Please use this identifier to cite or link to this item: doi:10.22028/D291-40975
Volltext verfügbar? / Dokumentlieferung
Title: Discovery and validation of a personalized risk predictor for incident tuberculosis in low transmission settings
Author(s): Gupta, Rishi K.
Calderwood, Claire J.
Yavlinsky, Alexei
Krutikov, Maria
Quartagno, Matteo
Aichelburg, Maximilian C.
Altet, Neus
Diel, Roland
Dobler, Claudia C.
Dominguez, Jose
Doyle, Joseph S.
Erkens, Connie
Geis, Steffen
Haldar, Pranabashis
Hauri, Anja M.
Hermansen, Thomas
Johnston, James C.
Lange, Christoph
Lange, Berit
van Leth, Frank
Muñoz, Laura
Roder, Christine
Romanowski, Kamila
Roth, David
Sester, Martina
Sloot, Rosa
Sotgiu, Giovanni
Woltmann, Gerrit
Yoshiyama, Takashi
Zellweger, Jean-Pierre
Zenner, Dominik
Aldridge, Robert W.
Copas, Andrew
Rangaka, Molebogeng X.
Lipman, Marc
Noursadeghi, Mahdad
Abubakar, Ibrahim
Language: English
Title: Nature Medicine
Volume: 26
Issue: 12
Pages: 1941-1949
Publisher/Platform: Springer Nature
Year of Publication: 2020
Free key words: Biomarkers
Diseases
Medical research
Risk factors
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: The risk of tuberculosis (TB) is variable among individuals with latent Mycobacterium tuberculosis infection (LTBI), but validated estimates of personalized risk are lacking. In pooled data from 18 systematically identified cohort studies from 20 countries, including 80,468 individuals tested for LTBI, 5-year cumulative incident TB risk among people with untreated LTBI was 15.6% (95% confidence interval (CI), 8.0–29.2%) among child contacts, 4.8% (95% CI, 3.0–7.7%) among adult contacts, 5.0% (95% CI, 1.6–14.5%) among migrants and 4.8% (95% CI, 1.5–14.3%) among immunocompromised groups. We confirmed highly variable estimates within risk groups, necessitating an individualized approach to risk stratification. Therefore, we developed a personalized risk predictor for incident TB (PERISKOPE-TB) that combines a quantitative measure of T cell sensitization and clinical covariates. Internal–external cross-validation of the model demonstrated a random effects meta-analysis C-statistic of 0.88 (95% CI, 0.82–0.93) for incident TB. In decision curve analysis, the model demonstrated clinical utility for targeting preventative treatment, compared to treating all, or no, people with LTBI. We challenge the current crude approach to TB risk estimation among people with LTBI in favor of our evidence-based and patient-centered method, in settings aiming for pre-elimination worldwide.
DOI of the first publication: 10.1038/s41591-020-1076-0
URL of the first publication: https://www.nature.com/articles/s41591-020-1076-0
Link to this record: urn:nbn:de:bsz:291--ds-409757
hdl:20.500.11880/36790
http://dx.doi.org/10.22028/D291-40975
ISSN: 1546-170X
1078-8956
Date of registration: 7-Nov-2023
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1076-0/MediaObjects/41591_2020_1076_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-020-1076-0/MediaObjects/41591_2020_1076_MOESM2_ESM.pdf
Faculty: M - Medizinische Fakultät
Department: M - Infektionsmedizin
Professorship: M - Prof. Dr. Martina Sester
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.