Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-40039
Titel: The Paramagnetic Meissner Effect (PME) in Metallic Superconductors
VerfasserIn: Koblischka, Michael Rudolf
Půst, Ladislav
Chang, Crosby-Soon
Hauet, Thomas
Koblischka-Veneva, Anjela
Sprache: Englisch
Titel: Metals
Bandnummer: 13
Heft: 6
Verlag/Plattform: MDPI
Erscheinungsjahr: 2023
Freie Schlagwörter: Meissner effect
PME
metallic superconductors
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The experimental data in the literature concerning the Paramagnetic Meissner Effect (PME) or also called Wohlleben effect are reviewed with the emphasis on the PME exhibited by metallic, s-wave superconductors. The PME was observed in field-cool cooling (FC-C) and fieldcool warming (FC-W) m(T)-measurements on Al, Nb, Pb, Ta, in compounds such as, e.g., NbSe2, In-Sn, ZrB12, and others, and also in MgB2, the metallic superconductor with the highest transition temperature. Furthermore, samples with different shapes such as crystals, polycrystals, thin films, biand multilayers, nanocomposites, nanowires, mesoscopic objects, and porous materials exhibited the PME. The characteristic features of the PME, found mainly in Nb disks, such as the characteristic temperatures T1 and Tp and the apparative details of the various magnetic measurement techniques applied to observe the PME, are discussed. We also show that PME can be observed with the magnetic field applied parallel and perpendicular to the sample surface, that PME can be removed by abrading the sample surface, and that PME can be introduced or enhanced by irradiation processes. The PME can be observed as well in magnetization loops (MHLs, m(H)) in a narrow temperature window Tp < Tc, which enables the construction of a phase diagram for a superconducting sample exhibiting the PME. We found that the Nb disks still exhibit the PME after more than 20 years, and we present the efforts of magnetic imaging techniques (scanning SQUID microscopy, magneto-optics, diamond nitrogen-vacancy (NV)-center magnetometry, and low-energy muon spin spectroscopy, (LE-µSR)). Various attempts to explain PME behavior are discussed in detail. In particular, magnetic measurements of mesoscopic Al disks brought out important details employing the models of a giant vortex state and flux compression. Thus, we consider these approaches and demagnetization effects as the base to understand the formation of the paramagnetic signals in most of the materials investigated. New developments and novel directions for further experimental and theoretical analysis are also outlined.
DOI der Erstveröffentlichung: 10.3390/met13061140
URL der Erstveröffentlichung: https://doi.org/10.3390/met13061140
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-400392
hdl:20.500.11880/36057
http://dx.doi.org/10.22028/D291-40039
ISSN: 2075-4701
Datum des Eintrags: 28-Jun-2023
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Physik
Professur: NT - Prof. Dr. Uwe Hartmann
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
metals-13-01140.pdf3,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons