Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45915
Titel: Uncertainty-Aware Predictive Process Monitoring in Healthcare: Explainable Insights into Probability Calibration for Conformal Prediction
VerfasserIn: Majlatow, Maxim
Shakil, Fahim Ahmed
Emrich, Andreas
Mehdiyev, Nijat
Sprache: Englisch
Titel: Applied Sciences
Bandnummer: 15
Heft: 14
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: conformal prediction
explainable artificial intelligence
probability calibration
predictive process monitoring
DDC-Sachgruppe: 330 Wirtschaft
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: In high-stakes decision-making environments, predictive models must deliver not only high accuracy but also reliable uncertainty estimations and transparent explanations. This study explores the integration of probability calibration techniques with Conformal Predic tion (CP) within a predictive process monitoring (PPM) framework tailored to healthcare analytics. CP is renowned for its distribution-free prediction regions and formal coverage guarantees under minimal assumptions; however, its practical utility critically depends on well-calibrated probability estimates. We compare a range of post-hoc calibration meth ods—including parametric approaches like Platt scaling and Beta calibration, as well as non-parametric techniques such as Isotonic Regression and Spline calibration—to assess their impact on aligning raw model outputs with observed outcomes. By incorporating these calibrated probabilities into the CP framework, our multilayer analysis evaluates improvements in prediction region validity, including tighter coverage gaps and reduced minority error contributions. Furthermore, we employ SHAP-based explainability to explain how calibration influences feature attribution for both high-confidence and ambigu ous predictions. Experimental results on process-driven healthcare data indicate that the integration of calibration with CP not only enhances the statistical robustness of uncertainty estimates but also improves the interpretability of predictions, thereby supporting safer and robust clinical decision-making.
DOI der Erstveröffentlichung: 10.3390/app15147925
URL der Erstveröffentlichung: https://doi.org/10.3390/app15147925
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-459156
hdl:20.500.11880/40304
http://dx.doi.org/10.22028/D291-45915
ISSN: 2076-3417
Datum des Eintrags: 29-Jul-2025
Fakultät: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Fachrichtung: HW - Wirtschaftswissenschaft
Professur: HW - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
applsci-15-07925.pdf2,14 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons