Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-26316 | Titel: | A shock-capturing algorithm for the differential equations of dilation and erosion |
| VerfasserIn: | Breuß, Michael Weickert, Joachim |
| Sprache: | Englisch |
| Erscheinungsjahr: | 2005 |
| Freie Schlagwörter: | morphological dilation morphological erosion finite difference methods |
| DDC-Sachgruppe: | 510 Mathematik |
| Dokumenttyp: | Sonstiges |
| Abstract: | Dilation and erosion are the fundamental operations in morphological image processing. Algorithms that exploit the formulation of these processes in terms of partial differential equations offer advantages for non-digitally scalable structuring elements and allow sub-pixel accuracy. However, the widely-used schemes from the literature suffer from significant blurring at discontinuities. We address this problem by developing a novel, flux corrected transport (FCT) type algorithm for morphological dilation / erosion with a flat disc. It uses the viscosity form of an upwind scheme in order to quantify the undesired diffusive effects. In a subsequent corrector step we compensate for these artifacts by means of a stabilised inverse diffusion process that requires a specific nonlinear multidimensional formulation. We prove a discrete maximum-minimum principle in this multidimensional framework. Our experiments show that the method gives a very sharp resolution of moving fronts, and it approximates rotation invariance very well. |
| Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-46213 hdl:20.500.11880/26372 http://dx.doi.org/10.22028/D291-26316 |
| Schriftenreihe: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Band: | 153 |
| Datum des Eintrags: | 24-Feb-2012 |
| Fakultät: | MI - Fakultät für Mathematik und Informatik |
| Fachrichtung: | MI - Mathematik |
| Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| preprint_153_05.pdf | 220,12 kB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.

