Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35999
Titel: Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis Diagnosis
VerfasserIn: Guimarães, Pedro
Batista, Ana
Zieger, Michael
Kaatz, Martin
Koenig, Karsten
Sprache: Englisch
Titel: Scientific Reports
Bandnummer: 10
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2020
Freie Schlagwörter: Diagnosis
Machine learning
Medical imaging
Optical imaging
Skin diseases
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The diagnostic possibilities of multiphoton tomography (MPT) in dermatology have already been demonstrated. Nevertheless, the analysis of MPT data is still time-consuming and operator dependent. We propose a fully automatic approach based on convolutional neural networks (CNNs) to fully realize the potential of MPT. In total, 3,663 MPT images combining both morphological and metabolic information were acquired from atopic dermatitis (AD) patients and healthy volunteers. These were used to train and tune CNNs to detect the presence of living cells, and if so, to diagnose AD, independently of imaged layer or position. The proposed algorithm correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells. The diagnosis was obtained with a sensitivity of 0.966 ± 0.003, specificity of 0.977 ± 0.003 and F-score of 0.964 ± 0.002. Relevance propagation by deep Taylor decomposition was used to enhance the algorithm’s interpretability. Obtained heatmaps show what aspects of the images are important for a given classification. We showed that MPT imaging can be combined with artificial intelligence to successfully diagnose AD. The proposed approach serves as a framework for the automatic diagnosis of skin disorders using MPT.
DOI der Erstveröffentlichung: 10.1038/s41598-020-64937-x
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-359990
hdl:20.500.11880/32798
http://dx.doi.org/10.22028/D291-35999
ISSN: 2045-2322
Datum des Eintrags: 13-Apr-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Karsten König
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s41598-020-64937-x.pdf1,59 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons