t1L〉(p, L).
This suggests that in Ref. [14], the intersection of contour
lines of the MFPT measured at different laziness levels (i.e.,

moving probabilities) at a unique (p, L) pair is solely due to
changes in the probability of leaving the deepest level. In
that study, these changes were not proportional to changes
in the moving probability at all other levels. It is also worth
noting that log10(q) ∝ − log10〈τ 1

w〉, so a qualitatively similar
plot would be obtained for any waiting-time distribution if
log10〈τ 1

w〉 is used as the vertical axis.
In Fig. 4(b), isosurfaces of the ratio of the first FPTFMs

starting from the level below the root and from the deepest
level are shown. These isosurfaces are aligned parallel to the
log10(q) axis, as predicted by Eq. (7). This behavior arises
because, in the ratio, the contributions from the waiting-time
distribution cancel out. As a result, the ratio depends solely
on the structural parameters of the tree and not on the spe-
cific form of the waiting-time distribution. This cancellation
property holds generally, regardless of the particular choice
of w(t ).

From Figs. 4(c) and 4(d), which display the second and
third normalized FPTFMs, it can be observed that these quan-
tities lose their dependence on the stepping probability q as
q → 0, i.e., as the mean waiting time 〈τ 1

w〉→ ∞. This behavior
can be generalized using Eq. (7), which shows that it holds for
all higher normalized factorial moments and that

〈tm〉
〈t1〉m

q→0−−→
∑
b∈Bm

Mm
b

〈t‖b‖1〉
〈t1〉m

, (15)

with relative deviation from the limit bounded by 1 − (1 −
q)m. As 〈tm〉

〈t1〉m converges to a weighted sum of the FPTFMs

〈tk〉 of the walk without waiting, any information about the
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FIG. 5. Isosurfaces of constant first-passage quantities in the
(L, p, q) phase space. The intersection point of the three surfaces
identifies the parameters L, p, and q. This provides a 3D analog to
the contour plots shown in Figs. 3(e) and 3(f). (a) Isosurfaces for the
logarithm of the first factorial moment log10(〈t1

L 〉) (blue), the second

normalized factorial moment
〈t2

L 〉
〈t1

L 〉2
(red), and the third normalized

factorial moment
〈t3

L 〉
〈t1

L 〉3
(yellow). The values these quantities attain

belong to a system with p= 0.6, L = 10, and q = 0.01. As the second
and third normalized moments produce nearly overlapping surfaces,
measuring these three quantities does not allow for a unique recon-
struction of the tree parameters in this regime. (b)–(d) Isosurfaces for

log10(〈t1
L 〉) (blue),

〈t2
L 〉

〈t1
L 〉2

(red), and the ratio
〈t1

1 〉
〈t1

L 〉 (yellow). The values

these quantities attain belong to a system with L = 10, q = 0.01, and
(b) p= 0.4, (c) p= 0.5, and (d) p= 0.6. In panels (b)–(d), the three
surfaces intersect at a single point, confirming that the combination
of these observables enables unambiguous determination of L, p,
and q.

waiting-time distribution is effectively lost. This renders nor-
malized factorial moments beyond the second ineffective for
inferring properties of the waiting dynamics. The details of
this limiting behavior are provided in the Appendix.

This circumstance is illustrated in Fig. 5(a), where the

isosurfaces of log10〈t1〉, 〈t2
L 〉

〈t1
L 〉2

, and 〈t3
L 〉

〈t1
L 〉3

are shown for the values

they attain in a system with p= 0.6, L = 10, and q = 0.01.

The isosurfaces of 〈t2
L 〉

〈t1
L 〉2

and 〈t3
L 〉

〈t1
L 〉3

nearly coincide; thus, if only

these quantities are available, the parameters of the under-
lying system cannot be uniquely recovered. However, such
measurements do constrain the system to a one-dimensional
manifold in the (p, L, q) space given by the intersection of the

log10〈t1〉 isosurface with the 〈t2
L 〉

〈t1
L 〉2

or 〈t3
L 〉

〈t1
L 〉3

isosurface.

Since the factorial moments beyond the second fail to
provide additional information, other quantities—such as the

ratio 〈t1
1 〉

〈t1
L 〉 , representing the first FPTFMs starting from the

highest and deepest levels—must be used to uniquely recover
the parameters p and L (and q). The same limitations dis-
cussed in Sec. III for the case without waiting also apply here.

