Please use this identifier to cite or link to this item:
doi:10.22028/D291-26302 | Title: | On the reflexivity of multivariable isometries |
| Author(s): | Eschmeier, Jörg |
| Language: | English |
| Year of Publication: | 2005 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Other |
| Abstract: | Let A\subsetC(K) be a unital closed subalgebra of the algebra of all continuous functions on a compact set K in \mathbb{C}^{n}. We define the notion of an A-isometry and show that, under a suitable regularity condition needed to apply Aleksandrov's work on the inner function problem, every A-isometry T\in L(\mathcal{H})^{n} is reflexive. This result applies to commuting isometries, spherical isometries, and more general, to all subnormal tuples with normal spectrum contained in the Bergman-Shilov boundary of a strictly pseudoconvex or bounded symmetric domain. |
| Link to this record: | urn:nbn:de:bsz:291-scidok-44893 hdl:20.500.11880/26358 http://dx.doi.org/10.22028/D291-26302 |
| Series name: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Series volume: | 125 |
| Date of registration: | 15-Feb-2012 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| preprint_125_05.pdf | 136,05 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.

