Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46310
Titel: Exploring the in silico adaptation of the Nephroblastoma Oncosimulator to MRI scans, treatment data, and histological profiles of patients from different risk groups
VerfasserIn: Meyerheim, Marcel
Panagiotidou, Foteini
Georgiadi, Eleni
Soudris, Dimitrios
Stamatakos, Georgios
Graf, Norbert
Sprache: Englisch
Titel: Frontiers in Physiology
Bandnummer: 16
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2025
Freie Schlagwörter: multiscale cancer modeling
in silico medicine
clinical adaptation
decision-support system
Nephroblastoma Oncosimulator
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Introduction: Nephroblastoma or Wilms’ tumor is the most prevalent type of renal tumor in pediatric oncology. Although the overall survival rate for this condition is excellent today (∼90%), there have been no significant improvements over the past two decades. In silico models aim to simulate tumor progression and treatment responses over time; they hold immense potential for enhancing the predictive accuracy and optimizing treatment protocols as they are inspired by the digital twin paradigm. Methods: The present study uses T2-weighted magnetic resonance images, chemotherapy treatment plans, and post-surgical histological profiles from three patients enrolled in the SIOP 2001/GPOH clinical trial, where each patient represents a distinct clinically assessed risk group. We investigated the clinical adaptation of the Nephroblastoma Oncosimulator to the datasets from these patients with the goal of deriving appropriate value distributions of the model input parameters that enable accurate prediction of tumor volume reduction in response to preoperative chemotherapy. Results: Our primary focus was on the total cell kill ratio as a parameter reflecting treatment effectiveness. We derived the distribution of this parameter for one patient from each risk group: low (Mdn = 0.875, IQR [0.750, 0.875], n = 178), intermediate (Mdn = 0.875, IQR [0.750, 0.875], n = 175), and high (Mdn = 0.485, IQR [0.438, 0.532], n = 103). Statistically significant differences were observed between the high-risk group and both the low- and intermediate-risk groups (p < 0.001). Discussion: The present work establishes a foundation for further studies using available retrospective datasets and additional patients per risk group. These efforts are expected to help validate the findings, advance model development, and extend this mechanistic multiscale discretized cancer model. However, clinical validation is ultimately required to assess the potential uses of the model in clinical decision-support systems.
DOI der Erstveröffentlichung: 10.3389/fphys.2025.1465631
URL der Erstveröffentlichung: https://doi.org/10.3389/fphys.2025.1465631
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-463106
hdl:20.500.11880/40589
http://dx.doi.org/10.22028/D291-46310
ISSN: 1664-042X
Datum des Eintrags: 23-Sep-2025
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Pädiatrie
Professur: M - Prof. Dr. Norbert Graf
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
fphys-16-1465631.pdf85,07 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons