Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46585
Titel: Synthetic Rebalancing of Imbalanced Macro Etch Testing Data for Deep Learning Image Classification
VerfasserIn: Schöbel, Yann Niklas
Müller, Martin
Mücklich, Frank
Sprache: Englisch
Titel: Metals
Bandnummer: 15
Heft: 11
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: artificial intelligence
nondestructive evaluation
imbalanced data
synthetic data generation
nickel-base superalloys
material defects
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The adoption of artificial intelligence (AI) in industrial manufacturing lags behind re search progress, partly due to smaller, imbalanced datasets derived from real processes. In non-destructive aerospace testing, this challenge is amplified by the low defect rates of high-quality manufacturing. This study evaluates the use of synthetic data, generated via multiresolution stochastic texture synthesis, to mitigate class imbalance in material defect classification for the superalloy Inconel 718. Multiple datasets with increasing imbalance were sampled, and an image classification model was tested under three conditions: native data, data augmentation, and synthetic data inclusion. Additionally, round robin tests with experts assessed the realism and quality of synthetic samples. Results show that synthetic data significantly improved model performance on highly imbalanced datasets. Expert evaluations provided insights into identifiable artificial properties and class-specific accu racy. Finally, a quality assessment model was implemented to filter low-quality synthetic samples, further boosting classification performance to near the balanced reference level. These findings demonstrate that synthetic data generation, combined with quality control, is an effective strategy for addressing class imbalance in industrial AI applications.
DOI der Erstveröffentlichung: 10.3390/met15111172
URL der Erstveröffentlichung: https://doi.org/10.3390/met15111172
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-465856
hdl:20.500.11880/40835
http://dx.doi.org/10.22028/D291-46585
ISSN: 2075-4701
Datum des Eintrags: 27-Nov-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Frank Mücklich
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
metals-15-01172-v2.pdf70,12 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons