Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45904
Titel: Evaporation-triggered nanoprecipitation for PLGA nanoparticle formation using a spinning-disc system
VerfasserIn: Zander, Alexandra J.
Ehrlich, Marie-Sophie
Rehman, Saad ur
Schneider, Marc
Sprache: Englisch
Titel: Journal of Drug Delivery Science and Technology
Bandnummer: 108
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2025
Freie Schlagwörter: Polymeric nanoparticles
Nanotechnology
Drug loading
Size tuning
Up scaling
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Researchers have successfully introduced many formulations based on nanoparticles and many of those products are already available for clinical use. When it comes to polymeric nanoparticles, there are only natural polymers (e.g., albumin) approved but several publications describe very promising results at the laboratory level. Poly (lactic-co-glycolic acid) (PLGA) is widely used by researchers to prepare nanoparticles and there are several publications available with very promising results at the laboratory level but there are barely any approaches for commercial production of PLGA nanoparticles. One of the main challenges is the difficulty in converting lab scale production into commercial scale production. This study describes a very innovative manufacturing technology i.e. spinning disc system (SDS) for the continuous manufacturing of PLGA nanoparticles. It relies on a one-pot process, i.e. polymer, organic phase, aqueous phase and drug are homogeneously distributed and mixing as critical process parameter is eliminated. Centrifugal force causes the solution to spread all over the rotating disc and the large surface area of the disc facilitates the evaporation of the organic phase resulting in polymer precipitation. This manufacturing method also enables tuning of particle size (a wide range of between 120 and 320 nm can be achieved). Compared to standard bench top (BT) methods, smaller particles with higher yields were obtained (141 nm with a yield of 89 %). Along with continuous production of nanoparticles, SDS also improves encapsulation efficiency and drug loading of PLGA nanoparticles. Curcumin (CUR) as a model drug substance was encapsulated with SDS with a high encapsulation efficiency (60–70 %) compared to only 10–25 % in BT. Subsequently, a drug loading twice as high as with BT was achieved using SDS. The nanoparticles prepared with or without stabilizer produced nearly monodisperse particle sizes (PDI <0.1) and showed negative zeta-potentials (<−30 mV), which showed promising colloidal stability over a test period of 28 days. Maximum 7.4 nm of deviation from initial size was observed in stability studies.
DOI der Erstveröffentlichung: 10.1016/j.jddst.2025.106901
URL der Erstveröffentlichung: https://doi.org/10.1016/j.jddst.2025.106901
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-459040
hdl:20.500.11880/40270
http://dx.doi.org/10.22028/D291-45904
ISSN: 1773-2247
Datum des Eintrags: 23-Jul-2025
Bezeichnung des in Beziehung stehenden Objekts: Supplementary data
In Beziehung stehendes Objekt: https://ars.els-cdn.com/content/image/1-s2.0-S1773224725003041-mmc1.docx
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Pharmazie
Professur: NT - Prof. Dr. Marc Schneider
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S1773224725003041-main.pdf7,47 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons