Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35995
Titel: Quantitative and time-resolved miRNA pattern of early human T cell activation
VerfasserIn: Diener, Caroline
Hart, Martin
Kehl, Tim
Rheinheimer, Stefanie
Ludwig, Nicole
Krammes, Lena
Pawusch, Sarah
Lenhof, Kerstin
Tänzer, Tanja
Schub, David
Sester, Martina
Walch-Rückheim, Barbara
Keller, Andreas
Lenhof, Hans-Peter
Meese, Eckart
Sprache: Englisch
Titel: Nucleic Acids Research
Bandnummer: 48
Heft: 18
Seiten: 10164–10183
Verlag/Plattform: Oxford University Press
Erscheinungsjahr: 2020
DDC-Sachgruppe: 004 Informatik
610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: T cells are central to the immune response against various pathogens and cancer cells. Complex networks of transcriptional and post-transcriptional regulators, including microRNAs (miRNAs), coordinate the T cell activation process. Available miRNA datasets, however, do not sufficiently dissolve the dynamic changes of miRNA controlled networks upon T cell activation. Here, we established a quantitative and time-resolved expression pattern for the entire miRNome over a period of 24 h upon human Tcell activation. Based on our time-resolved datasets, we identified central miRNAs and specified common miRNA expression profiles. We found the most prominent quantitative expression changes for miR155-5p with a range from initially 40 molecules/cell to 1600 molecules/cell upon T-cell activation. We established a comprehensive dynamic regulatory network of both the up- and downstream regulation of miR155. Upstream, we highlight IRF4 and its complexes with SPI1 and BATF as central for the transcriptional regulation of miR-155. Downstream of miR-155-5p, we verified 17 of its target genes by the time-resolved data recorded after T cell activation. Our data provide comprehensive insights into the range of stimulus induced miRNA abundance changes and lay the ground to identify efficient points of intervention for modifying the T cell response.
DOI der Erstveröffentlichung: 10.1093/nar/gkaa788
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-359955
hdl:20.500.11880/32795
http://dx.doi.org/10.22028/D291-35995
ISSN: 1362-4962
0305-1048
Datum des Eintrags: 13-Apr-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Data
In Beziehung stehendes Objekt: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/48/18/10.1093_nar_gkaa788/2/gkaa788_supplemental_file.pdf?Expires=1652875503&Signature=ac2Jn3upeF0x5vQJbG7eJWE1YYq2-Q3DmDp-fFeHCXgACJA65-aS14cXLjtGAKDYgd4xKSORo0PNpR5r53FMzNyA7QKJyOLbq07N7LX9qNFcCmueNDvSxiCyymdpQrRqrYP6MB~~0PNl90DJo8Ql8ve8ov6V5Gu7qaNDIBBRumm12kdZ7KHTzsppdOWwB-8CF0sE5goiWynT7HGCca0cy8~ppDkI6CSJfkjKFNUOpxBoRhQGQeKISuUk-5fEYMz3F7eNGj8TM42TrE64Ol1ycAXPlU35kNnP763dxSZr8~kTOTmhFJlk9-rTTiStDN58zZZxrtvtCAt-T~lWO3M5Rw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
Fakultät: M - Medizinische Fakultät
MI - Fakultät für Mathematik und Informatik
Fachrichtung: M - Humangenetik
M - Infektionsmedizin
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
MI - Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
M - Prof. Dr. Eckhart Meese
M - Prof. Dr. Martina Sester
MI - Prof. Dr. Hans-Peter Lenhof
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
gkaa788.pdf6,72 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons