Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45046
Titel: Individualized Determination of the Mechanical Fracture Environment After Tibial Exchange Nailing-A Simulation-Based Feasibility Study
VerfasserIn: Braun, Benedikt J.
Orth, Marcel
Diebels, Stefan
Wickert, Kerstin
Andres, Annchristin
Gawlitza, Joshua
Bücker, Arno
Pohlemann, Tim
Roland, Michael
Sprache: Englisch
Titel: Frontiers in Surgery
Bandnummer: 8
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2021
Freie Schlagwörter: non-union
individualized simulation
fracture healing
tibia
simulation
DDC-Sachgruppe: 500 Naturwissenschaften
610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Non-union rate after tibial fractures remains high. Apart from largely uncontrollable biologic, injury, and patient-specific factors, the mechanical fracture environment is a key determinant of healing. Our aim was to establish a patient-specific simulation workflow to determine the mechanical fracture environment and allow for an estimation of its healing potential. In a referred patient with failed nail-osteosynthesis after tibial-shaft fracture exchange nailing was performed. Post-operative CT-scans were used to construct a three-dimensional model of the treatment situation in an image processing and computer-aided design system. Resulting forces, computed in a simulation-driven workflow based on patient monitoring and motion capturing were used to simulate the mechanical fracture environment before and after exchange nailing. Implant stresses for the initial and revision situation, as well as interfragmentary movement, resulting hydrostatic, and octahedral shear strain were calculated and compared to the clinical course. The simulation model was able to adequately predict hardware stresses in the initial situation where mechanical implant failure occurred. Furthermore, hydrostatic and octahedral shear strain of the revision situation were calculated to be within published healing boundaries—accordingly the fracture healed uneventfully. Our workflow is able to determine the mechanical environment of a fracture fixation, calculate implant stresses, interfragmentary movement, and the resulting strain. Critical mechanical boundary conditions for fracture healing can be determined in relation to individual loading parameters. Based on this individualized treatment recommendations during the early post-operative phase in lower leg fractures are possible in order to prevent implant failure and non-union development.
DOI der Erstveröffentlichung: 10.3389/fsurg.2021.749209
URL der Erstveröffentlichung: https://doi.org/10.3389/fsurg.2021.749209
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-450469
hdl:20.500.11880/39910
http://dx.doi.org/10.22028/D291-45046
ISSN: 2296-875X
Datum des Eintrags: 11-Apr-2025
Fakultät: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: M - Chirurgie
M - Radiologie
NT - Materialwissenschaft und Werkstofftechnik
Professur: M - Prof. Dr. Arno Bücker
M - Prof. Dr. Tim Pohlemann
NT - Prof. Dr. Stefan Diebels
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
fsurg-08-749209.pdf1,97 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons