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ABSTRACT
The aim of this study was to validate the diagnostic potential of four previously identified miRNAs in two independent 
cohorts and to develop accurate classification models to predict invasiveness of bladder cancer. Furthermore, molecular 
subtypes were investigated. The miRNAs were isolated from pTa low-grade (lg) (n = 113), pT1 high-grade (hg) (n = 133) and 
muscle-invasive bladder cancer (MIBC) (n = 136) tumour tissue samples (FFPE) after either transurethral resection of a blad-
der tumour (TURB) or cystectomy (CYS). In both cohorts, the expression of miR-138-5p and miR-200a-3p was significantly 
lower, and the expression of miR-146b-5p and miR-155-5p was significantly higher in MIBC compared to pTa lg. A k-nearest 
neighbours (KNN) classifier trained to distinguish pTa lg from MIBC based on three miRNAs achieved an accuracy of 
0.94. The accuracy remained at 0.91 when the classifier was applied exclusively to the TURB samples. To guarantee reliable 
predictions, a conformal prediction approach was applied to the KNN model, which eliminated all misclassifications on the 
test cohort. pT1 hg samples were classified as MIBC in 32% of cases using the KNN model. miR-146b-5p, miR-155-5p and 
miR-200a-3p expressions are significantly associated with particular molecular subtypes. In conclusion, we confirmed that 
the four miRNAs significantly distinguish MIBC from NMIBC. A classification model based on three miRNAs was able to 
accurately classify the phenotype of invasive tumors. This could potentially support the histopathological diagnosis in blad-
der cancer and therefore, the clinical decision between performing a radical cystectomy and pursuing bladder-conserving 
strategies, especially in pT1 hg tumors.

1   |   Introduction

In contrast to non-muscle-invasive bladder cancer (NMIBC), 
muscle-invasive bladder cancer (MIBC) is an aggressive tu-
mour disease with a higher metastatic risk and worse outcomes. 

Therefore, radical cystectomy is the standard of care in MIBC, 
whereas local tumour resection is sufficient in NMIBC. In this 
context, therapy decisions for pT1G3 (pT1 high-grade, hg) tu-
mours are still challenging. pT1 hg comprises a problematic 
subgroup of tumours between the two main groups (NMIBC 
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and MIBC). On the one hand, it has not invaded the muscle 
layer and is therefore accessible for endoscopic transurethral 
resection. On the other hand, at least a substantial part of these 
tumours has the ability for muscle invasion and early metas-
tases. Decision-making for or against cystectomy is currently 
based on parameters such as multifocality, recurrence rate 
(with or without instillation therapy) and assessment of the tu-
mour by the surgeon, that is, at least in part, a ‘subjective’ eval-
uation. Until now, it has been almost impossible to define their 
invasive potential and, therefore, the risk of advanced disease 
of a pT1 hg tumour, although several efforts have been under-
taken, including a histopathological substaging approach [1] 
and molecular subtyping based on a large-scale gene expres-
sion analysis [2]. However, while these markers allow for a 
certain risk assessment, they are either hard to reproduce and 
standardise or are unsuitable for daily routine practice.

Hence, biomarkers that can easily characterise the invasive 
potential of tumours at a molecular level using standard lab-
oratory methods with low turnover times could resolve these 
issues. In this regard, miRNAs represent a new and robust 
class of biomarkers that can be investigated in all sample 
types, including paraffin-embedded tissues and body fluids. 
They are functionally involved in many signalling pathways 
that affect both physiological and pathological processes, such 
as tumorigenesis.

Our previous study identified four miRNAs (miR-146b-5p; 
miR-155-5p; miR-138-5p; and miR-200a-3p) that are differ-
entially expressed between MIBC and NMIBC [3]. The major 
aim of the present study was to verify the diagnostic potential 
of these four miRNAs based on two independent cohorts and 
to develop a miRNA signature defining muscle invasiveness 
that was further applied to pT1 hg tumours. Firstly, we con-
firmed the previously observed expression differences using 
the two new cohorts. Secondly, we developed highly accu-
rate classification models that could distinguish MIBC from 
pTa lg tumours using the investigated miRNAs. Additionally, 
we applied conformal prediction (CP) to our models. CP is a 
machine learning (ML) framework that guarantees that pre-
dictions are correct in a user-defined percentage (here: 90% 
of cases) by eliminating incorrect model predictions, making 
the models more reliable and trustworthy for clinical applica-
tions. CP further improved our already highly accurate mod-
els by eliminating all remaining misclassifications. Lastly, the 
molecular subtypes were defined and correlated to miRNA 
expressions.

2   |   Materials and Methods

Two independent cohorts of selected MIBC and pTa low-grade 
(pTa lg) cases were investigated retrospectively (cohort 1: 
Saarland University Hospital; cohort 2: Erlangen University 
Hospital) (Table S1). Informed consent was obtained from in-
dividuals, or data were analysed anonymously. MIBC tumour 
samples were obtained from either transurethral resection of 
bladder tumour (TURB) or cystectomy (CYS). In addition, 120 
pT1 hg tumours from TURB were included. Informed con-
sent was obtained from individuals, or data were analysed 
anonymously.

2.1   |   MiRNA Quantification

Tumour areas were dissected from five to 10 FFPE sections 
(7–10 μm). miRNA was isolated using the miRNeasy FFPE kit 
(Qiagen), according to the manufacturer's protocol. We per-
formed quantitative real-time polymerase chain reaction (qRT-
PCR) using TaqMan MicroRNA Reverse Transcription Kits 
(Applied Biosystems), followed by a polymerase chain reaction 
(PCR) step using specific TaqMan miRNA primers for miR-
138-5p, miR-146b-5p, miR-155-5p and miR-200a-3p as well as 
miR-191-5p, miR-361-5p, and RNU48 as endogenous controls 
to normalise the miRNA input, and TaqMan Fast Advanced 
Master Mix (Applied Biosystems), according to the manufactur-
er's protocol. The qRT-PCR was carried out in triplicate using 
LightCycler 480 (Roche Diagnostics Deutschland GmbH). Only 
miRNAs with a Ct < 35 were considered to be expressed. A p-
value < 0.05 was regarded as the significance threshold for up-
regulated or downregulated miRNA.

Statistical analyses were performed using GraphPad Prism soft-
ware, Mann–Whitney and Kruskal–Wallis tests, and receiver 
operating characteristic (ROC) curves.

2.2   |   MIBC vs. pTa lg Classification

To distinguish MIBC from pTa lg, we trained classification mod-
els for each subset of the four investigated miRNAs using five 
ML algorithms: boosting trees, k-nearest neighbours, random 
forests, support vector machines and vanilla neural networks. 
Two-thirds of the larger cohort were used for training, and the 
smaller cohort was used for testing (the remaining third of the 
larger cohort was used to perform CP as described below). A 
fivefold cross-validation was performed on the training data to 
find the hyperparameters that maximised the area under the 
ROC (receiver operating characteristic) curve for each model. 
All ML models were implemented in R using the packages ada 
[4], class [5], random-Forest [6], kernlab [7], and nnet [5]. Details 
are provided in Supplementary Table S2.

For a given tumour sample, each ML model computes the proba-
bilities of the sample belonging to the MIBC or pTa lg class. Both 
probabilities sum to 1, and the sample is predicted to belong to 
the class with the higher value. These probabilities can also be 
interpreted as a measure of how confident the model is in its 
prediction for the given sample: If both probabilities are close 
to 0.5, the classification is less certain than if one probability is 
considerably larger.

While class probabilities help to estimate model certainty, 
a guarantee of the correctness of individual predictions is 
strongly desirable, especially when ML models are applied in 
a clinical context. One sophisticated method to obtain such 
a guarantee is CP [8]. CP can extend ML models by altering 
their predictions so that they are guaranteed to be correct for 
unseen samples (i.e., test samples or samples in the routine 
clinical application of the model) in a user-defined percent-
age of cases, usually 90%. CP requires a trained ML model 
and a so-called calibration dataset that has the same format 
as the training and test data but is disjunct from both. The 
calibration dataset is used to determine a threshold for the 
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predicted class probabilities, which is then used to alter pre-
dictions: If the class probability for one class (either MIBC or 
pTa lg) is greater than or equal to the threshold (i.e., the model 
is sufficiently confident in its prediction), the CP prediction 
consists of this single class and is equal to the prediction ob-
tained without CP. In contrast, if the predicted probabilities 
are smaller than the threshold, CP predicts a set containing 
both classes {MIBC, pTa lg}, indicating that the given sample 
cannot be confidently assigned to either class.

We performed CP using the adaptive prediction sets algorithm 
by Angelopoulos and Bates [8], using one-third of the training 
cohort as the calibration data.

2.3   |   Definition of Molecular Subtypes

To define molecular subtypes, spatially organised tissue mi-
croarrays of 1.5-mm-tissue cores (4 cores per tumour) were 
stained for CK5, CK14, CK20, GATA3, FOXA1, CD44 and 
UPK2 on a VENTANA BenchMark ULTRA autostainer 
(Ventana, Switzerland) according to a DAkkS (German ac-
creditation society)-accredited staining protocol and analysed 
using the immunoreactive score (IRS), as described previously 

[9], based on the recommendations for IHC-based subtyp-
ing provided by the International Bladder Cancer Molecular 
Taxonomy Working Group [10]. The derived expression re-
sults were Z-score normalised, and tumours were categorised 
as ‘luminal’ or ‘basal’ using an unsupervised Ward's linkage 
clustering algorithm with Euclidean distance as the metric 
scale. mRNA sequencing for consensus molecular subtyping 
was performed using the Lexogen QuantSeq 3′ mRNA-Seq 
Kit FWD (Lexogen GmbH), as described previously [11]; gene 
counts were log2 transformed, and MIBC consensus subtype 
calling was performed in R v 4.1.0 using the single-sample 
classifier R-package BLCA subtyping v.2.1 (https://​github.​
com/​cit-​bioin​fo/​BLCAs​ubtyping).

3   |   Results

3.1   |   miRNA Expression in MIBC Compared to pTa 
lg Tumours

Using qRT-PCR, the expressions of miR-138-5p, miR-146b-5p, 
miR-155-5p and miR-200a-3p, as well as three potential miRNA 
references for normalisation (miR-191-5p, miR-361-5p, RNU48), 
were quantified in the two cohorts (n = 66 and n = 183).

FIGURE 1    |    miRNA expression (normalised against miR-361-5p) in MIBC compared to pTa lg bladder cancer samples; A: Cohort 1; B: Cohort 2; 
(*): p ≤ 0.05; (**): p ≤ 0.01; (***): p ≤ 0.001; (****): p ≤ 0.0001.
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We decided to use miR-361-5p for normalisation, as it showed 
the most stable expression and did not differ between the MIBC 
and pTa lg groups.

In both cohorts, miR-138-5p and miR-200a-3p were significantly 
downregulated in MIBC compared to pTa lg (Figure 1; Table 1), 
while miR-146b-5p and miR-155-5p were significantly upregu-
lated (Figure 1; Table 1). We then analysed MIBC samples from 
CYS and TURB separately in comparison with pTa lg. In both 
cohorts, significant expression differences between MIBC and 
pTa lg were confirmed for all four miRNAs when using the CYS 
MIBC samples and  were also confirmed for miR-146b-5p and 
miR-155-5p when using the TURB MIBC samples (Figures  2 

and 3; Table 1). However, no significant expression differences 
could be found for these two miRNAs between the TURB and 
CYS samples from MIBC in cohort 1 (Figure S1) which is in con-
trast to the findings for cohort 2 (miR-146b-5p, p = 0.0004; miR-
200a-3p, p = 0.038, Figure  S2). miRNA expression in MIBC in 
both cohorts did not differ between the pT categories.

Next, we performed ROC analyses (Table  S3). Comparing the 
MIBC TURB to the pTa lg samples, a high AUC was reached 
for miR-146b-5p (cohort 1: 0.90; cohort 2: 0.91) and miR-155-5p 
(cohort 1: 0.83, cohort 2: 0.94) in both cohorts, in contrast to the 
observed results for miR-138-5p (cohort 1: 0.58, cohort 2: 0.59) 
and miR-200a-3p (cohort 1: 0.64, cohort 2: 0.56) (Figures S3 and 

TABLE 1    |    Statistical analysis of miRNA expression between non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) bladder cancer samples 
obtained after transurethral resection (TURB) or cystectomy (CYS) using Mann–Whitney-U test.

Cohort Comparison miR-138-5p miR-146b-5p miR-155-5p miR-200a-3p

1 (HOM) pTa lg-MIBC (TURB) 0.373 < 0.0001 0.0002 0.1216

pTa lg-MIBC (Cyst) 0.0003 < 0.0001 < 0.0001 0.0006

pTa lg-MIBC (all) 0.004 < 0.0001 < 0.0001 0.002

2 (ERL) pTa lg-MIBC (TURB) 0.2733 < 0.0001 < 0.0001 0.4309

pTa lg-MIBC (Cyst) < 0.0001 < 0.0001 < 0.0001 < 0.0001

pTa lg-MIBC (all) < 0.0001 < 0.0001 < 0.0001 < 0.0001

Note: statistically significant differences in bold.

FIGURE 2    |    miRNA expression (normalised against miR-361-5p): Analysis of MIBC samples obtained from cystectomy (A) or from TURB (B) 
compared to pTa lg bladder cancer samples (cohort 1); (*): p ≤ 0.05; (**): p ≤ 0.01; (***): p ≤ 0.001; (****): p ≤ 0.0001.
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S4). The AUC was larger when using MIBC CYS samples com-
pared to MIBC TURB samples for all miRNAs in both cohorts 
(Figures  S5 and S6). Accordingly, highly significant p-values 
were achieved for all miRNAs when using the MIBC CYS sam-
ples and for miR-146b-5p and miR-155-5p when using MIBC 
TURB samples (Table 1).

3.2   |   Development of a Robust miRNA Signature 
Using Machine Learning Algorithms

To determine which miRNA subset is most suited to distinguish 
MIBC from pTa lg, we trained classification models using five ML 
algorithms (Figure 4, Figure S7). The accuracy was above 0.85 for 
40 of the 75 models. Noteworthily, models using only miR-146b-5p 
as a single predictor already reached an accuracy of up to 0.92. 
When model performance was evaluated using only the test co-
hort's TURB samples, sensitivity and accuracy slightly decreased. 
Specificity was unaffected since the pTa lg group does not contain 
any CYS samples. Three models achieved the best performance: a 
KNN model (k = 19, Table S2) with miR-138-5p, miR-146b-5p and 
miR-200a-3p as its features; a VNN model (size = 4, decay = 0.01) 
with miR-138-5p and miR-146b-5p as the features; and an SVM 
model (kernel = polynomial, C = 1, degree = 2, scale = 0.1) with 
miR-138-5p, miR-146b-5p and miR-155-5p as the features. All three 
models had an accuracy of 0.94 (0.91 for only TURB), a sensitivity 

of 0.95 (0.89 for only TURB) and a specificity of 0.91. Furthermore, 
all three models misclassified the same five samples (Figure 5B).

Based on their miR-138-5p and miR-146b-5p expression, the 
MIBC and pTa lg groups can be well separated, with some over-
lap where the expression value of miR-146b-5p approaches zero 
(Figure 5A,B). This is mirrored by the class probabilities derived 
from the KNN (Figure  5C), which decrease for samples closer 
to the centre of the point cloud while the SVM's and especially 
the VNN's probabilities are more uniform and thus less infor-
mative to distinguish the invasive potential of different samples 
(Figure 5D,E).

Next, we applied CP to our models (Figure  5F–H). For sam-
ples with relatively low prediction probabilities, which cannot 
be confidently classified as either MIBC or pTa lg, CP predicts 
two-class sets (i.e., {MIBC, pTa lg}) to avoid misclassifications. 
Indeed, all five previously misclassified samples were predicted 
as two-class sets by the KNN, SVM and VNN. Consequently, the 
predicted sets for the test cohort contained the true classes in all 
cases. However, the KNN yields more single-class predictions 
than the SVM and VNN (32%, 4% and 3% of cases, respectively), 
where samples are confidently classified as either MIBC or pTa 
lg. Due to the more informative class probabilities and the in-
creased number of single-class CPs, the KNN is superior to the 
SVM and VNN, despite all models having the same accuracy.

FIGURE 3    |    miRNA expression (normalised against miR-361-5p): Analysis of MIBC samples obtained from cystectomy (A) or from TURB (B), 
pT1 hg and pTa lg bladder cancer samples (cohort 2); (*): p ≤ 0.05; (**): p ≤ 0.01; (***): p ≤ 0.001; (****): p ≤ 0.0001.

 15824934, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcm

m
.70361 by Saarländische U

niversitäts- U
nd L

andesbibliothek Sulb, W
iley O

nline L
ibrary on [01/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 10 Journal of Cellular and Molecular Medicine, 2025

3.3   |   Evaluation of miRNA Expression in TURB 
Samples

We then analysed pT1 hg tumours from TURB in comparison 
with pTa lg and MIBC from TURB (cohort 2). Expression of miR-
146b-5p is between the two other groups and is significantly dif-
ferent from both, whereas expression of miR-155-5p is similar to 
MIBC and significantly different from pTa lg (Figure 3B). No sig-
nificant differences were found for miR-138-5p and miR-200a-3p. 
When using MIBC samples from CYS, significant differences 
were found for miR-138-5p and miR-200a-3p, too (Figure 3A).

When applying the KNN model to the pT1 hg tumours, 32% of 
samples (cohort 2) are predicted as MIBC (Figure S8).

We further evaluated the classification of pT1 hg in TURB 
samples considering the final diagnosis in cystectomy samples 
(data available in 12 cases from cohort 1, Table S4). Five out of 
six cases with MIBC in final histology have been classified as 
MIBC by the KNN model. However, also five out of six cases 

with pTa/pTis in cystectomy have been predicted as MIBC, one 
with metachronous distant metastasis.

3.4   |   Definition of Molecular Subtypes

Furthermore, the molecular subtypes in MIBC of cohort 2 were 
defined. Using immunochemistry, the luminal and basal subtypes 
were found in 37.5% and 72.5% of the samples, respectively. miR-
146b-5p and miR-155-5p were significantly more highly expressed 
in basal MIBC, whereas miR-200a-3p was expressed significantly 
less in basal MIBC (Figure  6). miR-138-5p expression did not 
differ significantly between the subtypes. Compared to pTa lg, 
miR-138-5p, miR-146-5p and miR-155-5p were significantly differ-
entially expressed in both luminal and basal MIBC, in contrast to 
miR-200a-3p, which was less highly expressed only in basal MIBC 
(Figure S9). Using gene expression analysis, all six subtypes were 
identified: luminal papillary (LumP) in 9 (9.5%), luminal unsta-
ble (LumU) in 9 (9.5%), basal/squamous (Bas/Sq) in 42 (44.2%), 
stroma-rich in 33 (34.7%) and neuroendocrine-like (NeLike) in 

FIGURE 4    |    Classification performance: Accuracy, sensitivity (fraction of correctly classified MIBC samples) and specificity (fraction of correctly 
classified pTa lg samples) of classification models trained using different miRNA combinations (x-axis) as input; black curves: complete test cohort 
(TURB and CYS samples); blue curves: TURB samples only; grey dashed horizontal lines: accuracy/sensitivity/specificity of 0.9. Specificity is equal 
for both curves, since the pTa lg group does not contain any CYS samples. Performance measures of the best-performing models are denoted numer-
ically. Results for random forests and boosting trees are provided in Figure S7.
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two samples (2.1%). Luminal-non-specified was found in only one 
case and was excluded from the statistics. Results were similar to 
those described above (Figure S10).

4   |   Discussion

Our results confirm the large potential of miRNAs being used as 
biomarkers for differentiation between pTa lg NMIBC and MIBC. 
Furthermore, our data strongly support the hypothesis that dis-
tinct pathways with distinct molecular alterations characterise 
the development of papillary low grade and MIBC [12]. Since our 
overarching goal is to develop miRNA models that can estimate 
the risk of muscle invasion before performing a potentially avoid-
able cystectomy, our estimates need to be accurate even when 
only TURB samples are considered. Therefore, we analysed 
MIBC samples from cystectomies and TURB separately; we val-
idated the four miRNAs from our previous study using the two 
independent cohorts' cystectomy MIBC samples and found that 

miR-146b-5p and miR-155 were still significantly differentially 
expressed in TURB samples. Considering the very high discrim-
inatory power of these two miRNAs reflected in the ROC analy-
ses, our data support the hypothesis that the diagnosis of muscle 
invasiveness is possible using samples obtained from TURB. 
However, this has to be evaluated in larger cohorts using only 
TURB samples. On the one hand, the minor differences observed 
between TURB and cystectomy samples for two miRNAs might 
be based on the smaller number of TURB samples. On the other 
hand, it seems possible that the deeper and more invasive parts 
of the MIBC that are analysed from cystectomy samples have a 
higher probability of representing an invasive miRNA signature.

As tumour progression, including invasion, is character-
ised by complex molecular alterations, as shown for the four 
miRNAs, it is important to define miRNA signatures using 
ML algorithms to create robust models instead of using sin-
gle miRNAs. The trained ML models had high accuracy, 
even when only tested on TURB samples, indicating that the 

FIGURE 5    |    Predictions of machine learning models. (A and B) Expression of miR-146b-5p and miR-138-5p for the training and test cohorts, 
respectively. (B) Samples that were incorrectly predicted by the best-performing KNN, SVM and VNN models are highlighted with a thick black 
outline. (C–D) Predicted class probabilities of the best KNN, SVM and VNN model, respectively; (E-F) The prediction sets obtained by applying con-
formal prediction. For two-class sets, the class with higher probability is listed first.
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investigated miRNAs are suitable biomarkers for distinguish-
ing MIBC from pTa lg NMIBC. Since the models were trained 
and tested on different cohorts, the predictions seem robust 
for different data sources.

Even though miR-155-5p effectively distinguished pTa lg from 
MIBC in the previous ROC analyses, it is not included in two of the 
three best-performing models. This might be explained by the rela-
tively high expression correlation of 0.62 between miR-155-5p and 
miR-146b-5p. Consequently, both miRNAs might provide similar 
information, but since miR-146b-5p alone yields more accurate 
predictions than miR-155-5p alone, only miR-146b-5p is included 
in the best KNN and VNN models. In contrast, miR-138-5p and 
miR-200a-3p are less predictive on their own but seem helpful to 
classify cases where miR-146b-5p alone does not suffice.

We additionally investigated the prediction probabilities derived 
from the best-performing KNN, SVM and VNN models. These 
probabilities denote how confident a model is in its prediction for 
a given sample. The probabilities obtained from the KNN vary 
considerably, indicating that some samples are easier to classify 
than others. Furthermore, the KNN probabilities for misclassi-
fied samples are comparatively low, which is desirable, as they 
indicate the model's uncertainty in classifying these cases.

Lastly, we applied CP to our models, a method that predicts a 
sample as being either MIBC or pTa lg only when the corre-
sponding class probability is sufficiently large. CP guarantees 
that the actual class of a sample should be contained within the 
CP predictions for a user-specified percentage (here: 90%) of 
cases. This certainty guarantee is highly desirable for the clinical 
application of ML models: First, misclassifications are avoided 
because the model does not have to decide on a single class in 
uncertain cases. Second, the obtained single-class predictions 
are more trustworthy because they represent cases where the 
model was sufficiently confident in its decision. By applying CP 
to our models, all misclassifications in the test cohort were elim-
inated. Compared to the SVM and VNN, the KNN confidently 
assigned a single class to a sample much more frequently, thus 
yielding more informative predictions. Consequently, the KNN 
is superior for predicting muscle invasion despite having the 
same accuracy as the other two models.

However, several samples could not be assigned to a single class 
when using CP. This should not necessarily be interpreted as a 
fault of CP, but rather as an indication that, based on the data 

and models at hand, only a subset of samples can be confidently 
classified. In such cases, the benefit of the model is less a spe-
cific prediction that might affirm or question the opinion of a 
human expert, but rather an indication that the sample at hand 
might require careful investigation. Overall, we believe that CP 
could create trust in the application of ML for medical decision 
support by ensuring highly accurate predictions while also indi-
cating when a sample cannot be classified confidently.

Based on our results, the miRNA signature of a tumour could 
be helpful in defining the invasive potential of cases with a 
questionable histology l, especially in pT1 hg tumours after 
TURB. We excluded theses tumours from the NMIBC class 
as they represent a more heterogeneous group concerning 
prognosis, on the one hand, and a distinct histological group 
without invasion in the muscle layer but with poor differen-
tiation, on the other hand. When analysing pT1 hg tumours 
separately, the miRNA expression overlapped with both pTa 
lg and MIBC for three miRNAs. In contrast, the expression 
of miR-155-5p is at the same level as in MIBC and completely 
different from pTa lg NMIBC. Therefore, it seems that this 
miRNA characterises the invasive potential of BC in general 
and not concerning the muscle layer. When applying the KNN 
model to the pT1 hg samples, predictions were heterogeneous, 
underlining that some pT1 hg cases resemble pTa lg and oth-
ers resemble MIBC. In a small cohort, follow-up data were 
available. In almost all cases in which cystectomy was per-
formed, muscle invasiveness was predicted in TURB samples 
using the KNN model. As in six out of 12 cases, NMIBC was 
still found in final histology; one could interpret this as false-
positive results and, therefore, low specificity. However, it is 
also possible, and in our view more likely, that the tumour 
was resected at a time point when the tumour cells had not 
yet reached the muscle layer. As in all these cases, the deci-
sion for an early cystectomy is based on multiple individual 
factors such as multifocality, macroscopic features observed 
by the surgeon during TURB, recurrence dynamics, or BCG 
failure. Our classification model supports the evaluation of 
these cases as aggressive tumours. Of course, the data have 
to be evaluated in larger cohorts with longer follow-up data to 
further study these assumptions.

Several publications confirmed miRNAs as biomarkers in cell-
free supernatant or sediments derived from urine samples from 
BC patients [13]. In our previous study, the differential expres-
sion of miR-146b-5p and miR-155-5p in MIBC compared to 

FIGURE 6    |    miRNA expression (normalised against miR-361-5p) in MIBC (cohort 2); comparison between luminal and basal subtypes defined by 
immunohistochemistry; (*): p ≤ 0.05; (**): p ≤ 0.01; (***): p ≤ 0.001; (****): p ≤ 0.0001.
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NMIBC was verified in urinary extracellular vesicles for the 
first time [3]. Future studies on larger cohorts must investigate 
whether the invasive potential of tumours can be accurately pre-
dicted based on a miRNA analysis of urine.

The molecular subtypes of MIBC have been proven to be as-
sociated with prognosis and therapy response [9, 14, 15]. 
miR-146b-5p, miR-155-5p and miR-200a-3p are differentially 
expressed between basal and luminal subtypes, supporting 
data obtained from a comprehensive molecular characterisation 
of the TCGA cohort [15]. Taken together, these three miRNAs 
characterise not only invasiveness but also the more aggressive 
basal subtype.

The four previously identified miRNAs have been investi-
gated as biomarkers in relation to their functional role in the 
tumour-related processes in multiple tumour entities, particu-
larly in BC. miR-138-5p is known as a tumour suppressor and 
is known to be downregulated in several tumour types [16]. 
Awadalla et al. found a significantly lower expression of miR-
138-5p in MIBC compared to pT1 tumours, confirming our 
results, and discussed HIF1a as a target, as it is more highly 
expressed in MIBC [17] and seems to be strongly inversely 
correlated with TERT, PD-L1 and PD-L2, as well as survivin 
expression [18, 19].

A higher expression of miR-146b-5p in the advanced stages 
of BC, as well as its association with M2 macrophage infiltra-
tion, has been reported [20]. miR-146b-5p seems to be a target 
of long non-coding RNA lnc-STYK1-2, and it promotes pro-
liferation, migration and invasion via ITGA2 as well as AKT/
STAT3/NF-κB signalling [21]. Depending on the tumour type, 
this miRNA can act as a tumour promoter [22–25] or suppres-
sor [26, 27].

A correlation was found between a higher expression of miR-155 
and higher BC stages, as well as shorter progression-free sur-
vival [28]. Therefore, it seems that miR-155 is associated with 
an invasive phenotype, as confirmed by in  vitro experiments 
demonstrating that miR-155 increases both proliferation and 
invasion [29]. Several other studies have found overexpression 
of miR-155 in the tumour tissue of BC but did not investigate its 
possible association with invasiveness.

Many publications have proven miR-200a-3p to be a tumour 
suppressor. Its downregulation is associated with proliferation, 
EMT, invasion, metastasis and poor prognosis in different tu-
mour types [30–33]. A lower expression was found in tumour 
tissues and in urine, especially in advanced tumour stages of BC 
[3, 34], although some contradictory results have been reported 
[35]. To understand the role and function of a given miRNA 
in BC, it seems important to investigate NMIBC and MIBC 
separately.

Our study has some limitations. The cohorts have been ret-
rospectively selected and analysed. Furthermore, the number 
of MIBC samples from TURB is small and the model has to 
be validated in a larger TURB cohort. Follow-up data on pT1 
hg tumours were available only from a very small number 
of patients, especially from those without early cystectomy 

and other treatment such as BCG instillation could not be 
evaluated.

In conclusion, our data further confirms distinct molecular path-
ways of non-invasive low grade NMIBC and MIBC. By using 
machine learning algorithms, we defined a robust 3-miRNA sig-
nature that differentiates MIBC from pTa lg with high accuracy 
even in TURB samples. After prospective validation in indepen-
dent cohorts including pT1 hg tumours, it might be applied in 
routine diagnostics to define the invasive potential of a tumour in 
addition to its histopathological examination and therefore sup-
port the clinical decisions that have to be made by the patient and 
clinician, namely to choose between performing radical a cystec-
tomy and pursuing bladder-conserving strategies. This could be 
especially helpful for therapeutic decision-making in T1 hg tu-
mours. Furthermore, developing non-invasive diagnostic methods 
that use urine samples seems possible with this miRNA panel.
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