Figures 5(b) to 5(d) show the isosurfaces of log10〈t1
L〉, 〈t2

L 〉
〈t1

L 〉2
,

and 〈t1
1 〉

〈t1
L 〉 , each plotted for the values these quantities attain

in systems with L = 10, q = 0.01, and p= 0.4, p= 0.5, and
p= 0.6, respectively. In all cases, the three isosurfaces inter-
sect at a single point—corresponding exactly to the parameter
set from which the values were derived. This demonstrates
that measuring these three quantities suffices to uniquely iden-
tify the underlying tree parameters.

We emphasize that the loss of informativeness of higher
moments is not limited to cases where the waiting-time dis-
tribution itself has diverging higher moments. For example,
in the geometric distribution considered in this section, all
factorial moments are finite, yet the higher moments of the
FPT distribution become noninformative when q is small.
The q-threshold at which this occurs increases for larger L
or smaller p.

V. FOURIER ANALYSIS/EMPIRICAL CHARACTERISTIC
FUNCTION ESTIMATION

As laid out in the previous section, in the presence of
waiting, measurements of the FPTFMs for a single initial
condition are not sufficient to uniquely determine all param-
eters of the random motion. The goal of this section is to
overcome this shortcoming by employing the Fourier trans-
form of the measured FPT distribution—also known as the
empirical characteristic function [54]. This approach remains
viable even in cases involving fat-tailed waiting-time distri-
butions, where moments of sufficient order do not exist. In
fact, the method of fitting the characteristic function has been
known for decades and was originally introduced to estimate
the parameters of stable distributions [55–58].

To assess the applicability of this approach, first-passage-
time samples are generated using Monte Carlo simulations.
The normalized histogram of the simulated FPTs is then
Fourier transformed using the fast Fourier transform (FFT)
algorithm, yielding estimates of the Fourier transform f̆ (ωk )
at frequencies ωk = 2πk

tmax+1 , where k ∈ {0, 1, . . . , tmax}, and
tmax denotes the maximum FPT observed in the sam-
ple. An analytical expression for the Fourier transform
f̃L(ω) is available through the generating function relation
f̃L(ω) = ∑

t�0 fL(t )e−iωt = f̂L(e−iω ), as provided in Eq. (9).
The objective is to determine the parameters of the random
motion by minimizing the mean-squared deviation

R2 = 1

|	|
∑
ω∈	

| f̃ (ω) − f̆ (ω)|2, (16)

where 	 is the set of frequency modes included in the com-
parison. This metric quantifies the discrepancy between the
analytical and empirical Fourier transforms.

Since the histogram approximates the FPT distribution
with finite accuracy—specifically, the number of observed
samples at time t follows a Poisson distribution with mean
N f (t ), where N is the total number of samples—the estimated
Fourier transform f̆ is subject to statistical fluctuations and
is not reliable for all frequency modes. A straightforward
calculation shows that 〈 f̆ (ω)〉= f̃ (ω), and the variance satis-
fies 〈( f̆ (ω) − f̃ (ω))2〉� 1

N . This implies that indiscriminately
including all Fourier modes in the error metric R2 is not
advisable, as many may be dominated by noise. To mitigate
this, the frequency set 	 used in the minimization should be
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FIG. 6. Fourier mode analysis of FPT distributions obtained
from Monte Carlo simulations for geometrically distributed wait-
ing times. (a) Absolute values of the Fourier modes of the FPT
distribution, computed from N = 106 trajectories. The horizontal
line indicates the threshold for selecting significant modes used in
the comparison with analytical predictions. (b)–(d) Phase diagrams
showing the mean-squared deviation R2 between the measured and
analytical Fourier modes, as a function of model parameters. White
lines represent contours of constant R2. Default parameters are
p= 0.6, L = 7, and q = 2−4, unless otherwise varied. (e)–(h) Same
analysis as in panels (a)–(d), but using simulations with p= 0.4,
L = 10, and q = 2−4. In both cases, R2 exhibits a clear global mini-
mum at the true parameter values used for the simulations, indicating
the capacity of the method to reliably recover the underlying model.
Minor local minima are also present but are comparatively shallow.

restricted to modes with sufficient signal strength:

	 = {ωk; k ∈ {0, 1, . . . , tmax} and | f̆ (ωk )| > ε}, (17)

where ε > 1√
N

is a threshold chosen to exclude noisy modes.
This approach ensures that the fit prioritizes reliable frequency
components [see panels (a) and (e) of Figs. 6 and 7].

