Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42263
Volltext verfügbar? / Dokumentlieferung
Titel: How statistical correlations influence discourse-level processing: Clause type as a cue for discourse relations
VerfasserIn: Marchal, Marian
Scholman, Merel Cleo Johanna
Demberg, Vera
Sprache: Englisch
Titel: Journal of experimental psychology
Bandnummer: 50
Heft: 5
Seiten: 796-807
Verlag/Plattform: Assoc.
Erscheinungsjahr: 2024
Freie Schlagwörter: discourse signaling
prediction
discourse relations
clause structure
statistical co-occurrence
DDC-Sachgruppe: 004 Informatik
400 Sprache, Linguistik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Linguistic phenomena (e.g., words and syntactic structure) co-occur with a wide variety of meanings. These systematic correlations can help readers to interpret a text and create predictions about upcoming material. However, to what extent these correlations influence discourse processing is still unknown. We address this question by examining whether clause type serves as a cue for discourse relations. We found that the co-occurrence of gerund-free adjuncts and specific discourse relations found in natural language is also reflected in readers' offline expectations for discourse relations. However, we also found that clause structure did not facilitate the online processing of these discourse relations, nor that readers have a preference for these relations in a paraphrase selection task. The present research extends previous research on discourse relation processing, which mostly focused on lexical cues, by examining the role of non-semantic cues. We show that readers are aware of correlations between clause structure and discourse relations in natural language, but that, unlike what has been found for lexical cues, this information does not seem to influence online processing and discourse interpretation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
DOI der Erstveröffentlichung: 10.1037/xlm0001270
URL der Erstveröffentlichung: https://psycnet.apa.org/fulltext/2023-98299-001.html
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-422630
hdl:20.500.11880/37947
http://dx.doi.org/10.22028/D291-42263
ISSN: 1939-1285
0278-7393
Datum des Eintrags: 26-Jun-2024
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Vera Demberg
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.