FIG. 7. Fourier mode analysis of FPT distributions obtained
from Monte Carlo simulations for power-law waiting-time distri-
butions. (a) Absolute values of the Fourier modes of the FPT
distribution, computed from N = 107 trajectories. The horizontal
line indicates the threshold for selecting significant modes used in
the comparison with analytical predictions. (b)–(d) Phase diagrams
showing the mean-squared deviation R2 between the measured and
analytical Fourier modes, as a function of model parameters. White
lines represent contours of constant R2. Default parameters are
p= 0.6, L = 7, and s = 1.8, unless otherwise varied. (e)–(h) Same
analysis as in panels (a)–(d), but using simulations with p= 0.4,
L = 10, and s = 3.5. In both cases, R2 exhibits a clear global mini-
mum at the true parameter values used for the simulations, indicating
the capacity of the method to reliably recover the underlying model.
Minor local minima are also present but are comparatively shallow.

Figures 6(b)–6(d) and 6(f)–6(g) show the mean quadratic
deviation R2 computed from numerical data for two parameter
sets of a walk with geometrically distributed waiting times.
Orthogonal slices through the corresponding point in param-
eter space reveal that R2 exhibits a sharp global minimum
at the true parameter values. However, several local minima
also appear, emphasizing the need for careful optimization
when minimizing R2 to estimate model parameters. This issue
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FIG. 8. Relative estimation errors for the model parameters p, L, and q as a function of true values of p and L, for different levels of
moving probability q. Each row corresponds to a different value of q: q = 2−1 (top), q = 2−4 (middle), and q = 2−7 (bottom). Columns show
the relative deviation for: the upward bias p (first column), the tree depth L (second column), and the trap probability q (third column). Contour
lines indicate levels of relative deviation: For δr p, contours are at 0.1, for δrL contours are at 0.2, and for δrq contours are at 0.2 and 1.0.
Regions with deviations exceeding 0.25 (for p) and 0.5 (for L and q) are shaded in the lightest color. Overall, p is reliably estimated across the
parameter space. However, estimation accuracy for L and q decreases significantly when p< 0.5, particularly for larger tree depths and smaller
values of q. A strong correlation is observed between the errors in L and q, suggesting interdependence in their estimation.

becomes more pronounced for bias values p< 0.5 and larger
tree depths L. Moreover, regardless of whether p< 0.5 or
p> 0.5, the minimum in the q-L section tends to be elongated
along one direction, indicating that variations in q and L can
lead to similar FPT distributions.

Figure 7 presents plots analogous to Fig. 6, but for
a random walk with power-law distributed waiting times,
w(t ) ∝ 1

t s . Panels (a)–(d) correspond to s = 1.8, where even the
mean waiting time does not exist. Panels (e)–(h) show results
for s = 3.5, where only the third and higher moments diverge.
Despite the heavy tails, the mean-squared deviation R2 still
exhibits a sharp global minimum at the true parameter values,
though several local minima are also present. In this case, the
waiting-time exponent s and the bias parameter p can compen-
sate for each other, leading to similar FPT distributions when
varied jointly.

The behavior of the mean quadratic deviation R2 shown
in Figs. 6 and 7 is promising, suggesting that the global
minimum corresponding to the true parameters of the walk
can indeed be found using an optimization algorithm. As a
proof of concept, R2 was minimized for a dataset of 7056
precomputed histograms of FPTs, covering the parameter
ranges 0.4 � p� 0.6, 5 � L � 20, and 2−10 � q � 1. The esti-
mated parameters were then compared to the true parameters
used to generate each histogram. For this task, differential

evolution was employed—an optimization algorithm that does
not rely on gradient information and is well-suited to finding
global minima in the presence of local minima [59]. This
choice was arbitrary; other optimization strategies may also
perform well or even better in this context.

Figure 8 shows the relative deviations of the estimated
parameters from their true values on p-L sections of the phase
space for different values of the moving probability q. The
results indicate that the bias probability p can be estimated
with high accuracy, with relative deviations typically below
5%. In contrast, accurate estimation of q and L is more
sensitive. Low deviations in these parameters are generally
achieved only when p> 0.5 or when the depth L is small. For
p< 0.5 and sufficiently large L, the relative deviations in both
L and q become significant and tend to increase further as q
decreases.

We note that the empirical characteristic function approach
is indeed a reliable tool for parameter estimation in cases
where the distribution is only described through its charac-
teristic function [58]. Since, for any waiting-time distribution
with a known characteristic function, the characteristic func-
tion of the corresponding FPT distribution can be derived
analytically, we expect the empirical characteristic function
approach to be in principle generalizable beyond the geomet-
ric and power-law cases considered here.
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VI. CONCLUSION AND OUTLOOK

We developed a framework for inferring the structure of
nonuniform finite Cayley trees from first-passage-time statis-
tics. We showed that the first two factorial moments of FPTs
are sufficient to uniquely determine the depth and geometric
bias of the tree in the absence of trapping effects. When traps
or sticky regions are present, we demonstrated that the gener-
ating function of the FPT distribution is the composition of the
generating functions of the FPT distribution without waiting
and the waiting-time distribution. This decomposition leads to
a nonlinear system of equations connecting factorial moments
across different scenarios. We further explored strategies to
resolve this inverse problem under trapping conditions. In
particular, we found that varying the initial position of the
random walker or analyzing the Fourier transform of the FPT
distribution allows successful inference even for power-law
waiting-time distributions, where traditional moment-based
approaches fail due to divergence of higher-order moments.

In the present work, we considered the case of absorbing
site being located at the root. However, more generally, the
target can be placed at an arbitrary node. To discuss the
possibility of handling such scenarios, we note that previous
numerical studies in the context of neuronal dendrites [14,34]
have shown that for moderate deviations from a perfectly
regular Cayley tree, the MFPT deviates only mildly from the
effective value obtained for the regular case. This suggests
that the inference framework should remain reasonably robust
even when the absorbing site is not located at the root. When
the target is placed at another node, two cases for the bias
of the motion can be distinguished: (i) Bias directed toward
the target site: In this case, the tree can be reordered so that
the target becomes the new root. This results in an irregular
structure, to which the considerations above apply. (ii) Bias
directed toward the root: Here the situation is more involved.
Since the level of the particle alone is insufficient to determine
arrival at the target, the process can no longer be mapped onto
a simple 1D walk. However, the structure can still be decom-
posed into a full (z− 1)-ary child tree below the target (z being
the coordination number) and segments between the target and
the root, connected to (z− 1)-ary subtrees of varying depths.
These subtrees can be considered as traps, allowing to map
the structure between target and the root onto a 1D random
walk with site-dependent waiting probabilities. Such a de-
composition might allow for the formulation of renewal-type
equations for the FPT distribution to an arbitrary target site.

Our analysis revealed that the empirical characteristic func-
tion estimation does not always provide accurate estimates
for the parameters L and q across the full parameter space.
To mitigate this, we selected a very low threshold value for
significant modes, thereby retaining more information and re-
ducing the regions where estimation fails. Nevertheless, as an
interesting avenue for future research, further work is needed
to better understand which modes are essential for obtaining
robust estimates of p, L, and q.

Our results offer new tools for structural inference across a
broad class of branched systems—from biological networks
such as bronchial, vascular, and neuronal dendritic trees to
synthetic and engineered systems like communication, utility,
and transportation networks. The proposed method enables

noninvasive characterization of network structures in scenar-
ios where direct imaging or tracer tracking is challenging
or infeasible. While our study focused on treelike networks,
the underlying ideas are extendable to more complex archi-
tectures, including graphs with loops or hybrid tree-graph
topologies. Future extensions may incorporate irregular or
weighted networks, as well as scenarios involving noisy or
incomplete first-passage time data. These directions natu-
rally lend themselves to integration with statistical inference
techniques or machine learning methods, broadening the
applicability of our framework. By linking random walk dy-
namics with inverse structural inference, our approach adds to
the growing repertoire of tools for uncovering hidden features
of complex systems through stochastic observations.
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APPENDIX: DERIVATION OF EQ. (15)
AND THE ERROR BOUND

In this Appendix, we derive Eqs. (7) and (15), as well as
the estimate for the relative deviation.

Equation (7) expresses the FPTFMs of a random walk with
waiting in terms of the FPTFMs of the walk without waiting
〈tk〉 and the factorial moments of the waiting-time distribution
〈τ k

w〉. It follows from applying Eq. (3) to Eq. (6). For the nth
FPTFM 〈t n〉, one requires the nth derivative of a composite
function. Using the notation of Eq. (7), this derivative can be
written as

dn

dzn
f̂(ŵ(z)) =

∑
b∈Bn

Mn
b f̂

(‖b‖1 )(ŵ(z))
n∏

j=1

(
ŵ( j)(z)

j!

)b j

,

where the superscript in parenthesis denotes higher deriva-
tives, which is a standard form of Faà di Bruno’s formula;
see, e.g., Ref. [41]. Evaluating this expression at z = 1 gives
〈t n〉. Since ŵ(1) = 1 by normalization, we have f̂(k)(1) = 〈tk〉
and ŵ(k) = 〈τ k

w〉, which directly yields Eq. (7).
Next, we derive Eq. (15). By applying Eq. (7) to both the

numerator and denominator, and using 〈τ 1
w〉m = ∏m

k=1〈τ 1
w〉kbk

in the sum, the normalized FPTFM with waiting can be writ-
ten, using the notation introduced in Eq. (7), as

〈tm〉
〈t1〉m

=
∑
b∈Bm

Mm
b

〈t‖b‖1〉
〈t1〉m

∏m
k=1

( 〈τ k
w〉

k!

)bk〈
τ

1
w

〉
m

=
∑
b∈Bm

Mm
b

〈t‖b‖1〉
〈t1〉m

m∏
k=1

( 〈
τ

k
w

〉
k!

〈
τ

1
w

〉
k

)bk

, (A1)

independent of the chosen waiting-time distribution.
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FIG. 9. Same analysis as in Fig. 3, but restricted to the regime
p� 0.5, with contour levels adjusted to match the narrower range of
deviations.

Recalling that for spontaneous stepping the normal-
ized factorial moments of the waiting-time distribution

are given by 〈τ k
w〉

〈τ 1
w〉k

= k!(1 − q)k−1, the expression simplifies

further to

〈tm〉
〈t1〉m

=
∑
b∈Bm

Mm
b

〈t‖b‖1〉
〈t1〉m

(1 − q)m

(1 − q)‖b‖1⎧⎨
⎩� ∑

b∈Bm
Mm

b
〈t‖b‖1 〉
〈t1〉m ,

� (1 − q)m
∑

b∈Bm
Mm

b
〈t‖b‖1 〉
〈t1〉m .

(A2)

For the “�” part of Eq. (A2), we use that ‖b‖1 � m, which
implies that every summand is positive and bounded above

by Mm
b

〈t‖b‖1 〉
〈t1〉m . For the “�” part, observe that 0 < 1 − q � 1, so

for any exponent ν ∈ N, we have 1 � 1
(1−q)ν < ∞. Therefore,

omitting the factor 1
(1−q)‖b‖1

from each summand decreases its
value or leaves it unchanged, which justifies the lower bound.
From Eq. (A2) it follows that

〈tm〉
〈t1〉m

q→0−−→
∑
b∈Bm

Mm
b

〈t‖b‖1〉
〈t1〉m

,

and the relative deviation from the limit is given by

1 − (1 − q)m q	1∼ mq.
As 〈t1〉→∞, the normalized factorial moments 〈tm〉

〈t1〉m re-
main bounded [cf. Fig. 3 and Figs. 4(c) and 4(d)], implying
that 〈tm〉 ∼ 〈t1〉m in this limit. Since ‖b‖1 � m for all b ∈ Bm,
it follows that

lim
q→0

〈tm〉
〈t1〉m

〈t1〉�1∼ 〈tm〉
〈t1〉m

in the small q limit. This explains why in Figs. 4(b) and 4(d)
the isosurfaces appear nearly invariant with respect to q when
p< 0.5.
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